зеркало из https://github.com/Azure/ARO-RP.git
Update to use new fluentbit, mdm, and mdsd (#2855)
* update to use new fluentbit, mdm, and mdsd
This commit is contained in:
Родитель
2c79cfd93d
Коммит
03578b9c0c
|
@ -1,30 +0,0 @@
|
|||
ARG REGISTRY
|
||||
FROM ${REGISTRY}/ubi8/go-toolset:1.16.12 AS builder
|
||||
ARG MUOVERSION
|
||||
ENV DOWNLOAD_URL=https://github.com/openshift/managed-upgrade-operator/archive/${MUOVERSION}.tar.gz
|
||||
ENV GOOS=linux \
|
||||
GOPATH=/go/ \
|
||||
GOARCH=amd64 \
|
||||
CGO_ENABLED=0
|
||||
WORKDIR ${GOPATH}/src/github.com/openshift/managed-upgrade-operator
|
||||
USER root
|
||||
RUN yum update -yq
|
||||
RUN curl -Lq $DOWNLOAD_URL | tar -xz --strip-components=1
|
||||
RUN go build -gcflags="all=-trimpath=/go/" -asmflags="all=-trimpath=/go/" -tags mandate_fips -o build/_output/bin/managed-upgrade-operator ./cmd/manager
|
||||
|
||||
#### Runtime container
|
||||
FROM ${REGISTRY}/ubi8/ubi-minimal:latest
|
||||
|
||||
ENV USER_UID=1001 \
|
||||
USER_NAME=managed-upgrade-operator
|
||||
|
||||
RUN microdnf update && microdnf clean all
|
||||
COPY --from=builder /go/src/github.com/openshift/managed-upgrade-operator/build/_output/bin/* \
|
||||
/go/src/github.com/openshift/managed-upgrade-operator/build/bin/* \
|
||||
/usr/local/bin/
|
||||
RUN /usr/local/bin/user_setup
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/entrypoint"]
|
||||
USER ${USER_UID}
|
||||
LABEL io.openshift.managed.name="managed-upgrade-operator" \
|
||||
io.openshift.managed.description="Operator to manage upgrades for Openshift version 4 clusters"
|
|
@ -15,7 +15,6 @@ import (
|
|||
"github.com/Azure/go-autorest/autorest/azure"
|
||||
"github.com/containers/image/v5/types"
|
||||
"github.com/sirupsen/logrus"
|
||||
"golang.org/x/exp/slices"
|
||||
|
||||
"github.com/Azure/ARO-RP/pkg/env"
|
||||
pkgmirror "github.com/Azure/ARO-RP/pkg/mirror"
|
||||
|
@ -130,19 +129,10 @@ func mirror(ctx context.Context, log *logrus.Entry) error {
|
|||
// soverign clouds a separate mirror process mirrors from the public cloud
|
||||
if env.Environment().Environment == azure.PublicCloud {
|
||||
srcAcrGeneva := "linuxgeneva-microsoft" + acrDomainSuffix
|
||||
|
||||
// Mirror the versions that we have defined, as well as future versions
|
||||
// for testing
|
||||
mirrorImages := []string{
|
||||
version.MdsdImage(srcAcrGeneva),
|
||||
version.MdmImage(srcAcrGeneva),
|
||||
srcAcrGeneva + "/distroless/genevamdm:2.2023.331.1521-399d45-20230331t1638",
|
||||
srcAcrGeneva + "/distroless/genevamdsd:mariner_20230413.1",
|
||||
}
|
||||
// Sort + compact to remove duplicates, if they exist
|
||||
slices.Sort(mirrorImages)
|
||||
mirrorImages = slices.Compact(mirrorImages)
|
||||
|
||||
for _, ref := range mirrorImages {
|
||||
log.Printf("mirroring %s -> %s", ref, pkgmirror.DestLastIndex(dstAcr+acrDomainSuffix, ref))
|
||||
err = pkgmirror.Copy(ctx, pkgmirror.DestLastIndex(dstAcr+acrDomainSuffix, ref), ref, dstAuth, srcAuthGeneva)
|
||||
|
|
1
go.mod
1
go.mod
|
@ -60,7 +60,6 @@ require (
|
|||
github.com/tebeka/selenium v0.9.9
|
||||
github.com/ugorji/go/codec v1.2.7
|
||||
golang.org/x/crypto v0.6.0
|
||||
golang.org/x/exp v0.0.0-20230321023759-10a507213a29
|
||||
golang.org/x/net v0.7.0
|
||||
golang.org/x/oauth2 v0.0.0-20220411215720-9780585627b5
|
||||
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4
|
||||
|
|
2
go.sum
2
go.sum
|
@ -1767,8 +1767,6 @@ golang.org/x/exp v0.0.0-20200119233911-0405dc783f0a/go.mod h1:2RIsYlXP63K8oxa1u0
|
|||
golang.org/x/exp v0.0.0-20200207192155-f17229e696bd/go.mod h1:J/WKrq2StrnmMY6+EHIKF9dgMWnmCNThgcyBT1FY9mM=
|
||||
golang.org/x/exp v0.0.0-20200224162631-6cc2880d07d6/go.mod h1:3jZMyOhIsHpP37uCMkUooju7aAi5cS1Q23tOzKc+0MU=
|
||||
golang.org/x/exp v0.0.0-20210220032938-85be41e4509f/go.mod h1:I6l2HNBLBZEcrOoCpyKLdY2lHoRZ8lI4x60KMCQDft4=
|
||||
golang.org/x/exp v0.0.0-20230321023759-10a507213a29 h1:ooxPy7fPvB4kwsA2h+iBNHkAbp/4JxTSwCmvdjEYmug=
|
||||
golang.org/x/exp v0.0.0-20230321023759-10a507213a29/go.mod h1:CxIveKay+FTh1D0yPZemJVgC/95VzuuOLq5Qi4xnoYc=
|
||||
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
|
||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
||||
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
|
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -76,19 +76,19 @@ var (
|
|||
|
||||
// FluentbitImage contains the location of the Fluentbit container image
|
||||
func FluentbitImage(acrDomain string) string {
|
||||
return acrDomain + "/fluentbit:1.9.9-1"
|
||||
return acrDomain + "/fluentbit:1.9.10-cm20230321"
|
||||
}
|
||||
|
||||
// MdmImage contains the location of the MDM container image
|
||||
// https://eng.ms/docs/products/geneva/collect/references/linuxcontainers
|
||||
func MdmImage(acrDomain string) string {
|
||||
return acrDomain + "/distroless/genevamdm:mariner_20221026.2"
|
||||
return acrDomain + "/genevamdm:2.2023.331.1521-399d45-20230331t1638"
|
||||
}
|
||||
|
||||
// MdsdImage contains the location of the MDSD container image
|
||||
// see https://eng.ms/docs/products/geneva/collect/references/linuxcontainers
|
||||
func MdsdImage(acrDomain string) string {
|
||||
return acrDomain + "/genevamdsd:master_20221018.2"
|
||||
return acrDomain + "/genevamdsd:mariner_20230413.1"
|
||||
}
|
||||
|
||||
// MUOImage contains the location of the Managed Upgrade Operator container image
|
||||
|
|
|
@ -1,27 +0,0 @@
|
|||
Copyright (c) 2009 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -1,22 +0,0 @@
|
|||
Additional IP Rights Grant (Patents)
|
||||
|
||||
"This implementation" means the copyrightable works distributed by
|
||||
Google as part of the Go project.
