зеркало из https://github.com/Azure/AzureKusto.git
Vignette (#46)
* start vignette * draft vignette * start vignette * draft vignette * update copyright year to 2018-2019 * remove author line from vignette * update readme, desc * oops
This commit is contained in:
Родитель
a0d0ea56e2
Коммит
60e7721f44
|
@ -314,3 +314,4 @@ flycheck_*.el
|
|||
|
||||
.env
|
||||
test-creds.*
|
||||
inst/doc
|
||||
|
|
|
@ -4,6 +4,7 @@ Version: 1.0.0
|
|||
Authors@R: c(
|
||||
person("Hong", "Ooi", , "hongooi@microsoft.com", role = c("aut", "cre")),
|
||||
person("Alex", "Kyllo", , "jekyllo@microsoft.com", role = "aut"),
|
||||
person("dbplyr development team", role="cph", comment="Original framework for dplyr/database interface"),
|
||||
person("Microsoft", role = "cph")
|
||||
)
|
||||
Description: An interface to 'Azure Data Explorer', also known as 'Kusto', a fast, highly scalable data exploration service from Microsoft: <https://azure.microsoft.com/en-us/services/data-explorer/>. Includes 'DBI' and 'dplyr' interfaces, with the latter modelled after the 'dbplyr' package, whereby queries are translated from R into the native 'KQL' query language and executed lazily. On the admin side, the package extends the object framework provided by 'AzureRMR' to support creation and deletion of databases, and management of database principals.
|
||||
|
@ -32,6 +33,7 @@ Suggests:
|
|||
knitr,
|
||||
testthat,
|
||||
AzureGraph,
|
||||
AzureStor (>= 2.0.0)
|
||||
AzureStor (>= 2.0.0),
|
||||
rmarkdown
|
||||
Roxygen: list(markdown=TRUE)
|
||||
RoxygenNote: 6.1.1
|
||||
|
|
4
LICENSE
4
LICENSE
|
@ -1,2 +1,2 @@
|
|||
YEAR: 2018
|
||||
COPYRIGHT HOLDER: Microsoft
|
||||
YEAR: 2018-2019
|
||||
COPYRIGHT HOLDER: Microsoft Corporation
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# MIT License
|
||||
|
||||
Copyright (c) 2018 Microsoft
|
||||
Copyright (c) 2018-2019 Microsoft Corporation
|
||||
Copyright (c) 2013-2017 RStudio and others.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
|
22
README.md
22
README.md
|
@ -133,20 +133,26 @@ AzureKusto implements a subset of the DBI specification for interacting with dat
|
|||
|
||||
|
||||
```r
|
||||
library(DBI)
|
||||
|
||||
# connect to the server: basically a wrapper for kusto_database_endpoint()
|
||||
db <- DBI::dbConnect(AzureKusto(),
|
||||
server="https://mycluster.location.kusto.windows.net", database="database", tenantid="myaadtenant"))
|
||||
Samples <- dbConnect(AzureKusto(),
|
||||
server="https://help.kusto.windows.net",
|
||||
database="Samples")
|
||||
|
||||
DBI::dbListTables()
|
||||
dbListTables(Samples)
|
||||
|
||||
if(!DBI::dbExistsTable(db, "mtcars"))
|
||||
DBI::dbCreateTable(db, "mtcars")
|
||||
## [1] "StormEvents" "demo_make_series1" "demo_series2"
|
||||
## [4] "demo_series3" "demo_many_series1"
|
||||
|
||||
DBI::dbWriteTable(db, "mtcars", mtcars, method="inline")
|
||||
dbExistsTable(Samples, "StormEvents")
|
||||
|
||||
DBI::dbReadTable(db, "mtcars")
|
||||
##[1] TRUE
|
||||
|
||||
DBI::dbRemoveTable(db, "mtcars")
|
||||
dbGetQuery(Samples, "StormEvents | summarize ct = count()")
|
||||
|
||||
## ct
|
||||
## 1 59066
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
*.html
|
||||
*.R
|
|
@ -0,0 +1,180 @@
|
|||
---
|
||||
title: "AzureKusto"
|
||||
date: "2019-04-15"
|
||||
output: rmarkdown::html_vignette
|
||||
vignette: >
|
||||
%\VignetteIndexEntry{AzureKusto}
|
||||
%\VignetteEngine{knitr::rmarkdown}
|
||||
%\VignetteEncoding{UTF-8}
|
||||
---
|
||||
|
||||
```{r, include = FALSE}
|
||||
knitr::opts_chunk$set(
|
||||
collapse = TRUE,
|
||||
comment = "##"
|
||||
)
|
||||
```
|
||||
|
||||
AzureKusto is the R interface to [Azure Data Explorer](https://azure.microsoft.com/en-us/services/data-explorer/) (internally codenamed "Kusto"), a fast, fully managed data analytics service from Microsoft.
