зеркало из https://github.com/Azure/ARO-RP.git
574 строки
16 KiB
Go
574 строки
16 KiB
Go
// Copyright (C) 2013-2018 by Maxim Bublis <b@codemonkey.ru>
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the
|
|
// "Software"), to deal in the Software without restriction, including
|
|
// without limitation the rights to use, copy, modify, merge, publish,
|
|
// distribute, sublicense, and/or sell copies of the Software, and to
|
|
// permit persons to whom the Software is furnished to do so, subject to
|
|
// the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
package uuid
|
|
|
|
import (
|
|
"crypto/md5"
|
|
"crypto/rand"
|
|
"crypto/sha1"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
"net"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
// Difference in 100-nanosecond intervals between
|
|
// UUID epoch (October 15, 1582) and Unix epoch (January 1, 1970).
|
|
const epochStart = 122192928000000000
|
|
|
|
type epochFunc func() time.Time
|
|
|
|
// HWAddrFunc is the function type used to provide hardware (MAC) addresses.
|
|
type HWAddrFunc func() (net.HardwareAddr, error)
|
|
|
|
// DefaultGenerator is the default UUID Generator used by this package.
|
|
var DefaultGenerator Generator = NewGen()
|
|
|
|
// NewV1 returns a UUID based on the current timestamp and MAC address.
|
|
func NewV1() (UUID, error) {
|
|
return DefaultGenerator.NewV1()
|
|
}
|
|
|
|
// NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name.
|
|
func NewV3(ns UUID, name string) UUID {
|
|
return DefaultGenerator.NewV3(ns, name)
|
|
}
|
|
|
|
// NewV4 returns a randomly generated UUID.
|
|
func NewV4() (UUID, error) {
|
|
return DefaultGenerator.NewV4()
|
|
}
|
|
|
|
// NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name.
|
|
func NewV5(ns UUID, name string) UUID {
|
|
return DefaultGenerator.NewV5(ns, name)
|
|
}
|
|
|
|
// NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of
|
|
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
|
|
// order being adjusted to allow the UUID to be k-sortable.
|
|
//
|
|
// This is implemented based on revision 02 of the Peabody UUID draft, and may
|
|
// be subject to change pending further revisions. Until the final specification
|
|
// revision is finished, changes required to implement updates to the spec will
|
|
// not be considered a breaking change. They will happen as a minor version
|
|
// releases until the spec is final.
|
|
func NewV6() (UUID, error) {
|
|
return DefaultGenerator.NewV6()
|
|
}
|
|
|
|
// NewV7 returns a k-sortable UUID based on the current UNIX epoch, with the
|
|
// ability to configure the timestamp's precision from millisecond all the way
|
|
// to nanosecond. The additional precision is supported by reducing the amount
|
|
// of pseudorandom data that makes up the rest of the UUID.
|
|
//
|
|
// If an unknown Precision argument is passed to this method it will panic. As
|
|
// such it's strongly encouraged to use the package-provided constants for this
|
|
// value.
|
|
//
|
|
// This is implemented based on revision 02 of the Peabody UUID draft, and may
|
|
// be subject to change pending further revisions. Until the final specification
|
|
// revision is finished, changes required to implement updates to the spec will
|
|
// not be considered a breaking change. They will happen as a minor version
|
|
// releases until the spec is final.
|
|
func NewV7(p Precision) (UUID, error) {
|
|
return DefaultGenerator.NewV7(p)
|
|
}
|
|
|
|
// Generator provides an interface for generating UUIDs.
|
|
type Generator interface {
|
|
NewV1() (UUID, error)
|
|
NewV3(ns UUID, name string) UUID
|
|
NewV4() (UUID, error)
|
|
NewV5(ns UUID, name string) UUID
|
|
NewV6() (UUID, error)
|
|
NewV7(Precision) (UUID, error)
|
|
}
|
|
|
|
// Gen is a reference UUID generator based on the specifications laid out in
|
|
// RFC-4122 and DCE 1.1: Authentication and Security Services. This type
|
|
// satisfies the Generator interface as defined in this package.
|
|
//
|
|
// For consumers who are generating V1 UUIDs, but don't want to expose the MAC
|
|
// address of the node generating the UUIDs, the NewGenWithHWAF() function has been
|
|
// provided as a convenience. See the function's documentation for more info.
