readme.md
Assets
- Eval: https://aka.ms/adx.iot.eval (5 Qs Max). Pls, help us improve this workshop.
Slides
- Download PDF of Full deck - ADX for IoT Analytics.pdf
Resources
- Documentation: https://aka.ms/adx.docs
- Reference Architecture: https://aka.ms/adx.iotrefarch
- Tech Blogs: https://aka.ms/adx.techblogs
- PG Ask me Anything: https://aka.ms/ama/azuredataexplorer
- Free personal cluster: https://aka.ms/adx.free
- Cost Estimator: https://aka.ms/adx.cost or https://aka.ms/adx.cost.old
Agenda
Module 1 - Intro
- How big is a Petabyte
- https://aka.ms/adx.try
- Proven Technology
- Scan operator
- Visualizations Cross-filter
- Provision lab for self-study
- KQL cheat-sheet
- Diff(s) between ADX & Synapse DE Pools
Module 1.2 - Overview
Module 1.3 - Architecture
Module 1.4 - Ingestion
- One-click UI
- Free personal cluster
.ingest
docs
Module 2 - ADX + IoT
Module 3 - HOL
Module 4 - ADT
Module 5 - KQL
- Pluralsight > Redeem
- https://aka.ms/adx.youtube > Query playlist
- MS Learn: Write your first query
- Application query statements
- KQL Cheat-sheet
- arg_max()
- evaluate plugin operator
- series_fill_linea()
- series_decompose_anomalies()
- mv-expand operator
- materialized view performance tips
- lookup operator
- external tables, Note: for parquet format use nativeParquetWriter
- KQL Best Practices
Module 6 - ML & TS
- series_fit_line()
- series_fit_2lines()
- series_periods_detect()
- series_periods_validate()
- series_fill_linear()
- series_decompose_forecast()
- series_decompose()
- autocluster()
- basket()
- diffpatterns()
- diffpatterns_text()
- Python plugin
- R plugin
- externaldata()
- external_artifacts
Module 7 - Visuals
- render operator
- Power BI Tutorial
- Excel
- Excel connector
Module 8 - Ops & Mgmt
- soft-delete via
.delete
or retention-policy - Handle dups, using any()/arg_min()/arg_max() agg functions (see example #4 in materialized view create command).
Module 9 - Adv
- All about update-policies
- hotcache windows
set query_datascope="hotcache"; MyTable | limit 10
.alter cluster policy caching hot = 30d
.alter cluster policy caching
hot = 30d,
hot_window = datetime(2021-01-01) .. datetime(2021-02-01)
- RLS & Mask columns
- Python client library
- Python ingest test sample.py
- Python install Kqlmagic