From eeb10942e6fdda5c6553a111155129509a80be15 Mon Sep 17 00:00:00 2001 From: angusrtaylor Date: Mon, 29 Apr 2019 16:08:35 +0000 Subject: [PATCH 1/5] added dilated cnn --- 6_dilated_cnn.ipynb | 880 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 880 insertions(+) create mode 100644 6_dilated_cnn.ipynb diff --git a/6_dilated_cnn.ipynb b/6_dilated_cnn.ipynb new file mode 100644 index 0000000..de75237 --- /dev/null +++ b/6_dilated_cnn.ipynb @@ -0,0 +1,880 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multi step model (vector output approach)\n", + "\n", + "In this notebook, we demonstrate how to:\n", + "- prepare time series data for training a RNN forecasting model\n", + "- get data in the required shape for the keras API\n", + "- implement a RNN model in keras to predict the next 3 steps ahead (time *t+1* to *t+3*) in the time series. This model uses recent values of temperature and load as the model input. The model will be trained to output a vector, the elements of which are ordered predictions for future time steps.\n", + "- enable early stopping to reduce the likelihood of model overfitting\n", + "- evaluate the model on a test dataset\n", + "\n", + "The data in this example is taken from the GEFCom2014 forecasting competition1. It consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. The task is to forecast future values of electricity load.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "from collections import UserDict\n", + "from IPython.display import Image\n", + "%matplotlib inline\n", + "\n", + "from common.utils import load_data, mape, TimeSeriesTensor, create_evaluation_df\n", + "\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load data into Pandas dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
loadtemp
2012-01-01 00:00:002,698.0032.00
2012-01-01 01:00:002,558.0032.67
2012-01-01 02:00:002,444.0030.00
2012-01-01 03:00:002,402.0031.00
2012-01-01 04:00:002,403.0032.00
\n", + "
" + ], + "text/plain": [ + " load temp\n", + "2012-01-01 00:00:00 2,698.00 32.00\n", + "2012-01-01 01:00:00 2,558.00 32.67\n", + "2012-01-01 02:00:00 2,444.00 30.00\n", + "2012-01-01 03:00:00 2,402.00 31.00\n", + "2012-01-01 04:00:00 2,403.00 32.00" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('data/')\n", + "energy.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "valid_start_dt = '2014-09-01 00:00:00'\n", + "test_start_dt = '2014-11-01 00:00:00'\n", + "\n", + "T = 6\n", + "HORIZON = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "train = energy.copy()[energy.index < valid_start_dt][['load', 'temp']]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "y_scaler = MinMaxScaler()\n", + "y_scaler.fit(train[['load']])\n", + "\n", + "X_scaler = MinMaxScaler()\n", + "train[['load', 'temp']] = X_scaler.fit_transform(train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Use the TimeSeriesTensor convenience class to:\n", + "1. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example\n", + "2. Discard any samples with missing values\n", + "3. Transform this Pandas dataframe into a numpy array of shape (samples, time steps, features) for input into Keras\n", + "\n", + "The class takes the following parameters:\n", + "\n", + "- **dataset**: original time series\n", + "- **H**: the forecast horizon\n", + "- **tensor_structure**: a dictionary discribing the tensor structure in the form { 'tensor_name' : (range(max_backward_shift, max_forward_shift), [feature, feature, ...] ) }\n", + "- **freq**: time series frequency\n", + "- **drop_incomplete**: (Boolean) whether to drop incomplete samples" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "tensor_structure = {'X':(range(-T+1, 1), ['load', 'temp'])}\n", + "train_inputs = TimeSeriesTensor(train, 'load', HORIZON, tensor_structure)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tensortargetX
featureyloadtemp
time stept+1t-5t-4t-3t-2t-1tt-5t-4t-3t-2t-1t
2012-01-01 05:00:000.180.220.180.140.130.130.150.420.430.400.410.420.41
2012-01-01 06:00:000.230.180.140.130.130.150.180.430.400.410.420.410.40
2012-01-01 07:00:000.290.140.130.130.150.180.230.400.410.420.410.400.39
\n", + "
" + ], + "text/plain": [ + "tensor target X \\\n", + "feature y load temp \n", + "time step t+1 t-5 t-4 t-3 t-2 t-1 t t-5 t-4 t-3 t-2 \n", + "2012-01-01 05:00:00 0.18 0.22 0.18 0.14 0.13 0.13 0.15 0.42 0.43 0.40 0.41 \n", + "2012-01-01 06:00:00 0.23 0.18 0.14 0.13 0.13 0.15 0.18 0.43 0.40 0.41 0.42 \n", + "2012-01-01 07:00:00 0.29 0.14 0.13 0.13 0.15 0.18 0.23 0.40 0.41 0.42 0.41 \n", + "\n", + "tensor \n", + "feature \n", + "time step t-1 t \n", + "2012-01-01 05:00:00 0.42 0.41 \n", + "2012-01-01 06:00:00 0.41 0.40 \n", + "2012-01-01 07:00:00 0.40 0.39 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_inputs.dataframe.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[0.22, 0.42],\n", + " [0.18, 0.43],\n", + " [0.14, 0.4 ],\n", + " [0.13, 0.41],\n", + " [0.13, 0.42],\n", + " [0.15, 0.41]],\n", + "\n", + " [[0.18, 0.43],\n", + " [0.14, 0.4 ],\n", + " [0.13, 0.41],\n", + " [0.13, 0.42],\n", + " [0.15, 0.41],\n", + " [0.18, 0.4 ]],\n", + "\n", + " [[0.14, 0.4 ],\n", + " [0.13, 0.41],\n", + " [0.13, 0.42],\n", + " [0.15, 0.41],\n", + " [0.18, 0.4 ],\n", + " [0.23, 0.39]]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_inputs['X'][:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.18],\n", + " [0.23],\n", + " [0.29]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_inputs['target'][:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Construct validation set (keeping T hours from the training set in order to construct initial features)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "look_back_dt = dt.datetime.strptime(valid_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", + "valid = energy.copy()[(energy.index >=look_back_dt) & (energy.index < test_start_dt)][['load', 'temp']]\n", + "valid[['load', 'temp']] = X_scaler.transform(valid)\n", + "valid_inputs = TimeSeriesTensor(valid, 'load', HORIZON, tensor_structure)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Implement the RNN" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will implement a RNN forecasting model with the following structure:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAJICAYAAAGlM4mUAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFuoAABbqAeWOQxAAAPPYSURBVHhe7N0HfBvl+Qdwhw1lFdrSPf/dizYt0Jm2EDCxrWU7CSE0zFAooWwKHWa1UPaGsBLbiW05CQkhke0MAmU4TsJsoIzYspPYTsKmlDJz/99zeWRk+7V9d5ZknfT7fj6P9d7pdOP1q1ePXp1OBZRDDltuFRzSlN4or99et0a54tJ741bVyq4BY87jm4zz3URBYWxn3RzlCjYc8iTRcGat3tLrn335rCb7NtFw+t4fCgZ7TfeNC2+NWlfULLPLbDg5KNFwjj/1bPv27L/faN9ee/fD9m2i4Uz67bH27eRjptq3yctI3Lb8Oft29poXe+aFwyH7lg0nByUazomnn2/fDtRwjpxyvH2baDi3a0NJxKxVm+3b5IYz8+H19i0bTg5ijkOesOGQJ2w4lBLl5eWWFvsJhUI/KS4u3k0njYLB4N5apHxSWlo6WMMZr0UiZ9Bo4lrsJxKJvKNFyld4qSnRYg/0Qt/WIpHZhAkTBnypSoZciB9cUkFBVUv3W8nvhGoefWmwXGeTFimfVbd093r7nBy6CFF/pgaTiFsfaP+ULkb0oarmrv+aGkwiZq/ewl6H+qtc2fmmqcEkgg2HBmRqMIm4vbl1P12MqDdTg0mELkJkhlznteQGI+fV6F1EQwuFQmww5F4wGOyW28LCQvtUCDSk9+SW/GOU3o4IaTiRSOQbaEjv6ix/G+x8Ea/wrHpYi1kjHA5/QovDVlJS8iUtDgl1cZfcJvc4iH9IeUSUlpb+FDvwrE56ltxw8Gz4rhaHJdsbDp75W7XoSXLDQZ0t0aKR6UNO1M+Ap1SMuIZ4nZUcOrufoqKij2pRKuR7WuylqaP+gz7rm6l3GaEx7o4KNZ65FttQ873kdS3rnDesHi95XRI6e1DYN+P+N7ZHe61r6ca5xvNicHw7aVHWdbMWe1nedXfvdW2YM6zjzIjkHU6OCqtiO13EMdN6JJrW17uuiIZ4dJlpXRK6iGOWZY0yrUdCF3HFtB4JPGk8HKd5XRK6SPYx7Wxy6GKOrLHW7GhaRyJ0McdM60gEnu2uTi0wrSM5dDFHGuO1/zCtIxG6mGOmdSSiqT3qOD/KiMRJz6adTQ57YQekO17WNc+4jkQ0ttZdpIsPSnKxRfH6T5rWkRy6+KDw0jBBbk2PTw57YQfKysp2NT0+OdCom3XxQSGP+k1DW+1/TetIxJL1WfqSZdrZ5NDFhoRKOH0JXpdN60hErK12kS4+KCTyb8Rae+c2ptDFHTE9Pjl0sSGhIZ5lenyfcJTs4wnSHIvXvWl4fE9Ineri2cW0s8mhizmCbvU3pnUkQhdzzLSORNy36e4RaTgCT4C/mtaRCF3MMdM6EiE9ry6WfUw7bEdbdJYu4phxPRq6iGODvfTpIq6Y1iOhd7tiWo/EEk9vAszrktBFslffHY611d2gd7nWd13DeZ3GW9xe65LQuzxJ5br6vh3Hcb6pd7m2vLv3kyRrc5tMiEQiT2hx2JBDTdRi1sG+tWtx2JD3+O+zKfyju/Cu4eM6OWxIJC/V4rAlD6INF/7R38Fx7qOTw1ZSUnKQFocN+5a/PU1CIBD4nRaHbfTo0TtqMevgCfI5LQ4b1vWcFonIFTx7SrU4bGPGjNlBi1kHL6Mp+1YlcpyTtJi/sjXHSbVU7ltWfxKeKWg4f9fisGVzw0llb4iGk7J3aET5Bc+er2gxFUb0VM5MwVt7fo8qlTlONifHqYQn2zIt5q9wOMyG4xIaznItEpErqRzfoDxSUsIcx63Di4qjWsxu1tNzrMFCF3PE9Pjk2Lq2fq0uOqSta6OFpnUkhy7qiOnxyaGLOWJ6fHJs/dfcw3TRIUmdmNaRHLpodjHtaHLoYo6YHp8cbDj9ZX3DwVvjS7TYi2lHk0MXc8T0+ORgw+kvaxqO6fSDQCCwR1lZmXEHTDuaHLqYI6bHJwcbTn9Z1eOgdzlab/e3ZwAbjnkdidDFHDE9Pjl823CkkYRCoU14O/x5nTXgmWWmHU0OXcwR0+OTgw2nv6xqOG6YdjQ5dDFHTI9PDjac/thwwPT45GDD6c+/DefKAmuw0MUcMT0+ObZeUeC84VxeUGhaR3Looo6YHp8cupgjpscnx9YrC5w3HNSJaR3JoYtmF9OOJocu5ojp8cnBhtMfGw6YHp8cbDj9seGA6fHJwYbTX1Y0HHkLrkVbJBLptVHTWI5pR5NDF3PE9PjkYMPpLysaTiAQCGvRFgwGz9SizTSWY9rR5NDFHDE9PjnYcPrLiobjhWlHk0MXc8T0+ORgw+mPDQdMj08ONpz+fNtwiIiI8lCozy+gYHpfLQ4b1vWYFkcc9mW8FuUda0CLw4J3wsO6ivuIwE4fp8VhkYaDiAQCgR9FIpEvpKLhyL4ddNBBu2JdnTrLs8Rx4p+9xZ7hER5fLrfYp6n2jBTAvn2gRX9I/uppWVnZZ7ToSWlpaap7HPvrv1hPxfjx44f1LiOxL2PGjNlloJ8UcAr/ZOPPCAwHGuNSLRIREWWFQ5qsYUXxUvP85KDckvzjraaobjHPT0TBbxqN85NDN0W5wvRPTg42GurH9E+WqF61adutqdG0dFuhcMguD9RoIpHSnrJuinKF/FNvW/6sdceKF3r905Mbze0rnremL33GeH+i0dx+33M6f3OvW3sZyi2Jf2zfGKynmbV6S0850WgS85IbS2KebopyReIfPFAwp6F+TP/k5GCjoX5M/+TkYKOhQU2ZMmWX5J/eJiIiIiLKeaZ3PDw5iwbUt8EkQu/ugUb0ohYpn5kaS3LoYgV8K049TA0lOXQxog+ZGkpy6GJEHzI1lOTQxYh6MzUWCb2byIwNhogyo7y8fPds/ilrcmDq1Kn9fvAkUyKRyJcR39DJzCkuLv6Y3AaDwXfsGVkmHA4fpMVhKykpsdcVCoXesGekANY17IsPJGBdzVp0LRAI/FKL6eenRoNKbdCiJ8mNBsdba88cplQ3GuzXvTrpCh77Jy1mhH3lBbnSgXR39hyDWFvdVQ3xOisR93XfPazsPXldEjq7n+TfvhxomLyxI9prXfVWvfFHWxM/5orbvVDJxh+vX7pxbq913bdp/pDHKVeawE2/H7CPdUU/nrwuCb3LaKB9SnCzrhHX95+SHLqIK6b1SOjdrpjWY0dbTc8FhpwyrkdDF3FsyYbZXzWtR0IXccW0HonY87GddZHsYtrZRDTGoyfpYo6Y1pGIxvaoqwpd1qdX6Bu6mCMrNtd/0rSOROhijpnWkRy6mCOmxyeHLpYdkFxVxdpqbzTtaHLo4oNC13u73Joenxz2wkOzXwpMj08Oe0kH5CJGfV+WDPGuLj4oHOcMuTU8vlfYCw8hkdyaHp8c9sLZAknoBw1ttQ+adjQ5dPFBIWf6otyaHp8c9sIOmR6fHLrYkHCcDw7VaPDkcdpo7LzEtI7ksBd2yPT45NDFsotpRxPRtD76T13MEdM6kkMXc8T0+OTQxRxZ1DH7o6Z1JEIXc8y0juTQxRwxPT45dLHsYtrRROgijsU21vzAtB4JXcQV03okmjrqHfUMyUzrSYQu4tiy1pr9TOuR0EVcMa1HAnf1e9eWNZrW15t22JOG1rpDUrUu0XddjR31vX6Zxo0lG+b0Wtfyrnme923hs7M/lrwuCb3Lk1SuK6Pw+r9eizkNOdj7WqThQqLnKocZTGFh4c5ohCk5EToSiTyjxZTAfqX0mYz1vazFYZFR7UMOOWQvnfQHvA28SYs5DU8Ozy9xRDRceK0/V4s5DS8np2mRhiuVOU02w3G+qkUaLvQ0D2gxp6HRvK5FIso4vNb/UIs5beLEiZ/WIg1XvuQ0eBlu1SINF3qafEmE27RIRBlXUVHRc84ukSMlJYG8eHkqLilZp0Vya+vTc96xnp5jDRa6qCOmxyeHLuaI6fHJoYs5YrUvMq6jJ3C/LuqIcR1JoYs5Ynp8cuhi2YONRiNfGw3eRh6mRcfYaDTyuNFcp8Xt5I+TL5Kz0Wjkc6MJh8Of0kn724uhUGhhYWHhnjqrHzYajXxuNGgkvTaCefdg3oCjn2w0GvnaaLxgo9Fgo3GOjUaDjca5rVcWvGNdWWANFrqoI6bHJ4cu5ojp8cmhizli3WBeR0/gfl3UEeM6kkIXc8T0+OTQxbIHG40GG41zbDQa+dhoSktLPa2cjUYjHxtNJBLpWTneZj+SPF1SUvKl8ABfDmOj0cj3RiPQcKZrUcqHhUKhi3SyFzYajXxsNEMZ6OqQbDQabDTOsdFosNEQERHlBLy7+qYWC8rKylL6OjrQ232nki9QPVx4J9mtRZvX8S0T1GGFFvNDotGgUo+X21Q0HKzrOC0OizSaxLrQAAP2TI+wnq6SkpL9cHuizhq2xL7lXaNJhn9MISrgBZ30JLnnGi7szzFatH/aRoueYF1XarFg3Lhx3ywqKvq+TnqSfGn+VDUaNMLPaZGIiIhouC69N97rd0jdxpzHN1nVLeb7nEbBbxqN891EQWGW/pALEW3DzoaIMoKdDRFlRN/O5sTTz+81Xd2yqad8/LSzrGvvftiqXvXhvL6dzZFTju8pS1Sv2vzhdEt3T/n0C6/qKSd3NrOw/KzVW3qmB4rTL7yy1zQ7G6IsN1Bnc8HNtVY4ErHCobB9m+hgnHY2N8eesB8X6vP42Y++aJ101l97lpcYqLMJBEq27YO9nmDPMpXNnVagpLhnWoKdDVGW69vZFBcdbv3xiuk903c+0Nrr/mvnPTRoZ1N8+OHWiWd8mB3dtvzfPeUTTj3HOuEP2+L4U8/qmZ/c2VQj+5H75XbbvA+zIYlIaZl14a311viJR/Saz86GKMtxzIaIMoKdDRFlhdJQ0Xta9KQsWPgvLbpWFjr8acT/JkSK+cVMolwWDAbn6e2d9gyX8LhJoVDoPp10JRwOPy+3ePxcewYR5bZJkya5ziqG82WzsrKyXbVIRPlkwoQJjjubSCTyBS0SEbmDtzNhLQ6qoqLC/uEcp5D9cByGiAoKqlZ2nVW5suut6pburbh9r2plpz1+0xeymWu0OCR0MOdpkYjy2Ycn0g0dRx1/0q36MCIiZ5LPCHYTs1dvGfCtUElJSaEWiYjQ0azsuszUkTiO5q53dVUyvsNxGCIyq33sZXMn4iJ0VUREA6tu7r7A1IE4jcrmzrd1VUREg3MzMJwcg43ZEBENKPniVkPFzMdf+ow+jIjIu8qW7mkzmztfqX/qdau6ZfM7lSs779K7iIhSKxwO/0Nve76I2fcn9ILBYK0WiYi8mzhxYq9xmcLCwl7XjQmFQsO6BIVvFBcXf0yLNvSy72gxa5SXl2ftIBpesQ7SojSah7U44kpKSnr2S2Df3tDiiEOdfUKLsl+dWhxxqLMvaVH2q1mLw9b3i5gDdTaol9n2jFwlnQ0O0koEDvxNvUs6nl9ocUQl75+Ezs4Kpn078sgj90R5RJ9E0tkk7xf+l6+5/aJfusiTKxGJOssGqKOXsU9bNHpOtBsudC57anFIqI9h/b5vVjNlNqNHj95RyjjwKnumB0s6aj7dGK9dGmurfTkWr9vUEI9eqHe5NlBmgyfU97ToSkNbzakN8doOe9/aau9rar+n5xXNLdRRv8wGdejp18TrrfrtUWdR2a+GtrpXGtpqPV1wSQyW2aAc1KIjK6wZuzTE6zYu2TDXalpfby3rnGs1tNZ6fuVHnfXLbKZNm7YzynfYM11Y2jH3y0s2zHlL9ktiedc8C21tod7tiimzwe0Z9gwP8H98aFnnPHu/lm6cY+H/2b3g33fsoXfTcNiNMF7nKBa1zRr2dTucdjaWVTDKtA+mkMaqD8sIbLOj7z4MFLF1NX/Th6VdY2v0ANM+DBTSUepDPcMT29GnNY3xustN+2CKxvbosP+f6BynaXFIpn0YKBa31ozVh5FTqLTzTJU5VKSiIQxFXllM2x4qFrVFx+sq0qJ+bf1Opu06CV1F2izBK7Fpu0PF0o1z075vpu06iab2+ud0FWmxdAMyF8N2hwrJenQVNJRFHbM/aqpEp5HOBoo0dqNpm05DOgRdVcqZtucmdDUph1T/LdP2nEdtta4q5fB2ybA959HUUT9aV5VSyLSuNW3PcbTVfaCryh2lpaV2I8Xt+qSyhZiVKMutjJ4nRtBlXllZ2XdxW5y4X8ZQxo8fLwOPl6JxbjBWoIuQ9UYikWcT20tsA9tN3sdjMf2ZxP2yf4mPFHXeKKzj6sT9ciuZk2l7TqOm+TZ732R9fetEb6uSt4ftb0yUE7d9juH0QCDwy5vuuXyyaXtu4je/GPt71P9fZN14+/FHGQeRAX1EVOfNlZByYh62fVGijNvnEfaYEG7tV33Zx6aO4dXZsq65PXWG+ngxUdbjt6/fkpjXt06xv19BfU1M3C9tIDFeJ/Vo2p6biLXW9uybtJ3kbWN6P2zjxMT9sr3k/53etiaVZV1zUe8vyQumaXtuQtZJQ4jF6w4yVZ7TSOdbKUlRTdt0GvPaqz+lq0o50/bchK4m5WJtdW+atuc0GuPR23VVKef1rUoimuL1++uqUqqpLXqpaXsuImWffOU8pJFvGyrQUegq0qbR+yt1Wj+6xpO6wrBNR9HUXfURXU1aeH27snRDFo/ZdNQ/oatIi2UesxsZH9NVkBumyhwokK7/Vx+WdnhPfLdpHwYKfVhG4Elg3AdT3Nd9d8b2LdYe/ZZpHwYKfVhGxNpqzzXtgymkfvVhGWHah4Fi2froAfow8mrFhnmfxSv31qb1H75Cbjv/oaZeFxkxsda6i2RfEuM5iU9eFj03+8u6yIior6/ffnFb7XtL5HwMrTP73Ix4rT0ONJJiW2M74//ZKZmL1J28PUU226R3j6imdVWfQOfz1jLs13J0xg3tdt1N17tHVENbdLF0dlJnOq6zeeGa6bvp3ZQOoVDoai1mDexT2sYWhgv7NjoSiWQs83MqDHKLfcu6K/yjzt7XYlYJBAJlcov9+6M9g4iIfA4vhv/UYtbBvl2qxaxSXl6etvN7hivx0W82CgaDX9RiVkFW8x8tUjqhorO2s0HjZGfjEjrorO1sxowZs4sWswqeA69rkdIJT+i9tZh1Jk+enNaPkHMRnjhf0WI2GqW3WaWsrMzzF32JiCjbcMzGvSx/G5W14w99L7eZLSKRSIcWKZ04ZuNeNnc2+H++qsWsky0XB+sLdfaYFimdUNGHajHrBAKBH2gxq2Trk0aggz5Xi+QQngMnaJGIiHwPr4QxLWYdvOJUaDGrZOvYg0CdZe3b4myFDDq3L2SeLbK5cWbrmE02dzaos1YtkkN4DszRIqUTGudVWsw6aATHajGrlJeXD/t6vumCOntAi+QQ6uwmLdJwbH16zjvW03Os4YSuKuVM23ITW9fWr9VVpdTWtdFC0/bchK4q5az2RcbtOQ48XleVcsbtuYit/5p7mK4qpaSdmLbnJnRVNBh2Nu6xs/HGuD0Xwc7G59jZuMfOxhvj9lwEO5s0CQaD12nRtcSFnp1gZ+MeOxtvjNtzEexs0iTR2SR3HInLA4RCIfuXDOTXMCORiH2FusR9WH4fzHN88Oxs3GNn441xey6CnU2aSGejp733fBMWnYz9w2vJHRCWuwfL7aWTNmY224KdjYdgZ+MpdFX+hA7ju1qUDuVqxDk6KUah47F/DxkZzYH2HMAyCwKBwB64LdVZQ2Jn4x47G2+M23MR7Gx8jp2Ne+xsvDFuz0Wws/G5rUunvWMtPdUaTuiqUs60LTexdcm09HQ2S6cVmrbnJnRVKWc9fJZxe44Dj9dVpZxxey5i65I/pKezWXrqWtP23ISuigaz9cqCd6wrC6zhhK4q5UzbchNbryhIT2dzeUGhaXtuQleVctYN5u05DjxeV5Vyxu25CLTV9HQ2aCem7bkJXRUNhp2Ne+xsvDFuz0Wws/E5djbusbPxxrg9F8HOJoWCwWBNKBSycLtFZ8nH3e8jNumkTF+G+9/Erf1Liyi/j2i374RwOHyQLI94R2cNip2Ne+xsvDFuz0Wws0mx5BPyysvLrUQkfoIDHcst9p2AeadrUebb/wg8/hB7BmDe/VocEDsb99jZeGPcnotgZ5Ni6ECeGTdu3BekjOzkLUx/JxAI/Bq3RTIPHUjP7yCjfKYWezobLPtnPG40pk/E7ZCX9GRn4x47G2+M23MR7GyyDDqbX2rREXY27rGz8ca4PRfBzsbn2Nm4x87GG+P2XAQ7GyIiIiLymWAweFogELgCt56vs5NuxcXFu2kxK8iXYkOh0N06mVVKS0vHY9+qdDLrhMPhE7VIuUoaIJ4k1+hkj/Hjx4/o+9JIJPIz7JuFfbtZZ/WQ++QW9+9rz8iwkpKSa9EJ34Ci8Yfx3VzyI8Xk6gBvos6u1+l+sN8faDHjsG+Lsf1rdbIX3JcVP9OD/93HsS9bUYe86HmqoWK/qUUj3H+SFjMO2+73pMUroH0OUiJ0dsYN9vMt0mC1mHF4MndpsRfU1Yj/DC/2oVyL/WRLZyNGskMmIiIiIiIiIspLRY3fLzikyRpWFC01z89kHL6cJxYSZa2ipnDVyi5rOFFwaJNxvtOof2yTNXtVt/E+pxG47El2NERZix0NEaUdOxoiSjt2NESUduxoiCjtXHY0s1ZvsU484/xe89x0NFfXP2BFSsusa+Y82DOvb0cj20iU+0e3FQyUWMFgoNd8djRE2axPR3PpzEW9nsDJUd2yybrzgVbrd2f+qdf85I6msrlz0I6iumVbh1JxY41VpeW+HU1R4WE9ZYmB1venq+/qKbOjIcpmfTqaC2+pt6YvfaZn+uaGJ3Db+23NYB3NrUuetm6/77meaemYEp1Lckz67bE95eSOZubDG6yiwwt77UMw0Dt7mbVmi3Xjvat7dUDsaIiy2SAZTTgSscJhBG5POPXsnvlOM5qQfPFX1oGQcmKZ46adac1O6iQGymikg7IfGwrZt4kOq3rVJuumxY9b181/pOcx7GiIstkQb53cZjR93zr1zWiKxx3eU07EUG+d+mY0iSgaV9hTZkdDlM36dDSSLfz5+sqezqHykY099yVi6unn9ZpO7mjk8edcetOHj0fH03Mf5k2ZerJ1wh/OsUPGfGR+347mmJP+YJ1x4dU909OXPt1TvnXJWuusS66zjj3pNHRom3vms6MhymZ9OhovkdzReIm+HY2XYEdDlM3Y0RBR2rGjIaK0Y0dDRGnHjoaI/O6oyK8mTCgt9tQJTAgd9kB58PCXykLj3tRZRJSLQqFQN+J5nXSloqJiOzz2acSwfiMNj39Ui0SUa0pKSr6nRXmyj9GiY3jMoVp0rby8fKdwOPx7KWM9X7FnEhEli0Qiv9aia8Fg8DYtEhGlXmlp6be1SESUWsXFxR/DW6WDdJKIaGB423OOFh0LhUKjtUhENDh0GFdo0TE85iktEhENLhAILNSiI6WlpT+aOHHifjpJRDQ4ZiVE5MnsNZ0fq1zZuUmuLyNRubLrlZkt3f0+EZLzXbToSDAYvFOLRJSvKldt/EHiglQDR+dFsiw6jS/aD3IAyx6lRSLKZ5XNnQ+bO5b+UfPoi5bbbIaI8lxly6a/mzqUwWLWqs1v68MHFA6Hj9ciEeU7U0fiJJAF/VxX0UsoFJqhRSIi+y3T+6ZOxEnIBcd1NUREAzN1IG5CV1Nw1FFH7Yu3Sj/USSKiD5k6D1fxcPd38FbpPl0dEVF/xs7DRZz99xuv11UREZmZOg83Ub2y61u6KiIiM1Pn4SZ0NUREA6tq6fqfqQNxEvzUiYgcM3UijqJ5w4G6CiKiwVW1dF9o7EgGidmrN/9XH05E5Ezlys5lpg7FFPJdJ30YEZE7lWs6Pz979RZj55IUp+viRETeVaxdu1Nlc2fz3LX/seb86w2rqrnz6buaN3xV7yYiSp1wOPwbRFgniYhSr7S09BfFxcW9vr8UDAZrtFgwZsyYHbRIROReKBSyr6QnUO75/WyU39Oi60t5EhE5ktzRTJ06dUctElGqfOtb3+r7Cj5Kb/MG3jq9H4lEviGB8nd1dm7De0hffZ6Pf07W7C9emR7Wog3T47U44rAvm7Qo6fkntTjisF9tWrRh+gAtjijsx1ot2tABfE6LKYdt9XvrFAgEcvuLlexovEODYUfjEvaLHY2ho8H2HkQ8as/MReFw2EoOmYeK6ERMsRfIAsn7l20dTfK+YXo8GsvJuGvE3w5IPSXvm8xDo/489nG1vcAIQf20Yh/eS4qs6GiwX09gX7YkAtNp62hMsM2H9HaMPSPXmDIaee+oxayT6Gjw5LnKnjGC0CiMGU3iVWokYV/6ZTR48hyNejvRnjlCsF+DZTQj1kFjP4wZDW5jkydP/og9M43wf/kE9uGfOpl7TB0NDnrYp0g3ttf9LdZW+xLi5Ya2uoamdVWf0LuGJdHRoAGMs2e4VL+2fqfGeN0i2S/Ei9i3S/Uu19Aw+nU0w3mv3dQWnRJrq3tG62z14nWzfqZ3uYZ9Mb51kgatRcca2qLXrNg032paX2/H/VsWWLHWmmP1blewX8aOBv/PW3DjuqNBfc2+r/vunn1b3jXvg8Xtda7rDfvRr6MpLi7eTSdda4jXHr1i04Ke/boP9dfQVnuN3p1/ioqKPqrFXryeSGRXaLxuwIjFa/+hi3qCBrC33rrqaNC5/Lqh3bxPEsvRWHVRx/AE3l2LNvmosrCwcE/dR8dPmqaO6NumfUrE4ra6dbqoY9i3vbQotpM/ZWVln7GnHGqIR1eZ9ic5YvH6P+rinqHze3D06NE7Gj6RGlBjR/RV0/70ivZ5ji/0jY7ma1q0JX/sjBc3x18dWNxW+wfjviQFngP8rW2vYs/f/RVTpZpi6ca5rp/UfbnpaGLx6GbTfpji3vV139GHZQQyP+N+9I0lG+YMu87cWNY5z7gfpmhsjw75Q2gOOeqcpS5M+2EKPKkf0Ie5ZlmWvT/I+r9nzxgC6uF10z6YQupXH0ZOydsRU2UOFvinZKSi5S2IafuDBdgZQLqZtj1Y4FU8I3W2ZH30fdP2B4+aXm8j02XpRuedTCIWr6v5nT48bRrao/NN2x4sMv3i4XvSaZgqcshon532n/s0bneIyEQn6CZj6BXtda/pKtIitq72YON2HYSuIm2a2qOzTdt1ErqKtDFt01G01QZ1FTQYZAx/Nlagg0j3E1reopm26yjaoqfqalJuzZrpOxq36TB0NWnh+UUD4WWcyw3TNp0G3kI9oatJOck0Tdt0EpnK7H1vedfdxgp0GrHnr9tZV5Vypu05jVSMIw0kFq/rNG3TcbTVnq2rSjnj9lyEribloo9EdzVtz2nIJz+6qpQzbc9N6Gqor1AotFmLw65kZESX6KpSIvHx6T2tNfsZt+ci7BWmCPZrYeKTvGVdHt82acTaav9jrzRFsG/2maqLW2u/Ztqem7BXmELYt1a5RUZysWl7bsJeYYpgv3rWZ9qWm2jK8AcQaTVx4kRrwoQJduXIuTORSOQLiKMS59GUl5dbEon75Rb3r02U9TGxRFluw6HwoB/LOonaltusxPpk/5L3UW9nJJVl2a5EOXFbVlaWfP9ZwWDwu3+b/tfTTdtzE7q+ZxLrltu+9YSYgu19LnG/7L/UdeJ+uUW9XZcoy+1w3p5IrNg8X85Ctj9Wxu2xiTL2oz4QCNhv+VCOJm4RCxJlLPtNLPNLlJ/TeW2YF5fyKef8zvXAed8oKQr0+h/KeTs4/pMSxy//q+T/l9zi/rbk+sF0faIst1LfM++74QXT9twE1ivxQfK6Mb2lz7ZvS5Tltm+bxP1fxe34xP2HHXL4TNO2XEVH3SGyLuoDlTwZDcg+R8FYcW6ircbuvFIFDeEluZVXCeP2XIS9whTBk/sHeFIfJ2U3H8+aItVvA7Bf9XLeyL3rZn/VtD03oatMGbSz1+V2cWvNhabtuQl7hSmCOpuXyFBN23IVHTXftldKA2saxkCYxL3ro65OInPDtD2nkc5BuiXrh9fR4G1Ei64q5UzbcxO6mpSLPR/b2bQ9p7GEYzT+1hCPPmeqPKehq0kL0/acRtP66IO6mpRb9ELdr03bdBpYRdq+EzScT1DSfV7IcN5yxtpqH9HVpFwsXveeaZtOgp86uWCqQCeR6kHNvha31p5i2q6T0FWkjdcnzdI0P5ljz9cdZNquk9BVpM2S9jm3mrbrJHQVaWPappPAc+BQXQUNpaG9ttZUiUOFPjytlnW6P5cG//y5+vC0Wdxa6ekTHn14WjV11L9r2vag0RZdrA9Pq2Vezo1aVxvRh6dNUzxaadz2IIF63qoPJ6eWbJz7lqkyBwp9WEa4yR6w7Lv6sLSLtUXvMu3DQNHUNidjv9Ps5vwoPGF6vimeCa5OxGyrna8PS7umjuh64z4YYnkXv+vk2eJ47ZAf9S3dkL4T4QYjZ62a9ic5FrfVztHFMwbv74d8q2K/j7cyf60W7Ns9pv3pFa11af8aiUlje91G4/5oSJ0tXhfN+PV4G+LRI0z7kxzImJfo4jQc0kCTT0qTT1lQuVsb2ud9ShcZESs21+/e0FbzfvKnPvLKgle9+3SREYM6O1ne5iWyL2QJ9sfYDa21v9BFRgz+d1MRH0hnLYHye0vQQerdI6qhve4S1NfW5H1b2jH7y3r3iFn4QvQneOF6L2m/PliEetS7KdXC4XChFrNKKIuu79sX6uxxLWaVQCDw6WAwuL9OZhX8PzdoMauUl5d/HnWWH790MFLwhHmvpKRkrE5mFezbjxFv6WTWQKO8U4tZB/X1e0SRTmYdaW9azBr4f55WXFwc0klKtYqKip5ruuDV5t9azApokE/jlWbEr+trIvuFxnmznBqvs7IC/oc9v7qI+rO/3pAtsG9PI9s6RiezBvarQovS4WRVnRERUa6Qa9RqMevg1e9MLZJDyLJG9NcdiIyy9a2TkLdOWiSH8DYlbdfoISIiyl7MaHIL6iylF1AjSgmvv1uVCXgbMFmL5BA6mp9qkSirZPyUfqcCgcAeWiSHSkpK9tMiUfbgW6fcwjojIqL8lM0ZDd463aRFcggZDc+8peyTzR1NOBzm2wCXIpEIOxoiIspDHAzOLagzXkyKsk/yt8uzTVlZ2de1SA6hzj6uRaLskc0dTSgU+okWyaGA/kInUVbJ5rdO6GjqtEgOoc7WaDEbZe3JoURE5HdZ/vE2P6p1CXUW12I2YkaTr7L8U6esvW5wtkKdpe0njFOAHQ0REaUJB4NzCzKa17SYddDWttciUfZgwyTKEVl+cfLztUgOIQvs0GLWyeZztijNsvmtU1FRoEaL5FAgEMzaH81nR5MC1tNzrOHE1qfnPKOrSqmtT0XHmrbnJnRVKWfalqtoX5S1+6arSTk5ZtP23ISuKuVM23IXcw/RVdFAzBXnPNjReAh2NJ5CV5Vypm25C3Y0QzJXnPNgR+Mh2NF4Cl1Vypm25S7Y0QzJXHHOgx2Nh2BH4yl0VSln2pa7YEczJHPFOQ92NB6CHY2n0FWlnGlb7sKnHU0og78LZK4458GOxkOwo/EUuqqUM23LXfi3o1mqxbQzV5zzYEfjIdjReApdVcqZtuUucqSjKS8v30uLPZzOG4q54pwHOxoPwY7GU+iqUs60LXeRAx0NyufJbTAYvCpxantJScmX5DYSidiVj2W+Fg6HC3Xef+XWKXPFOQ92NB6CHY2n0FWlnGlb7sLnHQ06ll6Vi87mZS3a11jFciulPH78eM//BHPFOQ92NB6CHY2n0FWlnGlb7iLHOhrMfxOZy2cDgcC3ZBodz11yy47GHLqqlDNty1Wwo/EUuqqUM23LXfi8o0FHMsmeAYcccshexcXFu6GjOV1nyVXJ7MrH8j0/VYHyei06Yq4458GOxkOwo/EUuqqUM23LXfi0oyktLf2pFguKioo+g87jHrxV2lVnSWfyR3QyYWQ8++ssuYp8uYzj6KRj5opzHuxoPAQ7Gk+hq0o507bchU87mkwyV5zzYEfjIdjReApdVcqZtuUu2NEMyVxxzoMdjYdgR+MpdFUpZ9qWu2BHMyRzxTkPdjQegh2Np9BVpZxpW+6CHc2QrKWnWsOJrUunpaejaTx1rGl7bkJXlXKmbbmKh8/K2n3T1aScHLNpe25CV5Vypm25i1PY0QzFurLAGk5svbIgPR3NlQVjTdtzE7qqlDNty1XckL37pqtJOTlm0/bchK4q5UzbchWXF7CjGYqx4lwEOxoPwY7GU+iqUs60LVfBjmZoxopzEexoPAQ7Gk+hq0o507ZcBTuaoRkrzkWwo/EQ7Gg8ha4q5UzbchXsaIZmrDgXwY7GQ7Cj8RS6qpQzbctVsKMZmrHiXAQ7Gg/BjsZT6KpSzrQtV+HHjiYSiXxBixlhrDgXwY7GQ7Cj8RS6qpQzbctV+K2jCQaDmxEvIR6Q6VAodFdpaalVWFi4p05XYvrbMk++YClfupRr0kydOtX+1Ubc/6x0VHI/ynfIvKEYK85FsKPxEOxoPIWuKuVM23IVfs5o0FEca88AdCg3yy3mLbJnAOa9r0W5No39T8D9r9ozYOzYsR9BZ/QxnRyQseJcBDsaD8GOxlPoqlLOtC1X4eeORjIVuR6NRFJHktzRtGtR5r+efJuA6SGzGmPFuQh2NB6CHY2n0FWlnGlbrsLPHU3iWjPJhupoMO81e4bCW6gfaXFAxopzEexoPAQ7Gk+hq0o507ZchR87GnQa/0QnM1bLryCb2Qe3HTo9ZEaD+K88JpEFDcVYcS6CHY2HYEfjKXRVKWfalqvwY0czHIkOxw1jxbkIdjQegh2Np9BVpZxpW66CHc3QjBXnItjReAh2NJ5CV5Vypm25inzraLwwVpyLYEfjIdjReApdVcqZtuUq2NEMzVhxLoIdjYdgR+MpdFUpZ9qWq2BHQ0RERERERERERETkQiAQuEJCJ7NOKBS6WotZIxwOXxUMBv+uk1kF+zUT0fNLp9mkvLz881qkXIXGt06LfY3S26yE/X5Xixknl+XQohE6wcO1mHHY9te02CMSiXxDbhOXHxkp2Ld+X/qVLxHjBe2vOpkVsE/ba5FSAf/gU/GEfQ1xic7KGtinq9Awr9TJXvDEeQT3bdXJjMKTdWf5Aiz270ad1deIddCyT4jKoqKij+qsXuR33bWYcWhr1+B/thbRczmUBMzLmo4G9Xct9vV6djYphoq1MxpU7jEoH4cn0afsOwDT35Xr3OjkiJH9kpAy9u8VuR2pjkYkMhrsw09030pkuqSk5CDMWziSjRTbtzOa5DpLwP5N0eKIwL7ZGQ1uT5B9S7qAGzOaXId/+EBvnWxoBNdoccSNGTNmB8kmJLBfEj0XA8ukod46ybWFtJhxqJN+b50wb8TeyiXDfhivl4T57GhynVxeAp3Nd3XShumDUdl7oQEs1FkjAh3Kj7XYD/ZtxDIa7FcnoifzE5g+aNy4cZ+UJ/VIZoHY/uwpU6bsopM2zOtGNvM9iUQWMRKwHx8gTB1hVnU02J/zKioqttNJIiIiIiIiIiIiIiIiIiLKfkVN4aub2q05j28asVj0zBar4NAma+4T5vszEfc+jX34TaN195ObjfdnKkqveMoqKIztrP8dIiIicgxJzaX3xq2qlV0jFvJiLklNdYv5/kxE/WPYByQ1s1d1G+/PVAQue5JJDRERkSdMauxgUkNEROR3TGrsYFJDRETkd0xq7GBSQ0RE5HcZSmpmrdpsnC+R/qSm25q1ejPWv8lw37ZId1JTvWrTtn3Aren+RDCpISIi8mqIpObqOQ9YJ597ofG+oeK25c9aRx59gnXS2X+1fnfmnwZ8QR80qWnutI456Q9ICLb0v2+IuGPF89YJp51rb3f2oy9ZMx7qsAIlxdZNix/vt+xgSY08fvwRR9pJSd/7horqlm7rT1ffZc1e86K9DzMfWm8FAwHsw2PG5ZnUEBEReTVAUiOjGiedXWFNPuYEq3zCEUgsTrPOuexm+0U6eblbGp6wzrn0RpTNyYDcXnv3w56SmjMuvMrebmlZmXXMyafb0Xf7dz7Qak0+9sR+8weKv89YaJ158bVWVZ/lB0pqJPk45qTT7UTkWGz/6BNP7bctSVhCwSCOz1nS87sz/2z97a57jPcxqSEiIvJqiJGaS2cusk48/XzjfRI3I6k5++/mpCYRXpMaicrmTuvIKccPOFJjJzXHTB0yqZEk7Rzs53HTzjbux2AjNfLRWVHhYQPugyQ1kvQMlNTIiNFhh/zKKj680DrulDP6JVTJwaSGiIjIKw9JTeUjG62ZD6+346ZFj1pn/e16lDfovA29lpVIeVLT3NWz/dvve87+iKvykcT21/d+PPYnGAxYl1UuHnD7El6SmsT2JKGSbci+mvahb9xx3/NW+cRJxiSJSQ0REZFXQyQ1V0Xvt449+bRtIyGGEYabGx5HUnMdygOPPgw3qZGPv2Q0xLR9GamZNOXYbfvX575z/3Hrto+a+sw3xeDn1Gy2iscVWpUrO/vdJyHnypQUjTOO1FQ2b7Rmyb7rtNRBxY019kdQphOXmdQQERF5NURSI3HXP+PWxbfNw22b8f6hQkZv5CMY030Sg54orCHnoExf8ozxvoFCRnGmL33aGH2XHSypkZBRlStqllnXzW823j9YyCjSpVUx65I752PbzyCxGTgBZFJDRETklYOkJt3hJKlJdwyV1GQqmNQQERF5xaTGDiY1REREfsekxg4mNURERH7HpMYOJjVERER+h6Rmtwkrrd0neo89yu8zzncaeyAKgg8b73MSu41/xNq57CHjfU7D3oeA8334yIRma1dsd5fyh+1tJ8K0rJvYqQz7waSGiIgo8yKRyPWhUMgKh8N36qy0w7YmBoPBjYh/oRyWediHJ+07RwB24Z/Y/t2Iu3QWERER+QlezJ8JBAJ7TJgwwSosLNwZL+rdeldGYPtPl5eXj8btySUlJWN1dkYgoboQx36glMeMGbMLjn2VfQcRERH5C17Uf6HFXiKRyGFazBgkFBu1mHYVFRXbFRcXf0wnbTjmSVokIiIiP5ORGi2mVTgc/iwiYwmMkBEoJC1bkDhFdBYRERHlqrFjx35EizkDScxlWiQiIqJ8gQRgpRZTLhgMPhiJRH6pk2kXDodvwc2obVNERESUVzL18VM6ICH7ChIZC4nTN3QWERER0fAFg8G9kWi8r5NEREREmTNx4kRfjNQgYfpiOBxu0UkiIiKi3ooOP6xJi55EIpHqkpKSI3QypZDIlIRCobfKy8t30llERESUz2Y2bzi8cmXnf2av2WL8zaK+Ud3SbdU9/opV1dxZpasgIiIiGhkzV3ZeNPvRF41Ji8d42bKsUdOmTZNrv7ynm0kZ+aZUOBy+RCeJiIgo31Wu7FxhSEhSFrWPv2LVr7VS8nEQkpi/hEKhhTpJREREVFAwq2Xj/jWPvmRMRNIRs1ZtekY37cnkyZNz7qJ/RERENEyVKzceW71qkzH5SGdUt3S/qrswqPLy8u2DweD/wuFwoc4iIiIi6i36yPp9RiKhSURlc9dy3ZV+kMgsmjp16o46SURERDSw6pZNcVOykamoe+JVq+qJ7l4fJR155JF7MpkhIiIiV+Tr16ZkI1OBpMq6bMa9E+XnCsrKyj6ju0VERETkzsgnNd3WrNWbf6a7Q0RERORNdUtX1n38REREROTajMfje88awROFqx7ZOKyfWSAiIiLqUd3cNXlkvgHVuUV3gYiIiCg1qh/p/OHsDF58r6ql+2ndNBEREVHqVTZvWGZMQlIUctXiNWssfl2biIiIMqOypfuPTn+V22F06qqJiIiIRsaslq5fzlq1+b+zV2+xv4JtSFh6BZa1R2SqWzqvll/m1tUQERERZa+iwsPu0yIRERGRP0UikTfGjx9vhUKhd3UWERERkX/Ir2Yjodmgk7ZwOLwuEAjsoZM9CgsLd0bS855O9oL17DTQfUREREQZNWHCBEuLRkxqiIiIyBeCweB3tWikSY2F5WoR9cmB+XNw+5YuSn6Hf/bHB8tyI5HIB1qkQRxxxBED1qF83qtFShIOh1ejQ/mJTvaC+WsCgcCROkmqpKTkZ6WlpZt0shfU16dRp2/rJCm0pQ7U23462Qv6t42otwN1kgAv8HcXFRUZf6ka91UPVJcjCf/jP2rRyO1Izbhx476AebWIi3QW+UVxcfHH0EkO+KKLRvyOFmkQeGIMlhgyqTFAh/EwXoQP0sle5D7EeJ0khReUg1AvxqQGbfCTuO8NnSSFOmlDO/uETvaC+zoRB+gkAepjLdrZl3SyF9zXjNeEz+lk1kjlx084vs1aJD9yk9RMnTp1R/zzp8q7RZ1FikmNe2hLD+Nd8g90shfc9xCiJ6nBi1IA02dLG9RZeUmSGjwnu3Syl75JDdrdIajfi2QER2flJdRJG+riC+jrdusbUpe4n0lNEtTHWqkvnewF92VlUjMUPDe2x35foJO9yH3oX3ruw3I9n07geB/A/bvrJPkBntiOkpqysrJd8Q+eYs8ElB/SIgGTGvfQhh5G+/uhTvYi7QvRb6QG8xq1mJfcJDUJ6LAvxE3eXnwMdcKRGhfQvtYi9kefv09yoH3thbpag/uyLqmZOHFiyvpYHON6LUpdXIznXNZ93EaDcJrU4B/9Eyz3bXsmYPopLRI4SWrGjBmzC+rzGdRdBE+U79l35jHUg+OPn1D+GupugU7mLUlqUBdOP34apcPujbgvo+82Y89ft/OCf9+xRyJWWCt20LsyDsfvKqnBsmehrd2LYmYTQatgVNMTVR9JrrcKq2I7vTdjUB+OP34KBAJXaHFE1Fv121uWteMRRx6BG2unGStm7KJ3Ub6SpGawF2Q8wXs+a0SDfkESG9zerbMyYo21ZsfGeN11S9bXW0s3zLEa4nWDhiwjy6J8WaYujz3YZ7p4l9PrPnQK4zKR1MTao8ehDt5funGu1dge7VdPybFE6kzqtq3ujhnxzHQMaEcrEcYThVFHLbjvCCmjDT6PCCDKERPRXneyF0qDhvZoUUM8+qZdZx2D11lToj221z22qGPul3UVaSX1hSTZmNSgbj6F+K+UJcFBHR6G5/c3cPucvUAaNLbVfT8Wr9u8dOPQz8tESL0uwfKx1tr5K+Ir0t7WUCed48aN+6RO9oL+bGNyG0Rd2dc9wby7cJO2vgPPs/LGePQDJ/1ZIpas1+doe905upq0wLE7SmrQtj6PaUkKVyCMz+NUWYE+CXVWLfU1VF+WHPI8jrXVvtbQPs84IkyUMbGtsZ3R+f3H1FC9BNa1OVt+/wOdQtqSGrwoz29sN9eB20Bi+MZIvsPOlMXx2plDJTBOY1nnPKupPfobXXVOWhGfvzeO8x3T8XuOtmizrn7E4IX5DMTZGqvwPD0Xb0h21buHDS/Khy3vmmc+fg8hieHieJ18tDjikDh+AvV1sU6mDN5gNJmO3Wsg+X5v3rp5xlE7orSIPV/92VQ+8fvGis3zrUVr643v2jIFHeY35V21TqYE3sWlLAHsG/d1320t6pidkZGITGpaX/+i6XhTEU0d9dbi1trrdVM5YdFTsz+6rHOu8XhTFUs2zHlRNzeiEqMRqRBrrT1ORvVMx5uqwBuZGt1cxgQCgWNQT+vQnz2LmKqzU6KxPbrBdJypCnnz0fhCre9OeCafaYzX/dfUANMRjR11r+pmfa2hte4KN8Oxw4nGjmhO1Fls3ey/ZqrOJCGcnwOdJ140O0zHl47YNmpWe7Ru2tfk4w/TMaYj5M3g0lfq99JN+9KiF2qD6U4Ae0V77Wu6aaLUSufozEAhHY5u3pca2qLzTceVzpAORzfvSw3tdTHTcaUz5PyuRW11v9Rd8B0cwxt9jyndIUknEqm/6S74kn3+i+HY0hmSEMaen/dZ3QVfwf6fl6k3G8kRa6vjD2FSauGF5jVTY8tELG6r3aK74SsN7dG/mI4nEyEnhupu+EqsrfavpuPJREhis7Bz4W66K76xuK3uQdPxZCK2vcDVflF3xVfk40fTMWUiVmya77s3Hg3t1Z8aiYQmEYvbalbprhA5IxdzCgaDe+tkj1jr7BJTI8tk4EXa+LXikVZeXr59cXHxj3WylxWbFxiPJVNxb+vsrLy2h3xtPhwOf18nexnpOkO8oLuSdfDc/JUWe0xfM31HeYE0HEcmY6PuTtZBW9sBba3ft2piHfU/NxxHRiPWlp2jXGhnB2uxl8b2unbTcWQq5GPi2PPVe+ruEDmHTuDHct2WkH5dF0++NaZGlsnAPqywdy5LHXLIIXuh3p5FhzBTppvi9ftn9HNnQ6DOlts7l6XkK7yos02BQOAamW5or/vhSNeZHz7uRBu7C/X278LCwj0b4tGfjOSIg8RyvNjormUttLE9UGfrUHd3yjT2e07f48h4tNW9Yu9clkJd/R2vAd0lemG7VH370GvIKJGfPyKmEYbGLD8U1j72e2M/EmurzdgJiANGW+3TumtZC51AKepsKzrQH8iLzUh3Aoisv/giOsyTpM4QX4m1zv75SNfZ/VsWWLsXfPLjsj9I7L+quymJ/mdlnkTiGjxyi+l9JVDuuXBeYp6EzuqZJ9ec0lnyWzd7JuZXVFQkvpY/Skb/JDCv56JuiXkojpIrx6KtvYQ4q3F99ICRTgTlWyrb9jK7ob4m4P/4RlFR0XcaO+prTMeS0cjyj9UlEUTblDcd9ogS+jTzcWQoJKmRETZ754icwJP+KMSZOtmjoa3mz6ZGlslY3Fp7iu5OVpEXM9TZIzrZY8Xa+t1luNR0LJmKxnjtSbo7WQWd5KfRWS7RyR5yddaRrjNEVnxd2QQvyE/1veBafX399lnwkV3PJeuzDZLI3dDWlulkj0Vtcw40HEdGo7GtrkJ3J6ugvlajX/u8TvZAUhE3HUem4r5N862m7qqP6O4QDY+8gzU1tEzEfZuyf3jbpLEj+rTpeDIRfq2zpo7ov03Hk6loXB8t1F3xjVhbXYPpWDIR8u55SUeNL3+ME/v/bt/jyVQs7/Lf83Nh5+yPjfBI6v26K0TDZ3+ckqKr4LoJ+6cU2ut8e/nskRh5kEu1N3XUj9Zd8B05R8N0XBmIrD4HaTAN7dHNhuNJa+g3Yc7TXfClTF6jJhHyceHSjZU9H036iYyYj0hi0x59U3eBKHWa1tWPzuR1HeSzejyJvqab961Gw7GlK/QnAIy/CeMnmT75FR31PN20bzV1RJ80HVs6wj6Pp60moJv2NfRpW03HmI6QERr5nTzdtC/FWit/nsnXASTP9m99EaVNLJ6BE4fb6/6tm8sJi9qip+o727RF04b6Vt1cToi1Ro9Nd53JTwrk0uf0Czun7yaJrelYUxVN66MdurmccS8SNBnhNB1vSkJGudujN+nmckIsXrfWeKwpimVdeG6uq+JvQFHmNMSjban8SGrbC1g0bb9WnA1ibXUVaXiXs6HC+vCbMrmmMV532rIUf0wgL/zz4zN8edE4J+RX3HGcKTtnREbOGuPRpbr6nLW4Y86PUvmR1FIkzXjxP1lXn5NwfPek8ht4Te3R92MvxXg9Gho5C5+d/TH52reXFx77x/fa6p5f2urv30PxYnG8psnLOTeSFOGFfsOKDf681PpwNLRFa73UmSTM6Hjfi8XrJ+qq8oY8txritavlh2JNdWMKqS95bsbitbfqavJO4/q7D8AL9qblLn4gVN+wvNXYVvdbXU1ekd+5Q7v5wM0Iq1w8Eq8fT8mPsepqiLKPZNqNHTVj0Sn+ae6TM65Y0jHnfDTcc/Fi/Gv5urMuRn00dNT+Ai/cf2hor/vznMfvurKho+68xnhN4YrNrLOBNMVn7d8Yjx6bqDP7pxbaouOXdszNuV8tT4fCQwov1iI5NPproz82evTovHsjNhxsZ5QTSktLfxEOhy+VKxTrLHIAdSZXdL6+pKTk2zqLhiB1FgwGb0C9fVNn0RDwvHxJb/9nz6Ahoa7GoY1dhLZ2Ofq3fj9dQf0l2hmeo2xn5F940l+CJ/+hiH/KNG5fnzJlyi72nWQk9YN66pCryaL+LkUZN/0viEgfKisr2xX1FEdR6uxmRAk6z9O33UsDQR29JbeJNxy43SS3NDDU2W2I76O9HYs3HAfhthjt7QK9mwwSCXOinaH+fPkDxZTn5EVZrrYrZTRiO6kR6AD21yIZ4In/DblF3e2EertUyvK7UsmXzKfe+tTZzVre3bKsUVKmwZWWlnIU1SX0Y8cjofmJTpIDePPBdkZERERElDXwjqZnpIackVEHvBu0R2rIGa0ze6SGnAuHw3wH7RL6tDPQ1nL2kgDpgDp7XYtE/lZSUvI9LZJzo9hpujYKHedXtEwOIan5lBbJocmTJ38ESbT8ajo5hPr6pBaJ/A2dZpEWySE5hyYQCPxIJ8kBPbn6pzpJDiERvF6L5JD0aWPGjNlBJ8kBtLN/aJHI39CY+fGTS/z4yT1+/OQNP35yD+3sEiQ1/CanC/z4iYiIiIgom+CdIEdqXJJRB9QbR2pc0DrjSI1LfAftnrQzaW86SQ6gnbVrkcjfgsHgvVokh6TDRCfwZ50kB6ZOnboj2trlOkkOoZ2t0SI5hHZ2gbQ3nSQH0M5WaJGIiIiIiEYcMnR+/OSSnvTKj59c0Drjx08u4fn5qhbJIdRZHb/95A7qTH7KhMj/eIl/b1hv7rHOiIgorZChX6dFcmj06NE7ot5O0ElyQN45B4PB03SSHEKdPa1Fcgh1VsME2h3UWYMWifyN335yT7/Jw4+fXODHT96gnfHbTy6hzpYyqXEHdfa4FomIiIiIaMSFeKKwazxR2D35+ElO4NRJcgjtrFWL5BDaGb8G7xLqbBluRm2bIvIxdJp/0SI5pOeHTNBJckA+DkDHeYpOkkNoZydqkRxCO5uiRXIoEAhM1CKRv6Ex76FFcqGsrGxXLZJDY8eO/YgWyaFwOPxZLZJDrDP3yvkr3ZQr8K6GHz+5xI+f3OPHT97w4yf30M7atEgOoc748RMRERERUdbAO8H7tEgO6UjNJTpJDuhIzWydJIc46uAe6oxfg3cJdTYH/dr2OknkX2Fep8Y1SWpQb/z4yQVJalBnUZ0kh1Bn/PVkl1Bn/9EiOVRaWjqXSQ0RERERUbYI8URh13iisHs8UdgbnijsXjgctrRIDvHjJ8oaW19Y8I71wgLLazy/5FbLar3HeJ/TwD48o7vjC1ufnzfWdBxOY+vz863Oh2Ya73MaWMda3R1f2PrCvELTcTiNrc8vsDpW3G68z3F0NfnuxcrqbjIfi8N4ubnKON9xYPu6K74h/2fjsTiJdQuszQ/NsG+N9zuMrS/MP0x3xxekPzEdh9P4z+pZxvmuonXBIbo7RN5tfXrOO9bTc6yRDOyDv5Kap6JjTceRydi6tt5fSc3aaKHpODIa7Yv89wKNfTYeS6aCdeYptv5rrr+SGvQnpuPIbMxlUkPDx6TGPSY17jGp8YZJjXtMatxjUkM5g0mNe0xq3GNS4w2TGveY1LjHpIZyBpMa95jUuMekxhsmNe4xqXGPSQ3lDCY17jGpcY9JjTdMatxjUuMek5o8FQqFlgWDwet0MqPKysrS0rkwqXGPSY17TGq8YVLjHpMa95jU5CkkNUuZ1KQ+mNS4DyY1HoIv0O6DdeYpmNR4CSY1GWdKagKBwB6Y/2p5ebmF27cl+cAymwsLC3fWRWxYrgj3vxcOh7cmLXe13t0Dyx2IZd6LRCJy//tyi/gCk5rswaTGPSY13jCpcY9JjXtMavJU36QG048jFupkL5j/IuJ2nTTCupqRwFysk3Ily5fwmH6JDhKa/5PkRidTikmNe0xq3GNS4w2TGveY1LjHpCZPIeHoSWomT578kcFGT7DcL2SkRSclMfk6pjfJY5C8/BfrWox4HPPukfuHGo0Z7L7hYFLjHpMa95jUeMOkxj0mNe4xqclTyUmNQHIiHzmN18leMP9uxBotX4R4wb4jCea1J5IaIYkLkptv6GQPLLM3R2qyB5Ma95jUeMOkxj0mNe4xqclTSEL6nVMj80pLS+X8l9tQnozbGjm/BrdH6yJilCyD+1fKMoFAoAoJUTeWuRnRk9RUVFRsh/n/wzJbEH9A+XzEuyUlJeM5UpM9mNS4x6TGGyY17jGpcY9JDeUMJjXuMalxj0mNN0xq3GNS4x6TGsoZTGrcY1LjHpMab5jUuMekxj0mNZQzmNS4x6TGPSY13jCpcY9JjXtMaihnMKlxj0mNe0xqvGFS4x6TGveY1FDO2HplwTvWlQXWSAb2wV9JzZUFY03HkcnYekWBv5KaywsKTceR0bihwH8v0Nhn47FkKlhnngJ9hL+SGvQnpuPIaFxewKSGho9JjXtMatxjUuMNkxr3mNS4x6SGcgaTGveY1LjHpMYbJjXuMalxj0kN5QwmNe4xqXGPSY03TGrcY1LjHpMayhlMatxjUuMekxpvmNS4x6TGPSY1lDOY1LjHpMY9JjXeMKlxj0mNe0xq8kg4HP5UMBjcWydzDpMa95jUuMekxhsmNe4xqXGPSU0ekR+SLC4u/rxO5hwmNe4xqXGPSY03TGrcY1LjHpOaPFBWVvYl+cVsSWrC4XBhaWnp90Kh0Nf0bhnB6QwGg4/i9hOYHIXljpYfnUQCtNu2Jewfu1yEmI9l4pMmTfoo7t8V5RrEVkQ57nu6vLx8r4MOOmhXlOdg3hv6UBvmvYGYgvnv4tbediAQ+BbK72Lb99sLDROTGveY1LjHpMYbJjXuMalxj0lNHpGkBvEFnbQhybCQXPxSJ3sg2TgA8V+dTCQ1q3SyBxKSLsyv1MkemPcG1v0bnZTlXkNcpZO9YFlJdI7QSc+Y1LjHpMY9JjXeMKlxj0mNe0xq8ogpqZF5ZWVl++jkgJB0LEJSMl0ne2BeO+JMneyB5V/H/J4ng0ybkieB+2Sk6Aad9IxJjXtMatxjUuMNkxr3mNS4x6QmjyB52IrE4gc6acO8M/p+VJRQXl6+kxZlueEmNa8i3tHJHph3qHzUpZPDwqTGPSY17jGp8YZJjXtMatxjUpNHkKRsjySiFcmGnMdync4WozD/OsTbCPko6HnET/Q+G5a/BHGaTvbAcrORFJXpZA/MvwcJ1I900k5yZKQG6/guyi8i3kN5HeKLusiwMalxj0mNe0xqvGFS4x6TGveY1FBGJJIanUwLJjXuMalxj0mNN0xq3GNS4x6TGsqIcDj8ZjAY/JVOpgWTGveY1LjHpMYbJjXuMalxj0kN5QwmNe4xqXGPSY03TGrcY1LjHpMayhl48i1ALBrhuEV3xxesawr2NxxDpuMm3R1fQKc12nAMmY7luju+gReb+wzHkbnA9nVXfAP7vbzfcWQ6ri74oe6OL+D/fLPxODIYSGr2190hIiIiIiIiIiIiIiIiIiIiIiIiIiIiInJBfvYhGAyeo5NDwrIvIY4LhUJTJKSsd+UVHHe/n8FwIhwO/7a0tNRC3e2rs/IG6uz4MWPG7KCTg8Ky8mOvP0Vxu0gkcp78Htu2e/IL2sqvioqKPqOTg0LbegtxS1lZ2a543LfRxqQO+13xPB/guPdGTNLJoWyHZc9Bfb2HqNB5lAT1EpGr7+skUXaS37xCY5XkRH488xcIeREZFBp2Xr64JKDOPo36+gnCwgvIQYieX10fCuq3SR6Dx25F5E1SI52htC9JTHB7MOrw13qXY6iv+YigTuaDUairX+GYX0ZMlvK0adN21vscy8fnK+prDOrrAtwulrIkeHrXoLDsXxFMapJIglxSUvIz1MtW6eskLMsapXcTZR801m+iA1ink0PC8vKr5vKCLi/MW9DoHb2LzDVSD1ockoxOJP9AqXQQiLwbqZERKqcjNXgx/iTqqA7xFNrnxsLCwj31rryCY+9CHXxNJ13B4yQh6vV7dfkC/VM5jv0OnXQEyzOpGQDa4QccqSFfwJO4X1KD6asQ10rg/uuRqf+f3tUP7r8dSU7efQSF4+6V1KCuzk3UmQQ61SKZj+WaESdNnTp1R3QKO0nHgOmt8qIt0/aD80TfpCYQCJQl1xliwI9KUGcnINboZN5AnfRKavBc/FKfOrtZ77KhTg+Ues7XNxsJpqQG09cn6g3lm9AWd9G7bJjHpGYAqDMmNeQPeBJ/BbFeJ11DY5dfOE/r71dlo+Gc44H63nrooYfuo5N5Q+pMhrN10hXU2c/Rzlp0Mm/guFuRyDj6+ESSGdzwowFAWylB1OqkI6hrJjUDQL38z+koK9GIw5P/YMRGNNx/6CyjI488ck8ssxjLvo/blXg39Fu9K+/gBfoLqIMnUBcLdJZjeMzNkydP/ohO5g15Z4w6ewCxTGcZyTtC1NFZiHaEnJh+cT6/S8Tx16DO1qIOdtdZ/eD+fbHcLYjb+sSdiL11sbwSCARkdK/TaT+FehqHx9gjrNTb6NGjd0T9LEF9rtZZRERERERERERERERERERERERERERERERERETDNW5JR8EhTdaIxmFLzPMzGbIPYw3zMx3FS+/T/wwRERE5VvSgNf+pzdacxzeNWEy69l9W1cou432ZimkznrVuum+98b5MxeJnXrQKDm54U/8zRERE5BgSmprV3XZCMVJRftVT1vQHNhrvy1ScePsz1lWN7cb7MhWS1BQc3MiEhoiIyDUmNHYwoSEiIvIzJjR2MKEhIiLyMyY0djChISIi8jMmNHYwoSEiIvIzJjR2MKEhIiLyMyY0djChISIi8jMmNHYwoSEiIvIzJjR2MKEhIiLyswwkNNUtm4zzE5HuhKZ61SZr1urNxvsSke6Ext6HVYPvAxMaIiIir4ZIaIZ6EXYSE4+cYt35QKvxPonBEprqlm47TPcNHd3WCaf90QqHw1ZJcZF1wqnnWFUDrGuohKbaYz3MfHi9NeXEaVYoFLICxcXW8aeePWCCx4SGiIjIq0ESmlmrt1hHHfc7q+bRl4z3DxaShJx/1e1WpLTMCgaDnhOa408507pp8WPG+wYL2X5pWbl1/YKVVs1jr9gh+3Pk0cfbx9V3+cESmr/ducD6y/XVxvuGilub/mWHbL/28Ves8664zZp8zFTjiBETGiIiIq8GSWhmr3nRHlmoeexl4/0SpuRA4qLpc60Lb41iHS9ZwUDAc0JTNn7CoAnNYCMnfZOGakwXjyu0Kpv7b2uwhOZP19xlh+k+CXsEyeEoktRp0eGHWrMNSSITGiIiIq8GSGhuX/6sdfTv/mAnNMeefLo1Zeop1oyHOnotIx+dBEqKjR9LyTkjiVuvCc3RvzvV/rjotyf83jrmpNP6rUO2P/W0P1p3/bOt1/yBQpKf4sMloensd58poZF9lzqYeNQx1iSE7MP5V93RaxmJK+vusy65Y36/+aaQRCYYDOC2f5LIhIaIiMirARIaGcW4/b7n7YTmjvvXWdOXPm1V9UkEJKGQc1MGO89mOAnN9KXPWKXl462r6h+wy30TEdn+CX8413FCc+eKF6zxRxzp6iMn2e45l91sh5SlLvouM1RCIyNFUkeyv8ec9AfrotvmGpdjQkNEROTVMD5ySndCIzHYR07uEppOKxAosW5tWmu4b3gfOQ2W0MjxH3PyH6yiwsOskqJx1j9mNdkjRaZlmdAQERF55TKhkdEG+RgoHInYIfcnyvJRyu33PddrHalOaGT7ZROO6NlmOPzh9iVuWLiq1+Pl3BaZV3T4YdatS8zJjITbhOa8q+5I2gfUR/jDfTj1z5f2WlbqQM6zkRGm0y64wpr022ONo0RMaIiIiLzyMEIjX0WWqHxkoz1CIx9FJeYlLyeRjhGa5O3LV7HvWPG8cfuy7T9ePt064qgp1iyUk+/rG24TGtl2YptX1Cy1P0ZKTMt9ycsmh+xTaXm5cdSJCQ0REZFXOfyRk3zV+ndn/gn7MPD+JSJdHzn1i5Zu6/hpZyEJWtbvPiY0REREXg2S0MjHInJS7oyHzC/0klDIRzmma6okYrgJzRG/Pdq6fkGL8T7ZviQHdz7QP6GRbxPJvs0e5CvnyTFYQnPx7fOsMy66xv7YyPT17Ctql2OZu/vNl7C/Ip70GKnT4nGHG/eZCQ0REZFXgyQ0EtP+9Dfr6BOnWWf//UZrxoP9X/CnLx34vBQJSWhKioo8JzQX3FxrTZg02frrDbOsOw3fMJJvYpm+hj3z4Q124jD1tHOtE/5wTq+4OfZ4v+UHS2juwr7LCb1/vXG29aer7ux3/8yHOox1I8c+YdJR9tWBL7y13jr70hvt820unbmo37ISTGiIiIi8GiKhkXNP5COVa+Y+tG2EwrDMUGH6yndyDJbQyDblar+Xz2oy3j9gYHuSbMm2+8bMRzb0W36whEbituXP2qMwpsRlsJARmWvvfti68JYo6nHFoB/PMaEhIiLyaoiEJhMxWEKTqRgqoclEMKEhIiLyigmNHUxoiIiI/IwJjR1MaIiIiPyMCY0dTGiIiIj8jAmNHUxoiIiI/IwJjR1MaIiIiPyMCY0dTGiIiIj8jAmNHUxoiIiI/IwJjR1MaIiIiPwsvMrafeJK7zHhEcTD5vscxk5lzdZHDPOdxi5lD1m7jcd+GO5zGruUN1u7TTDf1zdkX2V7u5Q/bO2MbSdiV0yblncaexyx0ioouZ8JDRERUaYdFfzlpCPCvzlRJzMqWlaw6/jQYbPLQof/98hwUUBnp9348NiJ5aHDHy0PH95ZFhr3Lm6fKQ8XWRNDB5+nixAREZGflJaWWpFIxNLJtBs7duxHgsHgdGx3K25vKSsr2ycUClViH76gi2QUtn8Atv0a9uG/OouIiIj8BAnFPMTR4XC4ELFMZ6dVeXn5XojdpYxtjwsEAgfi9i37zhGAbe+NY/8sEpp/6iwiIiLyCxkpwQv5SryQj0FS8SPcNiDR+KTenXZIJL4YiUQ2aPlle2aG4Dh3wvE+pZMFKN+H2FcniYiIyC+QRGy2LGuUTtqQ4GQsscD227UoCcXTWkw7HGM5EqnNOmnD9HNaJCIiIj9BQlGixR54YT9MixmDBOPHSGhO0cm0w3EfrEVbYWHhztiHT+kkERER+VEgEPi1JBU6mXaZHI1JQBKzN+I0nSQiIqJcIyMWcmKuTqYVEqcWJDQH6GRGYHt/QDxfUVGxnc4iIiKiXFNaWnowIu0JTSQS+RkSi9/pZMYgiTpVi0RERJSrysvLt8+10QskMd8pLCz8uE4SERERDQ8Spp8HAoFjdTLtkMxcGgqFHtJJIiIiygdINn4QiUS+oZMpJde1CQaDr+lk2uFY9kAyM1UniYiIKF+k86RgJBertZhW2M7PtUhERET5KJPfckoHJDO1iIU6SURERPkIycC+5eXle+lkSmCdHVpMK2xnSiQS+aVOEhEREaUGkozFwWAwpJNpgfXvr0UiIiKigoLi4uKPIUHYWyeHRU/KrdDJtAiHw/djf2/RSSIiIqJt59Bk4sJ6qYB9fTRd38giIiIiH5OEZrgnBePxX8d6anQy5crKynbVIhEREVF/hx9++HeLig75qk66pr9W/T+dTCm5gnEoFGpFZOzXuImIiMgHqlZ3H1jZ3LW8amXXq1UtXe9Xr9pkJaKqueu/iO7qlV0nVq98aU99yKCQbFTKzyfoZEohUdqK+IROEhERUT6zLGtU1cruWPTJ1ywkMo6i5tGXcNv94uyVXaN1NURERESZZycyzRtumb3mxX4Ji9OYZY/cdG6pXPPK53W1tlAo9OiYMWN20MmUwPp2wXpfCwaDv9JZRERElM9mrIjvUt3S/a4pSfEStY+9bFU2d54g6w6HwzOReKT0N5OKi4t3wzrfLS8v311nERERUT6rXrXx68MZlRkokCBZMx5eHw0Uj7tGN0VERESUerc3b9qv7vFXjAlJqqJ61eZZurlhkZ9ckFEZ+aaUziIiIiIqKJi1eosxCUllzFq92apeuelE3aQn4XB4LJKZ11N9Hg4RERH53Ow1WzaYEpB0RM2aF63ZT3V8VDftGhMZIiIi6qeyeeMEU+KRzpi9avNm3bwj4XD4s4gPdJKIiIiot+qWTSn7RpPTkI+eqpo3OPrZhFAodAZivU4SERER9XZXc+dYJDTGpCMD8YruxqBKSkr20yIRERFRf5XNXRk7d6Zv1Dz6oqW70U9ZWdm3gsHgcp0kIiIiGpj90Y8h2chEbPsNqO6jdVd6hEKh65DMPKKTRERERAOrad603+w16f+q9mBR2dw1X3enBxKan2iRiIiIaHDVK7vK7N9bMiQamQr5yEv2pays7DdIZA63d4yIiIjIqVnNm86UnyQwJRoZi+bOd4uLDq9BMjNXd4uIiIjIuZmPdF5StXJkExr54cpf//zA0bpLRERERO5UNneN+AhN5cqu93V3iIiIiNyb2dIZHulzaBAdujtERERE7mXDt5yqW/p/y4mIiIjIlZG+Dk3lI52TdFeIiIiIvKls6WwzJRuZiMGuFExERETk2IyWjQfbV+w1JBwZiBd1N4iIiIiGp7ql+21DspHWkI+6Kh+O/0B3gYiIiGh4qlZtnGhKOtIc3bp5IiIiotSYtXrTekPSkZaQb1bNXtP5Md00ERERUerMXp3+r3DPWrXZqnxk4xTdJBEREVFqVT287hN1T7xqTERSEfZViZu7q3RzREREROlRtar7OzWPvmRMSIYT275J1TlTN0NERESUXhWWtR0SkDdMiYmXkB+gnLmy8whdPREREVGmWKOqWzb9Qy5+Z0pSnMTsNS9alc1d629/ZP0+ulIiIiKizKtYsWKHyke6auVjKCcX4JNl9OTi12Y2b/qeroaIiIgoO1Q+1PWjypWd0armrudqH3vp3Tn/esOSmLv2PzIS82Jlc+fDlSs3HquLExEREWW/cYcc8s2Sww77tk4SERER+U8oFHo3HA6/p5NERERE/oJk5hQkMzWIS4LB4Pk6m4iIiMg/kNBs1WJBJBJ5VYv9YLmbEF/RyV4w/2+IA3SSiIiIKHOQhCwuKSnp+QZTeXn55zFvhU72EgwG28Ph8I91shfc1xIIBMI6SURERJQ5SF4ellskKgclEhvMWzh69OgdpZyMCQ0RERFlNSQkByMhOVAnjZjQEBERUVaThKa0tJQJDREREfnX2LFjP1JWVrarThqFQqE4YimSl/o+EcX8V5nQEBFRthtVXl6+k5b7Gew+yh1IXGSEpiwSiXwjOZAIfR0JzVNMaHIE/qlxxJd1shf8s9fhHx3QSRoAniwX48lyrk72gvvORdypk6SKioo+OmHCBEsn+xk/fvyA9+UzPFdflrrTyV7QBt8qLi7+vE4SoE4+hResN3WyH9y/RYsE6O4/jf7qAZ3spbCwcE/c96xOZg3s0+eQmH5SJ42wjKuPnDDvHEQN4rs6i/wA/7DnBkpocN86xDidpAHgyfBX1NM5OtkLnkSn476bdZIUOqC9SktLB0xa0CaZ0BigLW1G7K2TvcjQOdrbZ3WSQF7oUF+v6WQ/qLNNWiTA8+4LqK+XdLIXSaQHe86OFOxvSk8KxvS/p0yZsotOkp/gn8eEZpiY0LjHhMYbtCUmNC4woXEn3xMaOX60iSn2HeQ/+GcyoRkmJjTuMaHxBm2JCY0LTGjc8WNCg//h17DPX9RJI9zf4SShwbqu0TbzACJqL0D+gX+a44QG//QfIE7HP5wn0iXRhOY0nexF5iOY0PThJqE59NBD90FndC46m5/rrLyFtrSluLh4N53sJTmhOfLII/dE+VTEkfadeUpenFAvrxcWFu4s9ZYc0o/hPiY0SSShQZ28qJO9ZGtC4wSO6Qzs/2d0shfcNxV9+Le0vBTxBylLm0G5QcrkE+ggn0OnZw0UuN9OaNCQf4R/7hH6mM1yS9tIQmOqu0Sg3m7SRUlJQiNJi6m+JFBnPR0n6vdU3IzCvGLEodvm5iccf6epvpLCTmiwnPxuzaiysrJ9UJ4h8/KRJDRSL6iD9waIjboogSQ0Wl9bDPGi3KeLZg38j7eX0MlhwWtbjRZtON7/aZH8QBIaJyM0aMz/smcCyhUDvUvMRxyhcU8SGi8fOaEuL9diXsLxOxqhSYbHNGkx70hCg+PnR04OSUKD+npZnp+SDCeHvE5k4wgN9nfIC+s5hfV8D/ErnZSEpkWL5AdoDI4SGinbMwEv4IegI/iaTuY9TWgcnUODetsX84xDuvnES0KDervFsqxROpmX0JYcnUOD+pWPU65ErLbvzFNeEhrUYQAR08m8ogmNo3NosNzRiAZEDHGVzs44bHvIk4LdwPrmoV0sQRtYL88jnU1+gH+e64RG5knD18m85zShwe0teKKMR3TYd+YxtwkN6uw+1N+gJ/7lA9SBq5OC8c76/zB/kU5mRIVVsd2Cf9+xRyIWrpk+YqO5XhIazHsg03UmVqyo2CG53urX1mf8xdRlQjNPiyPmkfXRXaecMKXouN9P+ZVdZ1Z9Sj56Ip9Co3T6kdOT9kxAecTOCWmM14UQ1bG22scRL0s0tNW90oBpRPWidTVFumjGuBmhEZjeoMWMiMXrDmporZm+uK1mFerrlUS9xdrq/o06m4M4ShfNGDcJDeqr5+POTFkYn/0N1Nt1sbaaf0r76mlr8bp2zF/Q2B49a8Xm+t118YxBXbj+lhOWb9Vi2jTGo4WLW2ua7uu+21rWOc9qWl/fE0s2zLFk/pL19a9judsb2qs/pQ9LO7cJTSKRwWMycjIo+rLT0K4ev3/zAmvpxt71tnTjXGsF5sdaa1sb4tELVlgrdtCHpY3LhGa5FjPm7o2V+6K+bm/sqH/VblNoW8l1thxtT+oM7Wzp4vbaYn0Y5Qt0gOsGSmgwfx2e4HajQOP9Ipa9Fg36QJTr7QUyZIm8IMfrNssTXBotygNGUwc6AjRylNfHWuuMX9NLNdTHhairgRKas3D/bTppw3TaE5plm+7Zr6Et+pA84Zest+tjwLDrDHWL8usNrXWH6CrSCnWwN15sBkxoysrKeu5DG6xCPZZLoJ5/rbNTbv7jM/ZGcjdf2o+2oQEDCY1dZ+g4P0A9y0nLGYE6eFHqTid7QT39p1ivFIzlqlBX38DtkQjj+V2p0Nhe9zepK2lDpnoyhbRJ3L7fsL7uMF1N2sg3W3D8A57Yif6s58Uby4UT7Qt1nLaEpnF9dJ+G9uh9SzfOsdtR3/oZKKS94U1IvKk9+iVdVcrh+B0nNCg/ija3FiFfdU7ryMjiddHfIPl7e6jnZXIk+jW8AblWV0O5Ti5nXVFRsZ1O9iL3TZ06dUedtH8EDPP6vQNMl3taa/CiXPfKUC/IA4U8Dtn8i7Hnq/fUVabFmDFjdpk2bdrOOtmLfPUPL869fjgt3QkNOr2Hl3fdbayToUISRtTZm/eujxq/4phCo6SD1HI/iRdtOWdGyolAx5mWURG8C75nOd7xmerESaDj/CDWFk37BblkZGug84gOOeSQvXBjP5fRJnfAi9NXE/WYarH47HFLN8z9wFQXTqOpAy/m7bXdazoXjvgXDJAIfgz5TDWKdv2h3uRE6pS/SC+O117n9bmZCBmFQL+4TFeZUmhfOwX0K8x9SdKC5+z3dbKHPI+R1Lyikyk1Iz5jFxxzh5uE2RTLOudtbYjPiehqiTJrcXvdOUvwDsbUON2GDIEvbq09RVc94tBZpiWhWbJh7ldlGNZUB25D3gnhHdFFuuqctaCj5tM6YpCSaOyI9nw0m6sWt0avH2qk1E0s75pnxdbPy8ho6kDwnPwF4iy8MJ+NOAPxLBKck/XulMCL8r9Nx+818Bx9LVvOGUHdpfzbQLHno98azpuMvoHnpiSCkrQSZY68+7DfvRkapdeQDB/voOfrJkZUOhKaho45Qf3YKGVhdwDxuvt1EzmnqT36m1TXmURjR/3bCztH7kTYdMJz82k3H5M4DRlNXdxWa1/QLBvgOZqyj5zq11bshOfSe6bjHm7om7UR/8YpEsD/aDElZLTTzcdLLqNdN0OUXkhkHjM0wJRFrL3uEd3UiJGTiLWYEotemF2ejhfmRDS21z2lm8oZTW21h6azzmSkbM2aNT0f1+aCxnjdP03HmqrYNipYU6ibG1ElJSUpO08FyczbpuNNVcgohnzbRzeXMUj6XkYi8y/crpOP1nX2sC18YfZP0vnclMDrzBO6OaL0QEO7Ih3v/pJD1r+4teYK3aTvLeqY+2U5udB0rKkKqTO8mN2om/Q9+ZbN0s70dpjbova/uknfi8Vr/6QjdmkN+b/ENlRn7Dy9dMML59Om40x14E3H27pJX4u9VL2nfY6Q4RhTGdKnxdpqc6ZPoyzT0FZ3WCo/lx8s5J1grL32YN20r8mQs+kYUx1ynsni1uhY3ayvpXEou180xqOrdLO+FXu++rOpPM9oqFiCfkA37WsNrXUXpvsNWnI0xmt939ZQX2kdzUoOaWex9qjxBGiiYclUMpMIOUdHN+1bDW21c03HlrZA56yb9q2GeO1C47GlKWRUY/G6Wd/VzfsSkrJXTMeWzpCvg+vmfUmuGZOpNxuJkI9psuF8Gq/Qv5xtOq50BhKolJ77Q4QXmegFpsaW7mhqz9z1Q1Jtwb8X7CHfDjEdVzoj1lY/VXfBd5a21u+Vqm+BuYmmjnrjdT38INYWHTPcr8x6CRlF013wpYa2urtNx5X2aKvr1l3wnUyOZiVCttkUn3O47gLR8Hm9zsxwA+8CP9Bd8B25EqbpmNId0gHoLvhOrK1ukemY0h3ycc2idfWjdTd8Bfuf8dGZRCxqrZmsu+E7I/FmQ0JGaWJbr0vZCbqZEovXhEciodHIifOPKAvE1tWNy/THTYmQz1Ab10cP0F3xlZGss0xdgTnVZN9Nx5SJQDLlyx+JTPe3TQaPWl++0DS0R4tG8MXZisVrr9Nd8Q3s9xt9jyNTsaxzrsXfgKKUwJOv0dTIMhWxttq5uiu+0dhW9/1MnqTZL9rqMvrTF6nQFK/ffyTrTD620V3xjVi8buJIfNyUCPl/6a74ChL+FabjyVSgT3tZd8U3RmqUXkLOc0Od+fajdBoBkUjE+BtBy0ZoaDYR2fxCU1pa+iMt9tLQVnu16VgyFdIB6K5knWAw+FMt9hJrrb3OdCyZChnpkN/w0d3JKqFQaN+SkpL9dLIHEpqo6VgyFZLQZPO3UNCn/cz0G0YjOTojIT+toLuSVeRnS0zX90n11bq9BNp6xn9dnXwMLzTHo+P834QJE76os2wy3GdqYJmKbP6KKJ78/4c6s8Lh8O91lg1PvrRe4GyokI+7dFeyDtrZ/qgvC/U2XmfZkAQ+ZDqWTIU90tFWG9TdySpyUTTUVxtiISZ7fieqQX6N3XAsmQpJnBvj0WN1d7IO6utriA/Q5k7UWbaR+jg4EdKnrYjP2EV3J2tI8oe6ekRCZ9lirTVlIzkSqLFRd4fIsVHoAOYi1shE7PnYziP95JeL0tl7lsXQARyHF+m3kOB8T6Yb4rVbTMeSqZDRBnvHshjq6yy8g34Rbe0rMo39frHvcWQy5F17rK02pVeITjVJBlFn/0OdnSTTsbaRO68hEbHW7P89MdTXVNTbm2VlZfZoUiavc2QKu62l+Qd5hwPt7HOoL7nK8J9lelFb7dkjPaol27d3jrILGspU+Yl3jTt0dgGebPY8udVZBRMmTLDnya3Okse/kHg8Gpx9TQO8OJQl5uH+efaCgIzbnjd+/Ph+60yeh+k1icdjXT8ePXr0jliPNXHyxIsycfXRwUISqlAwbO+bHI/usuxzXWKfEUfIPNTdl5Lm9fweiKkeTfWN6Zv1sRL2qMsRRxzxsaR5PV/vTaxz4sSJPY9H3X1QNK74SdRZxi4+ZYpB6myOHoeEPUKC4/+/pHmt9oLgos6m62Mlfifz5OORxDy0oy32gjBAnVlF40qWNbTXvWs6lkzGnctuWI7n1HmIPyKKdRdlH8/XeefpLHmRnIuOP4q4R2fJC8HfdV5U6lXmFRcX/xjT9TIPjznbXhCSHt/zfMW8ZzH9HG47Er+wj23PlHkSqDv74zrcXxEoCb6z8NlZ/zMdRybj8pkXJf73EtfI/sGoRFuR0HkF8n+X6eQ2hfbRmVgOx2pfgRjzjk7MQ7nSXhAS/Vlymza1U0z/O/F47IedxKDOgtKnBUoCj470mzSJIyZvqwuJSZMm2b9qj+M/LTEP+9pz4rDTusT0hsRyqKPPyzw89reJeVhnzw8/OqlL7E+5bLtm5W234/lpPI5MxYrN83v2k8gx+QwVT/63EUessFbskuofoXQbfhhtGDNmzA54wXkCEZVpvNN/x3QsmQo/1FnSxyj25c1RZyOe0Nz9VOUd2J+vSKAz/4S9o6AfLdrzdZa8QO4rgYTlYzpLXiT2SsyXNqHzdkrMCwQCe9gLQmKehM6SZbdPhM4qkMQmeZ78zhge8/q+BfvugReZV03HkbHAi1xjWzSrR7WE1KE+P2tleqTPB5HRBrlOlb1zWQrtX5L4/6K9fToWj54+0iM0DW3+vYQHjQBk4ruiAT+GJ32NziqoX1u/00ie3S6R7RfwQp1dg+hC/X1cZ8mL80bTsWQqsr3O0EnOQIf5bFFRkf3OVMTa6jpNx5KpsDvstrpzdHeyDtrYAXiH/R5ue87zibXVPGM6lkzFttHb2qN1d7IS6utqtLUOPD97Tvge+XNo5mTlOTQCbeyX2s4iOqugYd2syIifQ9NWu0F3h2hoaMDPS1Kjkz1G6gJUiZDOR3cl66DOZiAB/IVO9oi11t5jOpZMRTZ/Mwx1tggvMN/XyR5IJu41HUumQk7UbGqv+5nuTlZBnY1G9Hz0ktDQEZ1tOpZMhYx0ZPOl/NHOFqDefq6TPUb6xVl+fVt3Jaug//86+rOZOtlj3rp5nxjx847idQt0d4i8Q2P6b9/GlcnAO/f/6a74xuJ43ZkjPETru1+Rlt+JGck688PHdH01xaPhkXxx9ut1aBraojHT8WQwNumu+MZIXvRy20hgfVaPBJJPNHbMud3UyDIVjfHai3VXfEN+k2iEv+5+oe6Kb8yPz99bkgrDsWQk/PpjqCNZZ4jXdTd8JdY+5+AR/rLDZborvoF93tTnGDIWy3z4ZoOyVOz56s+OVKcpQ7NN66p6Ts70k8b26AemY0p3SJ0titd/UnfDV7D/W/seT6aiqT2a+IaOr2DfR+Tco8b2OmtxvC6ku+E7cjkI03GlO6QvhZ5rCflFrKP20BEcQX1Nd4No+Braat83NLK0B95FbdZd8B352Ml0TGmPdv/WWUNH7RnGY0pzyC983/1MZc+3jfzk3udmHzAS39rx68dNCbG2uhmm48pAtOku+E5jPPNv0uyPVDtq+52nSORZbF3twZn++rb9bqBjzrd1F3wJ72IzmgjKMHpTe7Tfpcv9ZOmGzI8GxtpqW3TzvrRkff1m03GlOXquyeNHFVbFdpLIGo4rbbGsU75gUdvrSux+0tBWd6LpuNIZTe31r+jmiVIHCUZGv4rc2FH/jG7atxri0SNMx5auaFpf/4Ru2rfk5D/TsaUr5LfK1qyZvqNu3pfkqrPbXizNx5jqwJubd3TTvhZrq5mW4XNpmnTTvtW0of4Vw3GlJWQU8N710c/opolSJ/b8dTtn6ocqpXOW7emmfQ2J4DrTMaY6ludUndU9aTrGVIc9nN0WPVU362sN7dHfZ+L6KvLclJPedbO+1xSvX2M6zlQH+oE3dJO+tsJasUMmkmd7hL41eoFulij1Yq11P0739Qjk20Hz1836rm4yJ6T7q7VyouGijtmjdXM5Acf1Xt/jTHXEcuzaFjimOX2PMZWxFM/Ne1tz73yGho6610zHm6qQPm3t2vqddHO+t+D56m+lPalpjz6gmyNKn8VttX9I17ee5PyJxa11x+umcsbSjXfvK98+Mh3zcMN+V95W2/MbQbliwYsL9khXnWm8oJvKKfJL7/INJMPxDiu2XYYgu68K7JV862jJ+jmvm457uLFkw5ytK3z6rcPBNLTVBNKV1DTGo4/qZojSb0l77cFybQBTY/Qa9sdMrbP7XdUzV8ilzhs7oikddbCv4txW23Mp/FxTsaJiBxmqNx2715DRslhrXc8PSuaixe11l6TyTYc815dsmPtVXX3OQjK41v6ow1AHXgLrerXCsuwfGc1F9z4X/Uwqv/4u58ygzq7V1RNlTuPG2s+l6oS6pvX17zauj/b81koua+yo/1cqOk28YH2wsLXS/kXdXLe4rbY5FR/bSdK8uLX2FF1tTpOPhpZumDOsb9lJO22M1z29sHPhbrranNfQFj17uD/3si2ZrO33EwK5yH6j1l732HBfC5asn/NBrK32UF0t0choaI96fje4bcgyer6uKm80PTfrl+gA/uPlq/DyVVO8k7xOV5U3GuOzv4EO72UvP5Zqfz23tbZZfnVZV5c3Gtvqp8kbBjeXrpeP+ha31a1v+Hf113U1eQcJyaz7Ns1HUmeuI1Pcv2WBPDf/uWJFhf1L6/lkUcfcL8daa9ru2+T8Y2L5uBxvVD5AXefdawBluYaOunK84LwpyY1E3xdryeBleHIJAsu9GuuYXaIPzVsLW+t+jLp5TkYf5ByFvqMQ8g5ZhmHt8xfa5De16o9esWJF3nWWyZa1R7+FDnAVEuGtkhD3G7nBC5DU2bbzb2rfb2yruSqXvpXj1aJ47TdRP9V4wX1X2pXUTyLsj3vbardKG8Nyf1z01OyeX0HPdzJq0NAWbcbt+0s6trUr+ban3Eo7sy862la3LtYeLcvHRKYvuYQAkuFz0NZelzYlbSu5rcnrQCxeKx+91zW8UOPr64xRnoi1V3+rMR6dhMb7p9qW229saI/+JdZed6R0qroI9SEf4TWhU2xor/1L7arbr0dneT6mj2tal1vfXkqlpu55n2hsry2W9lXTctsNDR3R81E+dUm87iC/X1smE8aMGffJooOLvqyT5NBhBx9+hRbJgUMOOeTT48aN+4JOEvlTSUnJ98LhsO9++XmklZaWWpFIhB2AC1JnwWDwczpJDoRCoQ7U2X90khxAn/Zt9Gnvod7211k0BLSzjQj+HhP5GxrxVjzxj8LtFJ1FQ0BneS6SmQmos/d0Fg0BdXY+ogx1lhNXsM0EtLGf4bk5HfV2Fm4n6GwaAurL/g0rtLUP7Bk0KNTTzxE3Ic4OBAJlOpvIX9BJHocn/++ljFtm5w4l6godwHmI8fZMGhTq7FW5RX39Ee2u1J5Jg0q8MAvU2/tapEGgbZ2JejtSyridhjjGvoMGhLa1VYtSf0wCyZ8SHSYa8Vr5+AQNe459Bw0IdfQA6uuLibpDvfn6F40zAfX1UHl5+edxu0WmUYessyGgXdmJH9rZj1Ff40tLS3/E5+eQRqG+XpcC6uotvWVbGwTqx35Thrb200AgEEZ5NGKu3k3kD3jiz0V8R8pozGvlFp1o86RJk/jtiQFI0oc6e0TKuLU7Sjz5f45ytZSpP7QtSf4e0nIiofkJolLKZIb6sT/OxIuMJDL2KCBu1yMxzJnL86ca2tcihH2OFurKPi8Qt6PR/i6VMvWH+npXblFPP0E5pPPWFRYW5sRvzlGewDu+nq/j4QlvJzTSWRYXF+fNBbrcwovLHlOnTrW/mSMnuNozoaio6PtapD6kzsaMGWN/VRad5sv2TJCT0bVIg0CdHYC2xo81XcKbj/9pkRzA8/FneB0I6yQRERERERERERGRV8FgkOeAuBQIBOxzacg5tLNFWiSHwuHw99HWAjpJDqGtbdAiOYAm9q0QL91BuQBPfvscGnIOLzT89oRLaGf2ScHkHF5oek4KJufQ1vg1dxckcUadnayTRP6FDpMJjUv8urZ76DB7TgomZ/BCY39tWyfJIdQbr6fiAp6b+6PO7GuSEfkaGvIPtUgO4UXm51okhwKBwIFaJIfkW3VTpkzZRSfJIfRpn9IiOTB69Ogd+Q1XIiIiIqJsEAqFIlokh4LB4PFaJIcCgYB9SXpyDu+aP19aWvoDnSSHwuHwDVokB4qKij7DUWfKCXhx5jk0LqHD5Dk0LqGd8aRgl3hSsDd8frqD+uJJwZQbmNC4xw7TPSY07jGh8YbPT3eY0FDOQId5kRbJITz579IiOYQ6u1aL5FBJScl+kUjkqzpJDiERPF2L5EBxcfHHSktL+XMkREREREQjjr+w7V5ZWdnHtUgOhUKhfbVIDskPxhYVFfH56RLa2le0SA5IO+Pzk3JCWH9tm5xL/rVtcgYd5itaJIfQzr6NevuDTpJDwWDwJS2SA/KxJursEp0k8i80ZCY0LvGkQ/fQznhSsEuBbb+xw4TGJbS1zVokB0pKSv4PdXaxThL5Fxryg1okh/Aiw8v4u4R29m8tkkPyQoO2xh8NdAl1tlKL5EAkEvkCnp+n6SQRERERERERERGRV6FQ6CktkkOoM55D41IwGNykRXKIJwW7p9/YYZ/mAk8KppyBhsyTgl3iScHuoZ3xpGCXeFKwe/IL5WhrT+gkOcCTgiln8Gvb7vFr2+7hhZknUruE5+Z3EDxZ0wUZoUGdPa2T5ACem19D/E0nifyroqJiOy2SQ+g0t9ciOcR2RkRERERERDSYUCjEH1p0KRgM3q9FcgjtbL4WySH5KABt7TidJAcKCwv3RJ1V6yQ5UF5e/km0tSt0ksi/8OTnOTQu8aRg99DOeFKwSzwp2D28OO+FOmvQSXKgqKjoM6izO3SSyL/QkJnQuBSJRJjQuISEhr+v45KcFMyExh20s71Rb006SQ6gvj6LdsaRevI/vAs8UIvkEDrNg7VIDqHD/LkWySH5CnJ5efnuOkkOyMnnRxxxxMd0khyQLznwV92JiIiIiLIB3jkXa5EcCgaDR2mRHEKdhbRIDpWVle2D5+fhOkkOyEnBgUCgXCfJAbSzXdHOjtVJIv/CCw3PoXGJJwW7h3b2pHyEopPkQElJyZfwQnOZTpIDeG5+CnU2QyfJATw390adLdZJIv9iQuMeExr3mNC4x4TGPSY07jGhoZwRCATYYbqEOputRXIInebfeYVld+SFBvErnSQH5CRq1Nk4nSQHxowZswsSQX5MR0REREQ04uQkOi2SQ/yKo3tsZ+7hnfMOkyZNYltzQeqMz0935KvuJSUl++kkkX+F+WvbrvHXtt0LhUJry8vLd9JJcqCsrEzOofmHTpIDqK+vyMebOkkOSAKI14GYThL5F578TGhc4knB7qGd8aRgl3hSsHuS0CD+ppPkAJ6bPCmYcgMa8yNaJIfw5H9di+QQ2tmDTGjcQZ19DnGuTpIDkUjkC4FA4GydJAfk42D0afxmGBEREREREREREQ1XKBR6XIvkUDAYfF+L5BDa2Rp+5OQOTwp2D8/N7yKm6SQ5UFhYuHM4HObrAPkfnvw8KdglnhTsHtoZTwp2iScFuycJDersFJ0kB+Tbh6izx3SSyL/4tW33+LVt99Bh8mvbLqHOvoLn5+U6SQ4UFRV9H3XGERoXZIQGbe1fOknkXxUVFTtokRziSIN7csEzLRIRERERERFRP8FgcLoWySHU2RItkkOBQOBWjtK4g3b2uXA4zOvQuIA62z8UCh2uk+SAjDijzhbpJJF/oQPgOTQu8aRg99DOeFKwSzwp2D3U1wFoa6U6SQ7wpGDKGYEAExq3gsEQExqXSgKBJwo4QuPKYcHgFwvHFfMy/i4UFYUO+M2hh4d0kpwYPXrHouISJjQ0sqy19btb6+6xrBcWeIvWe6xnGm423+c02hf57sXd6mw0H4vDeGzBdai7hcb7HEUe1tmzjbdY1vPzjfc5ja0vzL9Wd8cXtq675yrTcTiND56923rr8VrjfU5j6/Pzr9Ld8QXs73Wm43Aa7z0zz3r3X3OM9zkOtHXdHd+QPsV4LE4Cz8tXWqrN9zkNH9YZZRk7oXlmrmU9jSfwSAWeDLo7vmG13Ws+lkyFH+ssPsJ1hti6do6/Epqn51xlOo5MhuyD7o4vbF1bf53pODIaaOu6O75hv1kwHUumAn2q7gqRN0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjR5KBgMXoybUdumMicSifwyFAqdoJMpw4TGGyY07jGhcY8JjXtMaLxhQpOHysrKpNIzntAgkboA8YROpgwTGm+Y0LjHhMY9JjTuMaHxhglNHhrJhCYUCj2ukynDhMYbJjTuMaFxjwmNe0xovGFCk4eY0KQhmNC4DyY0noIJjftgQuMhmNC4DyY0mTdYQlNeXr6XhE4OCMnJ3tOmTdtZJwck66qoqNhOykxosgsTGveY0LjHhMY9JjTeMKHJQ6aEBonGH5F8WLjdGg6Ht5aWllpIQI7Wu3vg/tW63P8ikYjc/leSG727B+avHD9+vKzjHVkXphsR5yGY0GQJJjTuMaFxjwmNe0xovGFCk4f6JjRITBYh0XijqKjoozpLlvk45r2PuF5n2TB9kRZtmL4HsUEnbUiIOjCvTSdtmL4Myc3LuGVCkyWY0LjHhMY9JjTuMaHxhglNHkpOaMrLyz8vIy6BQGAPmU6GROerMrqik0YyOpO8DMo/GOgjLSQzLzKhyR5MaNxjQuMeExr3mNB4w4QmDyUnHEgwKhAdUjaRZXH/ATrZA0nQ7khmPof7xicnNJhXg3n36WQvuO9y3MeEJkswoXGPCY17TGjcY0LjDROaPJSc0CDJWIBokrIJEpAXI5HIJJ2U6Sp5vCQxeNy/EDf2SWgexTJX62QvuI8nBWcRJjTuMaFxjwmNe0xovGFCk4f6jNDMQDwtZZNwOCwjNIdLGbdrEA/Yd6jRo0fvqOuz4f5lSFyqdbIX3HcZgglNlmBC4x4TGveY0LjHhMYbJjR5KDmhQcIyEUnG21Luq7i4eLfkZEXOtdFiDzz+E/JtJ52UpOVqJDT/1slecN+zTGiyBxMa95jQuMeExj0mNN4woclDyQmNQJLxHhKTC3WyB+YvQSzWSTuhwWO/pJM23N8mozg6KbaTj6CKioq+qtM2JD3f0NEeJjRZggmNe0xo3GNC4x4TGm+Y0OShvglNcXHx52Ueko3nkXScjlu5XsxGlF/VRWzBYPAqGY3BfX8MBAKn4/7XEUXJozgCy50v83A7E3E04l48bovMZ0KTPZjQuMeExj0mNO4xofGGCU0eQmJRqsVeZD4SjrtxOxOJyg91di9IVA7AMlVY5gb5qrdlWaNM65s4ceJ+WO4mxBzcf7DMQ+L0DZR/ZS+QQkxovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke9aKk3e3lp1qWUtHMFac5r8n/4Nnmo8lU7HidP/V2UMjXGeIrUun+SuhWXbqVabjyGRsXXKqvxKaJdOuMx1HRgP9g+6Ob0ifYjyWTIUP64yyjHVjwe7WlQXWiMY1Bf578l9vOI5MBuvMU2y9osBfCc1VBVeZjiOTgTrzV0JzecF1puPIaKCt6+74hvQpxmPJVPiwzijLMKHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0OSB8vLy7YPB4E91MucwofGGCY17TGjcY0LjHhMab5jQ5AEkM2eFQqHHdDLnMKHxhgmNe0xo3GNC4x4TGm+Y0OQBJDSnIR7VyZzDhMYbJjTuMaFxjwmNe0xovGFCk+OQyPwnFApJvIfyFsRrepcN87+CeZtKS0st3L4fDocv17t6YN6rcotl70bZknXh9gKZV1FRsR2mH5fH4/ZtzD9d5icEAoEDMW+dlHH/HfJYXXZTJBL5gr3QMDGh8YYJjXtMaNxjQuMeExpvmNDkuPLy8v2RqFyO+HdZWdm3kFx8X++SZOenmGdhXkDOs0F8EuVNSDaW6CI2TUCeQnJSptPfw3LyuOORlGxFlMh8rOu7Ml/WK9MCj/klpl/D/Mdwe2ZhYeGeBx100K5Y35W63n11Uc+Y0HjDhMY9JjTuMaFxjwmNN0xo8gCSitOROPQ7hwZJxlbEj3XSJomNJDljxozZQWfJcpJ4XKSTNkz/TuYjmZmks2yyHOJJnbQTGiwjSc40ndUD8x7Fss066RkTGm+Y0LjHhMY9JjTuMaHxhglNHjAlNEgm9peERCd7wX1diIN10h6hQaKzl07aioqKPiqJD+bvpLNs2M5PEK/rpJ3QyON1speSkpL9JNnRSc+Y0HjDhMY9JjTuMaFxjwmNN0xo8oApocH0eQhJSPqFJBm47wxdVD5Kkvnb62QPWVaLPZCkHIRk6C2dtBMarOttneyluLh4t4GSHTeY0HjDhMY9JjTuMaFxjwmNN0xo8sBACU04HH5JJwc13IQG0//TyV5klIcjNCOHCY17TGjcY0LjHhMab5jQ5AEkFWf0TWjk3JmBPnLqa7gJzUBJC7Yvht0AmNB4w4TGPSY07jGhcY8JjTdMaPIAEoxSJDTdOtlDP1o6XCcHlIqEBtuZrLN6YN7riD/rpGdMaLxhQuMeExr3mNC4x4TGGyY0eQCJx16SVITD4R8igfimzpaEYrycw4IE5ByU90XyIV/rPmv8+PG9/ikp+MjpNWxnA27PnDBhwucw7+vY3hZEvyTLCyY03jChcY8JjXtMaNxjQuMNE5o8geThBMT/EL1O0EUC833M60C8h3gTScdMJCp9v7n0kFxATyd7YH6/r1xj3jcRi3Sy1zk0mD8D5XcR76Dc62vgw8GExhsmNO4xoXGPCY17TGi8YUJDaZWc0KQLExpvmNC4x4TGPSY07jGh8YYJDaUVE5rsxYTGPSY07jGhcY8JjTdMaCitmNBkLyY07jGhcY8JjXtMaLxhQkNpFQqFxoTDYSY0WYgJjXtMaNxjQuMeExpvmNCQ7zGh8YYJjXtMaNxjQuMeExpvmNCQ7zGh8YYJjXtMaNxjQuMeExpvmNCQ7zGh8YYJjXtMaNxjQuMeExpvmNCQ76HD3BUd1uKtVxYsGrG4oqBRd8c3sM/LjMeSqfBjnV01wnWGQMc5VXfHF7DPx/c9hhGI43V3fEH+x4ZjyGygf9Dd8Q3pU4zHkqnwYZ0REREREREREREREREREREREREREREREREREREREREREREREREREREREREREVHaFBYW7hkMBq8KBAJXJKKkpGS83k0OoP4ODoVCJ+gkDQB1VIyYhahFnf1CZ9MgysvLdwqHw+ejzu5GnZ2ls8kh1NvtWiQiP0JCUjhp0qSP6uSgIpHIV9FR/gud5m/x5J8igXk/07vzBhK5b3l9kUWdvYNYqpN5Ay+2e+G4J+vkoLDcT9DGLkcC/fGysrKvo65fw7w/6d35ZBSO+49aHhTqaH/U2ZtYfgzqbWdMX1JaWpq3PwiI5+gJaHPb6+SgUGdfQX29hfrjDygaTJ48+SOoozN0kih74Ym8EU/kT+nkoNBJ/AAN+yadzFuog/mot6N00jHU87l47I147HKdlTdw3BEc90yddEVemJA4592LTXFx8W6os26dHBQSv3202AOPXYR6m6CTeUWSOScJDdplI+JxKWN5JjQGqJ+fIB7WSaLshATll2ioW9DxlaL8a8nE9S4jdI4lWM7RO8Zchbr6FeJB1NvfpFxUVPQZvWtQqLc9UH+v4lZGd/IqocFx/xLJ3F9QZ41a/o7e5Vi+vdignr4ho6doKy+j3n4uz1W9yzHU88V4bF6NbI0ZM2YH1NkvJKHB8f9G+jW9a0hMaPpD+zkA9fh71OlalMeg/EO9iyi7oJHKaMF/0FBvx+0NaKyDjtRguVOwTEAn8xLq6TrEOkSTlh199CTJjCSMWH5/RF4lNDjeq9B2FuH2GcS1aEPH612O4DEXyON0Mi/ghfhIxE2otzdxew3iSr3LMTz2MTzuWzqZF6ZMmbKL1BfamIXb69FubtS7hsSEpj+0oT+jDqOILsR1qFN+9ETZC43U8UdOaNxXY9kP5N0PyltRvlnvyis4djnp0vFHTlj2TjzmPC3nXUIjcPyuPnLC8pehfT2M2xdxe7rOzituPnLqCy88v0a9vaaTecfpR07JmNCY4TnIj5zIH9Bh9kpoIpHIlzHveMRxEmjIA53IKScs/hPL1Op03sBx90poysrKdsW8qUl19ju9S5Y9FPP+pZNMaJLgRfcEqS8JqT95Ade7CoqKir6PF6UD0R6Pw+27WOZovStvmBIa1NOxiTqTGDdu3Cf1rh4lJSUykvqqTualvgkN6uRnyfWG+hmrd/VgQmOGNseEhvwBT+5eCQ3KP8Q8+SjlWgk05L/pXUb52AmgTnolNHhh3gPT8vGdXWeYvlXmo/w5LLtVyqinnSTwQn0A5q2oqKjYzrKsUXJfPsAx90toME8+ErDrDHHjkUceuafe1Y+8QMnHCTqZF0wJDaavTqqza+UNiN5lQ52uRPur08m81TehQb2MT643RL+PPZnQmKHumNCQP+CJ7fgjJ5OysjLpBPLmhVngye3oIycsJ+cmvYP6lRMUewLzLbwQWbjvV7pozsMxe/6Wk8BjHxo/fnxenZDo9iMn1PHLWL5UJ/Na34TGCSY0ZmhXTGjIH9ABtpeUlPyfTrqCx+2Hhm6PQOQT1FkN3gX3fKzkBurse6izZTqZN1Bn4xBzdNI1SQDzbYRGP8p8QycHhfZ4Oup3uk7mPS8jekxozPAm7Mdoh0/rJFH2QmOVa6rcfOihh+6DJ/TuOtsIy1bjXePnZTm8wPxMOgDM+77enTfw4lGGJ/hjcuVkp1/bTkBd5+U5NKizPST5RX19FOWv62wjLNeJtrW/jFBg2U+jjT2I29l6d16R5xgSm8/gBfp7OssIbeol1FuxJMzJMVRd5yq0mU2I30r7waSjEWSpay1SErnGkSSIcovIq2/NkQ+hM5yHWIUO4BM6ywgdplwd+GnEK4g75B2k3pV3cPxXItoQB+gsR1DPcl7NH3Qyr+DY5eTfTtwOeoIvkuVvYJn7sax8PPcQEpsf6115B8cvV01+DreDfv0Y98v5SNMRt/WJi3WRvCJ9E479QYTjq3JjWc8fieY6JIbyJq4NbTEvv3FIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREQ0kKL7wwUlD1sHV6yxSi9/wgr/Iz+j/MonrW+f8ohVcPgSq+Tvj1sRwzL5EFIPPzpzpVVwWJN12IWPWpE8bhPjURdfPwltonDZmwWFsZ31GUNERERERESUJkVN4YKiB61L741bNau7raqVXXkZcx7fZJVf9ZRVcGiTNf2BjVZ1i3m5XI/6xzZZJ97+jFXwm0brqsZ2a/aq/G4TgcuetAoObuQgDREREREREWUAB2ns4CDNtuAgzYfBQRoiIiIiIiLKLA7S2MFBmm3BQZoPg4M0RERERERElFkcpLGDgzTbgoM0HwYHaYiIiIiIiCizOEhjBwdptgUHaT4MDtIQERERERFRZnGQxg4O0mwLDtJ8GBykISIiIiIiosziII0dHKTZFhyk+TA4SENERERERESZxUEaOzhIsy04SPNhcJCGiIiIiIiIMouDNHZwkGZbcJDmw+AgDREREREREWUWB2ns4CDNtuAgzYfBQRoiIiIiIiLKrFwYpGnptmavedG6ueFJ6293LbBmPNhuVWOecdkBwpeDNDjGWas32+W7/hm3roreb118+zzr4jvmW7cuedqeL/e7qQt/DtKgHlZtsipXdlo3Ln7UuqJ2mXXhrVHrsuoG68ZFj1ozH16PethiL2d+vDk4SENERERERESZNcxBmmq8Ob616V/WdfNX2mXTMmkJHZi5fdmz1rmX3WKFIxGreFyh9bsz/2zd+UCr633xPkjTbW/v2rsfse68f53rwSGvUfnIRhz3TVYkUmqNP2KydVrFFVbFjbOtS26fZ/3pmrvseggGAlbZ+AnW3+5a2DOYM1QMZ5BGjv2GhautWxqfsv8/pmVSHfJ/vvHeNfb/fvKxJ1hn/e166683VNv1cP5Vd1gnnnG+FQoGrFAoZF06c5EO1pjX1Tc4SENERERERESZNYxBGhkk+ftd91qBkmJr6ml/tGoee9m4XCqjetVm6x+zGq3S8vFWMFBiTZl6inVl7XLruvmPWEG8Gf/dmX/K6CBNZfNGe4Bo0m+PtW5a9JirQQDP0dJt3bHiBaviptnWjAc7tm2zz6CI1FM1bqeefp5VdPhh9gCOk33zOkgzC9uTQZHDDz3Y+tPVd2amHnqiE/+vTcZtyn5VPrzBOuakU61AIGD97a57rNmPOmunHKQhIiIiIiKizPI4SFPZ3Gm/Kf77jEX2WQoyGDB7zUv2fAnTY/qHnIXSZl00fY513fxmx2ehyACFnLUy+9GX7DfnMiBz7d0P22eOZGqQJnGcMx/ZaJWVT7COPPp4+6s1MjjiuA5wvDMf3mBdUbPMuqxyMda1AfPdDZQNFrIvV0ZXWMXjDrdOPucCa8ZDHUPWsZdBGjlW+T/I4IwMCJ1/9V2968FBXcj/67Zl/7Yuvm2udUvjk47bgpOQdipnHcm+/fmamVYNB2mIiIiIiIgoK7kcpJE347ctf9b63Vl/saacOM0enJBBmrIJE61jTvqDdfTvTrV+e8LJ1tmX3jTkoICs6+aGJ6yS4nHW2X+/wT7rwcsgxUgM0px+wZU4/lPs4w2Hw1aktMw66viTrKO1DuTW3o8hjl+WOeEP51qTjznBuuufbYMu7zbkK07nXnazVVR4qPWX66scnd3iZpBG6vimxY/Z7eDo3/3BmnjU0fb/QG4T9SBnOp135e1DHpeclXVl3X322VGX3DHfHuQxLec2Zj/6onXDvaut8olHWEeijuWreU7XzUEaIiIiIiIiyiwvZ9K0yBv0zVbNY69Yl1XG7EEaufZH7ROv2fPtaBl6kOTDQZoi6+y/3+irQRpZv/1mv6Xbvu6LDFbdHHvS/ipNog5Mj0uO3oM0U1M2SLPt2DutMy+6xioqPMw646Krdd7Q6/ZyJo0cq5xF9edrZ9gDQnKbXA9O2sKHgzQBT4M0co2em2KPW9fOe9j62533WH+9sdo65bxLrImTp1hHn3iKdWnlIt0P5/XLQRoiIiIiIiLKrGFek0YuxmoP0px+/qDXpJGvvcjXeZJD5smZGPYgzd9usJeTrw/1Xm5jv3X1jZEYpEmEHIM9SDPlePtYBjtbRQYSko9NHnv7ihe2DdIcfYJ1x/0vYF7f45evQJnX1zeqV2+2B3rkIsJynaDfHn+S/YtXTs6gScRwrkkjFyyWQSG5HbQeDMco/y/5VSb5H8ovVFViub7LyONM65OBrZkPdaAtLrb+fF2Vdf5Vd1qn/fUf1sln/9UqP2KSNf6II9Eu/mL/f9wM/nCQhoiIiIiIiDIrA4M09hvwmqXW7/94AeLCXnHiGX+yL/g7+dgTrVPOu6jXfSed81frj1dMt+S6NYOdjZHtgzSyL3K9lWl//rv1+3OT6+Ai62Qc44RJR9nrkHLy8duB5W9tWmsPRPRdrx2YL3UjF8Q9Qr5uFAxa5/zjlm0/Q+7ybBSJtA/SYH+lzZx09l96Hecp511sHT/tLCsUDNlfm/t9n7Zw8rkVVsWNNfbjjevtF1gOy8pPc0vdnX3pDVbR4YVY10XWjIfkJ9qHbh8cpCEiIiIiIqLMytCZNNsGE3qHvLGXi8TKmTTnXHoj1rfFfvOcvIyTN+XZPkiTiOTjkpDjlzNfTjjtj/bXnWb8M94zqJAcA61Lzi4565LrrJKiw63jfn+GdVPDE7p9d//H5MjEmTQSfY9RLuZ7VXSF/T/8250L7Mf3Xcb5AE2fwOPkAs3H/f5M+yLKsp2h9k+CgzRERERERESUWSkapJGf4Hbyxjc5ZEDGr9ekSYSbQZq+Iccv++r2mjR2vcWesMZPmmxfC+emRY/a/wvTsm5j2IM0hx9mnXflbVr/zv+Xsv/erkmjAzjG+7aF1NeMB+PW+AmTrHAobF1/TwsHaYiIiIiIiCgLDWOQRt6I39r0lDXxyN9aEyZNtn9Gu+bxV3oGDAa6hkgi5M319CVPW1Om/t76642zXQ+sJGIkB2kkjj/1bPsaMBffcbd9MWU5fhkYMC2bHHL8d/0zbl/Y9+RzL7Dukq8oORikkZ8el6/tyPH+fca9VvSpN+wzUYaKKgf75HWQxv4fzHvYChQX2b/odPt9z9n7abeF5qF/glsGTa6b/4h19O+mWVfMXuLo/yd1fPvyZy35BSv5GXO5jo1sU9YlIWX5atOFt9ZbpeXl1oQjj7LbidMBLQ7SEBERERERUWYNY5BGQt5M39LwpHXCqedYZeXjrXCk1D6z5PQLrxryJ7gTIWdhOFluoJA369cvXGVN+u2x1h/+erk98OFkkCQ5vA7SyHbuenDbQMv4iUdYERx/+YSJ1hFHHbNtsMjBcck6nA4qybJyjR65hssRk4+2tyO/YDRUyHVvbkAdDbUdr4M0EnL2iwzUyE9vR8rKrEgp6mLiJOvsS2+099v0mF6BurLPpnLRFuRrTBdNn2tfx6Zs/ET7p9DDkYhVWlZulWN64lFT7J9Lv3XJWsd1nAgO0hAREREREVFmDXOQJhEyGCFnKCTOZPB8/RDP0W2/CXf7RjwRwzmTJhEywGDXgZxJ4/jrOt4iMbDjJkzr6RvDGaRJhGxr1pptZ7Jkqi1I+7PPntE2KLcy7WhwaIDgIA0RERERERFlVooGafweqRikyYVIxSBNrgQHaYiIiIiIiCizOEhjBwdptgUHaT4MDtIQERERERFRZnGQxg4O0mwLDtJ8GBykISIiIiIiosziII0dHKTZFhyk+TA4SENERERERESZxUEaOzhIsy04SPNhcJCGiIiIiIiIMouDNHZwkGZbcJDmw+AgDREREREREWUWB2ns4CDNtuAgzYfBQRoiIiIiIiLKLA7S2MFBmm3BQZoPg4M0RERERERElFlFy+xBmr8vjNtvyCubu0YkZjaP3LYlZHCi/MptgzS33r/RfpNuWi7Xo+7RTdaJt20bpLmyod2a1TKy/5eRDGkTgUs5SENERERERESZUtL0pYLiZX8vOLzxuoLDm67JeBQuvXL3cfUzv11ywYt7FtVVFRQuv9K4XKZi3FLz/HTEYUuuLjjs/ksLDlt2xd7jqpZ+vujq1/8vcLW197iZS6VejI/JVKSjHvC/3eHwu2fsOa568T5Fdz3wqXE3Pf/Zous7v1h01TtfLr7S+nIJQm4RXym5yvpM0Q3t2x+++KaCw1FPpvVlIsYtvbageMmfCsrrt9dnDBEREREREVFuCgQCnw6FQhsikYiF25cRX9G7cs7o0aN3LCsr+0wwGCzFcd6DeBPxX0RrOBy+BbdVCKmDA/QhOQXHVYyYg7gJdXAOYkJpaemvysvLP4n//5cxfwbmfYC6sBBxtI0f6EOJiIiIiIiIKJ3wxvyXiC68OX9BB2lW4PZFvFEfp4vkhEAgUIRjehexBSGDMYfi9nPl5eXbI3bSxQow7xnEvYWFhXn11Roc818QXeFweCzqpgLxFqZ/qncTERERERERUTrhjfh4OWMiEolMxRvyX40fP17Onvgh5mOWPWBzgi6akwKBwIE43k4c55NFRUVflkEJlN/AvN/rIjlJBqVwrF/UyV5w/JPlf4/7S3QWEREREREREaVTOBy+APEOolymDz300H1QLjzyyCP3lGm8UT8E8SretF8t07lEvtqDY30Yx/diIBA4RGfLoM2tON4u3H5aZ+UUHO9Xg8FgDMcug3FViE/oXTYc+891gOY0nUVERERERERE6YQ34Vch3kfsr7OMysrKvoQ37i/jzfyd8rUgnZ0LtgsEAt+qqKjYTqelTr6IkK86RXVWzsD/7vP4P25EPI7jM36FKRKJfBn/524sc53OIiIiIiIiIqKRUFZW9nG8SS8vKir6qM7KKTIIM3Xq1B11sp9AILAHjn8i7KezfGvMmDE7yAWSdZKIiIiIiIiI/CQYDB48ceJEq7S09ECdlRPkjJlwOPw8olXOFtHZuWgUjvXAUCj0JP6XHyAulsEavY+IiIiIiIiI/EIGaSZMmGDJG32d5WtlZWX74JjujUQi8hPbQZ2dk3CcZ4XDYbnQ80L8/76us4mIiIiIiIjIj/Am//uIFXij/zWd5XsTJkwY9CtORERERERERESUYnIR4HA4/Nny8vLddVZOkQs3h0KhCI5xE+LVXDnjiYiIiIiIiIhySCgU+ko4HH4B8e/i4uIf6+ycgGPbF/EAjk2+znTjuHHjPql3EREREREREVEukmvS+O3CwTqAMR/7/g72+widTURERERERETkXz69cPAo7Pfe06ZN21mnfauwsHBnHMu0UCgkFzpu0NlERERERERElG98cibNqHCOXXcmEAgUhUKhZ3Fc7+B/cE5hYeGeehcRERERERERUfYJBoNfDIVCa3D7Em7H6GzfmzJlyi4SOklERERERERElJ30V40qI5GIXDj3BJ3tOziOvYLB4LU4hlfkrCWdTURERERERETUWzAY/FVpaakVDoez7teRiouLdwsEAnvopG+MGTNmB9Tr0ajT7kgk0i1l+alwvZuIiIiIiIiIqD85uyNbLhwcDoe/j/34tE76Wmlp6Y/kLBqdJCIiIiIiIiIaXGlp6cGTJk0a0QsHh0KhfcPh8DLc/hdxqM72Bez3Z4PB4L2RSORWnUVERERERERENLjpCzt3q35o49crm7vGVa3s/n1VS/eFMx/ZcNFty569oqq588KqlV0Vclu9svtY3I6d0dz9xelr1uyoD085ue5MOBy+KhKJvB8MBs/BrFHb7sluZWVlu2J/L8W+v4l9fzQQCPxS7yIiIiIiIiIi2qbqie6PVK/sPLRyZefFVc1da2ev2WLVPPqiNXv1FmvWqs2ITVa1REv3ELFp2/KrN9uPrXn0JatqVff7VSu770ecU/XY5p9WWNawr7MiAzUSOukL8pWscDg8EUVfDCoRERERERERUQbIQEllS9ePZjZvXFC1sut/tY+9bA+uoJzWkMEf2RbKr1Y1d95S9UD3l+rrrSEHW0Kh0Ncikcg3dDLrlZeXjw6Hw1VyjRmdRURERERERET0IfsrSSu7NtY9/op91kvyAMpIhAwMyaBNZXPXU1Uru3+ju9lj7NixHwmFQg3hcPgNRFhnZyW5Rk4wGJweiUTeQXlpaWnpt/UuIiIiIiIiIqKCglsfaP/UzOau2bNWb94qX1kyDZZkQ8xavcWqXtn9TlVL1+VXNDV9JFhSdElpaakVCoUq9FCyWjgcPj8QCGT1QBIRERERERERjYDK5q5vVq/s+lfd469aVSu7+w2KZGvIGT5yps+Mhzfcf1Pjvz6nh5NVgsFgSSAQKEOR15chIiIiIiIiIrP6+rU7Va3srK5Z86JxEMRPIdewwbFcooc2okKh0DeDwWAsEol8EA6Hb0N8Vu8iIiIiIiIiIuqtamXX1FmrN7+diYsAZyr0F6Y239W8YZweZsaFQqExiEW8EDARERERERERDap+7dqdqld2z9NfTsrJkJ/zrmzpvEIPOW0KCwt3DgQChwSDwb11FhERERERERHR0Kav6dytcmXnqtk58PWmoaLW/lWq7unyE+J6+ClTWlr6i3A4/FgkEnk7GAxeHAqF9tW7iIiIiIiIiIgGd/sj6/epWtW9TC60axrUyMXQs4VusywrJRftLSoq+mgwGFwQDofvLS8v/7zOJiIiIiIiIiJyRgYpqld2Xbft15vMAxq5GnLNnZkrO0/RqnAlEAjsMXHixP10koiIiIiIiIhoeCpXdY2ZtTp3LhDsJuSrXdUt3R13rmz/llbHkEKh0BGIOOK1YDB4vFx7Ru8iIiIiIiIiIvKucmVnSz5ch2agiD75ujWzuet6rY4BhcPhiaFQ6I1IJHJ9WVnZPjqbiIiIiIiIiGj4qpq7D6xs7noxX8+kkbB/7am5s2XmI+s/o9UiRpWXl++uZSIiIiIiIiKi9Kpe1XVy1crOD6pbuo0DGPkQ1as2ye1bdY+99mOpk2AweFYoFHpTvtJUUlLyM7uiiIiIiIiIiIjSqbql84KaR1+0qvJ5kAbHPvOhDuu435/xv5KicS+Fw+Hfl5eX76RVRERERERERESUfhyk2RbRJ161qls2HazVQkRERERERESUWZXNG0+uaubXnaqau/4r1+fRaiEiIiIiIiIiyqzKlq4fVTZ3bsnrCwc/Zl84uPmOhzo+rdVCRERERERERJR5MkBRk8c/wV3/5OtWZUvn1VodREREREREREQj466HOn4xa1V+nkkz2x6c6m6vfmjj17U6iIiIiIiIiIhGTvWqTf+oe+LVfoMYuR5yPZrqls7jtRqIiIiIiIiIiEZW/ZpX9qpa2dVY9/grxsGMXIzax162Zq3adL1WARERERERERFRdrju+ed3rl7Z9bD9k9yGQY1citrHX7VmPtJ5kx46EREREREREVF2mb5mzY5VLZvq5CwT0+BGLoQMQs1q6b5QD5mIiIiIiIiIKHvNbO4+prql++1cuqDw7DVbrOqWzVtmNHf/Sg+TiIiIiIiIiCj71a+1dqpq7qzy+1k11S3d9q84Vbd0/UUPjYiIiIiIiIjIf6oe7v5OVUv3o3779ScZnKmRAaaW7sVVT3R/Qg+HiIiIiIiIiMjfbn/ktX0qmzfeXr1q09bZq7cYB0ayIWrWvGjNWr35f1XNnRfOWBHfRXefiIiIiIiIiCj3zHy484iq5q6O2sdflgER42BJpkLOmJFr59Q+Zv98eEtly8af6G4SEREREREREeWPyuaub1Y1d95Z3dL9ct3jr9qDJn0HUlId1as2WXWPv2xVNneur3yk67Lbmzftp7tDRERERERERET1a9fuVL2y61tVj3SeU7Wy80nEG9UrOz+IPvGqJWfd6FeRBh3IkQGY2VimZs1LeMwrVh2icmXXe4hXsK77q1s2HV/b/OoX6+ut7XWzRERERERERETkRIVlbXfnP5//+MwHO749c2X3r2c1d0+Y1dJ5wp3/jJ90ec3yy25b/ty0Wau7j5N51S2d4ZktXb+sbNn4tegjr+2jqyAiIiIiIiIionSoqKjYLhQKzSgrK7NwOxezttt2DxERERERERERZURZWdmuwWDwwUgkIgM0FsrvI1own2fOEBERERERERFlQklJyZfC4fAziPtKS0u/HQgEbpV5oVCoFvM6Uf4/XZSIiIiIiIiIiNIhGAzur2fNTC8vL+934d9QKPQ3xNZwOPwbnTWkwsLCnbG+DXjcB4gDdPaQsP2dsJ0WPOZ9RERnExERERERERHltlAoNLm0tPR/4XD4fJ1VMGbMmB2Kioo+mjxgg+WmYhkZqJmmswalgzTteNx7eMyPdfaQZJAGj5NBmvcCgUBYZxMRERERERER5baysrKPh8PhT+ikLRgMHjxx4kSrtLT0QJ1lk+UQn9LJQXGQhoiIiIiIiIhomGSQZsKECVYgEOg1SOMGB2mIiIiIiIiIiIYpFAqNCYfDMkjzI53lWvIgDW5/mpg3WIwePXrH8vLy3fGY1RykISIiIiIiIiJKARl0CYVCbTLYU1paapWVlTkO+QnwYDD4Hw7SEGURPc3tMDyxx48dO/YjOtuRkpKSQnQGYazjkzqLyDO0wW+iOU3E7dd0liN4cfmqNEO8uPxAZxENaOrUqTuiz/uV9HlITvbR2Y7I46StIT6rs4gGJO0L7awY7aVIPrHU2UOaMmXKLnhMAI8NYh276myiftAn7Y24ETETudheOtsRtK9b8bp5O3/qlwYiF7RF2/oc4ovy2qmzh1RRUbEd+q7PSNuSdehsSiMZpMH/Sc6kebe0tNTxGTnoN7bH45rxOEdn0sj/Fjejtk0RUdoUFxd/DE/O52TUFW92v6yzHcHj1iHeQYzTWUSe4cXhr3ixkNH8c3SWI3gzc7p+CnCzziIakLyRQTLysPR5aDsH6WxH5HHS1nA7XmcRDQhvUA5Cv7QZ7WUTbvfW2UOSDz7wmFcRb3BAkAajbaUN7es1tJVeFyMdCh7XKW0T4fjneim/oF19Ee3qabzuveTmPYIOUK/SnO5zOpsGgDrK6mvSYP4PsMyjiFZEDZa9FfFPxBRdhIhSjYM0lC04SEOZgDbGQRrKCA7SULppW+EgDaUFXu++gPaxFu3rJfRnX9LZQ5Kfk8bjmuV1Fo/lIM0QUEdZO0iDdd2JWCq5k84iokzgIA1lCw7SUCZIooFkhIM0lHYcpKF007bCQRpKCw7SZAbq6eBJkyb1+wluN9IxSIN5Z2Bda4888sg9ZVryJyzzaf3KExGlEwdpKFtwkIYyQZIMJB4cpKG04yANpZu2FQ7SUFpwkCajhnWdF71w8HrE++gLXA3SYHkZpHkfEdHZNkzPRqxE3IFlbsH/shRtYgKmH0J5C4Lv/4jSJTFIo29yL8Qb5d8jTh0qsOzJiJfwRP2f6UmKecfhvsdwW4/bOYg2xB/1bqJ+0K7+qi/o9yBO7tvmBojfoV3N1zfON+mqiAaUGKTRPu9qtCFHfR7i93hcHIlKv0EaTB+AdTXh9iHEDJRrEM+hfIUuQnlIBmnQBmSA5k3EuYhphnbVK/CYU3D7Zzzuf4jX0d56DdJg3kmY9zjWNRMxHdOrcHs/HvN1XYTyiAzS4P8v14n4ALEUcS9ikYO4F23nXYQM1HCQhoxkkAZtZS3ayKu4/QXCvojwEPE59FHfx2Me4yCNv+F/twT/x7bEmTTJcF+Jtov9dRYRpVLyIA2ebDciLkLneomDuBCPew3Rb5AG67gd82p0sgfmP4Dt8I00GeFNhj1Ig3ayXNpXn/ZmDCxbgVjKQRpyKnmQBm1oBsqO+zwsuxG3/QZpBvrVC9kOggM1eUoHabrxevgWbq9E27k4qT0ZA8tJe7wWj5GzVPsN0phguXOx3P14Pd9NZ1GeSJxJg/gP+rRf4lZ+JfE7QwWW/QbazRYszzNpaEBoJ3ImzZNoM/K69xRiFWL1ECHLPIb4jzwO7YyDNEPQsy434vZ7Oisr4P8nr0lPmX6hC/N/gngFy/xQZxFRKqX66054wn4F8aw8eXVWDzyRyzH/Mdx+SmcR9ZBBGiSc8oKe8q87Yb3bSwJbVlb2cZ1FeSoxSCN9HtpO2r7uJP0c2qScTRPUWZRnNPFO59edRqEdfxvLPYrljtF5lEcSgzRoX2n/uhO2cSn6P3l95s/v5gn8v+2vOyFexP//izp7SEN93UlyMvlwo2/k6891o46GfeHgdMH/sRYhA2/flGvR4H+3E8rY5WAXbqfqYkSUaqkepEGSMBbTrXgz/Bmd1QP3/VjuQ3xXZxH1SPUgjSYJ8nWo+xBPIjZh2e/o3ZSn0MbSOkiD9e+O+29Fe7STGp1NeSgdgzR6ccjTEJW4fw5u78ftNfJmShehPKJtJa2DNPJVB6x7KZaT19l7MYuDNHkiMUiD/3tKr0mD+2YhnkbedzruP1MC02cjjpA+ThfLGzj+gyX/zcZBGoH/y77YxxLEWYgT0S5+xosHE6VZqgdptEOXM2nG6KwemDcVL/QPyZsYnZVXLMsa1bg2us89z1Z9qbE1ekBT25wDkyP2fN1BTR31o+9pr/rSypeq+33/M9elcpAG65Gr1X937NixH5FptL3DMb0h204lTYcKq2K7J7qbPjL/X3d97t7n6r7ft51JLG2d9+MFbdVfX7rx7n1jz8fyKiFC20jLII30gwg5o+ES+URQZ+e0FSsqdrjnqZr9Fvy7+utL4vMO6tvOZF6steZ7C1srP78iPmMXfVjeyMCZNDYs/3ms/yW0zcN0lu+hX9oz9nzND2LxmjDitIb22psa4tGFi9tqn4611f4rORowryFedz/aWtXieO35mD6qqX3uzxraqz8l/aGuMidpW0nbIA3W+R3cH5e2hdsbsZ0GzM6pQZp6q377hnjtFxfF6369eN3sY2Lx2osb2qOVaEerYm11a/u2N8RTmD8PbfGaxvbaU7BsUaw9+q2FndNz7uuGmtOndJBGcmHctxjzL9ZZuc8qGHVPa81+jS/U/hT92BHor85D+7kT7WiF9F+L19U8c88zVfHFrdv6N/u2tSaGtngr2uYZTa01ZQ3tdT9c9NTsj+oaiSjXpXqQRqDzvQxxX/IbFUzvi3gCy4Z0Vk6yKqztFj47+2Ox1uhkdLRL0cF2oBN+c3nX3daKzQus5d13W8s651pN6+sHjKUb59rL3b9lgbWsa56F9fwH0dbQVnc3onxpa/1e9fX12+smc0aqz6RJJm0UkVODNGut+p1i8Tk/WByvuSzWWvtvtI0XG9ujH9y/5R7rvk3zreVoZ0s3zDG2MYmlG+egnc2z26Usj0TgbSQGXQ1t0ftirXUnL4rP+GTFihU5d+pxOgZpMF2HuEMnc8oKtIGm9uiXGtui56KNrEFi2YUE8x1pN3afhj5K2pKpjUksQRtc1jnPbmP3v7hA5m1Ff/Yy+sVn0G5va1pX97NH1kd3lcRdN5kz0jBIM2r06NH9BgCxbrmAo3w48jWd5RvyaeySjgWfxhuVv6BdPCqvdys23W3dh9fAJWg/aGueoqmj3n79XIF2h37xXay/FX3knYueqzlw+po1OTOIms5BGsyX6yM9U1hYaH9NGNN3YTu+HqSZEZ+xS0Pb7MPQzuai/+lE//Teis3zrWXIu9BOjG1pyGivs/s56eOQ30n/9gra20PI/05a+OzCj2Gzvq2vdAzSlJWV7YP7Hsb8kw866KBdc+3MGRn0WyADzG21t+D18oXGdrxeSk6G/qipw2MbQyxZLznbtr4xFq97E+3rCbS9Sxa1zf1CLr4nIMp7chorOkv5NZIH8GLs6loxeEwlogGP7/cCj3lyQam5iAcQKxDXHHroofvo3Tkl1lr/c3TE1Y3x6IvSgQ6nE3YSjVi/DPogCd2EN9O3NbxQlxMX7UJbOgrRjLYy5PU+kuExpQj5dZNTdVY/uN/3gzQP/XvBHnhjOw1trQVvet+XwTxT+0hZIPHUpOI/eHNTv7i1ZqwkH7o7vjV58uSPoC1ch/byT7Q1V19HwuOuxeOkP+s5UxAJ567oO6sxT5LO5j7xKGI6HrOHLp71Kixru8b2+iPxJqNhSUf92zKojCTT3EZSFE0b6u0+raEt+kxDvPaChvZ5OXHdMmlf+P/LV5LqE2f1OaFvYubjcfckX0cLb8h3x7zbcJ9cnFN+dWMhohHt77e4zzfPTfuDjHjtnxrao+u3vWZ6H4xxHdqvLd0w941YvKZuSUfNj3S3fEkuFo02cTTiRCnrbEfwengcHnc8bvfTWTas5xtoV08jztZZNrSzO7G87wZpFq+L/gavnTEZkEn762afkHzNHiiM162NtddNa+quctwPZAMZmMH//elIJCJn6jn+IFf6MDxuNfqlfoM02o/JzzhPQcgZ9nJR/scRr2P+UbqYr6BP+0asrfaupvVzXpPXMs8Dfl4CfZoMECJX67I/tNswb8izL4mIcpJ88tcUrwnjTcwL8oI/nE/7UhH2J9WSeLTVPYkXiUMti98X7wsv/L4cpImuje6D/+mV+D+/ZX/Sl+YBwMHC/mR6Wzvb0NhW/9s1a6bnxVd68sH0NdN3a8SbZryReMU+0y+Tb5r7hCS30q/idiva2t2N8dnf0N0kH5OzpWLx6OmN7XVv2//fEezLkkNev2V/FrfVzVneNjfvr+uDN8p/wxtseWN9P+IeRM9PdiM2ILYgYohZ2Tz43Lih7vvI0R60P2jYMLI5WiKkb5P9icXrNjfGo5PkLEXdXYLwtl8ei6MNnqCzspqcbYz/60zpQ5ZsnGMPlvT9n2c8sA9yBnVDe/S9hrboX+Rro7q7RES5S75mFIvX3rpkw5x37U7Q1EGOcMiATdP66Dux1rrrFnYu5M+xKiSUvhqkibXO+zHeoD4mCV1GP5FxGPZXWeSNfFtdtVxnSXebfGZZe/RbeCNzn54xZfxfj3Rsew7UbcGbmmN1t8lH7l0f/Qz6iWXyNbeRHPxzEvL1qMVttRvwnOAvshkEAoHb8QZ6oU5mpcXxmt/hf/mK/C/7/n+zKRJfB13cWjtTrg2nu5/X0La+Eg6Hn0GcqLOyUmO87texttrns72NJT7wiLXVPcIPO4goJzVtrN+/IV771NLOzJ4mO9ywz3qI161eFK/N+1+YwYt/MV74NxYVFX1fZ2UduSYH3syc2NgR/Y8MtvX9f2ZryPVGsM9PL2qrycpfJaD+GtdHJyHJfNVP7ezDhLNmxqIOXjwx2zXG536jMR5dm+1vZEyhZ9e8vXhdze/0cAjwGlqFaEQx687WbYhHL1i6YRjXlRnBkK/8NXbUPzRvXZWrawr5FdpQEXKy80pLS79XXFz8eZTla6HnI15E+SIskpVngze215WiffkqP0uE9MPY7/ZYvM7VdfiIiLLSivj8vRvb6hb5McnsifZtnbN89z72fP79YpRfLGqbcyD+Xy/58cU/EXIxO/n1FXne6GFRlml4Yc63kWS2+7mdydkYOIYPGtpqe10vg7KDXJi1MR69QwZvTf8/P4U8T9DWOpri9fvr4VGWaWqP/qZpfX2nDOCa/od+CRlckgvDNsbrLl9h5f7XoORHS0pLS3+A2x9HIpGvVlRUZO0xN26c/zm0sdXyVWDT/85PYffLbXUNPHuLiHxrcWvtKU0dc97P9tOznYb9/f/2uvcXt9X44ru++UIGNPBmc758pcP0f/NbSKIpt4tbZ5+ih0hZQH4adnG8bqb9ia0PP2k2hb4p28AzuLJHLD574pINc9708yBgv9ALDcfaamtWbK7fXQ+VRpicTYf/zZLlm+TDAcP/zachX4FCH/16Q2vdIXqoNELkhxJi7bVXygedufK6KSFfbcbxbJWf9tZDJSLKfo3ro/vgTXOzflUo58IeDGira+DZDiOvsc2+sOEb2XIBzVSGDAbE4nUL6tfyTc1Ii8VrfoD/yeu52M4k5NPNWGudnCJPI6gxXnej389mGCzkzTNeO1+Qi4XqIdMIwfP9x3ijuSGnBgOTQgYE7EGBtrpz9JApwxY9Nfuj+B8053KfJseGfjsqX7XXwyYiyk4NbdGvo1OO53KnLGGfUtsefU5+BlUPnTKsMR4txJvmV+3E3/A/yoWQ51Gsve6Rpif89ZOjuaQxXjsJ7eztXDkjcKCwf/msPVqrh00ZJF/NiLXVzZafgDX9b3Ip5AcD8HzqWNxa+zU9fMqwhnj0J2hvH8gZTqb/US7FfZvkzMe6Cj10ypAV8fpPxtpqW+1fbDL8X3Iptv10d/18v/00PBHlkXufm/kZdFhb7E8vDB1ZroV8AoVE5zl+LzXzGtqiASSa2z4pM/xvcinkTU2stfZZDghm3uJ4XUj+B/nSp8k1kdCnzeCngpljWRXbIcG/bXlXbn3lZLCQazo0ra9f2/hC9P+0GihDYh31P0d7e1Eu7Gz63+RibDvbIfonrQJKs9iG6s82dURbcuUr6E5i23U36+fK17u0GoiIssOK+IxdGlrrVubCRcHchP3JZ3vd3fVr63fSqqA0a9gY/TreSP4vX944S9jtrC06f0V8xS5aDZRmS9bN/WpDW91/86mdSUhbi3VET9dqoDTDG+YTc/0sLVPI4HNDe3QhXzszZ5n8lHsceVoevXmW2Ha2be0bTR11JVoVlCYrVqzYAa+ZM3Lhouduw75OTUctBwOJKLvgTfNVKzYvMHZcuR4rNstATfRUrQpKI/nUOdZWuybfBgMltJ39XquC0kg+DWtoq3ssH9uZhAxMxeJzfqDVQWkiX/nBc3p9rl4XZKiQN8+x9trjtDoozRo7ohff1537X6kzhX1WR0f0gXtaa/bT6qA0kLNP5XIApv9Brof043iOdcXW1/1Yq4OIaGQ1rav7Dt44d+Vrx4xOWW47G9dG99EqoTRpiNcejbb2ntZ5XoV8StPQVrtxfnwGL1idZotaa4/L13b2/+2dCXhcVfnGW3YFWURkF1kEUUSw4IJLESiEJrMmYWulglo3QHHlL2hdQURUEEUWZc9k0rKUJpMUKAVEBCx7gbY0maRlKzvKTsn832/yJU/STNsU5iSTmd/ved7nzv3umTOZe7+ce+47555ruv5Ru5Uz1ey7AwKRyaZO73nsfuHjUO7qmbsu9YCNxPVdAoG4ob1hS/1Pv1RpIwP7K/9kvmzqKN8lEADl2H/KfU7KVcl+rNY+OMd3BwBAcUkkEsfU1tbmYrHY9Xp9gIdXSiabPrGS7j0tpPxw9a6mL/sugSFQV1f3LuXZ1cqx1+Lx+BlabuebCpJZlFk/k21MV8LkmiuT5VlLV+PRvktgCEycOHGr+vr6fym/no1GoydHIpFV/pJqF4zqZM2o5Dwzw13/a0+2djZ+wncLDIFkMvlFtWnPqT27VcvDpk6duq5vGkTm8fQWLdnUTZV87ux52lPq+bau9ATfLTBE7Pwp3aCcs3xb/fmzIz2lUk3nXuXNg87GK3LMGzIklF+7KL+e1LXAYuXYN6uqqtb3TQVp7mj4lM6dFTXf0Yry0bf/aXsktb3vFgCA4mMXM2qYz1ED/YKWL2v5XTXaW/jmPP5UitZKHa7dq/wwx2xj2ncLrCHqCBykHLtRHc1uLf8tHTxu3LgBFzj25DBdOD6Sn8ugwDGoBOX/z9pTPIHnbaL8OkK5dbfnWbMupPebNm3aWr45T3M2tbv29eJKzrP8r+0djd1t7enjfLfAGlBdXb1ZNBr9jXJsmXLtFek0tXE7+OY8LYsb9tG58+lyfjrd6mR5ZhfOLe2pn/hugbeBnS/VP/un8my5dIuZhePHjx8wOimTTV1S6f20vEnVkXp07rKmjXy3wBAwQ1A59k3l1kLpLb2+SMs9fHMf+j8+LtOR6q7k0Vo9Rmjq9eZHUvv5bgGA1VFfX7+edZx0Itu0V7ZeU1Pzbi/SR1VV1cb9y/Vqxc58iDrtl7dCdU6YMGHQo93UCXxP/3K90t814FcCu9gtVOfkyZNXW6fq2sTcc/1d71bDHJMelt6QZsYmxvayiUzbOhsXVOLEh/2V72gubrh3zJit391//5ns2Pvu7cOOZ6FjYjnlRfJYfvQv06tCdVrevZM6J02aNKhOOzkXqtNywov0MrZ/mV5Z/vj2PlZXp07+2ym/7ALnNW17XPqpwu+67vHp+2hf/6+Sc63ngqbhLtsf/fefyf53bf/1Z2V5tuIv/MOZZ2tSZ4g86/07dSHzYeXYBYov1/IR5d3XFV579tLpn8pkG1+q9DYtP4Fwe+p021dFZqyOwdorasVzoVGonMk396fodVrMcmhFKT5oolvL00JlbZv9rym3JijH5kl2gXPLAV845PPXLrjsQF04v1nJFzSmm56emZu58DK7PWDtFf9Xe/dhf7T/N+lfrlfaNOCJZHZMCv3/l1qfb2V1vt0+n/bZtor9STlnRvSj0klbjtlyw9bOxtmVfBtKXvbI8Y7U8l+dc/IOn/zk4OOj3TekHHoneTmcOfRO6ix0LWI5efzxx6+v3Pq41mcqt3LSvcrLentPazb1c8sxXRMU3v8Vovz8gV2NB+V3JACsHmtU1JicLP2wn05WR/0QL9KH4t9Q+R/3L2vr1rh5kTy1tbUftTpWKPcTqdqL9KFtX1uxTukkawS9SB41drspPqhOLWNepA/Fj1H8pP5lpf/TCWTAaBfFdvY6+sqpgf2JVOtF+lC5o7V9UJ29twjY/tL7Moott0b6S18+KtnSnnqs0ofR2i9UVz9w8bKJVRNPXGHfnaT9NGhiRMUiKx4TyY777l4kj534VW5QLur9dkE5AG07VBqU4yr7MS+SR3VupNiP+pfzOr/lRfpQ3C4uBtWp3B8wqah1WlYoYzlmn2G/xA/opNivfIqvWOcp+qy+yda0vrne/xN9Tk7xxyZOmHjKHxt+fWxbV+PrlXxRY6M7rrzv4icL5Zl0rO++PrTvotKgPDODwovk0b7eVPEB//d6n+Xd17xIH3rvxEJ1KjbglzW7oPA6Vqzzm16kD8UOlgrl7l5eJI91Olcok88z1TtoQmXFDrA6Vih/iv6ufbyIfe/tpd9Znmlbe9XBE48/v/Wsw9SZr/iL5zlPXJn7Y/q0Jw89uLpT++hZ6RnXq9JffRf2of13s/R8v3LPaP05LQe0P9r/Byl2m0nb/+W6S+u/8iJ9KH6hdHu/cqbbVcdHvEgerX/BtvWvU6/v0tJMpgHtj+LnSnf0lvOyd0gDcs3yWdsuVPwf0t9dl+mzvqfNAy5oFP+BdHG/cqZL+v+dOtdbH2S6/n9yNdU1N//o1BP/cO2Cy16rdDPQLmguaDvr5gPHH3y89k///1VrUwbdbq34cdq3A85fphUvSFVmL8UHtSnSwV6kD8VslMCAtkrv/7GO3wDj23OiUDs10Yv0ofjUFeuUrD8wYE4xa4sVH1Cn3mf9yKgX6UPv/YrV0b+sr2/uRfJo/ZPSUzovW7v2dM3EmlOu+Pf5d1b6SJq8Ohrf+tIxk34aq4n9QPum/z7/wYqjjxQfJ53Sv5xkx/tAL9KH3v9txQfkpa2vaLapXMFrEZUt+WsR/Y0/UTyfl/p/+7DWz1VddrvdvV/83EFHNt114Tk2n1mlmzQ32UNUMGkAIDS6oN9KnYj/UyP8kvSU9FszDnxz7zwh8yp5yLbJTkw2v4DvFlhD1DlaR7llHcurlW/dOvnbBVbSN+fJZBv2bs2mnqrkXLNfqfT/Nsd3Cawh9oujcutA6TZ1Li3P5qjP+QXfnKd58RXjtK+5DeUx5VpH6me+W2ANsZGqasN6R5++qnxrUNv2Id+czzPt32WVPH+D5ZkZB9oPP/bdAm+Pscqxz6g9m2UmoJZmQtb4tjzax/+odJPGJt/PZFNdTfO53WlNMcNSOZVUO/agZKOcr9FywA8zmfYrvpXpaHyrkn/gsB+stQ9eVT/t075bAACKRyQS2UWN8fWS/QpznxrjiXYR7ZsHMC03ba3WzvQllT6Mtqej2fhn3y0wRHTiP1r5tVSy2wD+Ie3qmwbR9mhqe3U0K/Lx273yCV3/5LsEhoAZM8or+yXwWetcanmG8m2lk/o1d1y+Q1s2dVcl51n+YkYdzbZsmiehrAFTpkzZQLl1qnLsv1o+o3w7fsVfqHtpW5J+ry4Yr5/zeOU+3cmMULXpz7ZlG7/ouwXWAOWXjaZeoqWNOD03mUzupPCAkWO9zF7SeESljw70furFTU1MHDwUbGSR8uuPasvsR1obFfmDurq6lT7F1H5IU5u2rFKf9Gq64bErc7om+vd1XQ3b+G4BACge9gvgkUce+T5fXS1qkL40t4KfhGKyzubsbOpQ3yUwRNSxfL/Nd+Srq6WtK33BTU9dU/AYVILyt0Z0NA4aFg2rxkYEFppHYGW0dqb+Ucl55r+4d7VmUx/0XQJDQHm2djQa3U0vC14or0hbR8NvbrCnO1Xo7QH5i+aO1D1NuRwXzW8DXThvbiMcfHWVNM+/aCudO56rZKPGnqTW1tk46DZ/WDn2g0YulxtSe2Yox/5VyT/a5uej6Wj8g+8OAICR5bqua7ZR43R7pf7y3HNBk7559r2XDproD4pLa3b6/trnFfmIx57RWum5ty1JD9lsgLdHS2f6APuFv1JvRcl/74707313QCCufiS1/XVLpnfY7bKFjkO5y0ZstXSkDvfdAYFpWzrjpPxFZIFjUe668Ymr7Pa62c1dVxQc2QbFobVrxkGVeltd/omQneklsxY3DnryFQDAiNHafsVXM9nUW5U2gXD+V6mO1PK2bLrKdwUERhePFXdvveVZJtv4ZqYjNWjSSwiD9vvF11XgxXPPPfWpJ+x2HN8VEJC2zqZJlTh5sN8WkJo7d27BW6mh+GQWpbdQvt0054nKusXOTGf10Z5rZjLX4NhTotqyTedUWo6ZbER9S1f6O74rAABKh7Zs6oJKuqixC+eeiVzTg55KAuGwkSTa/wsrZmLXTr+gyTb+1ncBDAOWZ23ZxvsqaQJhN9nfaGlPT/DdAMPA9V1NZ9gv/Ssej3KVtWdtnU3/uba96QO+C2CYaM5evtfsrvQTlfRDR36OlI70Cb4LIDBzH7vifbO7muZWXJvWkb7I5un03QAAUDrYZGyzO5vS+XvsCzRi5aae++kbL/SvD8NI68OpD6oTcK+bF2Wt/Mm/K/0X/+owjDR3XbFTW1fTA5WQZ2bQtHWm38i0Nwx6lDuEJ9PReG4l/PpstwRksqkFdpu0f3UYZlq7pn+0NZt6JT8SuMAxKidZP61lcYrRDcNMZlFmY+XY/flbgAocl3JSjxmVvmTevHnr+tcHACg9Mt35R3I3lvtEwj0T0KX/gms+cmSeyWzc0tl4dzlfQOdP/p2pn/pXhhGg+fEZO6gDtrjcJ0O0W25md6Yn+9eGEUDH4bf26PMVj025yP6HdN78z9zs1Zv6V4YRYtaSxj1mL2kq23bN5jtSm/aGNNW/Mgwzs5+4dMO2rvSccu6j3fDolTaa/m/+lQEASp9MNnVSOZ787ZcnnfTfymQbvutfFUaQ8+adt64uLK8rt0mrLc+k7uaOBoZolwBzc3PX0f/91WbOFjpeo1l224M60k81P5Laz78ujCAt7Q0T2rqaniyn21GsPevJs8az5uea1vOvCiNMekn6XZmOhivK7SLablFVzi1Vmz3OvyqMIC2djT+a3ZVe7rfTloU8x15Wm3a0f00AgNHDrIXpbTPZ1O3l0gHIm06d6Zuvb2/axL8ilAiZxQ0JnTBfLIf5Q+z/RR2aOzKL/r6Ffz0oETKdqQN1jJ4ulwtoa9Mynekz/etBCaHjc0Y5PPXJcmx2Z/rezNLLtvOvBiVGW8eVH9cFdMdo/2EtP3pmSdObmfaGE/2rQYlgtz8px+beUAY/3uandGhPXZxZdNb6/vUAAEYnrZ0N1WrYXhmtj7Pt6SinXmhZnDrUvxKUILlcbmwm23iW34o26DiWuvK/NHc2/q+1o7HevxKUKDpev7ALmtGYZya7jU4XMnc1L7xiJ/9KUII0d8zYoaWj4c7R+NhkM5szHY0vZdobJ/nXgRKnpf2K75nRMdr6atYO23lfudZ6NbfSlTStj1xxiPrTz47GUal23mxpTy3ItE/f078OAMDoZ17uvHVbsg3fyGRTL4yWicRsboC2rvSjmfb0sWYA+FeBEsd+sc10pPKP6R4NF9FmAupvfdZ+/SPPRg/XPnbF+3RRc/bsrvyw54LHttSUn++kM31ny+LGz/rXgFFA8/yLttLxu0x51l3qtwzYr8wtHakHbdSZ//kwirBHKOtcVJfJNj5a6iO57H/BpH7l6W1L0u/1rwCjgEx7477Ksdt7RqgXPr6lIDu323lTOTbz+i5+1ACAMqc5m9q9tSP1z57bOkrrFxv7e2Yvmd6t17Ov5/Ggo562bOMxOpbPlNqcNfkTvzrAmY7UPS2L0x/zPxdGKS3ZxnhrNtU15/HSezpPz1wg6TdaO9O/n33vpRv6nwyjlJbFjcfoeD55YwmNGLRz+fVLm15Te3YBtwOXD5mlV26Xvzh9dHp3qfy4ZqaMPZhC5/YFLdnpjG4e5TTNb1ov097wp+uWNr08p1SmRlC7ak/am93Z+Gymo/H4XC7HA0IAoLK4dt55727Lpo5Sx26R3ac6Eo56z8XyjPyFjNbva+1IxWwyPf8ToUyY3ZneUcf2LzrGr9gw2+tGwBy0PLt+6Qz7lXmpcn5qZtFlG/ufB2XCzPaGLds6Uz9Trj1vF67ergyrzGi2z9bFzFuZbOM1LYsb9mlqalrb/0QoE6z9aNH5szWbXtSWP+YzhudHD52jzWB24/vFTGfq922PpLb3PwvKlFmLL91DF6wX6Zi/ZiMLhsu0sXnmLNdsFFlrNnVn8+KG6nnzzuNRx2XIdV0N27R1Nk7TeeuZ69TGDNctxWb85dtP5Zo+e4n1zzCbAQD60bwwtbsax5/pRPyg3fvZe7tKsRrp3rqs4bcGWZ91T0t76ieZRamd/U+ACuCi7EUbtC1pjOtC+ip1CPKmTVFvWdFFjNVl+dtzn3yqM38hs7Tx4/4nQAVgT4Rq7mj8gpmD6gQuszatqHkmWV15U8aMx0env9aSbZyt9vPLVz10yeb+Z0CFcNWjV21ux76lI3WZcu4p+yU4f5Fjt4QoT9Yk73rLm65b0tOOqZ7XWzsabmjrSP141uLGPfxjoQIx03d2x/RP6YL2l8q3O5Qjy/Mjo3WR2z93CuVWIfWWt7asp3+Wn88o25ZN/W12Np245uFr3uMfDRWE+ue7trQ3fD/T3pBR+/Nq/gc2uy54h22a/Vhm7aNy7LnWbENjW0f6a83Zpq38YwEAYAiMndmZ3tEecdfW0XhRpiN1l9QhPSu9cdNT1+Rufnpm7qanr8n1vjbZUNjWjsY3pKfVOLer7DxdOJ+nzsThNzzZsKXXDdCHPcq7Odv4xbZs0y+VN3MyNjlcR+MyLV81Q683t/rnmi11wn+rtT31fCabXqL33a18m67X32ztSO/G/DKwItPmTlvn2s7GT+gi+js2yiWTTT2gZZfaqP/O7kq/ecsz1w7KM4vpwqVb73lNOfm4tEjlb810pE9taU9PmLusaSOvHmAA+cnUF521fqb9Mpv/4YjWzvRP1U79XXl3s/Jori6Cbpq14PJ/tyxuuKUnlpqhNuyMTLbh2JauhgnNXVdsRjsGQ8VyZdaSi7dtyzZUKde+bbmkZYvOozfrwvqGmQ9fdofWb7TcU67dqJz7m86hP57d2VDX2tXw0aZc09pjcmPIN1glzff/dbPWbGp/u51deXSq8qypNZu+ubc9s3zL55gt21OXaPsvbNS+ynwmsyizPm0aAMAwccgBh37nkIMO/YOvAgShvr5+beXZeYccNPFLHgIoOpZnBx9YdUHVwVU8FQeCkkgkvl1XV5eLx+O/9BBAEJRj/+e5drKHAIpKLBb7ruWY2rVfeAgAAEYCu5hRo/xX6XWd+F+QWhXjPlIoOjrxb6E8u1OyPHslmUz+xjcBFA11Lt+v/JqnPHtOy5e0/ivfBFBU7NypdmyZGTXSYuVbs51TfTNAsRir3LpEOfaU8u2bev28Xp9LrkExUV79TXn1pJbHaZmVrhk3bhxzFwEADDfjx49fR43xv9QQP6jO5vZa30CvZ1kjHYlEuKUJikZNTc2HlVdPSFfauvJud71eomWLVhk2C0UhGo1+xNov5dV0W9cFjeWd5dm1+QIARUDt2buVU1dJzyrntrHYlClTNtD6vcq5O5VzW+cLArxD1DfbVPk0T7l138SJE/NzfijHdpAeVHxufX39evmCAG8Ta8+UZ9dIz1hu9casPbPc6807AAAYBsyUkRZJd5hZo2VEnc1626ZG+SLpOcX2yxcGeAcoj/ZXPtnw2d/5+tf1el/7hUbLBdJtmILwTlEOHeB5dpqtK8++pNhnvbN5n+K3Su/PFwZ4m0yYMGFD5dMC6dbq6urNzKRRrtlo1L38XNqgbS8pvpu/BeBtYTmkNqtLsh8zrI37tHLrj/X19R/Qtvco1+6QHtZ2TEF4W1geKX8eUl7dbu2Z8ml7rZ+r5ce0eaxeX2btmcTDQQAAQqPGdpxkt5xcMm3atLU8dosa5fn5AiKZTH5f62+pAa/zEMAao7z6hk7yy6Vv2br96qfXOeVW/kK6rq7uXXqdlp5RB3QXiwGsKZZflmeWb7Zueaacekr6a++6tl1uMS3pbMLbQudDG6n1qHJohocsto+1aYod5iHLx9N0Dn1ZinsIYI1QDh2gnOpWm9V3u6Zy7RjFXjazxkNrqVyT9GRtbe2eHgMYEmqfPqx8ely61kYCWkyvP2PtmfKur+1S7JfSK4rVeggAAIqNTu5bqrHtkk7yUB6tDzBpDGukpaXaNt5DAENGeXOwZPfQf9FDg0yaXmxdZe/Stu08BDAklDeHWp5Jfe3UiiZNL1o/VeXmVVdXb+shgCFTU1PzCeXQgb6ap5BJYyi2r8ru76sAa4Ry5/OWW76ap4BJY6ylspH+7R/AUFDe7KV2qkov+245Vx4NMmkMMwGVf1/wVQAAGC7UMP9QjfLPfRUgCHY7gE70F6iTmfQQQNGp75kQ/UzpKA8BBEEXNDZR9XF1dXWMBISg2MgH5dvXmSMEQqFz51bKsePVnu3oIQAAAAAAAAAAAACACufggw9+bzwe39xXAUIx1m65q6+v38jXAUIwtqqqagtpY18HCII/1Wn3SZMmkWsQlLq6Ouun7T516lQeiwxBsKe8RqPR3WwSYQ8BAMBIkkgkbpEGzEkDUGxsrpDa2tq+J/AAhMDyTBczzynPBsxJA1BslGP7JpPJQXPSABSbWCz2A+XZW1p+0EMARUW5ZfPU/FfL/MMeAABghNGJf9DEwQDFxi6e1QEYNHEwQDGxPFOODZo4GKDY2OSu1qZh0kBolGPfU5u2XMKkgSCoLfu48uxF5RgmDQBAKaBGeaZ0s68CBMFHODwtnewhgKJjtwOok/mQ8ux0DwEEQRc1eyjXFmppT0kBCIby7MvS/Lq6Op5OB0GwW52UY//RufNIDwEAAAAAAAAAAAAAAAAAAAAAAAAAjDR2q1MsFnvAVwGC0G9OmlM9BFB0fE6aZWrX/uIhgCCoPWPiYBgWlGu/tlyzJ/B4CKCo6LzJxMEAAKWEOphMHAzBYeJgGA6YOBiGCyYOhuFC7dmvLdcwaSAUyi8mDgYAKCXUMPMIbgiOXTzzCG4IjeWZOprPKs8waSAoyrNPWpsmYdJAUJRjv66rq8OkgWBEo9G9dd58Sbn2bQ8BAMAIM9YFEBpyDYYD8gwAAAAAAAAAAAAAAAAAAN4msVjsz4lE4mJfBQjCuHHj1rX5j6SpHgIoOuPHj19HOTZTbdqJHgIIgvJsV+XZQzqHfsVDAEFQjp2mfLtv6tSp63oIoKhEIpEdlWO3Sz/0EAAAjCRqkJk4GILDxMEwHDBxMAwX0Wj0Izp/Pi99x0MAQbD2TFpm7ZuHAIpKJBLZRW1ZVnn2Kw8BAMBIogtnG92ASQNBsc6lPUJU+YZJA8Fwk+YZTBoIjdqyPaQXMWkgNMqzc5Vnz2LSQCiUXzYysEv6tYcAAGAk0cXMXrW1tfv4KkAo1lInYHxdXd2Ovg4QgrFq0/arrq7+kK8DBMFurdMFzdZabuQhgCCoTdu0vr5+K71kQnQIgrVnEydO3KqqqmpjDwEAAAAAAAAAAAAAVDjxePzQWCwW91WAIEybNm2taDR6jPJtnIcAio7n2RGJROLTHgIIQiQS2VLnzl9Ln/cQQNGpr69fWzn2Jen71r55GKCo1NTUvE/9s5N17qzyEAAAjCRqlJk4GIJj99Lr5M/EwRAUn5OGiYMhOEwcDMOBPdFJOdaoNu1euyXFwwBFhYmDAQBKDEwaGA4waWA4wKSB4QKTBoYDTBoYDjBpAABKDHU0T5ZO9VWAIFjnUnl2qVTvIYCiY3mmTuY5yrOjPQQQBF3QbC4dl0gkPuEhgKJjtzspz2qsTeN2JwhFdXX1ZsqzryWTyc96CAAAAAAAAAAAAACgwpk0adLGsVhsU18FCIb98lxTU/NuXwUIgv0iOHny5A19FSAIdmtdJBLZUctNPARQdGz0TCKR2NrkIYCiYyO2lGPbVVVVbeEhAAAYSdQo3yIxJw0ExS5oamtrc8o15qSBYFiexePx55RnzEkDQVF79lHl2osSc9JAMOxHNOXY9WrT2rjdCUJRV1e3rXLsHuXaPzwEAAAjiRpkJg6G4NjFszoATBwMQbE8U44xcTAEJ8rEwTAMqE3bRO3ZdcqzVkwaCEV1dfW2yrG7pQs9BAAAI4lO/s3qbP7LVwGC4CMcnle+/dRDAEXHnoSiHFuoNu0MDwEEIZlMfkht2j3Kty97CKDoqC17j3LsEuXaRVod2xMFKC6RSGRL5di1jHYGAAAAAAAAAAAAAAAAAAAAAAAAgBIiFovdFI/H7/NVgCD47U7d0m88BFB0xo8fv45yzO6rv8JuffIwQNGpq6vbUXnWIZ3uIYCiE41Gt1GO3ZVIJC72EEDRsaciKs/mKM8yWuW2OgCAkUaNMhMHQ3CYOBiGAzNplGP3qV1rxKSBkNjjt5Vr7cq133oIoOjovLm1cmyeZHPSAARBbZk9RewGqUWrmDQAACONOgA8ghuCYyYNj+CG0PhImvnKs7TlnIcBio7ybGflWaf0Ow8BFB176o5yzB6NfKmHAIqOjaRRnt0ozdYqJg0AwEijC5m1Tb4KEAy7gOYRohAa2jQAAAAAAAAAAAAAAAAAAHj7xOPxP0oX+ipAEMaNG7duLBabI33VQwBFx0bQKMfOV5t2io3c8jBA0VGebS/9U7l2kocAik4ymdxBOXarcu1HHgIoOjp3bpJIJBqUZzZBNbc7AQCMNDr5M3EwBEcdACYOhuAwcTAMF0wcDMOB8mtnyZ4ixpMRIRhqy5g4GACglNCF8y1qlDFpIChm0iSTSSYOhqD4xMH3S42Wcx4GKDpqz3ZSe9Yh8QhuCEYkEtlFOZbl3AkhsYmD1abN0bmzVauYNAAAI01NTc2+0md8FSAINmGw8uxgdQQ+5CGAEIzVRc2nY7HYx+x1Twig+JghGI1Gt7FfoD0EUHR688xuR/EQQNGxPloikXh/XV3dFh4CAAAAAAAAAAAAAKhwotHoQbFYbKKvAgTBfqVRnh2VSCQ+7iGAEIyNx+OHKtf243HvEBK7PUB59v1kMnmIhwCKTiQS2VJ59lMbIeghgKJTX1+/ts6dR6qP9m2tMgoVAGCkUaPMxMEQHCYOhuGAiYNhuGDiYBgOlGMfk15Qnh3nIYCiY3005dh06R4zbDwMAAAjhRpkTBoIDiYNDAeYNDBcYNLAcKAcw6SB4PQzae7GpAEAKAF08v95NBo9w1cBguCTH6bVATjSQwBFxzqXatN+p1z7Dh1NCInybFO7NUA6wEMARUf59X6dN3+o5b4eAig6fu6slb6qVW53AgAAAAAAAAAAAAAYM3ny5A3r6+s38lWAYCjPNpkyZcoGvgoQBGvPampq3u2rAEGw0YGJRGJrLXkENwRD7dl6sVhse9o0CIxNur+5TVTt6wAAMJKok3mLxJw0EBTraNbW1uaUa8xJA8GwC2d1NOcrz9KWcx4GKDp1dXU7Ktc6pNM9BFB0otHop5LJpM3nVushgKJTVVW1vtoym5PmXp07uVUYAGCkUYPMxMEQHLtg1oUzEwdDUJg4GIYLJg6G4UD59Uk/d2LSQDCsj6ZcY+JgAAAjl5u2Vu7+GR/ufuCq3UdCudy/P3jM5CPmTTnq8Edyr96+Y6Eyw6L513wkt7B5J98tEIDue2dv2P3g9I8W3P+BlVtw7YefvOXiPY86vD53wtQvn5/LPbJ9oXLBZXl2/wzyLCC5+U0bjWSe/e/Oxj2mTD5iwdQvT8pYzuU6WncrVDa4bB/cP5Nh4wGx/Ttiubb0ug/NvOA3E6YeO3nJj0746gWWe4XKBVc+zxrIs4CMaJ4tm7PzBaefdPhXp0zKnX7KCd/JLZu7S6FywyLbB+pH+G6BAFj/xPopBfd/QOUevma35/598Z4nfH1K2zeOnfzQ6/dM/+iItWn67O57LyXPAGBk8Qua13MPzcjlHpw+MlpwZY8KbRsuLbo6p/3wkO8WCED3/ekJuY5Zhff/cGnhVbncwyOYa5Zn85sYNRaQ7vnpqlx2hPOsFNq0zmbl2vQ/+W6BAOiccabt54L7f7j0sM7dDxWID5csz7QffJdAAHTOOKsk8qxQfDildr37gRmH+G6BAFj/xPopBff/cMiuRUbyesSU76fOOMh3CQDAyFASJk0pCJMmOCVh0oy0MGmCUxImTSkIkyY4JWHSjLQwaYJTEiZNKQiTJjgjbtKUgjBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpoBKIx+M31NfX57Q8W6tje6LlTSwW+7l/5/s8VNJg0rgwaYKDSSNh0gQHk8aFSRMcTBoJkyY4mDQuTJrgYNJImDRQCcTj8evr6upysVjsLK1WjElj31nf/R4PlTSYNC5MmuBg0kiYNMHBpHFh0gQHk0bCpAkOJo0LkyY4mDQSJg1UApg0pQ8mjQuTJjiYNBImTXAwaVyYNMHBpJEwaYKDSePCpAkOJo2ESQOVACZN6YNJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0kAlsKYmTTQa3Vtlf6X3XavlP016fYuWMxOJxE+1fTcvulqmTp26bjKZPETvO1N1tKiOW0163ablnxWv8qJDor6+fj19/iS993LVcbOW9vdZfTOlKdr2HiunGCbNaBQmTXAwaSRMmuBg0rgwaYKDSSNh0gQHk8aFSRMcTBoJkwYqgfgQTBqV2VXb59TW1uaSyeSb9lqxaVIyEol8NpFITPL1262M1t+S/q5tW3oVg1A9S9woeVj1/Unlj9ByP61/TsuvaNmmWLfVp9c/9LcVJCpU9jGv7ym9/+/St2pqasbrb6jS6x8o3vu3zdX6nzFpRqEwaYKDSSNh0gQHk8aFSRMcTBoJkyY4mDQuTJrgYNJImDRQCcRXY9IkEoljVOYtbX9LyyM9vFKmTZu2ltXl5kq33v8J3zQAxfetr69f21cLYu9VHW94XZM9PACVucy26zNfWNln9WOs6rnUzRpMmtEmTJrgYNJImDTBwaRxYdIEB5NGwqQJDiaNC5MmOJg0EiYNVALxVZg0iUTiCDMztO1VqdbDQ0L1/sEec633LbTbkDy8RowfP34DvX+6/30pD/ehzzglmUya2fKE9BkPr5IpU6ZsoLIz3fjBpBlNwqQJDiaNhEkTHEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSQCUQX4lJY/PFaNuFZrRo+WAul1vtfDX9UX0Rvc9ujXrFXnt4ABMmTNiwtrZ2H5WbnEgkztWyVWUX6vXL9jeZzIRxo2imvy2Ptr1X5ecedthhtr3Jw0NC75tmdWuJSTOahEkTHEwaCZMmOJg0Lkya4GDSSJg0wcGkcWHSBAeTRsKkgUogvhKTxibZ1bZmNzPaPDxk9P4v6n3Pq943tDzMw3mSyaRte9RHs/xXZS7W8muRSGTPiRMnblVdXb2ZPvddNgInkUic73/fAJNGdeyk99zntzqd5uEhob/tZ5g0o1CYNMHBpJEwaYKDSePCpAkOJo2ESRMcTBoXJk1wMGkkTBqoBOKruN1J235mI1W0XKLt23t4SOg9x/konGXRfk980uuj3Zx5XlrlLUqTJ0/eUJ+bcSNmgEljKJY6/PDDra7Wod5SVVVVtb7Kz/C/AZNmNAmTJjiYNBImTXAwaVyYNMHBpJEwaYKDSePCpAkOJo2ESQOVQHwVJk00Gt0mkUjc4WbLLXr9ft+0SlTuAJW3SYPtVqRJHs5PKqz4X3wUy/0eXikq802vo6BJo+2HSi+54XKSh1eJyn2j9xYqvcakGU3CpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdJAJRBfhUnTi8o0uhGyXLpI5betX+HJTLaeSCQ+oXpusvr0+lmVHe+b+1B8QjKZ/K/Xd6nKb+qbehmrbfYo7ge1bak0y8pqOcikMezWKdX5qpd5IBqNfqrA37aetk1Une3SE3qd9s/HpBlNwqQJDiaNhEkTHEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSQCUQj8dv9JEyZ2t1pZMDJxKJrVXmlFgs9owZHGbE2PvsdihbujFjj+rOSPv72wqiejZXmTNVPj9BcG89JlvXtru17YDx48evo2V+8mLFZvnbB6H3vEt1HquyS2yUzIp/mxs4t6nMwVZey2kW13K1o3lKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKgdz8uRt1L5j1em6hOgAL1DBVqtpbc90LrsWkCUj3QzMn5JZcX3j/V4oszx6ehUkTkO4FM6sqPs9MS2+wNg2TJiDdC2edafu54P6vFFmePTwLkyYgOneeVfF5ZlK7rlzDpAmIrgfmWz+l4P6vFFn/YWEzJg0AjCy5aWM26v7tmNdzvx2Tq2idMSbXfdoYTJqAKM8m5P5QYN9XknryDJMmIN2njqmq+Dwz/VG59tsxmDQB0f/ymbafC+7/SpHlmfaD7xIIgPbvWRWfZya162rTMGkCYv0T66cU3P+VIus/nDYGkwYARpbcOWM26v79mNdzv1ejVMmyjubvMWlCov07IXd2gX1fSbI8OwOTJiTdvxtTVfF5ZvpzPtcwaQLSfeaYM20/F9z/laKePMOkCYjatLMqPs9MatfVj8CkCYj1T/KGYKH9Xymy/sPvMGkAYITBpHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGmgXIjH4zHpWeneWCz2QQ/DKAGTxoVJExxMGgmTJjiYNC5MmuBg0kiYNMHBpHFh0gQHk0bCpIFyIRqNnphMJnPxePxuLXfwMIwSMGlcmDTBwaSRMGmCg0njwqQJDiaNhEkTHEwaFyZNcDBpJEwaGM1EIpEtq6urd4pGo9vEYrFfuUkzX/qc1rfX9h1tu7Stv2WlWBm9/3C977uJROIE1ZmoqqrazjevEvs7VHZnfe7mHsqjOvZWXUcr/j0t67Tc2TcNQmXfo+0Hq9y3pa9LVdLWvnmlTJkyZQMzpWz0kL32cJ6ampoPaNtE6TgzsVR/slRHGWHSuDBpgoNJI2HSBAeTxoVJExxMGgmTJjiYNC5MmuBg0kiYNDCaicViF8fj8aekTuk5KafY61o+5rEu6QnpOn/LAJLJZMTK1tXVmbnzijRP75+l5bXRaPSeRCLxSm1trW1rk3b1tw1C78nU19fbZ5+jcp9TvVm99yW9vlO6SrpBylpdJpW73EwZe6/iJ6l8Tnpe8dv0viu1nGPl7e/Sun3+OfkPKoC2jZf+J70aiUQ+q3r30euH9Tlvatkh3ar6rpJu1OusfZb/DYu1Ps6rGXEwaVyYNMHBpJEwaYKDSePCpAkOJo2ESRMcTBoXJk1wMGkkTBooF+Lx+HfMgIjFYnfZCBIPF6S+vn4jlW857LDDrPx1qxppo+0TpeVmlmhZ6+EBqK5m/+zler1My7180wAU31SaY+aLlmaSdGq5UO8teHuW/s4PqMw8M4C0vNzDA4hGo19QHS9o+xtSu7RUsZX+U6uutVX+JyqX/07SMb5pRMGkcWHSBAeTRsKkCQ4mjQuTJjiYNBImTXAwaVyYNMHBpJEwaaBciA5xThpt31z6lxslf/bwKlHddquS1W2jdnb3cB+K5U0aLV+w26s8XJBIJLKnPvdZN3Ue0HsG3CK1IioTl8yA6aqtrd3bw32YSaNtz9voGC1vWV19vejzv2Imjf/dIz6iBpPGhUkTHEwaCZMmOJg0Lkya4GDSSJg0wcGkcWHSBAeTRsKkgXJhDUyayW6Q2KiXY80EEcmVKZFIRKUTVO5x6S3FpnhVfSjWbCaJyjVVVVWt7+GVovJdfnvUzz20UvS9PqXyL6rsK9Kgk4KbNC9K9vlf9fBq0edvovoW+61Pq/07QoNJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0kC5sAYmzele7n+xnrlf2rScPQRdZ0uVT3pVfSjW7CNzzrPbiTy8UlSu002a73topUQikU+r/tWZNP/17Z/38GqZPHnyhir/bzdpLvPwiIFJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0kC5MFSTJhaLfd3K+a0+H/LwO6IETBobSfOmvlO9h1eL3mdPxFpu+0LL4z08YmDSuDBpgoNJI2HSBAeTxoVJExxMGgmTJjiYNC5MmuBg0kiYNFAumNFgxks8Hn+wrq5uFw8PQmXerzJ3+QiSqzz8jlB9I23SPG+fr2Wr6l3PN60S1XWT36J1h967hYdHDEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBsqFRCKxbzwef8VH08Q8XBAbaaMy95lRouX9sVhsP99UEG3fXuXOjkajX/TQALRtRE0axe3pTma4/E9aVFNT8xnfPAiV3V9a5KbOPbYvfNOIgknjwqQJDiaNhEkTHEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSQDmRSCSOkXI2QiQejy+NxWL3atmp9Xu9yAC07RvSMisvdau8vecmxW6UOqTl9pjuZDL5X72+VHVv528dgN6TcdPl/PHjx6/j4ZWiujr98d+rNWnMcFF5u53pVX1+lYf76L3dSXXl56SRtBp/yk2Y5/WeeVra92nX91ju+2aBdKhXURJg0rgwaYKDSSNh0gQHk8aFSRMcTBoJkyY4mDQuTJrgYNJImDRQrsRise1ra2v3HOqtPHabUDQa/Yje9zFban0j31TS9DNpXrXXHs6j2KbaBx/t952GdCvUSIBJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0gCMblZl0owmMGlcmDTBwaSRMGmCg0njwqQJDiaNhEkTHEwaFyZNcDBpJEwagNENJk2ZCZMmOJg0EiZNcDBpXJg0wcGkkTBpgoNJ48KkCQ4mjYRJAzC6waQpM2HSBAeTRsKkCQ4mjQuTJjiYNBImTXAwaVyYNMHBpJEwaQBGN5FIZMtEInFELBY7yl57eNSBSePCpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdIAQCmASePCpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdIAQCmASePCpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdIAQCmQN2nOHvN6vgNgDVOl6i86+Z+NSROS7j+NmZD7W4F9X0n6q/LsLEyakGj/VuXOK7DvK03n53MNkyYgOmecafu54P6vFFmeaT/4LoEA6P/4rIrPM5Pa9e4/Y9KExPon1h8uuP8rRT39VEwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAe6uvr1x4/fvwGWq7nIYAgTJs2ba2qqqr1lW/reAggKFOmTNlg0qRJG/sqAAAAjCBjfVkU4vH4zslkcqkuYnK1tbUFdfjhh+cSicRF/hYof8bmcrmi5tmqqKmpebfy8OYjjzzS8u1Grb/PN0H5U+z2bNdYLDZfy5fVruW0fEt6U+1Xrq6uztqx57T+B7u48bdABeDtWVFzTW3VPsqlNuWb5ZhpeW+u2XlTr59UDn4fg7BiCXYOVW59Rrrb8+yXHgYYEsPZvwMAKGvU0fuQ1KXOX3s0Gt3Gw0VB9X3EOpZSI78AgnLsSu/4TfFQUCKRyJb6rDul1/2i+gZpc98MZYqOcc1hhx1mx/uScePGrevhd0xVVdUWumjey1cHofyeZBfRUofy7cMehjLFDGAd68ekp3Su283D7xjl2P7K3S4t4x4ahLYfawaO9LhybScPQ5mj4x6ztk059/di9al0Tt5T9f1OudRl52ct/6TPuciMZy2neTGAVaIc+rS0XLrDRpl6GAAA3i7WudRJean0iBrX93u4KOiE/3kbRaO6T/MQVDDq8F0lWcdvsoeCodyzX6LfVO5dGYlEPuuv52iJSVPm6BjH/GLj78PdWdRnXmJtntrSb3kIyhQzaXS8HzfZjx0eHjaU57+3XNPyZA9BmaNjnfS27TytrtUTfWeorp+rvZpkt9N5yD7nZ55bmDQwJJQrn1EumXF8q92e6WEAAFhT1JBmpFfVsP5XsobV9KJeP28xvV5kI2G8+NtCJ/6j7USver7hIagwdOyP8Zx6Xjn1hpbW8XtZsltDLGY5+DUvXhT0mSfayBkpP1Rbn7GXPqNbS0yaMmXy5Mkb6vguk17QMX5JsguZ17Xszb3/aXl5yM6j2rr19BmPSst0IbWnh6GMsPxRLv1Vx/hlyzWp93ak/LnTY0/ognc7f0sQbBSFPucfPtrhSA9DGaJc2ljH+GnLL2llbdslKlq020xUHyYNrBblx87SfywHPQ8tZ2z0fG9uvqLlDXZu9LcAAMBQUQO6q7REWlTskTRqoH9unUgt09KvJRtS+31dRB+ti5iPquFmSGQFoRwLOpLG8ld136Pl08qxL3gYk6bC0LGP9o6kCf2LntWvz9pbeXWWli8p9zJq1z7gm6GMGcmRNPrMr7pBk+I8WjmoaUt422YjaULOS4NJA2uEcoWRNAAAxUQN6+5qVB+VFusCY2sPFwXVuZ8UV72fMOn1RHVmp+r1xXptvzZbZ2NhdXX1Hv4WKGOUa3mTRsf8Sx4qGsqpEyyfVP/0/sO2DX0eJk0FoWPce0vAxcWeCysSieyi+m+XnlP9z2iZn8xVy/ukn0m7elEoc/qZNE8M03Efq888WJ/1qHLuNS0ZQVNh6LjX+3nuwpDmnOrHpIE1QrmSN2m0/BfGMQBAEVCDulqTRmWO1PbX/WJkgCymbc9I+3vxIaMLnj1Vhw2LfLP/yAcoT3ScV2nSTJw4cStte8BuVbJyK8p/Of6NF8+jsh9WDmalp7Ttcx4eQHV19ce1LW/SqI73ehjKFB3r1Zo0KnNOofbMZPmn996m7UM2re2CXe8zQ/plyUbUVPkmKFOGYtJom/1QYU9mKphrnqef9+IFUfu1mfLpfM/Lh7XkXFmhKA9Wa9Jo299UblCumfy919otVF68ICqDSQNrhHIFkwYAoJioQQ02kmYo6DNP9Ivvs7XKo/vKGB3joo6kUV2n++10Ng/EdK03amm31vXJY7P9c5dpebVva9Dr3b0qKCN0XIONpFkd+my7ffRJffZye7qYh6EMCT2SRnXWJJNJu5XKfsg4aerUqUV7UhmMToZi0hQD1Y9JA2uEcgWTBgCgmKhB7TNpokV+BPdQ0OdfYJ0Bff5XPQRlio711VKxTJqxqueDqu+Tytt9VqG9pUkqZyNp7pQOtJjWx2n5Hq8Lyggd216T5pLhNml0Qb2DPneR9PqRRx75Pg9DGeImzRMm5VzRTBq1S9uovv9YmyUd6mEAa9sO87Yt6JPr9DmYNLBGKFfMpLF+1m2YNAAARcAuVBOJxP1qYF8s5jBqa6RX01CP1eee6x2BGdbh9TiUKTrOp49Ex0+dBuakqSDUruyhtswuZG4r1miWo446ajPl7lZ6udLRfvq8TZVfN/tF1I88DGWK8mE95dpNfrz38/A7wkxF5dCtqrdodUL5oLz4uLdt/6yrq9vCw0VHOYhJA2uEcmV3aYly83/05wEAioQa1vHSi94xfEC6SetZdT739iJrjOqYqE7EG6rDHsf3oNZbtbxWy3u1fNU6ttFotEXrq7wfH8oH5cO7dOxvtluUlGtZHfvrpWeUB9/zIkFQ/XurY9utz7xRn49JUwHoWP/ALmZ0vF9Xjt2q5d1aXqMLj7f1C586nTb30RK7cNHSJg2+Q3XarXPNWt6nz7I5u+zx32crv3f0t0GZY22Ljvuj1qbp2N8j3aKcsEfBf9CLrBFmBKq+VyWrzx7r/dxqZI+9/Y/KD/utyjAy6HifZG2bjvlryrN/av0eLa8s5hN1VP/PDj/8cPuMX3gIYLUoD7+snHlDskfE/0vrD0m3rfgwBwAAWHPG2n3vRX583lj7ddB+dQxQN4xCcrncWLtYtryw1x4GKDrW3vhcHkXLM6uzt00bN24cbRr05YTJQwBBsXNosds2gGLQ7xzJbU8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo5wxY/4fsdJWuQhwRGcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image('./images/multi_step_vector_output.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.models import Model, Sequential\n", + "from keras.layers import Conv1D, Dense, Flatten\n", + "from keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "LATENT_DIM = 5\n", + "KERNEL_SIZE = 3\n", + "BATCH_SIZE = 32\n", + "EPOCHS = 10" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', activation='relu', dilation_rate=1, input_shape=(T, 2)))\n", + "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', activation='relu', dilation_rate=2))\n", + "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', activation='relu', dilation_rate=4))\n", + "model.add(Flatten())\n", + "model.add(Dense(HORIZON, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer='RMSprop', loss='mse')" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv1d_51 (Conv1D) (None, 6, 5) 35 \n", + "_________________________________________________________________\n", + "conv1d_52 (Conv1D) (None, 6, 5) 80 \n", + "_________________________________________________________________\n", + "conv1d_53 (Conv1D) (None, 6, 5) 80 \n", + "_________________________________________________________________\n", + "flatten_8 (Flatten) (None, 30) 0 \n", + "_________________________________________________________________\n", + "dense_13 (Dense) (None, 1) 31 \n", + "=================================================================\n", + "Total params: 226\n", + "Trainable params: 226\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 23370 samples, validate on 1463 samples\n", + "Epoch 1/10\n", + "23370/23370 [==============================] - 4s 175us/step - loss: 0.0168 - val_loss: 0.0032\n", + "Epoch 2/10\n", + "23370/23370 [==============================] - 1s 50us/step - loss: 0.0025 - val_loss: 0.0012\n", + "Epoch 3/10\n", + "23370/23370 [==============================] - 1s 50us/step - loss: 0.0011 - val_loss: 8.3938e-04\n", + "Epoch 4/10\n", + "23370/23370 [==============================] - 1s 50us/step - loss: 9.2890e-04 - val_loss: 7.1310e-04\n", + "Epoch 5/10\n", + "23370/23370 [==============================] - 1s 50us/step - loss: 8.2510e-04 - val_loss: 6.6736e-04\n", + "Epoch 6/10\n", + "23370/23370 [==============================] - 1s 50us/step - loss: 7.4785e-04 - val_loss: 5.5442e-04\n", + "Epoch 7/10\n", + "23370/23370 [==============================] - 1s 51us/step - loss: 7.0345e-04 - val_loss: 4.1933e-04\n", + "Epoch 8/10\n", + "23370/23370 [==============================] - 1s 50us/step - loss: 6.6990e-04 - val_loss: 3.8297e-04\n", + "Epoch 9/10\n", + "23370/23370 [==============================] - 1s 51us/step - loss: 6.5410e-04 - val_loss: 5.2706e-04\n", + "Epoch 10/10\n", + "23370/23370 [==============================] - 1s 49us/step - loss: 6.5067e-04 - val_loss: 5.2468e-04\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.fit(train_inputs['X'],\n", + " train_inputs['target'],\n", + " batch_size=BATCH_SIZE,\n", + " epochs=EPOCHS,\n", + " validation_data=(valid_inputs['X'], valid_inputs['target']),\n", + " callbacks=[earlystop],\n", + " verbose=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluate the model" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "look_back_dt = dt.datetime.strptime(test_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", + "test = energy.copy()[test_start_dt:][['load', 'temp']]\n", + "test[['load', 'temp']] = X_scaler.transform(test)\n", + "test_inputs = TimeSeriesTensor(test, 'load', HORIZON, tensor_structure)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "predictions = model.predict(test_inputs['X'])" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.25],\n", + " [0.32],\n", + " [0.4 ],\n", + " ...,\n", + " [0.53],\n", + " [0.46],\n", + " [0.44]], dtype=float32)" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestamphpredictionactual
02014-11-01 05:00:00t+12,788.402,714.00
12014-11-01 06:00:00t+13,014.442,970.00
22014-11-01 07:00:00t+13,264.803,189.00
32014-11-01 08:00:00t+13,382.653,356.00
42014-11-01 09:00:00t+13,495.023,436.00
\n", + "
" + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-11-01 05:00:00 t+1 2,788.40 2,714.00\n", + "1 2014-11-01 06:00:00 t+1 3,014.44 2,970.00\n", + "2 2014-11-01 07:00:00 t+1 3,264.80 3,189.00\n", + "3 2014-11-01 08:00:00 t+1 3,382.65 3,356.00\n", + "4 2014-11-01 09:00:00 t+1 3,495.02 3,436.00" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eval_df = create_evaluation_df(predictions, test_inputs, HORIZON, y_scaler)\n", + "eval_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute MAPE for each forecast horizon" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "h\n", + "t+1 0.02\n", + "Name: APE, dtype: float64" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + "eval_df.groupby('h')['APE'].mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute MAPE across all predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.019844552417510108" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mape(eval_df['prediction'], eval_df['actual'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot actuals vs predictions at each horizon for first week of the test period. As is to be expected, predictions for one step ahead (*t+1*) are more accurate than those for 2 or 3 steps ahead" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'t+2'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3062\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3063\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3064\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 't+2'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m111\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m't+1'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.75\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m't+2'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m't+3'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.25\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfontsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2684\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2685\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2686\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2687\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2690\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2691\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2692\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2693\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2694\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 2484\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2485\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2486\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2487\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2488\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 4113\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4114\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4115\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4116\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4117\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3063\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3064\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3065\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3066\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3067\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 't+2'" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHVCAYAAABSeALaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8JFeZrp8jqZXz5GRN8NiTjCMOZEwyCyazBBOWC+vlLhkWMMsuYcGA2V2TvIC5Zm3CLiZjsHEC44zDOI1nPFmTk0atUeoktbruH6e6qk5Vt9RqadTVre/5/cbqU11qlVyqqvOe9wvKsiwEQRAEQRAEQRCE8qaq1AcgCIIgCIIgCIIgTB0Rd4IgCIIgCIIgCBWAiDtBEARBEARBEIQKQMSdIAiCIAiCIAhCBSDiThAEQRAEQRAEoQIQcScIgiAIgiAIglABiLgTBEEQBEEQBEGoAETcCYIgCIIgCIIgVAAi7gRBEARBEARBECqAmlIfwETMnTvXWr58eakPQxAEQRAEQRAEoSQ89thjvZZlzZtov9CLu+XLl7Nx48ZSH4YgCIIgCIIgCEJJUErtK2Q/CcsUBEEQBEEQBEGoAETcCYIgCIIgCIIgVAAi7gRBEARBEARBECoAEXeCIAiCIAiCIAgVgIg7QRAEQRAEQRCECkDEnSAIgiAIgiAIQgUg4k4QBEEQBEEQBKECEHEnCIIgCIIgCIJQAYi4EwRBEARBEARBqABE3AmCIAiCIAiCIFQAIu4EQRAEQRAEQRAqABF3giAIgiAIgiAIFYCIO0EQBEEQBEEQhApAxJ0gCIIgCIIgCEIFIOJOEARBEARBEAShAhBxJwiCEDKGhmDLFkgkSn0kgiAIgiCUEzWlPgBBEATB5fBh+MAHoL8fFi+Ga6+F5uZSH5UgCIIgCOWAOHeCIAgh4rbbtLADLfTuu6+0xyMIgiAIQvkg4k4QBCFEHD1qjnt6SnMcgiAIgiCUHyLuBEEQQsTAgDkeHCzNcQiCIAiCUH6IuBMEQQgR2ZDMLENDpTkOQRAEQRDKDxF3giAIIUKcO0EQBEEQikXEnSAIQojwO3fDw6U5DkEQBEEQyg8Rd4IgCCEhldL/vIhzJwiCIAhCoYi4EwRBCAn+kEyQnDtBEARBEApHxJ0gCEJI8IdkghZ3ljXzxyIIgiAIQvkh4k4QBCEk5HLuxsYgkZj5YxEEQRAEofwoWNwppaqVUk8opW62xyuUUg8rpXYqpX6ulKq1t9fZ4132+8s9n/EZe/t2pdQrpvuXEQRBKGdyOXcgoZmCIAiCIBTGZJy7jwBbPeOrgG9YlrUaOAG8197+XuCEZVmnAt+w90MptQ54K7AeuAT4rlKqemqHLwiCUDnkcu5AxJ0gCIIw+4jFYP9+HcEiFE5B4k4ptRR4FXCdPVbAxcCv7F1+BLzOfv1ae4z9/kvs/V8L3GhZVsqyrD3ALuD86fglBEEQKgFx7gRBEAQBNm2Cd7wD3v1u+PjHReBNhkKdu28CnwIy9ngO0G9ZVtoeHwSW2K+XAAcA7PcH7P2d7Tm+x0ApdblSaqNSauPx48cLPERBEITyJp9zJ+0QBEEQhNnCvn3w2c+6C56bNsHjj5f2mMqJCcWdUurVQI9lWY95N+fY1ZrgvfG+x9xoWT+wLOs8y7LOmzdv3kSHKAiCUBFIWKYgCIIwm+nrg09/GoaHze1Hj5bmeMqRmgL2eS7wGqXU3wD1QCvayWtXStXY7txS4LC9/0FgGXBQKVUDtAF9nu1ZvN8jCIIw65GwzMohFoOREejoKPWRCMLs5MYb4bbb4Iwz4AMfgPr6Uh+RMBGJBFxxBRw7FnxPIlgKZ0LnzrKsz1iWtdSyrOXogih3WZZ1GfAX4E32bu8GbrJf/94eY79/l2VZlr39rXY1zRXAauCRaftNBEEQyhwJy6wMNm6Ev/1beMMb4LvfLfXRCMLsY+NGuPZaHd53881wyy2lPiJhIsbG4ItfhJ07c78vi5yFM5U+d58GPq6U2oXOqfuhvf2HwBx7+8eBKwAsy9oC/AJ4BrgN+IBlWZIeKQiCYCPOXWXwgx9APK5f/+pXOsxIEISZ49ZbzfHTT5fmOITC+c534OGH878vi5yFU0hYpoNlWXcDd9uvu8lR7dKyrCTw5jzffyVw5WQPUhAEodLJZPKLOBF35cPQEOza5Y4tC44cgc7O0h2TIMwmEgl44AFzmyywhJuDB+Gmm8xt9fWQTLpjeQ4WzlScO0EQBGGaGBzUQiAX8lArH555Jnge84XbCuFlyxb4p3+CL3wBenpKfTTCZLj/fkilzG0i7sLN5s3meP58+MQnzG3i3BXOpJw7QRAE4eQwngCQh1r5sGlTcJucv/JibAw+/3mIRvU4nYYvf7m0xyQUzp//HNwm4i7cJBLm+KKLYPlyc5sschaOOHeCIAghYDxxJw+18iFXbo+Iu/LiyBFX2IHka5UT/f3w6KPB7YlEUEAI4SGbo5yloQFaW81tch8tHBF3giAIIUDEXfkzMgJbtwa3S1hmeeEvbDQ0lD9kWggX99yj85dzceLEzB6LUDh+4d3YCC0t5jZ5DhaOiDtBEIQQkK9SJugHXzo9c8ciFMeOHbnPk6w4lxd+EWBZQWdBCCd/+lP+90TchRe/uGto0AVVajzJYyMjwVxKITci7gRBEELARO7O8PDMHIdQPLny7UCcu3Ij1/kSgR5+jh4NFubwInl34cW/eNLYCEqJe1csIu4EQRBCwHjOHcjkshzIl5sl4q68yOXwyKQy/Nx11/jvi7gLL7nEHUjeXbGIuBMEQQgBE4k7mVyGG8vK7xrIhKS8yHUtyjkMP/4qmR0d5ljEXXjJFZYJ4twVi4g7QRCEEOB3d6p8d2eZXIabPXvyh86Kc1de5BJ3MqkMN93d+l+Wqiq49FJzHxF34SVXtUwQ565YRNwJgiCEAL8AWLTIHMvkMtyMVy5/vAb1QvgQ56788IdknnsurFplbhNxF15yVcsEce6KRcSdIAhCCPCLu6VLzbE81MLNeOJubEyqLZYTucSdFDQKL5YVDMl86Uuhs9PcJuIuvOQLyxTnrjhE3AmCIJQYywpOKJctM8fyUAs3EzW6lvNXPohzV14MDOhKmVkiEXje80TclRP5CqqIc1ccIu4EQRBKTCqle/hkiURg/nxzH3EOwktPj/6XJRKBri5zH8m7Kw9yLbSATCrDjP/czJunxUGugioSHh1OxLmbXkTcCYIglBj/ZLKtTR5q5YTftVu7FubONbeJuCsPhochkwlul+svvPgXvpqb9ddsI+ws6bQskoWRsTFzcVMpqKvTr8W5Kw4Rd4IgCCXGP/Fvb5eHWjnhF3dnnKEFuhcRB+VBrh53INdfmInFzHFW3IGEZpYDuSplKqVfyyJncYi4EwRBKDG5nDsRd+XDpk3m+IwzgpMSce7Kg3z9JmVSGV7yOXcg4q4cyBeSCfIcLBYRd4IgCCUml3MnK5blwdCQ7nGXRSlYv17OX7mST9zJpDK8iLgrb/K1QQC5jxaLiDtBEIQS4xd34tyVD1u2mOMVK/TkUsIyy5N8YZnSqzC8iLgrb8YTd/IcLA4Rd4IgCCWm0LBMmVyGj23bzPEZZ+ivfnEnYZnlQb7zNDpqFn0QwoNf3DU1ua/94i6feBdKh5lzZxlhmU1Nbv4daCGYTs/UkZUvIu4EQRBKTC7nLhJxK4aBruDnX+EUSo//3GX7E4q4K0/Gm/yL+xpOhoft/2zeDFu30px2V8tytUMQwoUj7nbvhvvuo/G3P3VumEqJe1cMIu4EQRBKya9+Rf83r4etW2FML0m2t+u3JN8g/Pgr9WVdAymoUp7ky7kDmVSGleHBjI6P7j0Ox47S/J9fdMIcJCwz/CQSwOAAHNgPY2M07NsG//qvzvvyHJw8Iu4EQRBKRU8PvP3tDBwahmNH4ZlnAFfcyYpl+Mkn7iTnrjwRcVd+DB8agIQb29f8zMNwzz2AiLtyIB7HWP1qIAG/+pXTcFKeg5NHxJ0gVCD9/TpHRAg5jzwCo6P0Y6u5aBR6ex1hIA+18FOocycFOcqD8cSdCPRwMnzEvDE2MwxXXw2IuCsHEgmMnING4nDkCDzxBCDOXTGIuBOECsKy4Ctfgde/Ht7+dujuLvURCeMSjQIwgMfm2bmT9ohWDPJQCz/+BrxZcVdfDzU17vaREUilZu64hOIQ5678GD5uXoTNDMMf/gA7dgRy7vr7HUNICAmJBBB3xV0D9us//AGQRc5iEHEnCBXEtm1w5536dW+vjmwQQkw0yhhVDOF5eqWStHznK4A81MqBfM6dUhKaWW5kMuPnRsr5CyfDUbOMaTN2+cxvfpNIxLyPWtb4Al6YeeJxgs4dOOJOFjknj4g7Qaggduwwx4cOleY4hAKJRhnEfHK1MET11f8OW7eKuCsD8ok7kIqZ5cZEobNy/YWT4QGzNr4j7m64AaJRaYcQchKDo5BKOmNH3D3+OBw6JM/BIhBxJwgVhF/M+fv/CCEjGjVDMoE2BnTC5Ac+QEuzOdOUh1r48Is7bwNeEXflxUTnRxyD8JFOQyrmijuF5Yb1JRJw7bWSdxdy4odMte2cP4BbbhHnrghE3AlCBeEXdyIGQk406hZTsWnHjhn6y19offJe4z15qIWLkRGzoW5NDdTWumOZlJQXEzk6cj8NH8NDFiRc16eZYZR3h+98h85W09kTcRcu4ofNOFlD3P3hD+LcFYGIO0GoIMS5KzP8zl0kop07m5b//pbT+w7koRY2/MVUGht1rl0W6XVXXvhzserrzbGI8/AxvLcXMmPOuLk6Cc3N7g5Hj9LZvdH4HhF34SJx3HywGeLuT3+itTZpvC/X4cSIuBOECiGTCYq7RALGxnLvL4QAv3O3ejXt1a4ibzmxD3qOO2MRd+HCv3jizbcDKahSbvjF3bJl5liuv/AR23bAGDe3VcF732ts67znt4Ab4i7iLlwkes1VMifnDiCZpGXLQ8b7ch1OjIg7QagQenrMELEs4t6FmL4+07lrbaX94nPcIYMw7D7JRByEC8e5GxyEvXtpivcY74tzV174xd0pp5hjuf7Cx/Cuo8a4uaMWPvxhqHKnt537nzBibkXchYv4CdOZa1w6xxi3PnCrMRZxNzEi7gShQshXGVPEXYjJFZZ51gpn2MwwDLsVO+ShFi5iMfRJefwx2LuHxpt/qSu82YhzV15M5NzJvTR8DHebCyrN8xpg5Urd7NWmkz447kZAiLgLF4nBUWPc8A/vMsYtd92E13mV5+DEiLgThArh4MHc22VCElISCUgkXHGnFFRX07ZuibNLK4O2gtAPNnmohYtYDDh2zBk3j/XDl77kjKVaZnnhF3dLlpg5lPF47ugIoXQM74sa4+ZFdvWNd77T2dZJn5EgK60QQkQiQTxhlMCh8b1vM2Lcm4/uhCF3IjM8LI3oJ0LEnSBUCPmcOxEEISWqJyVOzl0kAijaTl8IDQ2Azj2oSqd0WUYgmdRdEoRwEI+jT4pNI3G46Sbo7gYkLLPc8E/6OzoIVOqTxbJwMXzIvKial9grKqed5mzrpM9oki3OXXiwdu0miadyUX099Qva4GUvczZVk6Fp8Ij7PVawBY1gIuJOECoECcssM/ziriYCQHtnFaxbB4BCNzX3PslErIeH4WGM5rtNxPTM45prAAnLLDf84rujQ9pZhJ3ho+YDrrnLbmq3YoVju7YyiEolHbtnaEgWycJCYku3Ma5rqtHpkpdeamxvjZr7yXU4PiLuBKFCkLDMMsMWd05YZkSLu7Y2YMMGZzcRd+FFO3cpZ9yEfZ6uuw4GB8W5KzP8zl1bW9C5k+svRMRiDA96y0ErmpbZxTjq63VcLVCFRQcnIOm6dxKaGQ4S2/YZ48ZW/Rzkb/7G2N7Stw9S7r1WrsPxEXEnCBVAJgOHD+d+T8RdSIlGsfCGZdYA0N6OiLsyIXZiBEZHnLFTwntoCG64gaYmo2gfyaQTYSuEjLGx4LXV1ibOXajp7mYYT0+7+nqa22vc8apVzksdmum67BKaGQ4SO8xWFg0ddfrFwoVw/vnO9lYGjaRYuQ7HR8SdIFQA+doggIi70BKNkqCBNPZkJBKhthbq6jDEnVtURSMPtfAQO2xW4GjGc7F9+9uozJiIgzJhcFBH1GZpaYGaGnHuQk13NzE8zSUb6o3+5UFxJ3l3YSO++4gxbpzrOZ8vfKHzUhY5J4eIO0GoAPKFZILcBENLjjYI7e12mohH3DUzbFTMFLEeHmKHTaVmNN/dvRtuuUXy7sqE/mMpSLuJWO22oe4Xd3L+QsTu3aZz19Ag4q7MSOw1+xQ2LvBccOvXOy9lkXNyiLgThAogXzEVEDEQWvziribiCoElS5xqHK0M6pgxO7dLHmrhIdZjlmxzcu6yfOtb0g6hHHjgAfovvATuvx927ADLyivuZLEsRPjFXf0E4i4p4i5UxOPEe8wJSsMCT6iDR9yJczc5RNwJQgUwnriTm2BIydXAPDtUynHvWrBPoP1gk/MZHuLRhDFues5Z5g533UVr4pixScRdCLnySvqz5+XwIdi5g/Y27ZRLWG2IEeeuvNm9mziN7ri+nobmane8dq3zspVBLc4zuoCOXIfjI+JOECoAce7KkGiUQTwzx0iNOZEMiDt9IuWhFh5iJ8zqKE2veB684AXGtrYn7zHGcv5CyPbtnKDDHR8+TPsjdwDi3IUaf0GVCXPukmTD20XchYCdO0nQ4I4bGrMtXjVNTbByJeB9DurQd7kOx0fEnSBUAOPl3Im4CykBcRfJKe5asdWAOHehIzZoVjFqWrUQPvpRY1vrE/cY1Y7EuQshfhcd6LjjRvjudwPOnVx/IWFsjLE9+w1xoBobaPQYQXR06H+gWyFYGaecvoi7EBAQd77zB05opv85KItk4yPiThDKnPHaIIBMRkJLgeJOwjLDS2zYMsZNpy6C17wGurqcba3pKAy6ik4mJSFjdBQGBkznDmhjAD74QVoeuM3YLucvJBw4QCxd644jERpbarJ9y11s964TW83Z7RBE3IWAXbvMsEy/OAdH3MlzcHKIuBOEMsffBsF/cxweNkt8CyHBL+5qfOIu8FCLg5WRyWVIsMYyxBLmI7TxtKVQXQ2veIWzrY0BQxHI+QsZ9izf6Tdpo50ei9Yr/hEG3JYXMqkMCf42CP5iKlnssD5X3Om8u74+eS6WnInCMiGvuJP76PiIuBOEMscfkrl8OUQi7jidlsbJoWNsDE6cYAhPQk+kxszvmTcPFixwH2pWBhJJCbMNCcm9R43JYW2NRU2HfQIvvNDZ3sYADLgzEQnLDBm9vYBH3FVXg1K0owVdS7oPdnc7u8ukMiRMVEwli+3cNREjwqgj7lIpo76KUAp27jSdu3HCMp3nYFycu0IQcScIZY6/mMrSpQQeciIIQkZ/P1iWm+dTXQ2qKlA2nw0b3FwDgNiwTC5DQnyXGQvd1ORRen5xNzRItpCDiLuQEY0CHnHX1Axr1rjijiF9/qwMIJEQoWGS4k4RbIdw4sTJPURhHGIxOHzY59zVB527NWugqsoVd8kkjKUZHJTrcDxE3AlCmeMXd0uWiLgLPfaE0nHubKvVX5mP9evdhxpALMbQkDzUwkBst9l8t6nF8zg9/XSzT2E6DXE9qRRxFzL8zl2kBhYspH2xDvmrJkOjFXPOn2XJ/TQUBMRd/bjiDqQdQqjYvRvAde7qG0BVBcVdQwOsWkUto9Shi+EQi5PJiPM6HiLuBKHM8YdlLlki5btDjy3unJw7W9z5K/OxYQM1jFGPLgJALIZlQTw+Q8cp5CXWbfava2rzxEJXVcEFFwC2cwdOURVxXkNGNEqaamOhRSloXbfU2aWFISccDOR+GgoCbRDGd+4gKO7s27BQCnbuBHCdO1vVBcIyIVgxMy55dxMxobhTStUrpR5RSj2llNqilPqivf0+pdST9r/DSqnf2dtfpJQa8Lz3Oc9nXaKU2q6U2qWUuuLk/VqCMHuQsMwyxC/uavKLOwiWgRb3p/TE9pszw8bOenMHOzSzmWEUljMTicXMAkhCientNdsg2FVrq9evcTa1Muj01wKZVJYcywo6d/kKqixZAnV1AMwhqi++9Cgg4q6k+MVdo/4acO5AKmYWQU0B+6SAiy3LGlZKRYD7lVK3Wpb1/OwOSqlfAzd5vuc+y7Je7f0QpVQ18F/Ay4CDwKNKqd9blvXMlH8LQZil5GqDIGGZZUA0yhhVbrU32y0ITE7sh1oHJ+hhvg4Ny2To66ti8eKZPWTBJHbQTNhpnu+bldjirgqLZoYZ8iiCoSGn/ZZQaqJRs1JmJEJ7O7BunbNJnLuQ0dcHAwOuuKuqgrra3OKuqgpWrIBt25iLDsElkYCWSDYiVygFu3YBnrDMyTh3UjFzQiZ07ixNdmoYsf85GR9KqRbgYuB3E3zU+cAuy7K6LcsaAW4EXlvUUQuCAMCxY6YL0NamBYKEZYacaNRXKTNCc7Oehxi0tsIpp+gVZwB0TKZMSkpP/Kg5s2hc4Lvozj/fednGgF5hGRsDZFISKnp7JxR34tyFjG5dvdQRd/UNgKKpKc/+dmimIe5A7qOlxHbuXHGnv+YUd9LzddIUlHOnlKpWSj0J9AB3Wpb1sOft1wN/tizLe7u7yA7jvFUptd7etgQ44NnnoL1NEIQiyRWSCeLchZ6+Pl8D85pgSGaWDRvcSQlALCbhRCFg+FjMGDct8pU6nTMHVq8GPHl39mxEwmpDRD5xt3ats0k7d3GjYqZQQuxiHI64a9Ah0TmdO8gh7nQOs4i7EpIn5y5nWOZpp0F1tevcpVKQTssiyzgUJO4syxqzLOssYClwvlJqg+fttwE/84wfB7osyzoT+A6uo6dyfXSun6eUulwptVEptfH48eOFHKIgzEpyVcqE4ENOVrhCRg7nLlApM8uGDR7nDhF3YWBwkHjc8/hSiqaFOU6gHZrpFlXRsxERdyEiX1jmnDkwfz5gO3dWRpdhR5y7khMQd1oRTCTunPuoOHelJR6HI0ewyDp3yhHoOcVdXR2sXm1Wjo7HZF4zDpOqlmlZVj9wN3AJgFJqDjrc8hbPPoPZME7Lsv4IRJRSc9FO3TLPxy0FfNlCzmf8wLKs8yzLOm/evHmTOURhilgWPPwwPPqolFsvBwoVd7LSHDKi0UARh0CPuywBcTcs4q7UHDjg5ksC1NXT2JzjcWqLO2fFWSpmho/eXk7gSYDMijtwQjMlHCxkFCnu5mGbBR5xJ/OcEnBUt5EZoRYLBbW1oKqIRKAmXyWQ9et9PV9jch8dh0KqZc5TSrXbrxuAlwLb7LffDNxsWVbSs/9CpZSyX59v/4wo8CiwWim1QilVC7wV+P10/jLC1Ln6arjiCvjUp+Caa0p9NMJE+NsgSFhmmeB37mrGd+78YZmy4lxi9u0zxV19Xe6JZUDc6Wbm4tyFiBwLLU6xm4C403l3MqksMf6cuwLFXTPDRBh1Gpknk9IrrSQc021knJDM2logj2uXJU/PVyE3hTh3i4C/KKU2oQXanZZl3Wy/91bMkEyANwGblVJPAd8G3moXZUkDHwRuB7YCv7Asa8t0/BLC9JBKwa23uuPf/x5GRkp3PMLE5BN3fqEg4i5kRKO+nLtI/py7NWuYozyVGZNJokdHT+rhCROwf79bCACgvj53IYAzzoCGBjcsc2QEkikRB2EhnYYTJ0znrqbGddH94i4uzl0oOKDLNzjirm6CnLsVK0ApFHbeXSoFGV3cSDJ/SoAt7px7aK1uBZTzHpplwwZx7ibBhK0QLMvaBJyd570X5dh2DZDT87HDNP84uUMUZoqjR51iboB+7u3aZRQNE0KEZcGRI+Y2CcssE6JRBjnXHY9XUKWhgbnLm2GPu6n3QAJduFgoCfv2MUynO66rz12pLxKB886j9T7PLGRwkIGB+hw7CzPOCb1o4uTc1dSAqnKdO7uoiluCXZy7kmNZzqqmWy1T97HLK+7q6vTK54EDzKWXIyzStl1jE9EodHXNwHELLuLcnXQmlXMnVDZ+oQCwbVtwmxAO/M2Q6+txJpgi7kLOZJw7oO3UeVTjrrzETqRIpU7i8QnjE3Du6vKXYb/wQte5AxgcFHEQFuz4ZkckRPSCiRP5kNO5s2RSWUp6e2FkhAxKX4PV1VCtfYq81yBIO4QwEXDutLgb17lbvZrWGk8M7cgIg8flIZgPEXeCg4i78qK/3xy3ewq+SZ+7EJNIQCLhijuldJnnccSdWrGcTvrcDcmkFFUpJfv3+3Lu8jh3kEPcDUjOXViwLyK/uHMWxxYsgI4O17nL6IqZIs5LiO3aOdefHZLZ2JijT6gXEXfhIY+4G9e5i0RoWTXf2DR0WCY2+RBxJziIuCsv/BNEr7jzTzRjMakKFhrsCaUj7iIRQI0r7lixwqyYmUzKpKSU+Auq5AvLhKC4Gxomenwsz87CjGJfRM4ks0aLO+dcKgXr1vnCweIMDcn9tGTY+XauuJsgJDNLnl53skhWAooJywRaN5xijAd7EnId5kHEneBwOEdjigMHJKQvrPT3o5M/HtsIGzfSNnTAea+62gxxsCynirdQauzZhFMts8YXCpaL5cvNipkJce5KRjoNhw4FqmXmDSlavJiFS2rcsForw9HdsWy6l1BKolEyKM8kU1+LxiRz3TrqGKEWu7pYPEY67bS8E2aayebbZcnT604KqpQAuxWCc91FCgjLBOqedTo1uLkoo4NJmZ/mQcSd4JDLuQPYsWNmj0MojP5+tLU6NATDQ7Td8jMdNmQjeXchxVZlTvl1OxQsb587gOXLxbkLC4cOkclY5sSkqnrciUndReewmp3uhoFBNm8+uYcpFEBvr5k7WROhocEX3mcXVfG3Q5BQ9xLhF3dFO3da3MkiWQko0rlTG9azDHcRm9iwzE/zIOJOALSzk8u5A9i6dWaPRSiM/kMxpzQ3QHv/Hnj6aWcs4i6k+J27iC4GMK5zFwjLTNAXlXiUkrB/vzspAaivCwoCPxdeyAY8am5w0HupCqUiGjXFXSQSDK+1i6o4eXfSDqG0TJe4SybAsmSRrBQU0woBYP161uDJFYrFJXUoDyLuBEDnb+ULM9m+fWaPRSiMgW5zybGdfrj7bmfsf9jJZCQkRKP4RBX0AAAgAElEQVSkqfY4PxGqqiao9DZ/PnMjnioOY2N2OwRhxgk0MB8n3y6LX9wNDYlzFwZ6e81zOY64c507XTFTiqqUiMn2uMvS3g6dna64syxIpYhGJX9yRkkknMmIFnfKiV6ZUNytWsWamt3ueHSEbY/HT85xljki7gQgv2sH4tyFlYEDZkWVicSdOHchIUcbhJYWXbshL0oxZ3Gd+TH7RK2XBH+lzPGKqWQ54wxT3CUT7NxhSTuLUuMPy4xEghPMpUuhudkVd2NjkBqRxbJSUaxzB7BqFXWM0Iz9MEwmGBsLVp4WTiK2awd2WGZtLaAffhOFZVJTw9qV5k1z62Mi7nIh4k4A8ufbgS4oJnHp4aP/kHlTa2MA7rnHybvzh/mJuAsJfnFXM36Puyxzl5uzl96DUtGhJATaIIzT4y5LaytzOiwWYd9oLYt0fESiIkpNNOqKBMjt3NkVM52wTIB4TJy7UpCrgflkxN3KlYCnqIodriShmTOIR9zFaXRCMqEAcQeseFYLEUadcfTIiJy/HIi4E4DxxR1IS4Qw0t9jrmC10w8nTsCmTYA4d6Flkg3Ms8xZ1W6Mo8eknH5JyBGWOWE4EcDy5ZyBJ9EumZS8u1KTw7nLKdTXrs3ZDkGYYfr6HEEWo0mXha6pBgoUd11dAMzDLpEp4m7myencaQq5j9asP90sThWPyfw0ByLuBCAYlllnRoDJxRNC+vsyxrgdO7bEDs0UcRdSAuKupiBx13raQqMMdHwonS34NmsYG4PHH4edO0uYJ5MjLLOgieXy5WZoZkrEXcmJRgM5dzknmOLchYMDbqXEYZrtiYoO6ZvQPQdYvhwIOncSmTSD2G0QICjuCnHuWLtWiqoUgIg7AQg6d899rjmWiyd8DAyal69f3PnDMmWlOSREo26lTHBy7iZCrVxBJ33uhuTs63X31a/CJz4Bl18Ov/lNCQ7AsmDfPtPtGa/HnRe/c5dIsmWLFHMoGWNj0NfnE3c1uYW6X9zFpE9hSbBDMsEr7jSTce7cipla3EmvuxnEH5YZmZxzx7p1priLi7jLhYg7AQg6dy9+sTnetk0mIWEiOZwmlXSduxrSNGDbOPfeC5mMOHdhJRp1e9wB1ETG73GXZZY3Mj94EP78Z3f805+W4J504gTEYq4gqKrKH8rnZ/lyutjnKeagG/Du23fSjlYYj/5+sCxXqFfXgKrK69zNp8cdx+LeOaowU5wkcTeb7qMlZ5ywzIKcu9NOY63yJCunkmzbnJb5qQ8RdwLpdHDl6tnPNldRhofh0KGZPS4hP/3PHDZmtm0M4BRbPHECnnpKxF1YKdK5y9nI/PjseaI9+aQ57u9n5ifY+/cDuOKuvh5QhYm7ri4UsJ4temxPLKUlQomwE62cc2mXY895Lru6WFDrKamYHuXYfiloNOMExF29My5K3KVS0utuphmnoEpBzl1dHUtW1tGE2+M31pvw/mkIiLgT0CHQ3lWPuXP1gtjpp5v7SWW38DDwjKm0nZDMLHffLWGZYWRsDE6cKCrnjrlzmVvrOYmZMfpmUTuEp54KbpvxcBx7BuEIAts5KDQsE3BDM21xJ3l3JcK2awoSd9XVLFjTYWzq2ZvIFiYWZoqcOXeagsRdc3Ow191ISsTdTBIQd+45LMi5A9Q6X96dFFUJIOJOCOTbLV6sv65ZY26XfnfhoX+7aVm0K192/913i3MXRuxQMEfcVVeDqipM3CnFnHnmLbt3R1+enSsLywo6d1CCe5Idv+4Xd5NxDZyiKskkYIm4KxUB564GyC/UGzasMipmjg3FJZxvpvE7d/WTFHcAXV2+CIiUnMeZJBCWOblWCIAUVSkAEXdCQNwtWqS/rl1rbpeLJzwM7DEn9e2nzzd3uOcemhvMUvni3IUAexbhiDvbLShI3EGORuazQ7EfPpy7XPmM35Ps2HQnT6t2Es5dezu0t7OGbbrqqZWBkRGOHNEV3oUZxr4WnXM5nnMHsG4dC3Er/RGXvLsZxxZ3FrYo9zh3BYVGAyxfTid9KOxwpWSS/n4YHR3/24Rpwq6WmaaaNDVOzl1VlZF+Nz5+cRePifngQ8SdkFfc+cMyd+7U+XlC6enfP2CM285ZBZ2d7oaBAZq7Nxn7iHMXAuxZfLHiLtDI/NDsyPvJFZIJOlR8bCbb/dnOndtAWc9GJjOxrGPE7dMkeXelI+DcTXAuV61iAR41l0qKuJtJPA3MEzRgoRxx19CggyAKoquLajJ0YJc7ta9BWWCZAZJJsj1EEjQAynkGNjaCUuN8r5e1a1mLR83F4+zaJfNTLyLuhEClzKy4mzfP1AsjI7B374wdljAO/YfNBmftyzvghS80tjU89BeqPFd4KiU3v5Ljd+5qJuncnWrm/UR7Zkcj81whmaD/pme02qTfubMnl5MRd+APzZS8u5KQJywz77lcutQn7lIi7maSEycgHgfsxZWqaqiZ4JzlIlBURRqZzxg5i6loRVdwSCbA2rXMoc89h/EEoyMZurun71DLHRF3guncHe9h8Ttfoiu7/enOQN6dhGaGg/6eEWPctmouvOhFxjZ1j+TdhQ5b3DnVMu1Vy4KqZQJz15nht9ETlX8Lt6z8zh3McKEnf87dZMIyIVhUJSHOXcnIE5aZ91wuWybirpTkbIOghUHB+XYQFHcJEXczxlR73GVpbYUlSzyhmRbEExKa6aHyZwbCuFiWp8VBzzHYsoVFPU/qkt/vfz9rTjdLrYu4CwH9/Qwk3CRklKJ9ZWdA3HHvvTQ3meXcRNyVmGiUFLWksHNFIhFqagpftWxeu4wIbnJIIpbJLmZXLEePQk9P/vdn9IFu3yyLKqgCeZ27nTu1CynMIPZs3gmxnSjnbtEiFnrF3cgIxw7PDuc8FEy1x10Wce5Kx1R73HnJkXcnFd1dRNzNcoaH7UiH3l7YupVaRujEDj7v7mbVnBPG/uNNsoQZYs8e+ml3x/UNtHdWwYYNwby7pFkGTIqqlJhAj7saWloKzzVQK4K97qK9ld3rzh+SWWfWlJm5BadUypkBugVVJnB7/NjiroN+lnDIEXdjY1KNeMaJRhmjylhoUWqcSWZtLfPnmotlR/ck8uwsTDvTUSkTHHHn3EftqrWzTdyNjek0mzvugP/6L/joR+FNb9Jfjx6d8NuLIxCWOTVx58+7k3uoi4i7Wc7hw+hM4i2bwbJYxBG888z2vj3G/gNmHQ+hFHR3M0CbO26op60NXW7Kl3fX0mcmJIlzV2KiUV+Pu0jB+XYAdHQwJ+LtdZep+HYIfnH3qleZ4+7uGXK97Pj1NNVaENTWgqpCKbuXeSHY4g5s9y7pFsTZsmUaj1WYmN5eV6QDRCI0NIy/0LJgacQYHzs4avSIFU4iU+1xl6WzE5qbmcdxPc5kYHR0Vom7p56Ct78d3vMe+OpX4Ve/0tuiUf31uutO0g8ex7mbVFgmwNq1nMYOdxyLs28fFR/JUigi7mY5R257CjY/7XQxX4xZXaX16A5jPOhrpyaUgO5u07lraKA9O3zxi41dm4/tNsYi7krMVMWdUsztMEPB+rZVrp2eq7/dC17gFn0CvQK9a9cMHIydb+dvg9DUNIkqb7ZrAHA62+2QMH3v9VctFk4y0agbXgsQiUxYmKOtq5063JWE5NCIREPMFNMVlqlUjl53yVnV6+5b3xo/Cuuxxzg5ixYeS7DoHndZ1q6lmRjLsEV/PIZl6RB3QcTd7GbbNo5c8S29cmWzCHOG0XboGWMszl3pSe/aa0xKVEO9KxDOPdfYt2XwkDGWiUiJ8Yu7mkmKO2DOfLPmd+/OynXu/Pl2kYjuv1mSQk958u0mVamvvR1ts9s5Pxnd6w50MUBhhshkIBoNOHcTnUu1TCpmloyAuHPt8kmJO4CuLjfnDiCZ5PjxKR5fmTAwAHv2jL9Pf/9JCs0cJyyzGOcOcPPu4nHAktBMGxF3s5mrruJw0iytvnjDHGPcvOdpY1U6kZBmn6VmYIc5m2ibU+OeI48zANDcf9AYi3NXYqbq3AFzlpgxgNG9lXtS/VUy16/X8wH7ue4wIw90f6XMyfa4y+Lk3UmfrZIxMACZjHsuq6tBVU18LnO0Qzhp+UmCyXQ5d5BD3KVmjXO3wwzGor0dLrsMVqwwt5+Ue+p0FlSZPx86O11xl8lAMilF/2xE3M1mHnqII3jim5avYNFH/tbYRe3Ynl1odpDQzNLSv8dc4m9b4JnsL1zo9P4BaI4fM7o8i7grMQFxV1NwG4QsgUbmhyu3zKI/JPPMM/VXv3M3I1XSpsO5g7ziTpy7GSTQ467AwjjS6640WFYw567YgioAXV20MORWHk4mSSRmR76WX9w997nwvvfBBReADhHX8ZgnRSRNVysE0OG1a9fq8HbnQ+PeP5NZjYi72croKOzaxWEWu9uWLmXRs5ea++3eTVuLWSFMQjNLyNgY/QdNhda22PNkq66Gpe45bGbYKfUMEpZZUiwLent91TKLcO5Wz55G5n7n7qyz9NfVq808t4MHZ+Bve6o97rKMI+5mQ3GOH/9YF3P48pdL2P7Btmn84q4Q524hHqsuKeJuRhgYgFjMGQ7XdBiLmJNeYOnqQuFph5CcPe0Q/Athp50GWBZrH7oe7r0XHnkEBvp55pmc3z41prNaJsDatbrqcJZYnEOHZsd9dCJE3M1Wdu9mLJ3hGAv0uLYWampYdHorLFjg7jc6SiumVSfiLj8PPggf+Qh88Ys6bn3aOXiQ/jGPmItEaJ9fa+5zyinOy2aGIenOoMS5KyG9vZBMupVOq6uhumbS4m7uWn8j8+o8e5Y3R4+aeR+RCKxbp1/X1wfDiE66e2c7d06e1hSduwYSujiHPbEcGdFh75XMxo1w/fW6eMyf/ww//3mJDsTf0mIS4k6cuxJw0EwvGGpeCJ663sU4d+Bvh8CsCM30O3ennQb8/vesveFTOrQxHocnn2Ln/cdIp6fxB6dSxqQooRqd6w6KF3dtDNCIbbnGY6RSEuIOIu5mL1u30sN8Mtk/gcYmOjrskt6nnWbs2jZiZhqLuMvNL34Bn/0sbNoEd98Nn//8SVhB8rdBqPdUysyybJnzsoUhw7kTcVdC7HgRx7mzCwJM2rl71hJj3DtcjzWWybN3+eJ37dauNRZ6A3l3Jz3XYppz7hS2e5dwr89Kn5Tcdps5vuee0hxH0WGZS5aY4m4kxdHDlXfthQ6PuBulhu1V64y358zxf8ME2Negv5F5pRdVGRw0zDOqq2Hlghh8+MPMo9cVu1aGkaeeofvL/zt9P9xXnjPRONcIv5h0BATA2rUocN27mBZ5hw7l/5bZgoi72crWrWa+XVMji7MRmqefbuzaGjMraErOnYllwbXXwve+Z27ftEk7edNKjh53AXEnzl042b8fwM25s3NGJivumpa0U1vjTihTVoT4nsqzD/z5dtmQzCz+vLuTWlTFsqY95w5scZecHeIumYT77ze3dXeXyC3JE5Y5oQNUX8+CTtPOOLa/cnNeQ4NH3D3FmSQi7k2zs9O4pApjwQKorXXFXToNY+mKd+78rt2KFVD771c6zyajKTiw9Ys/h3/5l+lZpfZVHoo3zjXGxYo78Ii7eAywRNwh4m72snWrmW/X2Oj2jvKJu7aB/cZYnDuXdBquugpuvDH3+9dea9QzmTo5etz5C94ExJ04d+HAdu4ccVekc6cUzGkeMbb1bjqcZ+/yZHBQu99eChF3U5mDpNPwzW/C5ZfDb3/re3NoyMn5idEEqsrJ+ZmyuPP0uqvkoioPPZQ7x+6xx2b+WAJhmTUFOnfA3GUNVOPe1AejI159LpwMPFUyHuC5RqXM5zxnEn0ms1RVwSmnBNohVHrOXSDfru0Y/Md/OOOAuGMtXHmlvilOVeD54pcT9WbueFFhmaecAo2NrrhLp2FkVMQdIu5mL9u2cZSF7rixyXXufGGZrb3dxlicO00qBf/6r3D77fn3OXAA/vjHafyhfnGXKyzTI+5aGDKcASmoUkL84s527iZbLRNgbqcZClZpjcx//Wvjz5aODtiwwdxn+XJjjseJE1MLq/rlL+Gmm3QT3G9/27fK7ZktxGiyf7CeUU56xdnT666TvlnT6+6uu3Jv37hxZo8DKL6gClC1bAnz8PyhSd7dtBPI9bKdOwt4kOcYF/5FFxX5Q3L0uqt0cWc6dxan3f4do7fV2nm9OrG5SkuDrdix79ddBz/5ydR+uO8iideaE5einLuqKlizxiyqEo+JuEPE3ezEsmDbtsKdu2Omly/OnebHP9ar0V7a2+HZzza3XX/9NBZKCDh39eM6d03EAmGZUkmqROzfj4XXudMTlMD5K4BgI/PKUQXxOPzmN+a2t7zFyL0HtHF26qnmtqmEZv7pT+b40Uc9g8OuM6rFnZv8N+liDjDr2iHEYsF7ZZaNG0twT8qTc1eQCytFVU4qv/wlXHqpvuZ37bI32uJuDyvoYb6zMFZbC+eeW+QPmu3i7lgPp2/+lfH+6Ve/H7VgAZx1NtRE2M8pDGevka9+VS9EFYvfuYuYIStFOXeQt2LmbEfE3Wzk4EEYHnZz7qqroa7WFXcrV+ptNm193TDmLqWJuNOTkVtuMbctWgTXXAOf+nCSuoh7EzxxQhdbmRYKKajiEXe1jFKbGiIb9jU2hoQQlYoDB0hSTxq7hHddPZGIWSSkUOYu9TUy31c58ba/+50ZPtzSAq95Te59/UVVvvlN2LIluF9vr67M+Mtf5u5ldfy4zv/ysmePZ+CZLcRpNJyDolac7Wp9s6WR+QMPGAaBwYkTvv/XM0Ee566gc7ls2awXdw89pBc39+2b3s89dgy+/319OfT0wL/9m60nbHH3AM/VO9rX33nnme79pOjqcguIQMWLu8FBT9pbOk317u2sxHPTe/nLabzs9frW1NoKZ58NKLZhx79v2wZ/+EPxB+B37qrNkJVpE3dxaYcAIu5mJ/byttMGobEJUG4HhEhECzybNgYg7lpPEpapJ2FekVtXB9/5tsWS736Wuac08uaHP2HscOON0zBxGxyE3l7XuVMK6uqC4q611bCDWqwBGHFnVpJ3VyL27zd73NXX0dpaRL4IMKfL38h8JM+e5UUqpQWYlze9Kf+D//zzzXF/P3zsY64LNzSk814vu0xPGr/7Xb0A7eeRR4LbDMHhd+5q3RnlpHPuYNY5d/lCMrMYLulMUGwrBAj2uptl4u7uu+Ezn9ERKR/6kHFpTJmHHjLNoQMHdOu1bEj7gzxHv2EruqJDMgGWLw84d9Fo5YoCw7Xbu4flIzuozTZxr63VK9NKuQtmTU2wYL4r7gC+9rXi/wf5nbsqcyWlqEUygLVr6aRPt5UBiMeJx8WEEHE3G9m6lRS1nMBOaG1qpKoK5s3z7OMJzWxjABLucvdsv2gAdu82xytWwJyfXQNf+QpYFm8bvJa2XRvJOmbJJPzoR1P8od3dZFCenK16UCp3WJ8UVQkX6TQcPmy6rnV1ky6mkmXO6k5jHO2tjBnJzTeb/SEbG+H1r8+//3nnwcteZm4bHdU1AL74Rd0s+8YbnZQ2QFds9LXN4uGHg5+9f78n9yeQc+farVMRd53YKz4VLO4GB4N5da9+tTme8by7KeTcBcIykyl/IcCKxtubcGgIfvjD6fvsXNfhT/97BGtoiCidWmioKud8TUncdXVRT0rnpQMkU4yNVa577oi7Mf0sOg2P2vv0p2H1asDtJQrAslPcvDvQ6vu++4o7AI+4y6BIKXPFrr7e/w0FYjekd9y7ES3yZntopoi72ci2bTpuPUtjE3PnGpGYRlGVVgaNWCYRd0Fxd6rapS0Dm0YSvHvoGmOmevPNRtGvydPdzSCtWNnmrfUNNDU5RftMAu0QpKhKSTlyBDIZ17mLRKCqumhxN3e56dxF48XGtISH0dFg1dnXvnb8gjNKaRfhsrcFc0Huvjv/QoY3vy6dzl2xMZ32TBACOXdTDMucRc7dvfeaFYO7uuBv/9bc56mnclfSPClYVg5xN4nKp0uXMh9PAaNZ5Nz19AT7Sd51ly5CNFVGRuDxx4Pbd28b5WEu4CEu1BvsYkann15Efzsvdmi0cy7ta7BSz6Uj7np6IJPhdOzSmUuW6JuojRHq3tzMMwtejLF0+LWvFXcAnhWQfXQZ+QjNzcVFsABkQ85ccafdSBF3wuxj61Y3JBOgsZGFC337eJy7ZoZRHnEXj+eoZjXLMMRdMsnKn34p0PPgUv7AkujTzjiTCRZtmBSBHnc58u2ySK+7cOHvcVdkG4Qsc1eYiudYqq3s44luvx0j56W2Ft785gm+KRZDvfMdvO8Ddfxz9BPUWIWFp955p/u/6+mnc+fhgSc00+/cecIyp7OgSiW6Bv6QzIsvhqVLcdMA0ML+6aeZGQYHnQdYnEaoqtb/KFCoL1lihmWOpDh2dHY0Mr/33tzbf/CDqX/2pk15BH4qxU95hxuSaRdTec5zpvgDlyyBqirXhR0dgcyYv9d2xeC0QTii/3Yd5+497zHi3v1ViPsXrTPni7feqk/WZPGo5kc4H2rdClnr10/+4xzma6PCEXejI2BJrzsRd7ORrVvNNghNjcaDFjDEXRUWLSmzxvhsz7tzxF1mDDZvZtXQE4F9ahjjLYeuNkIip1Q4oJAG5lmWLXNeSlimy/798MQTUyv6VRR52iAUK+4WdNUbK53HM3MYGZiukqwzz9gY/O//mtte/fwBOt51qU7sv+GG4DeNjmr19z//A+k0L3v6ar5Z/5nANdHcrOcv3mqbhw/DM8/o17ny7bI416vt3FlMU0EVW9w1EaOGtC3uLFKpaaysGwKi0WAz+osv1qv0/qrCM5Z3Z68gpKkmRZ3zh6FUgaFhTU3Mb/dUh7Eseo+MzooFz3vuyb1940Z9X50Kea/DVJItrOev2DGYddMk7iIRWLJkVoTYOsVU4nEYHKCKjFtM5e/+zti3utpXML29ja3r3mR+4FVXTe4ARkaMsISHudC4IV9wweQ+zqC2Fjo6zKIqo9LrTsTdbKOvD3p63JUY+4kWcO58ve7aYofBY87P5tDMkZGsEWPp5bDhIVbhsfI8E7/VmW1GSNfevVP4wbt2BXrc5S2j73HuWhk0nLvZKszvuAPe/W74+Md1f8IZNbryOHfF9LgDqK1TzKt1T6SF4sj28j2xDz6oI1ez1FRleMvP36BjmZ98UquzD33IDRnIZOD//B+9iuxh/e1X8/133M+LXqRrQr397Vo0vutdwfycO+/UX/OV6Adb3GUyzsGNUKurndo5dzU1xVU7pb0dWltReHvdacFQSaGZ99xjXmerV2vXDnS+pJcZy7sbp5hKoaFhtcsWuK4rYCVTU+qxWA5Eo7kr0Wb5wQ+mdk/159s5zzb7gnDSEerqmT8fVq0q/mc5dHX5QmyTFencOSGZR/V9bDl7qWMEXvCCnP8jzSrEiq3Pv9zc4ec/n9xKted/aoJ6no6co3MnbaYk7gAWLPCJuxERd6U+AGGGsStlOs5dYyOoqqBzt3ChMfNsTfdByg15mq0CAXT550wGLdqOHWMhR2nCjut67Wvh6qudfU9hPxw+Apa2ig4dmkJI6/btprhrLEzctTFgOHfeghWzhZERXSkxy4MPesJUZoI8zl0xPe6yLGk0VcDhnbHiP6zEZF20LC+z7mD+Zl883zXX6J4Ig4PwT/8EP/1pzs9a8IX/y+c/m+aHP4S//3v3Nvbyl5v7/eUv+hIeb8Flzx50nwRvGF9NjRPGV1QxFdAqosLz7kZG4LbbzG0XX+y+PuccU0x1dzupcCeXqbRByDILe93dd58p3vz5btu2FV9r4+hRZ/0L0O7RP/8zkB6F477+BJ0dXHTRFHK0vCxfbobYJpIVeR537ECfvKP6l3Py7d7znpz7+1vMbK05w6y0MjYG//EfOb93bAy+9z29sPb1r9u3Ts//1Cc4m3StGwa6ZAksXpzjgyaDX9yNiLgTcTfbsLOh3TYI+okWEHdKScXMPOjGqpbT5McJb1izRjf/eec7nRllIwnmjh4mu6ybyQQr9RVELAb79/samBeWc9dOv+HczcZzd889wd/7r3+dwQPwizvb3S3WuQNY3GJWxjm8t3zbIRiux8AAZ9z9ndw73nqrjir4xjfyf9jmzaaSt7ngAvP/9+AgfMf3Y+yCcQ6HDkFqzzS3QcgSqJip4zErIe9uaAg++clgoY0Xvch93dLiC/8id2GbaSfQwFwXU5lU7qS/HUKy8sWdPyTzjW+E5z/f3HbddYHU84Lwu3br1+s2J2fVPuMsjAI6bra9feohmVlyOHeVeB537ABO9DmVJE9jh755velNOff3i7sdOxXb3/llHuZ8buUS/szFpL57nS5J7MtxuOEG3df3yBF9u77xRgxx9zAXGOEOU3btABYsYB7HiWRbO4yMMDQ0u4vHibibbeTscUcwLBOM0Ezd607EHdjNjgeHnOzvU9mlHzq/+51Oompp0fF/NsvZCwfdZaSiGr/asyQn566+Aaqq84u7xYuhSl/ebQw4yeIwO8/dTTcFt82ouLOXpZ1qmVMsqAKwuMNMzjq0v4hZVUhwxN1YGrZuZZ41zgzLP/tauBBe9Spz2+c+hz++qqYGXvxiczd/SOYLXwiLFrljy4L9m1yre4gWI+x6OsRdpTl3PT3w4Q8Hay6cf37wOePPu5uR0EzbuXPDMvVEU5y7/PT364qmXl7wAnjve00H7cABj1ubSGhVka9akQd/vl12wv+Oo/9pvrFwEfX1irPOmtzx56Wry5dzV8FhmUfcxYjT2KHzlfOsaMybB52ebjsjI/D+217LFXXf4Ot8ii/zL/xfvkf/F76he9XYk4qNG3UKtJff/hbSh/T/Y4tsMRVX3Pl7lRbFggUoYDH2QpxUzBRxN+vYupU01RzHbmrXpJ9o8+fn2Nfv3Ekjc8AuptLrWg2r2K0nl95l6H/8R+flKeyHwQGnkklR4s6OIXScu0Yd1pBX3EUiTqxDGznU5V4AACAASURBVLaas8XobAvL3Lkzd67Izp1mdcaTiu3cueJ8agVVAJbMNUvLTWcz4ZnGOQ+7d0MywTw8Vt4NNwRVQJbWVj2bvO4605YbGLDjukz8PfH8XHih7lnpZc8Wd3K6mQ1Gj7u5c8f/vHGx3XVH3Nlh7+Us7vbsgQ98IBjq2tWlnTw/ufLuTnourD17L6oNQpYc4q4SC3EAcPPN3P+qr2I9s1WHnQwMsKprlCVL9Hm95MUpHdXT3w+HDvLjDz6C9awzXWt28WJHtVuWvta953h0NNgC4YILgC1bOOeZn7AGT++FhQt59rOLzHPNRVcXnfTpokYAySRDQwXp0bJhaAiOHBh15ixVZPScJU9IJmjB7nfvUFX2gr9W83tYwSf4TwZ//xe44AKif93BlVcGr9++PvjLX/Vi5gGW6ZQge0ElEmF6hHqgHYK+l4q4E0KBZemV5Lvu0je8k8LWrRxnnpuc3NhIZ2eem2VA3IlzZ1mwa5dl5AGspDvYaXntWnjJSwDbuQPnTjM94k6L8nFztuzJYzu2mkvOTnGXy7XLMl4xjWkjHnfUi3bulBPaNyXnbqEZDnPoWHWePcONZdnOXTTqKNS52NfXP/6jdsHvvjsYQlRXB3/4A5x5praEvvAF8/3//u+AJbB+fZ4oBXQO0cqVOcTdbvf/88NcYDh3fnEyKeykJScsM13eBVV279aOnX/B5IwzdPhrLiG8bp1RhZ0TJ+zIiJOJ/TfmiDv7WpyquKtI5+6WW+DSS7nnwRo4dhR27YQnHueFP36fVnYtLfzd55YRefh+ePIJ2LmTnr0xup8eduMzBwbg7/6OoYEM7363Now+9CHXWN+0yWjD6lyHXH89CngvP0RhQXsH1Ndz6aXT+PvZDbCdxST7GVlJ7t2OHehoB1t1LWcvdauWBWNqfZxzTo6Nc+bCWWc6eardrOSf+A8Gtx/myhfeQf/e3JOLXz96iuvagTPhPOsss+1C0fjF3aiIOxF3IeLb39a9JL/0Jb3oPO3l2hMJ2Ls30OMukG+Xxd/IXHLu6O2FoaNx5/9FPUmW1PQEw8JAL2EDXdhq7thRSI9OSdw5zo8t7vI6dxAUd3ZRldl07oaHx+8tOCPizpNkOUirfprZsUxTcu6WmOOjfbVF5buUmqEhGE2Mwna9Ql9Pkkbi+v7z9a/rnRobdYW2f/s3/Xr+fB3v84IXuB/0oQ+Zy82WBR/8oHEjVSq/e3fBBfr9gLg7oJ2dBPU8xZlGzt2UQoo6OvSXrHM3qt2Dcs25u+GGYJuV5z9f113Il1taUxNcuZ+Ohtjj4hd39uxysmGZRs5dJYq7AwfgXe9ikBYex5zpv9D6iw41Hx5mPsc5H3MR5THONT9ryxb+51NPZQMY2LIFPvpRrTn8+Xbnnw8qPQo/+QkA5/EYX+JfeeUlFp/7XH4TvyjsZ6RzLlNJsKyKOpfbt2OEZJ7Odt3+YIKKNH/zN/r2aqc5snIlnHsunHpeB5x7HjTri3onq3knP+GJ0fX6xI4Gc7+397TzDOv04hg4Pe6mJSQTxLnLgYi7kHD33TplK8vGjbqa27SyY4e+cWXFXX09VFXnXckO5Nwlkk5y82wSCF66uzFCMlfSjXrpS3KrrEsvhWXLXHGXycCxY+zfX4Rwtwvh+J27QsRdC3ZWsb0qOTRUgj5vJeK228zGuF6XAPR1NnKy65DYM5phmvT5syeTSk1N3DXOb3aFO5BOZcpyxbm3Fz3Ls0/EPI6jqqv15M5rp1RV6R4WAwO6vN4rX2l+UCSiV8i8PPoo/PGPxqaXvjT3cWTzfALirkcfwxOcbbRBWLzYLetfFH5xZ1fkLFfnzh+W+JrXaDN1ohC6lSvNcVYAnDRscefk3Nnnc2rOXZJjx6yZba9yMkmn4W1vg74+HuC5ZDxTxeXs5RTMk3QuZiWcgLgDHvjlIbztlI4cgY98JFhh84IL0JU4PDez57Zu5lM/PD2QMztlGhqgrc0sqjKWrhhxNzYGt/7sBAy7lUVOY6dREyAf9fW6Xsqtt+p1tB/+UC/UXHMNnH1RPZxzthMG4RQKGx2B7ds560zLFW5DQ3C8l//l7XpxDJwFsmkppgIi7nIg4i4E9PYa1fMdrr9+CmXzc5GrDQI5KmVmaWpyZi+tDAKW02F3tubc7dqFUdpvFbuDIZlZamrgH/6BNgbdvLfjxxkdDU6ExsWyYMcOLILOXSFhmTWMaYFnO3eWNTvOn2UFQzLf9jadLJ4llQo2WZ527GIqO7FLMdr5dsuXm421J42/cWs6XZZ5d8ePo6vB2sylVy/r51vWranJv+r80pfCG95gbvOVxDzllGCVxupqvSoNsGyZU4sIgJ6hBuI08BAX6g22OL/wwvF+qwIIiLvyDsv05ym9+c3m/8d8LFtmjk+6uLNnfFMKy2xtpamlmibsv1vLIp0YLVvXNcDnPgcPPADAPbxQb1uwAObP5wXzfT1kIhHOXXJMr1TNnw8rV/HUee9j9J4Hnev0EIs5eKIp0Ovi2MERjt63E7Y+A73Hqaqy9HV4/fXmz3jrWydprU6Czk5TqI+OluUiWS7+/Gc4uMn9o6wiw4UvqA1edJOgrg6+8hV41lnVukK4pzI3QHvvLv5l9c9585vR97Qtm8HK8CDPYZSIvtm2tbFw4RQXx7wExJ0UVBFxV2IsC772tdwlWw8dgttvn8YfNplKmVls984RJ/YTfLY6d7sfO2HEHq2iW/e2y8db3gJ4QjP7ByA9Orlm5ocPw/AwcRq1c1BdDbW11NXp1bW8eG7gbQwY7RBmQ97d44+bbSdqanT0rH9SftKrZtqz1e3YisKulOkXGJOmo8OtDgaQHi3Lh9nx4+ioAJt5HJ8wH2Rc/IVU7rjDcb6z+EMzN2xwJ/eRiG/uM5JiDys8IUVaDEw5pMgWd27OXXk7d35x53fJ8+Gf4BXVKqZQYjHn4RXD7lpe6zYxnxTLllVm3t3tt8NXvwroaIPHOFeXTly7Ftat54V//Zp+gGzdqlemUymWHXiQuS8/F9ath1NOIdU8h2faLtL9EsC9dvbuxXHvRkfgiSfg0EHt3G/ezPqtv6L57pvh5pvNYxqn+MeUmTPHJ+7SFVEcZ2xMd2by3lBewe0svPw1U/7s+nr9J7J+vR3H7om7/me+wpzPXM65nXvo2nuvmVAJek5ZXe2EwU8LdkXA+fTo4jijI4BFf39lFceZDBOKO6VUvVLqEaXUU0qpLUqpL9rbb1BK7VFKPWn/O8verpRS31ZK7VJKbVJKneP5rHcrpXba/yb2hWcBv/71+L19fvSjaQwb8zt3dqXMccWdPQN1xZ127maruOu+37RGVp3dOo71CZx6Kqxb54o7LIhGjYatE5KzmIqauAG2v9edp5H5bDh/3jBn0PkDnZ1w0UXm9r/+deIKfceP68T/osJZ/eLOdu6mQ9xVjHOX9Ik7u01AUZx7bvAkX3ONMbzkErPlwWWXmbs7oZmZDIyOcjcvoge7pHBthNraaajyZou7ZobtCYndKD1uhhKXCwmzM0fBRovfRDh48CRWzDxyxHkZp9GOGdUzzEkbQ/7QzGRqZpqwn0wOH9Z9Wm2u5z2ka5vsXFbF0qX2tdHWpl2bOXNAKZQKFuB47DHgX/4FgL9iX49DQ9DXx/zOUdj0dGDmfcGR3+l0Bm/I0po10xi/l4POTjMsM10Zzt2f/gSH9qdhSC9GVzPGO/lJ/rj0SdLYCFddBes3VMHadVBVxfu4jmezEYaGUBdewBsOfsv8psVLYIGecE5bvh3olaSWFqrJ6PxJy3Lup+W44DkdFOLcpYCLLcs6EzgLuEQplV37/qRlWWfZ/7LBTa8EVtv/Lge+B6CU6gQ+D1wAnA98XinVMX2/SvnR3Q0/+IG5be1aM1Tr+HFdEG5aCIRl6qXK8bRJ1rlrYUhXrLJvxrHYNIeMlgGpFOzfYa5CrXxLAdndr3udWzEToLd3ckVVism3A0PcaecuSXbVtNKdu54eJ6rI4XWv01/POcfMAzp2LFi63ctjj2kD9iMfgY99rIiJp63kXedu+sSd4dyNlqe46z2eMcTdXHp1Jb6p8OEPm+Mf/chY0Whq0n3Or7gC/t//CxZpcMSd3fT3Zl6tx7V1oKo4++xpqPLW2AiRCAp78cXKOL0oyy28b2zMFKRKTRBV4CHbGjTL6GiwleG04blAYjRNrWfh0qVuSC1AKlV25y3ABz/opB08yZn8hjfokqZ26fqXvSy/23KuL83usceAM88k+eo38SSelZC9e7mq9328YuiXgc/wF2YBtGs3bRZPDjo7zeI4o6Nl78A6rt2gnU4DXMJtLDptgsXoSdLUpNOcv35NI9//5wNcxv+6bx4/zsu5g2bsSKeWVr3YjY6iOfvsaTsMjeTdGUwo7ixNNg4tYv8bb3rzWuDH9vc9BLQrpRYBrwDutCyrz7KsE8CdwCVTO/zyZWQErrzSbHnQ1KQT0P1Rfj/9aXBVdNKMjTl5W06Pu4ly7kCvmgFVWPoi9ay05QolrWT2buzFGnCT1RZxhMa3FFCX+bWv1b3usvT1sXf3JMoaFlMpE7QzYM9Y2um3XQityCtZ3FkWfOtbpghbuVKH3oGez/lXmfNVzbQsbfpkP2vTpvGd9pwcOMAgLRzBtorq66muDhaSmDTt7b6wzHRZPsh698WdQk0A85qTBfxxT8Ab32hac8PDupyjh/Z2eMUrnPmGgSPu7N5zSWylYhffmJZVZ6XyVswst9BM//OpoWFy83Ff2s7JC830XCAxmozKp9Mh7srtvBnEYk6ScoJ6ruLTsHyFcy0uWqTzKPPhF3fbtumPfPz1X9LpBDaLBrfTde+P+TRX8Wrs8MvaWs5jI6eyy/yQ6mrDSTwpdHaafTVH0xw/TllWHs5yxx32Oka/XtCqZox38NOphbvnoapKL46d/sW3B+Ld60npc1wT0X1o7CTcZz2r8LDtgpF2CAYF5dwppaqVUk8CPWiBli1ee6UdevkNpVT2LrkEjFJKB+1t+bbn+nmXK6U2KqU2HvcUr6gkbr012M/n4x/XocOXXWauevb3w29+M8UfuGcPjIwQZY6+0UYiEInQ0jLBRWaLOwj2upsNRTm87L7xUWO8akGssPCx886ja77H8RsbY/+T0cIdoDw97iac/yo1K9sh/OIX8OCD5rbXvc6cbBaad7d9e9DVe+KJSRyMZcH+/ezArTxLXR0rVkyD8xMIy9Q5d+VWse/4PjM0a+7SAi2f8YhE4P3vN7ddc03BcbV+586hbpqrvFVI3l2x+XZZ/Hl3J62oSsC5cy38YsIyTXGXLO9FsyNHnOvj+7yfo7WnGA76FVeMf17nzDEN90wGnnoKHupfA51znO0X8hAKHQz7Ca7mW2u+z5d+fxZfvfPZKL9C9C/SnAw6O6ljxH1GpkexrEDtl7IhnXa6SMCA/p1eya0s5NhJEXcOVVW6EI5vYvI6bkKtX2dMaqc1JDOLOHcGBYk7y7LGLMs6C1gKnK+U2gB8BlgDPBvoBD5t755rvc4aZ3uun/cDy7LOsyzrvHne0nYVhH/1/yUvgYsv1q/b24P9em+8cYpOWZ6QzHHz7UCLA/uibEMXA8muiFSyQMjF7j/vNcarnlNgeENVFXNf9zzdu8smfuhEoNlvXvzOXUMBlTKz2OLOyZlMVra427IlGOq8Zk2war4/JWvz5tyLFbfdFtw2qeqa/f0Qi7khmVVVEIlMPSQToKWFtqph9+8qkyGVyJRdaFjvETOpeN7KPE3RJss//IMZ475rV+4TmoPFi+3QXX/yW20dS5cGewwWTYVUzPQ7d5N1wXLl3Z0UPOJO59y5KyzNzZP8rEoLy7QTzTZyLr/nNUY/zje+UbstE+HXZhs32lERy13VdyGeMIlTT+VZ93yH572iiZqXvggeeQR+9jPdR+Pyy+F735viL1UAnZ0Abv6k7Z6Xa1GVO+6wU0utDAwOUkNau3ZwcsUd6Buj75wt+ML/5UVv6HTG1dXwvOedhJ8t4s5gUtUyLcvqB+4GLrEs64gdepkCrods63kOAt5b9VLg8DjbZyV+184v5t7yFvNhMzwMvwyGqBfO448DnkqZhRRTAT0ZtWeiuh0Cs7NiZn8/u7ePGptWvb6Ap52Nep0vNLO3l317CnAREgmyCXquc6eXT4sTd3qyWtYrzHkYGNB9ebzmTEuLDnWuqTH3nT/fDIu0LD2v8JJK5W6Avm3bJMKkc1bKVNMj7pRCdbSXdVGVVAqGTrjxT9WM0bF67vR8+IIFTrVaB19bhHxUVdkuRMpXzaqudnprO+TpdVduIsHv3BkumGVNGONWGc5dmYdlHjtGnAb+nU/qsZ1nt3Qp/P3fF/YRfnF3xx12Cl9rG3R0UEeKs7BXxxYt0jvYlQ4BfeG99a06PPTaax3hdVKxf4ZTVMVeYCnHoiqGa2c3tH0lt7KAHr1i5W/ieTJ461t1qNk73wnXXQef+xwf+5jWlStWwCc/OY2LY16kHYJBIdUy5yml2u3XDcBLgW12Hh1KKQW8Dthsf8vvgXfZVTMvBAYsyzoC/5+9Nw+PJa/r/V/VSae3JN2d7czZ5syZOcNsDHMYcC4DyqqCCCgIwyZXVFwQ/emDXAUvogIC6sWNRR8X7qPoFYGLIxcYFAHBDYRhNsbZzz5nSc5JutP7Wr8/vtVV9a2qTrqTTvpb3d/X88wzpzudpJNKVX3f3/f78/nwD8D3GoaRtRqpfK/13NhRqUj3GAzDf85NT4tzxM0Xv7iNb2rl1GznbkYMneypttaKZtoCoTR+4s78zGd5rO06SIkkVz23j6YPz30uV0w5ndqo1zn5pcc2/7xHHrFzdjky9uB56LEsyRfLHE1xZ5qiNbM3xf3Wt3b/G/e6d95huv/6r9L4NZt2Wzh9PdGlmcoTntDtE/ok5OMQvJ0y57mEceUAFyA/93Py489/XnTaOXlS/LdBa8bDh/E7d7HYzoq7kNbcdY1lfvSjYvEcj4tNwpe8BN7yFmGv/9d/2a/ftVl3O9xQJZcLWSbazfIyf8JPSl1hDUNcQ3uNkB89Ks82lK6fR45wc/wBpmiIXeXPf353xMZmzIvIqN1UxWqEEMamKvfd53Icc3nZtXvmM3e2MY2bl75UdHT58R8Hw2BmBt75TvjIR0Sd845g3egv47xo/mc5d5cu+acxjAO9OHd7gS8bhnEv8A1Ezd1ngL82DOM+4D5gAXi39frPAceAR4E/BX4GwDTNVeBd1tf4BvBO67mx48QJeT2xf3/wxfOlL5Udh7Nnt7ib1GrZHSNs5y69DXFn3cnHqeZu5Z/uoYhjpSb2ptm7r48LZSzGoSfLzWFP/tMjm3/eQ87A2BNcYUcyocdNzS41d6Mm7v7mb+DrX5efe+Ur4elP7/45XnH31a/Kou2OO7p/bs/RzNOnyZF2FkzxGJOTA2im0iHk4xAuXgSqjg267TEIXm65xV8g953fKb7HFVcIVXHkiIhsejh8GF/NXSwV5aabBvf2/DV34YxlBjp3d90lOh3mcsJSePhh0fr5/e8XkdkbbhBZv/e+l/3149LnX7gwwBFAbqydjwaTYqCyFcu0Rof2RyZDNuH6+2i3Wb3Q6P56xWmcu8jn3T3upqa47TZxmHolmbSmJgSRmuZpf/TfxYX1kUd6y3nuBl7nztpgCaO4k9aHuRxP599Z6jSL2elI5rCxFrOTtIRQd11AwnRPHBS9dMu81zTNJ5um+STTNJ9omuY7reefa5rmjdZzP9zpqGlFNd9kmuZV1se/6fpaHzFN84j13//euR9LbR7zGDbdFnrJpNTPBOiz3qfD/ffbSuw8lwnFmOwxlgn21XqcY5mP3e8ZgXDNVN+bYIeeL9/1Tt7Vw96GJe5KJHmEq6XsUNebqBuvuBvBmrtCwdcIkRtugDe8IeDFpmnnNq+/3t9x//3vF+vQ5WU7yRxIz+fhqVOOawcQi3PllXIp2LbwdsxshKtjpte5W+DiYMUd+N07L8eOwetf73PwDl9h+rZ8n3zU7F8EbESXWGbYxJ1vxl2sBT/2Y5u3HLzvPviVXyF23ZUs3fdPsC4uTKa5Awsy1xctYdl0ViwzmdyCqWEYzB6YJYKTAy+v1XdGlO4C+dPr1HDXIBpbmh3ujWa6edoL58WQyb4LHHcQb81diGOZTl8GE9bzzOPqCjMm4g6saGbDORHDdE8cFH3V3GkGw3F5k5KrrrL+0W6LeUwf+IAossM/C6SvTn0dXK0DL7DHKtYSd7LtOHejJBA247Hj8qly1Y39FmjAodv+G+6+QidXp/1K34sl7r7NEzExbHF36FCPsUwr7+Stucvnw9dVsRsPPyyPFJmZgXe8rcHkH/4uPOMZQgUfOCB+YVaXWPbtw/iOp/ILx/4/8Ts+exbaLU6cgL/9W5EYcv9+9u2Tv+dDD/VYd3f6tCzu4rHB1Nt1COiYGaZdyovLbf8A8+3OuPPyilf4c39e/u3fxIF3cfjOT/rE3X97Tv/n/YZ0iWWGvubu61/ueyfy4KW7xQ2uIDYRBx7NzOftk7ZMUuQHrWhM35FMC+OgJ5pZD2/d3fo5OYM+P29uqaNvN3F3+LBcXqcMI9RQxRZ3RTGIeAbriWy2Pws2jLgWs/s4Kzl3YXRht4sWd0Mg0LkzTTED4fWvFwN4b7kF8vnBiDtrmrOJW9wJenLurr5a7FJ2nLtqBdqt8Yll1mqcvCTvNF75lGyXF3fnsuuyTGWdVUSeNLmPbdK9zxpgfg9WFswSdz1Hw6xOBTHqxKiJmJnZptn0L8jCijdi+pRriiy9+nnwi78oNjYefFBs3eXzwklot0U7sTvv5Oi/fIAXnPsIPPyQ6Khy8SJ/+Zcmn/60/DVvu01u+tBqCUN8U7ziLhYfuLgL86y7i8cLkopeSFV77BTUB1NTcPvtoiXx5Zc7/3l3R37pl5yTIpdj8Td+1lkcAczP89+eu0UV0A3rPYS9W6Z0LSmXSfzD7fILXvlK0Trx//wf0eHoe79XZCFdHOS0+Ft48EEw24MXd4H1dmKzbavijoUFJxUB0GiE7th1KFyQbwgzc1uzqK+/PrjMZKC1qoPE2mCRnTuT5eXwbYAWOxOprREI9gDxZzxDLoYcRVziLk3eEnfiANq/lzFixI+2epimv1PmVVchugp97GPOkw88AK99Lddf25bq7i5csNrc9oPl3OVJi9jFrFg8JZM9piOSSTh0yHF/AMqV8XHujh3jjHskYyzG5Vf3v6UZicDBa+RBQac+9c0ur0b8sVjOnVfc9VyuEIvZCn5Um6pIi6n1dTJ/+jv+7igb8Eb+SPxtV6vw7fuof/M+Lp1xFjrRqBhTcvSo/HleY6LdFjFDyezxxjJ3wLlbZIUolnXZbFIobHNsyi6y8pi8Q7Swd1B5VQ833yxan3YaqZw8KYo03fnY06dFLhfg7W/HWFnmNj4uHhsRnv+j+wY/cstaWKbJi3ifFcsslXao5myHcMSdCQ89SLLpujnMz4s0ylOeAq9+Nfzar8E//IMQWx/8oFh4Yok7ED/8yVODH4cwyAHmHebmZOeu0QyvuLso15fOLm5N3E1O+q+V4K9xVoZoFGZmmGVdbIACNJtUKuETBfZ131qc2ZtTox7JBLGYtdZHKUpi/eS6no4bWtztMhcvyguveBwuyz0Iv/AL/hd/9rPE3vNrPje9r7TL+fO2mjzPZaKwYFbMkdqzp486g2uv9Yi78tg4d+Yjj3KKy50nEolNU17dOHSr3AP45F2r/haPHc6fh0KBKjEhECYm7BqRoJtnV3x1d040cxSwReq5c3DXt8jmj2/4ei+zFPgZPuw8sXpJuHgnTwAm3/VdIuq5kbir1eBtbxMO3+tfb/XnaLe5dKbCJZwBvtHp2GBLyrJZDHDcOytSFJZo5sppOfa4eHmf06+3wxOe4K/He9/74NOfhg+Lv4fX8td8kJ/l/T/xIG9574BGNLixxJ2BdX5axw/CtfliR5QfPwv5vDTTkz/8QwiaV7u0BG96k2hL+7rXcQCXmjt5gtP3DDib6p1xt50xCB2yWacZDkAzxOJuVW4GM7209QiyN5qZSimeCpyfxyD8TVXE2tK0Lx62uHvmM4f2nnYVy71LYak5axyCFneaHcfr2l15qIXx2td0z8i9+93c3Jbdnb6imd56u+kZu5V+T/V2HQLE3aiIg81Yu/e0WAxYxGeine7JfXPoaBZSjl160jwoWj0GYbl293MDLSasTpkG+/fT3/f3zrobsY6Za2vAscfgoQfBNOWY1POeJ06YkydFT+R6XaxEjx8XceVPfhLe9Ca+x/giT8Z1YpmmeM358/YAdG8U1j3v7qMfdebkXbggzInKiQs83HS1+p6c5Mg1k76Ze9vCivXZ4q4Zrtk+K+flhhuLV83u7hv41V+FBZdoK5fhB3/QzmMZwA1X1bj5D35ksMetQ9aJd2dZs3eaIVx1d6USwrI+JmoObHH3/d8v3LrN+L3f4+Cc6x5ompy5477NG7L0gzeWOSDnTrreNEMay6zXWS/KO72ze7Yu7m69VU7dPutZvhSuWnRpqhJKcVep2rb/DAUxl+Tmm4f7xnYLa1Frx1Gt30PYHNhBoMXdLuMTdw9+zq/WPNuIR//sTVBy/jrvuquPLLhL3J3nMnsEAvQp7q67Tq4/KZcoFgd771WVM/fJd+uDe1tbHhdz6BCwx6kqP8kh+N9dGsdut95O+qYu564yWh0zc8dX7Xly4Po53/IW0Rnl6FEhcOfmRAQnHhcdGZ/+dPihH4IPfhDj7rt483f8K5M0pa+9lHvYvi8uLATX3Z086evFwdmz8IHfbfjq7QY2366DJQ7spirN8Dh3rZZfwMxft8sdFzIZePe75ee8F9cPflD8zewEPnHnuCdhEgnlMnDqpH1DSFARdvcf/VFv8ZD5efZ86B3S+Zdba1N4/5/Yj0+eFHOyvvjF7ve/XA5+93fhXe8K6FW1wQDzLYu7zFxCFAAAIABJREFUbHY0YpkXL1JgxnkcjTKT2boaO3BAlDwfOiQmj/z0Tw/gPe4kXZqqhE3cFYvY9XZgiZynPW0Lcz5CitWxxxZ3VsdM7dxpdhzphrO2ylVf+XP5BbfdJuoRXNvE11W+Rezb37Jv/Bcv9rEzH9gpU9BTM5UO117LBG3npCmXMc3w1PZsh1MPy9Gxg1duvS7oiiuAPc4v/iSHRL4vKGvbpd6ub3F35Ajgcu4qYod8VJy73DF5NZWJVYUb+ju/Q892y5OexIGv/19e9+NyLeULV/6SSMn5I/f+7u+6C/7gDyTDxeaOf47z/3ix80RswPV2YIsDx7kTbyQMzt3aGpiuAsU0eaaOXL7BZ+wQb3hD9yLWH/oh0bp9p3CJuzlWpT+kMImESgXIOzn9JGV473s371LqIvLKV7D/oCwozvz6n8GJE6yuisqFj35UaPHbbw/+Gu95jxil96UviZi0NIPeW3Pn6vqx5Vjm3JwnlhlS5+7CBY+4m2JmpvvLe+H7vk+MqHnXu9j219pxRmQcQqEA5Jxd2xkK41Fv18EXy9TOnWaXsJ27Rh0eeIArcVl5Bw/CH/+x2Or6wAfsp6M0eWLlP+Ghh+3neopmVqtw5532wwvssZupQP/iDrzjEMyRcX824syptvT4wPVbj47t3w+RRMy+maywSJlEsHv30EPUifJfXC8eJ0U90lbFnePciSzhqBy7tQtyI4Dsbd8Dr3pV/1/IMHjNH30XL5r/GjMU+C7+hVe3Pgpf+IL9Em/d3e23b3AuVmus4po0Hx9wp0zwO3chqrnblRl3vTAxAb//+/7nUyn4vd/b2e89PW3n1bKsia48beF+hUkklMtIA9+TWPHWfjAMDr7sqVJ+73RlHn7u5/j0p+XNqL/6K/+GyrFj8I1vOI9XVkQ5n4235m7KPdOtv7dqMyoNVZaXWcd1X5uaYnaXE9JDxefchTiW6XLutLjTNXeaXaDZdKXHzjwO9TqHsZo/RCLw13/t7OT+1E/BT/yE/blP5i5YWRZ1Q/Qo7u68U2q5dj51RNqt7CuWubgI2awzDqHdhmpt9Juq1GqcXpUzO5ffvPXGCpOTVrTP1XbvmzxVHHtve7yHHuIBrqOJ5T4lk+zZ0+dxgwDnToi7kXHuLsniO3NtP7sWMpNRg1983TKf5gd4J7/GFA34zGfsj3uFtbdU9uqrXWZhTXZ8Y6nJgY9wC7Nztysz7nrlOc/xi5Ff//W+nKctYRhdB5mHqeauXGxJwyaTVLZwoYID183CVUfsx2c4QPMzd/CZj8sn2uqqR7iBb3wJwB13uB5sEMvcTkOVkai58zp3U1H13bZBMgKxzFoNGqWafX+fpEks0hSxzHGhi3OnxZ1mRzl1ylWjtrrKEsvMdGKOb3ubvMNiGMK9swp+jmLF9h5+GFot7r67h7o7a75dh/NpueCnL+fOMMazqcrx45zGVWgVi3HgyPbqb570JGB+wVYBf8OrMS9dEnmiDtUqHD/uRDIBEsn+XTsQC9Ro1FmENBrQbI6EuKvVoFJ0tvAnaDF9/TajfS96kfz4s58VmxmIPY79+wM+B3E43/EOkfIDoCBnQY5c0Rh8UwFLGFzGeQxMO0506ZInkqYgKw+vyTPuEmWGahf88R+LYVyTk/Df/zv8/M/vzvftMsg8TCKhvCr/sSUWUr1Hol0cPAjs2ysafwGnOci/8p1ceuSS77V/93fOvysVyWC3+da3rGhdZ7alhTeWuZ2GKiPRLXN52RfLHEfnzu6WGcKGKsUiUp3MNEWMpz5lG7Z0CPE2VGnoWKZmF7Dr7VpNKBTkSObP/qz/E2Ix+NM/hUiEa3iIOFXhBpw4ztqa1EMiGFe9XZEU5ZTTjnpqyj/Dd1OuvdZx7gDKpZF37poPPcZZ9jlPbGMMQoeXvQzh1FoXoge5Vog4dzTz0UfBNB1xF4vDxMTWxN3EBFx5pbzDXBmNOYW5HK4+7CJ6ahy5antf9Lu+SxYZy8tOK0y6j6F4zWuEK3vbbXDz9VVf7vWap+9AK33rfU7S4jLOi90jUwhR1aOZKw/Lq+DFpS12KRoUe/bA174m7Ni/+At5Bt5OYok7WyQ0wyfuKjlZ3CX39XtzEYhrq2FfG09zkL/nB2DZPy7m3ntFQ1sQIwyDGk6bpuipxMqKlOMsx+bsrtGwvYYq0oZno8H6uhm+RmM+525qrDRBp/30Iitik8xyoVdXJUNaaQoFpB29GQqKz5/YAazrxhR1JmjZzl2zGa65oYNAi7tdxK63y+cBk6uw1N6113a30W6+GX7+55mkxZO4Vzx3+gwUCxtHM01zw2YqS0t9zLjrcN11Y+fcnf/WWTGGwGIuY249wmNx+LCVlLjMiWb+Da8WGaJz58SV6F3voskE92NdnLdab9fhyBH52FVHQ9ytLTfsuX1g1RVeeeX2vujUlL+JhstVDRJ3e/cKcQfivHrb0TuYcW+EJFNc+4wtzs/YiIkJ+7wOWzTz4kl5O3VxvyId3XZL1HXwiTuxmgyLuDNNKK/LK+Dk/myXV2+MvXFmzcU7wRXczVFYzwda0X//9+L7//3fd/+an/88mI/LOx2llNyVdcvX9GSSyakJZ9PTNDFb7fBdW301d9GxdO4maTHPJWneZFiaqhQKSApmhoJU/jEWWOLOwIpmun4f4xbN1OJuF7HF3ZpwUOx6u2c/e+NPfOc74eBB1xwuEx56iLvubHf/nEcflYZjn09cKW1P9hXJ7DCGg8xPf1u+Sx/cv8HvvA9e8xpgZtqeefef3MKj7cPCvXvta+HjH+chrqGGFR1Kp5mfh337un/NDfGKu3JlJGKZ+YcvAE60L5usb2Ol5sIbzdyg7g5Egs+V8mLhq5/iV3gPUcSid++h6M7Nke0yDkF1cbdyRt5KXbhinKwCFyGvuWs0oFVxxN0kTaL7tzbSIp22blPxOMzMSBtrrKz4HLZ//EdRWu7uQm0YciL03Dm499/kts6luLzRsmXnzqqZlJuqhK/urn1+WURVO4ybczfnNL7awwVpJElYxd00xS0u9EKMq85XizvNrmHfgKxVte3cbSbupqfhQx+ShywXCtx9+4nudXcu1w7g3/e/AgzncA9E3JVG37k786hnDMKRWJdX9seNN8INNxiw1zkQH+NV8Pa3w8c/DrhGIMTjcOAAN920Bbe1w5EjTFMUUQWASoVKJfxRhbUH5aKIzMKAJk2/8IUiOtvh3nvFoC2EqeAWai94gSjVsmm14I47eBpf53/zo/wm/5OP/EFREn8DxRIHThvvcMT6Li7LGyWLV28tyhd6rOOXJm9FwsTxKxSCR2yohrdTZoLKlnehDMPt3nkE4soKv/AL0jqcSkW02ndz663+BoF3fFmuky5Nyc7ilsUd+DtmhrDurnhedtGnZyeky9/I4xV3LucuLHV3xSJ+527cxF06bc/0m6Yoam1b4liOW93dOJ2+QyWftxpdWvV2kzQ5wBnxwWc9a/Mv8OIXc/XLnuR0AQLWHzjD8c8/FPx6VzOVVbL8Y+t50oe/4zv6/QmAw4dJT7i2Pxp18hcq3V8/Apw6I6upg09Md3ll/7zmNYidJkuxfYnncs50dp7u4SYh7I4+GSajW49kAhw5goG/Y2bYxXnumGxvZC8bkIKanxdDzt243Lu3v1389xu/Ab/0S57P/frX7a62+znL0zMPEH/OrYN5X0FY4iCBdS5aCxOVG6qYJlxck7vLLNzQf3fFkcA6fhFMcX6GbNZdpQLUnEVlkvK24mDeaGaHufwxnn3teZ+p7k2P/MAPiBlrbv753jkxcsaiHJUzh9sSdwGDzMPiunZYX5Y3MWfmdzmaPGxc4m6JZcm5C4u4084dYi3lbaoypuMQtLjbJbz1dldwgklacN11PZ+AkT/8fW6aesB5otXizpe/B776VfmFlQr88z/bD2/nB2nOODuVe/fCM56xhR9icpLZQ/KOZ/5kyNXBRtTrnPGMQThw89biRkHceiscOjJlF3ObGHyc2wCoMcW3E7cIYRcXu87bFXcweuMQ1k7JcavMgQFmiTaIZkaj8LznCQfP56a6XgcIa28LnQN7xuqMFMdaoFkLE5XFXbEItbLTdSJOldS1Ozx2QFV8g8ydhWUYxF3gjLst58etUTEAiYTdNRPgRXyGyf/3d7z4xXR1lfbuFRuXT3mKrA1r5RZfQWyimkApIvf531aS2+fcNcJ1XTVNChfli8XMwk7FDBTFJe4u47zVRUXEosIq7sbSuQM9DsFCi7tdotPVq1NvZ3fK3CyS6Wb/fp78uhulp75WfhJ87/fC//2/4ol/+RfR8eGRRwCoEuN2flDq/vfyl7PlluzpJ8i76/mzI3zGeMcgTMW4/AnbG4PgxjDg1a9G2uX+HC/krbyXlyS+QPmmW21hl8nA5dvp8H/oEExMOB0z6zVotcLv3J2VW+Rlr9xaI4dAXvxi+fGXvtRbtuOzn5Ufe0XioLHEQQxrgWY5P9Vqt08YPivnW9IcwAUuYlwxpBl3w8Yl7rzOXRhqmstldsa5A1uhRWjzIj4Dn/gECwvd5zK/5CXiuhqJiNuiTa3GHQg7r0GU5qTj4k1ObrOHTtgHmedyFJqu+9rEBLNzY+bcTU3ZIwMWsXoVNMXm08WLw3pT/VEsmFrcgV/cjek4BC3udgmn3k5c9bck7oCn/drzpUFb93AT5VoEXvEKsYh85jPFLDyLz/MCCjP7bedgZsYfWemH2esPSI/XVxS2B7ZJ+dvHuIRTeD+RjA38Wvm858HiNXOQFA5hnSm+Hn829ZtusYUdiNl4W663A7F6ueIKX8fMUO0wB7C2Infpy1y92OWVW+C66+TOm/V68DAtN6dOifq8DpGIv/PmoLHEge3cNUIg7h68JM24W4wXGa+pyS5c4i5BRar3UfkYdhhkzR24nDuAJXE+P4N/Y5GL8JWvwPKyb948iFuc+1STTrt6jfu4kTPsp0xSGmCeSm3z2uqNZTYb4YplescgRMesmUoHy72z43yWgx40YkNFChdr9jxWgJlYY7xm3HXQzh2gxd2ucewYdr0duJqp9FJv5+LAQYMDz7kaDotFZ4sJvsF3iIWSxzFoY/DxxOvhCc7w8pe8RKRdtsrsk66QHhdyTff1ZKQ4c6ecx9i7UB94um5yEl5xWwSedCPsPwAHLxfjL1zCzjBEHcm2OXJktGbdmWZnr8Qmc90AWz8bxobRzEA+9zn58a232rHbHSOEzt3FB+S5ZYtzYRsMNkBc4i5OVYplqnwMO1QKTWkYWIqy1LWuXyTnLpGE1DQvxZpY3m7D7bdz000ijODm2c+WZ7ceOCAaVwG2s/h3vJQi0zDlxA633Vw3wLkL1abZuI9B6GCJO2/tciUkbQWKF2T1Mj03tc1di5Diq7nTzp1mh2i3rVhmzllJX8kx4Qxs4Sb49Kcb4s527bWAwX8Q3Kzh317y25x7yovsHfHJSXjpS7fyEzhM3nCNiN1YmKXKyJ40p++XM1EHD3R54TZ50Ysgc1kCrr4arrrK7va0tCSSgR/+sNB72+aqq0ZrHMLKCrmmqyYyMkHmqgELKW808/bb4ZOf7D7Z1iv+vv/7B/t+gvA6d031G6pcfEzeVVi4bAdrElXHJ+5C5tw9Lu+wJKcj26oxjcfl7rM3PBGOcrfzxCc+gWHAD/+w89TkJNx2m/9rfd/3AWbbjmZ9ipfxd7zU59xtiwDnLlSxzIAB5mNpolvizl7fWNf4sIi7wor8RmeWtrGLH2Z8zt14NlQZ4zvq7nH2rLXQslbSGXLiZvCcV2/p6916q9Ut/7K9EJ3ia/9VoN0yiHTmfR05An/2Z/ztJ56Fe47y93zPAEyEa64hzcMi2gLC/VmpMzuryADiAXL6mLyAP3j14Ort3CQS8N73wkc+Ijbabr5ZLG4OHRrwxtuRI2T4ivO4Em5xZz76GGu4auwSCbJzA96pfOYzRb1qp/hpdVVEoPfsgR/9UXjDG4QgB5Hf+eIX5c/f6Xo7CHDuxN+tysJg5WQZXDPMFg+MWQMHN15x54plhmFhWT4rX0QSme3fC375l+ETnxDXv1fclMZwjxr58pfh4kW++7sXaLfhvvuEa3f11f6v8+xnw599oIo7Jfmp6KuksUDbFncBoxBCFctcXvbFMsfZubPFXdhimZfk9crMngHMew0jS6LpnY5lanYcu5mKlSE7zHEM6LversMTn+i6Ic3Pkz/6LB548muFGnjb2+Dee7l/4Vncf7/8eUE7m30zM0M65R6+ZLJ+/+kBfGH1OPO4ZwzCjTs3h+vaa+G3fxt+67fgla+EK67YgUTFiMUyy/91gqZrfyqWmnSnWQfD1FRwJvbCBXjf+8SK8kd+RNTaffnLsqI6eFCcrDuNt1tmCEYhXDwnL0QWrhzH1aSFt+YuZLHM8nk54ZDMbv8kzGbhJ38SfuInIHPLE+TzqNUSO2GIpim/+IuiO2YQiQT8+msfJYrr7y0mi8+BO3cN0S2z6wxa1QiIZWrnDvs6Ghpxl5OHYs7sG8eDiK65s9Dibhc4fhwRtbHq7exmKn3W23WYnIRbbnE9MTPLf/zMR+HECXjPeyCR4G//Vv6cW24RgmEQpBfkm2P+/jOD+cIqUa9zak2+OB78jpB3njpyRI5lhlzcrT1wXnqcHWCjTIn3vrf7uWqa8Jd/Kepa3/IW+WMvetHu1DyEsOZuRS65E02FxpWZGbt9cZyqyPGbopBZ5WPYobIsjyNJLuyAY/Dyl8uPf/mX4a1vFUJvE25MPsav8B4xIB6kejsYTM1djLpTq9Vs0mqFqMYnoKHKWIo7K9Y0RV38rVibLI2GlJRWluK6vJswfWDnNqOVxltzp7tlanaK48eRpkVfwQm4/nrbPt4K3vnK//Efzr8feEBMRHDzyldu+Vv5SO+Rd2YvPFro8srwYh4/wRmcrqRMxThwdcgz7IcPk3bndGtVcpfC28gi94isEDJLOxQN3r9fzI286y74mZ8hMLNUq8GDD8rP7UYkEwJq7tSfc7eSl1utL9w4wEY4YcMwurqvYRB35UuytZFc3K4VFsBrX2vXItv81m/BC1/IphnIxx/n2XyFN/JH4vEOOHeA495Zxy400UxvLHNqvGOZBv6utarHoxsNqFWce3mENomDC0N8R0OkS0MV7dxpBo5opuLENg5zfMuRzA633CKbAseOiaRYuw2///vya6++Gp785G19O4krLpfbYz702BaH5inM6l0nqeCIueS04Z5zGk7icTL75ZWMd05cmFg7Ltf6ZPbtsPg+ehQ+9CFRRPuRj8ANN3R/bSIBz3nOzr6fDiFz7mrlFoWKE6eN0CZ74w51KwoLXQS66otKgNIleRchsWcHlIFVR+4bSPeP/whPfSrcc0/3zz17FoCX80lexqcgJjt3g6i5A5e4s45daJqq+BqqRMeyg777Bp+kLMWjVT8PgwaYG3tDnjTaKnNzMDHhxDJbLWi3tLjTDJZmE86cAXfniis4se2F3+ysv5zna18TndhdY+4A+OmfHmw67Nrr5C/24OnRuxOcvnNZenxwqTYSXYVnr5a7sxYu1kI7yiJ/RnaMs5fv0nZzKiWaqdxzD/z5nwfP9Hruc7c3c6QfLNcnSsOKEzUBk2azp9TarnPx/gtSQdLCVIHI7OhdQ/rCEnfuaB+oK9DdVPKyuEvu26E42OteJ+bceQekHz8uGh898kjw51nizgDexIf4zutl1XXkyDbfl3X+zXXatljnX2iaVflq7sbbuQNL3Lk6Iqtedxck7sZygDmI2bJLS464A6jXtbjTDJbTp6FVc+rtllgWc4Ce+cxtf+1bPRMQvvAF+NM/lZ979rMH1EbfxTU3xZ36BeDU2rTyF79+Of2AHNA+cHA0TpXJJ1wpLvwWZrliN4IMFeUya9LiySBzeJdrDCYm4Md+TOymvPvdzhDuiQn41V/dvfcRjcL0NAZ+907FaOb68UvS4+xMCApadpoug+hVPH5eynn5+CX371TxK+Kmd+ed/rqE9XXRuTZop8oSdwARTN7+hvO8+MUivfXiF8N3fuc231M0CjMzcrOqEHXMNM/rmjtAEnfeWKbq65tiEXuWI1iRxHEVdwB79njEXYNiMURNjgbAaKxYFeb4caDgrJ4Pc1zEubZRb9fBe3+7/36khXosBm9847a/jY/klZdxOafsx2atwUMPDf77DJPTx+VufpdfE/J6uw6j0lTl2DFyuMRcPEZ2YUiTXVIp+J//UzQ0+sxnxEnvHtS1G3hrthQWd5U12Y5KxkNqHQ+SEMcyy0X5+CUv3+Fan717RWfan/5p+fmvfhX+5E/8r3/8celh7NBlvPnN8LGPwZvf7E96bomAQeahiGVWKtSKdafrsGEwlZz0JlfHgzDHMnMtu3EIWM7dANaYoWXPHqaoM4kl0Ot1mk3J3Bx5tLjbYY4fByrOYuYKTgzMSrv8cn9Cxc3rXrdD5/fevVzHA87jes3XSyLsnD4rC4UDTwp7wZ1FgLgLTXzIzWOeGXfxREffDI+5OTG0/ODB3f/eXZwfFWN9lZynRis+Rtup3egyiF7F4yfRaFCuynn1xIHtDlPtgakp+PCH4QUvkJ//pV+y6iBcuJw7IDhGvV2yWSeWCeEZZL6yIkcyo1FmZkeg/mArhNi5K5yRd2hnEk1fbelYsWcPBuM9DkGLux3mxAmkO/Rhjot5dAPAMPzRzA4HDgxorl0Qi4tca7gK+5pNHrhvhKJVjQZn8nIN0MFbRqSbX8Csu1CKO69zl0js3CiEMNClqYqSzt267IrvVmmi0oRInEucPy81niI6RXJ2lxx0w4A//mOk7h+FgnD0Ovmrclmqd2diYmd2POfm5OtqWJw7PQbBIdC5E39Hyjt3XnE3O+ZLe+8gc6t+Uos7zcA4fhyoeZy7AYk76C7ufu7nBhQ3CWJigmsX5bqZB+9RcBW5RZqPnuCs6RJzU1MceMIOzG4aBldeKS9CqlXyl0IozL3OXSJBOj28tzN0usT6VBQHWtwFEFbn7tw5yriujbGp7c+N64dDh+B975Of++xnRebyK1/xd6Xeu1c0XBg03kHmYXHu9BgEh3jcHnqYoCI2CKyOVKo7d8VzcnOx6exOLf5CwuIioMWdZoeo1axEiHWHNjA5xEmRpxwQN93kXxw94xmeIec7wFUHak6eGVg53+TSpQ0+IUScves8bdepsTBTH50FaCpFOu2O3ZjkHgvhgXvsMY9zF9fOHeEYh+ATd8kxjYG5CWnNnfn4Wdm5m4rt/rXyjW8UNz03r3+9EHbf+Ib8/LZbY3Zhbk6OZYbVuZuKjq9zB7Z7l8RSc41wnIeFC7L6nJnfoZmvYWFB1P2O8yBzLe52kFOnrHRIVSy49nKOOLWBOnfRKDzvec7jWAze9KaBffmuTO5b4mpcradrtZFpqnL+mHwl359VfNuuTzL75K31/LHwibv2o8fI47LqEgrU3A2TLkOwlYxlFuX5DIlpfRsK6yiEyqkV6XEsGdkRY2xDIhExksRdYxTUOWFqCt761p15DyF27rxjELS4c4s7cR6q7twVVuQLxcxifEjvRBEscaedO82OcPw4YLbtFdYVnBAfGKBzB/BTPwUvexk861nw/vdv3GRlYPiaqtR54IHuLw8Ta+fkC+VCVsFhYdsgfbmcX8ydDtkshFaL9ROrmDiOz/RCnMkhNctUgjA5dyWPuEtNDOmdKMQGoxBUbt/tFXfJ1JCWFNdcA+94R/ePv/zl8O1vw/OfvzPff26OJGUnzdJsUqup7/jomjsPlrhzNlmEKFBe3K3Kmxkze1NDeieK4HPuxk/cjfNyaMcR9XZ1OkW5hzkuCj0HnFuZnhY1drvKvn1cw787j2v1kemYuXZBvlBm50crNpa5Uu78mT+n+J3Ly5kz5Jqum1c0SmZhzGsMusT6lHTuSrJaSczo21Dn+EUwidKgYR0/0xQmlKqN78pn5GFuyfQQj+X/+B/wiU/A3Xc7zz396fC//lf34vRBkc1iIAaZL7NkLybX1hSvKfXV3EXHt+YOujp3qov0Yq4FOPfA6b3jfBDRzh3audtRjh/H3ylzwK7d0OgyDkHlXeZeWbsoNxjJLo6WcEg/YY/0OLfS6PJKRQkYgzDW9XYQLueurMWdD1emOE7VPn6g9sKyfE7u0pdMD7HWJxqFz30OXvtaeNGL4FOfgn/9150XdmCLAjuaaR0/5aOZFy7oWKabeTHGI2zOXbEgz5qcPjjmN8Qu4m6cau70XXUH8XbKFGMQBjPjbujs3csBzpCiRIkU1OoUi2Je7IEDw35z22NN3owmu2e0ipMzN+wHnDq7nOoLEC++MQjx8a63gw1jfarhFSuJYQoCVXDtTiSoUHDN2FJRoHcon5cj3Ym5IdtUe/fCX/3V7n9f6/jZ4q4REnHnde50LBMIn3NXKMk+zcyhEZnLu1UyGYhEmG5baq7VgnabYnF8/Kzx+Ul3mXIZlpex78wR2hzk9ECbqQyVffswgGuxsphWAfsoRDPX1uXTIrtP5VxN/2Rukv8G86UJzGaI6goDxiBocRce58439FqLO5idFXPbsAR6uyXqtVHzGHaoXJS3wpMLIzIypl98zp0Ty1QaHcuU6dItU3XnrlCRfZqZwwtDeieKEInA/Lzj3AE0GjqWqdk+J05Y/7A6ZR7gDFGaoyPurK4tjrgTP+coNFVZLciLzezB6S6vDCexpTSxqBONa5oTlB87N8R31CePPebrlDn2sUxvt0yVa+5q8m1HizvEYqRLx1NlxV2jQXlN/gNLLmpxB4TDuWu1YGVFO3duQthQpVmoUG064s4Akgfnh/eGVGFhQYs7zeA5ftz6h3VnPoz1xKiIuz17wDAccddogNkeCecuV/GIu0Ojt5W5kJLvVo/dXejySgUJqLnTzl14nDufuBt2lE8VugwyVzYSduGCPMA8OkVyekw7n3pjmWFw7lZXod12au4mJyES0eIOl7gLQSyzeFwxvI9FAAAgAElEQVTuWDsda2BM6KW9FneaHcFx7sSNeqfGIAyNyUlYWvKNQ3jkEakXQOgwTcjV5MWmt7vkKHDDnOzU3f3NEB20U6f0AHMvgTV3pprOXV0WAInsmM9k6uCbdScEgooCHYCzZ2VxF5tSuzPkTjIzAxMTjrhrt6HdVlvcXbgA4Dh3UbGpqcWdK5bZVH+IeeH4RenxTDJEJRY7ycKCMwoBoNEYq4YqWtztEMK5M+2GKiPn3AHs3cs8qyxgXVxqdRoNOHZsuG9rO+TPlWm7Gk+ljApTc6MVywS4ab98Q7jn/hD1VioUZOcuGtXOXTwO8bgj7jCh1VJSGFQacvdZ7dxZdHHuVBToAJw9SwXXsZuKkRrX8VqGEb5B5svLNJlwBPpUFMMQo5XGlhAOMS+ckv/IZqZHoGX5IFhc1M6dZvCcOIGIKlpK4TDHxVVzlCwGq+7Odu+surswRzNzJ3LS42y8bDc6GCVuulLewrr/eCIcjmujAbWa7NxFIiN1Wm2ZbNYl7rAHKatGpSlvJCTmx7ROy0uXjqfKugbnzvmcu+Q4H8q5OVncNZqsrnZ/+dC5cIEiLiU3NcX09Eje7nrHGoUQo4aBaTt39booUVSRwhl5HMlMWi/rgUDnTos7zbZYX4dLl7DzNJM02c/jwrUbpSunt6lKLfwdM9dOyq29s0kFV8cDYN+hKPOucQi1SkjqJa2rs+3cTUwABul0908ZG7JZp+YOoNFUzrlrNqHRcm47BuZIOuNbossgetWOoY03ljkVG99YJgQ6d7lc95cPHT0GwY/l3BlY8ehGAxBOmKruXfGcXC8/nR2tubxbpkvN3SjMYu4FLe52AG+93eWcYoL26NTbddi3D3A7d0Lchblj5uppeWsnOxMGO6t/jKVFjnK380S9wT33DO/99EyxSJMJMVsRYGICw2C823d3yGSUd+6q63Xp7pqgihHT3TKBrrFMZcWddu5k5uaYxbU52GxSLCq8mNRjEPwkEiLijiXuTNO27FR10AsXZNU5M6+vpwAsLDBFg0msNVyjTrNpL1NHHi3udgCnU6ZYWY1kvR3Yzt0TeFg8tmKZJ08qXCeyCblz8hU8m253eWXIWVzkJlxqrtHg7ru7v1wZikU5kjkxQTotOsmPPV7nrtlQbkFSuSQvRBKTjdFKM2yHLrFMZcWdz7kbc3GXzRLBdM7BhuLO64ULHnGnnTsgdIPMCxflxdbM0jjb5y4WxKw/O5ppnY/jEs3US6IdYOTHIHSwxF2KMous2LFM00TtWoMNWLsgb+vMzY3ownNhwSPu6nz72yHodFoqyc1UJiZ0vV2HENTc+cRdVPU/uF2kSyxT1UWl37mLjbe4s0RBaJzX5WVnDALoWGaHLh0zVY1lFlYb0uOZvTrmDtjizo5mWuJuXDpmanG3A9jibpQ7ZYIdywRIk7edO4B8PugT1Gd1Ra6aziyOaH59cZGDnHYN3W1QrcIjjwz3bW1KgHM39p0yO4Sg5q6yJr+hxJQWdza+UQiKi4MA527ca+4gRM7r2pqn5i6qxR2ErmNmMSdfQ6f3jXu21qKLuNPOnWbLdJ1xN2riznLuwBJ3Ncf1Cqu4W1uVCySye0Y0v76wgAGOe2dd+JSvuysWtXPXjTA4d6uyDZWYGtHY81YIU81dowHLy55RCGMey/QOwFbdeS2XZXE3EdE1d2B3zPQeRyXFnWlSkPupMHNQ73YCXcSdqcVdB8Mw4oZh/KdhGPcYhnG/YRi/YT3/14ZhPGQYxrcNw/iIYRhR6/lnG4aRNwzjbuu/d7i+1gusz3nUMIy37tyPNTxqNdEtE4BqlQla7MUaGD1qDVUuu8z+5yzr0KiDKRZr6+vdPkltcutyDHNu34gOWLYufHZTlUYDTFP9ujvt3HUnk/HV3KkmDCp5OfaciGlxZxMm58cagG07d9EpMCJa3BGiURalkhzLnJjQzh34RXpDYZGez1NouTZYIhFdc9dhelqM9+jU3LXb0GrrWKaLGvBc0zRvAo4CLzAM42nAXwPXAjcCCeANrs/5F9M0j1r/vRPAMIwJ4EPA9wHXA682DOP6wf0oamA7Vq0mNJukyWMATE5KTtdIMDVli4Q01g9eFxfCsDp3qwU5hpk5MKL59WgUMhm57q7Z4L77kIa4K4cWd93xNVQRzp1K3foqOdlKTMQVenPDpotzp+Si8uxZwCXurI6nYy3ufLFaxRuqeJ27iBZ3QLgaqpw/72mKE2NmdkT7BPSLYXQdhzAObCruTEFH60at/0zTND9nfcwE/hM4sMmXugV41DTNY6Zp1oGPAT+wjfeuJLaosTpl2qLn4EFrJteIYQlWR9yJnzuM4s40Ya0ck57LXjHCA9QWFjjESefYNRqUy/Doo8N9WxtSKvnEnY5lWljd+qJYBfbWokSl1s8+5y6hxZ1NmMTBuXM0maCBtRk2FcMwxH7f2NLFuVPy+AGUSjqWGUSYGqqcPx84iF5jocXdxhiGMWEYxt3AMvAF0zS/7vpYFHgd8HnXp9xqxTjvMAzjBuu5/cBp12vOWM+NFLaosZqpZLCmmI5avV0HS9zZ832slWQYY5mVCjTqzmIzRo3EvhFWDouLGMCTuFc8roeg7i6g5k47dxZdui2qVHdXKcjF/4mk3mW2SafBMJzj12qB2VZTHJw9K9fbWTPuxnqqRdga4vhq7rRzBwTEMhVuqOJ17mK646nEwoITywQt7ryYptkyTfMowp27xTCMJ7o+/GHgq6Zp/ov1+FvAISvG+QHgduv5oMt+4LatYRg/aRjGNw3D+ObKykovb1EZHOdOXNFtV2RUxZ3VMdP+Oa2mKmF07lZXsfP1IIS5sbgwvDe00ywuAp66O1C77i4glqmdOwvrF2FHMxVcXGpxtwGRCKTTvqY4Kh0/m4sX5U6Z0TFvpgIBoxAUrtVqtaBalWvuIhEtDCBUzl3z8QvSJosxFSWVGuIbUg2fc1fXNXdBmKaZA/4ZeAGAYRi/BiwCb3a9Zr0T4zRN83NA1DCMBYRTd9D15Q4AZ7t8nz8xTfOppmk+ddFagIaFnGXU+cTdqDVT6TBCscy1sxWp4CwbWWekMw5WvaTTMVMI83vvVbjuTjt33elSs6WUc1eUR40kUiMYVd8OAR1PlRQHpZIs7iYmtLgLbIhjqnn8rDdluz6RCGBocQd+B1bhmrvi6TXp8fS0Md7uuRft3HXHMIxFwzAy1r8TwHcDDxqG8Qbg+cCrTdNsu15/mWGIPy/DMG6xvscl4BvA1YZhHDYMYwp4FfDpQf9Aw2bsnDuvuKuFN5a5dkruKTyXqIx2zsjaOLmSY8xQkIZ8Hjs2zDe2Ab46kQldJ9LBUrm2c6dgzY9P3E1rcSeRzTqLSlByViEA5bJH3EXGe8YdQCwGyaTr+JnQaql5/EolTFzizuoHoMUd9nXUdu5aCou7x+Vd9Om0nm4msbg4tjV3kz28Zi/wF1a3ywjwcdM0P2MYRhM4CfyHpeU+ZXXGfDnwRuvjFeBVVtOVpmEYPwv8AzABfMQ0zfsH/yMNF8e5Ewuscam5Gwnn7rTs12dnRnzAsiXuDOBG7uPfG9fZH7rnHjhyZEjvawPMQtHnGOgYikUqBZOTxJvWatJsQ7tFraaOgKqU5SR+YqaXW9AYEYJZhQCUSnLNnXbuBNksibJbnDeoVhX8Gy+XqZCghXVtiEwQi415Q5wOadFEzVs7qWIss3hO3pCezka7vHJMCWioMi6xzE2vOqZp3gs8OeD5wM81TfODwAe7fOxzwOf6fI+hYuwaqmxQc2ea4TK+1s7KV+9MesQ7+S049YRHuZt/r7/UfnzPPfBDPzSMN7UxlfWG9DgeN0SiSCNOtmyW+IpLHDSaVKsKibuKR9zN6sWIRCbDJE0itGkTgWaDppiqw6RKGkHHMoOZmyP+eDhitbqZShe8zp3C4q6wLP9xzczHurxyTNHdMjWDIpdD7JjXAkYhjCKWcxejLuJgVrfMZlPNGMNGrF2Q27TPzY24uHPVs97A/XbNHcDjjw/jDW1OKS+7qanpEO0e7AZdZt2pQqUiHy8t7jxkMhj46yaVi/Z5xV1EiztAiDu8myvDeztdKZc9A8z1GAQby7mTxZ2atZOFi/If18wefRJKBNTcjYtzp8XdgMnnkToYZMjBnj0Qjw/vTe0krsHss6wLcWdNTQ5bNHNtRRYO2QWVtsp3AJdzlyEndQpVcZcSoFyQa7aSKS3uJAJifSotLiue95LI6J1miS5NcVQ6hkCgczf2NXcQcP41lBQFlEryfDQ9wNwhGvXUTgKtlnr3xFaLQk7ufKbFnQevc1fXzp1mi+TzSHfiNPnRjWSCEK3WgkS4lKYtEkIn7i7JTl1mz4gvPF3OXZJyKMSd98KcmlUncqgEmYzHuWsoJQwqNfmWk0jrIh8JKxIWBnEn19xFtHMHMDcXmoY4XudOizsXmYzj3IGa8dpSiaIpu+fTmRHfkO6XLrFMc8RDWaDF3UAxzTEUdzAyTVXW8rILNLdvRN3WDi5xl6BiDTEXVz1VxV25JF+Vk7P6ZiaheEOOiqe5S2JO2z0SXcSdigtLXXMXgLfbqcLOna6524B02nMcm+rdE4tFfQw3Y36eKRpEsTauGw1aLbNTPTTSaHE3QAoFa0fA6pSZpMwkrfETdyEdh7BWkOt/sgdGvA1jKiXadwNT1ImYTTHcFuwmDqpRKssCPJXW4k7CW3OnmHNQaXjEXXbEN1D6xRJ33k59Kh1DQNfcdSNENXeSMIjokTISmQxxqhjWZifNJvW6fXtUAy3uNieRgFTK5d6Z0GyORd2dFncDxB6D4O2UOaoDzDtYHTNnsdRcCJ27eh3KVUc4RGgzcyA9xHe0CxiGNA5B+WimaVL2NORIZnRDDomAmh+lnLuGfLwS81oRSIQolqlr7gJQvObVplTyxDK1MJBIpzHwb7Io5cJq97U3xnSQuRZ3A2TsBph36OLchUncra0hCZssaxiLC90/YVTw1t3VFRZ3tRqltsvpMQxSOpYpE9AtU5XFpWlCtSk7d/E5Le4kQivudM0d4K+5UzWW6XXudM2dTBcHXal7YrEoN8WZmGB6uvvLx5YxHYegxd0AcQaYj8mMuw6+mrvwxTKDxB3z88N7Q7uFq2Nmgorazp2u89kchWvuqlWg5XR3i1EjMqtXIxJhqLlrt6Fc9p2LqRFPsfeE9/xrKNiIA/zOnY5lynQRd0odSx3L7A0t7jTbRThVpn/G3ZiIuzDHMgPF3cIYOneuWXdK3cgAikVKuFaQekHpx9stU6Gan0qhKWaAWiSoju6ImK3iXVQ2FHTurAuDLe4iEcDQsUwIdO6UOnYdymWP6xPRro+bwFl3im14anHXGwHiTtfcafoin0dcBNpiAZMhB8mkfaEYWayau1DHMs9V7eMGkJ1YZyzudmEah1AsauduMxSuuatckv+gEpMNUfepcQhDLNPa9rZHIUyIqK0+F4FslinqTiOORpNGQ7q1qIF3lEVEb5RJWOehI+5EJxWlNjy1uOuNMR1krsXdAMnnwd1jNU1eDDAf9QVMl1EIoYplnpF9+mxqTBaeLnfSK+6Uiy5o525zFK6584m7qILtWIdNMgnRqCPuzDa0W8ocQ8C+MDjOnRZ3NnNzGLjFubieKnX8AMplz5xC3RBHIgTOXbvgL1PQ98MAdCxTs11yOaSGFGnycNllw3tDu0VgzZ0ZLufucfmqnU2rttW6Q2zQUEWpXUrQNXe9EFDzo4xztyavcBNTWtz5MAy7DbuNagOUveJuQiwj9LmIEAWG4Ry/VgvMtlrHD3RDnM0IQUOVSk6+sCfibZGQ1shocafZLsK5c04427kbdVIpmJ11xJ1pQqNBPm/N/QsBa+flC2V2bgxcOwhdLFM7d5ugsnPnE3djsoHSL5mMb4CyKscQgFIJE7e4E86ddn4Q9Yezs7I4b7XUE3faudsYy7lTuaFKeU1esyTjIVls7TaLi3oUgmZ7eJ27DLnxcO4AlpaIUXcWlo0GzaZaF8ONWFuRXYTs/JicGr5YphMrVlHcaeduE2ZmSBium367Ra2ihojy7TTH1HhfyhHg3KnivgJQLlNnChNrAywyQTQKk3oqiSCdlsW5Qk2NOphFf82dFncufDV3Coq7fEN6nEhocReI17mr65o7TZ90rbkbBywHyIlmigtPWKKZq5fkC2N2z9SQ3sku43LulB+FoJ27zYlEiM3GpKeq6/UuL95dKnn5fejFZBdCEMvUmywb4D1+LfXEXbNUo4Uzc3JyytDi3E0XcafSPbGyLou7ZHJM0kb9ooeYa7aLcO6cBcxYOXeWSLDHITTC1TEzl5cvjNm9Y9KifYOGKkotKEE7dz0Sz8h/u9VCo8srd5fKulfc6Z3mQALEnVLiQNdrbYzqsVqgXJRd80RSLwUlQtBQpbwup42SKS3uAtE1d5rtUKtZ4+0scTdJU1wYtHOnPK0WrBflC2N6/xiMQQCYm7O7giYpi5uYNYtMpRsZiCiR17nTi0o/saz8S6mW1GhcUvEsRhJ6pzmY0Ik7HemTSKfVdl6BSskj7lJ6KSjhbajSUk/ceY9hclofw0Dm5mRx12xQKo5+SYD+axgQtoixxF2avKhIGBfnbmkJcIk7ywEKwziEXA7MhrPwnGWdyaW5Ib6jXWRiAubnAdcupXXsVLqRAdTzFdquS1Y0ahCNDvENKUp8ThZ3tXJrSO9EplL0ijt9+wnEK+5Uq9nyzkjTmywyqsdqgUpZds0TWhjIJJNi06Ij7tptaKvV9dTnvs7oXG0g0SipWfl3U1xVo1RhJ9Fn9IAIEnfA2Dl3YYxl5nJIccQsa1JcceSxflb7RqaouCvn5AtyKjn6u29bYWIuTQTnd9OqtzqpoqFS8S5G9IIyGN8gesXEgde5i2hxJ+FtqKKa8wpUKl5xp4WBhDWSxN7wBOXOw3LJewwnurxSMz0v16EX19QoVdhJ9N11QORyAKYtasZV3IUxlrm2xniLO+vY2Tcy69ipdCMDKOU9NQZ6QRmIkfU7Pyp0W6yUZAdRLyi7oHrNlm6osjGqHz/TpFyWI9Ha9QkgnfaJO5U2PL3352Rax1i6kVqUL1ClfCs0Y7q2ihZ3AyKfx6pXEn8xGXIwPc3YtPPzijtL5IYhlrm6il/cWVHFscA6dnYu3Tp2qhUdewvIU7qAPBjfrLuGEovLimdhpBeUXQhdzV1E19y5UT2WWatRwdV0yTB0vVYQASJdJXFXrsj3v2RmTDp8b4HoUpYozhqvXW8oseG5k+gzekDkckDNMwZhXOrtoGvNnXbuQkBIYpmloieGopsABBMQ61PhRuar85nVO82BhEDc6Zq7DQhoqKL68dPiPABvLLOlmLiryve/ZDbW5ZWaoFl3qm1eDxq9OhoQ+TzSAOgMufGJZIK/5i5Esczccl0UTFtkJwrCdR0XvLHMhpqxTG8BeWpWX74C8Tp3ijTkqHjegxZ3XegyxFyZGJGOZW6M6s5duawHmPdCQO2kSsexUpPvf4nsmIxv2goLC87aFKDRCMXadDvo1dGA8M64GzvnzhfLbABmOGKZZ+TtuOxsyx4PMBZYx86+kblq7pRZUOKPiSZndawvEJ9zp0YEpVL11Plk9E5zIJkMBjgC3eqGo4JAB3RDlc1QvebO59zpWG0gKjdUqdcpt93XT0PH3DdiYUEYLh0aDatPxuiixd2AyOfxDzAfJ+cuFoOZGUfcYUKjGYrdkbXz8so3mx3SGxkWVixzgrZYUFrOnWkqtKAEyp5YX0oXkAfjq7lTY3Hp22nW4i4Ya8aWLdBVF3c61iejuOPjc+708QsmIF5bq4m5uEOnWPRHo3UNencWFphj1XncaIhynBFGi7sB4RV3Y+fcASwtucQd0KiTz6vl/gSRW5Hb4mYXxqylsOXcgeXeueLFKtUYlMqeGgMt7oLpEusbNpW6fF7pGFEXfOJOpCDUFXcR7dy58Z1/LXWOHfidO+28BmM56LZQtzZZlBDqxaKORvfDwoLopdCh0RCN9EYYLe4GRGAsc5ycO4DFRWLUHdeg0aDZVORiuAGrl+RaruzSmIkGV/OYJGWpuYxKx65ck8VBak47P4GoWnNXl2NDiTltFwQSj8PUlCMQTFOtAco6lrkxPsdHjW61Nj7nTscyA7E2WexopiXulNjw1OKuPxYXfbFM7dxpekI7dwTMulN/kLlpQi4nxxmye8fMUXA5d15xp8SNDKDdplSTxUEyq1s/B6JgzZ1pQqXpEXfzejUSiGFANitH+xQR6IBuqLIZvlhmy9cpdqjobpm9kU4Dijp3OhrdHwGxTF1zp9mUdtua56adOyBc4xCKRWjVnflpScrE9mSG+I6GQKBzJxYjyoi7SoWyFCWKkJoZs/hsr3hjYa0W1fJwC0UaDWi3nAXuJE0mM2PUkbZfFI3WArohx2bEYsSlUIFJpdjs9urdp1z2Oa/6+AXQxblTQtwF1dzpDZbu+GKZdR3L1GxOoWDVlVniLkWJSVrj59xZs+7CNA7BO8A8Q268ZtwBJBKQSol/YrXIVCmCAlAsUiLlPNY3s+5MTBCLy5f26upwVySVClInggQV+29OE4DK7fS94kCfiz68Yz6qhUaXVw6BAHGuj18AXZw7Je6JWtz1RyZDxnC1bm+1WLuoQmecnUOLuwEg7F3TFjN2tlc7dwBKj0MIHGA+Pz+8NzQsusy6U+JGBoExFK0NuhP3DHivrQ13Ymul2JJmSSaooO2CDVB5kLk+FzclnpGj/dWiQgtJ3S2zN3zOnTiGKtwTW+slajj2sDEZIaZL0LsTiTCXlaPRueV6lxePBlrcDQAxwNyJsmXIiV2f+HjWbjniTv2aO6+4m2N1/Jw7sI9dCksE1BUTd9q564tYyuMcDNu583z/xGQDIvr20xVVxV29Ds2mI+4MAwwdy/Ti7QRbLSkk7gK6ZerjF4Dl3KkYy/RdT6faYzWadyt4G+WtLjeV7+S+HfTddQAENlMZN9cObIEQplimV9yNZSwT7J/ZjqCo5twFdAfTbkF34jPyjayWH64y8C5GklGFapBURFVxVyrRxnBcg4ioe9XiQGYyM00Ex6lu1lodbTB8dLfM3rCcOxVjmeWc7DolYu0ur9R0iF+WkbpIN6sNSsMNtOwoWtwNACHuHIEw7uLO69zpWGYI8MUyxbFTYZcS0M5dn8Rm5E6i1fxwu3H4d5pVWekqiqo1d106LWrXQMbIKnr8IHCUhRZ3AczOAi5x12oCphLHsZKXxV0yMcIW1KBYWpI7ZtbrI90xU4u7ASBm3DmLp7EcgwB2Q5UwdcsMjGVqcaedu5ATT8sFGLXCkMVdTv7+eqd5EzIZTzt9dZw7PcC8B3zjEBQ5foBZ0jV3PTE5CdPTzj0RRCRZgXui17nT4q4Hlpbkjpn10R5krsXdAPA6dxly2rkD63diqi3ulhtSo4fsRAFmZob4joaEFctUVdw118vUcdwoY0IXkG9ELCOv1qqF4TplfnGnFyMb4nPuFBmEredr9Yaq4hxoFKq0XUu/yajB5OQGnzDOZDIecddS4p5YXpev58mUts43ZWnJM8i8PtKDzLW4GwDCuRvzAeYgGshMTzs1d4iW+kqLu/PyojOTNsczY2QJc3tBolhDlfKqvDJKxVpjeZh6xdutr1Yabit2b4xIC4JN8A2iV0QcBDTj0M5dAKrGarE617rQ5+IGpNM+506F41jxbNYlUnopvym+WOZoDzLXfxEDwNtQZWydO4DFRce5A6g31K65W5EvknPzY6oYfM6dWjV3pTVPDCWuY30bEZuTM6vV0nB/X5V1WVzqBeUmqCoOApw7Le4CSKfVFOdAueARd/r4dSfAgVVhw7NclK/nWtz1gDeWOeKDzPVfxADQzp2LpSVZ3DXq5PMo2XLWNGHtknyjyy6OaT5F8Zo7b41BKqngH5RCxOdlcVcrD7cVu2+nOTmmmyi9omqsT9fc9YZXnLcUEedAxbPRk9TCoDsBtZMqHEffMZwd03VLP3hjmfWGjmVqNkY7dy4WF4lRd1rO1hs0m+o4QG6qVXnRO0mT5MKYrlQUr7kr5T01BlrcbUhsflp6XK0M9/elY0R9ovAoBF1z1wNecd5Q5PjhFwb6XNwAX82dIs5dWb6eJ2cmhvROQoQ3ltnQ3TI1mxA4525cnbsQDTIXnTKdReccqxgLY9gpE+wOoarOufNGiVK6gHxD4kuz0uNabbjiTseI+kRhcefttKiduwAUdXwAKh5hkJjWwqArAeJOheNYLsv3v2Q62uWVGhtft0wdy9RsQK0Gtappi5hJmuKibo0FGDt84k7dcQh6xp2LTAYMgxTWVM9WC8y2MuKuVPDEUKb1pWsjYouyuKvWhvv78rkFMzpGtCEBNVveRflQCJiRpsVdAAGxTCXEOQHiTrs+3QloqKLCPbFckcVdIjPV5ZUam9lZMlHXwWu3fT0XRgm9QtomuRySQEiTx8hmGds+7ZaotTtm1hUXd03PCIu5ueG9oWEyMQHZrHwja6hxIwN/h7fUjL50bURij8e5awzX6axUvAtKLe42JB6Xx0WYJtXScOsmAV1z1ysKN1SpVD3CYEa7Pl3xxmtbatwTvccwmR3T9WY/GAZzi/JGRm653uXF4UevkLaJrrfz0CWWqWLHTD3A3MP8PFPUMbAWlY0GjQY0FdjcKpXkx7qAfGOm9mSlx7VGBLM1vI6ZFc+CKKFjRJviG0RfHO44C0DX3PVKQEMcFeJ8ABWPi68jfRugaLy2UpdFSjIb7/JKjZvpPSkmcRY05fUmtdoGnxBitLjbJrpTpofAQeYKO3eumruxjmUCzM9j4GqqYrmaKtzMvLulqbQWdxthxKaIRWRVXrtYGNK7gYrHtUjM6hjRZngH0Xub0gwFHcvsjVSKuOFyBdptqiqI82aTSlO+dmoXfQMCRHqtJqoWhoZpUq57jqEWdz1h7PF2zBzdQeZa3G0TEcvUzp2NrrkLL9lbIZ0AACAASURBVNbPrmLHzFLFs9usaww2JTYlO3XVC8M7CStV+fglMjpGtBmJOVncVUut4Y+U0XPuesMwfE2DKmsK5DLLZV9DHD2WZAPSaQxcjcasGMtQI7aVCmX3MTQiOsnSK3v2+GbdjWrHTC3utklgLHOcnTtvzZ3qscymR9yNa80dKC3uyh5xkMxqcbcZ8SlZCdSWhyju6lrc9ctkdoYJHIug3WgOPyJdLuuaux6JT8sL7mpOgfxXgPOqY7UbkMkAfnE31Htisaij0VvF1zGzMbIdM7W42yaBYxC0c+dx7kyFnTsdy7SxZt054xAUuJFZlKpyjUFqTsdQNsPb06m6MsRYpqdGxOtKaQJQcRxCwCgEvbAMxht3rK4rIO58zp0W5xtiiTunVEGBe2KxqMeRbBWvuGvoWKamC3rGnYdEAlIpR9yZJjSbSoq71VVTO3duujh3StTceWoMkvN6RbkZ8YQct6pdKg7pnUCl4akRmderkU0JEHdDPxd1LLNn4p660kpegZo7rzjXzt3GpNOA37kb6nkY4Nzpc7BHAmbd6VimJpDAhirj7NwBLC46sUyAekPJWGbuYhN3EUs2UYP4GDtCqsYyWy1KLdmGSs3pWN9mxBLy5b16cTjirtmEZtMRmhHaRNN6NbIpAc0cVHDudEOV3vB2O1WiIU5QzZ0Wd90JdO7M4Yq7APdcn4M9omOZDoZhxA3D+E/DMO4xDON+wzB+w3r+sGEYXzcM4xHDMP7WMIwp6/mY9fhR6+NXuL7W26znHzIM4/k79UPtJmtrSOIuy9p4O3fgF3cN9cRdowHFnHOzNTCZnR/zltBecddURNwFuQUp3QRgM+IpOQpZWxvOgaxUkNrLJahgzEwP5b2ECkVjmdo16A1vXakqcwq9sUwt7jYgHodo1NlkMU1ot4d6T2zli9RxXGFjIsKULkHvDR3LlKgBzzVN8ybgKPACwzCeBvwW8HumaV4NrAE/br3+x4E10zSPAL9nvQ7DMK4HXgXcALwA+LBhGPLqI4QEirtxd+6Wljzirq6cuPN2ysyQI7IwxpFMUNe5KxYpkXIeT0yQSnV/uUYQS3lqflbVEXf6APaAouJOi4PeiGc93U7LCog7b0McHcvcGMOATMa5JwI0hzvIvLwqXwQSUy0MvdfZGwHO3djGMk1BJ88Ttf4zgecCn7Se/wvgB61//4D1GOvjzzMMw7Ce/5hpmjXTNI8DjwK3DOSnGCJrq21/O32rY+TYsrhInKozLLLeoF5HqWGRYoSFp5nKONfbgdLiTrsF/ROfkZ3oWn44WaJKqQ1tj7jTB3BzFKy5axRrNHE2DSLRCe0adME3yqI87DkWaHG+FRQTd96RGsmYApsGYWFx0efcrV5S4LzcAXqquTMMY8IwjLuBZeALwGNAzjTNzur4DLDf+vd+4DSA9fE8MO9+PuBzvN/vJw3D+KZhGN9cWVnp7yfaRWo1qKw7wm6SJtNzMYiOebxvcREDtcchBI5BGOdOmRAg7hToDAaYhaKu89kCsRl51V3N17u8cmeprMqKJDHRgInQhzZ2nmxWrrlrDN+5K5fkhVBqJqJdgy7E52V3etjCHNA1d1shnWYaV71ys0lxeL2pKK/Ju+TJeLvLKzU+YjGyM7IYXlsezn1xp+lJ3Jmm2TJN8yhwAOG2XRf0Muv/QZd6c4Png77fn5im+VTTNJ+6aLXWVxFvJDNDDmPvmNfbgT0OwRF3QkSpJO5WV9EDzL1YP7/TGUyMsRi2uPOKg3i0RUS3gtqUeFoWd7UhtWL37jQnphRoLBEGVItltlqUa555hdNapHcjviDXlVaqhhJD6HW3zD7JZJjBNUam2RrqWqbs6bqaTAz7jypcpPfEMVzSY/1S0101MDL0tUQyTTMH/DPwNCBjGEYnn3EAOGv9+wxwEMD6eBpYdT8f8DmhRNfbdcE7yLyuqHOnxZ1MPA7JpOPcmSY0W0PfcS5dkle0qZgCLcVDQCwtd36tFobze6useZy7qRG8k+4Eqok7r+sTmSCZ1LZdNybn005pAmA2m+5bzlAwS94h9FrcbUo6LfcQaDYoDG9kqE/c6ePXHxN7Fnw9IUax7q6XbpmLhmFkrH8ngO8GHgC+DLzcetmPAH9v/fvT1mOsj3/JNE3Tev5VVjfNw8DVwH8O6gcZBlrcdSEEzp2uuevCwoJcX9BoDN258xaQJ2M6htIL8Yx8168VhyTucnLsJRHTO8094RN3jaG3YJeFgR6AvSHptHKjLOrrVUxXiCoahcnJDT5BA5mMJ5bZGqq4c5cCASR1b6r+CGiqMoodM3tx7vYCXzYM417gG8AXTNP8DPDLwJsNw3gUUVP359br/xyYt55/M/BWANM07wc+DvwX8HngTaZphnoLd3UVPQYhCEvc2VGGurgYDfOC6GV1FV1zF8T8vHLirrQqxwlT8VBfNnaN+Jy88h5WK/ZKTj5+ibgWdz0RJA4qQ/zd6TEI/eET58NPQXiFQULXa21OOu2JZTaHK+488xITKR2N7ouAcQij6Nxtumdjmua9wJMDnj9GQLdL0zSrwCu6fK3fBH6z/7epJmKAuUcg7LlyeG9IFSxxlyYvHlvOXT4/rDfkR8cyuzA/T8Kdlm4OX9yV1+Wbma4x6I3YnLylWy23RdR2lztgVNY9zp0Wd70xNUV8ygTXr0/UTca7fsqOEjDAXEfCNiCdVitWS5C4G9IbCROZjCeWOVxxVy7Kgjw5rQvQ+2JMBpnrv4pt4I1lzrGqnTvwO3eNOmAq5dzpWGYXApy7Ye82l3LygiSV1OKgF+KzU5KQq7Unh9L6tOKtEdF1Wj3jnVXobS60q/ja6GvnbkMUHGVRKcrufUIfv83xxTKHLO48HWuTszpX2xdjMshci7ttIDouyt0yx37GHYgBxcmks9tlmtBsKlVzp7tldkHBWKbPuUtpcdALsbgBk85YlipxhnEX8y8o9fHrFW83ymp+iMNCdc1df8zOyrHaVlO450OkUvRE+hL6XNwUX0OVIYs7z/04MaPFXV/s2eNx7rS403gIjPYpPLphV1lc9HQkaigTy2y3rYiorrnz4xN3TUql4b0dgFJBXhClZvRlqxficSDq3PhrxIYj7nw1Ivr49Up81jurUCVxp527DZmcJBGVNzYqF4d7Ma14XR8d6dsca4i53T7fitc2hzTRpeKpu02mx3yucr/ohiqazRDRPkcgzLEKCwvDe0Mq4RV39eG2D3aTz4PZNu2r8zRFJmlBJjPkd6YAXWKZw5zP5KsxmNEF5L0Qi+F37i5d2vX3USnJx0/PRuudeDomPa6uD3Hgblm30e+XuKemrXpp2OLOcy7qjZbNSacxwIlmWuuGYa1nyhX5mCUzU11eqQlExzI1m7G6akriLkNOi7sOS0u+WSKqxDLX1vC7dpmM7gkNMD/PBG2mOl0cmg1ME2rDNQwkUrNaHPRCPA5MOeKuRgxWVnb9ffgWlDpG1DNeced1QXeVgAHY2rnbmHhSXmJVV4ebca+U5V26hN4o2xxr09dez7SGK+4qVTlKm8zGurxSE4jPudPiTuOi2YRCri0yfoCBSXqqKurNNIHOnVLizttMRUcyBdbvwXbvrM2LYdbdeb+3LiDvjVgMiDq7ulXisLy86+/Dv6DUx69XElnPIPrScMVdCdf9TccyN8VbX1pZG25HlXJFfj+JaX0ubko6DbgaxA3buavLgjwxp1ue9kU2SzbiWoy2WqxdHL3xSlrcbZF8Hsm1S5NnYnFu19uMK8viojwbpiHE3TDjfR28zt0cq7pTZgdL3NmNABQQdyVPDCWV1TGUXlDGufO0f0/M6hqRXoln5dxjtTTEhhy6oUrfxD0zyCqrw52F4HV99LnYA5Zzp464k49ZYk5no/siEiG7KG9q5FYaSqxNB4kWd1sksNuijmQ6LC4So04MK8/XqNNqMfRW0OBvhJMhp527DtbfsOPciRvZMI9bueqpMdAxlJ5QxrnzugUZffx6xTeIvjJccecdhaBr7jZGqW6nBET6dDOOzZmdBcNwxF2rBWZ7OOKu1aLSko9ZMqudu36Z2pOVegu0qur0hBgUWtxtkUCBoMWdg9U11I5mWsPeVYhm6gHmG+CLZYrau6HGMmse525Oi4NeCHTuhiHuPMcvkdbOa6/EF6alx0PdHAsYYq6du43xdTsdZkMcAs5F3YxjcyIRmJmRk0it1nDEQNA5qDue9s8YNFXRfxVbRAgEzwBzLe4crHl/8iBzlcSdU7syx6oWdx1mZ2Fy0hF37Ta0W8ONZXpiKEldY9ATQc6deWH3xV2pJkdg9PHrndSSXMNdqk50yrx3Hz0KoW+8GxnVQqPLK3eBdptKw1OvNavFXU9kMrK4G9asu2JRn4ODYAyaqmhxt0UC3R8t7hws5y6NNdxONeeu6XFddc2dwDBgbk4evttoDte584i71ILOgvXC5CRMxJ3fXZsIreXdHYXQbkOhLi8gZxa089or0YW004IdaDdaw5sXqmvu+sbr3A2122m16nF9InosSa+k0z5xN5S1TLGoo9GDYAxm3Wlxt0W0uNuEPXsAVyxTOedOxzK70mXW3bAoNWUxkFzUHWl7JTYtC+Pq8u6egIUCmE3HapqmyGRmeoPP0Ehks8zjEuTN5jBGFQp0zV3feBvieMeC7Cq+URYRffx6JcC5Kxa7v3ynaOaKNHCu6ZFJgyltvvaPjmVquqHF3SZ4Y5n1BmAqUbTqPXY6lulhfp4UruFyzYZv1txuYdbqlE1XjM8w9NDWPoh7uuFVc5X/v713D4/kKs993yW1bi211FJLrctIHs19xh6PPcbYTsCGcAhgY0g2JARIuGSTkBCTQLiEkGTvzXkSdoDNgZ1NCCcE8sDOCQQCCSFsjEMAOzExBtsztmc8M/bcb9JIaqlbl753r/NHlapqVbekvtSl1Xp/zzPPqErV3SUtVdV61/d976f87btNIgGgaNpM92KR7WKqIRzW7k+r+Cju5DL73FWL3ckwnfTRcj2ZpDivlTKROz/mMqkF1W21qy1Pg/ZaYOSOrAXF3QZ0dQGhkJmWCQnk8v6lFK2ehSytuWNapo1IxJaWmfMtLTO7sIICzNShQKtEWzufZpXS2dUCtJkCL41OYG7Os89fXASQNye0fUgAPYzcVUw4rEbucnnNqdkH0st5SJjXXnunQCuz+talRNz5bIhjF+cUdxVSJnLnRxZSMqb+AQXbm68/mycwckfWYmEBRh0ZoIs7vc6M6ESj6g0xm/U9creyorep0WvuOpBBF9KM3FlpoLTM5KwaMuwO+Gslvtno7IRiquK1Y2YiLpX61j4kgP5+zz5/0xMOI2KN3BXymJ/xp24ruaROJIPdXGTZiIZyO00mS8w4KO4qZGCgpG+vH2mZSVvkLthBcVcTjNyRtWDkrgKGh82aOwDIZX2vuTMuYH3sjJQnijuTEnHnn6HKypxtpbLNR0OCTUhHB5R2CEkEvRV3MxlYu8P2BZLgjLIKWlsRCan2+bGL/uRI2+vFuroZttsIu7hLZ3wUxCU1k6y5q5ixMVXcZfyZyyQX1HtBV2eTdd72iuFhRu5IKVIC8TjY524j7OIu20jiThMJxgXOtEyTwcGSyJ1f4s6ehtLd4aOV+Cakvx9K5C6GiLfi7qoqRPqCHL9qGehXJ3Cxy/6Ef5Ir6nkEQ5w+bETnUEjZTmV9FMT2mjvWTFbO2JhtLpPRzKI81laphCrugl0UdzUxNKTWMmezmJtrrt8l7841sLgIFIvSEHfdWEE7coz+2IlGbTfEXGOIO713G6CL8kBA6+9GNBqo5m5lXk3DZBpKdQwNQYnczWLIW3E3rQqRvpCPboGblIEhVRDEpv0RyPZ7QHdvoPyBxKBrpE/ZTudavFcEOiWGOK0tWto22ZjRUbQjiwD0zJFMBvk8kPW4J31qUb32Kc5rpLsbQ0HLDU1KzE0XtJKdJoHirga0Pml5ANpNuh8LmkkA75QqjZqWaXfKHBgALacsNFLNXVx9enZ3UtxVw9AQlMid5+JuVhXnfWHPPrppiIyojqfzsz5cA1IimVLvkV02J1ZSSme4U3m2ZGQ7ZNKfm2l2Ma0Y4rS1aeuapALGxiBgcf/O+NPaKbmoqg+Ku9ppH+5Xoncym/WvzYwLUNzVAOvtKqRRI3d529gxJVPFLu7yPkbu4raVStaIVEU0Cn8jd3PqZKQ3zDqtaolsUxcNY/PC++BPJoMUbC1Jejh92IiWFqC9zRwsCYHMjD+W0am4utDSRafFyhkbA2Dp25vNwI/WTnZToy5eg7UTjSIKy7Mwm8O1a/6djtPwL6MG5udBcVcJw8Nl3TJ9ykoBsDp2tjYITKdVKRO5863mLqGKu+5gc+XFu03ZyN3srGefv7igTkb6IgwVVEtwLIwOmBPzbKrgfd/JlZUSp0VGDSqjs01NRU7P+LPCWZLS18kU6Yrp6wO6utAD3SKzWATyBe/F3bLN1KiH99OaiUYxDIuay2Up7rY6djMVirs1iEYRQMEUCtkspIQvFsKrsIF5BTRSzZ09DYX261Vhr7mbQdTbyF1CFeN9Q2xAXy1iOKoW/+d8SB+iuKuZLludcGrWnweg3Yyjq4MLZRUjxJqmKl5id6wNhpgJUTMlkbusl49G16G4qwGmZVbI8DAASypDzp88dSuxGJS0zAhiFHd2BgbQDUtoIJ9HKunPRCC5pD7MukMUd9UwOIgSt8zCNe+amCcW1UdM3zDrkqsmGlUbmWdz3jcyt4s7NsCumM4OdTs955O4W1IXyjh+VVKmHYLnkTvbImuwj3WvNRONYgTT5nY2h+nptQ/fbFDc1QDTMiskGgVgKULWraX8bGQei0EZuwhirLmz09aGjlAHBExBl1nJo+BDicbKss1+vYcrldXQ0QH0DZoTgCJasDDjjdtioQAsJc1HjIBEaLRnnVeQsgwNqeLOp8id6rTIyF2l2EVUas6fPoUl9Vocv+oYHTXTMgFfInd2UyOKuzqwR+5yjNxteRi5q5BwGGhrQx/0AvJiESgUkPCnnhxSltbcMXJXHjHYGKmZ9hTe7l6Ku2oZGg0ojn2zySC8KNpaWoJyn+zBMlojtMusmkaM3LW2UNxVSGdQnZCnF/xxyyxpQh/k9K8q7GmZGR/SMtM2x9o+prnXjL3mLsuauy2PveZuAPMUd+UQAohGy5qq+EEioUUTrP0JO5CluCuHvZF53p92CIllVcyFIxR31TIUFUpq5gyinpiqJBKAtXFQHxKMktdCtDFq7lbQbW4zclcxXd3qNMs3cbesRu5Yv1wljZCWmVH/loIDTHOvmTJumTMz/hr+OQnFXQ3MzwPImuIujDjF3Vo0UK+7udVSI73mbhD6Dk44S2kQx0y7uOuLdqxxJFkLvxqZJxJQouR9SAD9/a5/btMRDiPSEje3CwXvG5mXSctkzVZldHarjoaphbQv52Gvm+5iint12MWdH4YqGXXMuvop7mpGb9VlOBFns0il/DX8cxKKuyqRco20zKEh/06qkRkeNtMyASCb9S0t01jt1sfOWA1n5K6UBhF38RW1pqBvrHuNI8laRKPwpR2CFrkz75OM3NWIEIgMqBPz+SseR39KDFWYllkpnSGbuLO5VnqF/f5NcVcljRC5y6l/S8EIV1hq5rrrIAAzNTOTBiCbJjWT4q5KUildG+gCoQMZrTaJkbvylKRl5nxLyzTFnRZNMCJ3FHelNEA7BCmBRFqtKejbRkOOammoyB3FXU0MDKqP6ti0xwKBrRBqpqtXvYelF/0RdyX1WiH2SKuK0VHfI3fJnLrYSXFXB+Ew0NdnpmYWi03VDoHirkqMQnbd1r8fCxAAxd1aNFBapiHu9GiCYVLACWcpJZG7vOc1d+k0kM2ZE5I25NA1SkOOarE3Mveq111ioQgUbOKur8/1z21GIiPqpC4243EDaoq7mukMq6lz6URmjSPdxX7/7qLTYnWUjdx5WKCVzSIprWJOoCvMMoW6mJxU2yGk04zcbVUWFgDIomEUEIZeC0GBUB49r9kgm/NZ3Ekj6mqIO0buSmmAtEwt8qOm9YkB1mxVi2+Ru2n1D6YvmAdamQpWC31j3WiFaYixslRAxkuNYK+5Y5+7iumKhpTt9LwP+e0AUjYzDntEkWxAKIRQ0LKoIotYinlY+7q8XNqOhKY49TE5qZqqUNxtXRYWoDjADWBeMwkIMMWhLPbIXdbnyF2hYNghRRDTmhBxllKKXdzlvRd38ZmsliqhExYJIBRa5xWkHJq4UxuZF695UHM3rRpH9IU8jjY1EWI4qtV2r+J1OwRG7mqmM9qrbPtVc5fK2sQdoz7VIQRCY+rzZ2k+65m7Yj6+jDzMeWZrAGhj8LU+JifVdggUd1sX9rirEnvkzm+3TPa4q4xGiNxdUQsa+joySr82UhkdHUCo17zVF9CKhSvuD2ZiTp3E9oU5djXjcyPzwlISWZgLBCLQgk4a9VVE57CaipxaKQBZ7wVeMqsqAfZIq57AtmF0wly0kpmsZ8/F5Jz6QV2BPB+H9bJjR0nkjjV3WxS7uGMbhA1ooMid1sDcHLsIYkynXYtIxCbKc1p/Rw9JXFUbbYeD/qx4NwNDw+qtfna6sMaRzpGYyyvbvQPMbqgZnxuZJxfVsezqlJxYVkhXT6tS85pClydp0QpSIpWz2egPMGOlakrq7jKezWeSMbVoMtjucTuUZsQeuUsxcrdlsYs7NjDfgGgUPViGgJ67kM1iZUVvJu4hUuppmXmbuGPkrjyRiC1SkDf7BHpEYlp9mPX1ePxH00QMbVNX6Wfn3J+ZL8bVNMy+CMVdzfjcyDy1qE4ku7qo7ColFIKSFr2AfmBqytuTyOWQktZQq0Cwl9dj1dgdMzNZz/qiJefVNPeudj4P62ZyEkOYNeen6TRiMWWKv2mhuKuShQUoDcyZlrkBQ0NogUQP9DtgPq8VIntsIZxI6IJSv2qDSKITGYq7tRgcNFtFAEAuh7lZD53BAMSv2dL6er39/GYiul1dpZ9dCMDtYhF7P0s2oK+DMpE7L8VdclkV6kG2m6yY0VEo4m4Ko8D09NovcIOSJvQt6ApSoFeNj43MU3FV3AU7WMNcN9u3I4CCuXCW1nrdeb2Q7QYUd1XCmrsqCQRKU/x8cMxcs8cd0zLLEwxisN3y1JJFzF3Lr328CyTm1OWzPnZBqJmhbe1Ai5mWNVvoL1VfDpLPAyuWrFoBiZ5hKoKasYu7XNbbtMwSccepQ6UMDwOiwxR3sxhC7rLH4i6ZLHFapI9YDYyNqXOZjHdlJskFdbEz2ElxVzfhMBAOm6mZUut11wypmbxDVwnFXQ0MD6urXbms55E7U9yxDUJFCIHIgBrZmZvOe+YMBgDxeTXtJDxAG/1asbdDcLvX3eIiFFfhXiyiZYDqvGbshirZHGJz3l2MyRX1s4IhTh0qpb0dGAybcwYJgWunPcrlW4WtLJxhbMzMQgKAbMaztEy7y2owyEwWR2hSx0zeoauE4q4Ghoe1BsarZHNuBg3KsmYDc4q7NQkOdSuOmflU3tOIayKuPrzCg6wRqRV7I3O3e90lElDqW/uQYJS8Hrq7MdBhccuTRcSmvSsMSSXVa7Grh9diNYxG1YWqqfPeNjKXK/bIXQvFXS2UbWTuzUcnE6x7dQWKO5LJQLO9zWkrKK0oaBc6xd36RKONG7njhHNtIhG17i7vbZ1PPKHenlizVTvRKDxtZF6uAT362YC+ZoTAwJAauY5Ne+cem0ypE0macVTH6DZ17K5e8Tbqko0nIWGOYXugiFYmQlTP6KitxCSDxYQ3Y5lcUhcIWDPpEPZG5qnmaIdAcVcFhhW8PmkJI67dLinu1qcB2iEYBbJZm7gbGvL2RDYTJY6ZOcy63/vaILGizj7Co1xqrpXBQSimDnMYhLzmduROTcvkQkp9DIyojqeJWMEz1+EScdfH7snVMDapjt3UNW+nXqm4GinsaqPTYk309KCn0/K7kxLLM940ukstq2MW7OH03REYuSMLC/oXurjrh76DAmF97I3MfTBUMcwH9KirIVqGh709kc1EJIIhWNRczrvIXaEALKXU6EBohIYctdLVBfR0myvMeQSwcNG98PniIgzzIoBpmU4QiA4o6e0ymzWfSS6TTKtThWCYDbCrYXRvSNm+uuBtB/jkgk3c0Ua/ZnqH1AySxaveFN2VmBqFGHp1hB07KO62OqZAsIk7Ru7Wp6Eid5q4M9INKe7WZnCwJHLnlUWwXRyEsITWQab11UM0ok7oZi+l1ziyfsrW3DEtsz78amSezyNVUCN1TMusjrHrVTOhqaWQ661IrNjNOLo6KO5qJRRVM0iWZlJrHOksJaZGvAadwZ6WmU5hZsbTy9MVKO6qIB4HUCwaHbj7sQC0tgJ9ff6eWKNjj9zlvBd3WsRJGmmZRl+TaNTbE9lMjI6qNXeZrGfijuLAeYaiamrd7FX3DDkSccnIndP41ch8ZQVJBM3t1lYEu1nvUw2ju7uVViRXi8OQC/F1XuEsJU6LtNGvmdCYGoVdjnljjpO0ZX929TI12hG2b0cPltEFXaSn08hkpOdzVKehuKuCsk6ZkQjQwl/juvgcuZNSj7rmcgC05ZgIYpoo7/Q2PWZTMT5uE3dpz8RdPA6lZiuMOMVdnQyNqpOB2Rn3liYTsZzWM0inL5AE7fnqxK9G5isrWIElJbqlFcHg2oeTUvr7gQ5LNl8SQSyf9c61IbVoc1rs3ORhCR8JjauL+Yvz3vR/TdkChKx7dYi+Poj+fkuvOwlkNn+vO6qSKrj9duBdr5vCm/G/cS++hYM4xpTMSvC55m5xUdcJetQuiCS6kGZK5kaUiLuMt5E7e+SH4q4uhibUhYzZefdqNhLX1NXsvl4JCEZ76sLe686rRub2HmlsgF01QgAjoRVl39XjHhVMokzNXTfrtWolNKGm2C4teiOUl5bV+2f3cI8nn7slaEJTFSbtVsHu3cDuQ2cBe+YhXgAAIABJREFUfMHcOXiXX6ezeSiblikBeDPZM1a3szRTqQofxV18Lg8UzbqQsEgAodA6ryAbMbRDnQzMJNxrLZGYU9PA+vq5jlg3fkXuEonStExG7qpmrD+FCzPmAsvUc8vY59FnpxbU+tquEKd+tdI9OQQBabSWSCYlCgW43loitqLerwe283noGJOTiB6x1t2lMTOzucut+MStFvvslpG7jenuRm9QtQ9ejHnXgNfscUdxVxXRKAZaLaI8n0c8VrBmS7pGYkotMOjryjH9uU6GdvUq27PJbrjlpZ+Iqe/b289IQd34VXM3O6uKu/Y2irsaGB1W69yunvOukXmJoQpT+mqmZXwM3bBEYTNZLHtgmBlLq27RA7uYyeIYTRi542ypWijuaiI4HEILzIdbeilnLV90FbtTpiHuaKayPi0tCIyPaPVuOjKd8SQVLDGtFhiEQ3R3q5eh0QAQMFfsZzEIt9TBYkKdyPYN0Tq/bvyK3NnFXRvFXS2MbVMzVaaueGdqshRX7589/bwea2ZsDCFY2shkM1hyr6sMACATTyFZMCN3raKIvonedV5BqmIrijshxIQQ4gdCiBNCiONCiHfp+78ihDiq/zsvhDiq758UQqQs3/t/Le/1PCHE00KI00KI/yXEJizCoLirCTFiN1Xxru7OECNMy6ye8XG1110m48mEMjFrS+vrpQFAvQwNQWlkPoshVxqZ53JActkcrxYU0TNI46K6Kam5y2E+5sF1MTen1ty1tbPmrgZGd6jXwNSMd2vrCwn1s8LD7qVkNz2jo6q4y2SxlHBXqMeeU1dUIx3LEC2bb/rcsKzRDmEzU8ndJQ/gvVLKAwDuAHCfEOJ6KeUvSSlvllLeDODrAP7B8pozq9+TUv6mZf9nALwdwB793yuc+TE8hOKuNqJR9YaYy7q+2rUKe9zVwfi4OqH0yDEzPqeGdVmzVT/BINDdaa7g5xFA4pzzYdjFRShtLHqxCBFhG4S66ejAQMiaEy0xP5Nzvx8TI3eOMLpbTau7Ou+dQo4vq2nR/aNcbKmZYBChDuvio8TSRXfNcWLn1JXwgaB7PUq3JE3YyHzDGZOUckpK+YT+9RKAEwC2rX5fj769DsCX13sfIcQogF4p5SNSSgngfwP4+TrO3R9mZ9VtirvK8LEdgmmoYutxR3G3MT6ZqiTmbWl9A6zZcoKhkFrnM3vG+YuwrNMpe9w5QudwH4Iw61HzqZzri2RyhjV3TjB6vVojdW0p6FbJawkLNjOO8DYOYD2EQmrUzHVxd1F1Wo30ZNc4ktTE9u2IIAaht8pCOo2FBbkaD9iUVLUcLoSYBHAYwKOW3XcCuCalfM6yb4cQ4ogQ4iEhxJ36vm0ALluOuQyLSLR9ztuFEI8JIR6btYspv2HkrjaiUW2St0o2p00CPcDulsnIXRX4JO7itr+N8BANAJxgqF91w5m9mFzjyNrRGtCzjYUr2E1VPKi7y87EUbRMFQKdAbTxcqyazu3DWm9cnWI251nqVzytRur6J+i0WA8hm0HU0mV3JzPzV9Qa9EiYNeiO0tuLwECfWYKi97rbzKmZFYs7IUQPtPTLd0sprcu9b4AatZsCcJ2U8jCA9wD4khCiF+V978smlEgpPyulvFVKeevQ0FClp+gNFHe1MTxsK0L2Li2Tbpl14IO4kxJILLJGxA2GBtVb7uxl55cmNXFnpmUycucgdlMVDxwzUzPqjbqrh1H0mhgawhimzO18HtMXPQgNpNNYKFrNNwTC27rXPJxsTG9ENaRZuuruZGZuSi1TiERc/bitSUndXbr5xZ0Qog2asPtbKeU/WPYHALwGwFdW90kpM1LKmP714wDOANgLLVI3bnnbcQBX6/0BPMc+s2008dmolOl154Uxh5Sr4k4akTumZVaBD+IulQJyGTMtsx1ZdAxypdkJoqPqxHzmmvNGAFpapk3cMXLnDHZTlWzOdffa5KyaEhakjX5ttLZipEf1zL/6THyNg52jMLeARVjEXVsAfWGacdRDz5BaL7l0zfkMCCuxWfU+PRDlAovjlDhmpjZ13V0lbpkCwOcBnJBSfsL27ZcCOCmlvGw5fkgI0ap/vROaccpZKeUUgCUhxB36e74ZwD859HN4g5SM3NXK8DDGrVm52SzOnHH/Y5eW9AyxfB6QEl1IIYgU0N2t/SPrMzFRIu7cFuX2yE8YcYgBigMnGBpXI6Czc84b1ZRNy2Tkzhl8iNwt2hrSd9NGv2bG+tX0uqnTK2sc6RyJi2rKYG972vWG281OaLRH2V6ac9fgxL6AExnhNeg4ZSJ3TS3uALwAwJsAvMTS3uAe/XuvR6mRyl0AnhJCPAngawB+U0q5+qf5DgCfA3AaWkTv/np/AE9JJoG05SLu6KBAqJRoFHvxrLmdzeHZZ9c+3CnW7HHHqF1ljIwg0mJZXc7lMHvN3Xx/1my5x9B21UhhNu58FIaGKi7idc1dLofYkvo3MjjGFOlaKW1k7r7rYfyyGi0Md3rXPL1Z6d2mZpIszbvbtDcWV9X44AR7kThOmV53mzktM7DRAVLKh1G+Xg5SyreW2fd1aCmc5Y5/DMDB6k6xgSgXtduErfp8YXgYO3AOLShqxfm5LKamtMhayMWMO7PHnXbzpbirktZW9I0GEbiSR16/XSQXskilulzrdRWPo1Qc9O9y58O2GEO7+wCLsdHMkvODWLbmjuLcGaJRNZKey7q7uhyLYQ6W7JRAGyJDbEtSK2PbBPCYue1FI/P4VTVlMNzjrhDZCvRM9AMWc5ylhLv9SGLL7QDMCPrAdT1rH0xqQxd3rShgCLMYDixgYmK/32dVM7xLVwNTMmsnHEZHoIhJnNe2CwWgWMDp0+5+LHvc1Y+YsPe6czc1k5E794juVyNoU8leJJednWAmFoql4xcOO/oZW5ZotCS9/fx5Fz9vdhYxWNwb2tv42KuD0Uk16jl1zf38yIVpNVLXH6LTYr307lAdTdw0h8vlgMWUmYYpINE/2efeB25VJifxfPwE/4KX4ct4I/5n++/hDW/w+6Rqh+KuGijuaqelBYhGsQeWjhnZLJ57bu2XOIG9DQLNVGqgxFTF3Ubm8ThKau4o7pwhOBbG9jbTsU8WJZ55yNl2MwlbjVZfdwEIbJgkQiphaAjbccHczuVw5Qrc68c0N6eKu7Y2OvXVweCOEAIwFz4SSwJJd704EJ9R/zjCfW53vW9+QjtVI73FVBvcalo4Pw/FoKofC2iJcu7pOJOTaEURLasm/hcvujamXkBxVw0Ud/UxPOx53Z29DQIjdzXgsWMmI3cuIgQODqti7umHnLVbTMypvfT6+vmYcYxoFF1Im7Uh2SykBC5fXv9lNWOP3LUxclcPLdtGMYJpc0dGK09wk4U5dYLaP8BSknrpGexUFqyW0Q1MT6/zitqJzUlj/gLopSW8CJ0nFFJ7TORycP3idBE+dauB4q4+7JG7nJeRO9bc1YzH4i4eKygrZmEkgN7edV5BquHgbtXE4dgRZ2twEvPqZLI3Qut8x4hEACHM9PZ8HpBFnDvn0ufNzqo1d23tjNzVw8gIRq297rJZXHW5IVR8QY3UhSO0yqyXri6gtdNMlcygA9lnz7vyWbHLKc2pXWegdREIBtd5BamZyUl129Wcd3ehuKuG7m7g+uuBaFRLM6S4q47hYezCGYjVsHc2i0uXtL5mbmFPy6S4qwGvI3czqvjo6ylo1xtxhIOHVbH1zOl2x7JPMhkgkzTfrBUFBCN0dnOMQACIRLADFjWXy7k3BylTc0dxVwejoxiztvfNZtyP3MXVSF1/lIst9SIEELKtN159wp3I3fwFtaAv0pOhkZ9bUNxtUX7t14Djx4Fr17SQ7R/8gd9ntLkYHkYQKdMQIJOBlHC1392a4i4ade9Dmw27uEu7bKgyq0aSWCPiLNtuGdbqGHXSyzmcPevMey8uosQpU0TYBsFRhobMyB0AZN0Td/mZecRhmuGI9jZmSNdDucjdFXfvb/ElNVIXHul09fO2Cru3qYuQD//QHcEVu6j2Qoz05dc4ktQNxR1BSwvQzkaSVbFjBwCYdXd6yM6tujul53yOkbuaGS91y5x11oNDIRFjzZabiL17cBDHzB3JFJ5+2pn3LtvjjmrAWaJRVdzl3HPMnL+iplWE+yS9ceqhuxtjXZa+oVJi+ry7ve4WVtR5Sv82pvQ5wYuer4quh552ZxErNqW6nUb63W+fsWWhuCOkBvbuBQCz7i6pTRzcqrtbXl715ZBANotOpBGEPlmhuKuc0VEM2XprxWbdc5GKz6sPr74IZ5OOsscm7lIpHHvamQlD2R53bGDuLNEorsNFczvrnmPm3LS60DLIHnd1MxK1NzJ3t6l4PK22XwiPs0eaE7zwpV1miQmA0zO9rtRPxq6pz1r2mXSRVXHX3q7NVzdxDjr/Soh32MVdKglAuha5M6J2hQJQLJqphR0dNOiohvZ2RIZVgTV3JWut8XaMfB5YXjLfWECid6hjnVeQqunvx8E+i72iLOLYT5wpfC0buaO4cxbdMdNwXcxp1+LFi+u/rBZis6oQiYxwoaVexsbVadfUlYIr91JAq4FNZc20zFYU0LONPdKcIHzoOtyEJ80d6RT+7d+c/5zYnPrHYX8WEwf5mZ8BrlzRsspOnQI++lG/z6hmKO6Id2zbBnR2muIunzfMANxYdV63xx0Lkquia2IQQZgNmfLJjFZf5TD2mq0QltAywAbYTrN3n0AbzN/z7OUMZmbqf1975K4Xi0zLdBq9XthIzdSdgN3IIJpbUOu1BrexXqteureFEYJpkpFP5VwzqLK3lQkjDjHA69ERrrsOd4mHze1sFg99z1nnYQCILajT9MgYFztdo7sbGBtrCgO3zf8TkM1DSwuwZw9CWDZXnVMpFItwzNDBipEioU9+2OOuDiYmPHHMLDcZYeTHedr27cR+nDR3JFM4dmzt4yulbI9Cjp+zDGkNlA1xp9cTOy7upERsUXVWjFzX7fCHbEFGRlTHTBd73S1MZ4CiGX0NiwTQw7RMR2hrw53jag+Sk09mHVkkW6VQKDXEGZjgNUg2huKOeMuePdp/Rt2dFg1yo+7OeE89cmfYh1PcVY9H7RDicdCQwwvK1d05IO608WPkzlVGRwFY7mdpzZDDcXEXj2OuaBm71lYMjtJGv25GR0scM69cceej4pdUG/3+zhSzVhxkcO8AbsBxc0fK2dTMeByQtvtpYHjz1oER76C4I96i19154ZhpF3eGoKS4qx6PxJ09rS+MOMWBG5SIu6Qj4u7CBSiRuxFMM3LnNLt3A7BE7vR7qOPibm5O7XHXxh53jjAyYjPEybrWhH7hsuroGA46nza4pdm5Ey/CQ+Z2OoWHHlr78GqJxaAslkUQY39lUhEUd8RbPIrc5fOW/nl62pIhKCnuqqeMuHOj113ZtD6KO+exi7tkCqdPG5djTUipp1dbIq87cI7izml27gQAbMcFza0vnQaKRVy9qhloOMbsLOZgmUi2tXFe6QSjo2oT+mzGNXEXn1bbLPSH2CPNUXbuxF2whOpSaRw/DseejRR3pFYo7oi3rBG5O3NGmdPXzYULlvfLZhFBDP2rjZsp7qrH3usu7U6vO/ZJ84g9e9CLJTOCkE5BFos4caL2t5yfVw1xOpDRaos4fs4SDALj4+hA1qxdTqecd8ycnbVF7toZuXOCkRGbuMu6UnMOAAvXVKeycC97pDnKzp0Yxgz24ZS2ndKuw3//d2fenuKO1ArFHfEWPXLXj7h2o0qmAEjk83pKl0MoaZ7ZrHnzBSjuamF8HEOwqDmXInfxOBi584LeXiAaNetFpATSmbpSM8+dA1AsGAYOkziPlraA5kBGnEVPzTREggupmZmrMSwhZGy3tAcQpnFt/YyOYhyXEYB+n8tmMT+vL2w5THxOXTHlrdRhdu0CADM1M61dh07V3cVmi6XijisspAIo7oi3RKNGj7m9eFabDGa01UUn6+6UNM9szkwDBSjuamFsTI3cZTOYm3F+FVgTd6y584Q9e3Ajnja36zRVsadk7sRZbexo4OA8+iLZdugrYknnxd38JbVea6A31wwO4f4zOIjWVmGOXT4PFAuupGYuxNR7dDjSusaRpCb0FGkjNTOVBiBx9Kj+LKuT2BU1rTbSmdT69BKyAbxVE28RorTuLuV83Z09cmekgQIUd7XQ2YlB24LhnO3B4wSsufOQMqYqzzyjOKdXxdmzUMaO9XYu4oGpytxl9foe7GdKnyO0tADDw9rixyoupWbaBUb/EBtgO0p/PxAOYxuuYhfOALIIZLKQEnj44Y1fvhGxKylle6DfpW73pOmguCPeY6+7SzrrmFksAqdPW3bksozcOcDARLdm4KATn8k5WicJAPH5otbcRyeMhBHpJQ6zZw/GcVkT0ACQTCGZrL3n5LlzUKKuO3GW4s4t9AUyN9MyY9Oqs2JkkBFYxxgZKRF3rkTuFtUpXniYUR/H0VMzjeidnprphLibt1+DzMgkFUJxR7xnjcjd6dO1Rw2sXLpkcY0rFhAuxEynx0CAkaAaCUyMammSOjKTwfy8s5+RmFMfZn19AHPBXGLPHgjArLvTr8NaUjOLRV1Y2J0yea25gx65uw4XtQUXfeymppxzzJybVaMEgyOM+jhGiWOm8+JOSiC+rPYlDI8Fnf0QYqRmvhC6mtMXWk6c0MagHmIzBWU7EmVaLakMzpqI9+iRuyHMak2O9ZthJqMJs3pR6+20qJ2x5hyNsgaoVuymKumM2W7CAaQEEvNqKDA8wFuUa+iLLEbdnWVSUi1Xr+rtJPXIXR8S6McCI3duoUcLOpDVGmKn04AsOuqYGVtQ75ORMUZ9HGNsTBV36TTOnatfDFhJJoF8zlwt7UAGnVFmQTiOLu4mcR4dyOh1d5pzcD29YKUE5hfUfZHR9trfkGwpOHMi3qNPKgX06J2luZYTq5est3OJ8XFcj2fM7UwGTzzh3NunUkA+ba5UdiCDjgE6LbqGHv0xbbw1gVCLYDdSOfXI3U6c1RZUGLlzh2AQ2LYNgLXuTptUOhUBmkuoUZ/B7bwWHWPXLgxhFt3QTWtSWkr0zIxzH7GwACWS3o8FXo9uoIu7Fkit7i5t1skp5SFVkkgAhYw5ft1YQccw7WpJZVDcEe/RxR2g1+WkUsaSZT03w1Xs4o71dg4xPo5bYFFzDos7u1MmzVRcpqcHGBnRJiQAoDfEVnpEVogh7vTxM6ISjNy5h8vtEGLLncp2ZAejPo6hp0QbY6fXnTtpqmJvK0PnYZfQo+gAsBunjesQqG8+wx53pB4o7oj39PcbNynNYUoCGW3Vud6Hm5SlbRAYuXOI8XHcjKOmqUomg7NnnbF8BuiU6Qt6M3OjJjWZQj5ffWqfcd1mtcmIYRbB8XMPfZHMjNxpGRCOiLtkEnP5PnNbCEbunEQfO+M60cfOybq7hQUoi2WM3LmEHrkDVsWd6TJLcUf8guKO+INed2dEDfSVy3pruK5eVbI80Y1ljGDa3EFxVzsTEwhh2RTLunODU9G7+XkoaURcafYAfZJpXIf6JLPaRRZjUprU0syMSevkZJ0nSNZEj9wZ/dKcjNzNzSEGizVfWxvdMp1Ej/YYkTu9ZpKRu03IxIRm1Aa9zCSXBQra791JcTeAeYo7UjEUd8QfdHG3HRfQgqIxqZyZAZaWan9be6+8vV2XoUxJKO5qR6/xMVIzsxlASsfE3XPPQVlpHsE0JyNuUyLuql9kyWSAK1cAQALLmrgzokmHDjlznqQUfewMx0x9gWxK91eph9SlOSRhOisG2lvYkcRJ9JpJpR1CKu1s5G4mq9hP97csaqnYxFkCAWD7dgCaWBd6ejugLTavrNT2ttpiJyN3pDYo7og/6BOTNuRxHS4aExOgvtQUe6+8PS22WSrFXe0Eg8DAgCnupARyWcfE3YkTUFaaD+AExZ3b2NPDaoigX7igl8ymM0Ahj1FMoQtpIBQyJj3EBfTIXQeyGMNVpdanXsfM2LlFZTsSTNNk2Gn27FEdM1NJXLxYfb3rWsSvqg2wwz05OkW7hZ6a2YGsNp+xXIu1ZiMxLZPUA8Ud8Qc9cgfoUYOUmUtZT2pmSeQu/4y6g+KuPsbHcSOeRgD6DCSVwtSUFi2oByl1cWdJy7wez1DcuY0u7nZDzx/Sr8NqrkEjlUxfojYmrDfeyMmkm1iMHCZxXnPpk1qkpt709tiFZWV7sDdb3xuSUnbvRgjL2qQdMOpdL1925u0XrqkND/tDhTWOJHXjQt3d3Bwo7kjNUNwRf7A4Zu7CGSVyV2vdgZRlIncrR9UdFHf1cf316EAWB6F3ul7WJoH1Ru+uXNHTcfW0zCCS2gooxZ276NGfcVxGG3JG7c/8fOVGOcb1qv8tGFHAG290+GSJQnc3MDYGAKYjsD6pPHWqvreeu6zmdUb6i2scSWpGfwba3U6dSs2Mz9p6htJF3z3s4s6BdgjzcwUljBvBPJ+HpGIo7og/6JNKQJ8MWlada70Zzs5qjUNX6ewExmNPqgdR3NXHTTcBsNTdOSTujMbZ+sNsP06yT5oX6LU/rShaXBerS800JqMrNnHHejv30e+j+3FS29bH7uTJ+t42Np1TthkwcIE1HDOdMlVZmFMjdf0RTvdcw4V2CLEp9RqM9OUN4xZCNoJXO/GH7m7DoMNMCTOb8BZrWCi2R+127yigJbFg7mhpASIRkDq4+WYA5cWd3qqwJgxxp6dlHoC+g+LOfdYwVal0kmlG7mxOmYzcuY8+dmYjejOtNpdb60UbMzer3oAjI21rHElqpkTcORy5s0Xew4MUBq6xTlrmuXPV11FKCcSuqS+KRFvrOkWytaC4I/6h190NYB69WDQmJpmM5jJVLSX1diOqKQCGhoBW3iDrQhd3+3ESQSS1OitZRDxe36TEHrm7HnqtJMWd+9jFnZ4iXcmKcyKhu7oVNcfbAPLYhivaNynu3EeP3IWRQBQzhkDI5+uLAMViaq3k4Fh77W9GyqMLAqUdQtGZdgjFIrBoc53ui3bU/8akPBZxF0YCkfQVQO8HW0vf0OVlIJcyxV0HMugaotMpqRyKO+If+qRSwJm6O3vkbm//rLqDKZn1MzICRKNoRRE34UltFqGPW62pmdmsRUjoNXeM3HmIXdzpxiiVXIPGMckkICWuw0UEUNB6P7HIx30stcv7cEq5h9ZTdzeXUCN1AxNsYO44wSAwPo7tuKDZ5wNAOuVIK4vFRUBazKlCWEIg0rfOK0hd9PUBAwPG5m75rNEHFqg+NVNrg2CaGEUQgxhibjSpHIo74h8Wx8ydOFu3Y6Y9crcnaLMdo7hzBntq5kp9dXenT+sBO1kECgUM4xr6EdecFvs4IXEdfTyN9LD5eQAS589vnE7EejufsdQu78dJpdannrq72LIa5RncEar9zcja7NmDDmTNaLdDjegXFqA4D7OBuQeU1N3V7phJp0xSLxR3xD/WccysVtzF43pfGJ22NuC65RPqQaOjtZwlsWM3VVnSJvZPPgkUanDbtqdkGlG7vj6tTpK4y513AsEg+rCoTSKyGWB5Gfk8cOnS+i81xB3r7fzBIu724ZThdgrUHrmTEphLq5G6yC5GYV3B7piZrK7edS3icRhZEADQjwWKO7dx0DFzZgYUd6QuOHMi/rFOr7tqH2724ycngcDJY+rO/furPEFSFj3SswPntBVh3VQlmawtWvDMaitC1tv5Q2cn8LM/C8CSmqmvlGy0yGL2uGPkzhe6u41Fq714FoA0cvrOn1cywyomuZhHJmdODdqRRc91A+u8gtSMLs7tjpn1mqosLEAJuzNy5wEWcbcHz5U4ZlZjOPbww1DE3QimKe5IVVDcEf/YudOIzGzHBYhMGihqoZ+pKU0sVIpd3O3YAYtq0LnhhjpOlhjo4k5Aj94tmw2Pa0nNpFNmA/DKVwKoTtxJWRq5UxqYE2/QBUIIy1p6nz6pLBZLU9UrYe65BWU70r4E0UanRVdYo9edI5E7S1omI3ceYEnLHMNVdGVNQ7elJa1VUyXMzwM/+hEUcfciPERxR6qC4o74R3u7FmID0IGs1rQ6WVv0zr7SuXOHBI4fV3dS3DnD3r1Ah1aTcxhHtMLvrBYiqFbcxeOakAcA5PNoRcFsyMzJiHfccw8Ai7hbXARy2XWvwelpfS6aywHZDLqxgiHMajnR+/a5f85Ew5Levh8n6zZViZ1TXYYHg6k1jiR1Y2+HkHSmHQIjdz5gidwJALvyahpLpamZ3/2u3goqq4m7SZzXUq4p7kgVUNwRf7n+euPLnThrOPUB1dXd2SehO8PzahFeV5chJEmdBAJGZOZ5eFzbp0duTpyorkfhCWtZZDqNXTiDDuguYUNDDpwsqYht24DDh01xBwCx+XWvQWOyYknJFABw4IAm8Ig32Ovu6jRVmTu/rGxHQtk1jiR1owuCMVxFG3KAnr2ysKA+vqqlbM3dAFNrXcW2eLx77lGgYArsSqLoUgL3369v6JG7u3G/dl+luCNVQHFH/OXgQePLXTijiLtKI3dSlrqL7UzZonb797PHnZPopiojmNbr7rSmSplMdT19FHGXXDFTMgHWSHrNvfdiHJcRgD4hic0hFitthrzKU0/pX+jC3mikzXo7b7G3Q7DULtcUubusRuoG+2twSSKV0dUFTEygFUUzY0GvmbQnnlQDI3c+EI0qPgK75bNKs8FKIncnTwIXLugbuRxaUMTP4rvaNsUdqQKKO+Iv64i7SiN309NqX6BQCBi49KR6EFMyncVSd7cPp5S6u2omlIq4W14xzVQAjpnX3HsvAihgEue17fl5QK7dVNkQd/o1ewj6DtbbeYslcrcHz0FYxN2lS8ottSLmpnLKdmRQrHEkcQRdnN8AXc3pqZnHjq31go2Jz+WVFIr+1iXNfIe4ywtfaHy5B88BCXNlrBJxZ0TtACCXw0/hEa0tEEBxR6qC4o74i0Xc2dMyz56tzGGqnJnOqaahAAAgAElEQVSKeIb1dq6iizugVNzZm8mvhZQbRO44Zt5y661ANGqmZhYKQCJRdpElmbSkGeljfyOe1rYZufMWi7jrQhrb088a7RCAyq/HVWKzal71YJTTBFfRxd1B6GpOF+d1Re5mVIHe1wetbyhxlzvvNL6cxHm0JExzoulp5TFZQiYDfO97+kaxABQLuBu62mttZc9XUhW8axN/2bfPcMwcwix60nNGnnoqpd0QN6Kk3m4n6JTpNpYJ/F48q832dafTSiN3SlQhn0NPdh7j0BvPt7crk1biAS0twD33qHV3c7Gy4u6ZZ1YXXiSwsoIJXEIYCe2bjNx5S08PMDJibO6TJ5RUhmpTM+diqgiIjHWscSRxBP0+Z0Tu9JrJZ58FsjWWO8ZjeWWbGZkeYYnctSOH7YvHlIWW9bKR/v3fLX5yuRzCiON2PKptDw5SnJOqoLgj/tLZaaxcCqxG78y0okpSGUrEHZ0y3ae31zADMGqtdKV2+nRlzcyVqN3KCvbjJIzH1759NOXwg1e+0maqEiublmmkZKY0AwgjJXNgABgbc/00iQ3LQojdMbMaUxUpgcvzXcq+weuCdZ8eWQf9+RfBPEYxZYxdPl991BXQBGFyyRQULSgiFGl35FTJBuzapSy07C6crDirxZ6S+TL8CwLQH6Q0FyNVQnFH/MeSmrkbpw33PaAyUxW7bfSO3phWL7RKMEinTDfQTVUiiGlubEvauGUylqLwdbCLO9bbNQAvexl2tloccVJJnDuetHozALDW22ljrtTbcYXZew4cML7ch1PAYsLYriZyd/YskFgxF1WCSGJsD2u1XMViiHMDjitup7XU3c3PQ3HKDCMOMcDQnScIoUTv9uJZIG5ei08+We5FwLVrwJEjlh25nJmSCbDejlQNxR3xn3Xq7jYyVcnltPQ+KzuWn1Z3HDhgpH4SB7GbqqxUV3enZM6usN6uIejtRfhFNyEC04c9PxNTrrFczjJ2ulMm6+185q67jC934Qxa4+b4TU+v7Xhq5/HHoTRPvhlH0TrMiaWr7NxpLIgcxDGjHQJQm7g7cwZKA/MRTDMv00ssdXc346hiqnL0aPlWQQ88oPoL7B+KYRKWFVKKO1IlnPES/1nHMXMjkXDxonqzjEaB7rM2cWfppUccxGKqshfPGpE7YONoQTpti8rqaZkGFHf+ce+9ZlNlAIjF8Mgj5uapU5b5/8oyBjGnTSAB1tv5xc/8jPFlO3LYufik0mOr0vS+x35cVFopPA+PA6Ojjp0mKUNnJzAxAcBad2e2Q6jEVMzKyZNQInf7cZLizksskbtdOIPQ4hUA2iCurJT2u5MS+M531H13Dz2u7mBaJqkSijviPxZxtwPnEFgx0xiuXQNmZ9d+aUlK5g7QTMUr9LRMwBq50x5iG00mjx9X6/K2pc6YhhwAx8xP7r3XLOQHgHgc3/payphkGimZALC8gkN4yqyVZOTOH7ZtU/vdyRNAYtHYrqTuLpcDnvrRirJaduvAOYo7L9DHbgfOoQspQ2DH48DVq9W9lSbuTGG/D6co7rzk0CGtHxO0rJbD2UeVGlgl/RLaYtnUlLnd3g685MrfqAfdeqtLJ0uaFYo74j+7d2t3NAAdyGJf9mkgZ9qEPf30Wi9cwymTZirecN11QDgMQJ9AFArGivPp0yip07KiCIRcFjdlLGKio0MrTCf+sGcPfnbnWbOZuZSYeuApPPGdGQCWsSsWgFTSrLcDeK35iSV6tx8ngbhpw15J3d3x40AmZkbfBzGHieePsIbSC3Rx14qiVntsqburpiWClPpY5yjufCMQAH7qp4zNW/CEkpr5xBPq4f/2b+r2Hbfm0fOTH6g7X/Qip8+SNDkUd8R/AgHFEOBGPK04ZlYl7uiU6R1CWExV5rU6reUlAJpj23qmKkePWjZWVnATLJXmBw5ofX2Ib/T+6mvxIjxk7kgm8a03fgnF02e1OqDkijGIRr3drl2aLT/xB4u424dTwII5oTx5cuP0vscfh5Ja/Tw8DvF8Rgw8weJ2egOOK5Ge9Z5/dqangaUlGGmZQSRxHS5S3HmNpe7uMI4ACTMr5amnzIVPKbUWCFbuGjqhiHts22Y4UxNSKRuKOyHEhBDiB0KIE0KI40KId+n7PySEuCKEOKr/u8fymg8KIU4LIU4JIV5u2f8Kfd9pIcTvu/MjkU2JJTXzEJ5SzDmUKI8Ne1rmztAssGCuWCMYBLZvd+osiR173d3yxvWS2WypU6Yi7ijG/ed978Or7phTdj0cvwFHfuq3sPL0GeAnPwEWFxHCEnZAvwif9zwfTpQYvPjFxpeTOI/2pZhRdzc/b7vmyvDYY9CVgcbz8DjH1CssKbUHcUype6wmcmek3+rqYS+e1VKmBwbqP0dSOZa6uwlcQmTpvLGdyZjX4oULwOXL5ssCAeCOBWtPBGjXNaPnpEoqidzlAbxXSnkAwB0A7hNCrDpUfFJKebP+79sAoH/v9QBuAPAKAH8hhGgVQrQC+DSAuwFcD+ANlvchWx2LuDuIY4qpyrlzSqsYg5UVYGbG3G5pASbiZcxU6JTpHhZxtw+njMgdsHYq2MmTiiEfosVpDMMykBR3/tPZiUM/+DOMj5uTijwC+LO5N2ouRnoY6CCOaZPHcBj4wAf8OVeiMTJiZEAEUMBteFSxYb///rVeqGm6UyeLyvX7PDzOWh+vsIi7AzgBYRF358+Xf/6VwxB3elqmYVLFyJ233Hab0adVADi88rCm6nRW6+7sUbtbbgG6/+O76k6mZJIa2HDWK6WcklI+oX+9BOAEgG3rvOTnAPydlDIjpTwH4DSA2/R/p6WUZ6WUWQB/px9LiCLuQljGjrzZvVyWybQESqN2ExNA2ymbdzSdMt3FYqqyF89qJg5SM2RYS9zZI7E35W1FCBR3DYHo7MC9H3khMDxs7LuECeWYQ3gKePWrNc/2W27x+hSJHUtq5t24X6m7+/73lfmlwtGjgFxJGmYqO3AOA9E2LSWMuI+lHUIPVjCZOWW0Q5By46jrKvbI3T7oN2GKO28JBpWot1Z3Zy60rNbd2cXdnXfkgP/4D3WnJSJPSKVUFdIQQkwCOAwYVmrvFEI8JYT4ayHE6t1jGwBr57HL+r619pf7nLcLIR4TQjw2u55VImkebBP6Gxd/iFXnRaB83UFZMxU6ZXrLwYOGqcpePKvVesS0HltnzpQ3VVEbuUrcFPt+6XuShuDlrwwgcPAAMDZW+s22Ntz48bcC3/gGRUCjYBF3t+HHCC+aj9xksnQyuYpWb1cmasd0MG/o6FDqqm7AcaX+sZJ+d8WiJRVer7mjuPORderujh/XUjKtbRGEAF4YfEK7UFcZHVXqMQmplIrFnRCiB8DXAbxbSrkI4DMAdgG4GcAUgP9n9dAyL5fr7C/dKeVnpZS3SilvHWJ/j63B9u1Ad7exeSj9KJAxHTPL1d2VbYNAMxVvaWsDfumXAGimKoOY06r6oaVenj+vHp7P2yYq2SxuWn7Y3A4GgclJV0+ZVE44DLzwTgHs3QtsnwSE/sgYHkbHnbdh37teQQHQSFhW+QMo4GWJv1d6nn372+VfZhd3t+Ix1tt5zW23GV/eiKeBRbOVRSXi7tIlrX8oACCfRy8Wzf6TFHfeY6m7G8E1jK6Y2Uj5PPCZz6iH33gjEH7CttDJejtSIxWJOyFEGzRh97dSyn8AACnlNSllQUpZBPBX0NIuAS0iZ83dGQdwdZ39hGh1cRYhpjlmmnV3J05oRhxW6JTZILz1rcaXe/GsFrnTi+rsqZmnT1smIAD6WxLYhivmjgMHWCPZYLzqVQAgtNWTn/4p4IV3Ageux4FD7QgE/D47ojA4qDSSvxvf1pql6Rw5Yqy9GFy7pps66OKuFQUt3Zbizlss4k6L3Jni7sQJtS9oOYyUzGIBKBaxHye1FfVAQFk4JR7xghcom4cTP1BSWR59VD38zjsBPPigupP1dqRGKnHLFAA+D+CElPITlv3Wzqb/CcDq2tI3AbxeCNEhhNgBYA+AHwP4CYA9QogdQoh2aKYr33TmxyBNgSUdL4pZRIWZkpvPq0JByjJOmd3XlIkMuru1XmzEXW6/XYvsQE8DkhKYuQag1DFTaYEA4Kaes2pIn2K84Th82JKV2daOVUXHfuUNiiU1cxIXsF+oF+EDD6iHP/44tDpZ3bXjBhxHF9I0U/Eai7gbw1WEl81Fr1Sq9Hlnx15vp5ipMPrjPZGIUvN/i3wcWEysefgLb88BP/yhupPijtRIJUvkLwDwJgAvsbU9+JgQ4mkhxFMAfgbA7wKAlPI4gK8CeAbAdwDcp0f48gDeCeABaKYsX9WPJUTDVmt1Y4v652FNzYzFlCwidHYCI7N0yvQFIYC3vAWApcZDDw/YI3clZioFmqk0OkIAr3xl6X5LgIg0EhZxBwB3L35F2f7Od9Sed48/Dq3ORzdTeR4e10x0ytVZEvc4fNjo7ykA3JD8MZAz01U2aolgiLuUlhph3IujUYdPlFSMpe7uZhwFrlwpe9iePcDIlceVbCUMDwP79rl9hqRJqcQt82EppZBSHrK2PZBSvklKeaO+/9VSyinLaz4spdwlpdwnpbzfsv/bUsq9+vc+7NYPRTYpNnF3aEldxbKaqthXMScnAXGCZiq+8aY3AUJoaZmAprxXVhRTlWKxVNwdiv1A3cExa0he8Qq1r3wgwKFqWF70IiVS85ILf412mCJhetqMoEupO/fRTMV/urqUcPhBHFPGZb1m5vm8ZmAFwGhnYYg7htj949WvNr6MYB7bY0+ofXh17rwTwEMPqTtt1zEh1cCwBmkc7OLu8rdh9dw5dsxYXC7vlGlf2mQbBO+YmABe8hL0I44h6Om009PI500hfu6cujAZCknsOG3r6UOnzIZkYEAprcQb36jNRUkD0t+v9J/swQruHFFTM++/XxME3/++nsmui4ggklo6H+vt/MGSmnkQxxRTlSefVCOuVs6ds/QOXV7GIOYQwby2bflbIB5z992KscphHAHOnC4ZyLvuQqm4YwsEUgcUd6RxGBnRZpE629MnEWo1bYFXVjT3xWIR+PGP1ZeWFXcMLXiLPTXz2jVASi3tC/YWCMChHUsQ1hqEnh7WSDYwv/zLwBe/CHz+88Cv/qrfZ0PWxZ6amf+Wsv3gg8BrXwv8yZ/oO3RxdzOOohVF1tv5hUXc7cdJdCzPG9tzc2tm9ZkpmQCwvGzW2wEUd34iBPDxjxubt+AJrbb1mulqND4OXDeWL+1Twno7UgcUd6RxEEKJ3AgAN/arT7OnngL+/M/NJqCr7N5ZpLjzm9e8BujpMVMzsxlgYR6f/awWKbCLu5t6bOHX669nGkoDI4SmvS3tuEijYhN3tzz9RUSjZrQgl7MEhSxmKrdBXzVj5M4fLOIugAJuXHkE1uwV+3NvFUPcySKwvKKKu5tucv48SeXcfjvw+tcDAG7CkxCQwNlzRpP6u+4CxNEjxjUIABga0pyjCakRijvSWNhNVVrVOrovfhH4x39UX7J7N3Bo6gGlSShCIUaBvKa7G/jFX8RL8H20Qvftnp6GlMDHPgY88oh6+KHCEXUHxTghznDnnYqZlDh1Eq8YLdMsFABWNDOVfTiFV+A7WgYFzVT84cABLYNB53DqP5TeMUeOlHuRRdwlU4AsmtkTo6OaMQfxlz/9U6CjA71Y0hY/sxng4iUA67RA4EInqQOKO9JY2MWdzVTF2ukA0NyGP/xhQPzFp9Vv/NzP8eboB295C7bhKt6P/6GtUM7NGY4qObOXMoJBYPc1m+0zxR0hztDXp7ngWLjn2+9ER3tR2dfTA9w9eQIfw+/h07gPHcgyJdNPWluV3/8teEKpuzt6tLTuLpPRyhUAlJqpMCWzMZicBN71LgDAb+Av0YEMcPEi7r3pIvafux/4+79Xj2dKJqkTijvSWNjE3b4jX0F7oFj20O5uLSIUXTkHfPvb6jfvu8+tMyTrceedwOQkXo5/wf+N/4ZAMat3SFY5eBBoPXFM3UlxR4hz/Pf/rixwDT/3MP7kln/ET/80cM89wEc+omVB/F70C3g+HtNq7QCmZPqNJTVzD55DMBUztuPxUqfo06dNozEsL2MMVxGCnuJHcdc4fPCDQCSCwziKf8Br8OXi6/DeP9uuXYw/+Yl6LM1USJ1Q3JHG4uabgY4OYzMwdQkHsk+WHNbWpkXsdu4E8JnPqMuZt9yi5bkT72lpAd78ZgDAnXgYH8UH0Hn+hBbBs3Co9VhpAQmdMglxjptuUi1OAdz6+Xfgwx9YxPvfr90iAwHAcDwyDmLkzlcs4q4VRdyce0z5tj01UzFTWaKZSsMSDgMf+hAAIIgURnCt/HGDg3T6JnVDcUcai1AI+I3fUHbd+MQXgULe2BYC+KM/0uvEUynNvs/KffcxJdNP3vEO7UEG4BYcwSfwHoROPGoWjCfiuO2Tb1TzNCcmgG3bfDhZQpqYP/kTLQd6ldlZLWS3Si5nNr1bhZE7f7GIOwC4eeYBzShFx74mZoo7SafMRuc3fgPYu3f9Y/7gD5R6WUJqgX9BpPH4wz/Uci51Xr78NbReuWhsv+tdel8YAPjKV4B50y4a/f2GMxXxiZERrYZA73p9ACfxvwr3Yf+Jf0RweQZvPvEH2JO2deT9yEcoyAlxmrEx4P3vV/d98pPARf1++swzWtHWKqOj2j/iH+Pj2j1U55bsj5QGoUePAgXdryqZBB59VP9GJgPkc2a9XXc3sGuXRydNKqKtTXs2Tk5q29Go1gfvbW8DPvpRrcfT7/6ur6dImoOA3ydASAnRKPCe9wB//McAgHFcwWeuvRaPvOffcOgFIXMxUkqtL4KV//yf1ZVq4g8vfSnwqU8Bv/VbAIBJXMBnVt4MPFbm2E98QuuKTQhxnve/H/jsZ4GpKW07nQZ+7de0SPn/+T/qsUzJ9B8htOjdN78JANiJs+jNxbCIEABN0D33HLB/P/CtbxktCoHlZYSwZEbuDh0yFthIA3HokFY4mckoJSiEOAkjd6Qxee97lYbme1aO4s1nP6Rmmfz4x2q9iBBaSiBpDN7xDuCd71z/mD/+Y65UEuIm3d3GQpnBd78LfOELWpqmFaZkNgaW1EwB4HCL2sbi6FEto/arX7XsXF7Gf8I/oh16ujtTMhsbCjviIhR3pDHp69Nyz618+tPApUvqtpW772YaSqPxyU8CL3tZ+e/9/u9rKbiEEHd561u1iMF6tLQwpb1RsNXdHZ7/V2X7iSeABx4AYqaRJjqTC3gtvm7uoLgjZMtCcUcal9/6LdVkI5MB3vc+4J//Gfibv9Hq7ayw/UHjEQho47R/v7r/t3+7xKqdEOISra3Axz9e/nu9vcDrXgc88giwb5+350XK8/znK5u3XPwnxVTsqaeAL31JfcmrCt9AL5bMHRR3hGxZhLR3xGwwbr31VvnYY+UKdciW4K/+Cnj72zc+budOrRCBLlONyYULwFveApw4oaVr/tf/yrEixGs+/WlN5HV2apkOr3qVZujQ1ub3mRE7+/cDpzRzFAngF180g5gYKntoAHl8+cERDEIP5bW0aMV4rD8npKkQQjwupdywOJqGKqSx+dVf1SYjzz67/nHveAfFQiOzfTvw4IN+nwUhW5v77mOGw2bhttsMcScAHO46iX9Nlxd3L7/+EgYftORo7ttHYUfIFoazYdLYBALAn/7p+seMj2tWwoQQQkgzYKu7u2X+e2UPEwJ4/ciD6k6mZBKypWHkjjQ+r3kN8Jd/CXz5y1qDn1AI6OnR/h8f19L9+vv9PktCCCHEGe64Q9k8/JPPArf9HtClRuRe/GJg/MIP1ddS3BGypaG4I5uDt7+9sto7QgghZLNzyy3AwYPAsWMAgBE5hdG5pzE1cbty2C//MoBfOqq+luKOkC0N0zIJIYQQQhqJlhbggx9Udt187htAJm1s3347sOu6nCEADW66yYszJIQ0KBR3hBBCCCGNxutep/Ru/fni1yEuXQSg9cB+29ugma5kMuZrRkeB4WGPT5QQ0khQ3BFCCCGENBqBAPCBDxibe/EcPjP7i/j1X1rEpz4F7NkD4ChTMgkhKhR3hBBCCCGNyJvfDGzbZmzuyzyFN176qCbsAIo7QkgJFHeEEEIIIY1IRwfwvvep+/78z4GpKeCP/gj41KfU71HcEbLlobgjhBBCCGlUfv3XgUjE3F5c1GrxPvxhIJtVj731Vm/PjRDScFDcEUIIIYQ0Kt3dwLvfre5LpUqPe+tbgZ07PTklQkjjQnFHCCGEENLIvPOdQChU/nujo8Df/i3w13/t7TkRQhoSijtCCCGEkEYmHNYEnpXWVuA97wFOngTe+EZACH/OjRDSUAT8PgFCCCGEELIB/+W/AM88A3z3u8CLXwx87GPADTf4fVaEkAaD4o4QQgghpNHp6gK+8Q1ASkbpCCFrwrRMQgghhJDNAoUdIWQdKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkCKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkCKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkCKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkChJTS73NYFyHELIALNbx0EMCcw6dDvIVjuPnhGG5uOH6bH47h5odjuLnh+G1+GmUMt0sphzY6qOHFXa0IIR6TUt7q93mQ2uEYbn44hpsbjt/mh2O4+eEYbm44fpufzTaGTMskhBBCCCGEkCaA4o4QQgghhBBCmoBmFnef9fsESN1wDDc/HMPNDcdv88Mx3PxwDDc3HL/Nz6Yaw6atuSOEEEIIIYSQrUQzR+4IIYQQQgghZMtAcUcIIYQQQgghTYBn4k4IMSGE+IEQ4oQQ4rgQ4l36/gEhxHeFEM/p//fr+/cLIR4RQmSEEO8r836tQogjQohvrfOZ3xFCxO3HCCHeKYQ4LYSQQojBdV6/QwjxqH5uXxFCtOv77xJCPCGEyAshfqHW38lmo8nG8D1CiGeEEE8JIb4nhNhe6+9ls9Bk4/ebQoinhRBHhRAPCyGur/X3splopjG0fP8X9PfYNDbT9dBMYyiEeKsQYla/Do8KIX6t1t/LZqKZxlD/3uuE9jw8LoT4Ui2/k81EM42fEOKTluvvWSFEvNbfy2aiycbwOv1nOSK0Oek9tf5eVvEycpcH8F4p5QEAdwC4T2gTst8H8D0p5R4A39O3AWAewO8A+Pga7/cuACc2+Mz/AeBNZfb/EMBLsXFz9I8C+KR+bgsA3qbvvwjgrQCa/iZoo5nG8AiAW6WUhwB8DcDHNnifZqCZxu9LUsobpZQ3Qxu7T2zwPs1CM40hhBAh/fwe3eA9mommGkMAX5FS3qz/+9wG79MsNM0YCiH2APgggBdIKW8A8O4N3qcZaJrxk1L+7ur1B+BTAP5hg/dpFppmDAH8EYCvSikPA3g9gL/Y4H02xDNxJ6WcklI+oX+9BO2XuA3AzwH4on7YFwH8vH7MjJTyJwBy9vcSQowDeCWAdR8kUsrvAVgqs/+IlPL8eq8VQggAL4E28bef23kp5VMAiuu9R7PRZGP4AyllUt//IwDj671XM9Bk47doObQbwJZwhmqmMdT5Y2jiPL3e+zQTTTiGW44mG8NfB/BpKeXC6rmu917NQJONn5U3APjyeu/VLDTZGEoAvfrXfQCurvdeleBLzZ0QYhLAYWirtcNSyilAGywA0Qre4n8C+D24K64iAOJSyry+fRnaHw5B043h2wDc7+J5NBzNMH5CiPuEEGegiYPfcfE8GpLNPoZCiMMAJqSUa6bBNDubfQx1XqunEn1NCDHh4nk0JE0whnsB7BVC/FAI8SMhxCtcPI+GownGDwAgtNKSHQC+7+J5NCRNMIYfAvArQojLAL4N4Lfr/TDPxZ0QogfA1wG827b6Xunr7wUwI6V83PGTs31UmX1bIjqwEc00hkKIXwFwK7Rw+5agWcZPSvlpKeUuAB+AltawZdjsYyiEaAHwSQDvdfnzG5bNPob6//8MYFJq6e3/CnPFfEvQJGMYALAHwIuhRX4+J4QIu3w+DUGTjN8qrwfwNSllweVzaSiaZAzfAOALUspxAPcA+Bv9GVkznoo7IUQbtEH4Wynlal7wNSHEqP79UQAbpQS8AMCrhRDnAfwdgJcIIf4/IcTtlqLSV9d4fg/or/8cgDkAYSFEQP/2OBwIlW52mmkMhRAvBfCHAF4tpczU8nmbjWYaPwt/hy2UJtYkYxgCcBDAg/o53AHgm2LrmKo0wxhCShmz3Dv/CsDzavm8zUizjCG0CMI/SSlzUspzAE5BE3tNTRON3yqvxxZJyVylicbwbQC+CgBSykcAdAJY05ilEgIbH+IMQggB4PMATkgpreYH3wTwFgAf0f//p/XeR0r5QWjFvxBCvBjA+6SUv6J/++Z6zlFK+XLbOf8AwC9AG/ANz63ZaaYxFFpK2F8CeMVWqDEAmm789kgpn9MPeyWA57AFaJYxlFImYHl4CSEe1M/hsXo+ezPQLGOo7x9dTYEC8GpsbEjQFDTTGAL4BvTIgdCc/vYCOFvPZzc6TTZ+EELsA9AP4JF6PnMz0WRjeBHA/wXtGjwATdzN1vPZkFJ68g/AC6GFIJ8CcFT/dw+0PNTvQZucfQ/AgH78CLQVpUUAcf3rXtt7vhjAt9b5zH/Xf0Ep/fUv1/f/jr6dh6acP7fG63cC+DGA0wD+HkCHvv/5+utXAMQAHPfq9+jnvyYbw38FcM3yc3zT798vx6+q8fszAMf1n+EHAG7w+/fLMaxuDG3HPAjNvdb33zHHsPIxBPCn+nX4pH4d7vf798sxrHoMBTS34WcAPA3g9X7/fjl+lY+f/r0PAfiI379XjmHN1+D10Bw3n9R/jpfV+z1l+mYAAABlSURBVPsR+hsTQgghhBBCCNnE+OKWSQghhBBCCCHEWSjuCCGEEEIIIaQJoLgjhBBCCCGEkCaA4o4QQgghhBBCmgCKO0IIIYQQQghpAijuCCGEEEIIIaQJoLgjhBBCCCGEkCbg/wewPP9CNI+RmQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_df = eval_df[(eval_df.timestamp<'2014-11-08') & (eval_df.h=='t+1')][['timestamp', 'actual']]\n", + "for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.timestamp<'2014-11-08') & (eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + "fig = plt.figure(figsize=(15, 8))\n", + "ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + "ax = fig.add_subplot(111)\n", + "ax.plot(plot_df['timestamp'], plot_df['t+1'], color='blue', linewidth=4.0, alpha=0.75)\n", + "ax.plot(plot_df['timestamp'], plot_df['t+2'], color='blue', linewidth=3.0, alpha=0.5)\n", + "ax.plot(plot_df['timestamp'], plot_df['t+3'], color='blue', linewidth=2.0, alpha=0.25)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "ax.legend(loc='best')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.5", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 54f8efd0ba4f269991b86e69d8c4cc460db16551 Mon Sep 17 00:00:00 2001 From: Yijing Chen Date: Thu, 6 Jun 2019 10:45:29 -0700 Subject: [PATCH 2/5] update readme change the title to match the name of the repo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 6ccb924..04dec08 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# Deep Neural Networks for Time Series Forecasting +# Deep Learning for Time Series Forecasting A collection of examples for using DNNs for time series forecasting with Keras. The examples include: From d9901fdaebbd064b080ab16708bb24273fc38f0b Mon Sep 17 00:00:00 2001 From: angusrtaylor Date: Mon, 10 Jun 2019 16:08:15 +0000 Subject: [PATCH 3/5] update CNN --- 1_CNN_dilated.ipynb | 786 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 786 insertions(+) create mode 100644 1_CNN_dilated.ipynb diff --git a/1_CNN_dilated.ipynb b/1_CNN_dilated.ipynb new file mode 100644 index 0000000..f662fb1 --- /dev/null +++ b/1_CNN_dilated.ipynb @@ -0,0 +1,786 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dilated CNN model\n", + "\n", + "In this notebook, we demonstrate how to:\n", + "- prepare time series data for training a Convolutional Neural Network (CNN) forecasting model\n", + "- get data in the required shape for the keras API\n", + "- implement a CNN model in keras to predict the next step ahead (time *t+1*) in the time series\n", + "- enable early stopping to reduce the likelihood of model overfitting\n", + "- evaluate the model on a test dataset\n", + "\n", + "The data in this example is taken from the GEFCom2014 forecasting competition1. It consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. The task is to forecast future values of electricity load. In this example, we show how to forecast one time step ahead, using historical load data only.