|
||||
|
||||
Google hereby grants to You a perpetual, worldwide, non-exclusive,
|
||||
no-charge, royalty-free, irrevocable (except as stated in this section)
|
||||
patent license to make, have made, use, offer to sell, sell, import,
|
||||
transfer and otherwise run, modify and propagate the contents of this
|
||||
implementation of Go, where such license applies only to those patent
|
||||
claims, both currently owned or controlled by Google and acquired in
|
||||
the future, licensable by Google that are necessarily infringed by this
|
||||
implementation of Go. This grant does not include claims that would be
|
||||
infringed only as a consequence of further modification of this
|
||||
implementation. If you or your agent or exclusive licensee institute or
|
||||
order or agree to the institution of patent litigation against any
|
||||
entity (including a cross-claim or counterclaim in a lawsuit) alleging
|
||||
that this implementation of Go or any code incorporated within this
|
||||
implementation of Go constitutes direct or contributory patent
|
||||
infringement, or inducement of patent infringement, then any patent
|
||||
rights granted to you under this License for this implementation of Go
|
||||
shall terminate as of the date such litigation is filed.
|
|
@ -1,50 +0,0 @@
|
|||
// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package constraints defines a set of useful constraints to be used
|
||||
// with type parameters.
|
||||
package constraints
|
||||
|
||||
// Signed is a constraint that permits any signed integer type.
|
||||
// If future releases of Go add new predeclared signed integer types,
|
||||
// this constraint will be modified to include them.
|
||||
type Signed interface {
|
||||
~int | ~int8 | ~int16 | ~int32 | ~int64
|
||||
}
|
||||
|
||||
// Unsigned is a constraint that permits any unsigned integer type.
|
||||
// If future releases of Go add new predeclared unsigned integer types,
|
||||
// this constraint will be modified to include them.
|
||||
type Unsigned interface {
|
||||
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
|
||||
}
|
||||
|
||||
// Integer is a constraint that permits any integer type.
|
||||
// If future releases of Go add new predeclared integer types,
|
||||
// this constraint will be modified to include them.
|
||||
type Integer interface {
|
||||
Signed | Unsigned
|
||||
}
|
||||
|
||||
// Float is a constraint that permits any floating-point type.
|
||||
// If future releases of Go add new predeclared floating-point types,
|
||||
// this constraint will be modified to include them.
|
||||
type Float interface {
|
||||
~float32 | ~float64
|
||||
}
|
||||
|
||||
// Complex is a constraint that permits any complex numeric type.
|
||||
// If future releases of Go add new predeclared complex numeric types,
|
||||
// this constraint will be modified to include them.
|
||||
type Complex interface {
|
||||
~complex64 | ~complex128
|
||||
}
|
||||
|
||||
// Ordered is a constraint that permits any ordered type: any type
|
||||
// that supports the operators < <= >= >.
|
||||
// If future releases of Go add new ordered types,
|
||||
// this constraint will be modified to include them.
|
||||
type Ordered interface {
|
||||
Integer | Float | ~string
|
||||
}
|
|
@ -1,258 +0,0 @@
|
|||
// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package slices defines various functions useful with slices of any type.
|
||||
// Unless otherwise specified, these functions all apply to the elements
|
||||
// of a slice at index 0 <= i < len(s).
|
||||
//
|
||||
// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
|
||||
// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
|
||||
// or the sorting may fail to sort correctly. A common case is when sorting slices of
|
||||
// floating-point numbers containing NaN values.
|
||||
package slices
|
||||
|
||||
import "golang.org/x/exp/constraints"
|
||||
|
||||
// Equal reports whether two slices are equal: the same length and all
|
||||
// elements equal. If the lengths are different, Equal returns false.
|
||||
// Otherwise, the elements are compared in increasing index order, and the
|
||||
// comparison stops at the first unequal pair.
|
||||
// Floating point NaNs are not considered equal.
|
||||
func Equal[E comparable](s1, s2 []E) bool {
|
||||
if len(s1) != len(s2) {
|
||||
return false
|
||||
}
|
||||
for i := range s1 {
|
||||
if s1[i] != s2[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// EqualFunc reports whether two slices are equal using a comparison
|
||||
// function on each pair of elements. If the lengths are different,
|
||||
// EqualFunc returns false. Otherwise, the elements are compared in
|
||||
// increasing index order, and the comparison stops at the first index
|
||||
// for which eq returns false.
|
||||
func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
|
||||
if len(s1) != len(s2) {
|
||||
return false
|
||||
}
|
||||
for i, v1 := range s1 {
|
||||
v2 := s2[i]
|
||||
if !eq(v1, v2) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Compare compares the elements of s1 and s2.
|
||||
// The elements are compared sequentially, starting at index 0,
|
||||
// until one element is not equal to the other.
|
||||
// The result of comparing the first non-matching elements is returned.
|
||||
// If both slices are equal until one of them ends, the shorter slice is
|
||||
// considered less than the longer one.
|
||||
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
|
||||
// Comparisons involving floating point NaNs are ignored.
|
||||
func Compare[E constraints.Ordered](s1, s2 []E) int {
|
||||
s2len := len(s2)
|
||||
for i, v1 := range s1 {
|
||||
if i >= s2len {
|
||||
return +1
|
||||
}
|
||||
v2 := s2[i]
|
||||
switch {
|
||||
case v1 < v2:
|
||||
return -1
|
||||
case v1 > v2:
|
||||
return +1
|
||||
}
|
||||
}
|
||||
if len(s1) < s2len {
|
||||
return -1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// CompareFunc is like Compare but uses a comparison function
|
||||
// on each pair of elements. The elements are compared in increasing
|
||||
// index order, and the comparisons stop after the first time cmp
|
||||
// returns non-zero.
|
||||
// The result is the first non-zero result of cmp; if cmp always
|
||||
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
|
||||
// and +1 if len(s1) > len(s2).
|
||||
func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
|
||||
s2len := len(s2)
|
||||
for i, v1 := range s1 {
|
||||
if i >= s2len {
|
||||
return +1
|
||||
}
|
||||
v2 := s2[i]
|
||||
if c := cmp(v1, v2); c != 0 {
|
||||
return c
|
||||
}
|
||||
}
|
||||
if len(s1) < s2len {
|
||||
return -1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Index returns the index of the first occurrence of v in s,
|
||||
// or -1 if not present.
|
||||
func Index[E comparable](s []E, v E) int {
|
||||
for i, vs := range s {
|
||||
if v == vs {
|
||||
return i
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// IndexFunc returns the first index i satisfying f(s[i]),
|
||||
// or -1 if none do.
|
||||
func IndexFunc[E any](s []E, f func(E) bool) int {
|
||||
for i, v := range s {
|
||||
if f(v) {
|
||||
return i
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// Contains reports whether v is present in s.
|
||||
func Contains[E comparable](s []E, v E) bool {
|
||||
return Index(s, v) >= 0
|
||||
}
|
||||
|
||||
// ContainsFunc reports whether at least one
|
||||
// element e of s satisfies f(e).
|
||||
func ContainsFunc[E any](s []E, f func(E) bool) bool {
|
||||
return IndexFunc(s, f) >= 0
|
||||
}
|
||||
|
||||
// Insert inserts the values v... into s at index i,
|
||||
// returning the modified slice.
|
||||
// In the returned slice r, r[i] == v[0].
|
||||
// Insert panics if i is out of range.