|
||||
|
||||
AzureKusto provides an interface (including [DBI](https://cran.r-project.org/web/packages/DBI/index.html) compliant methods) for connecting to Kusto clusters and submitting [Kusto Query Language (KQL)](https://docs.microsoft.com/en-us/azure/kusto/query/) statements, as well as a [dbplyr](https://cran.r-project.org/web/packages/dbplyr/index.html) style backend that translates [dplyr](https://cran.r-project.org/web/packages/dplyr/index.html) queries into KQL statements.
|
||||
|
||||
|
||||
```{r setup, eval = FALSE}
|
||||
library(AzureKusto)
|
||||
## The first time you import AzureKusto, you'll be asked if you'd like to create a directory to cache OAuth2 tokens.
|
||||
|
||||
## Connect to an AzureKusto database with (default) device code authentication:
|
||||
Samples <- kusto_database_endpoint(server="https://help.kusto.windows.net", database="Samples")
|
||||
|
||||
## To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code ######### to authenticate.
|
||||
## Waiting for device code in browser...
|
||||
## Press Esc/Ctrl + C to abort
|
||||
## Authentication complete.
|
||||
|
||||
```
|
||||
|
||||
Now you can issue KQL queries to the Kusto database with `run_query()` and get the results back as a data.frame object.
|
||||
|
||||
```{r run_query, eval = FALSE}
|
||||
res <- run_query(Samples, "StormEvents | summarize EventCount = count() by State | order by State asc")
|
||||
head(res)
|
||||
|
||||
## State EventCount
|
||||
## 1 ALABAMA 1315
|
||||
## 2 ALASKA 257
|
||||
## 3 AMERICAN SAMOA 16
|
||||
## 4 ARIZONA 340
|
||||
## 5 ARKANSAS 1028
|
||||
## 6 ATLANTIC NORTH 188
|
||||
|
||||
```
|
||||
|
||||
`run_query()` also supports query parameters, to allow you to call parameterized Kusto functions. Simply pass your parameters as additional keyword arguments and they will be escaped and interpolated into the query string.
|
||||
|
||||
```{r run_query_params, eval = FALSE}
|
||||
res <- run_query(Samples, "MyFunction(lim)", lim=10L)
|
||||
head(res)
|
||||
|
||||
## StartTime EndTime EpisodeId EventId State
|
||||
## 1 2007-09-29 08:11:00 2007-09-29 08:11:00 11091 61032 ATLANTIC SOUTH
|
||||
## 2 2007-09-18 20:00:00 2007-09-19 18:00:00 11074 60904 FLORIDA
|
||||
## 3 2007-09-20 21:57:00 2007-09-20 22:05:00 11078 60913 FLORIDA
|
||||
## 4 2007-12-30 16:00:00 2007-12-30 16:05:00 11749 64588 GEORGIA
|
||||
## 5 2007-12-20 07:50:00 2007-12-20 07:53:00 12554 68796 MISSISSIPPI
|
||||
## 6 2007-12-20 10:32:00 2007-12-20 10:36:00 12554 68814 MISSISSIPPI
|
||||
|
||||
```
|
||||
|
||||
`run_query()` can also handle command statements, which begin with a '.' character. Command statements do not accept parameters and cannot be combined together with query statements in the same request.
|
||||
|
||||
Command statements return a list where the first element is the table returned by the command (if any) and the other elements contain command metadata.
|
||||
|
||||
```{r run_query_commands, eval = FALSE}
|
||||
res <- run_query(Samples, ".show tables | count")
|
||||
res[[1]]
|
||||
|
||||
## Count
|
||||
## 1 5
|
||||
|
||||
```
|
||||
|
||||
### dplyr Interface
|
||||
|
||||
The package also implements a [dplyr](https://github.com/tidyverse/dplyr)-style interface for building a query upon a `tbl_kusto` object and then running it on the remote Kusto database and returning the result as a regular tibble object with `collect()`.