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "from collections import UserDict\n", + "from glob import glob\n", + "from IPython.display import Image\n", + "%matplotlib inline\n", + "\n", + "from common.utils import load_data, mape\n", + "\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load data into Pandas dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "energy = load_data('data/')[['load']]\n", + "energy.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create train, validation and test sets\n", + "\n", + "We separate our dataset into train, validation and test sets. We train the model on the train set. The validation set is used to evaluate the model after each training epoch and ensure that the model is not overfitting the training data. After the model has finished training, we evaluate the model on the test set. We must ensure that the validation set and test set cover a later period in time from the training set, to ensure that the model does not gain from information from future time periods.\n", + "\n", + "We will allocate the period 1st November 2014 to 31st December 2014 to the test set. The period 1st September 2014 to 31st October is allocated to validation set. All other time periods are available for the training set." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "valid_start_dt = '2014-09-01 00:00:00'\n", + "test_start_dt = '2014-11-01 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "energy[energy.index < valid_start_dt][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[(energy.index >=valid_start_dt) & (energy.index < test_start_dt)][['load']] \\\n", + " .rename(columns={'load':'validation'}), how='outer') \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'validation', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data preparation - training set\n", + "\n", + "For this example, we will set *T=6*. This means that the input for each sample is a vector of the prevous 6 hours of the energy load. The choice of *T=6* was arbitrary but should be selected through experimentation.\n", + "\n", + "*HORIZON=1* specifies that we have a forecasting horizon of 1 (*t+1*)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Image('./images/one_step_forecast.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "T = 6\n", + "HORIZON = 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our data preparation for the training set will involve the following steps:\n", + "\n", + "1. Filter the original dataset to include only that time period reserved for the training set\n", + "2. Scale the time series such that the values fall within the interval (0, 1)\n", + "3. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example\n", + "4. Discard any samples with missing values\n", + "5. Transform this Pandas dataframe into a numpy array of shape (samples, features) for input into Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Filter the original dataset to include only that time period reserved for the training set\n", + "Create training set containing only the model features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = energy.copy()[energy.index < valid_start_dt][['load']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Scale the time series such that the values fall within the interval (0, 1)\n", + "Scale data to be in range (0, 1). This transformation should be calibrated on the training set only. This is to prevent information from the validation or test sets leaking into the training data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original vs scaled data:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "energy[energy.index < valid_start_dt][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example\n", + "First, we create the target (*y_t+1*) variable. If we use the convention that the dataframe is indexed on time *t*, we need to shift the *load* variable forward one hour in time. Using the freq parameter we can tell Pandas that the frequency of the time series is hourly. This ensures the shift does not jump over any missing periods in the time series." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_shifted = train.copy()\n", + "train_shifted['y_t+1'] = train_shifted['load'].shift(-1, freq='H')\n", + "train_shifted.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also need to shift the load variable back 6 times to create the input sequence:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for t in range(1, T+1):\n", + " train_shifted[str(T-t)] = train_shifted['load'].shift(T-t, freq='H')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_col = 'y_t+1'\n", + "X_cols = ['load_t-5',\n", + " 'load_t-4',\n", + " 'load_t-3',\n", + " 'load_t-2',\n", + " 'load_t-1',\n", + " 'load_t']\n", + "train_shifted.columns = ['load_original']+[y_col]+X_cols\n", + "train_shifted.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Discard any samples with missing values\n", + "Notice how we have missing values for the input sequences for the first 5 samples. We will discard these:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_shifted = train_shifted.dropna(how='any')\n", + "train_shifted.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Transform into a numpy arrays of shapes (samples, time steps, features) and (samples,1) for input into Keras\n", + "Now convert the target variable into a numpy array. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train = train_shifted[[y_col]].as_matrix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now have a vector for target variable of shape:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The target variable for the first 3 samples looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train[:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now convert the inputs into a numpy array with shape `(samples, time steps, features)`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = train_shifted[X_cols].as_matrix()\n", + "X_train = X_train[... , np.newaxis]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The tensor for the input features now has the shape:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And the first 3 samples looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[:3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_shifted.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data preparation - validation set\n", + "Now we follow a similar process for the validation set. We keep *T* hours from the training set in order to construct initial features." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "look_back_dt = dt.datetime.strptime(valid_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", + "valid = energy.copy()[(energy.index >=look_back_dt) & (energy.index < test_start_dt)][['load']]\n", + "valid.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Scale the series using the transformer fitted on the training set:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "valid['load'] = scaler.transform(valid)\n", + "valid.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Prepare validation inputs in the same way as the training set:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "valid_shifted = valid.copy()\n", + "valid_shifted['y+1'] = valid_shifted['load'].shift(-1, freq='H')\n", + "for t in range(1, T+1):\n", + " valid_shifted['load_t-'+str(T-t)] = valid_shifted['load'].shift(T-t, freq='H')\n", + "valid_shifted = valid_shifted.dropna(how='any')\n", + "y_valid = valid_shifted['y+1'].as_matrix()\n", + "X_valid = valid_shifted[['load_t-'+str(T-t) for t in range(1, T+1)]].as_matrix()\n", + "X_valid = X_valid[..., np.newaxis]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_valid.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_valid.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Implement the Convolutional Neural Network\n", + "We implement the convolutional neural network with the 6 inputs, 3 layers, 5 neurons in each layer, a kernel size of 3 in each layer, and dilation rates of 1, 2 and 4 for each successive layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.models import Model, Sequential\n", + "from keras.layers import Conv1D, Dense, Flatten\n", + "from keras.callbacks import EarlyStopping, ModelCheckpoint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "LATENT_DIM = 5\n", + "KERNEL_SIZE = 2\n", + "BATCH_SIZE = 32\n", + "EPOCHS = 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', strides=1, activation='relu', dilation_rate=1, input_shape=(T, 1)))\n", + "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', strides=1, activation='relu', dilation_rate=2))\n", + "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', strides=1, activation='relu', dilation_rate=4))\n", + "model.add(Flatten())\n", + "model.add(Dense(HORIZON, activation='linear'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Use Adam optimizer and mean squared error as the loss function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer='Adam', loss='mse')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Early stopping trick" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Image('./images/early_stopping.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Specify the early stopping criteria. We **monitor** the validation loss (in this case the mean squared error) on the validation set after each training epoch. If the validation loss has not improved by **min_delta** after **patience** epochs, we stop the training." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "best_val = ModelCheckpoint('model_{epoch:02d}.h5', save_best_only=True, mode='min', period=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = model.fit(X_train,\n", + " y_train,\n", + " batch_size=BATCH_SIZE,\n", + " epochs=EPOCHS,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[earlystop, best_val],\n", + " verbose=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load the model with the smallest mape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "best_epoch = np.argmin(np.array(history.history['val_loss']))+1\n", + "model.load_weights(\"model_{:02d}.h5\".format(best_epoch))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "plot training and validation losses" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_df = pd.DataFrame.from_dict({'train_loss':history.history['loss'], 'val_loss':history.history['val_loss']})\n", + "plot_df.plot(logy=True, figsize=(10,10), fontsize=12)\n", + "plt.xlabel('epoch', fontsize=12)\n", + "plt.ylabel('loss', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluate the model\n", + "Create the test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "look_back_dt = dt.datetime.strptime(test_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", + "test = energy.copy()[test_start_dt:][['load']]\n", + "test.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Scale the test data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create test set features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_shifted = test.copy()\n", + "test_shifted['y_t+1'] = test_shifted['load'].shift(-1, freq='H')\n", + "for t in range(1, T+1):\n", + " test_shifted['load_t-'+str(T-t)] = test_shifted['load'].shift(T-t, freq='H')\n", + "test_shifted = test_shifted.dropna(how='any')\n", + "y_test = test_shifted['y_t+1'].as_matrix()\n", + "X_test = test_shifted[['load_t-'+str(T-t) for t in range(1, T+1)]].as_matrix()\n", + "X_test = X_test[... , np.newaxis]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make predictions on test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "predictions = model.predict(X_test)\n", + "predictions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare predictions to actual load" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test_shifted.index\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.transpose(y_test).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute the mean absolute percentage error over all predictions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mape(eval_df['prediction'], eval_df['actual'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions vs the actuals for the first week of the test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "eval_df[eval_df.timestamp<'2014-11-08'].plot(x='timestamp', y=['prediction', 'actual'], style=['r', 'b'], figsize=(15, 8))\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "clean up model files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for m in glob('model_*.h5'):\n", + " os.remove(m)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "dnntutorial", + "language": "python", + "name": "dnntutorial" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 6ceef5d30346ae84d6d8e0ba2e0ef14084a95fa8 Mon Sep 17 00:00:00 2001 From: angusrtaylor Date: Mon, 10 Jun 2019 16:08:50 +0000 Subject: [PATCH 4/5] rename and move notebooks --- ...e_step_RNN_univariate.ipynb => 2_RNN.ipynb | 4 +- 2_one_step_FF_univariate.ipynb | 2094 ---------------- ...imple.ipynb => 3_RNN_encoder_decoder.ipynb | 4 +- 6_dilated_cnn.ipynb | 880 ------- ...p_RNN_multivariate.ipynb => Quiz_RNN.ipynb | 0 ...er.ipynb => Quiz_RNN_encoder_decoder.ipynb | 0 .../1_time_series_arima.ipynb | 4 +- .../2_one_step_FF_univariate.ipynb | 2125 +++++++++++++++++ .../4_multi_step_RNN_vector_output.ipynb | 4 +- .../Quiz_weight_initialization.ipynb | 0 10 files changed, 2133 insertions(+), 2982 deletions(-) rename 3_one_step_RNN_univariate.ipynb => 2_RNN.ipynb (99%) delete mode 100644 2_one_step_FF_univariate.ipynb rename 5_multi_step_RNN_encoder_decoder_simple.ipynb => 3_RNN_encoder_decoder.ipynb (99%) delete mode 100644 6_dilated_cnn.ipynb rename Quiz_one_step_RNN_multivariate.ipynb => Quiz_RNN.ipynb (100%) rename Quiz_multi_step_RNN_encoder_decoder.ipynb => Quiz_RNN_encoder_decoder.ipynb (100%) rename 1_time_series_arima.ipynb => ReferenceNotebook/1_time_series_arima.ipynb (99%) create mode 100644 ReferenceNotebook/2_one_step_FF_univariate.ipynb rename 4_multi_step_RNN_vector_output.ipynb => ReferenceNotebook/4_multi_step_RNN_vector_output.ipynb (99%) rename Quiz_weight_initialization.ipynb => ReferenceNotebook/Quiz_weight_initialization.ipynb (100%) diff --git a/3_one_step_RNN_univariate.ipynb b/2_RNN.ipynb similarity index 99% rename from 3_one_step_RNN_univariate.ipynb rename to 2_RNN.ipynb index 6f731fb..aaebb13 100644 --- a/3_one_step_RNN_univariate.ipynb +++ b/2_RNN.ipynb @@ -1405,7 +1405,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.5", "language": "python", "name": "python3" }, @@ -1419,7 +1419,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.5.5" } }, "nbformat": 4, diff --git a/2_one_step_FF_univariate.ipynb b/2_one_step_FF_univariate.ipynb deleted file mode 100644 index 5cf5616..0000000 --- a/2_one_step_FF_univariate.ipynb +++ /dev/null @@ -1,2094 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# One step univariate feed-forward neural network model\n", - "\n", - "In this notebook, we demonstrate how to:\n", - "- prepare time series data for training a feed-forward neural network (NN) forecasting model\n", - "- get data in the required shape for the keras API\n", - "- implement a simple feed-forward NN model in keras to predict the next step ahead (time *t+1*) in the time series\n", - "- enable early stopping to reduce the likelihood of model overfitting\n", - "- evaluate the model on a test dataset\n", - "\n", - "The data in this example is taken from the GEFCom2014 forecasting competition1. It consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. The task is to forecast future values of electricity load. In this example, we show how to forecast one time step ahead, using historical load data only.\n", - "\n", - "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Please run this notebook after completing 0_data_setup notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import os\n", - "import warnings\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import datetime as dt\n", - "from glob import glob\n", - "from collections import UserDict\n", - "from common.utils import load_data, mape\n", - "from IPython.display import Image\n", - "%matplotlib inline\n", - "\n", - "pd.options.display.float_format = '{:,.2f}'.format\n", - "np.set_printoptions(precision=2)\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Load the data from csv into a Pandas dataframe" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load
2012-01-01 00:00:002,698.00
2012-01-01 01:00:002,558.00
2012-01-01 02:00:002,444.00
2012-01-01 03:00:002,402.00
2012-01-01 04:00:002,403.00
\n", - "
" - ], - "text/plain": [ - " load\n", - "2012-01-01 00:00:00 2,698.00\n", - "2012-01-01 01:00:00 2,558.00\n", - "2012-01-01 02:00:00 2,444.00\n", - "2012-01-01 03:00:00 2,402.00\n", - "2012-01-01 04:00:00 2,403.00" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "energy = load_data('data')[['load']]\n", - "energy.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create train, validation and test sets\n", - "\n", - "We separate our dataset into train, validation and test sets. We train the model on the train set. The validation set is used to evaluate the model after each training epoch and ensure that the model is not overfitting the training data. After the model has finished training, we evaluate the model on the test set. We must ensure that the validation set and test set cover a later period in time from the training set, to ensure that the model does not gain from information from future time periods.\n", - "\n", - "We will allocate the period 1st November 2014 to 31st December 2014 to the test set. The period 1st September 2014 to 31st October is allocated to validation set. All other time periods are available for the training set." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "valid_start_dt = '2014-09-01 00:00:00'\n", - "test_start_dt = '2014-11-01 00:00:00'" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA40AAAH4CAYAAADuJAhiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcHGWdP/BP5ZAjBEEQ5Vg26Aqy\nCARk+YmAC66KHHLrj0NXUURBgfUnShRQzjUKcoT7JkBCgJCQhCF3Jvc5k0wmmUkmM5PMZI7Mfd/T\n3c/vj+6eqa6uqq6qrrs/79crr8x01/FMnc/3OSUhBIiIiIiIiIjUjPE6AURERERERORfDBqJiIiI\niIhIE4NGIiIiIiIi0sSgkYiIiIiIiDQxaCQiIiIiIiJNDBqJiIiIiIhIE4NGIiIiIiIi0sSgkYiI\niIiIiDQxaCQiIiIiIiJN47xOgBeOPvpoMWnSJK+TQURERERE5InCwsIWIcTnjSybk0HjpEmTUFBQ\n4HUyiIiIiIiIPCFJUrXRZdk8lYiIiIiIiDQxaCQiIiIiIiJNDBqJiIiIiIhIU072aSQiIiIiIn8a\nHh5GbW0tBgYGvE5KKBx88ME44YQTMH78eMvbYNBIRERERES+UVtbi4kTJ2LSpEmQJMnr5ASaEAKt\nra2ora3FSSedZHk7bJ5KRERERES+MTAwgKOOOooBow0kScJRRx2Vda0tg0YiIiIiIvIVBoz2seNY\nMmgkIiIiIiIiTQwaiYiIiIiIEjo6OvDCCy+YXu+yyy5DR0eHAynyHoNGIiIiIiKiBK2gMRqN6q73\n6aef4ogjjnAqWZ7i6KlERERERORLDy0oQWl9l63b/PfjDsdff3Ca5vdTpkxBZWUlJk+ejPHjx+Ow\nww7Dsccei6KiIpSWluLqq69GTU0NBgYGcPfdd+O2224DAEyaNAkFBQXo6enBpZdeigsuuADr16/H\n8ccfj3nz5uGQQw6x9e9wE2saiYiIiIiIEqZOnYovf/nLKCoqwuOPP47NmzfjscceQ2lpKQDgjTfe\nQGFhIQoKCjBt2jS0trambaO8vBy/+c1vUFJSgiOOOAIfffSR23+GrVjTSEREREREvqRXI+iWc889\nN2WOw2nTpmHu3LkAgJqaGpSXl+Ooo45KWeekk07C5MmTAQBf//rXUVVV5Vp6ncCgkYiIiIiISMOE\nCRNGfl65ciWWLVuGDRs24NBDD8VFF12kOgfiQQcdNPLz2LFj0d/f70pancLmqURERERERAkTJ05E\nd3e36nednZ048sgjceihh2L37t3YuHGjy6nzBmsaiYiIiIiIEo466iicf/75+NrXvoZDDjkEX/jC\nF0a++/73v4+XXnoJZ5xxBk455RR84xvf8DCl7pGEEF6nwXXnnHOOKCgo8DoZRERERESksGvXLpx6\n6qleJyNU1I6pJEmFQohzjKzP5qlEREQ+9/O3tuCrDyz0OhlERJSj2DyViIjI51bsbvI6CURElMNY\n00hERERERESaGDQSERERERGRJgaNREREREREpIlBIxEREREREWli0EhERORTg5EoJk3J8zoZRESk\n47DDDgMA1NfX4/rrr1dd5qKLLkKmKf+efvpp9PX1jfx+2WWXoaOjw76EZoFBIxERkU919Ue8TgIR\nERl03HHHYfbs2ZbXVwaNn376KY444gg7kpY1TrlBRETkQ5FoDBVNPV4ng4jIWwunAA077N3mF08H\nLp2q+fW9996Lf/3Xf8Udd9wBAHjwwQchSRJWr16N9vZ2DA8P49FHH8VVV12Vsl5VVRWuuOIK7Ny5\nE/39/bjllltQWlqKU089Ff39/SPL3X777diyZQv6+/tx/fXX46GHHsK0adNQX1+Piy++GEcffTTy\n8/MxadIkFBQU4Oijj8aTTz6JN954AwBw66234n/+539QVVWFSy+9FBdccAHWr1+P448/HvPmzcMh\nhxxi7/ECaxqJiIh8aerC3bjx1Y1eJ4OIKOfccMMNeP/990d+/+CDD3DLLbdg7ty52Lp1K/Lz8/H7\n3/8eQgjNbbz44os49NBDUVxcjPvuuw+FhYUj3z322GMoKChAcXExVq1aheLiYtx111047rjjkJ+f\nj/z8/JRtFRYW4s0338SmTZuwceNGvPrqq9i2bRsAoLy8HL/5zW9QUlKCI444Ah999JHNRyOONY1E\nREQ+tGFvq9dJICLynk6NoFPOOussNDU1ob6+Hs3NzTjyyCNx7LHH4ne/+x1Wr16NMWPGoK6uDo2N\njfjiF7+ouo3Vq1fjrrvuAgCcccYZOOOMM0a+++CDD/DKK68gEongwIEDKC0tTfleae3atbjmmmsw\nYcIEAMC1116LNWvW4Morr8RJJ52EyZMnAwC+/vWvo6qqyqajkIpBIxERkQ9FY9ol2ERE5Kzrr78e\ns2fPRkNDA2644QbMmDEDzc3NKCwsxPjx4zFp0iQMDAzobkOSpLTP9u3bhyeeeAJbtmzBkUceiZ/9\n7GcZt6NXo3nQQQeN/Dx27NiUZrB2YvNUIiIiH2LQSETknRtuuAGzZs3C7Nmzcf3116OzsxPHHHMM\nxo8fj/z8fFRXV+uu/61vfQszZswAAOzcuRPFxcUAgK6uLkyYMAGf/exn0djYiIULF46sM3HiRHR3\nd6tu6+OPP0ZfXx96e3sxd+5cXHjhhTb+tZmxppGIiMiHYjoly0RE5KzTTjsN3d3dOP7443Hsscfi\n5ptvxg9+8AOcc845mDx5Mr761a/qrn/77bfjlltuwRlnnIHJkyfj3HPPBQCceeaZOOuss3Daaafh\nS1/6Es4///yRdW677TZceumlOPbYY1P6NZ599tn42c9+NrKNW2+9FWeddZZjTVHVSHrVnWF1zjnn\niEzzpBAREXnp4idWYl9Lb8pnVVMv9yg1RETu2bVrF0499VSvkxEqasdUkqRCIcQ5RtZn81QiIiIf\nYvNUIiLyCwaNREREPsSgkYiI/IJBIxERkQ/lYvcRIiLyJwaNREREREREpIlBIxERkQ+pze9FRETk\nBQaNREREREREpIlBIxERERERUUJHRwdeeOEFS+s+/fTT6OvrszlF3mPQSERERETksN7BCAe4CggG\njenGeZ0AIiIiSscujUThUd/Rj29OXYG/XPHv+PkFJ3mdnED5++a/Y3fbblu3+dXPfRX3nnuv5vdT\npkxBZWUlJk+ejO9+97s45phj8MEHH2BwcBDXXHMNHnroIfT29uJHP/oRamtrEY1G8cADD6CxsRH1\n9fW4+OKLcfTRRyM/P9/WdHuJQSMRERERkYNq2uI1T4t2NjBoDICpU6di586dKCoqwpIlSzB79mxs\n3rwZQghceeWVWL16NZqbm3HcccchLy8PANDZ2YnPfvazePLJJ5Gfn4+jjz7a47/CXq4FjZIkrQTw\nDQCRxEd1QohTEt/dBOBvAI4GsBTAz4UQbYnvPgfgdQDfA9AC4E9CiJmy7WquS0RERETktTFj4k0H\nYmyeappejaAblixZgiVLluCss84CAPT09KC8vBwXXngh7rnnHtx777244oorcOGFF3qaTqe53afx\nt0KIwxL/kgHjaQBeBvATAF8A0AdA3oj4eQBDie9uBvBiYh0j6xIREQUSm6cShUfydmbQGDxCCPzp\nT39CUVERioqKUFFRgV/84hc4+eSTUVhYiNNPPx1/+tOf8PDDD3udVEf5YSCcmwEsEEKsFkL0AHgA\nwLWSJE2UJGkCgOsAPCCE6BFCrAUwH/EgUXddD/4OIiIiIqI0yXlXY4wZA2HixIno7u4GAFxyySV4\n44030NPTAwCoq6tDU1MT6uvrceihh+LHP/4x7rnnHmzdujVt3TBxu0/j3yRJmgqgDMB9QoiVAE4D\nsD65gBCiUpKkIQAnA4gBiAoh9si2sR3AfyZ+1lu3UL5jSZJuA3AbAJx44ok2/1lERERERBQGRx11\nFM4//3x87Wtfw6WXXoqbbroJ5513HgDgsMMOw7vvvouKigr84Q9/wJgxYzB+/Hi8+OKLAIDbbrsN\nl156KY499lgOhGPRvQBKEW9qegOABZIkTQZwGIBOxbKdACYCiOp8hwzrphBCvALgFQA455xzWM5D\nRERERK5is/PgmDlzZsrvd999d8rvX/7yl3HJJZekrXfnnXfizjvvdDRtXnAtaBRCbJL9Ol2SpBsB\nXAagB8DhisUPB9CNeE2j1nfIsC4REVFgSWDukihs2KWRgsrLPo0C8X7BJQDOTH4oSdKXABwEYE/i\n3zhJkr4iW+/MxDrIsC4REVFgsUaCiIj8wpWgUZKkIyRJukSSpIMlSRonSdLNAL4FYDGAGQB+IEnS\nhYmBbx4GMEcI0S2E6AUwB8DDkiRNkCTpfABXAXgnsWnNdd34u4iIiIiIyH6C1bK2seNYulXTOB7A\nowCaEZ9r8U4AVwshyoQQJQB+jXgA2IR4f8Q7ZOveAeCQxHfvAbg9sQ4MrEtERBRIrGgkolx18MEH\no7W1lYGjDYQQaG1txcEHH5zVdlzp0yiEaAbwHzrfzwQwU+O7NgBXW1mXiIiIiMgvrDQ7b+waQGVz\nD7755aPtT5BPnXDCCaitrUVzc7PXSQmFgw8+GCeccEJW23B7yg0iIiIiIjLoyufWorFrEFVTL/c6\nKa4ZP348TjrpJK+TQTJeDoRDREREGiSOhENEABq7Br1OAhGDRiIiIiIiN2TTRY/9+8hLDBqJAiIa\nE3hj7T4MDEcNr/PLtwtw+l8XO5gqIiIickM0xqCRvMOgkSggFmyvx8OflOLpZeWG11la2ojuwYiD\nqSKibHT2DeO1NXtVaxDYOJUofLJpdR5h0Ege4kA4RAGRDP66BoY9TgkR2eX+eTuxYHs9Tjvuszjv\ny0d5nRwi8jHWNJKXWNNIFBSJmgjWPhCFx4Lt9QCA1l4OdEFE+hgykpcYNBIFRaJNC18aROFzzMTs\nJl2mYPn7ot341TsFXieDiMgwBo1EAZGsYZy5aT+GIjFP00JE9jjzhM8CAD4zjq/jXPLiykosLmn0\nOhkUMBw9lbzEtxRRQMg7z7MpG1G4MDNIRJnwKUFeYtBIFBCSrDdjJMpXB1EQRGMC17+4HivLmtQX\nyGYoRSLKCXxMkB8waCQKIL5AiIKho28IBdXt+NmbW0yvy6IhIpJjgwTyEoNGooBgoEgUPPIh8iua\nejSXY16QiDLig4I8xKCRyAWdfcPY19Kb1TYYMxIFW0PnQNpnevc173kiAvgsIH9g0Ejkgpte24iL\nn1hp2/YkVjsSBY4wWU3ASgUikjP7DCGyE4NGIheU1HdlvQ3GiUQBJLtv9fojsa8SUbg9ubQs623w\nOUFeYtBIFBDy0VMZPxIFhFD9cQQLg4hyw7qK1rTPPiiowbb97RnXZesi8oNxXieAiAziO4Mo0DgX\nY7ht3NuKz4wbg7NPPNLrpFBA/HF2MQCgaurlhpbnE4S8xJpGIhfVtvfZsh0WOhIFDzN84XbDKxtx\n7QvrvU4GhVDylc+CJ/ISg0YiF13w93zL6zJOJAo43fweM4NERORfDBqJHGZXyaC8T4PEEJIoEETK\nz+nPgtEaBJV1WatARDJ8IpCXGDQSOWxxSaMt22GYSERElHuSZcYsRyIvMWgkclj3wHBW6w8MR/HG\n2n2I8m1BFGhmb2GOmEhEwGjrIs7TSF7i6KlEDsv2Ef/W+ipMXbgbZ594hC3pISJvxFQeBnqBIZun\nEhGRX7CmkchpWeb7OvriNZU9gxHZJpmZJAoCxn1EZNTt7xbiv9/YrL0AnyfkIQaNRA7LNsDT68sw\nHI3h/S37EVOpwujsy65ZLBHZS6/mMIh5waFIDH/4cDsOdPZ7nRSiUFi4swGr9zSnf5HMB7ibHKIU\nDBqJHJZtTcMYnZfFy6sqce9HOzBnW13ad3+dvzO7HRORrdTu4SD3WlxZ1oQPC2vxwMd81lhl19y9\nREROY9BI5LBsSwbHJKoa5bUUyR9be4cAAB19Q2nr9Q1Fs9wzEWVL3tJArwApiM1YpZFnk8cJCbAf\nPLvW6yRQgPBeIy8xaCRyWCzLp/zIPG6q32nXU3DgRSK/CWeOb19Lr9dJCKz2vmHsaezGpCl5WKXW\nLJEI8nxAOJ8hFAwMGokclm3J4MjoirLt8LVBFDxhqyXY3xZvWrmXQWNWtlS1AQAW7TzgcUqIiLQx\naCTyuZHmqbLP8nc3ARitxVQbtj9sGVSiMBod6Mq7G7ZrYBiTpuRhXlF632g9XzvucADASUdPcCJZ\nOWNkDj4+sykDXiPkJQaNRA6z6xkvjwvvVww8odYSVW1OuPyyJjzySalNKSKiTIKQyatuidcYvrJ6\nr6X1jz7sM3YmJ+fojZCtVFjdhsLqdmcTRJ5TjqCq0uCIyHUMGomcZlOuUS0wTNZOrK9sVfs27ZNb\n3tyC19fusyU9ROQstzKIZoIW1fUDPQas98z0V7vuxQ247sX1ziaIPPdoHgt3yX8YNBIFWDKLsWxX\nY9p3ajWNROQvZgOu9t70kZKzToPFWgw+YuzBQctISev97WUzdiIGjUROsylHYLbfIl8uuSESjSHK\nEoJA0HsUGD2DP5++xZa0yI32qTN3HY0szqAnK+zTSJnwGiE/YNBIFBCqzVN1spqMI8Lv9bX78G/3\nLcQ3py73OimkIeNtaDLgqmjqsZoU7SRk2TyVspQ4/pme2TE+1HOGsgCHtdHkBwwaiRzm1bOe2Yvw\ne2JxGQCgsWvQ45SQW5yoVR5tnsqnhheM9ml8cEGJ84khx23b34HhaMzrZBCZxqCRKCDUShr1+kOx\neSpRcKjdrmqfRZwIGi02fUsGOawEATaoDkZmjFrXAzXvb6mxvA/yl9L6Lkvr8bVOXmLQSOQwu5qV\ncIRCovAxM3Im4ExN4xirw/knVmDTOeBWO/qaZjgBPM7hEcsQ/Sm/5aknP2DQSOQwr4I9o6XXROSc\nbGr81W5hR5unWkwrC7Sye96OFhxkWo7HOSwy3say7yPRGHqHoomPWdVI3mHQSOQw22oamV8gyilu\nNUUbisR3xCk3rMvm8Zx8tuftOGBLWihcttV0jPzs1DOhsWsAk6bkIX93kzM7oFBg0EhEROSK9NDC\nD4VBl01bA8BCn8Ycb546MBzFY3ml6BmMZBU1Jo/fUCSG/kSNEuUWvflX3bi9dtR2AgDe2Vjtwt4o\nqBg0EgUEm5sSBZ2/6+YsN0/N0UfTe5v349U1+/Dciorsahpla+v1dcvV45wLHvmkNOV3+VUgP+9O\nPUHGJKKBTH0tKbcxaCRymJPveauZCI6sGg7MRPqf4VvNB7ek+eapPki0hyJRkfjfnekTeLuH12BE\n+xqSFxg79e4eaTXgyNYpLBg0EjnMjxl7xoxEXlBpnpr47BMf9Gez+lzgAC3AmDHOHwO2NgkP5al0\n4/rRk7z3x/AaIx0MGokCwuyjXG95xoxE/jJz036vk2C6aRoLn0bZldU2ekhL6jtt2iP5wVjFBaRV\no+jULZe89xkzkh4GjUQOs6sU3s6XBfst+EtH3xBiDkylQOSGXM9oCrhTCyjfw6/eKXR8f+QeZU2j\n1tvAqVf36GZz/GYmXQwaiZzmw2ewEMBvZm7Fne9t8zopOa+lZxCTH16Kp5ft8Top5IE2nVET3WY2\n7mExh3dY7hcuYz0ueUkbCTk6DLxzDVCz2bM0kf8waCQKiGxfKcrmLnnFB7Bge32WW6VstfQMAgCm\nrahwZOJ28g9lvnBgOIqyxu6R359dXu5yilKZn3KD12uSbc1T9Y6pDwsgyZh3FVNZKE+l8b6ETt1z\nIpGOxK/tVUDlCmDurx3aHwURg0Yin5u9tUbzO73XjPIdtGhnw8jP8lEPG7sGrCaNbCDPLGyv7dBZ\nkoJOGQ8oR0z859LR2uaB4Sj2t/W5kays5eoALfI/O5tD4MaUCuSt97ekvseV5zmtearGheBUOU2y\nvHK0O01u3tOkj0EjkcOyffTWtPXbko7uwcjIz/IXz29nbrVl+2SN/PpgxU346FYcqTwcehP3abIG\n2k1snpqN0YO3u6FLc6mlpY1Yvqsx5TOj9z2z8eE11uPceFrzVErR2NuIXa27vE6G51y/TCVJ+ook\nSQOSJL2b+P0iSZJikiT1yP79VLb85yRJmitJUq8kSdWSJN2k2N5Nic97JUn6WJKkz7n9NxHp8Usp\n/Gc03krdAxHVz8kdqZcHs+FhpnwUqD0ZGjys+TddaJHjc7s9mjeaiWzvG+2bepdOX/Ffvl2AX0wv\n0Px++roqze/88i4h85RzmirPpNfT1iTTl3aJtVW6nxgf+u7s7+JHn/zI62R4zouyjecBbFF8Vi+E\nOEz2b7pi+SEAXwBwM4AXJUk6DQAS/78M4CeJ7/sAvOD0H+C02YW1WFramHlBCgSvXgXy/a7a05zy\nMtjdMNqPiiOpek0+cbPVNSmI1IKAIPVr1cxo5pjdDV0p5830fSw7fvImynrLUbBkuiaU51YZZDpt\ntKZR5SLrawOGc7sbi9vnw69cDRolSboBQAeA5QaXnwDgOgAPCCF6hBBrAcxHPEgE4kHkAiHEaiFE\nD4AHAFwrSdJE+1Pvnns+3I5fvq1dEkmUZLTk+edvpZbTXP38upGfA5RHDaVs+jPx1AWb2t3rl6Bx\nQ2Ur9rcGo0+l19ZVtKb87uYZbO0ZxB7ZYErkT5mCRqMFDY7P06j25T9OAt691qE9U5C4FjRKknQ4\ngIcB/F7l62MkSWqUJGmfJElPJYJFADgZQFQIIS962w7gtMTPpyV+BwAIISoRr5U8WWX/t0mSVCBJ\nUkFzc7MNfxGRMdmUDts1OqHedjgCorfYpzHc9Eqo1Z4No5Nse1utdOOrG/Gtx/M9TUNQuflM/d5T\nq/G9p1a7tj+yJiiPds3nTvU69c8pp7hZ0/gIgNeFEMqhIHcDmAzgWADfBvB1AE8mvjsMQKdi+U4A\nEw1+P0II8YoQ4hwhxDmf//znLf8RTitniSHJ2FXpEBPAMxrD+TNQ8Zb8JW02s8nWasGiPF9qpzsW\nS//MbQ8vKDW03EiTNgfTEgbrKlrwl3k7s96O2nFu9dE8n6RN+WzPVCjk9nuZ9zIZ4UrQKEnSZADf\nAfCU8jshRIMQolQIERNC7APwRwDXJ77uAXC4YpXDAXQb/D5wrnyOpTlh45d+KHube1U/jzJq9FRK\nTaNnqSA3GDm/frgf31i3z9Byuv2gcpjyDN782ia8vaFadVmr22ULkWDx+9gBQjlPI+9pUjHOpf1c\nBGASgP2Jl8thAMZKkvTvQoizFcsKjOaj9gAYJ0nSV4QQyWqSMwGUJH4uSfwOAJAk6UsADkqsF0j9\nw1Gvk0BELuK7meT80qfRDF7CCh6cwoHhKA4eP9b9HZMhdt3WTsWeVS3x/sssACI9bjVPfQXAlxFv\nhjoZwEsA8gBckphy40Qp7l8ATAUwDwCEEL0A5gB4WJKkCZIknQ/gKgDvJLY7A8APJEm6MNEP8mEA\nc4QQga1pJJLLpjTZ6MPf5wWgoSdZHD11YDiK3iEWMvmd/JymNU9VWV53QAqf4aNDnVPHRe+akA9u\nRv5jtqbR7feyVvcVIjlXgkYhRF+iGWqDEKIB8WalA0KIZgBnA9gAoBfAegA7AdwlW/0OAIcAaALw\nHoDbhRAlie2WAPg14sFjE+J9Ge9w428ickI0JvCnOcWoaOrxOinkkpTRU03kFOZsrXMgNeS1INU0\nipFBezxOiM940XRUPo0S+U/G0VN1ihqMXk7bazrw4PwSe64/3tSkwot5GiGEeFAI8ePEz08KIY4X\nQhwqhPgXIcSd8ppCIUSbEOJqIcQEIcSJQoiZim3NTHw+QQhxlRCize2/x06Z7tNINIapC3ejnZ3f\nQ2lPYzfe21yD38zY6to+M80/FInGOKS7S8y86jlvVPCpZe783veJiMxT3tdOhGQ/fHkD3lpfhcGI\n9dG02FeW9HgSNJJ1S0sb8dKqSpz1yFKvk0IOSL5YxoxJf6U49SivaetH31BE8/tnV1Tge0+tZuDo\nAjPvaykQDRgpzHK1/1NhdTsmTcnT/N7ss5oFBeGnPMdWz7heYeHYxP1oS2sFXpOkgkGjz2R6BUdk\nD4OeQe2MPgWTctjrbB7bZrJza8tbNL/bur8dAHCgcyCL1JAROZoHDzW9e5jZsmB6fe1e3e/N5rc/\nLKg1nQZeO6Q0NlHYbEshxBi3xsmkIGHQ6DOZSm6t9n8i75g5TckSwrEqNY2RqDcTuCWvSV5vRPba\nWaucZhgj0UAQ7jY+E9Rp1QZpzcPcZ3BAK3n+4EDnAAY42npgKFuGSEBKCx/lrWTl3kpeHrbM9TqG\nI/HaRQiB2m7zBUN+xKDRZ1jRkNsiiaf9uLHpV0K5R4Pj8Jp0j6nmqTwxgXfTa5s0v2NA5l+ZmoZr\nnbrvPrVafXmD+1VeE7sOdBlck7ymVpBw3YsbbN3HuERhsx/meqVRb5e+jUvnXIrdbbu9TkrWGDT6\nTKaMIPsxBY+ZzH1a89QMz369bZvZr1rNphJfQ8EmhEBn37DXycg5ZoO/roEIHssrzWowC7fkap9G\n21nM5L+5rsrwsje/thFPLwvsFNahZCXo17tUku/xII3AnAu2NsYHNgxDbSODRiIf8SoPprVfIQRW\n7WlO/OJeenKVmfO/pKTB1LZfWFmJMx9egsYu9k31sxdWVuDVNfswc9N+V/b39oYqy+vmam3omvJm\nT/arDNKrW3sNr7uuohVPL+NcfF4xW+Bv5c5KXh/Z9GkcWTNH720njHTxCUEmikGjz5h5sAT/8iO/\n6+xnzZQVm/e1YX9rn+n1zLyn88vMZVwXJ4LMBg5o5BkzNXO9OgOd7W7owqQpeahszr7J+vT1VVlv\nI5casfcNRdA1YPMgdAavi1wN0sPIiQLiZIMhXib+kszXh+H+ZdDoN5map6YMhONsUojkzVbDUErm\nlh+9vAHfejxf9bu6jn5c+I8VqOvodzlVcTyL/jZ+bPy1rNc8dV5RPQBg0U5ztc1qjDRNzyx3rqqI\nE03/DL7M7d73YCSKGJsyBgrzfeQlBo0+k+n1Lf++uXsATy/bE4rSC0olRv7XP7dO93GV14zwMrPH\n+1tqUNPWjw8LagDYW+JcUNWGroHU2uHugWEIIXKoLshfrN42XszdZ3aXYezTOK+oDi09g1lto7a9\n39R72eqZ3q4YfXfzvjbD68Y20CMiAAAgAElEQVRiAqfcvwgPLSixuHeyk/IacPP2V59yiy98Nb3D\nxpuEhxGDRp8x8w6+4tm1eHpZOYrVhm2nQHhz3T4U13bYvt1INIZlu5oML6/1ggpfltA/7M4U9A5G\ncP1LG/CrtwtHPqtq6cXpDy7BjE37mQUIiGSwoXd9+OW+DFuBZXP3IO6eVYRbpxdkvS0v3stzt9UZ\nXjY5wuYMl/rOkjnZtOwxu+7tM0bfGSG7pW13c97Nptdhn0byhYHhePMlDq8cXA8tKMWVz62zfbvt\nJkfJ/MPsYqzY3ai7DC8zeziV4Y9E4yeopH40s7q3Jd7nbfku/XNL7li440DGZcwMZmF30Ga94tAv\nYWx2hhNz4er1+zX6l5ppSmrf0TNRu8nnOSV0291HN8QqOystr8ugkWyXqbmh2kudD/8wST3BVs9t\nxOTsvm29Q/j5W+ml60LjZ3KGkZfKrgNdaU1QU7eh/lk4svXu6xmMoKNvyJZtzTFQE2Rkuh3JoQEv\nrG8vHE+HkeNqy99jb/PUhs4BZu5DxOq9ZuTaZJ7QX8I0VR6DxlDgE4JSDUd4TfiBmT5GRl36zBrc\n9OpGy+uHrUmh087723JMfnip5fXNHm4j/Zn9kgkJW5/G0VEOs9+WmW0ol1Ub4GjTvlbD2xsYjmLS\nlDx8kOg3rcaLPrOkTXk6rJyekes3m3RkkwBKMxwbxpLqJfFfQnBIGTT6WJPqfGrhekmTM5xossxg\nw7zZhdqZNq2jube5B/m79fuj7qxLnxT6zfX7AKg/IYajsbRBM8gYr2p3vLjdzMaAYXsm2BkDZ3Nk\nXl+7N+0zMwF6c3d8IJ9py7XnZfzWP9RHdyZ3hOvOIS19w6NTb7F5Kjnq7llFhpYL2XubTHC6oD9s\nmUK3qR0+5TlTZga//c9VuOWtLab39Wmiv5x8l8mS53UVo7UUYasdCpvkPWeoT6MN+5PXWlq/3cN1\nTekdBqP3TzaPTrseu8ntvLYmPQht6s5uhFjKjpPvVr63s3fPqnvw4PoHbd3mM1ufsXV7XmDQ6GP9\nw1FDy/HxQHJN3QOYsbHa9u3yOnOGo5kHlbPGDEUw6I2j4r+4PxzXlJH+pEbZPkhRFus+mrfLtnSQ\nO4TGb649vnubXdqRPy2uWoyPyj/KejvyQqa6HuOjG/sVg0YfU3s2cCCccLp1egHmFdnzQLnj3a14\nbe0+W7Ylx+vMXk1dA5g0JQ+b9pqbW00Lz49fmTsxI8OzGxo91VKCSMvI+zX7A+vXUzNpSp6p5Uvq\nO3UH3iJrVIrz7Nt2YlPb9rdj0pQ8bKg03h92xGv/ZVt6gq5twPrYBH7pf24XBo0+k6kEOVyXHyUt\n29WY0hw5m8xgmw0jPQ5FYrjnw+2o79Aeep5SRaIxDEZSWweoncaVZfES3OQgOe9uMlYrvKy0EV/6\n86ea35c39aR9ZvSFVd/Rj5dXVbIW0iUDw1H8c0mZ7jK6NY2J/5M1yRVN3ahQOf/uCcebybOBcDTr\nlUZ5Vbt8+bS1+PFrm7zZOZmivEbWJ4LFVXtyu9YwW08VPuV1EnxjnNcJoFQpLxqDbx1m9MJD+dA/\noDNfmCYbLocPC2swu7AW+9v6ZJ/yOtNz+bS1KGvsRtXUy0c+U7s1i2o6Un43evu+tb4qi9Tp++Xb\nBSip78L3v/ZF/OtRExzbD8W9vnYfnl1RobuMmef6d55cDQAp1x6Z926iWb/ekTd6XswMeqE2sJWS\nkQKgZNKS75G6jn6092ZfiFjMQbRsl+kysiNbZ2UKGd3re3gAGH9wlqkKHuaxR7Gm0ceMXqa8nMPr\n4idWml7HjpFT75u7E0Bqc0g+N1PVdfSjtWd0MImyxm5zG/BR5UzvYHyEUBPzkVMWkpPI63HrVNhT\ngxWOC+eZxGijtmQSbT4kZs6TvB/VJgem/SE7mLlArN2kIwUNdl2L+1bZtKFgyWbwODZPJUfJr82Y\nEKhs7sHVz69Dd6JPgdrFy8x87lJ7HEVtzPk7MXVHWJw/dQW+/ugyy+uPNjEcZWRC92zZUYtCxqkd\n0rE6JzP5je5tLNnXjNIOy3bpTxETNLr3iA3byLhulic29eoyt61INDYyZQf5hblzqKxxtu0xEc3N\nvq3ZBH5hG62cQaPP/XNJGYpqOrB6T4vXSSEXZZfhsC0ZqTWN9m02dA509qt+rtcsiMczd40ZoxM0\nJjN6OjdyuLIhwWL0+ZrNc3jXAZOtFkzSu7YemFeC/3hsGfqGvJmfNEzyy5rQqDrftpHrw/wFlOzO\nknzvjI4GbNPbJpab10TYAr9sMGj0Mfl9HonF8N7m/RhQmYYjDBOGkn2cqmn0S62G25q6BzBtebnu\ni3fKRzus70C2Xa/fTXw5usOpWuO15S1YXNJgz8ZzmJ39yaxQm27L6OaEEBmn69L6+4QQeG/z/nga\nhoxN+UXabnlzC65+fp2hZZXnxOw1qDYQ1hgLLRJ0Fy392FyiQiJsTUyzwYFwfEyI0Yv17Q3VKKxu\n11jQxUSRK7J5RNlZiGCg61Xo/f6D7VhT3oILvnI0zj7xSNVlrBxxtXP8k9c3W9iSgjwxJi8kNk+1\nn9oR1WuemhTTq2nUWP3Hr8dHueSAOOpmF9bi2189Bp+b8Bnd5XTvA49uEaNB6DPLy/H0snJL+9go\nm/6HTwJ7JGv/lOfP6vHVujR7BiNpy9jePPXw4+3aUs4IW8DJmkYfE8BIpq9dZxoFPtzDo6493szR\nL+dUnnnK1RrtvkSJu14Nrvy1kDI6qoFD5vZRVct0sIbRXWMMHG/G7/ba39qHez7cjjtmFHqdFEd9\nvC3zfL9al1bvoHbzw+rWXospIsD5+1nviWLbvo/6sk0bCo7Tp5+OjsGOzAvmCAaNAcEsXW64871t\nWW/DqZKtXM3EjvYL0VlGdsiNNkdKBmp6NUpuiMYE9rXEM4QLdzZg0pQ81KRMtUJ2MxKjG7osDCwU\niwnWIAMYisYLfzbubUNnv/UBPbwrPLPvuS4sNIn/z8dX2rZ/MjDlhsntyc+jct1cLfC1S213rern\nPUM96Bnycn5c9zFo9Bn58zu1lkdbsg8C5R6nK4i8Dmj8IHmMH/t0F/Y2q78grJwGVyZjV61VTP19\n6/7RZu/JWoqS+szzxuUatf7kVhmqadR56o9MQm9gX//x2DKc9KdPbZmvL9hGj/kes9PjeGjVnmbU\ndfRbLmhQ/SzD92S/tOapigOf7XlQKyyWfDbKsh9Ud1Xjg7IPbNnWee+dh/PeOw9bG7diWbX1kdSD\nhEGjzyjvbSOZ0U+KD6h+/pPXN+Gq59ZmnSbKXfKXTa6/d7bXdOAqg7WISUaO2XBEfanp66tSfrer\nCWm2Ay7kqp8k+guapTrlht7oqUjWQFvaXZrWRLD45NI99mwwoFJqYrI4tm7fLz99YzMueWq1rdtM\nHWRP/Q9aWdZs6z5zndnrpq13CJHEoALXvbhhdDuItxx4cklZSouQ1Os7dfRUcwm1slJw3Jh3Ix7Z\n+IipdTK9e3+66Kf43crfZZOswGDQ6HPZZBTXlLdge22njamhILCz9lFe05iLTdz+8/F8bKkarYnr\nHlDv85PNfVqmUevx1/kllrc5QiNZuw6M1iQabdGQ6+TXQbZ0YsZRNp8MzrmqrkNnvAC/6NHpa2gH\n+fMg6Z4Ptzu6z1xn5G7c3aD+bqjr6Me0FRW48B/5qt+vKY9P0WZk+h5TQvAM6R6KH9O1daxQsYJB\no8+43XexsrkHJfUMLEld8F8R2aluNda3z099jrsHI2joVJ8bDACeWroHlz6zBivLwjUhe5DoFTJs\nroqPYKnbPHUkM2h8nzEbp+IJumQmektVGyY/vNTUNCXB79GYfm2pBY1kLyvlilrN2NWeH/JlkwWO\nyU9q2tXnETYvPM+Q25fdjrK2Mlu32Tsc/sGiGDQGxN5m/YuxuXvQ0nb/65+rcPk0lrj4jk9K9HyS\nDN/TyhDM3VaH5/MrLJf0Ltwx2vR89R7jzcVWl2svu7YiXgpdlRj8Rp4BGf2JJ95Jes1Tk3QHXrKw\nz1y/l9WO2fbESMcb97ZqrheNCbywssLzye7tHOFYq4k6B1F2jpVuAVrnY5zK80Nt2eQ1s2I3CwjV\nXL/gejT2NmZczujggrctvS3ts7ANQsSg0eeMPsNvfHWjo+mg4LC1RDqleaqNGw4d7aP++OIyvLOx\n2tJWk3OzNnVr1xyqqWzuwaQpeSipy9yKIBebHVtV12G+xF4t02CkeardZyVsmRez5EGXUPlMyyfF\n9fjHojL8Y1EZ5hXVoXvA+sirXvjdB0WObFcIgb8t3IWdBp4xZI3a5SkEMH5setZdPWg0v8+wPyeU\nAWDXkH217MXNxShvL0dLf4tt2/QbBo0+Z/Smr2jqwU/fsGFicCKZTC3a+oei2FCpXUqfK/a36bcE\nmLM189xpapKHfygSM7Xe8l3xkuX52+st7Y/UVdo04q2RYEVvXtClu+Kl42YyeLneOjV1ZPLU7/TK\nTZKj5m7d3467ZxXhj7OL7U+cgwaG058dRsuJ9KbeGYrG8PKqvbjmBXODg+WqtNFTbXjafmbcaBZe\ndfTUrPdAALCrbZfhZa+dfy0un3O5g6nxFoPGEFllovkakRHyF5vaS+6+uTtw46sbR5o6+tmnOw5g\nv8E+imZ09g9jT6N+MJFt9sDOpml623ZlGpAAs2sKmrFZns9iCwOcaaW9UmMaGbMGI/ZNSeK05LMs\neRaUA1zJj1QyM56c+P6ATn9hP8jmWaG8RG6dXpB5fwxNrDHwKFG7Zf++aLdq6xA2LXZPTOgX4vZF\nwjvPMYNGn+NzgMxyKsBQe4HtaYqPRNYVgCZbd8zYikueNj50fXK480x6jYxsmGWw4eRzgM1TjbPr\nUI3x4s2rkva6jn4MR439Uec+tkx3yplM/e79KPmo/Ghr6uTd3QORtHktKxN/n1vN94QQppulG02b\n0eV6Pe7HmUs+KTbWKmS9Rsse5hWNsSN/NGPXDMPLhu39yqDRZ3qHglNaS+GX6XmXrDEJStO3fhMT\ntN//8U5DyxmadNvwXhXreTRARcjec7axEjCoHUutURHt2DagXoijVtOoDIz0NHUPjgwcM7L/DNv3\nk5RDbiCpxRp99bSm3VHSa15sxDsbq3HuY8uz2oaWlm71857psvzVO5lrHskY5dWhlvczc0up9n80\nl6TM+/T5PW6EsmbcyjO9vsdct48wYdDoY27en41d/m5yQ95Tux6TpXbZZpD8KK/4gOZ3e0026bN6\nL2dbq5Gp2SyZY7DyOSMjQeOBTuvD5P/ktU1pnzl9i9oVCDtFUhkbWC/FIzUEioU6+oy1qvjvLMcY\neD6/wvQ6Rp8zd87apvp5a09qMKnc3uKSRs3vKHvDigfMx0XqfeHVD72/778weXfXu14nwTMMGn3O\nyb5Mcv/35Q2u7Ifs5fSLW759tV0lpw7wey2D3a6WNdMz0qcn2+CP/Yb8wa7r3MhjvbEr8zRKWqnZ\nrtLn0el71O9Bo1wQHldGzr+S0T+ru1898P3jR8Ea5MfPMjVLVPt6UDHg2Sur99qZJALfpdli0Ogj\nO1Re9G5d3vt1Rkkj0jI2xDWNejdfl8EmakmRqMCkKXl4YaX52gOAgxz4hV3Bhla/JCcZTXpLT2qw\nMndbrcaSqcfD79eo3jx2QWAkpUEIhilOrSAxu/5vPPmG2HTLD0atzY0edAwafWRnfWrQqHx5O8no\n46a2vQ+TpuSpBrhkH6Pnw808j94LLThZL2/0JfqrvJBfaWo9jRZyjkteV/taejFpSh6WlWaeADkX\nWMnUqa0yc9N+G1JjNiHGFpvy0Y6U33/3/nZDU74E6RlgpObfSBPWTIoUfUCdZnwgHIPbMzQDvcGN\nUUbGz4tzaejUqIUOK6uB+lUfX6X7/ad7P41vP2TBPINGH2vtHUKriYEKAGDSlDxs3d+e8pmynXw2\n8svi03rM2uJBpodSdPYNa/QztL7N3sEI7tWYh0y3f7z1XQaemeNt9gVltQbXrnxccuCTBQZH9gs7\nv1Wom7mcjGZelu1KLyAwsm6AKu1UB5hSuzcfX7wbf8hiXsarn1+H9RXuTfRt9HrYF4ApkoKkvLEb\nk6bkpbw7M50L+wM/e25AL1pBBFFdj/7cy1sat7iUEncxaPQRtVu+o89c0AgAH2ypSfldWXJsB5/l\nnXLSfR+rn9dsMm+zC2vxfsHo9RO24aLtYvUYmz2a72ysTuzQ2v70GGmaF7ZS0mz57XiYSU8si7JD\nI+sGqU+jGrVH3fMmWwaoqW23PqCRWXY/r0M+kKZtfvJ6fNAj+bvTCqPHVP2+5wkxwq0+jWHNOzFo\n9BGn3rmf7jiAfk7lETrK+QErEnMmZmP8WJ1HQjifga5I9hm2+h5x4kUX1peak6zUNPol0DSSjm6N\n+Va1B9EZ/Tw5KJYfTFtejp8qRi9V7dMo+1n5F1Y22TPycH0Wo+CaZXlqH0vr+OO69oOolWbrhj/U\nJiHeGiV/d5Pqu8X2R3wI3hkcCCc7DBp9zo5btH84ilP/ssiGLZGffedJ4xPXa1FmBITOdxTnx1dQ\nuU0ZXkoV5EBbLeBVBlJmB3jyqyeX7sGqPc0pn8lr1kd+lH2mPLd29Tt9elm5Ldu59e3McyTOK2Iz\nci+ovQPceFIIAK+v3Ytb3tqCJex3bojbg1+FLd/EoNHnin024IwfM8hB5ccMqPWasPAx/DeZ6dPo\noxdIR44NeGAH392yZvo0ZpF2I6v67tgoyJ+3qrUyyg8C+lCzM9l607RUNsX7RRoZJInSqb3/Db8f\nZIslmz9nmtfVj/kNLxg5DsMxvhu1MGgMIbeeDZFoDPUd7jW9IWOyaX6hVwind13xdWSM5aDcgQys\nlRqQT3ccwPs5PAiWlbkOl5U2OZASK6zfpWHNcKY0Tw3nn+iYT3awVjPJyvNZtVeiheapY0amvdJf\n9u+LysxtPITK28sxFEsdJ0QtUH9o/UNuJSlwGDT6iFttrWMxkdbH0coL89G8Xfjm1BVoMznCK8Xp\nHXOjNcx2BxPKa1AvjXsau7G5qs3eBISc1Xyp+5Uekupvd8zYinsdGFgrKKz0aXxq2R77E2JBTADL\ndzWiJsOcvP958ufTPtPs0RigQCtTszQ/tQJwm5Xni9H8ytsbqmzpb+9nasfCSkGLctq1TARG+xJH\nVUarkqfhrfX7TKdHfY/BtaPF2LtrafXSrPcV1ucJg0Y/cSFnGInG8KU/f4pT/7JIcyqOxq4BTJqS\nh8UlDZrbEQJYWRYvQc+1eX38xO5Mm16+Svnd957Kvg+lF3Yd6Mp6G1LKz87fuO5PQh7OF17YmDlL\nQgj8YnoBLn1mje5yB41LzxYYec4E8YqR31ZztqYOoR/Q1qmWWCkUMPpI+su8Elw+ba3pNIWeyrF9\ndnmF6VWTQWMkQ4mW36YL8jP337fBwaAxxywuGe0srRU0liRKu2ZtTm+GpnYvhbXpktcyjXir9WBz\n6nkXltO8WjFAhhat41tY3Wb9BRySY0jBk7z0emSjLqvWkKismwutSf40J7UWghlH+wyGvN+jV5eK\nJN93xnkh+fJRo3Zc7CwIDttxZ9AYQnpzBUVkTRiyvZb5Us1OpsM/bYU9o+6ZoTyjYWxiYfQv0rq8\ns2meGZzjGf/jQ/a+y2l9BqddUjvnFz+xUn3ZLNLjB2Ecft/KOdE6Cnrb6hsMx0i7Tsl0HlTfBQYv\nx8372tL2kXF/Qb9ZbWD0frfjuRC2YDGJQSNp0r/kw3lDOMHqs6Otx/3Sfb1ygKrWPnz7iZVo6Rl0\nL0Eh47f3SFVLr8Y3+gmNxoRmSwVyj5mMSczh9ml+zyQV13SM/OzvlGbHzvOgt6npG6pHfo7FRE6P\nomrkkNtZPHH3rG2y7ca3nGmQLuVckje+shGf7jiguqzmNeTzezwbZ79zNl7b8Vr8l/CVJdnG9aBR\nkqSvSJI0IEnSu7LPbpIkqVqSpF5Jkj6WJOlzsu8+J0nS3MR31ZIk3aTYnua6QePGdZpt7aAd/cEo\nLtPL3cqEwb+ZsdXW60iehNfX7sXell4s3Knd19WPVuxuxKQpeSO/Z13Drvj9hZXG+qEAFifRFgKP\n5pVaWDOzizRqkDK56dWN+Mp9C+1NTAD4PTDSY3zk1+D+jXpun7HV1PLMNwJGr4W7Zm3DyfenPw+C\nfL+YYaQFiXKJbA5NsvwnpXlqpv0r9rdhbyvu0Lgncqn/Y/LcDceG8czWZwCEswWCXbyoaXwewJbk\nL5IknQbgZQA/AfAFAH0AXlAsP5T47mYALybWMbJuoPituefKsua00ul3N6b3c8yh54urtlgYmTRP\no+TQKL2HZVDf/+/ISsSdsGmv8fNkJRMlRPogHXZST5GE4WgMvRpNGjft46i5QWM0I5gLGUZ/vWnt\nZeX0rTTYz1vLJ8Xx987t7xampiUHriUtmf52te/Vrst1FS3a28iwPe0BjjK0I8vhEzevYh66hrKv\nHAlOVxRzXA0aJUm6AUAHgOWyj28GsEAIsVoI0QPgAQDXSpI0UZKkCQCuA/CAEKJHCLEWwHzEg0Td\ndd36m8JOrylimF+8bsj0SKlu1R8a3xE6JzU5OltHDgyKoUd53pwu69le25F5IdvFR9p84OOdHuyb\njDKTt3MiCxPUvGVAk21IS7f57gMLttsz52LQWqFYUVrfldYUN9N9UNveZyi/pPYuufm1TfrrJP43\nM4dslCOtjlAWlN+/7n6PUhIMrgWNkiQdDuBhAL9XfHUagO3JX4QQlYjXLJ6c+BcVQsgnutqeWCfT\nusr93yZJUoEkSQXNzdmVqoWdkap5+fOppJ5NVvVoPcv1ShCN0DpL2dRYK0sY1ZL+z6X+mHfOKOXx\nyLYEUHl0nb7+r3lhvaPb17pajI4yS8GwvSa98MHO0bCDlM/M392UcRmfNfwxzM7zoHYp9A9FschA\ncCiEsNTFws/qO/px2bQ1+Ov8ElPr7azrSm+eqrKc2WaR8uapZo50pvOi/Y4M1/kEwlsj6BQ3axof\nAfC6EEI5tOdhAJQzmnYCmJjhu0zrphBCvCKEOEcIcc7nP58+eXHYmOlnZYX8hXrXe9u0FyRNP3tz\nS+aFMmi0UKqsJ4wTt+u9hgeGoyOZ5IcWlOAb/zvaCEJrvfKmHvsS5wNazVMp3R9mF3udhBRWszt9\nQ7k98uVb66sABDcw1GPnn9Sq0qrkf97fhl8rmqGqmbWlJnT9npNzUm+tbk/5XO0+lAcjrjT3NLGL\n5CD6Wtd/yGJ9DMeG8XHFxwwQbeBK0ChJ0mQA3wHwlMrXPQAOV3x2OIDuDN9lWjdw7HzY/2NRmeP7\nIO/Z1axIS9heHnJN3QP46gOL8PrafQCAN9dVoaFrwONU+UV2J769dwh3zCgcyWSRv9S192t+F6Zb\nfmddJ9ZVtKCsQT1LEMbnm9NjIzQZLKictUV76q+gGiOpj1Sa6TqKCefyXsnaSTMBUTL9YzSuFTNN\nXYNgesl0PLDuAcyvnJ/2nVOD3iQLCsLWP3ScS/u5CMAkAPsTD7TDAIyVJOnfASwCcGZyQUmSvgTg\nIAB7AMQAjJMk6StCiOSkdWcCSLYNKNFZN3C8LvXcWdeJrx3/WdXvGrsG0kvZGYEa4vYjg6dFX/IZ\nnsw4P5q3Cz885188TJG3nMggvLx6Lz7d0YDTjvssfnPxv9m+fcqOXX2WUmtT7Nmmna54dq3ldfc0\nBrNFQY/D8ycavXaGQzgFx5jEy9XsM1OtOahaMGHlWZwcMM/MqtGRoFH9+8UlDbhG7Qs/3uQG7O+K\nD+DYOahsmMjmqWa51Tz1FQBfBjA58e8lAHkALgEwA8APJEm6MDHwzcMA5gghuoUQvQDmAHhYkqQJ\nkiSdD+AqAO8ktqu5rkt/V6BUNqe+BJW3SqnOdBov5Fewj1NOGr1KvvT5CQCAH3/jxPSlfPzc1SqM\nkZfI13do17yE3cur9qp8ml3Rw+6G+LPE64KwsLN63+kNhOHne9luvD4tMHiBjAnhLODJd4ZKCJj+\niZD/bOyYWRmVOrmOmfs2OSq+Vk3jqrJw5fXmVsz1Ogmh4cptLYToE0I0JP8h3qx0QAjRLIQoAfBr\nxAPAJsT7I94hW/0OAIckvnsPwO2JdWBg3UBx+gX2X/9cpVuStbdZa6JvylUtPaN9WpLXx/ixQcsN\nqN9Y8k9Vhz/PkRxlnWrAnHpAjByLT4rrMXdbLYD4dD2A8xPK5zqrpeR674EgnrH/fmMzfv1O5n52\nlL1M10dykKGddeEbIG9k0BkDN8m1sgHM3GjuqfYs0NrtyDyPGo/1aBAfAhY51jw1kE/SzDzJ/Qkh\nHhRC/Fj2+0whxIlCiAlCiKuEEG2y79qEEFcnvjtRCDFTsS3NdSnd3bOKNL97aVWliykhxzgc66gH\nWM7u0wnyNLv1gA9zDPXbmdvwu/e3p3yWS7VWSYORaMYh7b1wzMSDRn6267ykbsebv7mlZxCr9zRj\nUUn4p3vwg0zX9i1vZT/AW9DI74P8snjQLG+5FXOopa7ePI3zdcY7iGaoaQxrYV9FR/oAkQIC7QPt\nKkuTmqBVGZCNilWGYDcjgHGCJ1zvCO3w7sLWsRvIzeAmSf18pt7dc7fVuZOYEDjl/kW4a5b2iNJe\nBZQHjx87mobEObcy5cYqn3VT+Okbm71OQii06szJLJfN5bunsRtvrttnfQMe08rzyA/J9MTIvHKq\nfRrtSJBsI8rzctd721DRrN4vN1nzOdb0QDjhfFEORu0dhV4ubDWODBpz2E0ZJo2Vy5WmemHgdFOY\noD0ClZduMlOs1SzltTVqffxoYDhqep2QFlhnlFd8QPO7+z+2b1obM7e6PPMSiVqv+vBbkFbT1ud1\nEkLhqufXGVoum0LDy55Zg4cWlFpePwjUDo9TBa2ZApKBIfVndrLgqnswYtuAPEElQcJYaWzmBQkA\ng0ZfcaptdTZy59ERHk6fM7WrNIjvmJTmqbL0P5q3K/69y+kJo6hT7bJckk1wpeWDglrbt2mE/P0y\nMKz9d1m9l1kbHWy1Oi5VOpAAACAASURBVNOwyGXzrI+EpBRJGWjJf4+oPPOc+rMzNQ/vGlAfSVce\nFO5rSR/LwoHHnm/1DPewUsQEBo0+4ofr9rcztzK37LCKph40G5zrygo/9qfyo+La0eG3w9aExAwn\n//KgH9Unl9o/e5NXzbvl1/i0FeU6S5rZ5qjn84PXJ56vOvNy+VmZpHcENlS2pn3WNxRFVWtqjbgd\njwH5JtRe+7s0RsSXx7VqgbznNY2DPUCJOyOe/nzxz1nTaAKDRh/x+j4FgE8Uzaryig+grXdIdVmW\nzhijPK3feXIVzvvb8qy3q3X4w9qJ3SrlYUreZ3+euyPtMyK51eX2999z81KraBqdfUp+je+sixeY\nqLVuyaWgIHf+UvvwWZlOfkguOuWYtO+bugecT4PKifnKFw7LuJ5agKhZ8OzWyV9wN/Dhz4AG+5ry\n6xkjORcKhe15yqCRdD38SSl+/S6HMrebk810GDOmMlK2wUOWauFO7T55Zjy7In20uiA50OF8Zs9J\nVz8/Ouy//D5IPn/CkKFh4aW7PK+F8gHlMZD/qnZ83Dhkarswsl+1ANHzc9xZE/9/yJ1p4C6YdYFj\n2/7bpr85tm0vMGj0Eb+++9QmPt/PwQd8y+sH/sxN+zVrp/0qjCPCGqbyp88r0h6uPZf858mfN7W8\n366j3qHRPk3ypP3qW1/SXMdnf4IpgxFzgzX59JXra0G+PrKV/NPNHgOnWv/IAz7VAXg01pMXFqmt\n53Uewoqa7hp0DXXhsY2P4fTpp2NLgz+mfllUtcjrJNiKQSNlpNZBvrUnWEFBLmlysL9kJuWN3fjz\n3B24W2fKAa+plsi6norgCWA+wnVG8oZ2HsdMQepnxo6+4uWL/suRh2qmxUz61le0GF/YBffP3el1\nEigH6N0j6kGY6pJ2JSerrZlqnurjN+Vlcy7Djxb8CLPKZgEAXtvxmscpCicGjWTIlqq2tM9YSmuQ\nf5+zthuMxHvYt/ioUEHZb4vXrbPM1DIXVrfhmWX2DMqSi4ZjAlfrTJWglbn940fFtux/1pYaW7Zj\nl8Jqc5N0T5njTp+pMMmh15kmZWGNvJVYTAjMLnR/hGQzrRzki9a0pVcK+KaLi8kStrqe0RGc/dbq\nIywYNJIhkWjqDbi7oTvl9/2tbK5K/mSoT6Pi/VJS36m+YAjtVRlyPRuPLy4zvOx1L27AU8vsH6E0\nVzR0DqCopkPz+0zNzKzkq8aO8b7YZWA4iicWl6XNHcpsovPUpmgwom9IffqHIEneL5mus3lFqdPP\nuNF3WO1eXr0n80Bev5m5Ne0zzwfTqzE+hzi5i0Ej2eLGVzd6nYQc5H3mTYvWUN9+tUgx8MvikkaP\nUhJ8fu2b7Qa/lW5bSU2mDO5YH5zg6eur8Fx+BV5dvdfy9dYesH7XQbJtf3qN70ce1L45JVPz1E37\n2tI+M7MNS2myMTD1dD7Njv22bEZA4JXiV1DT7a/WEEHHoJHSqL2Dyxq7VT4d1RuCUkTKXa+u2Zf6\ngc8y/0Hig4oo2/j9KtA71H1DkYxztqplNDNd+j6IGUeawQ9lMQv5WY8stSs5pJBpzk6/Fa6YpazB\nlxTfDUWsX5dWxQzsMpK4XzIdfc0WCsnPt74NLP2LucRteAEYMtAiLaIyJkPHfuDBI4AG432WW/pb\n8Oy2Z/Grpb8ynk7KiEEjpTH6PJdnHgL+DnCUU01T8suaHNluLmjp0R8siJezMWojK4/xQ1SRI/QO\n9aur92l/mQU/NE+l4AnHMzX+VzR1D6b03ZZP+yIE8J1TU+dqNNJM1A0zNxurxctU2IT5dwLrnjG+\n490LgMV/ApY9aHydlPXzAAhg2zuGV4mJeIDMmkZ7MWikNLe85Y+hiklfxge7g4yWFBdWt+PTHfbM\n+ffSqkrbRmu8ic2pTVtfmX7sL3piJQBg/vbRKTr2Nrszt1YQmJ0Cwiy92/DEow5RLGusVjHTne1E\n81QhBB7LK0VZg36LFiPbIT/Qv9bCcJrUCsyAeCHxYQeNS/nM7n7jWvvNpHvAWIsw2/MWw4lj1W9u\noKoRa5+O/1++xPAqygHw3LarbZen+3cKg0YiMu31tcZqMa57cT3umJHe0d6KqQt346bX7OkgX9HU\no/t9GDI1dvvF9IK0z4YiMeyo7cRd741OsVLTnruDYskvm7beIZxyv7NzdC3frd3aQHkNKy/pJ5eU\nqV/nGa59J26Nlp4hvLpmH25+LXNhTmF1G55cGh88SS39S0vZH9mPwhbQjxs7GpSkNk81do/YfTSM\nxHnJAW5cPxdSItQQFpvt9jTE/2/ba096XNA33Ifvf/R9r5Nhu3GZFyEiSpXW0T9gjY8kSWJkaJOe\nwdTS6yBODK0lm7LqA53qNRFeUf4t01ZUYECl75UX97KZfV734gbd71foBNLkD0F