|
||||
// This function is O(len(s) + len(v)).
|
||||
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
|
||||
tot := len(s) + len(v)
|
||||
if tot <= cap(s) {
|
||||
s2 := s[:tot]
|
||||
copy(s2[i+len(v):], s[i:])
|
||||
copy(s2[i:], v)
|
||||
return s2
|
||||
}
|
||||
s2 := make(S, tot)
|
||||
copy(s2, s[:i])
|
||||
copy(s2[i:], v)
|
||||
copy(s2[i+len(v):], s[i:])
|
||||
return s2
|
||||
}
|
||||
|
||||
// Delete removes the elements s[i:j] from s, returning the modified slice.
|
||||
// Delete panics if s[i:j] is not a valid slice of s.
|
||||
// Delete modifies the contents of the slice s; it does not create a new slice.
|
||||
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
|
||||
// make a single call deleting them all together than to delete one at a time.
|
||||
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
|
||||
// elements contain pointers you might consider zeroing those elements so that
|
||||
// objects they reference can be garbage collected.
|
||||
func Delete[S ~[]E, E any](s S, i, j int) S {
|
||||
_ = s[i:j] // bounds check
|
||||
|
||||
return append(s[:i], s[j:]...)
|
||||
}
|
||||
|
||||
// Replace replaces the elements s[i:j] by the given v, and returns the
|
||||
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
|
||||
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
|
||||
_ = s[i:j] // verify that i:j is a valid subslice
|
||||
tot := len(s[:i]) + len(v) + len(s[j:])
|
||||
if tot <= cap(s) {
|
||||
s2 := s[:tot]
|
||||
copy(s2[i+len(v):], s[j:])
|
||||
copy(s2[i:], v)
|
||||
return s2
|
||||
}
|
||||
s2 := make(S, tot)
|
||||
copy(s2, s[:i])
|
||||
copy(s2[i:], v)
|
||||
copy(s2[i+len(v):], s[j:])
|
||||
return s2
|
||||
}
|
||||
|
||||
// Clone returns a copy of the slice.
|
||||
// The elements are copied using assignment, so this is a shallow clone.
|
||||
func Clone[S ~[]E, E any](s S) S {
|
||||
// Preserve nil in case it matters.
|
||||
if s == nil {
|
||||
return nil
|
||||
}
|
||||
return append(S([]E{}), s...)
|
||||
}
|
||||
|
||||
// Compact replaces consecutive runs of equal elements with a single copy.
|
||||
// This is like the uniq command found on Unix.
|
||||
// Compact modifies the contents of the slice s; it does not create a new slice.
|
||||
// When Compact discards m elements in total, it might not modify the elements
|
||||
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
|
||||
// zeroing those elements so that objects they reference can be garbage collected.
|
||||
func Compact[S ~[]E, E comparable](s S) S {
|
||||
if len(s) < 2 {
|
||||
return s
|
||||
}
|
||||
i := 1
|
||||
last := s[0]
|
||||
for _, v := range s[1:] {
|
||||
if v != last {
|
||||
s[i] = v
|
||||
i++
|
||||
last = v
|
||||
}
|
||||
}
|
||||
return s[:i]
|
||||
}
|
||||
|
||||
// CompactFunc is like Compact but uses a comparison function.
|
||||
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
|
||||
if len(s) < 2 {
|
||||
return s
|
||||
}
|
||||
i := 1
|
||||
last := s[0]
|
||||
for _, v := range s[1:] {
|
||||
if !eq(v, last) {
|
||||
s[i] = v
|
||||
i++
|
||||
last = v
|
||||
}
|
||||
}
|
||||
return s[:i]
|
||||
}
|
||||
|
||||
// Grow increases the slice's capacity, if necessary, to guarantee space for
|
||||
// another n elements. After Grow(n), at least n elements can be appended
|
||||
// to the slice without another allocation. If n is negative or too large to
|
||||
// allocate the memory, Grow panics.
|
||||
func Grow[S ~[]E, E any](s S, n int) S {
|
||||
if n < 0 {
|
||||
panic("cannot be negative")
|
||||
}
|
||||
if n -= cap(s) - len(s); n > 0 {
|
||||
// TODO(https://go.dev/issue/53888): Make using []E instead of S
|
||||
// to workaround a compiler bug where the runtime.growslice optimization
|
||||
// does not take effect. Revert when the compiler is fixed.
|
||||
s = append([]E(s)[:cap(s)], make([]E, n)...)[:len(s)]
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
|
||||
func Clip[S ~[]E, E any](s S) S {
|
||||
return s[:len(s):len(s)]
|
||||
}
|
|
@ -1,126 +0,0 @@
|
|||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package slices
|
||||
|
||||
import (
|
||||
"math/bits"
|
||||
|
||||
"golang.org/x/exp/constraints"
|
||||
)
|
||||
|
||||
// Sort sorts a slice of any ordered type in ascending order.
|
||||
// Sort may fail to sort correctly when sorting slices of floating-point
|
||||
// numbers containing Not-a-number (NaN) values.
|
||||
// Use slices.SortFunc(x, func(a, b float64) bool {return a < b || (math.IsNaN(a) && !math.IsNaN(b))})
|
||||
// instead if the input may contain NaNs.
|
||||
func Sort[E constraints.Ordered](x []E) {
|
||||
n := len(x)
|
||||
pdqsortOrdered(x, 0, n, bits.Len(uint(n)))
|
||||
}
|
||||
|
||||
// SortFunc sorts the slice x in ascending order as determined by the less function.
|
||||
// This sort is not guaranteed to be stable.
|
||||
//
|
||||
// SortFunc requires that less is a strict weak ordering.
|
||||
// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
|
||||
func SortFunc[E any](x []E, less func(a, b E) bool) {
|
||||
n := len(x)
|
||||
pdqsortLessFunc(x, 0, n, bits.Len(uint(n)), less)
|
||||
}
|
||||
|
||||
// SortStableFunc sorts the slice x while keeping the original order of equal
|
||||
// elements, using less to compare elements.
|
||||
func SortStableFunc[E any](x []E, less func(a, b E) bool) {
|
||||
stableLessFunc(x, len(x), less)
|
||||
}
|
||||
|
||||
// IsSorted reports whether x is sorted in ascending order.
|
||||
func IsSorted[E constraints.Ordered](x []E) bool {
|
||||
for i := len(x) - 1; i > 0; i-- {
|
||||
if x[i] < x[i-1] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// IsSortedFunc reports whether x is sorted in ascending order, with less as the
|
||||
// comparison function.
|
||||
func IsSortedFunc[E any](x []E, less func(a, b E) bool) bool {
|
||||
for i := len(x) - 1; i > 0; i-- {
|
||||
if less(x[i], x[i-1]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// BinarySearch searches for target in a sorted slice and returns the position
|
||||
// where target is found, or the position where target would appear in the
|
||||
// sort order; it also returns a bool saying whether the target is really found
|
||||
// in the slice. The slice must be sorted in increasing order.
|
||||
func BinarySearch[E constraints.Ordered](x []E, target E) (int, bool) {
|
||||
// Inlining is faster than calling BinarySearchFunc with a lambda.
|
||||
n := len(x)
|
||||
// Define x[-1] < target and x[n] >= target.
|
||||
// Invariant: x[i-1] < target, x[j] >= target.