|
|
//
|
|
// The authors of this package do not feel that the majority of users will need
|
|
// to obfuscate their MAC address, and so we recommend using NewGen() to create
|
|
// a new generator.
|
|
type Gen struct {
|
|
clockSequenceOnce sync.Once
|
|
hardwareAddrOnce sync.Once
|
|
storageMutex sync.Mutex
|
|
|
|
rand io.Reader
|
|
|
|
epochFunc epochFunc
|
|
hwAddrFunc HWAddrFunc
|
|
lastTime uint64
|
|
clockSequence uint16
|
|
hardwareAddr [6]byte
|
|
|
|
v7LastTime uint64
|
|
v7LastSubsec uint64
|
|
v7ClockSequence uint16
|
|
}
|
|
|
|
// interface check -- build will fail if *Gen doesn't satisfy Generator
|
|
var _ Generator = (*Gen)(nil)
|
|
|
|
// NewGen returns a new instance of Gen with some default values set. Most
|
|
// people should use this.
|
|
func NewGen() *Gen {
|
|
return NewGenWithHWAF(defaultHWAddrFunc)
|
|
}
|
|
|
|
// NewGenWithHWAF builds a new UUID generator with the HWAddrFunc provided. Most
|
|
// consumers should use NewGen() instead.
|
|
//
|
|
// This is used so that consumers can generate their own MAC addresses, for use
|
|
// in the generated UUIDs, if there is some concern about exposing the physical
|
|
// address of the machine generating the UUID.
|
|
//
|
|
// The Gen generator will only invoke the HWAddrFunc once, and cache that MAC
|
|
// address for all the future UUIDs generated by it. If you'd like to switch the
|
|
// MAC address being used, you'll need to create a new generator using this
|
|
// function.
|
|
func NewGenWithHWAF(hwaf HWAddrFunc) *Gen {
|
|
return &Gen{
|
|
epochFunc: time.Now,
|
|
hwAddrFunc: hwaf,
|
|
rand: rand.Reader,
|
|
}
|
|
}
|
|
|
|
// NewV1 returns a UUID based on the current timestamp and MAC address.
|
|
func (g *Gen) NewV1() (UUID, error) {
|
|
u := UUID{}
|
|
|
|
timeNow, clockSeq, err := g.getClockSequence()
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
binary.BigEndian.PutUint32(u[0:], uint32(timeNow))
|
|
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>32))
|
|
binary.BigEndian.PutUint16(u[6:], uint16(timeNow>>48))
|
|
binary.BigEndian.PutUint16(u[8:], clockSeq)
|
|
|
|
hardwareAddr, err := g.getHardwareAddr()
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
copy(u[10:], hardwareAddr)
|
|
|
|
u.SetVersion(V1)
|
|
u.SetVariant(VariantRFC4122)
|
|
|
|
return u, nil
|
|
}
|
|
|
|
// NewV3 returns a UUID based on the MD5 hash of the namespace UUID and name.
|
|
func (g *Gen) NewV3(ns UUID, name string) UUID {
|
|
u := newFromHash(md5.New(), ns, name)
|
|
u.SetVersion(V3)
|
|
u.SetVariant(VariantRFC4122)
|
|
|
|
return u
|
|
}
|
|
|
|
// NewV4 returns a randomly generated UUID.
|
|
func (g *Gen) NewV4() (UUID, error) {
|
|
u := UUID{}
|
|
if _, err := io.ReadFull(g.rand, u[:]); err != nil {
|
|
return Nil, err
|
|
}
|
|
u.SetVersion(V4)
|
|
u.SetVariant(VariantRFC4122)
|
|
|
|
return u, nil
|
|
}
|
|
|
|
// NewV5 returns a UUID based on SHA-1 hash of the namespace UUID and name.
|
|
func (g *Gen) NewV5(ns UUID, name string) UUID {
|
|
u := newFromHash(sha1.New(), ns, name)
|
|
u.SetVersion(V5)
|
|
u.SetVariant(VariantRFC4122)
|
|
|
|
return u
|
|
}
|
|
|
|
// NewV6 returns a k-sortable UUID based on a timestamp and 48 bits of
|
|
// pseudorandom data. The timestamp in a V6 UUID is the same as V1, with the bit
|
|
// order being adjusted to allow the UUID to be k-sortable.