9QsgfbVo17p4F\nx0aCRoNJ036GW/3bksfKvWPjdZ5EPv1HmLCmkWwRtlJEO4Xx0CjP902vxmsA17ow2bdWsyA7CQhf\nDPgRREYGZMgFXh+HTDWNANDZN5z2WaZmXc7eFrzpwqC2Pf0ZHcLXoCohvLmKjQRJyWVaM4wcbH/P\nl+QGjRwZ+TICqNKYh3br20CXdtcXr5unhhWDRiIyTeul0pphgBkz6jv68eD8krT+FS+v0h+Zzy5h\nDPadoJxuR1mgsHxX7jQXlP/pEa+jRgX1/oveXeT5ZU347zc2x68X1SkJBOZvr884EqUii4ncCU/8\na0+G0dbDUMicbV2c7VNumKhp/OFL+rX1mjWNjSVA8QcmUyZjuiRWAt66LP3jnqb4YDwzf2g9LWQJ\ng0YfkVi1QQGh9VJJHUUuu7fi7z/YjrfWV2FLlbIpbHaaujMHtkLAk2HTw6C+cyDld7W+kEGRzbUW\nhGa6WcxYkbVfTi/A6j3NKXPCyV+By3c14a73tuHpZXs8SB1lQ61Qsaimw/2EOEjr9vbqvjfUj9Jo\n2rQWK34fmPNLo0lyTizRJaLX+ZZNlIpBI1kWgDwROUTr3EsGljEqatMFpiyL6R2MZGy4sq+lF92D\nnHuUrItEvX1Aphe2qI1o6U0a+4eiGScQ7+iPN51t6BothBgYNjIaLQtf/WheUX3mhXwmEo1hxqZq\n1fkNtWrpJRirACiuszeINnIvCwGU1HdmXM72wNfu7b15mTPbpYwYNJItugYiKfMW0ag8m6ac8BPN\nl4p87k6b9pXte0G5/pxtdRlbyWQ79D+l29PYjWEvq7ZcZlehh1WztmSen8yrFC7caeKZKEvk1IW7\nza1AvhSUM/TW+ircN3cn3t1YbXgdAWPFFi+vsnckUCPHNCoErn5eo4+gyW2Zk9jijg/NdfbWelG3\nJ0Zv72kAYs5Oa0SpGDSSbTYrRtSkuDXl4WtCoZUf/vdjDx/5OQjN88gddR39+N5Tq/HIJ6Ujn8n7\nv87cZGzSaT/QK9GX1z4EYSAGr+7Rrv7UAXj0UlHf2Y+m7nhtY6YBPFoMND0nMqozcZ129qe3OvHb\n681Yn0aBYQMtIIzV6Fs0YHMz5b359m6PdDFoJMs6+tNH3gurnXWd+KQ4eM1rnKKV2Zx48OgsPjVt\n6vP1DUdjuP7F9di4t9XSvs2+rNlV2Hvticz+lqrRyZ3lNWF/nrsjbZ2qll40dQ2kfR4UY3x23and\nN/aPkmjMgwtGCw/kh0ntkG3c24ZzH1uuuh1lE8HeoShaetjixe/8FnBpGZ0oIjm/4eh3RrpouMlo\n81QjGrtsLnzZrz/wzoiK5cBzXze3bQPjK5B9GDSSZbnU1OyKZ9fitzO3ZVwuEo3hqaV70Bvy/nDl\nTT2qn8tbnnQPqB+DuvZ+FFS344+zi3X3wUd+uGV6p1/0xEqc+7/qwYKXjGa8gpBpUSv8cXtEVQH1\nY2r16Nk5gjORWQLw7csr5lUpUeFbxpabfYttu4zEwp0H8wqDRh/x6XNG05gsMkWfFNdjnQtz+rnt\n46J6PLO8HI8vLgMQjqHF1TRrNAOTZ0LHZqhqUV4+3QPqNddamdhINIaLn1iJxSUNuvtR3Xfg7rZw\nCMNRD9Md7VYmcv72+pEmpnokC32ilcF5mM4P+ZfXk8crGRo91fFUGNA/2toE0WFgOMt5lzXWr+qq\nym67pIpBI1mWzcA3v525DTe/tsnG1LhjWWmj7lQM+xNNMvuG4qVcIY0ZNcnzoEcd9hnD623c24rT\nH1yClWVNAOIB4aYMfWTb+4axr6UX96k0bQTig9n0D0Xx6Q7zQWUoohsfkt8OYQzc5fe73yoa1R5F\nqjWNNj+zOvuGcdd72/CzN7aop8vE/owc0lx75gaR3wIuTWkFEqPpll9n8r62Erx5thnpnxwTImNh\nruOePXv059e/Czz2RXPrK//OD36SfZrIMAaNPlJY3Z55IfLUrW8X4Mml2vOGTVteDsDb+c+8JK9Z\nzd/drL6MymfJaz8ZKNa0Gy99VOvDVNPWh0ueXo3ff1hkeDspApKnIfcZbT3gt+DFqz6Nw4k266UH\nulDbrt7PWY0ya6tVKzrM+VTJYXr38r6W3tRlHU6LliYD/RDfXFeFsX4pzarMB+ozdfnxSVppBING\nH3lrfZXXSSADagxkfJIZS5/lGx0nz9fN316nukzy2Ki9Dl5cWamyQuqvkZjAX+btxIHO0cCyoil1\nioxkLfjWao2R2jK8i3LtvLll14EuPCwbBMXv1ALEMF0bTjWff23NXpxy/8K0z3cfUJ/KxkjN09OJ\nAjkl5XyqYTo/5K1kpZzqcyDxkVZXDbc1GUzHGL/k+nfNH/15zm0aC6nczX4rjcsxfrl8iAKvXdZE\nJVenm5D/3ZlqMQwPFKJY7L3N+/H2hmr84cPRgXT+PGcnoio7tNoMiuWbznljXXyOLb8UeDvFb3/f\nUCR9GH21x5QdT65H83Zh0GANoPIefWJxGbZUpTdNTzZdl2vo9EeGncwx8nosrG7Ht59Y6emgcslx\nG5KvlpTRUxPXrdq73m/3vpxvahrlx634fY1ljD1DHtv4mA0JIiMYNJJt1leODmyzuKQBF/5jRShH\nWNUaAEjeR9PAVEih9PrafRmXUR6a7oFh1HdoN0c1UjuxuaoNv3u/CJFoDBUaI7vK+eS1mTNUg5OA\n3iNBTXeXymjGUSt/jMmb5y/zdo78/Fx+heoyyWRIkPBcfgV++FL6EP1qSf1oa625xFBgTF24C3tb\nelFS3+VZGpL9//QKge0c+dcNY9zo01i5Alj7lPbDMhaDoeIpyViIMqtslvG0UVYYNJJt3t5QPfLz\nfXN3oKatHx194ZvLUeuRW3pg9OWWfMmEdfTUoyaoD3JTVCNrDqrxp49mEOOueHYtZigmd5cf44c/\nUW/OqBxsYP72ejy+uAzfeXLVyIBElvn5rR9AykxX/1D2k0dvqWrzTdMwNZ4Nb2+CG0mUD0SV8nxI\nuH/uzpFHhS2VICF95uYaP5zG5PWoVrgiRmoffZBQExwfCCcyBLxzDbDsQeDj24EWlWbl+Vo1g4q0\nfWaCyjLBOt5hw6CRHJWpeeCMTdWo06ll8spLqyrxRGLaDCWtv0ie4QlChtELz+dX4DtPror/kjhe\n1a3pAd787fUZt6V2bSWbtbVkO1cbT5+tlIN83T6jMOtt/vClDbjqubVZb8cso02eF+60MGqvy6Kx\n9JYgbmeCPywcrS002i9LD2/dcPGyNWWyVdFogDj6XfLHAZVm337meEG+fH7E7e8Bz52TvkzJnPTP\noirNkMeMsy9dZAsGjWS77oFh1REt1dw3dyfOn7rC4RSZN3XhbjyXX4EalRorrUyV/ONk/7owZmAk\nSTL0IlfLXBtpvgpAd4RaPco+KFoypp81jbaavqEq5Xe1OVqtFLTUd2ae+89uejGV/LvktDt+tq6i\n1eskpJD3S1a7R408d3jr+t/a8paUgczU+OHdqXctJfMBQ5Fg9Wl0nsUzt/4Ze5NBjtAN4yVJegcG\nrgAhxH/bliIKvE179efXC5IbX92Itfd+O+UzI4/EMFc0CiEMNR1SOwbygHtwOLv+rmpzYZU1dqft\nx9q2yU7KQYrUro2oEBgToiMfsFZrI7xItt7olKa3lWVayHm3vl0AANj2wHdR3tSDpu4BXHHGcSnL\n6I2y7Ta9UZSzma86FPauBErmAoVvAX8xOm2cylntbkDa3av2EOisMZc+slWmul95r/WjAfwUwAIA\n1QBOBPADANOdSRqFQX3HAI6ZeLDXyTDlgy2jD6VatfkCDQVM8YWqFHM40ai6jn7bmyZ3Jwb7UGtO\nZIbhkV3JEGUtohAirSY6GhMYP9bNVGWWTQAib3aZK5aUNKBwvzPzDRttFhzUYD0XdfYP40cvxwc9\nuviUYzDhoPQsqR1Nlq36+6LdAPSvqaeXpbaK2ba/AycfM9HJZGXl8xMPsrcv+NtXjf4cM9H01ciN\nWr0u/bNnzjS+D7KdbvNUIcRDyX8ATgZwuRDiZiHEn4UQPwZwOYBT3EgoBYf8UXD18yo3vY+V1nfh\njx8V6y6jlXmRxxkrdjdh14EufPep1XYmzxeMBlRGavuqW50JqjNlMNVqKVPWZ87TVsqBJNSObiQg\n1fO8NLTd9k4hXl611/R6qiNQstwm9OQDZJ3218Wq02vcMWOrm0lKoXwkyd8ryaT/x0mfczFF2TtM\nJTC3lZEHpObNrfi8+IOsk0P2MtOn8RsANio+2wTgPPuSQ+StQRs7tV/6zBrbtuUnWgHV7obUodHl\nSxWozLtmRlO3ub5r2WbsWdNoLyMz70RDME+N1XlB/cSLQbx6bJyLb0ddp23bImcpL7WXV1WO/Oyn\nO0ljFAMAwLdPOSbtm1ydp9lcY2LlMbL2zu3mu9pVZoLGbQD+V5KkQwAg8f9jAIqcSBiRF7TmYJTT\neh/k+qPruhfWa353vcq8a0DmGr+kH2msryXbV3aun0u7KUfplJB+H0VURvL0o1lb9uP2d+Ojv27d\n346yBvV5RINqe62xoGvW5v0ZlzFaY682LyOF3yfFqaNky1skDEX88zxQu4zf3lCtPSiew+nxrSr3\nC8pfPeKzru8zl5kJGn8G4HwAnZIkNQLoBHABAA6CQyOiMYGB4WANQS2XVdCYIyVekiShVaXz/7CB\nwU6UbnxV2XhBXZXKtBx6tToj82Qa2jo5zch5aDYxTYqXzYcfWlA6Mp3GtS+sxyVPh68Jup7ugQiq\nWnpH+nvZ4V8+d6ht26LgeHZFRcrvrYlR15u7B1FS36W2SprOvmHX5muVP3bmFdXjK/ctVF0uZ2sa\n370W9r51M28rkhvZLt8wHDQKIaqEEN8E8G8ArgTwb0KIbwohqpxKHAXP3bO24c73tnmdDMuUE9+O\nU5kINwxN0LLR2W99nic7j5xeLeWWfW2JZTTWzfCiGTLSnpIMM5KH+sOH+n2J5fza/TFX8orvGahl\nBIwfjwu/crShbTF/GC7KUZVnJQahq21PLyTUcvajS/Efjy2zNV1Kb2+oUv08EhOqwW2uPAeyojxI\nOVLoHnSm52kUQuwHsBlArSRJYyRJ4lyPNOKT4gNeJyEryqBRrcQw15unGi5FVSzX1OXenHr5Zc3x\nfWqUQPcN6deG+6lpVBgorxm1Wnn5vIb1GUbVdaqm8cH5Jbj5tdHab2b+3HHUhM94nQTyETM1dcrA\n0wnJQbq2qowMrNasPmdrGgFgd56BhQzmlhpLMy6Sw0faE4YDPkmSjpMkaa4kSa0AIgCGZf+IMqpp\n68Omvf6aTFpprIE7QushlesFZcpAS/kuf3N9lXuJyZIbGZFcopaHenxxmebyz+dXaH4HAG199s2N\ntnFvK258ZSMi0RjeWl/luwnvg6zR4ABWp5+Q3i8p15+nucwPDT3UCqb+Mq8k7TO1ADGnXx9zf2V9\nXeVNP8wpy/zGTC3hywCGAPwXgB4AZwOYD+DXDqSLQujCf+Tj/75irA+bV5R9GtWe/do1jczlyDnd\njNfJ7ed0SbEDzI6Omak/U56NLRp+934RNuxtzWo+uKufX+fJqKNe6ewfNnT3nfe3FYa216XS5J23\nYO7yw/PX6O2stpwf0q/FP9NJKdLRsIM3fQCYCRq/CeDnQogiAEIIsR3ALwD83pGUUaiozb/kR+PG\npN4SQgCRtGJPgXc3VmPSlLzUQX8YM9ritrcLDC3nZJDOmkZnqR1f+SdFNR2upSXZJD2bc15U04G+\n4WjONJXqH47amr/79bvG5uLLlcHGcl1Q8guAxhQ1Pn4Q+CJpavdxdbDm9M5VZoLGKOLNUgGgQ5Kk\nzwPoBXC87ami0HlmebnXSTBE7VlWrJj3SwjgucSob22yUUSZnbHHktJGQ8s5mX9kzOhvRkY5NioZ\nNL68ujLDkvr8XLtgNzcKVdROsX9qSchJ//vpLq+TkGZJSYPq5+rNU/17nfo5beR/ZoLGTQAuS/y8\nGMD7AOYAMFYtQDlt0MA0HL97vwiLNR7MVuxu6LJl+g9lRkVgNKPJB7A2tUNj5+Eqb+qxb2MKPK8e\nSBzy19bsVf16X0sv/rFoN4QQUBnU2LLkvfzuxtQRQdt7hzB/e73aKqrOfnipfYnyuZgQDODIMS09\n9vVZtkp5fd/2TqHqcmrlJ35uqRKQ6XDJp8wEjT8BsCrx8/8AyAewE8BNdieKctPcbXX4lcaD2azO\n/mF8/+k1uOjxlRmXHYrEsE1lVLQk5fNf/jIRAli+qxEzN+3nwA0KTr83HX0x+/edH1r1nfERUx/N\nU69luO3tArywshLVrX22NlNUm1YHAD7aWmtqOxEfZxTtFo05P/HQ6j0tKb+X1HeZmsuTgkurUKi8\nsRsfFZq7L52m1jzVz08CfxSISuoHiZko3xtndEEhRIfs534AjziSIqKEgeEornxuLR656mv4P186\nytS6yZrNBgPTPDzySSne2ViNZf/vW/jM2LFp3ytfCgJAsuujEMAvpscr2w8Zn75uGBmfccMPLycK\nioFh/SLwaOJ6isRiWfd5nFdUh/6hKG4490TNpq5awaRuGqO5cc27ER/P3VaX9hlHts0Nyqmvkr77\n1GoAwHVfPyHtu7qOfhx/xCG2pcHoJa4+LZd/nwO+qAVtKQOOOdXrVJAFZqbcGC9J0kOSJO2TJGlA\nkqS9id85wRJlZKVmoKKpB3sae/DgAv25eoajMfQr5t0zs793NlYDANr71GePSa9pBDp648t2DeTe\njDNGAvGg6w7QQAw5Y+Q+lDDbRG1Dt8o9evesIkyZswOAdgZ1TIagUS1j6Me+WE4QQvi7OoUCTVmQ\n0zUwjG/873LddWYXeFMDqXYb+CEu0+KbtB3YbstmBEeTcJWZ5qn/APAdAL8CcCbiU218G8DfHUgX\nhcwnxcb7BiUZjftuenUjTv3LopTPrPR5GiOpT+Og1qcxGVTM3DzaDypXWlZs3tdmaDllnlot805k\nVPJyMnOfbd3fjtMfXKLbVzrT9B6a6VHJfK0pb7a0raCZePB4r5NAIaYMGrft78hYWGmk2eWTS8rw\nQUFNVmlTUtutP5qAqvNzLSgibH7ud2aCxh8CuFIIsUQIUSaEWALgGgA/ciZpFBb5/5+9+w6Pozr3\nB/59V9WqlixLbrJsSbZly91y7xUXTDOYGrDpmF5DMyWUQAgp5IbkQgiEFC4pEC6QSwgJEEhIgUsg\n4YaQkJgkv0BiCL1jn98fuyPNzs7szsxO3+/nefxY2il7Vjtn5tT3PPsvRxPbX3/nQ0cBbH69I3c+\not3oiu9/pH8f82Pyz2kc+LlE6oy2GSvgxkAjRHY9+Id/4S8vpxd61uezUU35h6M9nRnG6maudKHR\nCrtMCl+lMq9x9aQ218dedNfvPEwJJZGb0Sx2ct51P/kTzvnu0/bOZ3cahslrkRgCauGVt8MPMgQA\nePUvua99+E7w6SBHnFQarZ6gtsrKIvINEXlRRN4QkedE5OjM62NERInIW7p/23XHVYnIVzPHvSQi\nZxjOu1JEnhWRd0TkQRHpcPCZKABbb/m1o/2nfeJ+bLjuEcvtf3+18I3Fbm/Etfc/1/9zVbl5dsjX\nahjlhwNR3Px5p3lE3K03m99DKi3yrKaY3FnoFmI25y7KPQxeSlnEsbDj1sde8DQtVHq+9UuTBsgI\n5b0IJcVfuziNo9Q4qTR+B8DdIrKHiEwUkbUAvp953Y5PAhijlGoAsBeAy0Vklm77YKVUXeafPsjO\nJQDGAegAsBzAOZn3hoi0IL3sx3YAzUgv/3G7g89EEfX8zrdNX//Fn1/BoqsfxB0FIhvaXfj9xdcH\nWjRrKstsDTXR//pt3TwKLjyd7bl/5lYAIj00hkK34tqHC+7zwa6BgDkvvZ6/R0J/uXl97Zn1WJRS\nIxLzMgXF2FD83SfSQ0z1S+KElfXM8kGpNB7h0c+EnQJOrQ6Yk0rjOQAeAPBFAE8A+ALSy26cbedg\npdQzSiltwLLK/OuycejhAC5TSr2qlPo9gBsBbMls2w/AM0qp7yil3kO6gjlNRHpsfSKKnT+89CYA\nFI6eaFF/u+fpf+CfuqEvZbr9rAJiGO//v9phPqePVUYi/534zf/t//mdD+wPY//yw+brP1px0wZU\nQnVGFtbIF2ZTU37+fHbUXAXgH6+9i1Nue1L3mvkV+e4Hu/DNX75gq5Hj9Xc/xK8zz3e7i8qYnbZk\nGo/eyB1tQcmWd8kNEVlheOmhzD/BwDNjEYCf2HkzEbke6QrfIABPAvgBgJbM5hdERAH4EYCzlVIv\ni0gTgBEA9GGWngKwT+bnXv02pdTbIvJ85vVnDe99LIBjAWD06NF2kks+ecthZEr9zV5rwSs4Z1F3\nz3793Q9RW1mGj3YrnPStJ9HZUoufnLUs5zwpEXxko9Xwg48slgZgrTFLU02FZURaIresRiEUcvV9\nz+KEZdntlM/9802UpcS0kHfBnc7n3pVMYRElNASPAvXZB57Lec1Y4Xvyr6/hI8PyNlbX49X3PYtb\nfr4DbfXVed/37fc/wrRL7wcAPHvZWtuNRv6vWBphrzwfdgpiRykV61FphdZpvMni9f5AdpmfO+28\nmVJqm4icDGA+IZveDQAAIABJREFUgGUA3gfwMoDZAH4DYAjSPZnfBLAHgLrMoa/rTvM6gPrMz3UA\njOHq9Nv1730DgBsAoK+vr4Rzefj+ZTLJ3Wye4mOZ1sVX3xmYuJ2vTPb6ux+icVBuVL9pl96PfWeM\nxCf3m5J5r3f7t9nJvHbLgfG9DfijVIKCUHQVugI/+YPfY8OU4VnD3Irx0e78a00SUX6vmATNM5tu\nYqysWT1uXn4rPcDN2Ftp9KP/+6fNFBrSUcqPuR3WsScomfIOT1VKjbX415n5N1YpZavCqDvnLqXU\nowBGAThBKfWWUupxpdRHSql/AjgJwBoRaQCgTYpq0J2iAcCbmZ/fMmwzbqcIMuslfOgPuaHqb3wk\nPZzsn28MhGHWWhzN6nqv63q1jA8UfdAKfc+h/jxWN3+78xPi3HrkB2NLMJEbO990H4Z9x8vZvZIv\nvv5u1u8Pmtx3ilFK7SQl3cNCvtntMhNZXY/a47vQcjj6UQIf7tptP3qqyX7MGcGJ29867vdNJ3Ma\nvVYO8zmN/b2YSqlXAbyI9LqQmmkAnsn8/Ix+m4jUZs75DCiy7NatylMDl6d2Q9d6r+y0PFrRh8o3\nDjU1m/fAgA/umPW6lNLwPfLGoV/5Rd7t+fLn13+RHanzLzvfxsU+LvngtsAbRyX0USlAdhtpjbtp\n8Q5271ZZ8yLv/e2LAIA//is3MNvjO/5tOsrgyw/bH3ZpWu5g3gjMXysKDZgkLwVSaRSRVhE5SETq\nRKRMRPYAcDCAn4jIXBGZICIpERkC4DoADymltCGptwK4UESaMgFujgFwS2bbnQAmi8gmEakGcBGA\np5VSWfMZKVrMehrN7rG6OiN+/2J6Ae6r/if91f7zzdwhrk5aBi+/5//wwUe7bQ1Lsz08lR2NWT40\n6Wl820HgEiIA/eszWnGy7thLb7yHr/m45EMpDcm2nNtNVATTefAmz9bvPpEdQV0brbT9rt+hZ/t9\nthpw9v/yYzjltifx11feQYVu+Z4XX7O/TiTblMP1s5r8a/WSt4LqaVQATgDwdwCvAvg0gNOUUnch\nPR/yPqSHlP4O6XmOB+uOvRjA8wBeAPAwgGuUUvcBgFJqJ4BNAK7InHcugIMC+DxUBLPK1fsmEdP0\nlUtj6+OrBQqKpkNGdK995dG/ZIXuB9Ithmb3f7OWz4qy3A/BOiOR9woVylZ9pvAyHZpSqtQRxdHD\nz+UOI33HJHjeA7/PnYP4xAv/xjczazg6yekrP/MQynTljTue/H/4r1+ZrAVpwux94j4EkfwT95Fr\ngfTrZip3Sy223QbgtjzHvg/gyMw/s+0PAOASGzFi1tN4+6//lvOafq/t3/8d/uOQmf2/mxX+nGZF\nixU2cpiVM/s6mvHYn/NPrCei4hWq6L3mIEJvKQ0f9RebyCg4ZnOPzWIIbPrSYwPbHZzfbFTMrb+w\nNyLBfEqLgzcnipEw5zRSiTKrNJrNddM/FJ76++vY9/qf9//+vsnQqEItOMbWv4LLduQ5L1sSieLn\nQw8amwjY+Zb74EREQXCar91OL2EFkUoJK40UONMePhs37Jf1BRXTipz5z5pCnQxvv7/L9AFgNjyV\nDwqi+Lnhp1xXzAvbv+9fMCEiOwoVGR7908tFna+YZzyLB2Ql7h0OrDRS8Ezu9n82WbDbbJ6jZvSQ\nWtPXH35uZ3/QHKOfF3iIHGIRpdFs6TU3lVIi8oc+WM5Pn9tpGeDqb/9+N+c1DrQkip9CPYNHfPVX\nltu+8YsX8JXMkl5W7Eb6thvtlSgJWGmkwJktl2HGGKhGBFg3eRgA4G6TQqEg/aBY9/lHTIeUGlse\njbuk50blHnfmd57Kec3s/Hx4EIXjIt0yGod/9Vc45bYnbR/LXEsUP3aml1hF+L3w+7/D5ff+Pu+x\nxfQIxT3YCZEVVhopcMbKoBWzhr58zwn9HMhv/TI38tnkkY223tcO9ioSRYfWYPPOB7lRFokoef7x\nWu6oAaPL7/0/2+cbUleV9bvZCCMz5tFTicxxeCqRQyd9639t7WdsrRPkn2egr09e+6PncrbbDXxj\nh2lLYrzvBUSxpRXwLryTc+2ISsE7Ntb8/c3fXkNLXaWt8xmX0bLbW8gGZColrDRS4J7862u+nNdp\npdCsxcfuqBK76zkSkf+0vPfXf7/T/xqHiBGVtqf//rrrY+1WBrnkBjkS82uDlUaKLGPeEpG8w1NP\nus1eD6YXzB4oMb8XEMWWUsC/3nwvK8LyQyZruxFRMrybJ1CeG8bndzGNwCwLBGf+u4WHKZN3ysNO\nAJEVs4W4893HC7Uq2gmp/e+3P7CRMvOD2bpIFI7dSmHOFT/Oeu3N9zm/kYjcsd/TmPvaU3/zZzQV\nUdjY00iRldPTGMB7HniD+bIbRmYPFA5PJQqH13nvzzvf8vR8RBQvdoe3O10PkrwVt1IXA+EQ+cWQ\nt0QKr82UT1NtRXHp0Yl7xidKErPc+Dfd/MZ8zEY0rPv8I0WmiIjixFhH5BOeKBcrjRRZxt6DXbtV\nUUNAP9yVfbDZWo92mYXjft9iTSgi8pdZz//4tnqbx+YezLxMVFoe+P0/s37fxbCoRDlYaaTIMt6z\ni72HH/f1J7J+v+nRv7g+F4eiEkWH2VCy8pS9YQnMy0T0pYeez/qd9wXyQ5mUhZ2EorDSSJFVaAjo\nmHPvxSN/dB8hkY8EomQwC4Jldyj7LnYqEpERCwixoAKJduGNEbUjUJZipZEoNF988E+ujy1mHTc2\nQhJF2/M737a1H9dzJCKjXbwvEOVgpZEia0Z7k6/nL+aRwKErRNF23+9etLUf8zIRGfG+QF6TYiI5\nRgQrjRHB1u5cU0Y1FtxHQhqawG+LKNrszoHexcxMlFgvv2Vz7WWD9z7kuHUiI1YaKbLu+91LBfd5\n7M+vuD5/MfX0P/2L67gRRdmHNicrssGOiIioMFYaI4Llllx/tbnOmlscfkKUXC++/p6t/T5iVyOF\nZOTgQWEngYjINlYaI4LFluCx0kiUXDvffN/WfsWMViAqRgKmOBGFiqW4YLHSSCVrN6csEJWUzpba\nsJNAREQUS6w0RgTn1QSPPY1EpeWt9z8KOwlE/djTSERxwkojlaxddsMrElEi/MvmkFWiIIQV/ZuI\nyA1WGiOC1ZfgsQBJRERhUXzyE1GMsNJIREREFDC3PY0bpgz3OCVE8RSnZpckjCxgpTEiOL3OHg4p\nJSKiJHA7p/GEZV3eJoSIyAZWGiOCw1Tsuf///hl2EoiIiIiISgorjUREREREFCtx6m6RBIRLZqUx\nIjg8lYiIqHTEvwhJRKWElUYiIiKigCWh54GISgcrjUREREQBY5WRiOKElUYiIiKigLGjkYjihJXG\niOCcRiIiotLB4alEFCesNEYEl9wgIiIqXYvHtYSdBCLyiSRgQDorjUREREQBSxnKkF8/am44CSEi\nsoGVxojg8FQiIiIiIooiVhqJiIiIiChW4jTgMwlzmFlpjAh2NBIREZWOJMxxIgoTy87BYqUxIhTH\npxIREZWMBHQ8EFEJYaWRiCjGjl3SGXYSiMiFJAxXIwoTc1CwWGmMCPYzEpEb56+fGHYSiMgFFniJ\nKE5YaSQiIoqw569cjyv3nRJ2MoiIqISx0hgRnNJIRERmylKCQ+aODjsZ5LEUS2BEJSMJga94yyIi\nIiIK2Pi2esfH3LltgQ8pISIqjJXGqGBPIxERUcm4fJ/Jjo+ZMbrJh5QQERXGSmNEKNYaiYiISkZ1\neZmr43ZzPgsRhYCVRiIiIqKYMNYZW+qqwkkIEZUUVhojgg2HREREpWHTzFGuj60sZ9GNiILHOw8R\nERFRQA6YNQrXbp4GcRlMceLwBm8TRERkAyuNEcGORiIiouTz4nk/SVdxtFP5rCxjcY+SJ/6LWMRL\nYHcREfmGiLwoIm+IyHMicrRu20oReVZE3hGRB0WkQ7etSkS+mjnuJRE5w3Bey2OJiOKis6U27CQQ\nUYDEbVej8TyenIUoftjhEqwgm54+CWCMUqoBwF4ALheRWSLSAuAOANsBNAN4HMDtuuMuATAOQAeA\n5QDOEZG1AGDj2NhQnNRIVNIq2BNARD5RUDh/fU/YySAqWZVllWEnoWiBlVKUUs8opd7Xfs386wKw\nH4BnlFLfUUq9h3QlcZqIaHe3wwFcppR6VSn1ewA3AtiS2Vbo2NhglZGIiCh+lowfGnYSPDdtVGPY\nSSAqKE697J9f/vmwk1C0QJu2ReR6EXkHwLMAXgTwAwC9AJ7S9lFKvQ3geQC9ItIEYIR+e+bn3szP\nlsf6+DFCN5bD2IgSx6ORakQUoIv2nISbjugLNQ2jmgYV3EcgjqK0p1LZN6Tm2vj3khCFaVS9+4jJ\nURFopVEptQ1APYDFSA8rfR9AHYDXDbu+ntmvTve7cRsKHJtFRI4VkcdF5PGdO3cW8zF84eRmzrIl\nEVFydA1lQ2BcjW+rD31o+Y2HF660Kofjmdrqq7N+Z7mDiAK/0ymldimlHgUwCsAJAN4CYIwf3QDg\nzcw2GLZr21DgWOP73qCU6lNK9Q0dGu+hJBzKSkRERAAwpK7K1n5ORjMcs2Ssy9QQUVKF2TxWjvSc\nxmcATNNeFJFa7XWl1KtID2OdpjtuWuYY5DvW15T7wGkrIBERJd+whurCO1Gs6EcWHdjXHsr7FlKW\nYmAuIsoWyF1BRFpF5CARqRORMhHZA8DBAH4C4E4Ak0Vkk4hUA7gIwNNKqWczh98K4EIRacoEuDkG\nwC2ZbYWOjQ/WGYnIpRYbPQ1lKQ4wi6O7TloYdhLIR2wwJqK4CKopSSE9FPXvAF4F8GkApyml7lJK\n7QSwCcAVmW1zARykO/ZipIPbvADgYQDXKKXuAwAbxxIRxUIxa7Y9fuEq3HVi/spFz7Ccqd4UEV6t\n10fhu2PbgkDeh1VNIgpaeRBvkqncLc2z/QEApstkZJbpODLzz9GxccIHAFFpK7baMK19sCfpoGhh\ndTLa4jKKs9iloNmuQUQxud2RHu/dpa29uXB4dYofvwtlxRYaiShXa3320HA72TisIam8BRBRMVhp\njAgnBTre+EsbC//kBnsKootfTXx1t0Zj2HfvCGMg+WxO8v+mmfFfT46IvMdKI1FAhnBxZMqDlbrS\nxXageHIb2VY8aCZQmdbDU1eOAwDsOXWEZ+957eZphXciopLDSmNEMIIa2cXKRTK5KUietWa87X3Z\nQx1TzO+J4+Xzfo/eYZ6fk4jIDCuNEeGkQMcyBFHyuGkMGNZof34rGxuii19NPBnz1KqJba7Pddk+\nk4tMTQFFX2S8Sil6eFUGK5DoqeQttifGEwvtlI+by8PJMexpJPKWPk/9+cr1EAF+87fXXJ2rosh1\nVJm/ichv7GmMCN7vSwFrjeQtJw0Ru1mqJPJNKiVFrbfp9tB8xx00u31gPzi7B/BpFT0tdcHERajC\nB4G8D8UPK40xxJt5afMiiAJFkM1So9vgG4NrKlwdR0TmXNcRPWi/sVP/u3hjb//PTtOae3o2OoUv\nmGf/CHklkPeh+GGlMSIUewGIyCG7BcFP7jcF1x08w9/EkC/YSBRdcftmiilmpArcbKrKWZxMCpZG\nvXf7nreHnQRPMJfHUdyeVOSZOWOaw04C+cTPbH3wnNFora/Gjqs2+PguRGQ1RPXzB00POCXZnDY+\nGPeuLFAp5JJS/mNchPhqqmoKOwmeYKUxIoppAZzQFo3Fhcl/bY3uhiZS9Nm9BegLDuyFIoqHvaeP\n9PR82hIb2v3AbLSSsZJh3Of0VfaW7NkwdTi+duQc54mkHK31VWEnoSDF54rnipnvHCWsNEbUF/IM\nJTNeegm5FonIBmb35OE9PJ6iUBDUGo4KNTyL5O6z7wx7Fdlz1/aga2idm+SRQV119BctYKWRrLDS\nGFEjBttbfy0lwOmr7S/wTfGmlGIBM6Hsfq36giqvheTjdxx/3a3WFa6gwhkIckczKJPxDdPbB+ce\ny2vQM3b+lO3N5uW/oL6GUpnT2NnYGXYSYif6TR4lwu2D44kLV3ubEPINH7yUj5vhqV6qLE/hg492\n+3NyohJ28opu39/Dzv3DTjljc1974Z3ItYZB0Y9izZ5GssKexphjRSQ+GCCXvMA8H0+ce548bvOi\n/lHg+hwOnyciktOzaPccURiGmxTXHeQ+inVwXwO/bzLHSmNEmA0TsWK8gfN+TlZu+NissJNAdtks\nwRUb/GbrwjFFHU9EaV48e902JmpzDGsqy2yd56I9J9l6L7PPZOdj7mKrqC1DbQTCCTvAGb9KssJK\nY2RZ51qu6RhPYVTuRzbZmxtL4dpz6nBPhqc+cs7ygseftNz/oXLkTNiFRHJGm3MW5vf26c3TcMvW\n2WhvrrG1/+bZ7QWXzQDMKwx2nl0VZbnntvN+lMvq7x3U9cbhqd5Lyj2eOToi3NYDk3Ihkn1Ov/HZ\nY5KxPhCl6b9/46iDQZleB4oXJyNNyF9dQ2sL7uNlu62xgnDWGnuB7eqqyrFsQmvefVIieHL7avzq\n/JUAgCMXjs3abvdjtNUXXurpko29Ns9GFL77Nt0XdhJiiZXGiDBZYcn2saw4Uj63HTPP9npcFJ6g\n5hdxflL0pPidRIY+G87rbDbfJ7OT26Gc+tFCxnw/v6vFxhlMzmlSiqgoEzTVVqK1IV3pMzYq2Rm1\nNGVkI1Kpwp9qcE1ugBde1e7w7+a/kXXerptaKlhpjCy7JUh/U0HxV16W4jChBNEXVO30ily4YaKP\nqSEvsCIfHcV+E047IbX9i70GFo/Lrmz+6Yp1vK4Shl9nfCUlL3LJjYjgPEUiskP/6Okd0Wi537jW\nOpy6ahw2TBlu78S8BYWmoiwZBQqyR1+A7O+1LPKcszqye0XLTeYYGjHLkxnOaSQr7H6ILOtMm5QW\nC3KOD/nk8npe28fX9mDPqSN4v4iBpeOHhp0EytDnl0JTP8y2Oh+eqgzvG9xd3m00Vbt468ll529i\ndc/mn5PCxkpjRDh5TOgfOCIMokDWtEJPvmukzMZ8FYqOYue/WY5q4GUQmm3LuvH0JWvCTgbZlFvR\nGzBisLuI1UFlv/1mpudypdcNLVx20N8uVk1sc/RejLfgznFLOk1fD6qkxxKl95KSF1hpjAgno1MH\n11T6lxCKND9uO5v7RvlwVnJCRGzfA4qt5Fu+DUsKoZgzthmDKsvQUJ0bSATgmmlBG95YOFJoS2at\nvQNM7p1D66swrrXO9vsNzGksvG+tB9GRP73/NDxz6R6495RFFumxvuBmjB7s6L128+J1ZXNfu+nr\nQVU7ODzVneG1NqeCxBgrjZFlfbPda9qI/p8FLFTEhVe34WK/7pa6gUaHMUNqGLkxApRStvPxFw6e\n4WtammvZKEWl6wJd4CirClR9dTn+dMU6nLC0y3R7VYX9otXu/l7Lwvseb/F+TqRSgtqqcpSXpRyX\nHZzGXugaar/yXCqS0uNEuUbXjw47Cb5jpTEy7N+MD52bfWGyzlg6djuoXNjB+W7xY3cxb6e0AvKw\nhsI9LZQ8I10Oq0ya6vKB3rx8BfzyspTr+6f+Fj4QCKfwuby+XZs9SrR0mL2X8dkzvT1/z+MtW2fj\nko2TXKYumcwaIm46os/WsX4/r7UecvY0OjexeSKGDBoSdjJ8x0pjZA1kWuMwEn1UtPSwNlYb48CL\nb6myLOVoDqv2jNFfIrsNh/Pq8c7E4Q1hJ6GgQrcLtiP4Y1QTK2VRYGf4aSFe9hY5GZ7qNbO/hZPn\ni7L4WdNUW4lF4xjkSc/v4EPF4L2/OKUQX4SVxojIvZEMvDCoIv88huRfpslQbOX+5BXduHhjb9E9\njbceOaf/Zz4j7PvqlsKtwZ8/aLrr8zMfJ1d5SjB8MHtwo6DQPc9OPvSycFjouaAfLu51T1N9dUXO\n+o75GFPK54dz5T4Hnmuodr+SXhz7HyRKT84IJcUvrDQmQLEZnWuEBaOY72nNpDacuWYCmmorcdqq\n8UWlY/LIgbX9GDnVvjljCw896XY5h8erwqCda8yqwNs/TI6XhOdqq4ooyOm+rxEe9JJZ4feeK4i/\nSX2mkF9t0Thcp7t2gvyOzO4lxtcK3W54SeUqL0th7+kjCu/oUlOJzUmP0lBa9jRSYP7+6rtZv+tv\nzvkKlF5kF7/mSFG2dVOGuT52YfdAa/D+s7yLdnrD4fbmUpD/9D0OQywe/J/cb4oHb5R/MwM1BMvJ\nX/sHpy72Lx0l8rUXaqAJ+s9w/vqJ+PjaHqy2WM4iSt9LKRSKg1BZll30NlbGw441wG/ZnVLIH6w0\nRsSjf3rZ9bHFXqgz2puKOp7suWRjr+tjvX6G3H7sPNx2zDyMbamN5ZCUMNj5Cor5nqx6GvT26B2W\n9z2KuRfwMghWS11Vzmtm6+DpK/Fcbql4UYsBUF9dgROWdSFlMepDABw0uz3zc3CViShVVinN7+8k\njt95lIanttebL5UCJKdCyUpjRNm9vEQc7Gzh9NXjijsB2VJeFp3sNrdzCOZ3JT/SV5xcf+hMHDK3\nyJDdtoan5hfHgkMc2KmrdA6tzT0uIYUNckdE0DjIfA3PIOivv5xr2PBCa312Q0jYPWZxEZU/00Ak\n34wyNlI5sW36NsttSRnBE51SbIkzXk5OGkOLXVeN89qSKyoPIypsxOBBOG1VugHHz+/N6t6i9cDw\nkilNSSnUFFLo0RpEFd3J813fLhzko3pXJsx2WWqgmGhMtjES94/OWOpzqpLJ7HqwmqJQiBeXyHvI\nvPf0Qzw4W3ytH7ve0f4VKevGnaQ0oLDSmADlZSns4+PEaoq/qA3JiiM793ynD4YDLOen5pvHbL3N\nk285IQ+3xAgo6xq/9vtO82/+ZFxYrUOYCjiP9DfoBPi2WmNyU42uIFzgOWLsEU2fgc8eIzvf45re\n3BgIQQ1PfQO1WPDedcD6T/v7hhF39ZKr0dPcE3YyIoWVxgiqry7PKeQf2Gc+VrpUWodLndtveXxr\nvafpKEUjBw/C905Y4Pl5j140FouM4e4LBqnJz4u2Ad5RvBeHRpsVPa1Zv/cMi/6ao37QX/+rJ5kH\np/FzdE7OpSLhLIUwZWQjtu85CZ/ZPLCMUF0m0qu2Hu2gysLzsEcOZqC9QuxWBv0u7+nP/w+0AGXh\nDYuOitH19qaMlMo0AlYaI+hHpy/Nufyu3n9qKGmh6MtqCdaZNqrRMrgC2XfBhomY1dHk2QN7SG0l\ndly1ARfuOclyn3yFiHzbqsoL39LNHm7zOptL5JEXJbm9R3PHNufuFlAWPnF5dzBvFLJCFTA7+aDY\nnkYnlc7xrfXoyVTSulwu6eOGiOCoRWOzpr9sWTAWF26YiCPmdwAARjUNKnCOdMVy2YShvqY17mLQ\nplSyLlt4WdhJiBRWGiNomIO1uDiSjIrHJ1Y+66cM9+Q8o20sbdNSV4V9Z4zEjS6XQmmqrURNgdZ/\nswLKzNEDEZR5TwnPyolteOqiNdkvBpQ9gx5yGWdu2+Iu2ZhuKBpanxs518q1m6dh08yR+J9TF2Ol\nxbIcXspXgaksT+HoxZ1ZjZF9HU0Fj6NsUR0hxltArpoKb3rKo/qdO8VKY0RlrdMYXjIoBop9VvNh\nHx2plOCzB063nEtl56E+rzN/VNxBJkt7sLDgP7vZrLGmAp/ZPM3XtDjVZRLVNa68GEZWV1Xu6rgj\nFozB1Zum4IzV420fU1tVDhHpHxLqtUL3CzOdLenrwaxn/JSVjMZO8VAqQ0q9xEpjRFnNgcmZaB5C\nYY9Bd0Lg4otmVFxvRaViVSgZhbY31Vbi+ycuxINnLcN+M0cCSDccaLccr3qcGgdV4Ffnr/TkXKWm\nUj/MOKDrLt/bXLrX5GASEQAvGsku3dvd30NEcODs0bbWZA3KCUu7HB/TN6YZj5yzHJtNYi3oK8RJ\niRgZBrd/umKmpLhtDIkrL+eaFzpXUvICK40xcs3+U/HfJy3Mei2MLu9xbQyuEgfXHTyj/2f2JoZP\ne2bYmXcIAA+4DF9v56ue3j4YY1tq+3sMvDarowm/uWg1WhvsD7WPsjDXyRtSa38oo5Xu1uLmwrU2\nFJ+GqPDiVhjm9eA1t5WM9uYaiEhkGtMorZivY9ty5w0IVFpYaYwoswfbAX3t6BiSXcgL+oZdXcFL\nxm97O+zJtaoQjmpi1LqwmM1Zaq6txGmrxuHrR8+1dQ6rgn5cWizjks4o2zBleGAjBvJ9XYUanQoF\nRIkSJ39NtxVMrxrpvnv8fG9O5CNtrUZmd/v8/FsVc9+tLItOD7hdYV12Ttdw5JxG8lW5rqCQN5Ji\n5v+gOpKScuFH2XaTqJr5/urFDrGYZjF/jty5/tCZ+P6JC023nbZqfFEREIPIf14M2SlLWAlSxHlj\nTjEKfQVrLJaCsFLo2/jyYbMcna9UuM0KxkXvjY29ed8z8/+sjib0jTGJpmvD/pbrv3pvd+aPxNkQ\n/ho52F7DTKl9DUEOorpl7S39P1++6HIcOfnIAN89GlhpjKg5ugnm+QqKdluVhjVU46dnL+///fZj\n57lPHPmqttLZvAInN82TTMLqHzS7HT85091QSMq1fspw0wd80A9zJ/U2/b7FPIS1XrFUAp8sofSm\nmXyHz162Fl/yuJK3ZHxL3u0JawPwnb7h5bqDZ1gGtjI/Nv1/MX/yTx8QXCCl/vTmuUj0lehvHzc/\na+oE2bvnWq0Z6qVSy+d2A+H8YL8f4N5978WstoH7bkWqAqfPOt2vpEVWAh/tySAi/QVPOz2NhTQO\nqsDoIQPDFee6iJhG8ZXv1igi6Axw/S8a4LSAWFZmv6/RSS+Jft/lE1qtdyygI3OPKdfVGp1Eikwy\nr4YsVleUOR6yaqcwmO/KstvLEQf6dQf9oo8gutc0p9MNctfvDJLTy/TijZMwZWQjJuWJ7lqvC7Ay\nZ2yz479JKQojDkEcYx8EkU3a69sxumG0rX2ry8zn8SdllB4rjTGnPVisMvs1+0/N2s/0HAm5mEtV\nuY0CpFbILC/jd21kNxiM20LchDyBo7SWTjt1gPrqcl+j2928dTZWT2oz7Y22q746HSBkrIMAOxzW\nlivosltMETp1AAAgAElEQVShZ0BtVXlihrGbrYHq9dzBYtZ21b77sJ7LTvPjjNFNuPvkRXkjwl65\n75QiU5VsvAX675ol1+S85mn01EzO/eH+PzTdnpQ5/qw0Rph2QeeLblboQuwd0Vj4fUyKKB1DGEQl\nSvJ9zduWFS7kH7lwLI5aNBbHLun0MFXxMs4isIxfBfTL9u4FMPDdmeXV3bvT/9tZ5mLJ+KFZ57Pi\npqdCJN3DeOPhfUWFbJ82qhE3HdGHC/ecOHBu12eLlji2wmvYMDjALBKsfu5gq0kQq1CE9JV5MR/5\niPkdWb831uRGm/2mzYBgSWT8E5vfWtzdcLYuHJvzWrHRk5NgZN3InNf8WKexudrdPOS4YKUxwnZ7\nMLdByxRetXIkpLEk0sz+xvPzDCeuqSrDjqs24PMHTbfcZ1BlGbbvOQk1DudLJsn5GyYW3imPYgve\nZkf3jkwP6Vox0f2Q0GLYqQg5Wdg9JYKVE9tQVW4/Ct8hc+0N+0magaHJ4d9URZCc2n2RaqvKMWO0\n1quqMKujCUD2EEs/hd04MXVU8T3Kl+49GTuu2pB3n4Xd+efRJlt2Ztvt4ZduvJ+umtiGO7ct8Oz8\ncaUvA58/93wA5j2NVy660tF5b1xzIwBg3vD8cULY00i+G6jw2dnX4nUbFU+nhZZdxtBw5Lsw5xwm\nZU2yRSEVUvKVB3qGNeDZy9Ziz6nhzPEpNBTu1xescrRe5MxMAduJTyRo4XivJaOYES12nnf6Pb59\n3Hz890kL8ZOzljl6n1UT2xwFwNH0P/cdHwns4zLC723HDBR4J42wnptIxbn/9CU5r+051Xwos/G5\nIZLdM2bWiLF+yrCc1xZ1D+mfNkBpB/ccDMC8p3Fj10ZH55o3fB7u3fdenDHrjLz7NVQmI1+x0hgR\nZhXDKLVE6yMHTh1VeMgrUVzkm9cwpohh2v0VsgLZN99cIDN2WyxtNTYVWGNtaH2V5ft9+bCZOa+Z\nBbgo1MRUzHDYoHiRwuOXhjc03FYgnAL7rCgiQFKUOGnwVyo9H3zqqMGma6/m85Uj+iyX3rHDTcfE\nZw+cjuevdLZ+HADMHZvsIXVR0WBSefvCwTNMGxbrq3MrhYU6JIstK/oxXDMq/CxHj24YjbKU9XN8\nZmvuszKuWGmMCLObgfaSWZlqjs31mwoVCgHzhciN6dGCrQiAZQkpPCSNnXlxpczNCKB7Tlnc/3MS\n/7zF9Gqsnew+2EcpcrJWnxu/umAlHv34ctNt+h4vJ8ON9U5e4T5AUpTYudbtNvj4oohyu4g4jqxL\n4RKRrIbL+05LP3POWD0hZ183zzAnwyLznr93P+dvTonDSmOEqTxjS2/eOhsP2hguY2eIa1lKMHtM\n/mFlWm/IiYaCw8/PXVEwDVTYmR4sS7B2cu7QlGIMazAPHZ1U56zNfUhXlw/cIt1OO7HTcOMlJ8kc\nkVlKYWSBNQg7XVY0yB03Uf1a66sxqsm8Z/y0VcXfX+LQI+yVgT9/9mc+cXkXrvV5DcQwoqcmsUEs\nTtqbB/Kttk7zoMrcniv9fcH0DmE6Yq3I3sMh3cCenwPa4x+46OY9bsalCy7t/72txt3al1t6t3iU\novgJpNIoIlUicpOIvCAib4rIkyKyLrNtjIgoEXlL92+74divisgbIvKSiJxhOPdKEXlWRN4RkQdF\npMP4/nGVb3hqbVV5Vlh7q6FPboe4Glsry1KCHVdtyInUOSJB63eF6WTdul5Oad9xRVkKgxwOdczH\n6XCsqKssN7/d9Y5MD7fef+aonG3FTF7PmZMS8DBzO+93wKxRuGXrbGzua8+733ePzw6ksLC79NZ5\njfPALd2ymaafQ6R05k/aydNWPY1n79GDTbNy7xN+YEUueay+08kjGwvuA2TnXbuXR77rfaJubc1Z\nHU3m97iTnwD6ttp8twgToG9YH/YbN9Bj+tnln3V8mt8e8Vuc2XemlymLlaB6GssB/A3AUgCNALYD\n+LaIjNHtM1gpVZf5d5nu9UsAjAPQAWA5gHNEZC0AiEgLgDsy52sG8DiA2339JAHKNzzVqHdEI274\n2CxcsnGS6TkKh+nP/t24Ox9gxTHrxTLab8ZInLuuBxVl7rNlGHMS9puZG8o6qrYuHJPz2qf3n4bv\nnTAfrQV6VqM23+O8dT1Fn0NEsGxCa8GCtH5B9B1XbcA3j84fKS7rPVynLtm0hjmv761mi6zrGxDM\n3q6YBo2jFuWG+I8yW59UW7bG15TkfevAn7lDaitx/vri7ynkzojGwiN7TteNGND3/PcMs14L2O51\n9I2j5nq6bmFQHhtkr+PC7B6X9OUx/BBIpVEp9bZS6hKl1A6l1G6l1D0A/gJglo3DDwdwmVLqVaXU\n7wHcCGBLZtt+AJ5RSn1HKfUe0hXMaSISuzufWcbWwjDb7e1Y0zsMWwxr9CibDz/jrYKVxOB846j0\nsI/PHDgdxy/tQllK8i6xEbR818LM0YNjPZeysiyFQZVlmNURr4fHjqs24LilXabbovbcj1hyIuOM\nzJD0KSOtA4vZvfffoQup/70T8ofXt+ppLBVOopGHESZfGxExuKaywJ7eERE8sX01jl1ifk/xy1X7\nTQn0/eJu8+x2PHHhKgDZnQnlZQMxJ9waVFkW62d5lCVluQ0gpDmNItIGYDyAZ3QvvyAifxeRmzM9\niBCRJgAjADyl2+8pAL2Zn3v125RSbwN4Xrc91v7zsFlYNbENgx0ueXCXLmKbFnzh0Ln5R+2eYhge\neUGRa9qRPZVlKSwal7sUhNt7jJcVBqvhnFnv593bhcJJL2lFqsjbZUDPDS3oyTAbLddB8HINsrD4\n8dA/aM5o3HPyIpy9R+4oBO073G+GvetzlG6agNlcKHvRU5NTsCmWdsmGMY1z9pgmXLxxEq7cN1kV\nqsv3mYzjDQ1dB80ZbauHjQZoz+XF44bmbDPLw/mXW8uW5LUzq8qSNd0mLIFXGkWkAsA3AXxNKfUs\ngJcBzEZ6+OksAPWZ7QCgLU73uu4Ur2f20bbrtxm369/3WBF5XEQe37lzpxcfxXdzO4fgK0f0OQ5A\nME0XKa+5thI7rtqAzbPTc5YO7Gs3DeW8dHz2DWhFT/YE4Sgs+1FK3JazvVxD06wV2BgQZU7CQ7Xr\nr/pUSrDBYk0tM14M9TnaxdC/U1aOww9PW5I1XyVMSVnW1Yu6r3GY+uSRjSg3GY7eMaQWO67agOU9\nwUSqLqW7u53Kcf8onxD+MiKCrQvHJmZ9XM1h8zpwrgdD6pOu0PVZX12BB85YimsOmNr/2rjWdJHX\n9EgHjUFlKclaXi1JugYH24ueVIFWGkUkBeDrAD4AcBIAKKXeUko9rpT6SCn1z8zra0SkAcBbmUP1\npZ8GAG9mfn7LsM24vZ9S6galVJ9Sqm/o0NwWmqQ5d10PvnRo7towV+8/Fb+9ZI8QUkSmLO7nTubP\n6ff8zvHzi0uPzpC63JY5LbKb5uw1hedqRpnjzhUHFQdteNmQuvT/boqfF+45MEfZ7vFlKcGEPHNc\ngtarWyw8rssBnFpEoCo9YyCxqLAqqJ6zdoLpepxRNLzIHquPr+3BFw9Jf9aw5hUS2dHdWoeq8oER\nBcsmJL9MW4wxDWNCff8kdboEVmmU9FPpJgBtADYppT602LV/OoFS6lUALwLQx7iehoFhrc/ot4lI\nLYAuZA97LUnHL+3Cuinu1lHTF/I0fHj6xKISou/VMOsZfki33Ir+q5kxOv/SKV4z6yWJMmNvkdPe\nIyeV+b2mjcA1+0/FCcvi18J532mLC86Ns2uP3oGlYOIYaAEAjlgwJuwkFKXQ7Vss9tm2rDs263Fe\nu7m4pTBOWNbVP5Lg0r17MXF4A7pb6wocRcX6MDMUQT9CKinOWlP8UjeF9I5oyPscy5f343k39t9X\n9/gq7t7n7rCTEUlBlvi+BGAigI1KqXe1F0VkrohMEJGUiAwBcB2Ah5RS2rDTWwFcKCJNmQA3xwC4\nJbPtTgCTRWSTiFQDuAjA05lhr+TSbcfaj4yo1zHEfI0wck5/M7/7pEU52wfXhDN0yazxIMntCcU0\nlqRSggP62j3rXQtyzlnPsAbM6shugLhz2wL8+MylWa8dMne0rfM9uX01HjhjaeEdyXem0VOTnIlN\nrJ+Sf03b2WOa8T+nLu5fn5j8c966HlSUCZpDeqb56aQV9kcoFKrAmfVW/fC0JVnlNdPnc568XSrr\n7+Z7dn5iwSdyXps9bDbGNI7xMUXxFdQ6jR0AjgMwHcBLuvUYDwXQCeA+pIeU/g7A+wAO1h1+MdLB\nbV4A8DCAa5RS9wGAUmongE0ArgDwKoC5AA4K4jMl0Y/PXIp7Tl6Ehmp3N29G3vLHmJZwb+xJ/laN\nl6wWydaKm46y9syC66snuVtIOCpmjG5C11B3PS9NtZXobq1jsBW/FPiz6v/uVt9BKX01nz1wethJ\noIz9Zo7CH69Ybxm464L18QnKV8zaxto8Wqs2xs2zc9cHnTCsHg3VFa6WgxrbUou6ytxRTKVm3nB3\nnSROJOm5F9SSGy8opUQpVa1bi7FOKfVNpdRtSqmxSqlapdRwpdThSqmXdMe+r5Q6UinVoJRqU0p9\nxnDuB5RSPUqpQUqpZUqpHUF8Jq9FYdRW19C6rEVm9fJd8hftOSnPVnLFwfXgx6VTXWF+a4jCdeol\n4+cxi2Sbb3872ptr8NRFa4pezy6Kjx2naUpCJFU3jL3NiyIUpXBt77CcQo2xl1nj5ZzpMCzois5S\nRpRtu0k54oEzlmBBdzy+szFDavDD05a4Pn4gYm/uXfW5y9ehZ1jhwGZO1mAVAHvPGOEghfGVb06h\nH+svXzD3As/PGRXxmpCUYHEuSiU9gqavLO5lwweHF4Z8z6nD8cvzV2W9VqpDj71qIWysqSj6XFFs\nrHR633I7isFMvgWt/VBM4eLgOQPDeJ+9bC1u2Tq76PQUGmJpl9l1tf+s3F4NIP+aknGgLUGVpMAU\nSVFj0uvV3RqdgF6F3H96ccPvtSjTZldmoeWvjBXNu09ahPFthUeFLOhy0ngV31Jq0JXGJGOlMSLC\naIH/3gnz8aPT3bWMbZo5UKhQeW525M4VRazR9dBZy/Dzc1e4Pr6lrgqNgyoGws6LYGVPvIdWWnFa\nEeMDJpv+trXcRgS/O7ctwBaToDJnrnYeMCJOnZb6tRirK8o8CSB1/aGz+uc2lxdYQzTvWm2i7eP+\nDh7F7+IX563MeS2KDS8ULzUm66ACQEVZcRfXmEzDbJVuHu0xi8di5ODCS2As72nF7DFN2LY8HZ15\nyqhGzMwExbO85hOcF3qaubSLX1hpjIgwHrqzOpoxrs1eS15zbWXW758+YCr+8sn12Ts5vAmNY2Q6\nS3VV7ucajGmpxQgbDxor2kOmPDOkLugenSgz5tPPZCI2Vpan8F8uA0jZFcVn/Dl7TMDH5nXg2cvW\n4qtbCveedQ6tsx08p5A4VeD9mtNy/SEzsXT8UAwOaE2/OFW6zObIacnXf45jl3QGkyBKBMs6mJg3\nu+iHrObrHLjh8D7cvHV21vqcF2yYhJ/ZaABuqK7Ad45fgPF5ynOf2jTVcpuZ3ABu8cn85ZJdfsp3\n/w0ioneSRjaw0hgRUQxFf9k+kzGqaRAu32cyPrM5O3CAiPRnRLcFiTgVQErJcUvSS0QMrqnErUfO\nwZcOm5V3/zh9j17nM2245aLuFszr9HfuTRQn0zfVVuKyfSajuqLMdvrMvoK+Mc6HuCfpQezWgu4W\nfO3IOUg5iNDbZIhSafZ3dJpNonBpOrke9J9vRgKXekiSsItG00ZlD8l2eh+eMKweD521DCev6Maw\nButpJ821lVg+odVVGs0Y/24NgwwVqQLH65f1ypyx2CQ50+J8DejylHlje95KY4waH6OAlcaI2B3B\n6/Zj8zrw6MdX4LB5HWgy9DTqub2ph/0wIHP6Fvol44dmtXya3WBL6Xu0+qgRKDPHhtk1NL9rCCYN\nLxzoQS/oikp1eTyXX7j3lEVZf6svGxuBtOGpun0cD9uOyT3A7HPFJOmUUcwoHDecXB9W+WZMSy3O\nXDMh0IY/7T6rvWNc8qhbW3q3YGvvVgBAbYWDiPM+/F2S3KDJSmNETE9Aa2dys0n0JP0BEFXGv3uQ\nX0NS8pdxqLvmeycscHSeoHteT1jWFej7eaV3xEBPSV1VOYbUZS8LYB5x0VzcC0P7zhgJgL0LZN/o\n5ngGgTt2SSdGDh6EVZmlnuxe8XEtW5w+6/T+fD1n+Bxsn7cdn1ryKQDBB8IxnjPu9009VhojYr+Z\nI8NOgmscnupevj/B/acvwR3bnBWk/Zakm58XVH+woADeLCF/+tb66qzea80giwATVozDLP0W54Xe\njfl2w5ThA9tMLl6n13Nc7uWzOtLDoCsKBA6i6KgNuGfRaOLwBjxyzvJQ0+BGd2s9fnbuCrRkGomM\nlUGrRjdbz7T2/OsZhyElqYG0Q7B5wmaMbRzb/7sVNiA5wztnRERxvpJdblumdkVxTK5PrG5a+dYN\nG99W3x8BzSisv1zcb7DHLi22tyj782vr2R29mME0nBhusZC3E5/Yu9eDlJQW7S70xUNn5mxzex+X\nIo4NSyolWDfZmyVLyF9jWxwMNfRJu663Ma4lNeOzu9IigrO2vEdOIJzduwZ+Pup+T9PmNa08bSeG\nQSDxROJ60ZhgpZGK1tVai6H1VTh33URHxzlbIyiZrj80f5AZK/XV/rS+umm7mDoq+mu3/eTM9Bpa\ndsKX56M9X/afNQo/PnMphtRVYcdVG3wPggOwl9eo3sM1H5Pmt5eswUV7TspdX1V3CX3uwOlZL2XN\nabRaEDyBcwLjVuEtRd26SOtRDBoYB8Y/239+LF32+PZx83Glbomvm7fOwWmrxuUG7elclv5/5cXu\nEtC9CjjqR+6OzeM/6qb1D0M1Voz753XmKdiMqh+FlaNzl+chc6w0UtFqKsvx6wtWYWG3s4LzhGH1\n2HHVBly9yf2ahHHz7GVr8YfL1/b/7nRInqaiLIVDPVq6QHPPyYvw2LnOb56HzevwNB1+8GpoYU1m\nqNSeU4eja2iwS8ZsivEQdqMw1qUNy1e39AX+nvXVFThy0Vg8fHbhYXVaeaq6omygkpnQ4akUT/r7\nhZNIwVG1z/QRgb/nzI6BUUtPbl/d33s6Z2xz1jJIY1tqcdqq8bkVrWGTgUteBxaf4S4Bk/YB2ufk\nvj50IjBihrtzAli611ewbuw6ALmVxjJJP/fzBcYpT5Xjc8s/5/r9Sw0rjeSZlMuSg921IpOguqIM\nVeVleOSc5XgwJ6S1M1qlZeTg4of6AcDkkY2ma5sBwLLMwu19HblLI8R5aLUZs8XnNZft3YvTV43H\nknGFF7L3ynOXr8OfrliHBd3J6ZmfPMJ57/Rh87xtJAnK9HbzIeZBMkZS1L+mZ5a/C4l77k/Y7SuR\n2psGesz15YycnvSYmBvAyBSjkYMHoSEzQsltWc0T0w/N/n38GqDdxRrHUw8Ctr8MVAyUWdaOSTfI\nLxu1LH3qpvE4beZpuGbJNW5T64nhtcML7xQTrDSSZ6oryjBON4xkUIHeHa3IUkKdDv3am2uKnqux\nZcEYfPu4+VjR0+ZRqqwtGT8Uf7piHaa1R38oqp8G11Ti1FXjAm3trixPodxi/klcXbmf89EFfR3N\n/QV8/X2GCtPusfoGnl270//rC5BmlUs9s9ejcPv+n1MXmyxGnm1ofZXp66X4/Imb6w6agU8fMA1A\ndPJ+X0f4jUFO9d8Hwnyc9O6b/fvKi5FzF2m00UBYVg6UZU9RmDRkEn57xG/R3dQNIH2/O2rKURha\nE1wjr9E1S67BeXPOC+39vZaskgiFrnfEwFprPzh1sc2j+NR2I5USzBnrvGfALWPF5aw14y33DTqy\npZc4Z8Z/TocLn7++BxunDQzpuvvkRV4nyTdR6MjSrmh9B8OM0ellnvYyGSrndPRA2Flm4vCG/qBU\nemfvMQH3nLwID561DD86fUnWNvYwRs/NW2abvt5YU4H9Z43C146cg68cMTDcO5QeMwF+dPoS3HKk\nyVBLB3569vLAo6Nreb2qPISif/84eMPycqkyoMEw9aLbME3mkG8De1/vX9p8tHbsWtRUxLNH3Ey4\nsYwp0Qr1pFnd7qsrUnjvw93eJ4g8deSisWEnoWhmhV1WGaPn2CXxXCMRiNYcLH1KuobWYcdVG7J3\ncHHxR+XTlaUEXUNr8fzOt/tfO3F5t+X+WvTIyjAK0GRqeU9r3u1Lx2f3GGnX3ujmGvz13+/4lKpc\nXkypGT2kBqMDHl77ib0n45y1PagqD3H5oHaThoH5JwJDuoA3XwTuPTN3+/g90v/ftW3gtVR0G6aT\nHLSOd0sKjdnw1IXdQxwv8h01G6bmjl+P+1IVSWXWUN0xJPwQ76Wq1WIIoVGceonM1qQMmtPec8vh\nqQXWdguS1ZIBdl20sRcnLe/GigIVFYqugSBO/hVlndxrwu5xL6QsJSHej3R/SGPPYqoM6NkA46zr\nvKYe6FXCPJfk8h4rjRS6SbohrVftNxW9LoJkRMklG7l+XJxtzRMIh7zzyDnL8ZAhGNSvLliFA/va\nbR3fUleFRd0tuLXIYWKF6IfMXeVwLubKiFRIdmVKs4V61dwWdYIuIg2tr8JzV6wrKh3NtZU4a48J\nBedCUji0RenN/OK8lRjdXINty9I9ycMas5dSCipoljEKanKrCg7V6/4ua65I/z9GN6VAq12vvsxw\noMrdR+/4Rwd+7phfVBLJHVYaKTTao7qmshwjMlE7ozSUy63m2sqc15I4XCFOn0nfWvzIOfmXIUjC\nNRgH7c01GGMyhP2yfSbbOr4sJfjG0XOxZLzzIAc/tbEUBZAe+aAfMnfQnNH47IHTcvazCvoVlR7R\noXVVOG5pJ7559Ny8+2k9hk7T3Tk02N55yzlZLLUnxuMXrrLcNqyxGj89Zzk2zRqFLxw8A9s3ZK8R\nffk+/i3jpc8aWkTr/WeNAgDs2j1wAX5i7xJuPNbfQOZtSy/V0aRfmivzd5qyv/XxymSK0rDSWZ4t\nqlhppNDon+8fZW62ZVEpZRWhLCXY0zBEdd3kYSGlxlu7Q5hqahUcQc9JQAFtfSqKpsryFFZPasMB\nmYKYmWIbLOzOJTJ7H7MG8LtPXlhUevwmIjhv3UR0t9qbi2V1G7b6q19/yCx3CSMq0sZpI7J60L/m\n08iDRZkKon4klNbIorUz6odMR2FYeqDqdGWc3bvS/4+aDaRMqhlW43ibM3PX2yYDk/b2Nn0B2p2p\n8B44IbpDaN1ipZEi4cbD+7DXtBG25zRFnfGWaNajEkf6wnZQ9fu5nQMRYk9ZOQ4X7TkpZx+n6/4N\nFDLi30iRRDce3odrDsjt0Qua2TXeWp+9lmlVeSqnMjYwPC5e15fbjrrGgKMl11Sme3Zb6nJHdVD8\nOV1WY1STdw2BVqMGvnH0XHzrmLn4z8MHGki0jkWtcamxpiLvsNpEO+6nAz9XZ6YcteY+q9P64zln\nv9y1PD0Ete9IYMV2r1MYGG1OYyrUtU38kbxPFGOLx8V/8W4nhQ797WJa+2Bcd/CM/qGBwxq8WbA+\nNAkdJjV7TOElPrys+GuLEWtOXzXONGproQqsscfIrOJJ0ac1UPs1grhnWOGeuEWG+3S3SQF38bj0\nkNm4DZzQhtd5vZTBou6WgsPCNfqlVazcdER69MEPTlmMe3TLryT0tltS7ty2AN853tl8tbKUeFZ+\n6mrNbuCt1kUaXdDVgobqgQaS3VpPo64kPa8zuGWwImPzrUB9W/p/ABg6ATj8v4F1nzLff2Dh2Nxt\nw6akXzfrofTRj/b/Ee7Y6w5PztU9OD3XdkpL8obTstIYIbdsnYM/mkzujxMnwzDzPeAPmevNRHb9\nupFOaAXBmaOz1xQqtIyINjdTP7chacoLlNi9+u4A4Gfnruj/uboi5Xj9OEoWLf/5FbzEbvRDfbTG\nLx4y0/V5omZuZt3XrqHmPT1m2e/w+WMKnre7tS5nWLhZBf32Y+fhyn0Lz2nVztXaUI3JI+MdOI2y\nzRjdhME10elBPmxeh+U2bcjqZpvBuxKr3KSRv3MpUGHR+F+TqVinorPq37DaYRjXNM6Tc80dPhc/\n2PcH2Ni10ZPzRQkrjRFSlhJUFBlGPGxrJw/Hby9Zg99ctDrspBTlgvUTcejc0dgwNbvVu1AgiXtP\nWQzAXmt5qTD2FuZjXG6lXteqm28eW6EqhOUcLdZBI+1X56/Ew2cv6//99uPm4dYj53jSeHDO2gk5\nrxlDpVu9zx0nDMxh1IaeD9EFwBqUGT45OGbzmg6b14HHzlvhqCLmdq25KpNhgLM6mlBt8vp+M0bm\nvEaUzxU2Gh/syBdxuGNILXZctQEzRjd58l7xZbhPFmo1O+x7wIZrgVoXvcNH/hA45UnnxwWsvSGZ\nDQnxrqFQJNVXV9hqKayw2VugzV8JUnNtJa7Ydwoqy/Kn8YenLcn6XStjmq3VWKp+ef4q7D3dXiV6\nVof1w1dfoL/+0NzeHTNDM0NlWTeMp9aG6qx1M1vrq11FSzWz9/TcioixrGN13UwyGcHwwBlL+39e\nMq4FF+05CRfvFa8IiiKC4YblC/xy7OJObDEsb2M2LPbCDROxl837B5HG6yHWZNCmH3qZuXFqEU9T\nBcpsjaOA2Ue7e9/R84DmTnfHUtFYaSRfrZ9iPVzV7qLKd25bmDeSYj5uh4mZPW+mjcptfZ8wrB5X\n7jtw8zTrDdswpbQrkIMqy1BbldvbaHfeqjIEG0j/XNgpK8dZfv8xHT1IHrKzIL2TcmeTrqdRRHDk\norGoM7nu40xEPLuf1VSW4RJDpVokN28fvbjTdn7VvtOtC8cUnT6KN7Osa2e6SrFDywfmXSe80nrc\nw7mvaVFTExgAhtL4zZKvzFrzNa02Kw0ThtXjmCXuWpaMQSuszLER4OW7J5gv67Bb/5QxeU5cd/AM\nW2mIC+3T6h+K3zpmruk+Ttx90qKs31dPasv6Xb8WnP78Vo0PR+kD5jhcQoCIzJ22apytBp9RTc57\nLG23xs0AABf8SURBVI3Dged3Dkn/4PCGYmeeJSWb2SVTW1m4EWdCm71laaxo8Qz8mncdSVrPYtcK\noGEUsOgMb857zIPAUQ94cy7yBCuNlAiX7TMZ15qE6J803F4gnNuOnVdwn4qylOmDqFB5JmkPj92G\ntamAdFQ5p4zzxyaPzP6uRg5OFzprq8pxw8dm4VaL9be+fJj5GnHpdbLMv51ZmTkoqya2mW6n5LAa\nzmrWo6C9pAW0SnxvgQvj2urxi/NX5t3nwg0TcfdJi3BgngAhVRWFix/a3HDjvcLKaavGAwDaGkp0\n2QPK6xP7FB4uftKKbtxuozxgpWd4utI5YnAww7wjoTozraSmGTjjGWD4VG/OO3Im0F54nWYKDiuN\nFGmFopVqDp7djjmZyH8jBw/CM5fugY+v7bEVkGZ4Y3VOxa7NoiVdP6TtzNXpAkqNLnBDKZQxtT+B\n8W82sDad9TGaP1+5Pms9q5GDB/X3MqztzR3SvKZ3GIZYrH9VlhKUWwSQqsqESzcOG540ogF/vnI9\nltscIk3xdcH6ifjp2faWe+jM3G/GZyJ7lkB29tzYllocvbgTTbWVGNeWjsJqdl/s70XMQ7vF6O8f\n2/Msl7PPjJHYcdUG1NjoUaJk6e/hy1xsZnm30UZgqrqqcsy1cW1aOWl5N75/4kJMbx9ceOc4kxQg\nZUDnMmCUecMtJQ8rjRSI+qpyfO8E+2svab1ZGzMBZQrNMxCR/gWmN04bgdqqcpywrAtlKSlYkTvK\nsO5ffVV5nkrjwM+TM3Mc9ymxyH6f2jQVbQ1VOUPJTls1HvM6m01DlBvnj6VSgpu3mLcgzrWxzpV+\nSLBWsDxodm6vxtePmoNTV44zXQQ8lacH+IEzltoOtkPRZyfC59aFY/CFQ2bg7pMW4dC51mH2KT/9\nbWGP3mEoTwkOnpNuUPrcgdMBpBdQ1+4fWk+wWWORlkf1jYdrHSzrRKXjwMz9f/ww8+ViAKCtvvCw\narvTZqyUl6WSX2EE0hn94n8Dh98VdkooQKw0UiDmdg7BrA77i94OrP1qXbAfXJPdathQXYGnL1mD\nc/bIDqXvdGK7PqCFHWUpQX3CAl7ks3l2O355/qqc11vqqvBfx87P6kHUmK1bWczDOWsaaZ5rpHNo\nHU5fPd7xEg3drXVYX+IBjOLMzrwk433h4o29qCovw5RRjf2NHKUwcsBrF+l6Atuba/CnK9djfOb7\nWNObOxz8YENjT3lZCtMyhe7JI9INc51D61AbQhRtio+9p6d7mVszFcNdhgw+d2yzZUOhttbquet6\n/E0kUcyVTkmXYkX1z5uzLrUNa6jGa+98CGBgKEpDtfN10fJVKIyVHat1NBmN05w2ZPictT34zhN/\nt3WMSf0yh9n3sDuuK6pT0TqH1uLPO98GACwdPxSf2TwNsy53H0BBq7TkW9ibzC2bYD3kO18W1c9b\nvOvEhXjng4+yhpk2DqrA2x/s8iSNlHy7DQ+S+jzrBW+YOhwretaiWjfP9tSV4zB3rP2GbqJSwJ5G\nCoTTFvvFmSFLi8al5xaYBUIwWwTaa8Y5b8Maixu6Umq0IDXaeol2aFEXJwyz7i1aPakNZ+8xAb+9\nZE3/awxaUrpW6CoqN2+ZjSF1VTnzobUhytpyDO3N1oEq2hqqseOqDXkrQGYu2nMS7txmHmWZzGll\ne2P+5bxEKsbS8dl591P75wbKA4CuTFTuQZVlWQ3Ip68ejwXdLhafJ0owVhopEE47gWaPacZfPrne\nckjreet6sOfUgeGDTuoLPz5zKarKBy79fMFN9QuLaxZnlvHQH2a25lurg4pS0uw2BCVwYo/eYbhj\n2wLTOYqaspTgxOXdqNf1LJ+ztgeHz2fPUKnThqBpgZq0S/D4pV3p7VqgDBEsn2AeWdWtIxeNxYxM\nZN6k+/xB0/HAGUscHWN2O9B6d5odTgsgymf0kJqsZ7vV9XXvKYsDShFR/LHSSL4qpu8n37DR45Z2\n2Z6n9o2j5ua89ovzBkLGe9E/pfV6VqQGstSvLliFHVdt8ODs8TMxs9RJZbm9W8yFGyZm/T5zdJPj\neYjNtZX4xN6THR1DyfW5A6dj3eRh/RFRteHL+qtK6+Wa1VEaFT0v7T19JLpbna1pZ9Z4uKKnFZds\nnIQLDPcA63NwGDrZY+dKCWLEElFScPwH+WpgodviztNqEvVMX3jIV8FYNC57iInAebCb7PdN/68f\nTnX7cfPx4LP/wiAGawAA3HB4H/7w0pu2/x7rGHSGPDZ5ZCO+pFvDcyC41sA+2h3k5BXdwSWshJmt\n8Soi2LJwrMUR+mPT/ydt3VsiorhgTyP5akFXC8YMqcGpK8cXdZ7m2kr0jshe/N2rBmetwmk11Ora\nA6ZlTYif35WeZ9nePBDGv7u1Dscs6fQmQQnQOKiiPwiO5patXKSXwqPdLvSNPdowajfzYZ+4cBWe\numhN4R2pX//8RRcVv4+KGPJOpU0bmq538opu/OHytSGkhii+2NNIvmqsqcBDNhfWLmSQYRiJWXAc\nO4y9ktrcyPKUeRvKplmjsGnWqP7fT1jahX1mjMTIwdaBNCiX06AiRF5aPakNV/3Ps9h7+sC6qrtt\nRGm2MsRkaRnKr76qHPM6m00L8YV8/qDp+PwDf+TfnWzTGpZPWzUuZ9uZaybkvEZE+bHSSLFhrCLW\nVTlfXgNAzkLvWiFEW9ep0PCnVEpYYSxCDYfwkk+0ReTNdA2ty5ljPDDU3M9UlYYzV48vGJAslRL8\n17HzXZ1/YXcLFjKaJbmgvy4H11T0L9VFRM6w0kihcNPSbHTg7Hacf+dvHR3zl0+ut5z/+NGudAmy\nnCVI39yxbQFGNLLCTd7SGpQ6W3KjHeezprcNj/35layh5uTOyStze3OIokB04a8eOmsZ3nr/oxBT\nQxRfrDRSoH5wymK89u4HWNBVfIuxk4AI/3XsPNRVlecNmDO4Jt1zuXS8t2H4acBMw3IET1y4KqSU\nUJIMBNxy1uCzZcEY7D9rVNbSLUSULNk9jZUYXMPlXYjcYKWRAjXJEMymWGetGY/P//iPBfeb1zmk\n4D5tDdV45JzlGN6YG6mV/MH5SeSFU1eOw5vvfYSD5liv7WlGRFhhJEo4jh0i8gYrjRQ7tx87r//n\nk1aMw0krvBsWxWFqRPHTVFuJazdPCzsZRBRBTtf8JSJzXHKDYsdNuHYiIiIqHftMHwGAa3sSeYWV\nRiIiIiJKlE8fMA1PX8K1VIm8wuGpFBuqf001b843q6MJB+jWXyQiIqJkKC9LoaGMfSNEXmGlkWIj\nEyDRs/kJ3zthgSfnISIiIiJKMjbBUGwM9DRyfgIRERERUVBYaaTYOHReBwBgNCOcEhEREREFhsNT\nKTY297Vjc5+zddiIiIiIiKg47GkkIiIiIiIiS6w0EhERERERkSVWGomIiIiIiMhSIJVGEakSkZtE\n5AUReVNEnhSRdbrtK0XkWRF5R0QeFJEOw7FfFZE3ROQlETnDcG7LY4mIiIiIiKg4QfU0lgP4G4Cl\nABoBbAfwbREZIyItAO7IvNYM4HEAt+uOvQTAOAAdAJYDOEdE1gKAjWOJiIiIiIioCIFET1VKvY10\n5U9zj4j8BcAsAEMAPKOU+g4AiMglAF4WkR6l1LMADgewVSn1KoBXReRGAFsA3AdgvwLHEhERERER\nURFCmdMoIm0AxgN4BkAvgKe0bZkK5vMAekWkCcAI/fbMz72Zny2PNXnPY0XkcRF5fOfOnd5+ICIi\nIiIiooQKvNIoIhUAvgnga5newDoArxt2ex1AfWYbDNu1bShwbBal1A1KqT6lVN/QoUOL+xBERERE\nREQlItBKo4ikAHwdwAcATsq8/BaABsOuDQDezGyDYbu2rdCxREREREREVKTAKo0iIgBuAtAGYJNS\n6sPMpmcATNPtVwugC+m5iq8CeFG/PfPzM4WO9eljEFHEHbekEzdvmR12MoiIiIgSI8iexi8BmAhg\no1LqXd3rdwKYLCKbRKQawEUAntYFsrkVwIUi0iQiPQCOAXCLzWOJqMSct34ilve0hp0MIiIiosQI\nap3GDgDHAZgO4CUReSvz71Cl1E4AmwBcAeBVAHMBHKQ7/GKkg9u8AOBhANcope4DABvHEhERERER\nURFEKRV2GgLX19enHn/88bCTQUREREREFAoReUIp1Wdn31CW3CAiIiIiIqJ4YKWRiIiIiIiILLHS\nSERERERERJZYaSQiIiIiIiJLrDQSERERERGRJVYaiYiIiIiIyBIrjURERERERGSJlUYiIiIiIiKy\nxEojERERERERWWKlkYiIiIiIiCyx0khERERERESWWGkkIiIiIiIiS6w0EhERERERkSVWGomIiIiI\niMgSK41ERERERERkiZVGIiIiIiIisiRKqbDTEDgReRPAH4o8TSOA1z1Ijl4LgJc9PifgfVr9+Ox+\nnDcu6YzTOf06bymfMw75ntdSPM7p13njck4/zutXOv3I93H47HE5p1/njcs5/ThvXNLp1zmj+qyf\noJSqt7WnUqrk/gF43INz3BDFdAWRVj8+eymnM07njFNaY3TOyOd7XkvxOGec0hqXz+9jOj3P93H4\n7HE5Z5zSGpfPH5d0+njOSD7rnaSLw1PduzvsBDjgdVr9+uylms44ndOv85byOf3iZVp5LcXjnH6d\nNy7n9OO8pZrn/ThfnM7p13njck4/zhuXdPp1Tr8EltZSHZ76uFKqL+x0GEU1XUTkH+Z7otLDfE9U\nWqKa552kq1R7Gm8IOwEWopouIvIP8z1R6WG+JyotUc3zttNVkj2NREREREREZE+p9jQSRZqI3CIi\nl4edDiIKBvM8Uelhvqc4YaWRKEAi8pCIHB12OogoGMzzRKWH+Z6SiJVGIiIiIiIissRKY4DY8kQa\nEdkiIo8aXlMi0h1Wmsg/zPvEPF9amOcJYL4vJaWQ51lpJCIiIiIiIkusNIZARJpE5B4R2Skir2Z+\nHqXb/pCIXCYiPxORN0XkfhFpCTPNRFQ85n2i0sI8T1RakpznWWkMRwrAzQA6AIwG8C6A/zDscwiA\nrQBaAVQCOCvIBBKRL5j3iUoL8zxRaUlsni8POwGlSCn1CoDvab+LyBUAHjTsdrNS6rnM9m8D2Cu4\nFFIA3gZQo/0iIsNCTAsFhHm/pDHPlyDm+ZLHfF9ikpzn2dMYAhGpEZH/FJEXROQNAD8FMFhEynS7\nvaT7+R0AdYEmkvz2FIBeEZkuItUALgk5PRQA5v2SxjxfgpjnSx7zfYlJcp5npTEcZwKYAGCuUqoB\nwJLM6xJekihAKtPC9AkADwD4I4BH8x9CCcG8X5qY50sX83zpYr4vTYnN8xyeGo56pMc4vyYizQAu\nDjk9FJwGAK8AgFLqCgBX6LZ9Q/tBKbUl2GRRQJj3Sw/zfGljni9NzPelK7F5nj2NwVMAPgdgEICX\nAfwCwH2hpogCISK9ACYCeDLstFAomPdLDPN8yWOeL0HM9yUt0XlelFJhp6FkiMj/AviEUur7YaeF\ngiUiVwM4DMDVSqnrwk4PBYt5v/Qwz5c25vnSxHxfukohz7PSGJBMy9PjAHqUUi+EnR4iCgbzPlFp\nYZ4nKi2lkuc5PDUAmZan+wF8PMkXExFlY94nKi3M80SlpZTyPHsaiYiIiIiIyBJ7GomIiIiIiMgS\nK41ERERERERkiZVGH4hIlYjcJCIviMibIvKkiKzTbV8pIs+KyDsi8qCIdOi2bRaRn2e2PWQ473gR\nuUtEdorIv0XkhyIyIcCPRkQWfMz3LSLyMxF5RUReE5HHRGRhgB+NiCz4le8N73GEiCgROdrnj0NE\nBfiZ5zP5/G0ReSvz7ysBfSxbWGn0RzmAvwFYCqARwHYA3xaRMSLSAuCOzGvNSEdbul137L+RXuPl\nKpPzDgbw3wAmAGgD8CsAd/n0GYjIGb/y/VsAjgQwFEATgKsB3C0i5T59DiKyz698DwAQkSYA5wF4\nxpfUE5FTvuZ5ANOUUnWZf5FqKGIgnICIyNMALgUwBMAWpdSCzOu1SC8AOkMp9axu/6MBHKaUWpbn\nnM0AXgHQopR6xcfkE5ELXud7EUkB2IB041GbUupf/n4CInLKy3wvIl8G8DSAzQC+oZSKVM8DEXmX\n50VEARinlPpTUGl3gj2NARCRNgDjkW4p7AXwlLZNKfU2gOczrzu1BMBLrDASRY/X+T7zUHoP6Qrj\nV1hhJIoeL/O9iMwB0Afgy96nlIi84EMZ/6ci8pKI3CEiYzxMatFYafSZiFQA+CaAr2VaGeoAvG7Y\n7XUA9Q7POwrAFwGc4UU6icg7fuR7pdRUAA0ADgHwqEdJJSKPeJnvRaQMwPUATlZK7fY6rURUPB+e\n9UsBjAHQA+AfAO6J0lSUyCQkiTJDyb4O4AMAJ2Vefgvpgp9eA4A3HZx3KNILiV6vlLrNg6QSkUf8\nyvcAoJR6D8BtIvJ7EfmNUuqpggcRke98yPfbADytlHrMs0QSkWf8eNYrpX6a+fEDETkVwBsAJgL4\nbdEJ9gB7Gn0iIgLgJqQD1mxSSn2Y2fQMgGm6/WoBdMHmJPfMpPj7Afy3UuoKTxNNREXxK9+bqADQ\nWURSicgjPuX7lQD2zQxTewnAAgDXish/eJp4InIswGe9AiBFJNVTrDT650tItw5sVEq9q3v9TgCT\nRWSTiFQDuAjp1sRngfSQlMzr5QBSIlKd6f6GiDQA+CGAnymlzg3ywxCRLX7k+3kiskhEKkVkkIh8\nHOkH1S+D/GBEZMnzfA9gS+ac0zP/Hkc60MYFQXwgIsrLj2d9r4hMz+xTB+BaAP8PwO8D/Fx5sdLo\ng8yaLMchfaN/SbfeyqFKqZ0ANgG4AsCrAOYCOEh3+McAvIv0Bbk48/ONmW37ApgNYKvunG+JyOhA\nPhgRWfIx31chPX/5FaQfIOsBbFBK/cP/T0VE+fiV75VSrymlXtL+IT0E7g2llHG+FBEFyMdnfRvS\ny3O8AeD/t3c3oVJXYRzHvz8qW3TVygi5lkWS2ctGohcXkVBEidEikcwuLVN3gbiQIqIo3EeRES7K\nIiUINIKMyE0GUqtejFDM6qYQaVcjQuVpMefScLl/Mr2oNd8PDMxwzjznYXY/zjMz++h9t3Fp3y3m\nOedfbkiSJEmSOnnTKEmSJEnqZGiUJEmSJHUyNEqSJEmSOhkaJUmSJEmdDI2SJEmSpE6GRkmSJElS\nJ0OjJElAkrnt/7YuONe9SJJ0PjE0SpIGVpL9Se4FqKoDVTVUVSfP4vmLk/x4ts6TJOl0GBolSZIk\nSZ0MjZKkgZTkDWAusK2Npa5LUkkubOufJHk+yadtfVuSWUk2JxlLsjvJtX31FiTZkeTXJN8mWd63\ntiTJ10mOJvkpydoklwAfAMOt/rEkw0luT7IryZEkPyd5Kcm0vlqVZE2S71q955LMa+8ZS7JlfP/4\nTWaS9Ul+aTerK8/OJyxJ+r8wNEqSBlJVjQAHgAeragjYMsm2R4ARYA4wD9gFbAIuB74BngFoAXAH\n8BZwJbACeDnJza3O68ATVTUduAX4uKp+Bx4ARttY7FBVjQIngSeBK4BFwD3Amgl93Q/cCtwJrAM2\nAiuBq1v9FX17Z7dac4DHgY1JbvhXH5YkaaAZGiVJ6rapqvZW1W/0bgX3VtVHVXUC2AosbPuWAvur\nalNVnaiqL4B3gWVt/ThwU5IZVXW4rU+qqj6vqs9anf3Aq8DdE7ZtqKqxqvoK+BL4sKr29fW5cML+\np6vqz6raCbwPLEeSpFNkaJQkqduhvud/TPJ6qD2/BrijjZQeSXKE3s3f7Lb+MLAE+D7JziSLug5M\nMj/J9iQHk4wBL9C7KTydvgAOt1vNcd8Dw13nS5I0kaFRkjTIaorq/ADsrKpL+x5DVbUaoKp2V9VD\n9EZX3+PvUdjJzn8F2ANcX1UzgPVAzqC3y9r47Li5wOgZ1JMkDRhDoyRpkB0CrpuCOtuB+UlGklzU\nHrcluTHJtCQrk8ysquPAGL3vLY6fPyvJzL5a09ueY0kWAKunoL9nWx930Rul3ToFNSVJA8LQKEka\nZC8CT7Vx0mX/tLlLVR0F7qP3wzmjwEFgA3Bx2zIC7G/jpquAx9r79gBvA/vaWOswsBZ4FDgKvAa8\nc7p9NQeBw62vzcCqdq4kSackVVM1mSNJks4nSRYDb1bVVee6F0nSf5c3jZIkSZKkToZGSZIkSVIn\nx1MlSZIkSZ28aZQkSZIkdTI0SpIkSZI6GRolSZIkSZ0MjZIkSZKkToZGSZIkSVKnvwD6Kj/J379G\nDgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "energy[energy.index < valid_start_dt][['load']].rename(columns={'load':'train'}) \\\n", - " .join(energy[(energy.index >=valid_start_dt) & (energy.index < test_start_dt)][['load']] \\\n", - " .rename(columns={'load':'validation'}), how='outer') \\\n", - " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", - " .plot(y=['train', 'validation', 'test'], figsize=(15, 8), fontsize=12)\n", - "plt.xlabel('timestamp', fontsize=12)\n", - "plt.ylabel('load', fontsize=12)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data preparation - training set\n", - "\n", - "For this example, we will set *T=6*. This means that the input for each sample is a vector of the prevous 6 hours of the energy load. The choice of *T=6* was arbitrary but should be selected through experimentation.\n", - "\n", - "*HORIZON=1* specifies that we have a forecasting horizon of 1 (*t+1*)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAADUCAYAAACrkCQQAAAAAXNSR0IArs4c6QAAAARnQU1BAACx\njwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABrKSURBVHhe7d3djxxVesfx/Ik2LA7LS4IgwYQN\nYdEi3hYJ0IogBBdAhIwUEZIILWBQLHFD4hU3kYKQpQiBN76IJS58gSGSr+wbX1X0tPpAbfN7putU\nnXqeMz3fj/SVGc/Y5zA13f10dc34zwYAAAAAq2PwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAG\nbwAAACAAgzcAAAAQgMEbAAAACMDgDQAAAARg8AYAAAACMHgDAAAAARi8AQAAgAAM3gAAAEAABm8A\nAAAgwPzB+38+pqlFUuuTXxS1NvllUXshHYBj7V+//I4m1hKDd0SR1PrkF0WtTX5Z1F5Il0Xthfwy\nqH2QXxI1YJKuJQbviCKp9ckvilqb/LKovZAui9oL+WVQ+yC/JGrAJF1LDN4RRVLrk18UtTb5ZVF7\nIV0WtRfyy6D2QX5J1IBJupYYvCOKpNYnvyhqbfLLovZCuixqL+SXQe2D/JKoAZN0LTF4RxRJrU9+\nUdTa5JdF7YV0WdReyC+D2gf5JVEDJulaYvCOKJJan/yiqLXJL4vaC+myqL2QXwa1D/JLogZM0rXE\n4B1RJLU++UVRa5NfFrUX0mVReyG/DGof5JdEDZika4nBO6JIan3yi6LWJr8sai+ky6L2Qn4Z1D7I\nL4kaMEnXEoN3RJHU+uQXRa1NflnUXkiXRe2F/DKofZBfEjVgkq4lBu+IIqn1yS+KWpv8sqi9kC6L\n2gv5ZVD7IL8kasAkXUsM3hFFUuuTXxS1NvllUXshXRa1F/LLoPZBfknUgEm6lhi8I4qk1ie/KGpt\n8sui9kK6LGov5JdB7YP8kqgBk3QtMXhHFEmtT35R1Nrkl0XthXRZ1F7IL4PaB/klUQMm6Vpi8I4o\nklqf/KKotckvi9oL6bKovZBfBrUP8kuiBkzStcTgHVEktT75RVFrk18WtRfSZVF7Ib8Mah/kl0QN\nmKRricE7okhqffKLotYmvyxqL6TLovZCfhnUPsgviRowSdcSg3dEkdT65BdFrU1+WdReSJdF7YX8\nMqh9kF8SNWCSriUG74giqfXJL4pam/yyqL2QLovaC/llUPsgvyRqwCRdSwzeEUVS65NfFLU2+WVR\neyFdFrUX8sug9kF+SdSASbqWGLwjiqTWJ78oam3yy6L2Qrosai/kl0Htg/ySqAGTdC0xeEcUSa1P\nflHU2uSXRe2FdFnUXsgvg9oH+SVRAybpWmLwjiiSWp/8oqi1yS+L2gvpsqi9kF8GtQ/yS6IGTNK1\nxOAdUSS1PvlFUWuTXxa1F9JlUXshvwxqH+SXRA2YpGuJwTuiSGp98oui1ia/LGovpMui9kJ+GdQ+\nyC+JGjBJ1xKDd0SR1PrkF0WtTX5Z1F5Il0XthfwyqH2QXxI1YJKupRM7eL/w5N8Mp06dmpR9rPo7\nJhdJrX9g/e1f/8XmuDz0l/fI91cVRa19jPrvC28O//C73wxPPfZXf3LbsGPw6m//bvjPD16Tf252\nWdRejlH/91//PLz/xm83x+mXf37Xj8fJ/tvux/7t3Evyz80qi9rLMc9uX3bc7L7N/lt9zOwyqH2Q\nXxI1YB5aL//Tp8Mvztwt31dTSyd28B4/KO3rH199Wv4dk4uk1j+gbMgrx2XxEyIrilr7mGQD9/j2\n4GUfp/78rLKovRyDbOCeepxsKLePV39PVVnUXo5Z9vn/9/f+fnN/Zk9ex8dHffyiMqh9kF8SNWAe\nUk+/+s6Ptyv1/ppa6mrwtjsjG3LtgaH5GbRR9nfbgbDhW72/eZHU+guzMzE25Nqv6v1R2dm6ciOy\nmuwnilq7QeVMtJ0pU+9vkd0ebTiwz/fu2TgbHsorEM2OiZVF7WVhEcfIjkM5BjbM2dvj4dr2MH6V\n71g9ad2l9tKotY+V3YeNj8NudltTf25RGdQ+OihqxqguiRowa3r+jX8ZHv71M8NvfveGfH9W71z8\n42Zf49uW+riaWupq8B4/eKj3t6qcGbIHKPX+5kVS6y/I7qjKMcm8o7IHxLKPpvuJotZuUPlaXuUB\ne9u+z7N9jZThu9mT2SxqLwuLOEY2TNhA97//8Y58f2n8itG+j91bFrWXRq19rMZnt+02Y+vZ7asM\n4/a2+nOLyqD20UFRM0Z1SdSAWVP5XPY0eNuTAbu0xPZ1/0OP/LhH9bE1tdTV4G0PHvYJWvMByipD\nQtPrHY8qklp/QfagUL5w1fsjsgGhXBpUHhib7SeKWrtBdluxz8Xiy6EWNn5AO1ZPiHapvSws4hjt\nvhLhNX4ivfjViSxqL41a81jZ/ZgN2PZ5333SU+7f7HY0/v0mZVD76KCoGaO6JGrArKncl2QP3naG\n2y4r+eX9D2z2Y4O3vW3Xd5c9qj9XU0tdDd4RD1B2h1cOxPil2FWLpNZfUPYd1fhsqp2tswct++9m\nLwVHUWs3qHwtNxl2F9Z0L1nUXhbW0zGyylnXxfezWdReGpVxrMaPSbsDeZMyqH10UMSMMaskasCs\nqXzdZg/etn7Zy6+efml488IXm99n8J5Q+QSteadXrhNuNrhNKZJaf0HZd1Rl6C6Df3mpvNlLslHU\n2guz24l9Liz1/ujKXhi8f6q3Y2QxeOuyjlV5tWi17znKoPbRQeX4rjljzCqJGjBrKp/PFoP3a7//\nw2ZQtrPX6v1HZWe3xwN3icFbtPvNcl72QKH+/JzK4BY6SEZS61c0Pvuyr1XOzowqx8qG7/LqRBka\nml0mFEWtPaPxNbpHZR+n/vxaja/Bn3rZw5FlUXuprNdjVCrrL74NZVF7mVkPx6pcPtfkG15VGdQ+\nEsqYMWaVRA2YRzUeZPdlH6v+Dq8HH31i1p87KgZv0dQ7vZZ3SOVauibDwdQiqfUrmnpHtdrZmW3l\na2M8dI+vT2029EdRa8+oPPHYV7OfLjIxeyJr6zZ7AMui9lJZr8fIGl+Lv/g2lEXtZWY9HKvVX1XM\noPaRUMaMMaskasA8KgbvNrq51KTcQNa8AZSzcuHPbiOp9WdWhvC1h+zdyteCrTt+glReCm66nyhq\n7YWVoSFjgBtnx6g8oW32zWFZ1F4W1MsxKu1eurWoLGovDco6VramtdrlDxnUPpKLmDFml0QNmDWV\nr90Wl5oweE+hvngWVB4Q1rzTK2fldrOhwW6MzS5f2C2SWn9mq78EKhoP+7uvSpTj12RoKEVRay9o\nfPY/9NWbnWxYKEO3PbCpj5lVFrWXmfVyjErjs39N9pNF7WVhWcfK1irrllf2mpdB7SO5iBljdknU\ngFlT+dpl8K7TzeBdPjlrftNDueEdlZ31aH7HG0mtP7Pob6w8aui2VtlPFLX2gsrZf0u9f81sbXvw\nKsej+TGxsqi9zCzzGO02HrqbnWDIovaysKxjZbcjW9Mem9T7m5RB7SO5cnzXnDFml0QNmDWVzymD\nd50uBu+oOz3vBme/P35gssGv6TcORlLrz6x8PiLuqPYN3VY5s9p0P1HU2gta5ey/6KhvtrUnqfaq\nyCrfZJtF7WVmUcfoqOzYjJ8gNX1VL4vay8KyjlV53Gn6atFuGdQ+EouaMWaXRA2YNZXPKYN3nS4G\n73Knt+qz/gnZwFeGu6Z3wJHU+jMa31Gt9hLotilDt/3+KvuJotZeUBmmmv1YRadybHazoduGhdWe\nlGVRe5lZ1DHysuvty/3ZsX8lb0ztZWFZxyrkuvIMah+J9TJjuCVRA2ZN9jm1GLzrdDF42zXE9onZ\nd6c3Hr6Oask1yeUGajU7kxdJrT+jmpdAy4P7UdnHqD87Zei2ysc1v+OMotZeUPmc7/tmxnIc9zXl\ngd+e8NigbR9rx6H82aZnUUtZ1F5mlnGMrN2z3Ha/usqT5yxqLwvLuj2Vj2/+pGhcBrWPxKbOGGkl\nUQNmTeXrd+rgXT5+bjacq7/Xi8H7iMqz/n0P4FPv9Gx4Vn9+SuOX1pudzYuk1p/R1JdApz4ZUq8g\nlDX2Dd3W1P1UF0WtPbPx1+i+J4flAWdfc77Wx7fHZj/NpJRF7WVGWcfI7vvKEGn3q6u9ImFlUXtZ\nUNaxso8pH6/e36wMah+JTZ0x0kqiBsyaytcvg3ed9ME77Fl/RWU/zR60Iqn1Z1TOaE49y1ZbzdBt\nrbafKGrtmdmQWz536v2RleNoD2zq/bPLovYyo+hjZLeh8asQNoCvcpZ7XBa1lwVl3Z7Kq6vqpETT\nMqh9JNXjjPGzkqgBs6byeeVSkzrpg3e507PU+zMq+zmpg/f4jmqNM2bjMz1LW7y/KGrtmdnLpfb/\nvvoD9oTGx3Lf2cKqsqi9zCjyGNlZvHKW24bvsOEii9rLgrJuT7aerbv65Q8Z1D6S6nHG+FlJ1IBZ\nU/m8MnjXSR+8w571T2yVoTOSWr+y8TCl3r+0csxbpP7+qqKotWdWHrDt86jeH9n4a6XZ7cXKovYy\no6hjVF5xSPl6yKL2sqCs21N5smSDoXp/szKofSRVHm96mTFkSdSAWVO572HwrpM+ePc0RFirPDuO\npNavrLc7qlX3E0WtPbPy9dl00J3ZePDmjPdPRRyj2su1mpdF7WVBEcdqNzteZd2mtxtVBrWPpHqb\nMWRJ1IBZU/kaZvCukz54hz3rn1i5kS75ySg/K5Jav7LevgN81f1EUWvPaPyAvfo1vBMqP22m+fWx\nWdReKos4RuXyiLSh28qi9jKzrNvTarcbVQa1j6R6mzFkSdSAWdMvzty9+dwyeNdJHbzXvpa4tnJn\n2Hw/kdT6lZVv0urlDMGq35EeRa09o56uV7Tbbzk2x/anzexSe6ls7WM0fpUh9X4zi9rLzLJuT+WJ\nU9MTPF4Z1D4S6m3GcEuiBsyayrDM4F0ndfCOeACZehZj/KPRmp9ZjaTWr6x8HnoYvMd3nKuc2Yui\n1p5RuezGUu9f2tSfGmPHpTxBszNKU29nk8ui9lLZ2seoXGISMrQdVRa1l5mtfay8Qk9uZFD7SKib\nJ6n7SqIGzJrKsPzwr5+R76+JwXsK9cVT2XioKndA9nt2ZrPV2U17cLLLR+zv2x3c7G37/XLWzmp+\n5s6KpNavrDwo2OeuDFR2ZijkQWKn8R2nev/ioqi1ZzQ+Q1ceSOwaUTs2S5+YlM+13R7syae9PR6o\n7b/t9+x95eXb1S51yKL2Utmax8gqf/cqrwDVlEXtZWZrHyuv3TVXLYPaR0IRM0aTkqgBs6anX/3p\nZ+Dbf5fff+ncR8ObF774k4/d12u//8NmUH7n4h/l++fE4O1UrqnerdUdUhkQ9mUfZ3fC6u9YXCS1\nfmV2B6U+R+WOK7Kyl1W+sdKKotaekT1oeF/T6uNrsgeiqbcXy47Jat8YlkXtpbI1j5HdL6q/d2rq\n75xdFrWXma15rLzGx9DWVx/TtAxqH0mtPWM0KYkaMGuyIfn+hx6Rn9+WZ67nxuDtZHc85ZvnLDvb\n2nLAs2HaztCpG5+tZWe4V3/mG0mtP6PxWU07A2qfp5AHiZ3K10bzy39KUdTaM7MzceVVCcu+tls9\nabRjbLcHO967txn7erDfs9vnmmcDN2VRe5nRWsfIe1I8JduD+jtnl0XtZUFr3p5U5bJGW1O9v3kZ\n1D6SWnvGaFISNWDWZsP3r55+6cdvtLRf7dKT2jPea8TgfZKLpNYnvyhqbfLLovZCuixqL+SXQe2D\n/JKoAZN0LTF4RxRJrU9+UdTa5JdF7YV0WdReyC+D2gf5JVEDJulaYvCOKJJan/yiqLXJL4vaC+my\nqL2QXwa1D/JLogZM0rXE4B1RJLU++UVRa5NfFrUX0mVReyG/DGof5JdEDZika4nBO6JIan3yi6LW\nJr8sai+ky6L2Qn4Z1D7IL4kaMEnXEoN3RJHU+uQXRa1NflnUXkiXRe2F/DKofZBfEjVgkq4lBu+I\nIqn1yS+KWpv8sqi9kC6L2gv5ZVD7IL8kasAkXUsM3hFFUuuTXxS1NvllUXshXRa1F/LLoPZBfknU\ngEm6lhi8I4qk1ie/KGpt8sui9kK6LGov5JdB7YP8kqgBk3QtMXhHFEmtT35R1Nrkl0XthXRZ1F7I\nL4PaB/klUQMm6Vpi8I4oklqf/KKotckvi9oL6bKovZBfBrUP8kuiBkzStcTgHVEktT75RVFrk18W\ntRfSZVF7Ib8Mah/kl0QNmKRricE7okhqffKLotYmvyxqL6TLovZCfhnUPsgviRowSdcSg3dEkdT6\n5BdFrU1+WdReSJdF7YX8Mqh9kF8SNWCSriUG74giqfXJL4pam/yyqL2QLovaC/llUPsgvyRqwCRd\nSwzeEUVS65NfFLU2+WVReyFdFrUX8sug9kF+SdSASbqWGLwjiqTWJ78oam3yy6L2Qrosai/kl0Ht\ng/ySqAGTdC0xeEcUSa1PflHU2uSXRe2FdFnUXsgvg9oH+SVRAybpWmLwjiiSWp/8oqi1yS+L2gvp\nsqi9kF8GtQ/yS6IGTNK1xOAdUSS1PvlFUWuTXxa1F9JlUXshvwxqH+SXRA2YpGuJwTuiSGp98oui\n1ia/LGovpMui9kJ+GdQ+yC+JGjBJ1xKDd0SR1PrkF0WtTX5Z1F5Il0XthfwyqH2QXxI1YJKuJQbv\niCKp9ckvilqb/LKovZAui9oL+WVQ+yC/JGrAJF1LDN4RRVLrk18UtTb5ZVF7IV0WtRfyy6D2QX5J\n1IBJupbmD94AAAAAJmPwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAAACAAgzcAAAAQgMEb\nAAAACMDgDQAAAARg8AYAAAACMHgDAAAAARi8AQAAgAAM3gAAAEAABm8AAAAgAIM3AAAAEIDBGwAA\nAAjA4A0AAAAEYPAGAAAAAjB4AwAAAAEYvAEAAIAADN4AAABAAAZvAAAAIACDNwAAABCAwRsAAAAI\nwOANAAAABGDwBgAAAALMHrw//vjj7X8BAAAA2Gf24H3mzJnh9u3b27cAAABQw+Yom6dwcswevO+7\n777h5s2b27cAAABQw+Yom6dwcswevB988MHhxo0b27cAAABQw+Yom6dwcswevB955JHh+++/374F\nAACAGtevX9/MUzg5Zg/ejz322HDt2rXtWwAAAKhhc5TNUzg5Zg/eTz755HD16tXtWwAAAKhhc5TN\nUzg5Zg/ezz777HDlypXtWwAAAKhhc5TNUzg5Zg/eL7/88nDp0qXtWwAAAKhhc5TNUzg5Zg/eb7/9\n9nDx4sXtWwAAAKhhc5TNUzg5Zg/e77///nD+/PntWwAAAKhhc5TNUzg5Zg/en3322XDu3LntWwAA\nAKhhc5TNUzg5Zg/eX3311fDiiy9u3wIAAEANm6NsnsLJMXvw/u6774azZ89u3wIAAEANm6NsnsLJ\nMXvwNnffffdw69at7VsAAACYwuYnm6NwsiwavJ977rnhm2++2b4FAACAKWx+sjkKJ8uiwfu9994b\nPvzww+1bAAAAmOKjjz7azFE4WRYN3pcvXx6eeuqp7VsAAACYwuYnrho4eRYN3ubxxx8fLly4sH0L\nAAAAR7G5yeYnnDyLB+8vvvhieOCBB4bTp08TEaVn90d2vzTG/RQR9ZS6n8LJsHjwBoCeqDNJvDIH\nAOgBgzeAg2PXTtr3oBi+FwUA0AsGbwAHx37aUvlpAfar/fQAAACyMXgDODjjn4/LvzcAAOgFgzeA\ngzP+F+H4F3YBAL1g8AZwkM6ePTt8/fXXm18BAOgBgzeAg/TCCy8Mn3zyyeZXAAB6wOAN4CCdO3du\neP311ze/AgDQAwZvAAfp/PnzwzPPPLP5FQCAHjB4AzhIFy9eHB599NHNrwAA9IDBG8BBunTp0uaf\nZbZfAQDoAYM3gIN05cqV4Z577tn8CgBADxi8ARykq1evbn6Gt/0KAEAPGLwBHKRr164Nd9111+ZX\nAAB6wOAN4CBdv359uPPOOze/AgDQAwZvAAfpxo0bwx133LH5FQCAHjB4AzhIN2/eHE6fPr35FQCA\nHjB4AzhIt2/fHk6dOrX5FQCAHjB4AzhYNngDANALBm8AAAAgAIM3AAAAEIDBGwAAAAjA4A0AAAAE\nYPAGAAAAAjB4AwAAAAEYvAEAAIAADN4AAABAAAZvAAAAIACDNwAAABCAwRsAAAAIwOANAAAABGDw\nBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAAACAAgzcAAAAQgMEbQLhvv/12+Pzzz2dlfzbD\nDz/8MHz66afDW2+9Nbzyyiub3n333eHLL7/cfgQAAEdj8AYQzgboU6dOzcoG30i3bt3aDNj33nuv\n3I9lHwMAwD4M3gDC2VlrG2ZVZZhV77NsaI9iA7Wd2bb9PPHEE5sz3rZ3+33LznbbEwEGbwDAFAze\nALpSzizbpR3ZytD9/PPPM1wDABZj8AbQlV4G73I5jJ3pZugGALTA4A2gK70M3g8//PBmH5cvX97+\nDgAAyzB4A+hKD4O3Xbtte7BLTQAAaIXBG0BXehi87RsmbQ/8qEAAQEsM3gC60sPgXS4zyb7cBQBw\nWBi8AXRlzuBt12Hb2ena1D/GY99IaevbPsrbH3zwweabLO33LPspJ/ajDfmmSwBADQZvAF2ZM3iX\nH/tXmw3Qu2wYt/eVn2ZiH2Nv277s98rZ8PJ7fPMlAGAqBm8AXZkzeNvwW/5J+ZrsrPcu+7tsfRu4\nbaC3/dg/nDM+u23DeRn27f1ckgIAmILBG0BX5gzeLdkwbuuXoVpdjlKUs+HR/4w9AOB4YvAG0JWe\nBm+7tvsotsfysVzvDQDYh8EbQFd6Gryn7IF/aAcAMBWDN4CuZA/e5RpvG6inKJeb2DXjAAAchcEb\nQFfmDN7lmyBrU/8ypV0yYuvb+6co32TJ4A0A2IfBG0BXbOCtHbztWmw781yb/SxupeYf0LG/xz5W\n/YQUAADGGLwBdGXO4N2aDeS2B/sxgkexs+Pl7HnmfgEAxwODN4Cu9DB4l39Ex/ZyFDvTbh+nLlkB\nAGAXgzeArvQweJty7bZdSqLY2fBytvuon/UNAEDB4A2gK70M3nYZif0T8bYX+9XObtt13PZNlOW6\nbtsr13YDAKZi8AbQlV4Gb2PDt/2rlLaf3Wz45kw3AKAGgzeArtiwW+qF7cXOdNvlJRYDNwBgDgZv\nAAAAIACDNwAAABCAwRsAAAAIwOANAAAABGDwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAA\nACAAgzcAAAAQgMEbAAAACMDgDQAAAARg8AYAAAACMHgDAAAAARi8AQAAgNUNw/8DOEofgioOKPkA\nAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('./images/one_step_forecast.png')" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "T = 6\n", - "HORIZON = 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our data preparation for the training set will involve the following steps:\n", - "\n", - "1. Filter the original dataset to include only that time period reserved for the training set\n", - "2. Scale the time series such that the values fall within the interval (0, 1)\n", - "3. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example\n", - "4. Discard any samples with missing values\n", - "5. Transform this Pandas dataframe into a numpy array of shape (samples, features) for input into Keras" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Filter the original dataset to include only that time period reserved for the training set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create training set containing only the model features" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "train = energy.copy()[energy.index < valid_start_dt][['load']]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Scale the time series such that the values fall within the interval (0, 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale data to be in range (0, 1). This transformation should be calibrated on the training set only. This is to prevent information from the validation or test sets leaking into the training data." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load