|
||||
|
||||
```{r dplyr, eval = FALSE}
|
||||
library(dplyr)
|
||||
|
||||
StormEvents <- tbl_kusto(Samples, "StormEvents")
|
||||
|
||||
q <- StormEvents %>%
|
||||
group_by(State) %>%
|
||||
summarize(EventCount=n()) %>%
|
||||
arrange(State)
|
||||
|
||||
show_query(q)
|
||||
|
||||
## <KQL> database('Samples').['StormEvents']
|
||||
## | summarize ['EventCount'] = count() by ['State']
|
||||
## | order by ['State'] asc
|
||||
|
||||
collect(q)
|
||||
|
||||
## # A tibble: 67 x 2
|
||||
## State EventCount
|
||||
## <chr> <dbl>
|
||||
## 1 ALABAMA 1315
|
||||
## 2 ALASKA 257
|
||||
## 3 AMERICAN SAMOA 16
|
||||
## 4 ARIZONA 340
|
||||
## 5 ARKANSAS 1028
|
||||
## 6 ATLANTIC NORTH 188
|
||||
## 7 ATLANTIC SOUTH 193
|
||||
## 8 CALIFORNIA 898
|
||||
## 9 COLORADO 1654
|
||||
## 10 CONNECTICUT 148
|
||||
## # ... with 57 more rows
|
||||
|
||||
```
|
||||
|
||||
`tbl_kusto` also accepts query parameters, in case the Kusto source table is a parameterized function:
|
||||
|
||||
```{r tbl_kusto_params, eval = FALSE}
|
||||
MyFunctionDate <- tbl_kusto(Samples, "MyFunctionDate(dt)", dt=as.Date("2019-01-01"))
|
||||
|
||||
MyFunctionDate %>%
|
||||
select(StartTime, EndTime, EpisodeId, EventId, State) %>%
|
||||
head() %>%
|
||||
collect()
|
||||
|
||||
## # A tibble: 6 x 5
|
||||
## StartTime EndTime EpisodeId EventId State
|
||||
## <dttm> <dttm> <int> <int> <chr>
|
||||
## 1 2007-09-29 08:11:00 2007-09-29 08:11:00 11091 61032 ATLANTIC SOUTH
|
||||
## 2 2007-09-18 20:00:00 2007-09-19 18:00:00 11074 60904 FLORIDA
|
||||
## 3 2007-09-20 21:57:00 2007-09-20 22:05:00 11078 60913 FLORIDA
|
||||
## 4 2007-12-30 16:00:00 2007-12-30 16:05:00 11749 64588 GEORGIA
|
||||
## 5 2007-12-20 07:50:00 2007-12-20 07:53:00 12554 68796 MISSISSIPPI
|
||||
## 6 2007-12-20 10:32:00 2007-12-20 10:36:00 12554 68814 MISSISSIPPI
|
||||
|
||||
```
|
||||
|
||||
### DBI interface
|
||||
|
||||
AzureKusto implements a subset of the DBI specification for interfacing with databases in R.
|
||||
|
||||
The following methods are supported:
|
||||
- Connections: [dbConnect], [dbDisconnect], [dbCanConnect]
|
||||
- Table management: [dbExistsTable], [dbCreateTable], [dbRemoveTable], [dbReadTable], [dbWriteTable]
|
||||
- Querying: [dbGetQuery], [dbSendQuery], [dbFetch], [dbSendStatement], [dbExecute], [dbListFields], [dbColumnInfo]
|
||||
|
||||
Azure Data Explorer is quite different to the SQL databases that DBI targets, which affects the behaviour of certain DBI methods and renders other moot.
|
||||
|
||||
- Communication goes through the REST API rather than a socket connection. Therefore, `dbConnect` simply wraps a database endpoint object, created with [kusto_database_endpoint]. Similarly, `dbDisconnect` always returns TRUE. `dbCanConnect` attempts to check if querying the database will succeed, but this may not be accurate.
|
||||
- Temporary tables are not supported, so `dbCreateTable(*, temporary=TRUE)` will throw an error.
|
||||
- It only supports synchronous queries, with a default timeout of 4 minutes. `dbSendQuery` and `dbSendStatement` will wait for the query to execute, rather than returning immediately. The object returned contains the full result of the query, which `dbFetch` extracts.
|
||||
- The Kusto Query Language (KQL) is not SQL, and so higher-level SQL methods are not implemented.
|
||||
|
||||
```{r dbi, eval = FALSE}
|
||||
library(DBI)
|
||||
|
||||
Samples <- dbConnect(AzureKusto(),
|
||||
server="https://help.kusto.windows.net",
|
||||
database="Samples")
|
||||
|
||||
dbListTables(Samples)
|
||||
|
||||
## [1] "StormEvents" "demo_make_series1" "demo_series2"
|
||||
## [4] "demo_series3" "demo_many_series1"
|
||||
|
||||
dbExistsTable(Samples, "StormEvents")
|
||||
|
||||
##[1] TRUE
|
||||
|
||||
dbGetQuery(Samples, "StormEvents | summarize ct = count()")
|
||||
|
||||
## ct
|
||||
## 1 59066
|
||||
|
||||
```
|
Загрузка…
Ссылка в новой задаче