1
0
Форкнуть 0

Small improvement to package level documentation

This commit is contained in:
Andrie de Vries 2015-08-13 17:59:35 +01:00
Родитель 1b8ca1243e
Коммит 9e6bb750c5
4 изменённых файлов: 68 добавлений и 5 удалений

3
.gitignore поставляемый
Просмотреть файл

@ -1,4 +1,5 @@
maml/R/testing.R
maml/R/testing.R
maml/R/discover.R
maml/R/discover.R
maml/R/discover.R
.Rproj.user

Просмотреть файл

@ -2,7 +2,7 @@ Package: AzureML
Version: 0.1.0
Date: 2015-08-12
Type: Package
Title: Publish, Discover and Consume Web Services on Microsoft Azure Machine Learning
Title: Discover, Publish and Consume Web Services on Microsoft Azure Machine Learning
Authors@R: c(person("Raymond", "Laghaeian", email = "raymondl@microsoft.com", role = c("aut", "cre")),
person("Brianna", "Gerads", role = "aut"),
person("Ritika", "Ravichandra", role = "aut"),

Просмотреть файл

@ -1,6 +1,18 @@
#' Publish, discover, and consume Microsoft Azure Web Services
#' Discover, publish and consume Microsoft Azure Web Services
#'
#' This package implements an interface with Microsoft Azure Machine Learning, allowing users to publish a function, e.g. a prediction function using a trained machine learning model, as a web service from which it can be utilized by users on Visual Studio, Excel, etc., or consumed within R itself. Users are also able to access their preexisting web service endpoints to consume within R. All functions require a workspace ID (wsID) and authorization token (authToken) that can be found on the settings tab of \url{studio.azureml.net}, but users can make a temporary free account at \url{https://azure.microsoft.com/en-us/pricing/free-trial/}. For more information, check out this page: \url{https://github.com/Azure/Azure-MachineLearning-ClientLibrary-R}.
#' @description
#'
#' This package implements an interface with Microsoft Azure Machine Learning, allowing you to publish a function, e.g. a prediction function using a trained machine learning model, as a web service from which it can be utilized by users on Visual Studio, Excel, etc., or consumed within R itself.
#'
#' You are also able to access pre-existing web service endpoints to consume directly from R.
#'
#' @section Finding the workspace ID and authorization token:
#'
#' All functions require a workspace ID (\code{wsID}) and authorization token (\code{authToken}). You can find these on the settings tab of \url{https://studio.azureml.net}, but users can make a temporary free account at \url{https://azure.microsoft.com/en-us/pricing/free-trial/}.
#'
#' For more information, see: \url{https://github.com/Azure/Azure-MachineLearning-ClientLibrary-R}.
#'
#' @section Summary of functions:
#'
#' 1. Discovery
#'
@ -31,4 +43,4 @@
#' @aliases AzureML
#' @docType package
#' @keywords package
?NULL
NULL

Просмотреть файл

@ -0,0 +1,50 @@
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/AzureML-package.R
\docType{package}
\name{AzureML-package}
\alias{AzureML}
\alias{AzureML-package}
\title{Discover, publish and consume Microsoft Azure Web Services}
\description{
This package implements an interface with Microsoft Azure Machine Learning, allowing you to publish a function, e.g. a prediction function using a trained machine learning model, as a web service from which it can be utilized by users on Visual Studio, Excel, etc., or consumed within R itself.
You are also able to access pre-existing web service endpoints to consume directly from R.
}
\section{Finding the workspace ID and authorization token}{
All functions require a workspace ID (\code{wsID}) and authorization token (\code{authToken}). You can find these on the settings tab of \url{https://studio.azureml.net}, but users can make a temporary free account at \url{https://azure.microsoft.com/en-us/pricing/free-trial/}.
For more information, see: \url{https://github.com/Azure/Azure-MachineLearning-ClientLibrary-R}.
}
\section{Summary of functions}{
1. Discovery
\itemize{
\item Get web services: \code{\link{getWebServices}}
\item Get web service details \code{\link{getWSDetails}}
\item Get endpoints: \code{\link{getEndpoints}}
\item Get endpoint details: \code{\link{getEPDetails}}
}
2. Publish
\itemize{
\item Publish a new web service: \code{\link{publishWebService}}
\item Update an existing web service: \code{\link{updateWebService}}
}
3. Consume
\itemize{
\item Discover web service schema: \code{\link{discoverSchema}}
\item Score a file: \code{\link{consumeFile}}
\item Score a dataframe: \code{\link{consumeDataframe}}
\item Score data as lists: \code{\link{consumeLists}}
}
}
\keyword{package}