AzureKusto/README.md

180 строки
5.3 KiB
Markdown
Исходник Обычный вид История

2019-01-09 10:08:43 +03:00
# AzureKusto
2018-12-11 06:05:23 +03:00
R interface to Kusto, also known as [Azure Data Explorer](https://azure.microsoft.com/en-us/services/data-explorer/), a fast and highly scalable data exploration service.
## Installation
2019-03-01 12:28:15 +03:00
You can install the development version from GitHub. Note that if you are using Microsoft R, AzureKusto requires recent versions of some packages which will likely not be in your default MRAN snapshot. You can set the repository to CRAN before installing.
```r
options(repos="https://cloud.r-project.org")
devtools::install_github("cloudyr/AzureKusto")
```
2019-04-15 21:49:08 +03:00
## Example usage
2019-04-15 21:49:08 +03:00
### Kusto endpoint interface
Connect to a Kusto cluster by instantiating a `kusto_database_endpoint` object with the cluster URI and database name.
```r
library(AzureKusto)
Samples <- kusto_database_endpoint(server="https://help.kusto.windows.net", database="Samples")
# To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code FPD8GZPY9 to authenticate.
# Waiting for device code in browser...
# Press Esc/Ctrl + C to abort
# Authentication complete.
```
Now you can issue queries to the Kusto database with `run_query` and get the results back as a data.frame.
```r
res <- run_query(Samples, "StormEvents | summarize EventCount = count() by State | order by State asc")
head(res)
## State EventCount
## 1 ALABAMA 1315
## 2 ALASKA 257
## 3 AMERICAN SAMOA 16
## 4 ARIZONA 340
## 5 ARKANSAS 1028
## 6 ATLANTIC NORTH 188
```
`run_query()` also supports query parameters. Simply pass your parameters as additional keyword arguments and they will be escaped and interpolated into the query string.
```r
res <- run_query(Samples, "MyFunction(lim)", lim=10L)
```
Command statements work much the same way, except that they do not accept parameters.
```r
res <- run_query(Samples, ".show tables | count")
```
### dplyr Interface
The package also implements a [dplyr](https://github.com/tidyverse/dplyr)-style interface for building a query upon a `tbl_kusto` object and then running it on the remote Kusto database and returning the result as a regular tibble object with `collect()`.
```r
library(dplyr)
StormEvents <- tbl_kusto(Samples, "StormEvents")
q <- StormEvents %>%
group_by(State) %>%
summarize(EventCount=n()) %>%
arrange(State)
show_query(q)
## <KQL> database('Samples').['StormEvents']
## | summarize ['EventCount'] = count() by ['State']
## | order by ['State'] asc
collect(q)
## # A tibble: 67 x 2
## State EventCount
## <chr> <dbl>
## 1 ALABAMA 1315
## 2 ALASKA 257
## 3 AMERICAN SAMOA 16
## 4 ARIZONA 340
## 5 ARKANSAS 1028
## 6 ATLANTIC NORTH 188
## 7 ATLANTIC SOUTH 193
## 8 CALIFORNIA 898
## 9 COLORADO 1654
## 10 CONNECTICUT 148
## # ... with 57 more rows
```
`tbl_kusto` also accepts query parameters, in case the Kusto source table is a parameterized function:
```r
MyFunctionDate <- tbl_kusto(Samples, "MyFunctionDate(dt)", dt=as.Date("2019-01-01"))
MyFunctionDate %>%
select(StartTime, EndTime, EpisodeId, EventId, State) %>%
head() %>%
collect()
## # A tibble: 6 x 5
## StartTime EndTime EpisodeId EventId State
## <dttm> <dttm> <int> <int> <chr>
## 1 2007-09-29 08:11:00 2007-09-29 08:11:00 11091 61032 ATLANTIC SOUTH
## 2 2007-09-18 20:00:00 2007-09-19 18:00:00 11074 60904 FLORIDA
## 3 2007-09-20 21:57:00 2007-09-20 22:05:00 11078 60913 FLORIDA
## 4 2007-12-30 16:00:00 2007-12-30 16:05:00 11749 64588 GEORGIA
## 5 2007-12-20 07:50:00 2007-12-20 07:53:00 12554 68796 MISSISSIPPI
## 6 2007-12-20 10:32:00 2007-12-20 10:36:00 12554 68814 MISSISSIPPI
```
2019-04-15 21:49:08 +03:00
### DBI interface
AzureKusto implements a subset of the DBI specification for interacting with databases. It should be noted that Kusto is quite different to the SQL databases that DBI targets, which affects the behaviour of certain DBI methods and renders other moot.
```r
library(DBI)
2019-04-15 21:49:08 +03:00
# connect to the server: basically a wrapper for kusto_database_endpoint()
Samples <- dbConnect(AzureKusto(),
server="https://help.kusto.windows.net",
database="Samples")
dbListTables(Samples)
2019-04-15 21:49:08 +03:00
## [1] "StormEvents" "demo_make_series1" "demo_series2"
## [4] "demo_series3" "demo_many_series1"
2019-04-15 21:49:08 +03:00
dbExistsTable(Samples, "StormEvents")
2019-04-15 21:49:08 +03:00
##[1] TRUE
2019-04-15 21:49:08 +03:00
dbGetQuery(Samples, "StormEvents | summarize ct = count()")
2019-04-15 21:49:08 +03:00
## ct
## 1 59066
2019-04-15 21:49:08 +03:00
```
## Azure Resource Manager interface
On the admin side, AzureKusto extends the framework supplied by the [AzureRMR](https://github.com/cloudyr/AzureRMR) to support Kusto. Methods are provided to create and delete clusters and databases, and manage database principals.
```r
# create a new Kusto cluster
az <- AzureRMR::get_azure_login()
ku <- az$
get_subscription("sub_id")$
get_resource_group("rgname")$
create_kusto_cluster("mykustocluster")
# create a new database
db1 <- ku$create_database("database1")
# add a user
db1$add_principals("myusername", role="User", fqn="aaduser=username@mydomain")
```
---
[![cloudyr project logo](https://i.imgur.com/JHS98Y7.png)](https://github.com/cloudyr)