2012-01-01 00:00:000.22
2012-01-01 01:00:000.18
2012-01-01 02:00:000.14
2012-01-01 03:00:000.13
2012-01-01 04:00:000.13
2012-01-01 05:00:000.15
2012-01-01 06:00:000.18
2012-01-01 07:00:000.23
2012-01-01 08:00:000.29
2012-01-01 09:00:000.35
\n", - "
" - ], - "text/plain": [ - " load\n", - "2012-01-01 00:00:00 0.22\n", - "2012-01-01 01:00:00 0.18\n", - "2012-01-01 02:00:00 0.14\n", - "2012-01-01 03:00:00 0.13\n", - "2012-01-01 04:00:00 0.13\n", - "2012-01-01 05:00:00 0.15\n", - "2012-01-01 06:00:00 0.18\n", - "2012-01-01 07:00:00 0.23\n", - "2012-01-01 08:00:00 0.29\n", - "2012-01-01 09:00:00 0.35" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.preprocessing import MinMaxScaler\n", - "scaler = MinMaxScaler()\n", - "train['load'] = scaler.fit_transform(train)\n", - "train.head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Original vs scaled data:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD/CAYAAADi+OGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHV9JREFUeJzt3X2UFfWd5/H3R+CA0BBF1Iy60NFD\n0g4EBNromoj4lGTc9ZHMBDURcJSMbiYnx8kxmRwVRscxObImu0k0wSg+MjEqMFGzzoaNDzG70bQa\niCiaZZXIBA0Q0tA8+ZDv/lF1neu1+3Y13Lq3bvfndc49uVW/+lV9uyT97d9D/UoRgZmZWW/2aXQA\nZmbWHJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDLJLWFI6qr4vC3pW2Xl\nJ0taI2mHpEckjSsrGyrpVklbJb0m6bK84jQzs2wG53XiiGgpfZc0AngduDfdHgMsBS4CHgCuAe4B\njk2rLADGA+OA9wOPSHo+Ih6uds0xY8ZEa2trTX8OM7P+7umnn94UEQf2dlxuCaPCp4DfAz9Lt88B\nVkdEKYEsADZJaouINcAFwNyI2AJskXQzMAeomjBaW1vp6OjI5ycwM+unJK3Lcly9xjBmA3fEvy9c\nNQFYWSqMiO3AWmCCpP2BQ8rL0+8TujuxpHmSOiR1bNy4MZfgzcysDglD0ljgBOD2st0tQGfFoZ3A\nyLSMivJS2XtExKKIaI+I9gMP7LVFZWZme6geLYwLgCci4uWyfV3AqIrjRgHb0jIqyktlZmbWIPUY\nw7gA+FrFvtUk3VTAO4PiR5CMa2yRtAGYDPwkPWRyWsfMmtSbb77J+vXr2bVrV6NDGbCGDRvGYYcd\nxpAhQ/aofq4JQ9JxwKGks6PKLAOulzQTeAi4CliVDngD3AFcIakDOBi4GJibZ6xmlq/169czcuRI\nWltbkdTocAaciGDz5s2sX7+eD3zgA3t0jry7pGYDSyPiXd1JEbERmAlcC2wBjgFmlR0yn2QQfB3w\nGHB9b1NqzazYdu3axQEHHOBk0SCSOOCAA/aqhZdrCyMiPlelbAXQ1kPZbuDC9GNm/YSTRWPt7f33\n0iBmZpZJvR7cMzN7l9avPFTT873ytf9Uk/OcdtppLFmyhP3226/HY6666iqmT5/OKaec0ufzP/ro\noyxcuJAHH3ww0/49MWPGDBYuXEh7e/ten6ucE4ZZFeW/1Gr1C8mKKSKICH784x/3euzVV19dh4iK\nx11SZjYg3HDDDUycOJGJEyfyzW9+E4BXXnmFI488kksvvZSpU6fy6quv0trayqZNmwC45ppraGtr\n49RTT+Xcc89l4cKFAMyZM4f77rsPSJYkmj9/PlOnTuXDH/4wa9Ykkz2feuopjjvuOKZMmcJxxx3H\niy++mDnWP/zhD5x11llMmjSJY489llWrVlU9586dO5k1axaTJk3i05/+NDt37qzNTavgFoaZ9XtP\nP/00ixcv5sknnyQiOOaYYzjhhBPYf//9efHFF1m8eDE33njju+p0dHRw//338+yzz/LWW28xdepU\npk2b1u35x4wZwzPPPMONN97IwoUL+f73v09bWxuPP/44gwcPZsWKFXz1q1/l/vvvzxTv/PnzmTJl\nCsuXL+enP/0pF1xwAb/61a96POdNN93E8OHDWbVqFatWrWLq1Kl7fc+644RhZv3eE088wdlnn82I\nESMAOOecc/jZz37GGWecwbhx4zj22GO7rXPmmWey7777AnD66af3eP5zzjkHgGnTprF06VIAOjs7\nmT17Nr/5zW+QxJtvvtmneEvJ5aSTTmLz5s10dnaydevWbs/5+OOP84UvfAGASZMmMWnSpMzX6gt3\nSZlZv/fv656+VymJ9KVOpaFDhwIwaNAg3nrrLQCuvPJKTjzxRJ577jkeeOCBPj3/0N21JVU9Zz2m\nLDthmFm/N336dJYvX86OHTvYvn07y5Yt4/jjj69a52Mf+9g7v5S7urp46KG+zerq7Ozk0EMPBeC2\n227rc7x33303kMyeGjNmDKNGjerxnOXHP/fcc++MedSau6TMrCHqOets6tSpzJkzh4985CMAXHTR\nRUyZMoVXXnmlxzpHH300Z5xxBpMnT2bcuHG0t7fzvve9L/M1L7/8cmbPns0NN9zASSed1Kd4FyxY\nwNy5c5k0aRLDhw/n9ttvr3rOSy655J3jjzrqqHd+zlpTX5pdRdfe3h5+gZLVkqfV1s4LL7zAkUce\n2egw+qSrq4uWlhZ27NjB9OnTWbRoUW4DyvXS3X8HSU9HRK8PbbiFYbYHnEgGhnnz5vH888+za9cu\nZs+e3fTJYm85YZiZ9WDJkiWNDqFQPOhtZnXTn7rAm9He3n8nDDOri2HDhrF582YnjQYpvQ9j2LBh\ne3wOd0mZWV0cdthhrF+/no0bNzY6lAGr9Ma9PeWEYWZ1MWTIkD1+05sVgxOGWUa1Xo7brNk4YZhV\ncGIw654Hvc3MLBMnDDMzy8QJw8zMMsk9YUiaJekFSdslrZV0fLr/ZElrJO2Q9IikcWV1hkq6VdJW\nSa9JuizvOM3MrLpcE4akU4GvA3OBkcB04P9JGgMsBa4ERgMdwD1lVRcA44FxwInA5ZI+mWesZmZW\nXd6zpP4BuDoifpFu/xuApHnA6oi4N91eAGyS1BYRa4ALgLkRsQXYIulmYA7wcM7xmvWZFyK0gSK3\nFoakQUA7cKCk/ytpvaRvS9oXmACsLB0bEduBtcAESfsDh5SXp98n9HCdeZI6JHX4CVIzs/zk2SV1\nMDAE+BRwPHAUMAW4AmgBOiuO7yTptmop264se4+IWBQR7RHRfuCBB9YuejMze5c8E8bO9H+/FREb\nImITcANwGtAFjKo4fhSwLS2jorxUZmZmDZJbwkjHH9YD3S1NuRqYXNqQNAI4gmRcYwuwobw8/b46\nr1jNzKx3eU+rXQz8raSD0rGJLwIPAsuAiZJmShoGXAWsSge8Ae4ArpC0v6Q24GLgtpxjNTOzKvJO\nGNcAvwReAl4AngWujYiNwEzgWmALcAwwq6zefJJB8HXAY8D1EeEZUmZmDZTrtNqIeBO4NP1Ulq0A\n2nqotxu4MP2YmVkBeGkQMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzM\nLBMnDDMzyyTvFyiZNYXylyCZWfecMMxqyG/fs/7MXVJmZpaJE4aZmWXiLikbUNxlZLbn3MIwM7NM\nnDDMzCwTJwwzM8vECcPMzDJxwjAzs0w8S8qszjxTy5pVri0MSY9K2iWpK/28WFZ2nqR1krZLWi5p\ndFnZaEnL0rJ1ks7LM04zM+tdPbqkPh8RLennQwCSJgDfAz4LHAzsAG4sq/Md4I207HzgprSOmZk1\nSKO6pM4HHoiIxwEkXQm8IGkk8CdgJjAxIrqAJyT9iCS5fKVB8ZqZDXj1aGFcJ2mTpJ9LmpHumwCs\nLB0QEWtJWhQfTD9vR8RLZedYmdYxM7MGybuF8WXgeZJkMAt4QNJRQAvQWXFsJzASeLtK2XtImgfM\nAxg7dmzNArf+L+8lzT24bf1NrgkjIp4s27xd0rnAaUAXMKri8FHANpIuqZ7KurvGImARQHt7e9Qg\nbLOa8/s2rD+o93MYAQhYDUwu7ZR0ODAUeCn9DJY0vqze5LSOmZk1SG4JQ9J+kj4haZikwZLOB6YD\n/wrcDZwu6XhJI4CrgaURsS0itgNLgasljZD0UeBM4M68YjUzs97l2SU1BPhHoI1kXGINcFZEvAgg\n6W9IEscBwApgblndS4Fbgd8Dm4FLIsItDDOzBsotYUTERuDoKuVLgCU9lP0BOCun0MzMbA94LSkz\nM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLxO/0tn7PK8Wa\n1YZbGGZmlolbGGYN5JcsWTNxC8PMzDJxwjAzs0ycMMzMLJNMCUPSxLwDMTOzYsvawviupKckXSpp\nv1wjMjOzQso0SyoiPiZpPHAh0CHpKWBxRPwk1+jM+qDZZxw1e/zW/2Uew4iI3wBXAF8GTgD+u6Q1\nks7JKzgzMyuOrGMYkyR9A3gBOAk4PSKOTL9/I8f4zMysILI+uPdt4GbgqxGxs7QzIn4n6YpcIjMb\nwNw9ZUWUNWGcBuyMiLcBJO0DDIuIHRFxZ2+V0/GPXwP3RcRn0n3nAdcBY4CfABdGxB/SstHALcDH\ngU3A30fEkj79ZDagef0os9rLOoaxAti3bHt4ui+r7wC/LG1ImgB8D/gscDCwA7ix4vg30rLzgZvS\nOmZWpvUrD73zMctb1oQxLCK6Shvp9+FZKkqaBfwR+F9lu88HHoiIx9NzXQmcI2mkpBHATODKiOiK\niCeAH5EkFzMza5CsCWO7pKmlDUnTgJ1Vji8dNwq4Gvi7iqIJwMrSRkSsJWlRfDD9vB0RL5UdvzKt\nY2ZmDZJ1DOOLwL2Sfpdu/xnw6Qz1rgFuiYhXJZXvbwE6K47tBEYCb1cpew9J84B5AGPHjs0Qkllz\n8QC4FUXWB/d+KakN+BAgYE1EvFmtjqSjgFOAKd0UdwGjKvaNArYBf6pS1l1si4BFAO3t7VH9JzFr\nbh6rsEbqy/swjgZa0zpTJBERd1Q5fkZ6/G/T1kULMEjSnwMPA5NLB0o6HBgKvESSMAZLGp8+LEh6\n7Oo+xGpmZjWWKWFIuhM4AvgVSZcRQADVEsYi4Adl218iSSCXAAcB/0fS8cAzJOMcSyNiW3q9pcDV\nki4CjgLOBI7L9iOZmVkesrYw2oE/j4jMXT4RsYNkuiwAkrqAXRGxEdgo6W+Au4EDSKbozi2rfilw\nK/B7YDNwSUS4hWFm1kBZE8ZzwPuBDXt6oYhYULG9BOj2Ybz0Ab6z9vRaZmZWe1kTxhjg+XSV2t2l\nnRFxRi5RmVXhWUNmjZE1YSzIMwgzMyu+rNNqH5M0DhgfESskDQcG5RuamZkVSdblzS8G7iNZ/wng\nUGB5XkGZmVnxZF0a5L8AHwW2wjsvUzoor6DMzKx4so5h7I6IN0rLe0gaTPIchjWZZhkwrnyiucix\nmg0UWVsYj0n6KrCvpFOBe4EH8gvLzMyKJmsL4yvAX5O8BOlzwI+B7+cVlNVHs7Q2zKwYss6S+hPJ\nK1pvzjccMzMrqqxrSb1MN2MWEXF4zSMy60ZPq7R69Vaz+unLWlIlw4C/BEbXPhwzMyuqrF1Smyt2\nfVPSE8BVtQ/Jaq3If4V7HMWseWTtkppatrkPSYuj2zfgmZlZ/5S1S+q/ln1/C3gF+KuaR2NmZoWV\ntUvqxLwDMSty15mZZe+SuqxaeUTcUJtwzMysqPoyS+po4Efp9unA48CreQRlZmbF05cXKE0te+f2\nAuDeiLgor8CseDyjyWxgy7qW1FjgjbLtN4DWmkdjZmaFlbWFcSfwlKRlJE98nw3ckVtUZmZWOFln\nSV0r6X8Ax6e75kbEs/mFZc3K3VZm/VfWLimA4cDWiPhvwHpJH+itgqS7JG2QtFXSS5IuKis7WdIa\nSTskPZK+ArZUNlTSrWm913qbpWVmZvnLOq12PslMqQ8Bi4EhwF0kb+Gr5jrgryNit6Q24FFJzwLr\ngKXARSTv1bgGuAc4Nq23ABgPjAPeDzwi6fmIeDj7jzaw+ZkGM6u1rGMYZwNTgGcAIuJ3knpdGiQi\nVpdvpp8jgGnA6oi4F96ZdbVJUltErAEuIOn22gJskXQzMAdwwiggJ6fi6alr0F2GtjeyJow3IiIk\nBYCkEVkvIOlGkl/2+wLPkrx86VpgZemYiNguaS0wQdLrwCHl5en3s3o4/zxgHsDYsWOzhmUZORmY\nWUnWhPFDSd8D9pN0MXAhGV+mFBGXSvpb4D8CM4DdQAuwseLQTpIFDVvKtivLujv/ImARQHt7u98z\nbgOWk7vlLessqYXpu7y3koxjXBURP8l6kYh4G3hC0meAS4AuYFTFYaOAbWlZaXtXRZmZmTVIrwlD\n0iDgXyPiFCBzkqhyvSOA1cDssmuMKO2PiC2SNgCTy643Oa1jOcm7b9t952bNr9dptWnrYIek9/Xl\nxJIOkjRLUoukQZI+AZwL/BRYBkyUNFPSMJIXMa1KB7wheSjwCkn7p7OrLgZu68v1zcystrKOYewC\nfi3pJ8D20s6I+EKVOkHS/fRdksS0DvhiRPwLgKSZwLdJpuc+CcwqqzsfuCmtsxP4+kCcUttf/yp3\nX3t9+X5brWRNGA+ln8wiYiNwQpXyFUBbD2W7SQbWL+zLNc3MLD9VE4aksRHx24i4vV4BWe+apeXh\nv2zN+pfexjCWl75Iuj/nWMzMrMB665JS2ffD8wzEEkX4q7wIMZhZ8fTWwogevpuZ2QDTWwtjsqSt\nJC2NfdPvpNsREZUP31kf+a95M2sWVRNGRAyqVyBmZlZsWafVWhNwa8XM8tSXFyiZmdkA5hZGk3Or\nwszqxQmjAfxL3syakbukzMwsE7cwmoRbJWbWaE4YZvYuzbJWmdWfE4btEbd4mp//G1pfeQzDzMwy\nccIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzMLJPcEoakoZJukbRO0jZJz0r6i7LykyWt\nkbRD0iOSxlXUvVXSVkmvSbosrzjNzCybPFsYg4FXgROA9wFXAj+U1CppDLA03Tca6ADuKau7ABgP\njANOBC6X9MkcYzUzs17k9qR3RGwn+cVf8qCkl4FpwAHA6oi4F0DSAmCTpLaIWANcAMyNiC3AFkk3\nA3OAh/OK18yq85IhVrelQSQdDHwQWA1cAqwslUXEdklrgQmSXgcOKS9Pv5/Vw3nnAfMAxo4dm0/w\nZgOUlw+xcnVJGJKGAHcDt0fEGkktwMaKwzqBkUBL2XZl2XtExCJgEUB7e3vUMu5a8v/xzKzZ5T5L\nStI+wJ3AG8Dn091dwKiKQ0cB29IyKspLZWZm1iC5JgxJAm4BDgZmRsSbadFqYHLZcSOAI0jGNbYA\nG8rL0++r84zVzMyqy7uFcRNwJHB6ROws278MmChppqRhwFXAqnTAG+AO4ApJ+0tqAy4Gbss5VjMz\nqyLP5zDGAZ8DjgJek9SVfs6PiI3ATOBaYAtwDDCrrPp8YC2wDngMuD4iPEPKzKyB8pxWuw5QlfIV\nQFsPZbuBC9OPmZkVgJcGMTOzTJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCyTui0+aGb9R09r\no3kV2/7NLQwzM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTPwcRo78Hm8z60/c\nwjAzs0ycMMzMLBMnDDMzy8RjGGaWi/IxPK8x1T84YZhZzXiiR/+Wa5eUpM9L6pC0W9JtFWUnS1oj\naYekRySNKysbKulWSVslvSbpsjzjNDOz3uU9hvE74B+BW8t3ShoDLAWuBEYDHcA9ZYcsAMYD44AT\ngcslfTLnWM3MrIpcE0ZELI2I5cDmiqJzgNURcW9E7CJJEJMltaXlFwDXRMSWiHgBuBmYk2esZmZW\nXaPGMCYAK0sbEbFd0lpggqTXgUPKy9PvZ9U3RDOrFQ+A9w+NmlbbAnRW7OsERqZlVJSXyt5D0rx0\nnKRj48aNNQ/UzMwSjWphdAGjKvaNAralZaXtXRVl7xERi4BFAO3t7VHzSM2sptzaaF6NamGsBiaX\nNiSNAI4gGdfYAmwoL0+/r65rhGZm9i65tjAkDU6vMQgYJGkY8BawDLhe0kzgIeAqYFVErEmr3gFc\nIakDOBi4GJibZ6y14nnoZtZf5d0ldQUwv2z7M8A/RMSCNFl8G7gLeBKYVXbcfOAmYB2wE/h6RDyc\nc6xm1kDuqiq+XBNGRCwgmTLbXdkKoK2Hst3AhenHzMwKwEuDmFnDuAu3uXi1WjMzy8QJw8zMMnHC\nMDOzTJwwzMwsEycMMzPLxLOkzKxw/ExGMbmFYWZmmbiFYWaFluVZDbdC6sMtDDMzy8QtjBrw06pm\nNhC4hWFmZpk4YZiZWSbukjKzfqenbmIPju8dtzDMzCwTtzDMrOl54kl9OGGY2YDhrqq94y4pMzPL\nxC0MMxvwvHZVNk4Ye8h9pmb9k7uteuaEYWaWQU+tkIHUOilswpA0GrgF+DiwCfj7iFjS2KjMzPLv\nYShqEipswgC+A7wBHAwcBTwkaWVErG5sWGZm3evvrZBCJgxJI4CZwMSI6AKekPQj4LPAVxoanJlZ\nHRVpTEURUfeL9kbSFOB/R8S+Zfu+BJwQEaf3VK+9vT06Ojr26JoexDazZrW3yUPS0xHR3ttxhWxh\nAC1AZ8W+TmBk5YGS5gHz0s0uSS/u5bXHkIyZNCPH3hiOvf6aNW7IIXZ9fa9PMS7LQUVNGF3AqIp9\no4BtlQdGxCJgUa0uLKkjS6YtIsfeGI69/po1bmju2Iv6pPdLwGBJ48v2TQY84G1m1iCFTBgRsR1Y\nClwtaYSkjwJnAnc2NjIzs4GrkAkjdSmwL/B74J+BS+o0pbZm3VsN4Ngbw7HXX7PGDU0ceyFnSZmZ\nWfEUuYVhZmYF4oRhZmaZ9NuEIWmopFskrZO0TdKzkv6irPxkSWsk7ZD0iKRxFXVvlbRV0muSLqs4\nd491845dUqukkNRV9rmyKLGn17hL0oY0hpckXZTl+kWOvRnue3qd8ZJ2SbqrbN956b+l7ZKWp+u0\nlcpGS1qWlq2TdF7F+Xqsm3fskmZI+lPFPZ9dpNglPZrGXIrvxbKyprjvfRIR/fIDjAAWAK0kifE/\nkzzH0Ury4Ewn8JfAMOB64Bdlda8DfgbsDxwJvAZ8Mi2rWrcOsbcCAQzuoW5DY0+vMwEYmn5vS2OY\nVvT73kvshb/v6bX+ZxrHXWU/zzZgOskDsUuAH5Qd/8/APWnZx9I4J2SpW4fYZwDrqxzf8NiBR4GL\nevh31BT3vU8/b6MDqOsPC6tI1qiaR7L0SGn/CGAn0JZu/xvw8bLya0r/wXqrW4fYe/vFVajYgQ8B\nG4C/arb7XhF74e87MAv4IckfG6Vfuv8ELCk75giSRT1HpnG8AXywrPxO4Gu91c3hXncX+wx6SBhF\niZ2eE0ZT3Pe+fvptl1QlSQcDHyR5+G8CsLJUFslzH2uBCZL2Bw4pL0+/T0i/91i3TrGXrJO0XtJi\nSWPS4woTu6QbJe0A1pD80v1xtes3QewlhbzvkkYBVwN/V1FUee21pL+s0s/bEfFSxrjL69ZMldgB\nDpL0uqSXJX1DycKkFCX21HWSNkn6uaQZGa5fpNj7ZEAkDElDgLuB2yNiDdXXqmop264so5e6NddN\n7JuAo0nWfpmWXvfusthK8XQXW91ij4hL0/MeT/IQ5u5erl/02It+368BbomIVyv293bPq8VVr3ve\nU+xrSF5t8GfASST3/YaMsdUr9i8DhwOHkjxf8YCkI3q5flFi77N+nzAk7UPS3HsD+Hy6u9paVV1l\n25VlvdWtqe5ij4iuiOiIiLci4vV0/8fTv9IKE3sa69sR8QRwGHBJL9cvdOxFvu+SjgJOAb7RTXFv\n97xaXLnf82qxR8RrEfF8RPwpIl4GLgc+lTG2uvx7iYgnI2JbROyOiNuBnwOn9XL9QsS+J/p1wpAk\nkrf2HQzMjIg306LVJGtTlY4bQdJPuDoitpB0Q0wuO1X5OlY91q1T7JVKT16qKLF3Y3DZdQp937tR\nir1Ske77DJIxlt9Keg34EjBT0jPdXPtwYCjJem29rdlWrW6tVIu9UgBKvxch9u6UYiz6fd8zjR5E\nyfMDfBf4BdBSsf9AkibeTJJZK1/n3bN1vgY8RjLjpY3kl8Ens9StQ+zHkAzG7gMcQDLT4pGixA4c\nRDKA2QIMAj4BbCdZC6zQ972X2At734HhwPvLPguB+9LrTgC2knSvjQDu4t2zdX5AMmNnBPBR3jtb\np8e6dYh9BjCW5BfwfwAeARYXKPb90n8jw0j+sDg//ffyoaLf9z3+mRsdQG4/WNLXHMAukiZe6XN+\nWn4KSR/pTpKZDq1ldYcCt6b/0V4HLqs4d491844dOBd4Of2HuQG4A3h/gWI/kOQX5x/TGH4NXJzl\n+kWOvej3veJaC0hnGqXb5wG/TWP/F2B0WdloYHla9lvgvIpz9Vg379iBy0hmn+0AXgW+RdlMoUbH\nnv57+SVJV9EfSf7AO7UZ73vWj9eSMjOzTPr1GIaZmdWOE4aZmWXihGFmZpk4YZiZWSZOGGZmlokT\nhpmZZeKEYWZmmThhmJlZJk4YZmaWyf8H3GUpH9cqthwAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD/CAYAAADi+OGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHPlJREFUeJzt3XuYFfWd5/H3RyA0dxWUSAxgXAgK\npJU0MTFriHFGnWg2GuLGxBswSpTFTNaNuT1eiMbJbXfcaAwRHsVIdMOQATdGx4lEJuqaSWjMIrQC\niSskBFREbGmkufndP6raOR76Ug2nzjnd/Xk9Tz2eqt+vzvn+uuV8+3epKkUEZmZmHTms0gGYmVnX\n4IRhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlkluCUNSU9G2X9LtBeVnSFor\n6Q1JyyWNKijrK+luSa9LelHSNXnFaWZm2fTO640jYmDLa0kDgJeAxen+MGAJcDnwIHAzsAj4YHrK\nHGAMMAp4J7Bc0rMR8Uh7nzls2LAYPXp0SdthZtbdrVy58pWIOKqjerkljCKfBl4Gnkj3PwU0RERL\nApkDvCJpXESsBS4FpkfEdmC7pPnANKDdhDF69Gjq6+vzaYGZWTclaWOWeuWaw7gMuDf+/cZV44FV\nLYURsRN4Hhgv6QhgRGF5+np8a28saaakekn1W7duzSV4MzMrQ8KQNBKYAvy44PBAoLGoaiMwKC2j\nqLyl7AARMS8i6iKi7qijOuxRmZnZQSpHD+NS4MmIeKHgWBMwuKjeYGBHWkZReUuZmZlVSDnmMC4F\nvl10rIFkmAp4a1L8eJJ5je2StgC1wKNpldr0HDPrRvbu3cumTZtobm6udCg9Qk1NDcceeyx9+vQ5\nqPNzTRiSTgXeRbo6qsBS4HuSpgIPATcAz6QT3gD3AtdJqgeGA1cA0/OM1czKb9OmTQwaNIjRo0cj\nqdLhdGsRwbZt29i0aRPHHXfcQb1H3kNSlwFLIuJtw0kRsRWYCtwCbAdOAS4sqHIjyST4RuDXwPc6\nWlJrZl1Pc3MzQ4cOdbIoA0kMHTr0kHpzufYwIuLz7ZQtA8a1UbYbmJFuZtaNOVmUz6H+rH1rEDMz\ny6RcF+6ZmXVo9FcfKun7bfj2OSV9v1Y/Y8MGzj33XNasWZP5nGnTpnHuuefy6U9/OtPxcsSUhROG\nWTsKv8DK8eVjVs08JGVmPdbOnTs555xzqK2tZcKECSxatAiAFStWcOqpp1JbW8sHPvABduzYwYYN\nGzjttNOYNGkSkyZN4qmnnjrg/fbv38+1117L5MmTed/73sedd94JJCuUZs+ezYknnsg555zDyy+/\n3GFsv/rVrzj55JOZOHEiM2bMYPfu3QDcdNNNTJ48mQkTJjBz5kxabqCxcuVKamtr+dCHPsQdd9xR\nqh/R2zhhmFmP9cgjjzBixAhWrVrFmjVrOPvss9mzZw+f+cxn+P73v8+qVatYtmwZ/fr14+ijj+bR\nRx/l6aefZtGiRXzhC1844P3uuusuhgwZwooVK1ixYgXz58/nhRdeYOnSpaxbt47Vq1czf/78VpNN\noebmZqZNm8aiRYtYvXo1+/btY+7cuQDMnj2bFStWsGbNGnbt2sUvfvELAKZPn85tt93Gb37zm9L/\noFJOGGbWY02cOJFly5bxla98hSeeeIIhQ4awbt06jjnmGCZPngzA4MGD6d27N3v37uWKK65g4sSJ\nXHDBBTz77LMHvN8vf/lL7r33Xk466SROOeUUtm3bxh/+8Acef/xxPvvZz9KrVy9GjBjBxz72sXbj\nWrduHccddxxjx44F4LLLLuPxxx8HYPny5ZxyyilMnDiRxx57jIaGBhobG3nttdeYMmUKAJdcckkp\nf0xv8RyGmfVYY8eOZeXKlTz88MN87Wtf48wzz+S8885rdfnprbfeyvDhw1m1ahVvvvkmNTU1B9SJ\nCG6//XbOOuustx1/+OGHO7Wk9d/v0/p2zc3NzJo1i/r6et797nczZ84cmpubiYiyLE92D8PMeqzN\nmzfTv39/Lr74Yr70pS/x9NNPM27cODZv3syKFSsA2LFjB/v27aOxsZFjjjmGww47jIULF7J///4D\n3u+ss85i7ty57N27F4D169ezc+dOPvKRj/DTn/6U/fv3s2XLFpYvX95uXOPGjWPDhg388Y9/BGDh\nwoVMmTLlrYvuhg0bRlNTEz/72c8AOPzwwxkyZAhPPvkkAPfdd19pfkBF3MMws6pR7pVoq1ev5tpr\nr+Wwww6jT58+zJ07l3e84x0sWrSIq6++ml27dtGvXz+WLVvGrFmzmDp1KosXL+b0009nwIABB7zf\n5ZdfzoYNG5g0aRIRwVFHHcUDDzzA+eefz2OPPcbEiRMZO3bsW0NHbampqWHBggVccMEF7Nu3j8mT\nJ3PllVfSt2/ft4bFRo8e/dawGcCCBQuYMWMG/fv3P6CHUypqq+vTFdXV1YUfoGSl5GW1+Xruuec4\n4YQTKh1Gj9Laz1zSyoio6+hc9zDMDoITifVEnsMwM7NMnDDMrKK607B4tTvUn7UThplVTE1NDdu2\nbXPSKIOW52G0thw4K89hmFnFHHvssWzatImtW7dWOpQeoeWJewfLCcPMKqZPnz4H/fQ3Kz8nDLOM\nSn3rbbOuxgnDrIgTg1nrPOltZmaZOGGYmVkmThhmZpZJ7glD0oWSnpO0U9Lzkk5Lj58haa2kNyQt\nlzSq4Jy+ku6W9LqkFyVdk3ecZmbWvlwThqS/Br4DTAcGAR8B/p+kYcAS4HrgSKAeWFRw6hxgDDAK\nOB34sqSz84zVzMzal/cqqW8AN0XEv6X7fwGQNBNoiIjF6f4c4BVJ4yJiLXApMD0itgPbJc0HpgGP\n5ByvWaf5RoTWU+TWw5DUC6gDjpL0R0mbJP1AUj9gPLCqpW5E7ASeB8ZLOgIYUVievh7fxufMlFQv\nqd5Xi5qZ5SfPIanhQB/g08BpwEnAycB1wECgsah+I8mw1cCC/eKyA0TEvIioi4i6o446qnTRm5nZ\n2+SZMHal/709IrZExCvAPwAfB5qAwUX1BwM70jKKylvKzMysQnJLGOn8wyagtdtQNgC1LTuSBgDH\nk8xrbAe2FJanrxvyitXMzDqW97LaBcDVko5O5ya+CPwCWApMkDRVUg1wA/BMOuENcC9wnaQjJI0D\nrgDuyTlWMzNrR94J42ZgBbAeeA74PXBLRGwFpgK3ANuBU4ALC867kWQSfCPwa+B7EeEVUmZmFZTr\nstqI2AvMSrfismXAuDbO2w3MSDczM6sCvjWImZll4oRhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFm\nZpk4YZiZWSZOGGZmlokThpmZZZL3A5TMuoTChyCZWeucMMxKyE/fs+7MQ1JmZpaJE4aZmWXihGFm\nZpk4YZiZWSZOGGZmlokThpmZZeJltdajeNmr2cFzD8PMzDJxD8OszNzLsa4q1x6GpH+V1CypKd3W\nFZR9TtJGSTslPSDpyIKyIyUtTcs2SvpcnnGamVnHyjEkNTsiBqbbewEkjQfuBC4BhgNvAD8sOOcO\nYE9adhEwNz3HzMwqpFJDUhcBD0bE4wCSrgeekzQIeBOYCkyIiCbgSUk/J0kuX61QvGZmPV45ehjf\nkvSKpP8j6aPpsfHAqpYKEfE8SY9ibLrtj4j1Be+xKj3HzMwqJO8exleAZ0mSwYXAg5JOAgYCjUV1\nG4FBwP52yg4gaSYwE2DkyJElC9y6v7xvae7Jbetuck0YEfHbgt0fS/os8HGgCRhcVH0wsINkSKqt\nstY+Yx4wD6Curi5KELZZyfl5G9YdlPs6jAAENAC1LQclvQfoC6xPt96SxhScV5ueY2ZmFZJbwpB0\nuKSzJNVI6i3pIuAjwL8A9wGfkHSapAHATcCSiNgRETuBJcBNkgZI+jDwSWBhXrGamVnH8hyS6gN8\nExhHMi+xFjgvItYBSLqSJHEMBZYB0wvOnQXcDbwMbAOuigj3MMzMKii3hBERW4HJ7ZTfD9zfRtmr\nwHk5hWZmZgfB95IyM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0z8PAzr9nyVtVlpuIdhZmaZOGGY\nmVkmThhmZpaJE4aZmWXihGFmZpl4lZRZBfkhS9aVuIdhZmaZOGGYmVkmThhmZpZJpoQhaULegZiZ\nWXXL2sP4kaTfSZol6fBcIzIzs6qUaZVURPxHSWOAGUC9pN8BCyLi0VyjM+uErr7iqKvHb91f5jmM\niPgDcB3wFWAKcJuktZI+lVdwZmZWPbLOYbxP0q3Ac8DHgE9ExAnp61tzjM/MzKpE1gv3fgDMB74e\nEbtaDkbEZknX5RKZWQ/m4SmrRlkTxseBXRGxH0DSYUBNRLwREQs7Ojmd/1gN/CwiLk6PfQ74FjAM\neBSYERGvpmVHAncBZwKvAF+LiPs71TLr0fwMDLPSyzqHsQzoV7DfPz2W1R3AipYdSeOBO4FLgOHA\nG8APi+rvScsuAuam55hZgdFffeitzSxvWRNGTUQ0teykr/tnOVHShcBrwK8KDl8EPBgRj6fvdT3w\nKUmDJA0ApgLXR0RTRDwJ/JwkuZiZWYVkTRg7JU1q2ZH0fmBXO/Vb6g0GbgL+W1HReGBVy05EPE/S\noxibbvsjYn1B/VXpOWZmViFZ5zC+CCyWtDndPwb4TIbzbgbuiog/Syo8PhBoLKrbCAwC9rdTdgBJ\nM4GZACNHjswQklnX4glwqxZZL9xbIWkc8F5AwNqI2NveOZJOAv4KOLmV4iZgcNGxwcAO4M12ylqL\nbR4wD6Curi7ab4lZ1+a5CqukzjwPYzIwOj3nZElExL3t1P9oWv9Pae9iINBL0onAI0BtS0VJ7wH6\nAutJEkZvSWPSiwVJ6zZ0IlYzMyuxTAlD0kLgeOD/kgwZAQTQXsKYB/y0YP9LJAnkKuBo4DeSTgOe\nJpnnWBIRO9LPWwLcJOly4CTgk8Cp2ZpkZmZ5yNrDqANOjIjMQz4R8QbJclkAJDUBzRGxFdgq6Urg\nPmAoyRLd6QWnzwLuBl4GtgFXRYR7GGZmFZQ1YawB3glsOdgPiog5Rfv3A61ejJdewHfewX6WmZmV\nXtaEMQx4Nr1L7e6WgxHxn3KJyqwdXjVkVhlZE8acPIMwM7Pql3VZ7a8ljQLGRMQySf2BXvmGZmZm\n1STrKqkrSC6OO5JktdS7gB8BZ+QXmuXBwzlmdrCy3hrkvwAfBl6Htx6mdHReQZmZWfXJOoexOyL2\ntNzeQ1JvkuswzHJRfEWze0NmlZe1h/FrSV8H+kn6a2Ax8GB+YZmZWbXJmjC+CmwleQjS54GHSZ7v\nbWZmPUTWVVJvkjyidX6+4ZiZWbXKukrqBVqZs4iI95Q8IiubrrRiqq27tPrurWbl05l7SbWoAS4g\nWWJrZmY9RNYhqW1Fh/6npCeBG0ofkpVaNf8V3pV6OWY9XdYhqUkFu4eR9DhafQKemZl1T1mHpP5H\nwet9wAbgP5c8GjMzq1pZh6ROzzsQs2oeOjOz7ENS17RXHhH/UJpwzMysWnVmldRk4Ofp/ieAx4E/\n5xGUmZlVn848QGlSwTO35wCLI+LyvAKz6uMVTWY9W9Zbg4wE9hTs7wFGlzwaMzOrWll7GAuB30la\nSnLF9/nAvblFZWZmVSfrKqlbJP0zcFp6aHpE/D6/sKyr8rCVWfeVdUgKoD/wekR8H9gk6biOTpD0\nE0lbJL0uab2kywvKzpC0VtIbkpanj4BtKesr6e70vBc7WqVlZmb5y7qs9kaSlVLvBRYAfYCfkDyF\nrz3fAv42InZLGgf8q6TfAxuBJcDlJM/VuBlYBHwwPW8OMAYYBbwTWC7p2Yh4JHvTejZf02BmpZZ1\nDuN84GTgaYCI2Cypw1uDRERD4W66HQ+8H2iIiMXw1qqrVySNi4i1wKUkw17bge2S5gPTACeMKuTk\nVH3aGhr0kKEdiqwJY09EhKQAkDQg6wdI+iHJl30/4PckD1+6BVjVUicidkp6Hhgv6SVgRGF5+vq8\nNt5/JjATYOTIkVnDsoycDMysRdaE8Y+S7gQOl3QFMIOMD1OKiFmSrgY+BHwU2A0MJHmCX6FGkhsa\nDizYLy5r7f3nAfMA6urq/Jxx67Gc3C1vWVdJ/ff0Wd6vk8xj3BARj2b9kIjYDzwp6WLgKqAJGFxU\nbTCwIy1r2W8uKjMzswrpMGFI6gX8S0T8FZA5SbTzeccDDcBlBZ8xoOV4RGyXtAWoLfi82vQcy0ne\nY9seOzfr+jpcVpv2Dt6QNKQzbyzpaEkXShooqZeks4DPAo8BS4EJkqZKqiF5ENMz6YQ3JBcFXifp\niHR11RXAPZ35fDMzK62scxjNwGpJjwI7Ww5GxBfaOSdIhp9+RJKYNgJfjIj/DSBpKvADkuW5vwUu\nLDj3RmBues4u4Ds9cUltd/2r3GPt5eWft5VK1oTxULplFhFbgSntlC8DxrVRtptkYn1GZz7TzMzy\n027CkDQyIv4UET8uV0DWsa7S8/BftmbdS0dzGA+0vJD0TznHYmZmVayjISkVvH5PnoFYohr+Kq+G\nGMys+nTUw4g2XpuZWQ/TUQ+jVtLrJD2Nfulr0v2IiOKL76yT/Ne8mXUV7SaMiOhVrkDMzKy6ZV1W\na12AeytmlqfOPEDJzMx6MPcwujj3KsysXJwwKsBf8mbWFXlIyszMMnEPo4twr8TMKs0Jw8zepqvc\nq8zKzwnDDop7PF2ff4fWWZ7DMDOzTJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8sk\nt4Qhqa+kuyRtlLRD0u8l/U1B+RmS1kp6Q9JySaOKzr1b0uuSXpR0TV5xmplZNnn2MHoDfwamAEOA\n64F/lDRa0jBgSXrsSKAeWFRw7hxgDDAKOB34sqSzc4zVzMw6kNuV3hGxk+SLv8UvJL0AvB8YCjRE\nxGIASXOAVySNi4i1wKXA9IjYDmyXNB+YBjySV7xm1j7fMsTKdmsQScOBsUADcBWwqqUsInZKeh4Y\nL+klYERhefr6vDbedyYwE2DkyJH5BG/WQ/n2IVaoLAlDUh/gPuDHEbFW0kBga1G1RmAQMLBgv7js\nABExD5gHUFdXF6WMu5T8D8/MurrcV0lJOgxYCOwBZqeHm4DBRVUHAzvSMorKW8rMzKxCck0YkgTc\nBQwHpkbE3rSoAagtqDcAOJ5kXmM7sKWwPH3dkGesZmbWvrx7GHOBE4BPRMSuguNLgQmSpkqqAW4A\nnkknvAHuBa6TdISkccAVwD05x2pmZu3I8zqMUcDngZOAFyU1pdtFEbEVmArcAmwHTgEuLDj9RuB5\nYCPwa+B7EeEVUmZmFZTnstqNgNopXwaMa6NsNzAj3czMrAr41iBmZpaJE4aZmWXihGFmZpk4YZiZ\nWSZOGGZmlokThpmZZVK2mw+aWffR1r3RfBfb7s09DDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPL\nxAnDzMwyccIwM7NMfB1GjvwcbzPrTtzDMDOzTJwwzMwsEycMMzPLxHMYZpaLwjk832Oqe3DCMLOS\n8UKP7i3XISlJsyXVS9ot6Z6isjMkrZX0hqTlkkYVlPWVdLek1yW9KOmaPOM0M7OO5T2HsRn4JnB3\n4UFJw4AlwPXAkUA9sKigyhxgDDAKOB34sqSzc47VzMzakWvCiIglEfEAsK2o6FNAQ0QsjohmkgRR\nK2lcWn4pcHNEbI+I54D5wLQ8YzUzs/ZVag5jPLCqZScidkp6Hhgv6SVgRGF5+vq88oZoZqXiCfDu\noVLLagcCjUXHGoFBaRlF5S1lB5A0M50nqd+6dWvJAzUzs0SlehhNwOCiY4OBHWlZy35zUdkBImIe\nMA+grq4uSh6pmZWUextdV6V6GA1AbcuOpAHA8STzGtuBLYXl6euGskZoZmZvk2sPQ1Lv9DN6Ab0k\n1QD7gKXA9yRNBR4CbgCeiYi16an3AtdJqgeGA1cA0/OMtVS8Dt3Muqu8h6SuA24s2L8Y+EZEzEmT\nxQ+AnwC/BS4sqHcjMBfYCOwCvhMRj+Qcq5lVkIeqql+uCSMi5pAsmW2tbBkwro2y3cCMdDMzsyrg\nW4OYWcV4CLdr8d1qzcwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTr5Iys6rjazKqk3sYZmaWiXsY\nZlbVslyr4V5IebiHYWZmmbiHUQK+WtXMegL3MMzMLBMnDDMzy8RDUmbW7bQ1TOzJ8UPjHoaZmWXi\nHoaZdXleeFIeThhm1mN4qOrQeEjKzMwycQ/DzHo837sqGyeMg+QxU7PuycNWbXPCMDPLoK1eSE/q\nnVRtwpB0JHAXcCbwCvC1iLi/slGZmeU/wlCtSahqEwZwB7AHGA6cBDwkaVVENFQ2LDOz1nX3XkhV\nJgxJA4CpwISIaAKelPRz4BLgqxUNzsysjKppTkURUfYP7Yikk4GnIqJfwbEvAVMi4hNtnVdXVxf1\n9fUH9ZmexDazrupQk4eklRFR11G9quxhAAOBxqJjjcCg4oqSZgIz090mSesO8jOHkcyV9CRuc8/g\nNndz+s4ht3dUlkrVmjCagMFFxwYDO4orRsQ8YN6hfqCk+iwZtjtxm3sGt7n7K1d7q/VK7/VAb0lj\nCo7VAp7wNjOrkKpMGBGxE1gC3CRpgKQPA58EFlY2MjOznqsqE0ZqFtAPeBn4X8BVOS+pPeRhrS7I\nbe4Z3OburyztrcpVUmZmVn2quYdhZmZVxAnDzMwy6TEJQ9KRkpZK2ilpo6TPtVFPkr4jaVu6fVeS\nyh1vKXSizddKWiNph6QXJF1b7lhLJWubC+q/Q9JaSZvKFWOpdabNkiZJelxSk6SXJP1dOWMtlU78\nv91X0o/Str4q6UFJ7yp3vIdK0mxJ9ZJ2S7qng7r/VdKLkhol3S2pb6ni6DEJg7ffm+oiYK6k8a3U\nmwmcR7KM933AucDnyxVkiWVts4BLgSOAs4HZki4sW5SllbXNLa4lWVjRlWVqs6RhwCPAncBQ4D8A\nvyxjnKWU9ff8d8CHSP4tjwBeA24vV5AltBn4JnB3e5UknUVy+6QzgNHAe4BvlCyKiOj2GzCA5H+u\nsQXHFgLfbqXuU8DMgv2/Bf6t0m3Is82tnHsbcHul25B3m4HjgOeAvwE2VTr+vNsM/D2wsNIxl7nN\nc4HvFuyfA6yrdBsOoe3fBO5pp/x+4O8L9s8AXizV5/eUHsZYYH9ErC84tgpo7S+S8WlZR/WqXWfa\n/JZ0+O00uuZFkp1t8+3A14FdeQeWo860+YPAq5KekvRyOjwzsixRllZn2nwX8GFJIyT1J+mN/HMZ\nYqyU1r6/hksaWoo37ykJI/O9qVqp2wgM7ILzGJ1pc6E5JP9fLMghprx15h5k5wO9I2JpOQLLUWd+\nz8cCl5EM04wEXiC5xqmr6Uyb1wN/Av4CvA6cANyUa3SV1dr3F3T87z6TnpIwMt+bqpW6g4GmSPt3\nXUhn2gwkE2skcxnnRMTuHGPLS6Y2p7fP/y5wdZniylNnfs+7gKURsSIimknGtk+VNCTnGEutM22e\nC9SQzNkMILmDRHfuYbT2/QXt/LvvjJ6SMDpzb6qGtKyjetWuU/fjkjSDdLIsIrrqiqGsbR5DMiH4\nhKQXSb5EjklXlowuQ5yl1Jnf8zNA4R8+La+7Wu+5M22uJRnzfzX9I+h24APpAoDuqLXvr5ciYltJ\n3r3SkzhlnCz6KUn3ewDwYZKu2vhW6l1JMhH6LpJVFQ3AlZWOP+c2XwS8CJxQ6ZjL0WaSuzS/s2D7\nFMkqlHcCvSrdhhx/zx8DtpM8wbIPcCvwRKXjz7nNC4B/Aoakbf468JdKx38Q7e1N0lP6FskEfw3J\nkGpxvbPTf8snkqx6fIwMC10yx1HpH0QZf+BHAg8AO0nGND+XHj+NZMippZ5IhiteTbfvkt5Cpatt\nnWjzC8Beku5sy/ajSsefZ5uLzvkoXXSVVGfbDFxFMp6/HXgQeHel48+zzSRDUfeRLJ1+DXgS+ECl\n4z+I9s4h6REWbnNI5qKagJEFda8BXiKZs1kA9C1VHL6XlJmZZdJT5jDMzOwQOWGYmVkmThhmZpaJ\nE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZeKEYWZmmfx/lnFWYoQp0CcAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "energy[energy.index < valid_start_dt][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", - "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, we create the target (*y_t+1*) variable. If we use the convention that the dataframe is indexed on time *t*, we need to shift the *load* variable forward one hour in time. Using the freq parameter we can tell Pandas that the frequency of the time series is hourly. This ensures the shift does not jump over any missing periods in the time series." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
loady_t+1
2012-01-01 00:00:000.220.18
2012-01-01 01:00:000.180.14
2012-01-01 02:00:000.140.13
2012-01-01 03:00:000.130.13
2012-01-01 04:00:000.130.15
2012-01-01 05:00:000.150.18
2012-01-01 06:00:000.180.23
2012-01-01 07:00:000.230.29
2012-01-01 08:00:000.290.35
2012-01-01 09:00:000.350.37
\n", - "
" - ], - "text/plain": [ - " load y_t+1\n", - "2012-01-01 00:00:00 0.22 0.18\n", - "2012-01-01 01:00:00 0.18 0.14\n", - "2012-01-01 02:00:00 0.14 0.13\n", - "2012-01-01 03:00:00 0.13 0.13\n", - "2012-01-01 04:00:00 0.13 0.15\n", - "2012-01-01 05:00:00 0.15 0.18\n", - "2012-01-01 06:00:00 0.18 0.23\n", - "2012-01-01 07:00:00 0.23 0.29\n", - "2012-01-01 08:00:00 0.29 0.35\n", - "2012-01-01 09:00:00 0.35 0.37" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_shifted = train.copy()\n", - "train_shifted['y_t+1'] = train_shifted['load'].shift(-1, freq='H')\n", - "train_shifted.head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also need to shift the load variable back 6 times to create the input sequence:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "for t in range(1, T+1):\n", - " train_shifted[str(T-t)] = train_shifted['load'].shift(T-t, freq='H')" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load_originaly_t+1load_t-5load_t-4load_t-3load_t-2load_t-1load_t
2012-01-01 00:00:000.220.18nannannannannan0.22
2012-01-01 01:00:000.180.14nannannannan0.220.18
2012-01-01 02:00:000.140.13nannannan0.220.180.14
2012-01-01 03:00:000.130.13nannan0.220.180.140.13
2012-01-01 04:00:000.130.15nan0.220.180.140.130.13
2012-01-01 05:00:000.150.180.220.180.140.130.130.15
2012-01-01 06:00:000.180.230.180.140.130.130.150.18
2012-01-01 07:00:000.230.290.140.130.130.150.180.23
2012-01-01 08:00:000.290.350.130.130.150.180.230.29
2012-01-01 09:00:000.350.370.130.150.180.230.290.35
\n", - "
" - ], - "text/plain": [ - " load_original y_t+1 load_t-5 load_t-4 load_t-3 \\\n", - "2012-01-01 00:00:00 0.22 0.18 nan nan nan \n", - "2012-01-01 01:00:00 0.18 0.14 nan nan nan \n", - "2012-01-01 02:00:00 0.14 0.13 nan nan nan \n", - "2012-01-01 03:00:00 0.13 0.13 nan nan 0.22 \n", - "2012-01-01 04:00:00 0.13 0.15 nan 0.22 0.18 \n", - "2012-01-01 05:00:00 0.15 0.18 0.22 0.18 0.14 \n", - "2012-01-01 06:00:00 0.18 0.23 0.18 0.14 0.13 \n", - "2012-01-01 07:00:00 0.23 0.29 0.14 0.13 0.13 \n", - "2012-01-01 08:00:00 0.29 0.35 0.13 0.13 0.15 \n", - "2012-01-01 09:00:00 0.35 0.37 0.13 0.15 0.18 \n", - "\n", - " load_t-2 load_t-1 load_t \n", - "2012-01-01 00:00:00 nan nan 0.22 \n", - "2012-01-01 01:00:00 nan 0.22 0.18 \n", - "2012-01-01 02:00:00 0.22 0.18 0.14 \n", - "2012-01-01 03:00:00 0.18 0.14 0.13 \n", - "2012-01-01 04:00:00 0.14 0.13 0.13 \n", - "2012-01-01 05:00:00 0.13 0.13 0.15 \n", - "2012-01-01 06:00:00 0.13 0.15 0.18 \n", - "2012-01-01 07:00:00 0.15 0.18 0.23 \n", - "2012-01-01 08:00:00 0.18 0.23 0.29 \n", - "2012-01-01 09:00:00 0.23 0.29 0.35 " - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_col = 'y_t+1'\n", - "X_cols = ['load_t-5',\n", - " 'load_t-4',\n", - " 'load_t-3',\n", - " 'load_t-2',\n", - " 'load_t-1',\n", - " 'load_t']\n", - "train_shifted.columns = ['load_original']+[y_col]+X_cols\n", - "train_shifted.head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 4. Discard any samples with missing values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice how we have missing values for the input sequences for the first 5 samples. We will discard these:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load_originaly_t+1load_t-5load_t-4load_t-3load_t-2load_t-1load_t
2012-01-01 05:00:000.150.180.220.180.140.130.130.15
2012-01-01 06:00:000.180.230.180.140.130.130.150.18
2012-01-01 07:00:000.230.290.140.130.130.150.180.23
2012-01-01 08:00:000.290.350.130.130.150.180.230.29
2012-01-01 09:00:000.350.370.130.150.180.230.290.35
\n", - "
" - ], - "text/plain": [ - " load_original y_t+1 load_t-5 load_t-4 load_t-3 \\\n", - "2012-01-01 05:00:00 0.15 0.18 0.22 0.18 0.14 \n", - "2012-01-01 06:00:00 0.18 0.23 0.18 0.14 0.13 \n", - "2012-01-01 07:00:00 0.23 0.29 0.14 0.13 0.13 \n", - "2012-01-01 08:00:00 0.29 0.35 0.13 0.13 0.15 \n", - "2012-01-01 09:00:00 0.35 0.37 0.13 0.15 0.18 \n", - "\n", - " load_t-2 load_t-1 load_t \n", - "2012-01-01 05:00:00 0.13 0.13 0.15 \n", - "2012-01-01 06:00:00 0.13 0.15 0.18 \n", - "2012-01-01 07:00:00 0.15 0.18 0.23 \n", - "2012-01-01 08:00:00 0.18 0.23 0.29 \n", - "2012-01-01 09:00:00 0.23 0.29 0.35 " - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_shifted = train_shifted.dropna(how='any')\n", - "train_shifted.head(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 5. Transform into a numpy arrays of shapes (samples, features) and (samples,1) for input into Keras" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now convert the target and input features into numpy arrays. " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "y_train = train_shifted[[y_col]].as_matrix()\n", - "X_train = train_shifted[X_cols].as_matrix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have a vector for target variable of shape:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(23370, 1)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The target varaible for the first 3 samples looks like:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.18],\n", - " [0.23],\n", - " [0.29]])" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train[:3]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The tensor for the input features now has the shape:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(23370, 6)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And the first 3 samples looks like:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.22, 0.18, 0.14, 0.13, 0.13, 0.15],\n", - " [0.18, 0.14, 0.13, 0.13, 0.15, 0.18],\n", - " [0.14, 0.13, 0.13, 0.15, 0.18, 0.23]])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train[:3]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can sense check this against the first 3 records of the original dataframe:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load_originaly_t+1load_t-5load_t-4load_t-3load_t-2load_t-1load_t
2012-01-01 05:00:000.150.180.220.180.140.130.130.15
2012-01-01 06:00:000.180.230.180.140.130.130.150.18
2012-01-01 07:00:000.230.290.140.130.130.150.180.23
\n", - "
" - ], - "text/plain": [ - " load_original y_t+1 load_t-5 load_t-4 load_t-3 \\\n", - "2012-01-01 05:00:00 0.15 0.18 0.22 0.18 0.14 \n", - "2012-01-01 06:00:00 0.18 0.23 0.18 0.14 0.13 \n", - "2012-01-01 07:00:00 0.23 0.29 0.14 0.13 0.13 \n", - "\n", - " load_t-2 load_t-1 load_t \n", - "2012-01-01 05:00:00 0.13 0.13 0.15 \n", - "2012-01-01 06:00:00 0.13 0.15 0.18 \n", - "2012-01-01 07:00:00 0.15 0.18 0.23 " - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_shifted.head(3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data preparation - validation set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we follow a similar process for the validation set. We keep *T* hours from the training set in order to construct initial features." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load
2014-08-31 19:00:003,969.00
2014-08-31 20:00:003,869.00
2014-08-31 21:00:003,643.00
2014-08-31 22:00:003,365.00
2014-08-31 23:00:003,097.00
\n", - "
" - ], - "text/plain": [ - " load\n", - "2014-08-31 19:00:00 3,969.00\n", - "2014-08-31 20:00:00 3,869.00\n", - "2014-08-31 21:00:00 3,643.00\n", - "2014-08-31 22:00:00 3,365.00\n", - "2014-08-31 23:00:00 3,097.00" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "look_back_dt = dt.datetime.strptime(valid_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", - "valid = energy.copy()[(energy.index >=look_back_dt) & (energy.index < test_start_dt)][['load']]\n", - "valid.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale the series using the transformer fitted on the training set:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load
2014-08-31 19:00:000.61
2014-08-31 20:00:000.58
2014-08-31 21:00:000.51
2014-08-31 22:00:000.43
2014-08-31 23:00:000.34
\n", - "
" - ], - "text/plain": [ - " load\n", - "2014-08-31 19:00:00 0.61\n", - "2014-08-31 20:00:00 0.58\n", - "2014-08-31 21:00:00 0.51\n", - "2014-08-31 22:00:00 0.43\n", - "2014-08-31 23:00:00 0.34" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "valid['load'] = scaler.transform(valid)\n", - "valid.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Prepare validation inputs in the same way as the training set:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "valid_shifted = valid.copy()\n", - "valid_shifted['y+1'] = valid_shifted['load'].shift(-1, freq='H')\n", - "for t in range(1, T+1):\n", - " valid_shifted['load_t-'+str(T-t)] = valid_shifted['load'].shift(T-t, freq='H')\n", - "valid_shifted = valid_shifted.dropna(how='any')\n", - "y_valid = valid_shifted['y+1'].as_matrix()\n", - "X_valid = valid_shifted[['load_t-'+str(T-t) for t in range(1, T+1)]].as_matrix()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1463,)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_valid.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1463, 6)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_valid.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Implement Feedforward Neural Network" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We implement feed-forward neural network with the 6 inputs, 5 neurons in hidden layer and one neuron in output layer:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3MAAARgCAYAAADzdXxDAAAAAXNSR0IArs4c6QAAAARnQU1BAACx\njwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7P0/yy3Nlhh4zkcsvxwhxDVkiH5n\n6JpWI28oTwLVba81VKNmQCBLXNqRI5DRIDmNQKAvIOh25LSs9mp63bfWfePEicydmTv/RcTvB4tz\nnr33s3fmioj1ROY6f/4ffwMAAAAAAADA62jmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQ\nZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAA\nAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADA\nC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4A\nAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAA\nALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nm\nAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAA\nAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQ\nZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAA\nAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADA\nC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4A\nAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAABN//O/+9+F+CEAAAC4\nl2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1m\nnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdm\nLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6Y\nOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4A\nAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsA\nAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAA\nTa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAA\nuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2t\nZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiX\nZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWae\nmDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2Yu\nAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7\nAAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaeeDb+7t//5W/+7M/+rPncHQEAAMC9NHMBAABo\najXzxDPxl3/9hz81cjVzAQAA5qGZCwAAQFOrmSfuj//X/+ef/qmJq5kLAAAwF81cAAAAmlrNPHFv\nlH8bVzMXAABgPpq5AAAANLWaeXdG/I3UaGbGr63nR47W38Yto/U9dwQAAAD30swFAACgqdXMuyPq\nRuZMzdxWE7f1t3Nb33tHAAAAcC/NXAAAAJpazbw7YsZmbquJGxGN3Hi+frz+/rsCAACAe2nmAgAA\n0NRq5t0RszRz//Kv/7D4f+LG4/F8vrZ+vnyfOwMAAIB7aeYCAADQ1Grm3RGzNHOX/jZu63zr19TP\n3xUAAADcSzMXAACAplYz746YsZkbfxN37TzLfES0XnNHAAAAcC/NXAAAAJpazbw7YqZm7qcmbkaZ\nj4jWa+4IAAAA7qWZCwAAQFOrmXdHzNLM3RNlPiJar7kjAAAAuJdmLgAAAE2tZt4d8YZmbnxmxl/+\n9R+ar7kzynxEtF5zRwAAAHAvzVwAAACaWs28s6NuUh6J+KeKW+/9TZTv/0QzuY7yeCJar7kjAAAA\nuJdmLgAAAE2tZt7ZUTcpj4Rm7n0BAADAvTRzAQAAaGo1886Oukl5JDRz7wsAAADupZkLAABAU6uZ\nd3bk/0tbRjRny8ZlfN16XRmt9/4mys+/4v33Rnk8Ea3X3BEAAADcSzMXAACAplYz746I5mnZuHyi\nmfr059dRHk9E6zV3BAAAAPfSzAUAAKCp1cy7IzRzf47yeCJar7kjAAAAuJdmLgAAAE2tZt4doZn7\nc5THE9F6zR0BAADAvTRzAQAAaGo18+4IzdyfozyeiNZr7ggAAADupZkLAABAU6uZd0do5v4c5fFE\ntF5zRwAAAHAvzVwAAACaWs28O0Iz9+cojyei9Zo7AgAAgHtp5gIAANDUaubdEZq5P0d5PBGt19wR\nAAAA3EszFwAAgKZWM++O0Mz9OcrjiWi95o4AAADgXpq5AAAANLWaeXfE2c3c+v3uiNZxfBNXv//W\nAAAA4F6auQAAADS1mnl3hGbuz3H1+28NAAAA7qWZCwAAQFOrmXdHaOb+HFe//9YAAADgXpq5AAAA\nNLWaeXfE2c3cv/zrP+yO8vP/7t//pfmatWgdxzdRHk9E6zV3BAAAAPfSzAUAAKCp1cy7I85u5h6J\npz+/jvJ4IlqvuSMAAAC4l2YuAAAATa1m3h2hmftzlMcT0XrNHQEAAMC9NHMBAABoajXz7gjN3J+j\nPJ6I1mvuCAAAAO6lmQsAAEBTq5l3R2jm/hzl8US0XnNHAAAAcC/NXAAAAJpazbw7QjP35yiPJ6L1\nmjsCAACAe2nmAgAA0NRq5t0Rmrk/R3k8Ea3X3BEAAADcSzMXAACAplYz747QzP05yuOJaL3mjgAA\nAOBemrkAAAA0tZp5d4Rm7s9RHk9E6zV3BAAAAPfSzAUAAKCp1cy7IzRzf47yeCJar7kjAAAAuJdm\nLgAAAE2tZt4d8Zd//YcfGpeauZq5AAAAs9LMBQAAoKnVzLsj6mbuE83L8rM1c38LAAAA7qWZCwAA\nQFOrmXdX1M3LaPC2XndVlJ+tmftbAAAAcC/NXAAAAJpazby7om5e/t2//0vzdRF3N3qfiDofrdfc\nEQAAANxLMxcAAICmVjPvrmj9U8sR8bdky4gm71qjd5So89B6zR0BAADAvTRzAQAAaGo18+6MaNLW\nTcxWaObeFwAAANxLMxcAAICmVjPv7tjS0NXMvS8AAAC4l2YuAAAATa1m3hMR/+Ry/JPKdUMzmrjx\neOt7xDUBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADA\nvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo1\n88TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00\ncwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE\n3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMB\nAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwB\nAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAA\naGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAA\nwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhq\nNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9\nNHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXz\nxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRz\nAQAAaGo188TcAQAAwL00cwEAAAAAAABeSDMXAACAR/3H//gf/xj/4l/8i799ZD5x7jOfPwAAAG2a\nuQAAADwiGrj/6B/9o7/5sz/7sz/GzM3MMg/xe41dAAAAgmYuAAAAt6kbuGXEc7OKc2/lRGMXAABg\nbpq5AAAAXCoalWtN3IzZfcqPxi4AAMB8NHMBAAC4xJYGboYm5edmbhkauwAAAHPQzAUAAOA0exq4\nZWhMLv9Ty59CYxcAAGBcmrkAAAAdyn+6+FPcJT7rSBM342p35+Oob3IYobELAAAwFs1cAACADn3b\n9Ksj3u+IM47jjuZjfMbRc7xTL/msjzO+Xos4pk/RQ7MdAADgbpq5AAAAHYrGV9lM+zaONtLOOI5o\n5F3tzs/6xrf5vPP8oknbOoajAQAAwM80cwEAADp1VjPt2wbgtw3Iq8X53fl53zo6rnc3qs/8AwVv\nb7IDAAA8RTMXAACgU2/7W7FHm5BXqz8vjvPNjuTxqWZo3Sg/GgAAALRp5gIAAHTsm7+de0VTc+/x\nXN2EXGo2RiP8rfY26Z9q5KZv5mDE08cPAADwZpq5AAAAHfvmb+deZU9z7+qm6lIz94pG9pm25vAN\njdBv5qBGLgAAwDrNXAAAgM4d+ZuRVzfRWp/Ziqu1PjPjzX87d+uYvqUpvdQ0/xSauQAAAOs0cwEA\nADq3t5F2dQMtG5GfGpJXH8eWvLzVp7/tGudW5vkNPo13HVePPwAAwAg0cwEAADq1pVlZx9UNtLrB\nuHaMVx9L6zPreHNDcak5Wh5zne+n1ce6FnHMb84/AADAG2jmAgAAdKZukGZTrHxsKa6Ux1A3FpeO\n7Upb8xHx1n9uORu1ZcR51fJ1dd6fcOT/z22dEwAAAL/SzAUAAOhE3aCM5l3ZiGw1/8q4smlWHlur\nOdo69iuVn/Up3tAEbakbo2vjl2P/hnOpx7oVrdetnR8AAMCsNHMBAABeLBp6dZM2vm41TOvmXxlX\nNsrKplzruFL5uruOZ2usHfeTcuy35OtNDd16zpZRn0s9XlfODQAAgN5o5gIAALzQniZuqXx9xpXN\nsbIRt6Uhmq+/snlaNwe3xBsaoC1xXHvGL+fM0+cT41vnOGNJPW57zhsAAGBUmrkAAAAvcrSJm1qN\nzKuUn7Wn8XZlIzeU574nRmkevqWh25qLn3Icz9ffN8q4AAAAHKGZCwAA8ALfNnFL5Xtc1TgtG25v\narbVjcC9cXWj+S5vaejWc3qr1jhq6gIAADPSzAUAAHjQmU3clI2wq5pfZaPtbQ22PK6j8XTz80w5\nr548p5jHmdsjc6Wca/keb5tzAAAAV9LMBQAAeMAVTdzSVQ2vsrn2tqZaeWzfxFlj8AZvaOjmuHyj\nHtu3zT0AAICraOYCAADcqNXE7aUx9e3fsrxandctEd9TRpzXSM3cUJ7rU878Qwrl+GnqAgAAo9PM\nBQAAuEHPTdzw9kZu5jcbshnxeEbmP34/kzjfHLsnG7pnirHNc4p445wEAAA4g2YuAADAhcomYs+N\npxGaZrM2c8OIDd2gqQsAAIxOMxcAAOACozRxQ55H703AmZu5YeSGrqYuAAAwKs1cAACAE9VN3Ph9\nz83DPJcRmn/Z8Ju50TdqQzfEuJZrb/axBgAAxqCZCwAAcILRmrghz2eUpp9m7q9GbuiGHOeM+FpT\nFwAA6JVmLgAAwBdGbOKGsiE2ijwnjb3xG7qhnMPGHQAA6JVmLgAAwAGjNnFD2QQb5ZxCNjBHbV7u\nNUNDN2jqAgAAPdPMBQAA2KFuDI3UxA2jNnKDZu7PZmnoBk1dAACgR5q5AAAAG4zexA0jN3KDZm7b\nTA3doKkLAAD0RDMXAABgxQxN3FCe56jNLc3cZTM2dOu1Peq8BwAA+qaZCwAA0FA3ekZt4obyXEdv\naOV58rPZGroh5nu91kdfAwAAQF80cwEAAP5WNLOiiVU2dkZu4oaZGrkhz5W2GRu6odXQ1dQFAADe\nQDMXAACY3oxN3FA27mZpXOX5smzWhm5oNXUBAACepJkLAABMa9YmbpixkRvynFk3c0M3aOoCAABv\noZkLAABMZ+Ymbpi1kRty3GcZ62/M3tANmroAAMDTNHMBAIBpzN7ETTM3pjRz99HQ/ZWmLgAA8BTN\nXAAAYHiauL/JPMzamMvz18zdTkP3V5EHTV0AAOBumrkAAMCwWk3cmZsvszdyg2buMRq6v4kaoqkL\nAADcRTMXAAAYjibuzzRyf5VNOM23/TR0f9Rq6JpXAADA2TRzAQCAYWjitpVNp9llLsyLY8qGrhz+\nqlxfmZfIEwAAwBk0cwEAgO5p4i4rG00aTJq5Z9DQbSvXmtwAAABn0cwFAAC6VTdx4/calr8pm0vy\n8qtsRPpngr+jobtMUxcAADiTZi4AANAdTdzPNHLbNHPPo6G7TlMXAAA4g2YuAADQDU3cbcomkgbS\njzRzz6Wh+5mmLgAA8A3NXAAA4PWi+aGJu03ZONI0+plm7vk0dD+LvJRrU64AAICtNHMBAIDXqpsf\nmrjrynxpFC3LHHEeDd1tWjVNvgAAgDWauQAAwOu0Gh6auOs007bLPHEuc3C7usbF13IGAAC0aOYC\nAACvUTc4NHG30UTbJ3PF+czFfeqaJ2cAAEBNMxcAAHhUNH80cY/TPNsv88U1zMn9NHUBAIAlmrkA\nAMAjouETTduygaGJu5/mz34578y162joHqOpCwAA1DRzAQCAW2ninifzGL+ynWbuPTR0j9PUBQAA\nkmYuAABwC03cc2nkHqeZex8N3eMiX5q6AACAZi4AAHApTdzzaeR+RzP3Xhq636kbujF/5REAAOah\nmQsAAFxCE/caZWNHLo/JHGqI3UdD93vl2s88yiUAAIxPMxcAADiVJu51ymaOfB6XedQIu5eG7jnK\nOiCXAAAwPs1cAADgFK0mribDecoGjkbudzKX5uf9NHTPU9YE+QQAgHFp5gIAAF/RxL1e2bSR2+9l\nQzHmLffT0D1XWR/kFAAAxqOZCwAAHKKJe4+yUSO/59DMfZ6G7vnKWiGvAAAwDs1cAABgl7qJG7/X\nNLhG2ZyR4/No5r6Dhu75Io9l3ZBbAADon2YuAACwSauJG49xjbIhoxlzLs3c99DQvUbksqzX8gsA\nAP3SzAUAAFZp4t5Pg+tamrnvYr5fJ/KZuc38yjEAAPRFMxcAAGjSxH2GxtY9Mse8g3l/rVZTFwAA\n6INmLgAA8IO4ya+J+wwNrftknnkP8/96mroAANAfzVwAAOCP6pv8mrj3yyZ6/Mq1cp7zLhq699DU\nBQCAfmjmAgDA5DRx30Ej916Zb3P9fTR076OpCwAA76eZCwAAk9LEfQ+N3Ptp5r6bhu59Ir+augAA\n8F6auQAAMJFokGjivks5HtxHM/f9NHTvFTnOdSHvAADwHpq5AAAwgWiK1DfpNXGfVzZyjcW9NHP7\noKF7v7IuZd7lHgAAnqOZCwAAA9PEfS+N3Gdp5vZDQ/cZraYuAABwP81cAAAYkCbuu2nkPi/HQIOq\nDxq6zynrlfwDAMD9NHMBAGAgmrjvVzZGNEWek+NgDPqhofussnYZAwAAuI9mLgAADEATtw9lM0Qj\