|
||||
i, j := 0, n
|
||||
for i < j {
|
||||
h := int(uint(i+j) >> 1) // avoid overflow when computing h
|
||||
// i ≤ h < j
|
||||
if x[h] < target {
|
||||
i = h + 1 // preserves x[i-1] < target
|
||||
} else {
|
||||
j = h // preserves x[j] >= target
|
||||
}
|
||||
}
|
||||
// i == j, x[i-1] < target, and x[j] (= x[i]) >= target => answer is i.
|
||||
return i, i < n && x[i] == target
|
||||
}
|
||||
|
||||
// BinarySearchFunc works like BinarySearch, but uses a custom comparison
|
||||
// function. The slice must be sorted in increasing order, where "increasing" is
|
||||
// defined by cmp. cmp(a, b) is expected to return an integer comparing the two
|
||||
// parameters: 0 if a == b, a negative number if a < b and a positive number if
|
||||
// a > b.
|
||||
func BinarySearchFunc[E, T any](x []E, target T, cmp func(E, T) int) (int, bool) {
|
||||
n := len(x)
|
||||
// Define cmp(x[-1], target) < 0 and cmp(x[n], target) >= 0 .
|
||||
// Invariant: cmp(x[i - 1], target) < 0, cmp(x[j], target) >= 0.
|
||||
i, j := 0, n
|
||||
for i < j {
|
||||
h := int(uint(i+j) >> 1) // avoid overflow when computing h
|
||||
// i ≤ h < j
|
||||
if cmp(x[h], target) < 0 {
|
||||
i = h + 1 // preserves cmp(x[i - 1], target) < 0
|
||||
} else {
|
||||
j = h // preserves cmp(x[j], target) >= 0
|
||||
}
|
||||
}
|
||||
// i == j, cmp(x[i-1], target) < 0, and cmp(x[j], target) (= cmp(x[i], target)) >= 0 => answer is i.
|
||||
return i, i < n && cmp(x[i], target) == 0
|
||||
}
|
||||
|
||||
type sortedHint int // hint for pdqsort when choosing the pivot
|
||||
|
||||
const (
|
||||
unknownHint sortedHint = iota
|
||||
increasingHint
|
||||
decreasingHint
|
||||
)
|
||||
|
||||
// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
|
||||
type xorshift uint64
|
||||
|
||||
func (r *xorshift) Next() uint64 {
|
||||
*r ^= *r << 13
|
||||
*r ^= *r >> 17
|
||||
*r ^= *r << 5
|
||||
return uint64(*r)
|
||||
}
|
||||
|
||||
func nextPowerOfTwo(length int) uint {
|
||||
return 1 << bits.Len(uint(length))
|
||||
}
|
|
@ -1,479 +0,0 @@
|
|||
// Code generated by gen_sort_variants.go; DO NOT EDIT.
|
||||
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package slices
|
||||
|
||||
// insertionSortLessFunc sorts data[a:b] using insertion sort.
|
||||
func insertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
|
||||
for i := a + 1; i < b; i++ {
|
||||
for j := i; j > a && less(data[j], data[j-1]); j-- {
|
||||
data[j], data[j-1] = data[j-1], data[j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// siftDownLessFunc implements the heap property on data[lo:hi].
|
||||
// first is an offset into the array where the root of the heap lies.
|
||||
func siftDownLessFunc[E any](data []E, lo, hi, first int, less func(a, b E) bool) {
|
||||
root := lo
|
||||
for {
|
||||
child := 2*root + 1
|
||||
if child >= hi {
|
||||
break
|
||||
}
|
||||
if child+1 < hi && less(data[first+child], data[first+child+1]) {
|
||||
child++
|
||||
}
|
||||
if !less(data[first+root], data[first+child]) {
|
||||
return
|
||||
}
|
||||
data[first+root], data[first+child] = data[first+child], data[first+root]
|
||||
root = child
|
||||
}
|
||||
}
|
||||
|
||||
func heapSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
|
||||
first := a
|
||||
lo := 0
|
||||
hi := b - a
|
||||
|
||||
// Build heap with greatest element at top.
|
||||
for i := (hi - 1) / 2; i >= 0; i-- {
|
||||
siftDownLessFunc(data, i, hi, first, less)
|
||||
}
|
||||
|
||||
// Pop elements, largest first, into end of data.
|
||||
for i := hi - 1; i >= 0; i-- {
|
||||
data[first], data[first+i] = data[first+i], data[first]
|
||||
siftDownLessFunc(data, lo, i, first, less)
|
||||
}
|
||||
}
|
||||
|
||||
// pdqsortLessFunc sorts data[a:b].
|
||||
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
|
||||
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
|
||||
// C++ implementation: https://github.com/orlp/pdqsort
|
||||
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
|
||||
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
|
||||
func pdqsortLessFunc[E any](data []E, a, b, limit int, less func(a, b E) bool) {
|
||||
const maxInsertion = 12
|
||||
|
||||
var (
|
||||
wasBalanced = true // whether the last partitioning was reasonably balanced
|
||||
wasPartitioned = true // whether the slice was already partitioned
|
||||
)
|
||||
|
||||
for {
|
||||
length := b - a
|
||||
|
||||
if length <= maxInsertion {
|
||||
insertionSortLessFunc(data, a, b, less)
|
||||
return
|
||||
}
|
||||
|
||||
// Fall back to heapsort if too many bad choices were made.
|
||||
if limit == 0 {
|
||||
heapSortLessFunc(data, a, b, less)
|
||||
return
|
||||
}
|
||||
|
||||
// If the last partitioning was imbalanced, we need to breaking patterns.
|
||||
if !wasBalanced {
|
||||
breakPatternsLessFunc(data, a, b, less)
|
||||
limit--
|
||||
}
|
||||
|
||||
pivot, hint := choosePivotLessFunc(data, a, b, less)
|
||||
if hint == decreasingHint {
|
||||
reverseRangeLessFunc(data, a, b, less)
|
||||
// The chosen pivot was pivot-a elements after the start of the array.
|
||||
// After reversing it is pivot-a elements before the end of the array.
|
||||
// The idea came from Rust's implementation.
|
||||
pivot = (b - 1) - (pivot - a)
|
||||
hint = increasingHint
|
||||
}
|
||||
|
||||
// The slice is likely already sorted.
|
||||
if wasBalanced && wasPartitioned && hint == increasingHint {
|
||||
if partialInsertionSortLessFunc(data, a, b, less) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Probably the slice contains many duplicate elements, partition the slice into
|
||||
// elements equal to and elements greater than the pivot.
|
||||
if a > 0 && !less(data[a-1], data[pivot]) {
|
||||
mid := partitionEqualLessFunc(data, a, b, pivot, less)
|
||||
a = mid
|
||||
continue
|
||||
}
|
||||
|
||||
mid, alreadyPartitioned := partitionLessFunc(data, a, b, pivot, less)
|
||||
wasPartitioned = alreadyPartitioned
|
||||
|
||||
leftLen, rightLen := mid-a, b-mid
|
||||
balanceThreshold := length / 8
|
||||
if leftLen < rightLen {
|
||||
wasBalanced = leftLen >= balanceThreshold
|
||||
pdqsortLessFunc(data, a, mid, limit, less)
|
||||
a = mid + 1
|
||||
} else {
|
||||
wasBalanced = rightLen >= balanceThreshold
|
||||
pdqsortLessFunc(data, mid+1, b, limit, less)
|
||||
b = mid
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// partitionLessFunc does one quicksort partition.