|
|
//
|
|
// This is implemented based on revision 02 of the Peabody UUID draft, and may
|
|
// be subject to change pending further revisions. Until the final specification
|
|
// revision is finished, changes required to implement updates to the spec will
|
|
// not be considered a breaking change. They will happen as a minor version
|
|
// releases until the spec is final.
|
|
func (g *Gen) NewV6() (UUID, error) {
|
|
var u UUID
|
|
|
|
if _, err := io.ReadFull(g.rand, u[10:]); err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
timeNow, clockSeq, err := g.getClockSequence()
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
binary.BigEndian.PutUint32(u[0:], uint32(timeNow>>28)) // set time_high
|
|
binary.BigEndian.PutUint16(u[4:], uint16(timeNow>>12)) // set time_mid
|
|
binary.BigEndian.PutUint16(u[6:], uint16(timeNow&0xfff)) // set time_low (minus four version bits)
|
|
binary.BigEndian.PutUint16(u[8:], clockSeq&0x3fff) // set clk_seq_hi_res (minus two variant bits)
|
|
|
|
u.SetVersion(V6)
|
|
u.SetVariant(VariantRFC4122)
|
|
|
|
return u, nil
|
|
}
|
|
|
|
// getClockSequence returns the epoch and clock sequence for V1 and V6 UUIDs.
|
|
func (g *Gen) getClockSequence() (uint64, uint16, error) {
|
|
var err error
|
|
g.clockSequenceOnce.Do(func() {
|
|
buf := make([]byte, 2)
|
|
if _, err = io.ReadFull(g.rand, buf); err != nil {
|
|
return
|
|
}
|
|
g.clockSequence = binary.BigEndian.Uint16(buf)
|
|
})
|
|
if err != nil {
|
|
return 0, 0, err
|
|
}
|
|
|
|
g.storageMutex.Lock()
|
|
defer g.storageMutex.Unlock()
|
|
|
|
timeNow := g.getEpoch()
|
|
// Clock didn't change since last UUID generation.
|
|
// Should increase clock sequence.
|
|
if timeNow <= g.lastTime {
|
|
g.clockSequence++
|
|
}
|
|
g.lastTime = timeNow
|
|
|
|
return timeNow, g.clockSequence, nil
|
|
}
|
|
|
|
// Precision is used to configure the V7 generator, to specify how precise the
|
|
// timestamp within the UUID should be.
|
|
type Precision byte
|
|
|
|
const (
|
|
NanosecondPrecision Precision = iota
|
|
MicrosecondPrecision
|
|
MillisecondPrecision
|
|
)
|
|
|
|
func (p Precision) String() string {
|
|
switch p {
|
|
case NanosecondPrecision:
|
|
return "nanosecond"
|
|
|
|
case MicrosecondPrecision:
|
|
return "microsecond"
|
|
|
|
case MillisecondPrecision:
|
|
return "millisecond"
|
|
|
|
default:
|
|
return "unknown"
|
|
}
|
|
}
|
|
|
|
// Duration returns the time.Duration for a specific precision. If the Precision
|
|
// value is not known, this returns 0.
|
|
func (p Precision) Duration() time.Duration {
|
|
switch p {
|
|
case NanosecondPrecision:
|
|
return time.Nanosecond
|
|
|
|
case MicrosecondPrecision:
|
|
return time.Microsecond
|
|
|
|
case MillisecondPrecision:
|
|
return time.Millisecond
|
|
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
// NewV7 returns a k-sortable UUID based on the current UNIX epoch, with the
|
|
// ability to configure the timestamp's precision from millisecond all the way
|
|
// to nanosecond. The additional precision is supported by reducing the amount
|
|
// of pseudorandom data that makes up the rest of the UUID.
|
|
//
|
|
// If an unknown Precision argument is passed to this method it will panic. As
|
|
// such it's strongly encouraged to use the package-provided constants for this
|
|
// value.
|
|
//
|
|
// This is implemented based on revision 02 of the Peabody UUID draft, and may
|
|
// be subject to change pending further revisions. Until the final specification
|
|
// revision is finished, changes required to implement updates to the spec will
|
|
// not be considered a breaking change. They will happen as a minor version
|
|
// releases until the spec is final.
