AzureKusto/R/partial_eval.R

177 строки
5.1 KiB
R

#' Partially evaluate an expression.
#'
#' This function partially evaluates an expression, using information from
#' the tbl to determine whether names refer to local expressions
#' or remote variables. This simplifies translation because expressions
#' don't need to carry around their environment - all relevant information
#' is incorporated into the expression.
#'
#' @section Symbol substitution:
#'
#' `partial_eval()` needs to guess if you're referring to a variable on the
#' server (remote), or in the current environment (local).
#'
#' You can override the guesses using `local()` and `remote()` to force
#' computation, or by using the `.data` and `.env` pronouns of tidy evaluation.
#'
#' @param call an unevaluated expression, as produced by [quote()]
#' @param vars character vector of variable names.
#' @param env environment in which to search for local values
#' @export
#' @keywords internal
#' @examples
#' vars <- c("year", "id")
#' partial_eval(quote(year > 1980), vars = vars)
#'
#' ids <- c("ansonca01", "forceda01", "mathebo01")
#' partial_eval(quote(id %in% ids), vars = vars)
#'
#' # cf.
#' partial_eval(quote(id == .data$ids), vars = vars)
#'
#' # You can use local() or .env to disambiguate between local and remote
#' # variables: otherwise remote is always preferred
#' year <- 1980
#' partial_eval(quote(year > year), vars = vars)
#' partial_eval(quote(year > local(year)), vars = vars)
#' partial_eval(quote(year > .env$year), vars = vars)
#'
#' # Functions are always assumed to be remote. Use local to force evaluation
#' # in R.
#' f <- function(x) x + 1
#' partial_eval(quote(year > f(1980)), vars = vars)
#' partial_eval(quote(year > local(f(1980))), vars = vars)
partial_eval <- function(call, vars = character(), env = caller_env())
{
switch_type(call,
"NULL" = NULL,
symbol = sym_partial_eval(call, vars, env),
language = lang_partial_eval(call, vars, env),
logical =,
integer =,
double =,
complex =,
string =,
character = call,
formula = {
f_rhs(call) <- partial_eval(f_rhs(call), vars, f_env(call) %||% env)
if (length(call) == 3) {
f_lhs(call) <- partial_eval(f_lhs(call), vars, f_env(call) %||% env)
}
call
},
list = lapply(call, partial_eval, vars = vars, env = env),
abort(paste("Unknown input type: ", class(call)))
)
}
sym_partial_eval <- function(sym, vars, env)
{
name <- as_string(sym)
if (name %in% vars) {
sym
} else if (env_has(env, name, inherit = TRUE)) {
eval_bare(sym, env)
} else {
sym
}
}
is_namespaced_dplyr_call <- function(call)
{
is_symbol(call[[1]], "::") && is_symbol(call[[2]], "dplyr")
}
is_tidy_pronoun <- function(call)
{
is_symbol(call[[1]], c("$", "[[")) && is_symbol(call[[2]], c(".data", ".env"))
}
lang_partial_eval <- function(call, vars, env)
{
fun <- call[[1]]
# Try to find the name of inlined functions
if (is.function(fun)) {
fun_name <- find_fun(fun)
if (is.null(fun_name)) {
return(eval_bare(call, env))
}
call[[1]] <- fun <- sym(fun_name)
}
# Qualified calls, EXCEPT dplyr::foo()
if (is.call(fun)) {
if (is_namespaced_dplyr_call(fun)) {
call[[1]] <- fun[[3]]
} else if (is_tidy_pronoun(fun)) {
stop("Use local() or remote() to force evaluation of functions", call. = FALSE)
} else {
return(eval_bare(call, env))
}
}
# .data$, .data[[]], .env$, .env[[]] need special handling
if (is_tidy_pronoun(call)) {
if (is_symbol(call[[1]], "$")) {
idx <- call[[3]]
} else {
idx <- as.name(eval_bare(call[[3]], env))
}
if (is_symbol(call[[2]], ".data")) {
idx
} else {
eval_bare(idx, env)
}
} else {
# Process call arguments recursively, unless user has manually called
# remote/local
name <- as_string(call[[1]])
if (name == "local") {
eval_bare(call[[2]], env)
} else if (name == "remote") {
call[[2]]
} else {
call[-1] <- lapply(call[-1], partial_eval, vars = vars, env = env)
call
}
}
}
find_fun <- function(fun)
{
if (is_lambda(fun)) {
body <- body(fun)
if (!is_call(body)) {
return(NULL)
}
fun_name <- body[[1]]
if (!is_symbol(fun_name)) {
return(NULL)
}
as.character(fun_name)
} else if (is.function(fun)) {
fun_name(fun)
}
}
fun_name <- function(fun)
{
pkg_env <- env_parent(global_env())
known <- c(ls(base_agg), ls(base_scalar))
for (x in known) {
if (!env_has(pkg_env, x, inherit = TRUE))
next
fun_x <- env_get(pkg_env, x, inherit = TRUE)
if (identical(fun, fun_x))
return(x)
}
NULL
}