|
||||
// Let p = data[pivot]
|
||||
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
|
||||
// On return, data[newpivot] = p
|
||||
func partitionLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int, alreadyPartitioned bool) {
|
||||
data[a], data[pivot] = data[pivot], data[a]
|
||||
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
|
||||
|
||||
for i <= j && less(data[i], data[a]) {
|
||||
i++
|
||||
}
|
||||
for i <= j && !less(data[j], data[a]) {
|
||||
j--
|
||||
}
|
||||
if i > j {
|
||||
data[j], data[a] = data[a], data[j]
|
||||
return j, true
|
||||
}
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
|
||||
for {
|
||||
for i <= j && less(data[i], data[a]) {
|
||||
i++
|
||||
}
|
||||
for i <= j && !less(data[j], data[a]) {
|
||||
j--
|
||||
}
|
||||
if i > j {
|
||||
break
|
||||
}
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
}
|
||||
data[j], data[a] = data[a], data[j]
|
||||
return j, false
|
||||
}
|
||||
|
||||
// partitionEqualLessFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
|
||||
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
|
||||
func partitionEqualLessFunc[E any](data []E, a, b, pivot int, less func(a, b E) bool) (newpivot int) {
|
||||
data[a], data[pivot] = data[pivot], data[a]
|
||||
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
|
||||
|
||||
for {
|
||||
for i <= j && !less(data[a], data[i]) {
|
||||
i++
|
||||
}
|
||||
for i <= j && less(data[a], data[j]) {
|
||||
j--
|
||||
}
|
||||
if i > j {
|
||||
break
|
||||
}
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
}
|
||||
return i
|
||||
}
|
||||
|
||||
// partialInsertionSortLessFunc partially sorts a slice, returns true if the slice is sorted at the end.
|
||||
func partialInsertionSortLessFunc[E any](data []E, a, b int, less func(a, b E) bool) bool {
|
||||
const (
|
||||
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
|
||||
shortestShifting = 50 // don't shift any elements on short arrays
|
||||
)
|
||||
i := a + 1
|
||||
for j := 0; j < maxSteps; j++ {
|
||||
for i < b && !less(data[i], data[i-1]) {
|
||||
i++
|
||||
}
|
||||
|
||||
if i == b {
|
||||
return true
|
||||
}
|
||||
|
||||
if b-a < shortestShifting {
|
||||
return false
|
||||
}
|
||||
|
||||
data[i], data[i-1] = data[i-1], data[i]
|
||||
|
||||
// Shift the smaller one to the left.
|
||||
if i-a >= 2 {
|
||||
for j := i - 1; j >= 1; j-- {
|
||||
if !less(data[j], data[j-1]) {
|
||||
break
|
||||
}
|
||||
data[j], data[j-1] = data[j-1], data[j]
|
||||
}
|
||||
}
|
||||
// Shift the greater one to the right.
|
||||
if b-i >= 2 {
|
||||
for j := i + 1; j < b; j++ {
|
||||
if !less(data[j], data[j-1]) {
|
||||
break
|
||||
}
|
||||
data[j], data[j-1] = data[j-1], data[j]
|
||||
}
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// breakPatternsLessFunc scatters some elements around in an attempt to break some patterns
|
||||
// that might cause imbalanced partitions in quicksort.
|
||||
func breakPatternsLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
|
||||
length := b - a
|
||||
if length >= 8 {
|
||||
random := xorshift(length)
|
||||
modulus := nextPowerOfTwo(length)
|
||||
|
||||
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
|
||||
other := int(uint(random.Next()) & (modulus - 1))
|
||||
if other >= length {
|
||||
other -= length
|
||||
}
|
||||
data[idx], data[a+other] = data[a+other], data[idx]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// choosePivotLessFunc chooses a pivot in data[a:b].
|
||||
//
|
||||
// [0,8): chooses a static pivot.
|
||||
// [8,shortestNinther): uses the simple median-of-three method.
|
||||
// [shortestNinther,∞): uses the Tukey ninther method.
|
||||
func choosePivotLessFunc[E any](data []E, a, b int, less func(a, b E) bool) (pivot int, hint sortedHint) {
|
||||
const (
|
||||
shortestNinther = 50
|
||||
maxSwaps = 4 * 3
|
||||
)
|
||||
|
||||
l := b - a
|
||||
|
||||
var (
|
||||
swaps int
|
||||
i = a + l/4*1
|
||||
j = a + l/4*2
|
||||
k = a + l/4*3
|
||||
)
|
||||
|
||||
if l >= 8 {
|
||||
if l >= shortestNinther {
|
||||
// Tukey ninther method, the idea came from Rust's implementation.
|
||||
i = medianAdjacentLessFunc(data, i, &swaps, less)
|
||||
j = medianAdjacentLessFunc(data, j, &swaps, less)
|
||||
k = medianAdjacentLessFunc(data, k, &swaps, less)
|
||||
}
|
||||
// Find the median among i, j, k and stores it into j.
|
||||
j = medianLessFunc(data, i, j, k, &swaps, less)
|
||||
}
|
||||
|
||||
switch swaps {
|
||||
case 0:
|
||||
return j, increasingHint
|
||||
case maxSwaps:
|
||||
return j, decreasingHint
|
||||
default:
|
||||
return j, unknownHint
|
||||
}
|
||||
}
|
||||
|
||||
// order2LessFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
|
||||
func order2LessFunc[E any](data []E, a, b int, swaps *int, less func(a, b E) bool) (int, int) {
|
||||
if less(data[b], data[a]) {
|
||||
*swaps++
|
||||
return b, a
|
||||
}
|
||||
return a, b
|
||||
}
|
||||
|
||||
// medianLessFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
|
||||
func medianLessFunc[E any](data []E, a, b, c int, swaps *int, less func(a, b E) bool) int {
|
||||
a, b = order2LessFunc(data, a, b, swaps, less)
|
||||
b, c = order2LessFunc(data, b, c, swaps, less)
|
||||
a, b = order2LessFunc(data, a, b, swaps, less)
|
||||
return b
|
||||
}
|
||||
|
||||
// medianAdjacentLessFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
|
||||
func medianAdjacentLessFunc[E any](data []E, a int, swaps *int, less func(a, b E) bool) int {
|
||||
return medianLessFunc(data, a-1, a, a+1, swaps, less)
|
||||
}
|
||||
|
||||
func reverseRangeLessFunc[E any](data []E, a, b int, less func(a, b E) bool) {
|
||||
i := a
|
||||
j := b - 1
|
||||
for i < j {
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
|
||||
func swapRangeLessFunc[E any](data []E, a, b, n int, less func(a, b E) bool) {
|
||||
for i := 0; i < n; i++ {
|
||||
data[a+i], data[b+i] = data[b+i], data[a+i]
|
||||
}
|
||||
}
|
||||
|
||||
func stableLessFunc[E any](data []E, n int, less func(a, b E) bool) {
|
||||
blockSize := 20 // must be > 0
|
||||
a, b := 0, blockSize
|
||||
for b <= n {
|
||||
insertionSortLessFunc(data, a, b, less)
|
||||
a = b
|
||||
b += blockSize
|
||||
}
|
||||
insertionSortLessFunc(data, a, n, less)
|
||||
|
||||
for blockSize < n {
|
||||
a, b = 0, 2*blockSize
|
||||
for b <= n {
|
||||
symMergeLessFunc(data, a, a+blockSize, b, less)
|
||||
a = b
|
||||
b += 2 * blockSize
|
||||
}
|
||||
if m := a + blockSize; m < n {
|
||||
symMergeLessFunc(data, a, m, n, less)
|
||||
}
|
||||
blockSize *= 2
|
||||
}
|
||||
}
|
||||
|
||||
// symMergeLessFunc merges the two sorted subsequences data[a:m] and data[m:b] using
|
||||
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
|
||||
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
|
||||
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
|
||||
// Computer Science, pages 714-723. Springer, 2004.