|
|
func (g *Gen) NewV7(p Precision) (UUID, error) {
|
|
var u UUID
|
|
var err error
|
|
|
|
switch p {
|
|
case NanosecondPrecision:
|
|
u, err = g.newV7Nano()
|
|
|
|
case MicrosecondPrecision:
|
|
u, err = g.newV7Micro()
|
|
|
|
case MillisecondPrecision:
|
|
u, err = g.newV7Milli()
|
|
|
|
default:
|
|
panic(fmt.Sprintf("unknown precision value %d", p))
|
|
}
|
|
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
u.SetVersion(V7)
|
|
u.SetVariant(VariantRFC4122)
|
|
|
|
return u, nil
|
|
}
|
|
|
|
func (g *Gen) newV7Milli() (UUID, error) {
|
|
var u UUID
|
|
|
|
if _, err := io.ReadFull(g.rand, u[8:]); err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
sec, nano, seq, err := g.getV7ClockSequence(MillisecondPrecision)
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
msec := (nano / 1000000) & 0xfff
|
|
|
|
d := (sec << 28) // set unixts field
|
|
d |= (msec << 16) // set msec field
|
|
d |= (uint64(seq) & 0xfff) // set seq field
|
|
|
|
binary.BigEndian.PutUint64(u[:], d)
|
|
|
|
return u, nil
|
|
}
|
|
|
|
func (g *Gen) newV7Micro() (UUID, error) {
|
|
var u UUID
|
|
|
|
if _, err := io.ReadFull(g.rand, u[10:]); err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
sec, nano, seq, err := g.getV7ClockSequence(MicrosecondPrecision)
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
usec := nano / 1000
|
|
usech := (usec << 4) & 0xfff0000
|
|
usecl := usec & 0xfff
|
|
|
|
d := (sec << 28) // set unixts field
|
|
d |= usech | usecl // set usec fields
|
|
|
|
binary.BigEndian.PutUint64(u[:], d)
|
|
binary.BigEndian.PutUint16(u[8:], seq)
|
|
|
|
return u, nil
|
|
}
|
|
|
|
func (g *Gen) newV7Nano() (UUID, error) {
|
|
var u UUID
|
|
|
|
if _, err := io.ReadFull(g.rand, u[11:]); err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
sec, nano, seq, err := g.getV7ClockSequence(NanosecondPrecision)
|
|
if err != nil {
|
|
return Nil, err
|
|
}
|
|
|
|
nano &= 0x3fffffffff
|
|
nanoh := nano >> 26
|
|
nanom := (nano >> 14) & 0xfff
|
|
nanol := uint16(nano & 0x3fff)
|
|
|
|
d := (sec << 28) // set unixts field
|
|
d |= (nanoh << 16) | nanom // set nsec high and med fields
|
|
|
|
binary.BigEndian.PutUint64(u[:], d)
|
|
binary.BigEndian.PutUint16(u[8:], nanol) // set nsec low field
|
|
|
|
u[10] = byte(seq) // set seq field
|
|
|
|
return u, nil
|
|
}
|
|
|
|
const (
|
|
maxSeq14 = (1 << 14) - 1
|
|
maxSeq12 = (1 << 12) - 1
|
|
maxSeq8 = (1 << 8) - 1
|
|
)
|
|
|
|
// getV7ClockSequence returns the unix epoch, nanoseconds of current second, and
|
|
// the sequence for V7 UUIDs.
|
|
func (g *Gen) getV7ClockSequence(p Precision) (epoch uint64, nano uint64, seq uint16, err error) {
|
|
g.storageMutex.Lock()
|
|
defer g.storageMutex.Unlock()
|
|
|
|
tn := g.epochFunc()
|
|
unix := uint64(tn.Unix())
|
|
nsec := uint64(tn.Nanosecond())
|
|
|
|
// V7 UUIDs have more precise requirements around how the clock sequence
|
|
// value is generated and used. Specifically they require that the sequence
|
|
// be zero, unless we've already generated a UUID within this unit of time
|
|
// (millisecond, microsecond, or nanosecond) at which point you should
|
|
// increment the sequence. Likewise if time has warped backwards for some reason (NTP
|
|
// adjustment?), we also increment the clock sequence to reduce the risk of a
|
|
// collision.