|
||||
//
|
||||
// Let M = m-a and N = b-n. Wolog M < N.
|
||||
// The recursion depth is bound by ceil(log(N+M)).
|
||||
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
|
||||
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
|
||||
//
|
||||
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
|
||||
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
|
||||
// in the paper carries through for Swap operations, especially as the block
|
||||
// swapping rotate uses only O(M+N) Swaps.
|
||||
//
|
||||
// symMerge assumes non-degenerate arguments: a < m && m < b.
|
||||
// Having the caller check this condition eliminates many leaf recursion calls,
|
||||
// which improves performance.
|
||||
func symMergeLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
|
||||
// Avoid unnecessary recursions of symMerge
|
||||
// by direct insertion of data[a] into data[m:b]
|
||||
// if data[a:m] only contains one element.
|
||||
if m-a == 1 {
|
||||
// Use binary search to find the lowest index i
|
||||
// such that data[i] >= data[a] for m <= i < b.
|
||||
// Exit the search loop with i == b in case no such index exists.
|
||||
i := m
|
||||
j := b
|
||||
for i < j {
|
||||
h := int(uint(i+j) >> 1)
|
||||
if less(data[h], data[a]) {
|
||||
i = h + 1
|
||||
} else {
|
||||
j = h
|
||||
}
|
||||
}
|
||||
// Swap values until data[a] reaches the position before i.
|
||||
for k := a; k < i-1; k++ {
|
||||
data[k], data[k+1] = data[k+1], data[k]
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Avoid unnecessary recursions of symMerge
|
||||
// by direct insertion of data[m] into data[a:m]
|
||||
// if data[m:b] only contains one element.
|
||||
if b-m == 1 {
|
||||
// Use binary search to find the lowest index i
|
||||
// such that data[i] > data[m] for a <= i < m.
|
||||
// Exit the search loop with i == m in case no such index exists.
|
||||
i := a
|
||||
j := m
|
||||
for i < j {
|
||||
h := int(uint(i+j) >> 1)
|
||||
if !less(data[m], data[h]) {
|
||||
i = h + 1
|
||||
} else {
|
||||
j = h
|
||||
}
|
||||
}
|
||||
// Swap values until data[m] reaches the position i.
|
||||
for k := m; k > i; k-- {
|
||||
data[k], data[k-1] = data[k-1], data[k]
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
mid := int(uint(a+b) >> 1)
|
||||
n := mid + m
|
||||
var start, r int
|
||||
if m > mid {
|
||||
start = n - b
|
||||
r = mid
|
||||
} else {
|
||||
start = a
|
||||
r = m
|
||||
}
|
||||
p := n - 1
|
||||
|
||||
for start < r {
|
||||
c := int(uint(start+r) >> 1)
|
||||
if !less(data[p-c], data[c]) {
|
||||
start = c + 1
|
||||
} else {
|
||||
r = c
|
||||
}
|
||||
}
|
||||
|
||||
end := n - start
|
||||
if start < m && m < end {
|
||||
rotateLessFunc(data, start, m, end, less)
|
||||
}
|
||||
if a < start && start < mid {
|
||||
symMergeLessFunc(data, a, start, mid, less)
|
||||
}
|
||||
if mid < end && end < b {
|
||||
symMergeLessFunc(data, mid, end, b, less)
|
||||
}
|
||||
}
|
||||
|
||||
// rotateLessFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
|
||||
// Data of the form 'x u v y' is changed to 'x v u y'.
|
||||
// rotate performs at most b-a many calls to data.Swap,
|
||||
// and it assumes non-degenerate arguments: a < m && m < b.
|
||||
func rotateLessFunc[E any](data []E, a, m, b int, less func(a, b E) bool) {
|
||||
i := m - a
|
||||
j := b - m
|
||||
|
||||
for i != j {
|
||||
if i > j {
|
||||
swapRangeLessFunc(data, m-i, m, j, less)
|
||||
i -= j
|
||||
} else {
|
||||
swapRangeLessFunc(data, m-i, m+j-i, i, less)
|
||||
j -= i
|
||||
}
|
||||
}
|
||||
// i == j
|
||||
swapRangeLessFunc(data, m-i, m, i, less)
|
||||
}
|
|
@ -1,481 +0,0 @@
|
|||
// Code generated by gen_sort_variants.go; DO NOT EDIT.
|
||||
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package slices
|
||||
|
||||
import "golang.org/x/exp/constraints"
|
||||
|
||||
// insertionSortOrdered sorts data[a:b] using insertion sort.
|
||||
func insertionSortOrdered[E constraints.Ordered](data []E, a, b int) {
|
||||
for i := a + 1; i < b; i++ {
|
||||
for j := i; j > a && (data[j] < data[j-1]); j-- {
|
||||
data[j], data[j-1] = data[j-1], data[j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// siftDownOrdered implements the heap property on data[lo:hi].
|
||||
// first is an offset into the array where the root of the heap lies.
|
||||
func siftDownOrdered[E constraints.Ordered](data []E, lo, hi, first int) {
|
||||
root := lo
|
||||
for {
|
||||
child := 2*root + 1
|
||||
if child >= hi {
|
||||
break
|
||||
}
|
||||
if child+1 < hi && (data[first+child] < data[first+child+1]) {
|
||||
child++
|
||||
}
|
||||
if !(data[first+root] < data[first+child]) {
|
||||
return
|
||||
}
|
||||
data[first+root], data[first+child] = data[first+child], data[first+root]
|
||||
root = child
|
||||
}
|
||||
}
|
||||
|
||||
func heapSortOrdered[E constraints.Ordered](data []E, a, b int) {
|
||||
first := a
|
||||
lo := 0
|
||||
hi := b - a
|
||||
|
||||
// Build heap with greatest element at top.
|
||||
for i := (hi - 1) / 2; i >= 0; i-- {
|
||||
siftDownOrdered(data, i, hi, first)
|
||||
}
|
||||
|
||||
// Pop elements, largest first, into end of data.
|
||||
for i := hi - 1; i >= 0; i-- {
|
||||
data[first], data[first+i] = data[first+i], data[first]
|
||||
siftDownOrdered(data, lo, i, first)
|
||||
}
|
||||
}
|
||||
|
||||
// pdqsortOrdered sorts data[a:b].
|
||||
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
|
||||
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
|
||||
// C++ implementation: https://github.com/orlp/pdqsort
|
||||
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
|
||||
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
|
||||
func pdqsortOrdered[E constraints.Ordered](data []E, a, b, limit int) {
|
||||
const maxInsertion = 12
|
||||
|
||||
var (
|
||||
wasBalanced = true // whether the last partitioning was reasonably balanced
|
||||
wasPartitioned = true // whether the slice was already partitioned
|
||||
)
|
||||
|
||||
for {
|
||||
length := b - a
|
||||
|
||||
if length <= maxInsertion {
|
||||
insertionSortOrdered(data, a, b)
|
||||
return
|
||||
}
|
||||
|
||||
// Fall back to heapsort if too many bad choices were made.
|
||||
if limit == 0 {
|
||||
heapSortOrdered(data, a, b)
|
||||
return
|
||||
}
|
||||
|
||||
// If the last partitioning was imbalanced, we need to breaking patterns.
|
||||
if !wasBalanced {
|
||||
breakPatternsOrdered(data, a, b)
|
||||
limit--
|
||||
}
|
||||
|
||||
pivot, hint := choosePivotOrdered(data, a, b)
|
||||
if hint == decreasingHint {
|
||||
reverseRangeOrdered(data, a, b)
|
||||
// The chosen pivot was pivot-a elements after the start of the array.
|
||||
// After reversing it is pivot-a elements before the end of the array.
|
||||
// The idea came from Rust's implementation.
|
||||
pivot = (b - 1) - (pivot - a)
|
||||
hint = increasingHint
|
||||
}
|
||||
|
||||
// The slice is likely already sorted.
|
||||
if wasBalanced && wasPartitioned && hint == increasingHint {
|
||||
if partialInsertionSortOrdered(data, a, b) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Probably the slice contains many duplicate elements, partition the slice into
|
||||
// elements equal to and elements greater than the pivot.
|
||||
if a > 0 && !(data[a-1] < data[pivot]) {
|
||||
mid := partitionEqualOrdered(data, a, b, pivot)
|
||||
a = mid
|
||||
continue
|
||||
}
|
||||
|
||||
mid, alreadyPartitioned := partitionOrdered(data, a, b, pivot)
|
||||
wasPartitioned = alreadyPartitioned
|
||||
|
||||
leftLen, rightLen := mid-a, b-mid
|
||||
balanceThreshold := length / 8
|
||||
if leftLen < rightLen {
|
||||
wasBalanced = leftLen >= balanceThreshold
|
||||
pdqsortOrdered(data, a, mid, limit)
|
||||
a = mid + 1
|
||||
} else {
|
||||
wasBalanced = rightLen >= balanceThreshold
|
||||
pdqsortOrdered(data, mid+1, b, limit)
|
||||
b = mid
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// partitionOrdered does one quicksort partition.
|
||||
// Let p = data[pivot]
|
||||
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
|
||||
// On return, data[newpivot] = p
|
||||
func partitionOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
|
||||
data[a], data[pivot] = data[pivot], data[a]
|
||||
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
|
||||
|
||||
for i <= j && (data[i] < data[a]) {
|
||||
i++
|
||||
}
|
||||
for i <= j && !(data[j] < data[a]) {
|
||||
j--
|
||||
}
|
||||
if i > j {
|
||||
data[j], data[a] = data[a], data[j]
|
||||
return j, true
|
||||
}
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
|
||||
for {
|
||||
for i <= j && (data[i] < data[a]) {
|
||||
i++
|
||||
}
|
||||
for i <= j && !(data[j] < data[a]) {
|
||||
j--
|
||||
}
|
||||
if i > j {
|
||||
break
|
||||
}
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
}
|
||||
data[j], data[a] = data[a], data[j]
|
||||
return j, false
|
||||
}
|
||||
|
||||
// partitionEqualOrdered partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
|
||||
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
|
||||
func partitionEqualOrdered[E constraints.Ordered](data []E, a, b, pivot int) (newpivot int) {
|
||||
data[a], data[pivot] = data[pivot], data[a]
|
||||
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
|
||||
|
||||
for {
|
||||
for i <= j && !(data[a] < data[i]) {
|
||||
i++
|
||||
}
|
||||
for i <= j && (data[a] < data[j]) {
|
||||
j--
|
||||
}
|
||||
if i > j {
|
||||
break
|
||||
}
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
}
|
||||
return i
|
||||
}
|
||||
|
||||
// partialInsertionSortOrdered partially sorts a slice, returns true if the slice is sorted at the end.
|
||||
func partialInsertionSortOrdered[E constraints.Ordered](data []E, a, b int) bool {
|
||||
const (
|
||||
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
|
||||
shortestShifting = 50 // don't shift any elements on short arrays
|
||||
)
|
||||
i := a + 1
|
||||
for j := 0; j < maxSteps; j++ {
|
||||
for i < b && !(data[i] < data[i-1]) {
|
||||
i++
|
||||
}
|
||||
|
||||
if i == b {
|
||||
return true
|
||||
}
|
||||
|
||||
if b-a < shortestShifting {
|
||||
return false
|
||||
}
|
||||
|
||||
data[i], data[i-1] = data[i-1], data[i]
|
||||
|
||||
// Shift the smaller one to the left.
|
||||
if i-a >= 2 {
|
||||
for j := i - 1; j >= 1; j-- {
|
||||
if !(data[j] < data[j-1]) {
|
||||
break
|
||||
}
|
||||
data[j], data[j-1] = data[j-1], data[j]
|
||||
}
|
||||
}
|
||||
// Shift the greater one to the right.
|
||||
if b-i >= 2 {
|
||||
for j := i + 1; j < b; j++ {
|
||||
if !(data[j] < data[j-1]) {
|
||||
break
|
||||
}
|
||||
data[j], data[j-1] = data[j-1], data[j]
|
||||
}
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// breakPatternsOrdered scatters some elements around in an attempt to break some patterns
|
||||
// that might cause imbalanced partitions in quicksort.
|
||||
func breakPatternsOrdered[E constraints.Ordered](data []E, a, b int) {
|
||||
length := b - a
|
||||
if length >= 8 {
|
||||
random := xorshift(length)
|
||||
modulus := nextPowerOfTwo(length)
|
||||
|
||||
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
|
||||
other := int(uint(random.Next()) & (modulus - 1))
|
||||
if other >= length {
|
||||
other -= length
|
||||
}
|
||||
data[idx], data[a+other] = data[a+other], data[idx]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// choosePivotOrdered chooses a pivot in data[a:b].
|
||||
//
|
||||
// [0,8): chooses a static pivot.
|
||||
// [8,shortestNinther): uses the simple median-of-three method.
|
||||
// [shortestNinther,∞): uses the Tukey ninther method.
|
||||
func choosePivotOrdered[E constraints.Ordered](data []E, a, b int) (pivot int, hint sortedHint) {
|
||||
const (
|
||||
shortestNinther = 50
|
||||
maxSwaps = 4 * 3
|
||||
)
|
||||
|
||||
l := b - a
|
||||
|
||||
var (
|
||||
swaps int
|
||||
i = a + l/4*1
|
||||
j = a + l/4*2
|
||||
k = a + l/4*3
|
||||
)
|
||||
|
||||
if l >= 8 {
|
||||
if l >= shortestNinther {
|
||||
// Tukey ninther method, the idea came from Rust's implementation.
|
||||
i = medianAdjacentOrdered(data, i, &swaps)
|
||||
j = medianAdjacentOrdered(data, j, &swaps)
|
||||
k = medianAdjacentOrdered(data, k, &swaps)
|
||||
}
|
||||
// Find the median among i, j, k and stores it into j.