|
|
switch {
|
|
case unix < g.v7LastTime:
|
|
g.v7ClockSequence++
|
|
|
|
case unix > g.v7LastTime:
|
|
g.v7ClockSequence = 0
|
|
|
|
case unix == g.v7LastTime:
|
|
switch p {
|
|
case NanosecondPrecision:
|
|
if nsec <= g.v7LastSubsec {
|
|
if g.v7ClockSequence >= maxSeq8 {
|
|
return 0, 0, 0, errors.New("generating nanosecond precision UUIDv7s too fast: internal clock sequence would roll over")
|
|
}
|
|
|
|
g.v7ClockSequence++
|
|
} else {
|
|
g.v7ClockSequence = 0
|
|
}
|
|
|
|
case MicrosecondPrecision:
|
|
if nsec/1000 <= g.v7LastSubsec/1000 {
|
|
if g.v7ClockSequence >= maxSeq14 {
|
|
return 0, 0, 0, errors.New("generating microsecond precision UUIDv7s too fast: internal clock sequence would roll over")
|
|
}
|
|
|
|
g.v7ClockSequence++
|
|
} else {
|
|
g.v7ClockSequence = 0
|
|
}
|
|
|
|
case MillisecondPrecision:
|
|
if nsec/1000000 <= g.v7LastSubsec/1000000 {
|
|
if g.v7ClockSequence >= maxSeq12 {
|
|
return 0, 0, 0, errors.New("generating millisecond precision UUIDv7s too fast: internal clock sequence would roll over")
|
|
}
|
|
|
|
g.v7ClockSequence++
|
|
} else {
|
|
g.v7ClockSequence = 0
|
|
}
|
|
|
|
default:
|
|
panic(fmt.Sprintf("unknown precision value %d", p))
|
|
}
|
|
}
|
|
|
|
g.v7LastTime = unix
|
|
g.v7LastSubsec = nsec
|
|
|
|
return unix, nsec, g.v7ClockSequence, nil
|
|
}
|
|
|
|
// Returns the hardware address.
|
|
func (g *Gen) getHardwareAddr() ([]byte, error) {
|
|
var err error
|
|
g.hardwareAddrOnce.Do(func() {
|
|
var hwAddr net.HardwareAddr
|
|
if hwAddr, err = g.hwAddrFunc(); err == nil {
|
|
copy(g.hardwareAddr[:], hwAddr)
|
|
return
|
|
}
|
|
|
|
// Initialize hardwareAddr randomly in case
|
|
// of real network interfaces absence.
|
|
if _, err = io.ReadFull(g.rand, g.hardwareAddr[:]); err != nil {
|
|
return
|
|
}
|
|
// Set multicast bit as recommended by RFC-4122
|
|
g.hardwareAddr[0] |= 0x01
|
|
})
|
|
if err != nil {
|
|
return []byte{}, err
|
|
}
|
|
return g.hardwareAddr[:], nil
|
|
}
|
|
|
|
// Returns the difference between UUID epoch (October 15, 1582)
|
|
// and current time in 100-nanosecond intervals.
|
|
func (g *Gen) getEpoch() uint64 {
|
|
return epochStart + uint64(g.epochFunc().UnixNano()/100)
|
|
}
|
|
|
|
// Returns the UUID based on the hashing of the namespace UUID and name.
|
|
func newFromHash(h hash.Hash, ns UUID, name string) UUID {
|
|
u := UUID{}
|
|
h.Write(ns[:])
|
|
h.Write([]byte(name))
|
|
copy(u[:], h.Sum(nil))
|
|
|
|
return u
|
|
}
|
|
|
|
// Returns the hardware address.
|
|
func defaultHWAddrFunc() (net.HardwareAddr, error) {
|
|
ifaces, err := net.Interfaces()
|
|
if err != nil {
|
|
return []byte{}, err
|
|
}
|
|
for _, iface := range ifaces {
|
|
if len(iface.HardwareAddr) >= 6 {
|
|
return iface.HardwareAddr, nil
|
|
}
|
|
}
|
|
return []byte{}, fmt.Errorf("uuid: no HW address found")
|
|
}
|