|
||||
j = medianOrdered(data, i, j, k, &swaps)
|
||||
}
|
||||
|
||||
switch swaps {
|
||||
case 0:
|
||||
return j, increasingHint
|
||||
case maxSwaps:
|
||||
return j, decreasingHint
|
||||
default:
|
||||
return j, unknownHint
|
||||
}
|
||||
}
|
||||
|
||||
// order2Ordered returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
|
||||
func order2Ordered[E constraints.Ordered](data []E, a, b int, swaps *int) (int, int) {
|
||||
if data[b] < data[a] {
|
||||
*swaps++
|
||||
return b, a
|
||||
}
|
||||
return a, b
|
||||
}
|
||||
|
||||
// medianOrdered returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
|
||||
func medianOrdered[E constraints.Ordered](data []E, a, b, c int, swaps *int) int {
|
||||
a, b = order2Ordered(data, a, b, swaps)
|
||||
b, c = order2Ordered(data, b, c, swaps)
|
||||
a, b = order2Ordered(data, a, b, swaps)
|
||||
return b
|
||||
}
|
||||
|
||||
// medianAdjacentOrdered finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
|
||||
func medianAdjacentOrdered[E constraints.Ordered](data []E, a int, swaps *int) int {
|
||||
return medianOrdered(data, a-1, a, a+1, swaps)
|
||||
}
|
||||
|
||||
func reverseRangeOrdered[E constraints.Ordered](data []E, a, b int) {
|
||||
i := a
|
||||
j := b - 1
|
||||
for i < j {
|
||||
data[i], data[j] = data[j], data[i]
|
||||
i++
|
||||
j--
|
||||
}
|
||||
}
|
||||
|
||||
func swapRangeOrdered[E constraints.Ordered](data []E, a, b, n int) {
|
||||
for i := 0; i < n; i++ {
|
||||
data[a+i], data[b+i] = data[b+i], data[a+i]
|
||||
}
|
||||
}
|
||||
|
||||
func stableOrdered[E constraints.Ordered](data []E, n int) {
|
||||
blockSize := 20 // must be > 0
|
||||
a, b := 0, blockSize
|
||||
for b <= n {
|
||||
insertionSortOrdered(data, a, b)
|
||||
a = b
|
||||
b += blockSize
|
||||
}
|
||||
insertionSortOrdered(data, a, n)
|
||||
|
||||
for blockSize < n {
|
||||
a, b = 0, 2*blockSize
|
||||
for b <= n {
|
||||
symMergeOrdered(data, a, a+blockSize, b)
|
||||
a = b
|
||||
b += 2 * blockSize
|
||||
}
|
||||
if m := a + blockSize; m < n {
|
||||
symMergeOrdered(data, a, m, n)
|
||||
}
|
||||
blockSize *= 2
|
||||
}
|
||||
}
|
||||
|
||||
// symMergeOrdered merges the two sorted subsequences data[a:m] and data[m:b] using
|
||||
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
|
||||
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
|
||||
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
|
||||
// Computer Science, pages 714-723. Springer, 2004.
|
||||
//
|
||||
// Let M = m-a and N = b-n. Wolog M < N.
|
||||
// The recursion depth is bound by ceil(log(N+M)).
|
||||
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
|
||||
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
|
||||
//
|
||||
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
|
||||
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
|
||||
// in the paper carries through for Swap operations, especially as the block
|
||||
// swapping rotate uses only O(M+N) Swaps.
|
||||
//
|
||||
// symMerge assumes non-degenerate arguments: a < m && m < b.
|
||||
// Having the caller check this condition eliminates many leaf recursion calls,
|
||||
// which improves performance.
|
||||
func symMergeOrdered[E constraints.Ordered](data []E, a, m, b int) {
|
||||
// Avoid unnecessary recursions of symMerge
|
||||
// by direct insertion of data[a] into data[m:b]
|
||||
// if data[a:m] only contains one element.
|
||||
if m-a == 1 {
|
||||
// Use binary search to find the lowest index i
|
||||
// such that data[i] >= data[a] for m <= i < b.
|
||||
// Exit the search loop with i == b in case no such index exists.
|
||||
i := m
|
||||
j := b
|
||||
for i < j {
|
||||
h := int(uint(i+j) >> 1)
|
||||
if data[h] < data[a] {
|
||||
i = h + 1
|
||||
} else {
|
||||
j = h
|
||||
}
|
||||
}
|
||||
// Swap values until data[a] reaches the position before i.
|
||||
for k := a; k < i-1; k++ {
|
||||
data[k], data[k+1] = data[k+1], data[k]
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Avoid unnecessary recursions of symMerge
|
||||
// by direct insertion of data[m] into data[a:m]
|
||||
// if data[m:b] only contains one element.
|
||||
if b-m == 1 {
|
||||
// Use binary search to find the lowest index i
|
||||
// such that data[i] > data[m] for a <= i < m.
|
||||
// Exit the search loop with i == m in case no such index exists.
|
||||
i := a
|
||||
j := m
|
||||
for i < j {
|
||||
h := int(uint(i+j) >> 1)
|
||||
if !(data[m] < data[h]) {
|
||||
i = h + 1
|
||||
} else {
|
||||
j = h
|
||||
}
|
||||
}
|
||||
// Swap values until data[m] reaches the position i.
|
||||
for k := m; k > i; k-- {
|
||||
data[k], data[k-1] = data[k-1], data[k]
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
mid := int(uint(a+b) >> 1)
|
||||
n := mid + m
|
||||
var start, r int
|
||||
if m > mid {
|
||||
start = n - b
|
||||
r = mid
|
||||
} else {
|
||||
start = a
|
||||
r = m
|
||||
}
|
||||
p := n - 1
|
||||
|
||||
for start < r {
|
||||
c := int(uint(start+r) >> 1)
|
||||
if !(data[p-c] < data[c]) {
|
||||
start = c + 1
|
||||
} else {
|
||||
r = c
|
||||
}
|
||||
}
|
||||
|
||||
end := n - start
|
||||
if start < m && m < end {
|
||||
rotateOrdered(data, start, m, end)
|
||||
}
|
||||
if a < start && start < mid {
|
||||
symMergeOrdered(data, a, start, mid)
|
||||
}
|
||||
if mid < end && end < b {
|
||||
symMergeOrdered(data, mid, end, b)
|
||||
}
|
||||
}
|
||||
|
||||
// rotateOrdered rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
|
||||
// Data of the form 'x u v y' is changed to 'x v u y'.
|
||||
// rotate performs at most b-a many calls to data.Swap,
|
||||
// and it assumes non-degenerate arguments: a < m && m < b.
|
||||
func rotateOrdered[E constraints.Ordered](data []E, a, m, b int) {
|
||||
i := m - a
|
||||
j := b - m
|
||||
|
||||
for i != j {
|
||||
if i > j {
|
||||
swapRangeOrdered(data, m-i, m, j)
|
||||
i -= j
|
||||
} else {
|
||||
swapRangeOrdered(data, m-i, m+j-i, i)
|
||||
j -= i
|
||||
}
|
||||
}
|
||||
// i == j
|
||||
swapRangeOrdered(data, m-i, m, i)
|
||||
}
|
|
@ -1227,10 +1227,6 @@ golang.org/x/crypto/sha3
|
|||
golang.org/x/crypto/ssh
|
||||
golang.org/x/crypto/ssh/agent
|
||||
golang.org/x/crypto/ssh/internal/bcrypt_pbkdf
|
||||
# golang.org/x/exp v0.0.0-20230321023759-10a507213a29
|
||||
## explicit; go 1.18
|
||||
golang.org/x/exp/constraints
|
||||
golang.org/x/exp/slices
|
||||
# golang.org/x/mod v0.6.0
|
||||
## explicit; go 1.17
|
||||
golang.org/x/mod/internal/lazyregexp
|
||||
|
|
Загрузка…
Ссылка в новой задаче