n5Fk5FsahLxq6zyvrmHEAAIDraeYCAEDHWk3cuLGuifs+ZQNE8+N52RSM9UNfNHSfF2NQ1jRjAQAA\n19HMBQCADi01cXknzaf30cztmzX1DpH7iBwL4wEAAOfTzAUAgI5o4vZH0+mdNHP7Z229R6uha0wA\nAOAcmrkAANABTdw+aTa9l2buGKyxd4kxyPHIMYkxAgAAjtPMBQCAF6ubuPF7DYt+lA0N3ifHh75p\n6L5Pq6kLAAAco5kLAAAv1Gri+ttNfcnxi195p1xf9E9D9500dQEA4HuauQAA8CKauGPQyO1DrjPG\noKH7Xpq6AABwnGYuAAC8gCbuODRy+5HrjXFo6L6bpi4AAOynmQsAAA+qb2xr4vatHE/eLxvv1txY\nNHTfLcak/tlnnAAAYJlmLgAAPKC+ka2J279yTI1lHzRzx6Wh+36thq6xAgCAn2nmAgDAjeqb15q4\nYyjH1Xj2QzN3bBq6fah/LsbXxgsAAH6jmQsAADeob1Zr4o6jHFtj2hfN3PFp6Paj/jlpvAAA4Fea\nuQAAcJFoImSzKEMTdyxl80HjoT85fsZubBq6fSnrqjEDAADNXAAAOJ0m7hzKhoNmQ59yDI3f+DR0\n+1PWWOMGAMDMNHMBAOAkmrjzKJsMGgz9ynE0hnOwbvtUjpuxAwBgRpq5AADwJU3cufgbfuPIsYz1\nyhw0dPsUY1WOnfEDAGAmmrkAAHCQJu58NHLHopk7p7IpaB33pW7oxto1hgAAjE4zFwAAdtLEnZNG\n7ng0c+elodu3uqkbXxtHAABGpZkLAAAbtZq4bh7Pw5iPRzN3bmVD0LruUzmGxhEAgFFp5gIAwAea\nuOT4a/qNpfzb1sxJQ3cMmroAAIxMMxcAABZo4hI0cseWa5t5aeiOQ1MXAIARaeYCAEBFE5ekkTu+\nXOPMTUN3LJq6AACMRDMXAAD+Vt3Ejd/HY8ypbAaYB+PKMQYN3bHEGJZjalwBAOiVZi4AANPTxKVW\nNgDMhbHl2jfOhHLta/yNoW7oGlsAAHqjmQsAwLQ0cWnRyJ2LZi41Dd0x1U3d+Nr4AgDQA81cAACm\no4nLEk2c+Wjm0qIWjKscW+MLAEAPNHMBAJhGfQNXE5eS5s2cNHNZoiaMrd4TGGMAAN5KMxcAgOHV\nN2w1calp2swrm7nGnRa1YXzlGBtnAADeSDMXAIBh1TdoNXFp0ayZW46/sWeJGjGHcpyNNQAAb6KZ\nCwDAcOobspq4LIl54cb93LJeGH/WlD9XzJVxxdiWY228AQB4A81cAACGEE25/OdSMzRxWaORS8jG\nTdQLWFM2+dSMscX41nsKYw4AwFM0cwEA6JomLkdo5JJyLmjmsoWG7lzK8c4xN+4AANxNMxcAgC5p\n4vKNnDsaeGjmspeG7nxaTV0AALiLZi4AAF3RxOVbGrmUNHM5QkN3Tpq6AAA8QTMXAIAuaOJyBo1c\napq5HKWhOy9NXQAA7qSZCwDAq2nicpby5juUzAuO0tCdm6YuAAB30MwFAOCVWk1cN0k5qrzh7g8C\nUMu5AUeU9cXPqfnEmJdzwDwAAOBsmrkAALyKJi5nK2+ya+TSkvMDjirrjJ9Zc4pxL+eBuQAAwFk0\ncwEAeAVNXK5Q3ljXyGWJOcIZynrj59e8ynmQc8F8AADgG5q5AAA8ShOXq5Q31M0p1mQN0szlW+oO\nqZwLOR/UGAAAjtDMBQDgEXUTN37vJidn0VBhD81czqT+UCrngzkBAMARmrkAANxKE5eraaSwl2Yu\nZ1OHqJVzwrwAAGAPzVwAAG6hicsdYk65Uc5emrlcQUOXFk1dAAD20swFAOBSmrjcRSOXo7K5Yt5w\ntrJxZ36R4udVOTfMDwAA1mjmAgBwifompSYuV9LI5RtZr8wdrlD+PDTHKMV8KOeHOQIAQItmLgAA\np6pvSmricgc3wflG1i3zh6uUPxvNM2rl/Mg5Yp4AAJA0cwEAOEV9I1ITl7vkP+Mdv8IR+Te7zSGu\nVP6c1Kijpd5Lxdf2UgAAaOYCAPAVTVyepJHLGTRzuYuGLlu0mroAAMxLMxcAgN2i8ZFNtAxNXO6m\nkctZNHO5k4YuW2nqAgAQNHMBANhME5e3KG9ww7c0c7mbhi57aOoCAMxNMxcAgI80cXmT8qa2OchZ\nck7BXTR02UtTFwBgTpq5AAAs0sTlbTRyuUrOK7iThi57xTwp5425AwAwPs1cAAB+oonLG5U3r81F\nzpZzC+5W1jZNObaqG7qxTzN/AADGpJkLAMCfaOLyVpodXC3nFzxBjeOocu7k/DGHAADGopkLAECz\nietGIG9R3qg2L7lK1kB/eIWnqHV8o5w/5hAAwFg0cwEAJqaJy9tpbnAXzVzeQM3jW+UcMo8AAMag\nmQsAMCFNXHoQ89T85C6aubxF2YxT+ziqnEfmEgBA3zRzAQAmoolLLzRyuZtmLm9SNuLUQL5RziXz\nCQCgT5q5AAATqJu48XsNC95KI5cnZMPDnOMtyiaceck3Yv6U88mcAgDoi2YuAMDANHHpkRvNPCEb\nHeYdb1I24MxNvlXOJ/MKAKAfmrkAAAPSxKVXOW/jV7hTNjk0NnibsgFnfnKGck7lvDK3AADeSzMX\nAGAgmrj0TCOXJ0WtNP94Kw1drtBq6gIA8D6auQAAA6hvxmni0huNXJ6mmcvbaehyFU1dAIB308wF\nAOiYJi4jKOex+ctTNHPpQVkvNdw4W72vNMcAAN5BMxcAoEP1zTZNXHpVzmVzmCdp5tKLsm5qtnGF\nep9pngEAPEszFwCgI/XNNU1celbOZ/OYp2nm0pOyfmq0cYWYV/W+01wDAHiGZi4AwMtFgyGaC+XN\nNE1ceqcRwRvlnIQeqKPcIeZWvQ813wAA7qWZCwDwUpq4jEoDgrfKeQm9UE+5SznXcr6ZcwAA99DM\nBQB4GU1cRqbxwJvl3ISeqKvcqZxv5hwAwD00cwEAXkITl9FpOPB2WYPVXXqjvnK3cs6ZdwAA19LM\nBQB4mCYuM4j57IYvb6eZS880dHmCpi4AwPU0cwEAHqKJyyw0cumFZi6909DlKZq6AADX0cwFALhZ\nq4nrhhej0silJ5q5jKBsqqm73CnmWzn/zEEAgHNo5gIA3EQTlxnlnI9f4e1yvqrN9K5sqJnP3C3m\nnD0vAMB5NHMBAC6micusNHLpTTbA1GhGkPPZnOYp5RzMeWguAgDsp5kLAHARTVxmppFLj7LxoFYz\nipzT5jVPKuehuQgAsJ9mLgDAyeombvze/7/ITMqbttCTnLsaDYykrMnmNk8q56L5CACwnWYuAMBJ\nNHHhxxu15j+9iTmb9RtGoqHLm2jqAgDso5kLAPAlTVz4lUYuvdPMZWQauryNpi4AwDaauQAAB2ni\nwm80chmBZi6j09DlbaLuauoCAKzTzAUA2Km+4aSJy+w0BxiFZi4zULN5o5iL5dw0PwEAfqOZCwCw\nUX2DSRMXNAUYT85nGJnazVvV++342hwFAGanmQsA8EF9U0kTF35Vrg03WhlFzmkYnRrOm9X77/ja\n/hsAmJVmLgDAgvomkiYu/Cb/Odq8wQqjyHkNMyj3Omo5b1Tvx81TAGBGmrkAAIVoUEXTtrxppIkL\nP9LIZWQ5t9V9ZqGhSw80dQGAmWnmAgD83zRxYRuNXEaXPwvUf2aioUsvNHUBgBlp5gIAU9PEhX3c\nPGV0mrnMSkOXnmjqAgAz0cwFAKakiQv75ZqJX2FUmrnMTEOXnsQc1dQFAGagmQsATEUTF47RyGUW\nmrnMTkOX3tQN3ajj5i4AMBLNXABgCpq4cFyunfgVRpdNAY0AZlY2x6wFelHO25y75i8AMALNXABg\naK0mrps6sF15YxRmkHPezwpmV9Z/64GelHPX/AUARqCZCwAMSRMXvlfeDPW32JlFzns/M0BDl76V\n89ccBgB6ppkLAAxFExfOUd4A1chlJjHfY977Z8XhV+XPA3sqelTOYfMYAOiRZi4AMARNXDhPedNT\nI5fZaObCz8qfC/ZX9Kqcx+YyANATzVwAoGt1Ezd+r/kEx7lhz+w0c6HNzwdGEHO3nMvmMwDQA81c\nAKBLmrhwPjfqQTMX1vg5wSjKuZw135wGAN5KMxcA6IomLlzDDXr4Ta4F4Gd+XjCScj7nnDavAYC3\n0cwFALoQN1U0ceEa+TcR8yYmzC7XA9BWNsD83GAE5Zw2rwGAt9HMBQBerb6xookL59LIhZ/lmgCW\nlXs0ezNGoakLALyRZi4A8EqauHA9jVxoy3UBrNPQZVSaugDAm2jmAgCvookL93GDEtryn/X38wc+\n09BlZJq6AMAbaOYCAI+LG3+auHCvbFbFr8CPNHNhHw1dRhbzW1MXAHiSZi4A8Ji42Zc3zDM0ceF6\nGrmwTjMX9tPQZXR1QzdCUxcAuINmLgBwO01ceI5GLnymmQvHaOgyg7qpG19r6gIAV9LMBQBuo4kL\nz3KTHbbJteLmPOznZw2zKOe6nxkAwJU0cwGAy2niwvPcXIftcr24MQ/H+JnDTMr57mcHAHAFzVwA\n4DKauPAObqrDPrlm3JCH4/zsYTblnPczBAA4k2YuAHA6TVx4j/LGopuKsE38vMqfXcBxGrrMSFMX\nADibZi4AcJpWE9fNC3hOeTPRWoTtNHPhPOXPIg1dZhHzvpz7EfZiAMBRmrkAwNc0ceF9yhuI1iPs\no5kL5yp/JmnoMpOY+66TAIBvaeYCAIdp4sI7lTfNrUnYTzMXzlf+bNLQZTbl/I+Ir+3RAICtNHMB\ngN3qJm783s0IeIdsQuWNQmA/zVy4RtnQ0tBlRuUaiLBXAwC20MwFADZrNXHdiIP30MiF8+RaAs6l\noQuaugDAPpq5AMBHmrjwfhq5cK5cT8D5NHThV5q6AMAWmrkAwCJNXOhHrlU3AeEc+bMPuIaGLvxG\nUxcAWKOZCwD8pL6ZoIkL75aN3PgVOEeuKz//4DoauvCbWAOaugBAi2YuAPAnmrjQH41cuIZmLtxD\nQxd+FGtCUxcAKGnmAgCauNCpcu0C59LMhfuUP8+sOfhVq6EbAQDMRzMXACZW3yDQxIV+uPEN19LM\nhXv5uQZt9TVbfG2NAMBcNHMBYDJx4Z83qDM0caEvbnjD9TRz4X5+vsGyVlMXAJiDZi4ATEITF8bg\nRjfcI9eam+VwLz/nYF25RvycAoA5aOYCwOA0cWEc5c07N+7gWrnerDW4X/nzzp4V2sp14ucVAIxN\nMxcABqWJC2Mpb9i5WQfXyzVnvcEzyp979q/QFmujXCt+bgHAmDRzAWAwmrgwnvImnRt0cI/4uZk/\nQ4FnaOjCNrFWyvUSYc8IAOPQzAWAQWjiwpiyoeSmHNxLMxfeQUMXtms1dO0fAaB/mrkA0LlWEzcu\n2N3sgv5p5MJzNHPhPcoGlT0ufFaumQjXhwDQN81cAOhUXIy3mrjAGDRy4VmaufAuGrqwX6upCwD0\nRzMXADqjiQtzsL7hebkOgXfQ0IVjNHUBoG+auQDQCU1cmEeudX8jEJ6VP2+B99DQheM0dQGgT5q5\nAPBydRM3fu+iG8alkQvvkT97gXfR0IXvaOoCQF80cwHgpVpNXDerYGwaufAu+TMYeB8NXfhOrCFN\nXQDog2YuALyMJi7MqbyZBrxD/jz2cxjeSUMXvlc3dONnn6YuALyLZi4AvIQmLszLzWh4J81ceD8/\nQ+EcdVM3vtbUBYB30MwFgIfVF82auDAXN6HhvTRzoQ9+lsJ56utTDV0AeJ5mLgA8RBMXcPMZ3k0z\nF/rhZyqcS1MXAN5DMxcAbqaJC4SyFrg5Bu+U69QahT6UP1vtr+Ec5bryMxEAnqGZCwA3qS+CNXFh\nXmU9cEMM3ivXqnUK/Sh/xtprw3nKteVnIwDcSzMXAC4UN5Dyn2jM0MSFuZU3wtwEg3fL9WqtQl/K\nn7X23XCeWFvl+vIzEgDuoZkLABfQxAVaoga48QX9yDUbP8OBvmjownXqhm6EvS0AXEczFwBOpIkL\nLNHIhf5o5kLfNHThWnVTN762zwWA82nmAsAJNHGBNRq50CfNXOifhi5cr9XUBQDOo5kLAF/QxAW2\ncGML+qSZC2PQ0IV7aOoCwDU0cwHgAE1cYKusFZpB0J9s5kYAfdPQhfto6gLAuTRzAWCHVhPXhSmw\nRCMX+pc/74H+aejCvTR1AeAcmrkAsIEmLrCXRi6MIX/uA2PQ0IV7xZrT1AWA72jmAsAKTVzgiPKG\nFdA3axnGU+7vNXThHrE/dm0NAMdo5gJAgyYucFTZyHWDGPqX+wHrGcaioQvPKPfKEfG1a20AWKeZ\nCwCFuokbv3dzB9hKIxfGo5kL49LQhee0mroAQJtmLgD83zRxgW+VN6TcjIJxaObC2DR04VmaugDw\nmWYuAFPTxAXOoJEL49LMhfFp6MLzNHUBYJlmLgBT0sQFzqKRC2PLNW59w9g0dOEdyr21n78A8CvN\nXACmUl8YauIC3yhrihtNMKZc59Y4jE9DF94hfuaW+2w/hwGYnWYuAFOoLwQ1cYFvRQ1xcwnGl3sI\n6xzmoKEL7xE/e8s16ecxALPSzAVgaHkDNkMTFziDRi7MI/cSsYcA5qChC+9SX9fH1/bgAMxEMxeA\nIdUXe5q4wFk0cmEuueY1c2EuGrrwPq2mLgDMQDMXgGHETZbypkuEJi5wNjePYC6auTAvDV14J01d\nAGajmQtA9zRxgbtkrdHUgXlo5sLcyusM1xfwLpq6AMxCMxeAbmniAnfKeqOhA3PRzAXKaw7XGvA+\nmroAjE4zF4DuaOICdytvEAHzsf4BDV14t1iXmroAjEozF4BuaOICTyhvCqk3MKesAcDcNHTh/WLv\nrqkLwGg0cwF4PU1c4CkauUDIOgCgoQt9aDV0NXUB6JVmLgCv1WriuvgC7qKRC6Tcj6gFQNDQhX60\nmrrWLQC90cwF4HU0cYGnlTd91B9AMxeoaehCX1pNXQDohWYuAK+hiQu8gUYuUNPMBVo0dKE/mroA\n9EgzF4DHaeICb6GRC7Ro5gJLNHShT5q6APREMxeAx9RN3Pi9GyDAUzRygSWaucCarBHxK9AXTV0A\neqCZC8DtNHGBt4ka5AYOsCRv9KoPwBINXehX/HzPn/WuCQB4I81cAG6jiQu8kUYu8Ene4FUjgDUa\nutC3uqEba9nPfgDeQDMXgMtp4gJvlrXJjRpgiWYusJWGLvSvburG1/YAADxJMxeAy9QXQJq4wNu4\n4QpskX+DX60AtrC/gDG0mroA8ATNXABOp4kL9MCNVmArzVxgL/sMGIemLgBP08wF4DSauEAv3GAF\n9tDMBY6w34CxaOoC8BTNXAC+pokL9KSsWQBbaOYCR2nowng0dQG4m2YuAIfETc28MZGhiQu8XXnj\nRb0C9sjaAbCXhi6MJ64rNHUBuItmLgC7aOICvdLIBb6R9QPgCA1dGFPd0I01rqkLwNk0cwHYRBMX\n6JlGLvCtrCEAR2nowrjqpm58rakLwFk0cwFYpYkL9K68seKGCnBU1hGAb2jowthaTV0A+JZmLgBN\nmrjACDRygbPkvsheCPiWhi6MT1MXgDNp5gLwA01cYBQaucCZNHOBM2nowhw0dQE4g2YuAH/UauK6\nyAB6FTVNLQPOpJkLnE1DF+ahqQvANzRzASaniQuMRiMXuIJmLnAFDV2YR1ybaOoCcIRmLsCkNHGB\nEWnkAlfJm69qC3A2DV2YS+4pyrC/AGCNZi7AZDRxgZGpa8BV8sar+gJcQUMX5pN7i/Iaxj4DgBbN\nXIBJ1E3c+L1/JhAYiZugwJU0c4Gr2cvAnFpNXQAoaeYCDE4TF5iBm5/A1WL/pM4AV7OngXlp6gKw\nRDMXYFCauMAs3PQE7qCZC9zF3gbmpqkLQE0zF2AwmrjATMobHQBX0swF7qShC2jqApA0cwEGUW/y\nNXGB0ZV1T70DrqaZC9xNQxeIax5NXQA0cwE6p4kLzEgjF7hbNnMjAO6ioQuEuP7JepChqQswD81c\ngE5p4gKz0sgFnpK1B+BOGrpAqu8FxdeaugDj08wF6IwmLjCzsga6aQHcLesPwN00dIFSfW/ItRHA\n2DRzAToQzdq8eM/QxAVmo5ELPC1rEMATNHSBmqYuwBw0cwFeTBMX4FcaucAb5L7MXgx4ioYu0KKp\nCzA2zVyAF9LEBfhN1D43JYA30MwF3kBDF1iiqQswJs1cgBfRxAX4kUYu8CaaucBbaOgCS2KfoqkL\nMBbNXIAX0MQF+JlGLvA2mrnAm2joAmviGkpTF2AMmrkAD9LEBVjmhgPwNrlvU5eAt9DQBT5pNXTt\nZQD6opkL8IBWE9dGGuA3bkwCb5Q3Q+3bgDexbwK2yH1MRnztLxMA9EEzF+BGmrgAn7khCbyVZi7w\nVvZPwFatpi4A76aZC3ADTVyAbdyIBN4sb36qUcAb2UcBe2jqAvRDMxfgQpq4ANuVNxP8c1/AG0Vt\nihqlUQK8lYYusJemLsD7aeYCXKBu4sbvNSYAlmnkAj3QzAV6oKEL7BV7HE1dgPfSzAU4kSYuwH4a\nuUAvNHOBXmjoAkfEtZmmLsD7aOYCnEATF+CY8kaBmwTA22nmAj3R0AWOajV0Xa8BPEczF+ALsZHV\nxAU4prxB4MYA0IusWwA90NAFvlFes0XE167dAO6nmQtwQL2Z1cQF2Keso24GAD3J2gXQCw1d4Fv1\nfTDXcAD30swF2EETF+B7GrlAz7J+AfREQxc4g6YuwDM0cwE20MQFOEf+f5Mu/IFeZQ2zFwR6o6EL\nnEVTF+BemrkAC+IGnSYuwHk0coERZDPEnhDokYYucCZNXYB7aOYCVOLGXF7gZmjiAnxHIxcYhWYu\n0DsNXeBMcX2nqQtwLc1cgL+liQtwHTcNgVFkPbNHBHpmbwacrW7oRn3R1AU4h2YuMD1NXIBruVkI\njCRrmr0i0Lvy+hfgLK2/paupC/AdzVxgWpq4ANfLOusmITCKvEHppiTQu7j2La+FAc7UauoCcIxm\nLjCl8qI1QhMX4HzlxTvAKDRzgZFo6AJXq5u6AOynmQsM4//4P/+vP8V/+M//9W/+9X/6Lz/E//zv\n/vcf4u/9g7/4Y/yTf/lv//h1vi6+NyPeC2BWe2pqHX/5P/z1ny7W/9W/+ffqKtCFLXUv9o4ZZd0r\nX5s1T90DnpZ1ba22RT3LfdtSbVPXgDVbas0//Mf/7I9R1piMfJ1aA9CmmQt0KTeI5abw6ig3lTaU\nwGjqi+5WHdwacYG+dEOwjLKuAtztzLq3NdQ94ErfXCe3/pDKlijrmutkmMM3teZoqDXA7DRzgS6U\nG8XWpu6pyI0kQG+uuvje2shtRXmBDnC2u286bgl1D/iG62TgDmoNwPM0c4HXeutmcSnyZhzAW91V\nU+OfsF/657P2hItz4Fs97SUj1D3gE9fJwB3UGoB30cwFXqe3m26tsIkE3mKEmhqhwQFspe4BI3Kd\nDNxBrQF4J81c4BVGuenWCjfigLtFTY26M3JdBSipe8CIXCcDd1BrAN5PMxd41MgbxjpsIIGrzVRT\nI9RUQN0DRuQ6GbiDWgPQD81c4BGz3XirwwYSOJOa+l//mANgHuqeugcjUttcJ8Md1Bq1BuiPZi5w\nq9k3jGVEHmwggW+oqT+GmgrjU/d+DHUPxqC2/Rauk+E6as1vodYAvdHMBW5hw7gcNo/AEVE7WjVF\nqKswKnVvOdQ96JPr5OVQ1+A8as1yqDVALzRzgcu58bYtbCCBLdTU7aGuwhjUve2h7kE/1LZtoa7B\nd9SabaHWAG+nmQtcxp/8OxY2kECLmnos1FTol7p3LNQ9eDe17ViobbCPWnMs1BrgrTRzgUvE5qe1\nKRLbwuYRKKmp34e6Cn1R974PdQ/eR237LtQ12Eat+S7UGuCNNHOBU/mTf+dF5DHyCcxNTT0vXJRD\nH9S980Ldg3dwnXxeuE6GZWrNeaHWAG+jmQucxp/8uybchIM5xYVjqyaI70NdhXdS964LdQ+e4zr5\nmlDX4EdqzTWh1gBvoZkLnMKm8dqweYS5qKnXh7oK76LuXR/qHtxPbbs21DX4lVpzbag1wBto5gJf\n80+43BORZ2B8aup94aIc3kHduy/UPbiP2nZPuE5mdmrNPaHWAE/TzAUO80/hPRP+zw4Ylwvx+8NF\nOTxL3bs/1D24luvkZ8J1MrNRa54JtQZ4imYucIhN47Nh8whjiTWtofFsqKtwL3Xv+VD34Hyxrlrr\nTdwT6hqzUGueDbUGeIJmLrCb/4vjHeGfyYMxuBB/T7goh3uoe+8JdQ/O4zr5HeE6mdGpNe8ItQa4\nm2YusItN47vC5hH6pqHxvtDYgGupe+8LdQ++5zr5XeE6mVGpNe8KtQa4k2YusJlN4zvD5hH6pKHx\n3tDYgGuoe+8NdQ+Oc538znCdzGjUmneGWgPcRTMX2MSm8d3hBhz0RUPj/aGuwrnUvfeHugf7uU5+\nd6hrjEKteXeoNcAdNHOBj9x86yNsHqEPamo/oa7COdS9fkLdg+3Utj5CXaN3ak0fodYAV9PMBVbZ\nNPYVNo/wfv/6P/2X5voV74sYK+B76l4/oe7BNq6T+wrXyfRKrekr1BrgSpq5wCo33/oKN+Dg3dTU\n/kJdhe+oe/2FugefqW19hbpGr9SavkKtAa6kmQss8n9y9Bk2j/BOamq/EWMH7Kfu9RvqHixT2/oM\n18n0Rq3pM9Qa4CqauUCTTWPf4QYcvIua2n+oq7CPutd/qHvwM7Wt71DX6IVa03eoNcAVNHOBn9g0\njhH+rw54B//P0TihrsI26t44oe7Bb1wnjxHqGm+n1owRag1wNs1c4CetTYjoM2we4XmttSn6DP9k\nFmzTWj+iz1D34DetNSL6DNfJvFlrzoo+Q60BzqSZC/zAnwAcK9yAg2epqeOFugrr1L3xQt0DtW20\nUNd4K7VmrFBrgDNp5gJ/YtM4ZsS4AvdTU8cNdRXa1L1xQ91jZmrbmKGu8TZqzZih1gBn0cwF/qS1\n6RBjhH/aBe7XWotinAB+1lorYpyAWbXWgxgjXCfzJq05KsYItQY4g2Yu8Ef+BODY4Z92gXupqeOH\nugo/UvfGD3WPGaltY4e6xluoNWOHWgOcQTMXsGmcJGKcgeupqfOEP2ENv1L35gl1j5mobXOE62Se\nptbMEWoN8C3NXKC5yRBjBnC91toTY4Y/YQ2/aq0PMWaoe8yktQbEmAFPas1JMWYAfEMzFybnTwDO\nFf4kIFxLTZ0v1FVmp+7NF+oeM1Db5gp1jaeoNXOFWgN8QzMXJtfaXIixwz+PB9dprTkxfqirzKy1\nJsT4oe4xuta8F2OHusYTWnNRjB1qDXCUZi5MzJ8AnDP883hwDTV13lBXmZW6N2+oe4xMbZsz1DXu\nptbMGWoNcJRmLkystakQc4Q/CQjna601MU+oq8yotRbEPKHuMarWfBdzhLrGnVpzUMwRag1whGYu\nTMqfAJw7/ElAOJeaKtRVZqPuCXWPEaltc4e6xl3UmrlDrQGO0MyFSbU2E2Ku8CcB4TytNSbmC3WV\nmbTWgJgv1D1G05rnYq5Q17hDa+6JuUKtAfbSzIUJ+ROAIsKfBIRzqKkiI+YCzEDdExnqHiNR20SE\n62SuptaICLUG2EszFybU2kSIOQP4XmttiXkDZtCa+2LegFG05reYM+BKrTkn5gyAPTRzYTL+BKAo\nwz/rAt9RU0Ud6iqjU/dEHeoeI1DbRBnqGldRa0QZag2wh2YuTKa1eRDzhn/WBb4Ta6i1tsS8oa4y\nOnVP1KHuMYLW3BbzhrrGVVrzTcwbag2wh2YuTMSfABSt8CcB4ZhYO601JYS6yqjUPbEU6h49c50s\nWqGucTa1RrRCrQG20syFidg4ilb4k4BwjJoqlkJdZVTqnlgKdY+eqW2iFeoaZ1NrRCvUGmArzVyY\nSGvTIEQEsF9rLQmRASNqzXUhMqBXrfksRAScqTXHhIgA2EIzFybhTwCKtfDPusA+aqr4FOoqo1H3\nxKdQ9+iR2ibWQl3jLGqNWAu1BthCMxcmYeMo1sI/6wL7qKniU6irjEbdE59C3aNHaptYC3WNs6g1\nYi3UGmALzVyYRGuzIEQZwHatNSREHTCS1hwXog7oTWseC1EGnKE1t4QoA+ATzVyYQPxzHa2NghBl\n+GddYBs1VWwNdZVRqHtia6h79ERtE1tCXeNbao3YEmoN8IlmLkzAP+citkTME+AzNVVsDXWVUah7\nYmuoe/REbRNbQl3jW2qN2BJqDfCJZi5MIP7vhdZGQYgy/B8dsI2aKraGusoo1D2xNdQ9eqK2iS2h\nrvEttUZsCbUG+EQzFybQ2iQI0Qrgs9baEWIpYAStuS3EUkAvWvNXiFbAN1pzSohWAKzRzIXB+b85\nxJ7wf3TAOjVV7A11ld6pe2JvqHv0QG0Te0Jd4yi1RuwJtQZYo5kLg/N/c4g9YeMI69RUsTfUVXqn\n7om9oe7RA7VN7Al1jaPUGrEn1BpgjWYuDM7GUewJ/0cHrFNTxd5QV+mduif2hrpHD9Q2sSfUNY5S\na8SeUGuANZq5MLjYCLQ2CEK0wsYR1qmpYm+oq/RO3RN7Q92jB2qb2BPqGkepNWJPqDXAGs1cGFxr\ncyDEWgDLWmtGiE8BPWvNaSE+Bbxda94KsRZwRGsuCbEWAEs0c2Fg8X8ttDYGQqyF/6MD2tRUcTTU\nVXql7omjoe7xZmqbOBLqGnupNeJIqDXAEs1cGJiNozgSNo7QpqaKo6Gu0it1TxwNdY83U9vEkVDX\n2EutEUdCrQGWaObCwP7Df/6vzY2BEGsR8wb4mZoqjoa6Sq/UPXE01D3eTG0TR0JdYy+1RhwJtQZY\nopkLA7NxFEfCxhHa1FRxNNRVeqXuiaOh7vFmaps4Euoae6k14kioNcASzVwY2L/+T/+luTEQYi1i\n3gA/U1PF0VBX6ZW6J46GusebqW3iSKhr7KXWiCOh1gBLNHNhYDaO4kjYOEKbmiqOhrpKr9Q9cTTU\nPd5MbRNHQl1jL7VGHAm1BliimQsDs3EUR8LGEdrUVHE01FV6pe6Jo6Hu8WZqmzgS6hp7qTXiSKg1\nwBLNXBhYa1MgxJYAftZaK0JsDehRay4LsTXgrVrzVYgtAXu05pAQWwKgRTMXBtbaEAixJYCftdaK\nEFsDetSay0JsDXir1nwVYkvAHq05JMSWAGjRzIWBtTYEQmwJ4GettSLE1oAeteayEFsD3qo1X4XY\nErBHaw4JsSUAWjRzYWCtDYEQWwL4WWutCLE1oEetuSzE1oC3as1XIbYE7NGaQ0JsCYAWzVwYWGtD\nIMSWAH7WWitCbA3oUWsuC7E14K1a81WILQF7tOaQEFsCoEUzFwbW2hAIsSWAn7XWihBbA3rUmstC\nbA14q9Z8FWJLwB6tOSTElgBo0cyFgbU2BEJsCeBnrbUixNaAHrXmshBbA96qNV+F2BKwR2sOCbEl\nAFo0c2FgrQ2BEFsC+FlrrQixNaBHrbksxNaAt2rNVyG2BOzRmkNCbAmAFs1cGFhrQyDElgB+1lor\nQmwN6FFrLguxNeCtWvNViC0Be7TmkBBbAqBFMxcG9q//039pbgqEWIuYN8DP1FRxNNRVeqXuiaOh\n7vFmaps4Euoae6k14kioNcASzVwYmI2jOBI2jtCmpoqjoa7SK3VPHA11jzdT28SRUNfYS60RR0Kt\nAZZo5sLAbBzFkbBxhDY1VRwNdZVeqXviaKh7vJnaJo6EusZeao04EmoNsEQzFwb2H/7zf21uDIRY\ni5g3wM/UVHE01FV6pe6Jo6Hu8WZqmzgS6hp7qTXiSKg1wBLNXBiYjaM4EjaO0KamiqOhrtIrdU8c\nDXWPN1PbxJFQ19hLrRFHQq0BlmjmwsD+j//z/2puDIRYi5g3wM/UVHE01FV6pe6Jo6Hu8WZqmzgS\n6hp7qTXiSKg1wBLNXBiYjaM4EjaO0KamiqOhrtIrdU8cDXWPN1PbxJFQ19hLrRFHQq0BlmjmwuBa\nGwMh1gJY1lozQnwK6FlrTgvxKeDtWvNWiLWAI1pzSYi1AFiimQuD+9f/6b80NwdCtCLmC7BMTRV7\nQ12ld+qe2BvqHj1Q28SeUNc4Sq0Re0KtAdZo5sLgbBzFnvgP//m//u3MAVrUVLE31FV6p+6JvaHu\n0QO1TewJdY2j1BqxJ9QaYI1mLgzO/9Eh9oSNI6xTU8XeUFfpnbon9oa6Rw/UNrEn1DWOUmvEnlBr\ngDWauTA4G0exJ2K+AMvUVLE31FV6p+6JvaHu0QO1TewJdY2j1BqxJ9QaYI1mLkygtUEQohXAZ621\nI8RSwAhac1uIpYBetOavEK2Ab7TmlBCtAFijmQsT8H90iC0R8wT4TE0VW0NdZRTqntga6h49UdvE\nllDX+JZaI7aEWgN8opkLE4j/c6G1URCiDP83B2yjpoqtoa4yCnVPbA11j56obWJLqGt8S60RW0Kt\nAT7RzIUJ+D86xJY48//m+I//8T/+MWBEaqrYGv7PI0ah7omtoe7RE7VNbAl1jW+pNWJLqDXAJ5q5\nMInWRkGIMo7Kxu0/+kf/6I/xZ3/2Z3+Mf/Ev/sXfvgLG01pDQtQBI2nNcSHqiP1f7gWPRO4ny/AH\nBLlSax4LUQacoTW3hCgD4BPNXJiE/6NDrMWef84lbqjFjbq4uda6CZehmcvI1FTxKfwzWYxG3ROf\nIuvepz3inrCf5Gpqm1gL+znOotaItVBrgC00c2ES/lkXsRZLG8elv3W7JfwtCkampopP4YKc0ah7\n4lNk3Ys9YGtveCQ0c7ma2ibWwn6Os6g1Yi3UGmALzVyYSGvDIEREyMbtlr91uyVgdK21JEQGjKg1\n14XIKMV+srU/3BMaudylNZ+FiIAzteaYEBEAW2jmwkT8sy6iFfknAM+46Zbh5hszUFPFUviT1YxK\n3RNL0ap73/7hQPtJ7qK2iVbYz3E2tUa0Qq0BttLMhYn4Z11EK8qN41kNXTffmIGaKpYi5gaMSN0T\nS7FU9442dO0luZPaJlqhwcLZ1BrRCrUG2EozFybjTwKKOmpn/D9nMAs1VdQRcwJGpu6JOtbq3tF9\npWYud1PbRB1wBbVG1AGwlWYuTMafBBRlrP0JwG/+aTyYhZoq6vAnqxmduifq+FT39v7LL7EHhbup\nbaIM+zmuotaIMtQaYA/NXJhQawMh5oxPvvlnl+NGXHy/v1nB6FprS8wbMIPW3BfzxhZ7/5Bg7B/j\nb/XCnVrzW8wZcKXWnBNzBsAemrkwIf+si4jY+icAj/xtiqXH3ZhjRLGWWmtMzBf+ZDWzUPdExp66\n19of1lHvI/2hQO7kOllE2M9x1Nb7HWqNiFBrgL00c2FC/lkXEbHHnoZuiouY+D7NXUanpooMmIW6\nJzL2iD1fa09YRqr3nvE1XE1tExFwRP0zLu93tH5+qTUiAmAvzVyYlD8JOHcc+ROA9U21pViSFzKa\nu4xITRX+ZDWzUffE2fvJeK5Wv771GjiT2jZ32M/xjfLnVSviZ1hE3PNQa+YOtQY4QjMXJuVPAs4d\nR336GxV7brDlhcxSc7e80IG3U1MFzEbdE0ct7f3WxJ6wfG18DVdQ2+YO+MbSz7el+Hv/4C/+5h/+\n43/2x2jNRzFuAByhmQsT8ycB54xv/wTgWkP3mxtr2bzV3KVXauq84U9WMyt1b974pu619pJb95Dx\nuiPfB3uobXOG/Rzf+vSH37dENnf/yb/8t815KvoPtQY4SjMXJuZPHc8ZZ2k1Xc+Uzdv6MzLyec1d\n3kJNnTfWRI2KiHoVdbOsndA7dW/e+FZ9w3uveo8YX8NZ1LY5A751RjM3I/7Wbmueiv4D4CjNXJhc\n/Imw1uZCjBln/wnA+kbaleKz6s8rI5+HJ6mp80WMeTZsI7Jh2/oDL2WoV4xC3ZsvztpP5r7um3qY\n76G2cja1ba44q65B+TPpaPhnl8cNtQb4hmYu0NxgiDHjCmfciDsiPq++gVdGPg9380/zjRvxz51F\nxA2W+NPyEa36syXUJ0ai7s0VZ4o/+HKGek+oxnKG1vwXYwac5dMf6PwUGrljB8A3NHMBf+p4krjy\nTwA+3TiNvw2Xx9C6IIp4+hiZh3+ab8yIGyut2nI0YCTq3jzx5r9RkvvBstba+/EN18lzhL8px5nW\n7kl8Co3csUOtAb6lmQv8kb9RMXbMtmnU3OVpauqYcVZDV+1hROre+NHLfrK1B1R3OUptGzs0V/hW\n+d+slD939sb/9L/8r805KsYItQY4g2Yu8Ef+RsXYMbtPzd248Mrn4SyttSj6jzMaumoNo2qtGTFO\n9Ka191N/2ct18tgBe31q3u5t6sbr4z3VmrED4AyaucCfxJ8Ua206RN/hTwD+LJu7axdgeQMQjlJT\nx41/+j/+82bt2BowKnVv3Oh5P5l7urIO2+Oxh9o2ZrhO5pO4b7CleRs/U+J1aem1dcTrSmrNmKHW\nAGfRzAV+4J+RGitsGrfZ2twtL9BgCzV1vMi6WjcGtoYGAqNT98aLUfaTUX/r2q0ms5XaNla4TqZl\na/M2X7cknmt9bxlLP3/UmrFCrQHOpJkL/MA/7TJWcExcfMXFleYuZ3BBPlaU6qbA1ojvW7qBAyNQ\n98aK0WQNrusyrHGdPFZAyKbst83bWry29V4Zaz9z1JqxAuBMmrnAT2wexwh/AvA8edNPc5cj1NRx\nIsayFmu/VRe2RtYXGIm6N0606t4oWns79Zg1atsY4Tp5XtmUjdq/dm2fr/tG670jtvycUWvGCLUG\nOJtmLtAUm47WZkT0ETaN18rmy9oFYDyvuUtSU/uPtboa671VC+rImzdZQ1rP52ugd+pe/zHLfnKp\nHkOL2tZ3zFLX+NWdzdta6/P2fIZa03eoNcAVNHOBRf6JvD7DpvF+2YBZukDM58++QKQvLsj7jS11\nNdZ4a/2XEa+pZX2oXxv1pPV66Im612/MuJ9s1WJ1mBbXyX2G6+TxZVM29tFL1+bxeL7uSvH+9Wfu\npdb0GWoNcBXNXGCVzWNfEePF85aaMxn5/NUXkLyPmtpf7Kmra+s+4pOl2qGxS8/Uvf5i9v1kqw6r\nwdTUtr5i9ro2qmzKvqF5W4vPy8//hlrTV6g1wJU0c4FV/q+OvuKb/9esvBDiXEsNmox8njm4IO8n\njlyML631vWs860L9PlGj1Qt6o+71E25C/qZVg9XfMeTP2G+aO66T+4pvrpN5j/KeRURdoyPi8Xzd\nk/I4vz0OtaavUGuAK2nmAh/ZPPYRWzeNeWETNzBaF0HxNdfKG0hl3svI5xmTmtpPHL0Yb63vb9Z0\n1oT6PfN9n75ZBZ+oe/3E0bo3srr+Zk2mX+V4RsT1T47rnp+palsfoa71K+9d1Pcsyojn8nVvEsfT\nOla1ZtxQa4CraeYCm9g8vjta/ydHXtDEhUJcNKxdAJURr+deeUHXGo+IfJ5xqKnvj28vxus1fZa1\nehGPv+1GFn3LvcQZ80rde3+4Cbmurr1Zj+nP1uuiLY0Xte3d4f+u7EvuOZbWaN7XOGtvcqU4vtY5\n1FHWGbWm31BrgDto5gKbxeaktWkRz0aMS17M5MVN6yJha/CsGMe8kGuNT0Q+T99ckL83zmpo5DqO\nunyFtVoRjy/dDIKtYg615ldG7jsicj6WkfuTDHXvvXFW3ZtBzO1yHeR8px+fatunKGtevJfr5HeG\n5sr75f4g1tTSWovI1/Vm6by2RFln1Jp3h1oD3EUzF9gsNpA2j++KGI8Yl9bm/2jwLnHRlhdwrfEq\nL/J4txzLvCkRv9fYeF+c3dC4a33m/GrVibuOgTF9cyOyFf/ff/7/a6498Vz8xX/33/+pTvR4s/wp\ndc1Va/tSjt23ocnyvojxKK+T1LZ3iHGIWNpb5HVSvq539c+JbyLyEtSad0XekwO4g2YusEluqoPN\n4zsixiGddZFgE/p+cVEb4xTrsTWG8Xg8byyfU96kWBqniKSh+0z8k3/5b3+Kf/vv/rc/rZ+MHMcy\nlsbyLbJO1McZkecFWy3NpSORc0/de0/EWETNqMcqap16sU29RuStD62f50ci1k9ynfyOyOtkte15\nMQYRS+stHo/I142mNQePROSopNa8I2IccozVFOAOmrnAR7EpyU1kchPu2Wj9zbFynI7GiBdQo4sx\ni7Ffu0CO543t+SKnEXkTopX/pagv9tTU++If/uN/1hyTo1GP5dtkjVg69rcfP8+LOdSaP3tD3XtX\n/Ov/9F9+2E9u+TmWNcOeoi1y08oX73RGbWutBbXt2aivk9W2e0UOI5byntdN+boZbJmDaxHf36LW\nPBtZa8qf/X7mA1fTzAVWlRuTiHLDbfP4TNQXqKV6vPYG/Ys1GvNg7QI6np/l4vlMmddvL8gjlsTN\n9da6F+fG3/sHf9EclyMR86InS/UhHu/tXLjPt3VvbW6pe/dH5LwW+4LW2K1F7inUjh9FPso8yc87\nHZnzZaztpV0nPxOt62S17VqR34ilfUI8HpGvm9FSbrbEpzmo1jwTZa3xMx+4k2YusKjelCxtTNyE\nuydaN95ajlywRuRFFmOJMY11u3aBHc8b+8++uRAv49MFnn826544q6Hbs6XaEI9/mqfM5ejeIiLm\n2Cfq3n2xtp9sjd/eUD9+E3moc8N73HHN5Dr5nvh0ndwax72htv0q5n7E0nVRPJ5rZOs6GV39s2Br\n7Jlvas090ao1rfFVK4CraOYCTUsbzqUbcm7CXRuR3z3iwqk1flsjxt8GdEw5tmsX4PG8i++2pbzt\niS3U1OvjX/2bf98cnz0xUp1cqgtZM+Bo/dtK3bs+Pu0nY623xnBv2EP8qM6rmvqcmJvf7OXie/dS\n266NLdfJZ9W2GddurJk476V1E49HxOvU/t98W2uOzDW15tpYqjVL4+xnPXAFzVzgJ2sXO7FRWWLz\neE1suUBtiQuI1hguxdK4x+M2ouPK8V27CIlwcf6rveuqjj1rSU29LvKfxvp2PEeV674+33ycObXm\nxKfY+7ND3bsuWv/8aEtrHPeEGrGsXkNydb2oQRGtfW48trT/bcXadfAnats1sec6uTWme2KW9Rrr\nJc51aW3kusm1xa/OrDXfzDW15ppYqzWtMczwcx44m2Yu8IPYgLY2IWWsiRtF/omXcyLyuPXG25It\n4xkRFxcpvmfpAi4ei+fiNYwpxjeiHvuMfH7mObCWn09xhIvy82LrP421JeL7ZpBrvnX+s+RgZrkn\nqMd/S3wzP9S986JV99bsueFch5qwTb2m5O1cUbdiHi9dy8Tz5T62fk0r4vu+5Tr5vDhynay2teXP\n+aX8xOO5bvjRnloTv9avacUZc02tOS+21JrWOJbhZzxwJs1c4E+2bjBzQ7rGTbjvYu1P/h3RusAo\nY22DGc9FLH2fzenY1sY/YtY58GlNteKbPKmp38daXV2b40sxo1zvdS5iPcxYB0YWe726zsXXW2vf\nGfNB3fs+juwnt14P1BFzg33qeqqOHteqWRnx+Nr166e6dvbcVtu+iyN1Lahtv4o8RK1ZWy8Ra2tm\nZt/Umtb3lHH2zwC15rvYUmu21hU/34GzaOYCf9LadLRi68be5nF/HPlTxlstXXREbB3T2IRGtN4j\nn2Nsa3MgYqZ50Dr/tTiDuro/ttbVtRq5FDPXvKVaEHmcOS+9a92kLG9Obrlpdfb4q3v749v95JF6\nyHF1LVVDP4ta1KpXEfFYWbc+Watrn8YiPyteV0Ye3xJ1bX+ccZ3cmi+foncxD2NOLp17zuGt62U2\nuZZb+dubu9Z7ZMQYXUGt2R97ak2MW2s8W3HVGANz0cwF/mhtY1lHvHYPG8htEXlKedEQEZu+vADL\n2HrBUFsa5yPy2FrvGY/Fc0ePk37k/KznQEY+P6K1867jzByoqdujrKtbLNXIOurXjTzPt8jzL3MS\n4WdBH2J86jm9NnZr6+SqdaDubY+9da8lxr01vkthjZ+jrqNXradeZa1q1aB4LJ4/Ohfr94vYkv+1\nelhHHntEvHfEP/0f//nf/JN/+W//FK01Lc6pa2GG2hbHHHNraW7mHOzx3O6ylsPM3ZH8xffU7xex\npdbUsoZk5DEtHZd91LbYW2si960xXYp4PcA3NHOBxY3+UsTrj8gN5D/8x//sp03T6FFepEdEDiL+\n3j/4i7/5+//P//ff/MV/9983c92Ko/lP9XiftaHMC4nyvcvPsHEdX1w8rs2DiFHmwto5tuIKLsqX\n4+hNv6WbLGWU87eeB1FfR5jf34jzX1of8fjSTSbuF2NR7wni609jtLROvt2fbKHuLcfRureknhtL\ncce4z6auoTP/XGnVqYwt9Wqr+jO25nypHh6NGa+T1+KKf7VqtNoWczDm69o6iThrrYwqa00rj2fl\nr1Uvjtb31nG2Is8pIj4r/gBJ3osq70+11t9McbTWbB2HMmb+mQ58TzMXJhcbidYG41McFTeaonkZ\n7zHLxWqcZ52/b+KMzV857ldsJuM9l+ZWPsf48ubC0lzIi8qe5kNe6Oc5xLF/uoi7+vw0N36LM276\ntW60lNEaz3hsy+tmEzlo5Sbzc8aNMfar61hEfL1nPFp1707q3m9xRbMjfKqFZeydP3zWqp/x9ehi\nHrVqVEQ8dtVcK+f73jy3jvVI/Df/7T/843purfPZ4qq6Fsqx/hQxtm8Txx9zdGneXblORhM5auXx\nyhyWn/fN+8f3lsf8bcRfMmitxdHj21rTmj9bYoaf58A1NHNhYvUNgj3xzcaz3vDM0NQ9s6F7lhz/\nq8VcWbrgjMfiuSsulHifnAtLtSfnQ8Qblccdx5rzNn4tz6OOO8RF6MzNjbNv+i3N0Yg18X11rYvH\n1Lhfc7OUVzm6XuS3nptZc4+o694T46fuXdfsSPWcKSPnTvmao/OJZZHTiFbuR5H1qTXf4rF4/uoa\nkzXtSG7ze7+JOM+krl1b10JrrmXEHMg5mY9dPf/W5LEsHXM+9+Qx9iJyVI9tmccc+yvlZ5/xOa3z\nOBqt9ThynFVrWrncGqP9LAfuoZkLk4qNQ2tDsTW+2XwuffboTd38G8nfxNkbvqsvVlriHJbmQD7H\nHGL+xXgvXYjmRfUb5kQcQx5X63jiXMpjX3vt1Wa6CXjlTb9yzPeOZ7yu/v58jN/WfpkfebpG5Lqu\nsfH1GT//yzF7WtS91n9lkTHSHvOuZkdY+tkWc6hUrmfr9xpZG8tx6DnXrdqUcVaN2uubz2ydx55o\nibo2y57uzroW6rWU8YbalmtjbX3EsTyxRnq0ls94LJ6/M5dnfl68T31OR+Jf/Zt/r9YccEb+e/45\nDjxDMxcmtHTxsidi43vU2qYnb8C1Nl69RrlhbF1E7ImzNv5vEXNxaT7mc8wj5neM+dI6icfj+TvX\nQXxWeTxrczKeK4834kmjXpRHTY1zu+OmXz0Xj2jNi7V5NJtc93WOMk9ydUxduyLi6zPrZ9bkq8Ux\nZ+SciM/OKM9xKVq1pKe4s+7VWvlszaMYl3zeur1OroFyPHrId67h1prNtdyaV73YWota8em8Y+2P\nvKd7oq6FrWNxdW3LdbE0h+Lx+Nye18fdMqdL+Rwpl61z3BPlnFZr9ol51Mrp1hhtLgL30MyFScWm\nITZuS5vcTxHfd9SWTc9f/g9/3dyE9RJrm8WjOY8Y2dqcjMdcxM7nU526el7Ee5efteVzymON73+D\nUS7Mn7rhl2P67XiW8+ltc+Qtcs3Xecpcyde6yF9dL7fWrjdpncc30dMfEqyP9clGR6rX5No6LF8b\nY8h1siZuHZsnZE1vreesTb3VpyVxHvU5bom9Yxb7uagLZZ3oLd5Q10I9L9fGolxr39a2/BnXWhf5\n/vF5o6yNO2QtaeU0cz1qPsu5uTfW5rxa89mR3I88F4F7aOYCfxQbkb2bkaNi89J6v1b80//xn3ez\niczN4qcN457zL2Ntsz2itTmZzzGXHPfWhXpEPB7Pn3GBVH7GnrmW6/ut87O3xm788/R/8d/9938a\n+7PGd48c07PkeeT8yvkSwY8iJ631Ll8/ijla5ym+vnutnKk17kci3uepupf/5HPruVbE6+OY4w80\nvqHRUcp8bll39Xy0Vq+V9TDz/XTOc/xbazge67kuLWnV4C3x7Tj11Gwpr5PfUhNi3PaMRfn6iK1z\nOefH0hyJx+Pzt74fv4p8Rd5aeY3H4vkZchrnWJ//ltizDnutNVeLHLZyW0fOR4AzaOYCP8kNcWtj\nXMY3G5LW+61FbJSeuhm3Fkc3i0c23ZGDPZvukeS5ywulHPulWpXP76lV9do8Uufyc98ua+obLs6z\n4RHHknU1fKqVMfblOB8ZryfFcbfOh59FXlprPcd/RjHf65zE172tgyXleR2Nem7cVfeipsXnx//X\n23q+jKx7//bf/W+Lx/20I7UpXv/W8xlRme87854/e1v1OR4bqSaV4pwiv63z3hJnj03WtlaNeSpy\nP1deJ0ferjj/o47UtnLMW9+b62FpbuRnjrgurraW23hsxpzmmtoT36y/N9Wa2GvFH4Rr1Zo7LK3x\niPI5ax04k2Yu8JPceOSmIzZ7EbkZOWNTsrbxWYr4ntx4xkYtN5JX35DLyJttZ20UWzndGt9swHsX\n8y7OvzWHco7YMM8pxn5tXeXzS/Oj/N6YS7PNo6dqanxmjk/LkZ8XEVkP1sb8Lcq5l7GUD37NV2te\n5HiPLOZyfe6j1qs4p/I898aWuXB23cu/XZvR+meTs+7Ve8k43vJ73zSXj86v8pxGX5tvUc+jK3If\n8yHes1WHsx6NWJNCnNdaDS4fX4ozxiNzHBHvl+MREf+iSXzOnf/CVda2T9fJcbxn5uFbOW57xbHn\nefz+97//U+7zsTLi8Xj90c+aXeStldvM+Yx5XcrJljhz3cVaP3sf9Snic/6n/+V//VOde3L869zW\n8zHHaMY5ClxHMxf4SW5GlsQGMCI2J0cd3XxGrG1Ayw1lbiq3bCzzdRnxvXkxunZB+q04l9Y51lHm\nvPX4zDIHZV7kh7A2NyLy+T/84Q8/rC1z5jdLNTWiVUvLKF8bUdbVUlzgZu5bP1fK58+IN4u516rz\nbgIsy3Vc5izzFjGKmAP13IivR58b9TnviaOO1L1o4sbfwq2PIZoprbrX0prHrZrYm/K8RjifXizV\nxaOyBrXWZDw2ci1q1d+l8269roy1MYj3yojXRcT7ZbTebylan7NU21o1rYyyBkbE92Zd21LbSnFc\nn47z7XI+/O53v/vhXDLiuTivem6wTa6B1pyfPbetvMTXS/mqI15ztTiW+JdG/tW/+fd/3AP9N//t\nP/zjf5sTEcfQqjEZW2pNXUOenAuZ06VjiMfzNQBn0cwFfpCbo6svrLZsNj/Ftxu3PIb4NSLOuYx4\n/zs2h/FZ9bnVUYpjan1PHvPMcuzq3GR+IpjX2vzIiD9dzz7f1sr43noc6vf7NG5bo5ca0Jqr+RjL\nWnmLyJ/xPYrjrvdM8fUsP+9b9WFL3DnerTmXsec4lt4nxrt39TjOMn/foDWvtszLGKOIuv5ExGMz\n1KHW+X8673iufH0Za3lf+74j8Ul83p76dJaj8/EpkaeInPP1sZfxyy+//PG17LeW41xzs+Y2c7OU\nl9RaW3V8I8cgIj4rIsesdXyt+GatL+WhzMEb9XKcQD80c4Ef5Cbwm43WFvk5R+OMzVC8R+u916Lc\nsMY5lPHNMa3lI55bEs/Vm9o8ttnFeLTyU+bIpnpurblRRswRa2ld5vCbPC3V4vo9W6/ZE72OZRz3\nKOdyp8hRK3c9/IyMNVHXp/h61p9ZrXH8FHdYql1l7BmztZ9J8dwIyrF8+zocTWsd1WMQ8zUea83F\neCyeG70Oxfktnf/Wc1/6/k9a33ckPq2tnAufXneFpXN84lhaYoxzDiwdazxer4XytW85l7dbWmsR\n8fjW9TaqVn7W8hKPl6+t40g+s1acFUetHcfb5RjOPp+B82jmAj+4a1P0abO5FLEZOtNbNqih3qzv\nec/IZ+tc4jEbx19FLpbGO59jDrEmyvWW62RtjkSYJ7+pa/g3efmU87T2uk9x9s+OJ7TO/5u8zyTy\n1MpfzIs35bCuTXmMfo7v+8McV49pa5yWYs/YfXrPeH4E5Vp80/qbRV0L418kiX8utjX/sv7MUINa\n6zrPf686xxFbxGfV33ckltTn+MT6a82zjCeOJ3KSeVk6tpwHEWvKcX/iXN6uzHWZ34jM/6ccj24t\nP1ty0/reiKN5je9rvd+ROLImlvJRxttlDuM8AM6gmQv8SblZu9qRjWF8zxU+bRC3xhkXbfWxHHnP\n+J6I8n3ifc84vlG0cpSRzzGmctxjXSzVlXh8bZ7kmppxrrRq5jd5WMpxRvnerc/eElf9/HhCzrvy\n/PIxPmvlLyLX9N1zJWtNfTxPHMsbRQ7q3KxF5O1KrbFaiz1a39+KEeZFmcerx4wfxfyJaP1/n9nU\nnaX2xHm29hXf5iC+t3y/Pe+1t8bUsbSeWuf5xNqrj6GOq48pxiLHvZWTiBz/PeOWyvF7Ir9vEzmM\nPLRy/U2eRxM5qHOU+dkjXl++R8S387Cc00fjyDFs/dwe9HSswPtp5gJ/khumbzd8W+Wm5lPERvZK\nrU3v3jgzZ+VG/tv3bW2C4zEXTb+JXERO6guoiHhMvsZRrof4/R45T8r3KCPnyt737clarfxmjSzl\ntIzM69oxLMXIY9LK3cjne7bIVSuHmccra3+8d/1zJ76+8jN7Uucna2yZr1Zc5Ujtidij9f1LMcI8\nqXNq7l8nchtR15yIuqmbdXFkrVycXX/z/Y+8Z2uctkRr3Nbq5hPj3DqOOs48rnLuL+U1x/6s8S9z\nHu89m7V8Z65p16EzclS+51lrqXWce2KPpbwsRQ/yfMx94AyaucCf5Cbjrgu7chO2FHFMdygvuo7E\nmWKTd/b7xvnV5xi5vWuse9LKVUY+R1/qi8IzxjDeM96nfN8ycn2NMF+2XFR/c3EaOWq9Zx1xDOHT\nsZQxQv63aOVwlnM/S+RraS7G49/M8VJrPcXXZ73/COpxKHOztv6vmPOt8doTW8XntL5/LUaZM2V+\nrxjDWeXcbc3feCyeL+dQve7i65HGI/NRnmNE5uJs8Z5H8xffWx/nligtnW8ZV5z3mj3nFcd+RHxG\nnvvS+eeYX3n+9ble+VlvkDkvzzkix2H089+jlaszcxTvE+95Zv3O9zwSe44jXtt6j6WIvPUg89fL\n8QLvppkL/Eluiu5Sb2LLKJ87a2P7ydrxrMUVNzrinK9439DaJMdjV31ezzIvdb7krB/l+MUav6qe\n5JpdqiPxeDx/Vz07S5m/tfjmvPbU3njtH/7wh+ZzrZhtjcb51mPW47x7WiuP3+QzXl/P86wJ/KbO\nU/y+Fq8p81jG2ZbmwNZoHf+StfNai71z8a3KXFsXx7VqTUQ8FrFlvtTzPr7ueUxaOdmaiye1xnEt\nyjGqx3Ap7s7B1uPKiBx8EueQY7yUsxzvJ8a8POee11GtzHuZ64h4LM71iXy/VeQiclLnK+fm2a6Y\na+Vc3hNbLM2lTxHf04s8ZoBvaeYCf5Sbszs3REsbttx8lhvGOy4G4jPK49gavYr8tjblmX9+tHQR\nFhGPxXN3zFO2K8fq7nm9Nl8i3j5n4riWjr0V39jzORm//PJL8/GluHv8nxbnG1HnYLY8nCHXcpnL\nrTltraP4+q3r/klljj/lqDUea+NwVOtz9kScx1bffNYV5/6EMgejnNPVYp206kxEPBZ5PFpv6jkZ\nX/cyLms5OZqPu9X5X4scl6XzXoq7c7HnnDLifEpxzHmeS+ea43z3+S0pz7uXNdSylve35fwtMmet\nXPWoNfZrsWW+H6kLGXE8vcjcWSPAtzRzgT/KTdSdFxj1xq21sc1Nz10btfy8rXFnvq7U2kTHY6Oc\n3xUyP3Xe5O55UUfK8XjDRVPOiaUaE4/H82851tYxrsU39tbdLZHrrzyXfGw2rfGcNRffivXZymfm\nNPMar6vndXz9hvX9NnWuts7NI99zxNJ4b4k9x/XN50RcmYM7lXmIMeZnuWbKNVDmLJ4/s9bUc/PN\nc62uJxGZk160zuFTxPccqSF3O3KMEfEH+CInS3nJMX7zOJfn/uY1VFubj5l3fpTrsc7bCPnas4a3\nzPOlubU1eltLccxxzgDf0MwF/ig3RHduMMvN4NpGbMtrzpKbrK3R0wZyizifclxGPc+zLeUtcyd/\n9ynH4c0XSzkvli5i8/k7a3J81tGL6m+03u/bKJVzIiK+nlGdh5lzcYZYL62clhHr6c413Jsyf3tz\nFa/N773Dp7FuxZ71deT96xhprpU/i/bkcVQxtks/n++qM/Ucfcu4tHITX8fx9bQm6vPIca3PrY6/\n+qu/+viapbjb0eOsI3PT0/iGON7yPN54/JnX1ljFY5l7ftbK2yj5WpoTa7HFt3uf3vYHedwA39DM\nBf7oiY1Fbgo/bXDj+Ty+OzbDRzaVvW0kt2jlIR4b8VzPFHM0ctS64InH4rk75vFsIqdlznubp7m2\nli6U8/mr5k68d+tzt8Y3Wu/3TcS51HqfH2fKuVTnbOacfKOeW3XI7c/OWo/xHnfm9tNY17Hn2Pa8\nbxnxfXFcEaOJ/OV5zraGckxb8yIey3F/QjkuEU+MTZx7fG6dnyfz8o21nMb5lM+dGXdrHcOeiL+h\nO4Jy3j6xfmoxxyLq9RSRa6rHdXWXVu56rUUtZX3K8yrPtRV753VdA7fGG9bPHjlPrCfgG5q5wJ82\nT2/eDOXGJ369Q37eUkSu6k1nb5vJrVrnOvL5nm0pf5lDefxeeVGZF5m9W5s3Efn8Gef6qd59im/r\ncus9t8bvfve7H77+tJ7KnI4yV77RmmOfcsivYu7UayfnVOSwta7i8dnzW+al1zXYGttW7Dm3re+Z\n0Wvu9ipr1OhrJ2tKay7keL9pzMuxibhjfDJH5efG1/HZPa6H+nzi9y11rs+Ipc+6Uus4tkYcb49j\nvKQc0zvWTi3nXjn/MkbL9RXqtZt567UWtdTnWM7TeK489zqO2lvrnlg738i8RV4BjtLMBf60aXr7\nZujOTdvaBrXefNWbzt42lXvU55rnO/I5nylzVedQHo8r8znyhdHa3In4Zv5EvVt770/xbd5b7/kp\n4jPjuMvv33ocdX0/mreRtMZfXn4WcyfmWZmnci62RB7r74mIx2fK8UjrLsezNa5lrM2LWuv76/g0\n10YVc6XMwUhaNaU81x7GuxyfiLPXduQg3rPOU+/roTyfLedSn3/kpM79noj3u0OcV0R9/FtiS156\nVo7f2eumZWkc4rHRc32WVg5HzF05N5fOr85DxrdzeU9du2PdnCnymMcOcJRmLtDNhqLc/NyxYV7a\nSC5tGsvXx+a2t83lHnFurfyMfM5nizkc+WpdCOX8uWOe9ypyU+ZutrkX5xtRzpsy8vk91t5vLWIc\njirr+qeIz2mtiTzuveulPN+9uRpV5KGeB/H17LWorjcRS/NxTSu/Efn4iOrcHcnbm5TjV39dxx6t\n74+IfOVnxO9nVc+jXudQHHd9LhnxWESv51avhW9rWitPPecnxfGX57Q1T/X3pfj+1nz6FPE9V4jj\nbI3d1hhhjPco183ZY7I2FvHYbLk+qpXD+DrGbrT8xfmU57lWn+rXfnr9HuW6WIse859zabS5A9xH\nMxcml5uw2FT0IDc/dx1vfl7Gpw1qvfE8a0P7Zq3Ndjw2w7mfKXNW51I+f1bmKdbo7BdDcf5r8ydi\nzxxae59WfFOP82fQp/h07FvPrVaf69H3GU3koZWb2fIT51vvA86qOa0c5/uPkuf6/Eao1Xku9Ri1\nxnKrug7mHCjzlfNwhBx+o8xzPQZvFWMW45djWEY8Fs+PNK71WtgzTku5yjz1LM/tm3PK72/ltM77\npzhr/cQ51OdWRjwe8fvf/775fES+Jn8/mzp/34xNvlf5fhnxWI4Xn7XmdeZwNPW5bj3Puu6cJd8v\n3n+ttvU4FnHMceyRY4AjNHNhcrk5+uai4W65ebvjmHOzlbFVvensKb9HxTnW5z3LuZ9tKZeZz5lz\nWl5omlttUbfW5lDElnm09v1lfHqfNXWNzcibCHdd8Jbn+s35jKg1D0bOUcy5ss5E5Hy8SuSzlef4\n3B5zXefw6vV7lxyjpTEpx3DPOZd1bmmeZT5HyeU3yjy/dX206kjG2jiPpByniLWxauVrpDzVuTh6\nXvF98f1r6s9aiqNrJ46hNV4Z8XiOXXme9XHV4xu/z8dnVeZoz/h8Go8yz6xbyuXIeazX5t7akPna\n+31L8njK94vc18cZ0eOYxDHn8QMcoZkLk8vNV08boXIDdMdxH92gxrGVm874fU95/kZrsx2P7c0h\nv82jpQvLWeZVnGOZA3Npu5xDEeX8ych5VOd06fV11N+3R/0ZcSz1fM7nrp7n9bF8c14jas2HkXJU\n15iI1ny8WuS0letcp29XHvsT+btKeV6fxGvj3M8Uedz6+TMox+MN6yLGp1VDIuKxkdbCXuVYReR4\nreVrlFzV53jGXP2UmzrfS7H1WOLz4rWtsYqIx3PM1o4t32PtdfkZa+8zunL8lsYoc9gak3I82K6V\nz9HzWJ/z0fON74nvP0seT+tYyvVx5mfeLfM+8vwCrqOZC5PrdSOUG7nYCF0tNllLF1Nb1JvOb96r\nN3Gu9fnPloOzLeU08zpibsvzHf3C+g5Z08oL+DLi8fL5nFf16zLiuaPyfdfGNY8jfr1Dea7fnNuo\nIidljjJPPeZqaS2szcc7tXKdxxePv6kWxrGUeexxPqx5w3llft807k+KPOS4PJGXnPPlvM+Ix+J5\nY/WrpVqWkfkaRc6NJ84vP/NTzpdqWRxnPNea1xHxeJ7PnnPa8tr8zPh1ZuW4ZS4y35mjMo6MBz+v\n0zqfI6trw7fne1a+8riW6lPK1/Uq8hXHn+sbYA/NXJjY1s3SW+Xm+47jP2ODmvnO6DXvR8X51hdM\n8dhseThT5q/M6Wi5LeeMuXKNqG+R23p9ZsTj8Xy+rn7+6nHJC96Iu5TnGed/xs+AET0xH84Q41nP\n97ePc+S1le+IePzJYy+Pa8T1kucXvz4p8po55jflWr56jFq1I2PEuX+WtbzF/6U6krIeRtxZN/Kz\n6xpRH1NEztX4NZ5fm9c5t6+e3/H++Zmzy1wsRY4J+0Xe6vk+Sz7rc7+zPn1S1qnRlesbYC/NXJhY\nbpjetInbo9wE9bL5ri+We839N2Ksys36zLk4U+a1vjiNiMfiuV7WSSjXd0RPx967Ovd1/O53v/th\nnt0xNvl5d86D+KzZ6/VWvdT0ekwj4us759UZIretnEfE43edzwxrpMzzG7zpWN6kHKcz52HM8Vbd\niIjHeqwfd2rlLr6OBm45ZhG914/6XJ+YG2u5jMfK4/vll1/+9Psy4jVPHHvKY5x1XbXWTEbsv2fN\ny7eW8vrkXL9bWXPfeN55bL3/LNhq9loHHKeZCxPLDVPPG4jclMZmqCflZjpilk1rLc67vrCKx2bN\nx5kyj2Vue8lxedy9re0RZP5zjuR8qddqRtwQjOev/FkS7x2f9cR8yHxEZE5oy7mS+cqcPZm3mDv1\nMeVxjXADJfNbn9/V51jWg/j9CLlsKXP5Bpn3UfP9jXIdfDNekdvIcznHM3Kuy/+yzN9S7koxTuW4\nRbxlre1RnkPrPO+Qx1DnL44lHmuNSUQ8/tQxt+Rxxq8ziLxHtMYnxyb+8EM+1uP6eFIrt/H1W+b7\nHeJcy/N/4xzK+hVjM4scl5nOGTiHZi5MqtzU9S436D1e3OTGNWPWC7SYj3UuMh8zXWxdJfLYym/m\nOOINYqzLC+63HNdsMv9Lay/nTDlWZeTzZ6/d/LwnakKcT32OLIsxauXszrzV9SQivn5i/tyllfeM\ns/Ifn1G/76gylzFv3iLz/6ZjepNyfu5Z7/G6ul4ceZ+ZtXK4NXdZn8rv7aG2xLm94ZjL3MUxxddr\n8/nNc7rM6ajiHHMcyrGJyLGpx6cc4x7WxpMid6018OZ5f4WcZz2cfx7jTHM7xiLPG2APzVyYVF4Q\njLBhKjdCPW7QcywyZtrEtsT5ty6+Zs/LWWKNtHJc5vmJdVSu4zdfbI4uxj/GYM96i9cuzal8r4hv\nxzTeI94vPucpeQx5XnxW5uyO3MU8q+fijDUlzreV+4h4fO8Y1HkdPadxbnmubzvPtx7Xm5RztTXX\nI3cRda2IiMdGn99nWcvhkfxlbSrfa2+tukN93k/Ol/jcMl91xLE9eXxHZG57OuZPcs7kudVjtOVc\ny7XR25jeIXN8JLej6aGOpjzWNx/jVXK+WsvAHpq5MKncOIyyacpNYJxXr/IcMmbc0JZiU1vnJPNi\nw3ueyGcrz5nriKuVn9/zGu5dOQ7fyHmT71VHPn9kHed7PFkD6nOLr/msNSfOyl3Mh9zXZMTXxuZX\nSz9PI+LxT3mqv3eGn8Fv3ifnsfl5ua6ct/H7rBOZvzLisXh+hrl9hsxlK4dnqGtOxFvWYn1sdx9X\n5Dg+szWPI+LxM8fiCXHseS49a62TM8aofM+3rIsntdbDN/ntWT3n3p6Hsp7OKMYmxwlgK81cmNSI\nm6bcuPZ+UVNuauOcXKT9mpMyL3JzjVaeM/K5M9UXnMbzWVeNQ86dfP868vkt3lTny3N6w/H0Isc7\nc5f5O5LDuoZExNdvvnH1BpHrOm8R9TjU+Y3fzyBykOf8Rm7+bVf+X5N1qBX7LNXbK/NYrsWMskbd\n6al6GJ8b51znvo6Y66OIc87z6kkcdz1PMnKdRJyhXBtPrYkntfKcOZ5VXS97yEWO4YxzOMQY5XgB\nbKWZCxPKjV5snkZSboZ638jXm/FZN7gtdW4yPzNfvF0h8hl5rS+UI+Kxb3NejuPsF99vUI7H1eKz\nys+rI59viXkSr3nLz6/6PMzjfVrzYGnsS5HnujapI8dEvutcZj7L38+U2zzvLXPxKTk+5vyPIh+t\n+pDx53/+53K2Uyufd9eEoz8rzlKe/9Xnnvmuc15+fh5D5uXNteqoPP8759kRa+OV43TVOZTrYsQ5\n0JL5buV5VnVOepkL5fydWY7dzHMY2EczFyaUG6cRN/15brEpGkG5yR11zI6KXNT5iXGXo2u08p2R\nz23V4wXn6J4cj5w/eQx15PPpbRe9vd5EeZPW+Nd5rPMcEV+7+XGeyPkvv/zyQ44j4vFZ5nXOxbef\nbx5nrIHZZW2o60PmJ57/wx/+8MPzs8zno5bqbeTtyZqb876MK8cyzvXqz1qbvxFLeS9zMaLMfZz/\n2+SYZf7LiMfrsbpSOQ/emKsztPIdX7fWxWzq8e8pH3nccQ4zy7k96voFzqeZCxPKDcOom988v5E2\nhuVG3YXLz8r8lHkaaQ68Sea2zvmnvNcX4+bxO+RYLo3bnWJO5BzKeVJH/rOZb7voLY/ZBfkxrbGP\n8f7d7373w2ORX/XjfGXuI+etf6I2x2hE5fm/Xcz/Xo71CvV+ooy1+lCO8ajz+Kj8+Vvn9Y31thzH\njDPHs55fZ+Yg37vOc/lZcS6fPi9fP/I8znN8WoxFPScycizPmh9HxGeXx/TksZyplfOnc/0WdW56\nqwNZw0euX1uV6xdgC81cmNDom4VyQzTSZj83vRk2vz+LnNR5kqtrxRqL/NYX2xHxWDyXrykfH2lt\n9qwclzfKuVMeZxnxtwjz+Teoj/Mtx9WbGPdWIzEajGrH+SKnazcFc42VYxGRNX4UeV69nFOO2Qxr\nIs6xnqcZ8VjE1jyUc3mk+XtUK6+Zz605fUpdl+Lrb8e0fs9vc5D5rXOcEY/HZ+75nDzG+N6RZc6e\nmIdr4xaPxfNPHNeacu5+uw6eknkv853n87Z8P6XMT87F3uTxG9Nf5ZjKB7CFZi5MJjf5vW7wt8rz\njI3RaPLcMkYfy6PqPGWu5OtameM69xkjrsme5cVjL+siLnLjWOP/PaznVkScT87BJ5VroJfcvkGM\nb87JjPpv5UbI6XnKfMfvP91IyvVVjkd+b8/jkufU0znEWGXuR5T1oJyjGTlXP83XJeUcHjV/ayJv\nkYM6t5nX3pTjGRFf713LOd/K9zgi36fObUY8Hu/9TZ7zvY4eYy8iR5mzO6yNXTz2zZjdJeZEHnNP\n8yNz32PO71KObUSv6z/Po9fjv0LO/fgV4BPNXJjMTJun3BSNeK71BY/N8LLITc77MuTseq2/WZeR\n48JzynXRm6iB5Vwq62EZ8Xg8/8TNoDK/Eeb7si038ep8RsjpceUaOprL+J7WuOS660V5Dr3J436i\nxl2hVQsy6prwrXoNjJLDNa38np3XJ9X1KGvUmjone/OR31/ntXy/OIazcpzn+Om8RpF5vGqO1uOf\nkWN61edeKedIxJvnyVrue8z7Veo89Zyfcm7ymxjPHFuATzRzYTIzbZ5yUxQx6gVBuSGOmOXC/qg6\nX5kzeTtfmeu86IzHyovR8vl4btR1+laZ/17nf86lct6szbOIJ+ZafF5+fq+5vkprrOLrtfGJ7ylz\nGpGP8Vnktsz5p3xv1RqXfP94/M41t1cea49zKMfyzfldE8ddz8mMeOys+bmmnLc9zoFP1vLb67z5\npK5F8XVrbFuv+yTz2cppRDwe73NFbsvjnUXm+ax8xvvkGGYuM+KxfL53cQ7lub3pnFr5z9zzo7pG\n9Z6jPI8ttXY2Z9c6YFyauTCR2BjkBmoWuQGOzdHI6o2+DfK6yE+dM3k7R32BvpTTpTHI73Ehc63M\n/dL49CB/pq3V93hNnGM5J8uIx++Yb5nvjJ7z/q26RkTE10fGoM5rxMy5/aTO11XzPj6nNTYR8fjV\n622PPM61OvJmkcvejj+OOfJe14E8j3j+7jlSztf4/Qgih3WOM7+zKMc1Ir6OqHOzlJd4LF9b57L8\n3nzPq+VnjjJHt4i8Zp6PWhvDeCzHeUTlOT85b3IMytxHZP75UZ2vEdZ8nEOeDz/L8Y5fAdZo5sJE\ncgM10wVgyI3R6OddbpBnHOej6rxl7uRvv7jwzBzuuTjPfJdjkGEszleOU+83ULK+751r+X11xOPx\n/BV5ifcsP3e2eV2ff+b7jFxHLsv3jZgtv2vq3Mfv7xLj0BqfiHj8irW2VXx2HsuTx/GtHs4h52Bd\nAyLOqgPfKudpr/Uj81zmN+ItOX7KUg2q8xK/zxy28pjf80TtynOIz59N5n5PznMc83vLiMfvHr8n\nPVnbWuMwW/73KsdrpFzlOd09B3sR45xjDrBGMxcmkhvp2TZQuTGKmOHCobwAmHG8j4o81bmTv+3K\n3H1zERJrNN4r61UZ8Zjx+F6O1Qi5zHM5Oufi+yNa8y0inz/zZ0cec0R87sg/l3I9lzmNODunKcer\n/qyIWZX5eHq+Lc2HiHj87mPLdd/7/MjziF/fIsYyIo+tjHgs4sm5uCSOqTzWNx5jSyvXb83xU+qx\njfj973//p9zV+cuIx5+oT7U8nt7r1RE5NmtjEM/lWGauMnJ8nx7DJ5U/e6+eQ5Hn8vMyZh+DT+r5\nO9Jaz/kw0jldIcffOgHWaObCRHJjOKPygmIW5TnHxtDmebsydxnxmBz+7OoLz8x7ORblZ7nY2afM\n5Qhi/PN8zpgLa/MtIp//9rPqz4ivR1LXhYj4+q71Gp9T53i2n4P1GLzt3FtjVB7r1cdbfnbvIpdx\nHjHeT8oxrdd+Hls8H9GDN6+dFLlcyzW/qvP0yy+//M3f+Tt/54eclfHGuZr16q1z8WoxFjk2pXh8\nlJpzh5xHmZ+zRa7rschxYF2Zt9FyVs471uU8iF8BlmjmwiRyEzXzxmDGzVG5eY6Ir9ku8lXnUB5/\nU+Ym1tXVF55L4xGRz7GuzNcosrZfcU45rzJvdeTzR5Xv/c37vMUbb+S1xm+EXK8pz/np/G8Rx9ca\np4h4/IrxKt9/BLnu7h7rXPP1uo/oYe6tKefkm+ZJ5nykXF8l/uZtmadP8cZ6UM7DmWUO/vCHPwxb\nc+5Q149v53y8X7xHPR7GYptyfUe8sQZ9K89xxHM7W6yZXD8ASzRzYRI2Ub9tjiJmu7jI8c+wmd6v\nzmHmcdZcnnkj4IilmwcR8dis47ImcpL5GcmdF76Rw8xjK/L5Per32/v9T4v81+sw1+CbftbWeY7o\nLdef1GPR4/mt1fZ4/IxzivfoNT9L7qqD8Tn1PMuIxyLi+VHkXIl4cr6s5XykfH8r52f87ds///M/\n/ylfZc7KvJXjHPGm2vDGY7pbjFVrPEesOXf5trZFzuuaZCy2q/M3au7KecY2OS+sJWCJZi5MIjdR\ns28KZt9Q1hduNon7Rd7KPJb5nEF98fmWObQ0LhHxuLk+9g3Bpy581+ZdRD6/Rfk+W7/nSXUtiOjh\nZlSOSXnc+VjPyrHoYRy2inGp51nE0TGL78n3GEmM91XnFe+9NA7xWDw3ynxrKedMnO+dIq913uPr\nkfO9R+Qhc1TnKSMau/m6T8qxjoivn5THc/e8e1o5ruV4RERTd/Sac5dyvm+d661xia+Nx3Zl3iNG\nzl2e49b5xW/7+dnqPrCdZi5MIjdS2CDVFxA218dF7nI+lfkcNafl3InzfuvFZ45BOS4ZI4/PmszH\nqOceczHO78m6HseQ86ucc2Xk80vq71177VPiPOu69+Z6sKY1Vm/M+Zoe5sxZ4tzquZfnvPW8y+8Z\nTebmjLWY67yV71zvPa75b5S5uHL+ZO7LnEdk3meW8y5y0cpRGfFPLB8V41u+11P14unPv9PauObc\nj8Z8fD37OjhTOdcjzy05Nvm6fO0M8/JMdR6X8j2KnFvmyT4xT2aYH8BxmrkwARupH+UGKWLmi8Gc\nFxnmx3Exj+p8jpbT8uKzp/PKsSmPPyMem2Hel3NzZHmOb6nrOffK/JeR8681B9+23uJc6jU00vpp\njdHbz60ek/j9W+b+HWJ86jkZEY8vjV2O89vH9qgY/zi/yMsRrXWe7zfb/FqScyji7HnUyv/seY9z\nz7zUucmIBl82+SLOzFk53hF31o787Ds/826tOZ/RGsd8bfzKeSLPZe4z763xaY0Ln5W1ZJYc5vma\nL/vJHbBGMxcmMMPF4F7lhnpm9UWaOfK9yGF94RuP9ZrbmCPlufR+UZFjUZ5TRjw+4kVTzsde5+BW\neZ7x6xvF3Fqbf3Hc+XwoXxfPPTE34zMzr08fyx1a41OOyVvUxzjqeGzVGreIcuzK50eW57hlTsRr\nWms8IuvR7HOrpZxLOb+OauV/5tyvzcmMeC5fV45FPn6F8nMivh33T8rPG8na+MZjn8YwnsvXc77W\nuETE47PWpG/V8/3q2vEWWcNmOd+z5ZyJXwFqmrkwgdw88iObpN+UNw0ibLy/FxdvdV4zt71cDJfH\nP+I6ifNrjVFEPte78vxG19tNvqwR+bOojng8/pnI8rG75mR98ykivu6ldn0rx6Y+/6drQj0u8Xt+\nFGNUj10ZT4/h1XJ+LK3VnEPlPMqIx+L5pe/lN+Uc27sOI7/x/fUYZP5nkvOtNR8zJ5mXMjf199y1\nruvactXn3n1eV4qxas33iNbYfpLvs+d7+KxeUxG/+93v5PkLZT5zrs+grJMcE3Ml5w1ATTMXBmcj\nsCxzEzHCxfIZys23vJyndRMjvn5rfmNtlMc7wzyIc26NU8Sbx+qTPIcZxjDk+MV49mZtDpbxV3/1\nV3/7Heeq131EfN1jLs8UY1LmJOKJ9VQeh3HZJnLWGr/I3xNjeIeYF3mOqbW28zXm0nF1Xj/lsTUO\n8XXMxVnGIM6zlYcyHxH5ulr9vfnaO7Xqypn1JN87zq1XOU7lWGV8O2Yj5Oct6vWUEU3c/P2Zc3sW\nV9aHHpg758g83v0zDng/zVwYXG4mbabaYnNko/Sj2S9ArhRzrM5v5vgt869cE9/ecOlZjElrrCLe\nNF5r8vjj11nk/B3hJl+cS4xd60ZbRNxsO2MuxvfXnzHz2l/SGos71lY9PjOt5zNE/jJ38Qch8vcZ\nkdvRcpr/f2j5/4jW52t9nyfymfmt51LkOR6ra0d8PcMYxDlG1Odf5iFz8SkfZZ4j6lzfLT7/imN6\ny/nttTTO5RifId4n35tjWmNVj1GZ5zPHb2R1XmfMW1kT+U7OJWsPqGnmwuBsAj7LHMWv/OaKGxT8\nJvJZ5zjm4JN5Lo/HevhNa6wy8rm3iZqfxzibUX/u5Vwr/8ZEGVk/tp53vDZzVb6H/cK6HIcyb/nY\n2crPMTbH5BwvxyfHK3Nb5jge7zHPccxx/Hm+9XnF8+bPdcr5lHOoHosch5HlPGvNw8zB3vlYv1/8\n/k1a9SS+PiLf5+j332ltrOOxOIetY7xXfuZV7z+itbFay2P5PT3My6fk2s2YdW6aK+eJORS5jDUI\nUNLMhcHlhop1Np7LyouT2EzK0fnqC8CIeOyuC8H6At8YL4tcRX7KfGW8aX3knJpxLPPcR774zXNc\ni3hNRFlH6rUeEV/fVWtG0xqHeOxbMR5nv+eMyvFZEq9pjWNEPP7mtdFaz3Vwn/r/OM8YucbGea3N\nw3g8z/9IDsq1+fY8tmpJfL1V+b1vlWPdGu9vxnmv+Iz8TNblmLXGaqtybu6Z0zOo8zvznMx5Yo6c\nJ+fVHXUV6IdmLgzMhmq7vCi0WWrLuZRhTl0j8lrnOi4Kr8x3+Xl7L+5pj1lGPP5EPsvjmVFZz0dX\nr9+luRhR/41e6/08rbzHY0fEuOR7GKPv7B2LeN3SGorHnx6L+PyIco5kxGPlfMnXmD/XWxqTEfMf\n57N2vuU8/Obc43vL9z1aT5/QqiNbjv+t5/ppvL8Z56PK+cHPlsbsm/Eq5/Tb5uhTypw8tRbewpq8\nRq7jmecW8DPNXBhYbjBtuLfJzVL8Slt50WJuXavOdeb7zJznnM/35js5PuWYlfm9K8flZ84q5/YM\nOSjnXJx3XvDH3xIr13gdd87JWWROj+S59X0cl/k8msdYR/WYZMTjd91Yi8+Jddxay7neW8cSj+Vr\nOF+Oy9KYlM/1vJZzfrXONSIez3OO+Fb9WfnePYpxr/O2NBey1sTrn5ZjWR97Ht9bxiSPr9f5cYXW\nuJ05XjlP831nVee55xp/lpwbcnGumGuzrzfgZ5q5MLDcYLrI2S5zZiO6rryYi9+bY9eJ/Jb5LvN+\nVH0RavzOFzmNMSrznBGPfTN+a3KuXPX+vYj8Z65nUK/p1t/CjeZuzo9WxHOzz5uz5Pov87u07uux\ni9/HYxxX5v4MrfHMiMdb4/qNek6UsWd+5PdwntbYLI1JOWfOniNXybm+Nv/yfLfOw63KfEWc/f5P\nqc8rop4PS4/fZW3crxrvb8Xx5PHNbGnsctzOFu9Zftbb5sXVynO/Kse9KWsc58vcmmtA0syFQcUP\ne5uq/cq82TCtKzfuEU/dgJhJnfPM+57cl+/hIvQ+OU7l2GXE42eNQ/mes8sbLrPM8TjPPf+U8tqc\njMjn+U4rx5nX+jn1+Bx1ns8UY9Qa0/y8I58Z7xlR3iTOiMeO/qyerQZeZW1sPuW2nCtXzMdvxfHH\ncbXOLyIez/O8ah7V+Y3fj6icCxnxWD5+9/zIvJe5z8gxf7s83hnV6+bucSvn891z9wmR1zLXM5zz\nVnJyrVznPdRk4B6auTCo3GDbVO2XG6b4lc9yrmWYc9eLHNd535L78qLfOD1nafxyXI6OTb7n0e8f\nTd54GbmWxzkuzaWMLfMh32ftvfJ5jonclTW4DPuN8+QcvmOu5rppjWs8vnYM8b3xfa3vjcfi+Yhv\nxPfn+7FfjlFrbPbIcTj6/WeKz16as3l8dx5jeRxP5+Yukf8y5xl3iPy2xv7ucT9LnssM8ybEebbW\n71NjV87ltZ93PavXTI/r5Eo5B0Yd/zeI+ZZzDyBo5sKgctNpY3VMbtjlb5v6Qkfe7pMXUWXEY+UY\n5EVAhovQ94ixiLEq109GPLZ1LZXzgN9kTkab83XNjYivy/Ms58TWeZRyXpbvUUbOzb3vy4/Niwy5\nPEc5X58Qn782vq11m1Gv37Pk+1/x3iNaGqMzxqd837vWexzz0ryMiMfPOLe94pjK47grH29S5+CK\nPMS4rs3p+Ly7x/5Mcex5LiNrjeET67alnMejjUO9RnteK1fJ3Jxdu/iROQiUNHNhUPkDn2Py4tCm\naZ/6osfG/j6R6zr/EeXF/+g3O0awNI4R8fhSPSpfw29y/o8y92P8yzWd57Y0L+q5dHR+xPvH99bv\nlxHHkM/TVo/dUj7l8Lg35TCO4ZdffvlhbMuIubC2ds+Scy5+Zdne2npUueavmKdZq+tzyYjHrziv\nreo8P3ksT8u5UP/3CPH4N3Mjc1zmOSPzPVLO89xGnEc5lq0xfJM4nvIYex+LOu/xe36WNeybesU2\nOR97X1vAOTRzYUC5sbLx/I48Hpe5y7DJv1ed/4iYx8ahLzFerbGMyOfydfk4PypvMPWqvqkUsXc9\nl3Nkz/ctiWOK96mPKyOP74zPGkGZ/8hNfTOmfD5D7vbJHEZ+n5TrdWltlBHHfPU4Zw18Oi9v1Kqt\nmat6jZ6pXO/fjn8cZ7zH0nyLx68+n63K837LMT0pc5FzoMxPPp7PfbI0lyNGz3We9yjn2BrL+Drm\nwtvPsTzurXP3bcp1OPra+UaZJ64X8zDnJIBmLgwoN1e9bqLfJC9K5HK/cpMvh/cqc1//if8IY9Gf\nuIiLcStvlNRhXNsyZ73dkInjrcc7vj56HmVdiDgzH5/mZzwez/c2Bt+K8y3z8GmNxvP1OOVjLCvz\n/MQci89cm/vlMbXGOOLKcc5jeyI3b9Qar3qcrlbOgfjsreIY43vr4y/f6+5z+aTO91XzvCc5/q1c\nlHMjX1O/LnJa5zXjjXPgSnGeed49a41nj+NYzt/W/H6rOv89HfsT5Ol+mXMAzVwYUP6gn+Ui7kp5\ngSifx5UXdRE2/dcq813e2KjHISIeMx59yrGrxzTHVb36TdbxXm70xfFedUOvfu+r1n98Trx3fR4Z\n8fjo87Q89yPjV6/vzBk/y1zflZ8Yy3otleO0dbzjeOtxzvc481zyM+J9Z9Uarz1jdYX6mFpjHq+J\nx+tjz3j6HNbU5/fW47xbuebXlK+L+P3vf//HaM2FzO2s+c089Hb+9RrJsYyx73ksy7kbv3+7cgxy\nLbFsaw3jXDlPzU9AMxcGZHN1rtywxgaK48qNf16ocp76hsBSfuPxciw+vZ73KsexNab5uLF9/42+\nev1GXFkny/kSn3N1XnIe1udYHkM8P8INijK3EfH1N+r3O+M9R1Lm50q5RltzONfQN/M3zqM11rk2\nvhHHle83mxy3OqffjNXZynHPZl19zBn53JuOv6Wey9/O4ZHsyUmMc+tf2InoYR7cJddLL/Osh7r0\nrbIGvPXc4pjKMVCntpGvZ+R8jfUEzE0zFwaTG2ebq3P1dpH4Vjk/M+TzHGVe91ww1+MREY8Zlz7k\n+JXjFWPfGteImBuzjm3m5G0XwDFe+fOlHKeta/gb9Ty5c27EZ0XU514eS8QdeThLPZZnj2MrX73l\n6AplLs5Wj2kZZ49vKed/6zOPnmeexwzzpTVumbu3nX8e61rDLqKXcatzH7/nN7mu1/LSmr8R9RzJ\nOsGvOYucvHm+LY1rPNbL+j6iPOe3zNdWnRp5DM6UNUzteUbOWWBumrkwGBusa+RFYoTN/vdynmaY\nr8edcZEc31ePyTfvx/XK8VoTryvnSBnx3Cz1rKzhbxDHU4/LUzeTyrn01JqPz/00VyPeOl/j2Mrj\nvfI4Mxfl5+Vjs8k8nHXuMW6ttRkRjz2xRnNsW8cTj289nnhdft+I4vwiH/XYPTFma+JY4pjq46zj\nl19++dvv6Ec5T9+W97fI/ESuUuQp50U+n5FzpcxlXQ/K95pZ5uNt8641trOtj3LOPj1f6/Uz0zh8\nK3KVeeMZWUvMW5ibZi4MxgbrOrn5j00U56gv7mxMt4tclTcHzspdjEN90yEei+A9yrHZKsexHNvy\nfUYf45zXT51nvWYj4us31L16Xjw9F3I+lsdURj7/dO7qMY3f36mVo3hsBuW5fyPHsF6bEbk+37BG\nQ877+jgj4vFPx5mvfcv5nCHHr8xFfL0lH3fI42vNr9axxq/l8284h0/qY47z4We5dnO8l+ZFPBbP\nfxr7fL+M2fOeuYxfn5bjW45PHtuncR1VOV+fmKv1mLxhnvQmx3D2WvOkmMfmL6CZCwPJH+4RXCMv\nAmxiz1Ne3MntNmXOrroxEO9Zj02E8Xlejss3Y7E0vhExp0Yc56cugONz82dHmeMr1u23yjnxpjkQ\nx7I0XyPy+TuVx/P0eLZyc3c+7vbNebbWZMZb12Ytzrs17hHxeOsc8px7OL81cfxxjvUYvmHs4vPj\nOOpjK49xaXxK5djG798oz7U8t6fz/1bleLbim9zV7/3W+XK1yF/m8in1msjjsS5+Vc7VO8ep/lzj\nsV+ZQ55lHADNXBhIbrJmvYi7Q14oRrgQOFd5kWAeLytvEtyVo/ic+uZEPGaMnpFjcGYNao1xRjw3\nSr3Lc7zjfFo5ja/fnss47vKY37jO45jq4ywjn79CjF85rm/KTysvV+biKXmOW88rxqwet4x4rId1\nuSaOvR73jHg8zy1+jcfifHvUGsOnxy6PqT6u8vjKMdijHNOtc/0u9Xx7cgzeKnKS86PMVUTOmTPz\nVo/J2+bMHTLXd87HtTG+8zh6ETkp83RljuqxmXFNnEUO3+OJOge8i2YuDCR/sNtkXSsvliPfnMtF\n17I7L36XxGfm/C8jHnNBcY/M/5VrI967Nc75uVd+9tVyHV1Vv+P9yxqWn9Xj+uilFmddWpqzEWfN\n2/Iz3j6udT7ieM/IwdPK81qTa7Gcxxk5dj2uy09yPdTnHFE+3su55ziW5xGRY3i3PJ7WMeVxRZ7P\nOrZyzOL3T6vH4w3H9CaRnzpHGX/+53/+p+evVM6ZiJnGKPMev16tNc7x9dXjO4qra1s5NsblOzlW\nd6wrPou5bDxgbpq5MJDcsHK9vECY6QL5TuUFnjz/mI+3bNzjmHIdlMdmTVynnAd3iQvG8nPL6HW8\n8/jPvLET79VaD73fPCrHvpfzyTn7ad7umbvxnuV77Pnep7Xy0NPx19bOobUOM0ZYj3vlWmjl43e/\n+92r50FrLJ8YwzyOtXkVebzyuOK9y8+8OwepzMETY/FWa3OkfOzu9Vav/Tev97OUa+UK8f6Rx3qs\nrYdjyjl61vws58CZ7zszuXyfHBNgTpq5MIjcDMfFBNcrLxRcvF2nvMiLmO0iIubWkzeCtohjrMcp\nj9XaOFeZ26fEZ9c3scrj6mHM8/i//Xm5NPfjfUea+3Eu5fk9Of+OyHFqjVVEjFc+X4vvLed7z2Mb\n51eeS0Q81tP55BjGeYQ49nqMMuKxnsfrbJGHyN8vv/zyU67i8YinrY3lHeMYn5HH0DqOPJan1k15\nTHeOV3xWmYM3zJWnrc3ViJwfmbsnczbb+OW4nLlGW+NdjjPHlfPzm7lZj5HxOUeOz+h1ozdX1Dmg\nH5q5MAgbrftlzmMzxXUyzxmzzPHyvHu5II1jrscrjn2WMbtSmde3aI13Rj73RrGW8jiPqG8YRfSy\nRr9RjvVbx3aLGKc4/noMM7Jm1c/3fM6lOI+I+tzefn7luo2GZGv8ch2Ovha/lbl7S2M3xqsezxzL\nK+Vcic+qP788jsjHW+ZUHEse29XjVI/LHWPyVuVcyXyUeWnlphyrNyiPJ+Lq+fOUGIc4vxiTb0WO\n6jFvjTXfyTHL2Jvfem4bn3O8rYbxmzPrHNAfzVwYhM3rM/ICb9QL4jepL9RGznl5rr2eZz1eeS5q\n1DFlDt8oxrU15hFRJ9923Fm798zHeG1+X3luM83peozfOh/3yLlbj21G/D+Hv//974cc59aafeOY\nRu5jHOpjjZhtDZ4h8pW5C0vzPx6/aj7EMbQ+88rxjPfNz219dvn5Vx3DGcp1e9X4lJ9x5Zi82dpc\n2TJP8rVXjdFR5di+8fi+FWOS53ZEjnuZo1nXwN3KvG+Zl/VYxe85T+Z2tBoxgm/rHNA3zVwYhB/m\nzyg3Ui7y7lHehIiLjJEuMOqL0hHOLc6hHLMRx+1qmb+echbHWs7lMuK5p+tl1u44xjX1mnzTOTwp\n52TmYhTleS1F1q+Rxr913k+Oa+R2ae3FYxEzr79vRe4yn7UY96Wad8acaI3rVeMZ75mf1zqn8rOv\n+PwrlWs2zuEsma987yfrwBPq8y8j58oWOT5njs2Zcj2X5zfSWOcY7lnXrbHfM+aco5yXa3OyfJ1x\nOl+ZX97pSJ0DxqCZCwPIzdbahpfrZP5jQ8U9yguMUeZ+eU6jXpTW4xYRj40wflcpc9arHONy3DOe\nHP88htZai8fyIjnDzaIf1WP61DieoR7v8ud5ztF6PpSvjedHmBt5ruX55WNXi/zF5yzlOSL+hjTn\nyDyvzdvWfIjYOyfq9ZURj525buK98rOW5lF+5pmf+6TyPPeMSS3zVudpBvW5lzk4mod8j2/G5A65\nlsvzfvsxbxFjFucS47emNfbxdeRglvn/RuWcrOdjPWYjzNc3kt/321rngPFo5sIAcsNrs/WcvKiw\nmbpXzv2MXtfAbBelcY712M1y7nvl3BglN3Hh2Rr7iDjXO8+zVbeXbuy5qbesHM8e52l5/FvGOl4f\nUc+TjHy+9zlT5qU8tzPlemvlMscij+Psz55d5DbzvEXkvzUn4vuXxibHt379WWsj3ic/o/6c+vPO\n+sw3KsflyDqpx/XIe/SknDfleUecMV8ynz3lMY51pHkQ45fn0dIa/xx73qGcjzE2oRwz43WdzH3P\nNWAGn+ocMC7NXBiAH+LPKzdTLizuV17wxe97GYNy3sw6d8qxy4jHXED+mJtRxTnWN9Qy4rkr10S5\n/upjiK/Nwe3KudrLDbY4xnLcj453fF/E2jyO6LW+x7G3zumIyEGd94x4rJ475Wdzvszt3rmZczq/\nPyPGL/729NL4frsGyvnT+ozyc779rN6U47F1fWYuy9yNam3enDlneq9ZrbW9dT69TY51jms938vz\nO2PsOd/amHGNyHnmmfer6xwwB81c6FxuuOIHOc8qL365X283H8rjjfU7+yY88lGPYcTbx/FKs+Vg\naQ5kDs7OQ6y5P//zP//hc6zF4yJv5U23N8/b8jjPHvO1eRyRz/c2z+KYy7zluXw6j3i+9b0Rmful\n98jXxfdzvhyTb/Ib3xuRY1XG7373u6/mec6NOM7W/In4NIdmUo5D5GVNmc/M4Why7uR5lnHVOef7\n916zWuu6t3OK8Y3j/uWXX36aB6PO+dG01vBf/dVf/e2zXCHXfe81bBZZ52KdAPPQzIXO2XC9S15w\n2FA9J9dExtvWRn1hau3+rB7DzNNMucoczDo/Yp205kFErJ9v8tK6ORRN3Xic75Xj9rb5mzc97jy+\n+IwyJ3Xk871onU99DrnG6nUWEY9tWWv5GeX7cq5cDzEmR+Q4l+MbDdzy64h4TYzjp3GP51vvWUbO\nn0/vNas6f3We4usynyOtr5wXrfkTj+XcuUrWrPicUcQ55Xll9DBn1ubBlXOA89TzLpq4+fse5mCP\nypzTh6hnxgzmo5kLncsLFRcm71BuqIzJcyL35UX8Wy76yvlhjnwW41ZfzEeMfhGvjvwsxrx1Yy4i\nnvuUp3i+/v68qefn6Pnqdfv0mq3HP8f+CZGLOj9l5PM9WDuPjMj13nyX78u19ta/eF2MT7meIuox\nznlcviYjHo/XZtTvVUa+b/nefFbmPvNd5rker17lebXm0N1zJz838j2a1lp+43nW8zzjD3/4w9++\ngrerxzB+n8p5WD7OOTK3I9awkeV6uetnHfA8zVzoXG66eI/yQoNn1Tcfnrw4cQH6nXosI+KxJ8f0\nKnmuI57bGXLc6/mQOSvz1rqxF1+XF7zx+3ycc5XjVI7Lneq58tRxLInjqY+xjHz+bWLdtNZXRr3O\n9sj3eON5jybH71P9a411fB1j9Gmccw6X39uKeL+InFt8Zynnvec252I9HyNy/twtcx2/jqw1p54+\n55wP9XHFY9HEzd/zfuX8WlrL8Vi+JuKJ9T6izL210p9cE8YO5qGZCx3LTdfTF1H8LDZTNlXvUV4c\n3r1m6psM1ut3In/1eI6U1/Lc+CzWV2s+ROz5/3DzNW4Kna8en7vWal17e/h5nPN5aU5H5PNPyJyW\nec2Ix37/+9//McrH9x5vnnsP4zWCGNMcq1rOx3q84+t47pN4Tc6Z8vuXIj5ry/uyTeSy/Geve15T\nS/MoHts6H6+SNStiFuU5Z8Rjd2rNidZcyOeenCOsq8dyy1za+3rWyWW/Yv3k+AFz0MyFjuWFlE3X\n+5SbKheP75DrJeOOdVN+5tM3m0ZUj2lEPHbH2F6lPA/2ifXV+v8aMyKnS2swbwrFr1yjXK9Xz+/y\nsyJ6rb1x3HEu9flkxHzN568Sx1DeNC0/O2Ipt61j/nSc8V752l7HrEc5vpnz1pivjXWK51vfW75H\nvk/G0ty+el6PrB6DX3755YfcxvNvl/OjNZfKOfQGeVwzztfW+r0yDzHmrc/MOdGSc+gt84UflWt8\nbRxbyrkw4/o7S+ZRDvulzsFcNHOhY7l55Z3KCwwbq/coxyXiqguX8nNcHF0r8luPa495z3OICzK2\ni/pa3gzKHMbfEGzNi4icMyneI5/jOvV4nP2zsZ4L5RiPIM4vzqme7xnxeD2394rPqPNYv/+ecYvX\n1++zdHz5md8cP/vFeEbe418zqMc9vl4a77W5kt+b37/0Himeb82ViHjcnNimzmGZt3Kc3pjPnEut\n+bR1Ht0t8x3HN7N63kWcOcdybpTvn3Pik3hNvp73yHHJODpfyrl35pybRZk/+qXOwVw0c6FT5QaY\n98oLTxur9ykvXmJ8zroAjLWZ4x7hwvJe5biWY9DDOJTHy2eRp3KtRcTXsQZr8VhrbkTk/Mj3an0/\n57mqRpbjuzQPRpPzul4HZR7i+U+5yDFpvU/m8tt8xnGUYxRRHlv5HPfJsS/HJce8lvOgNU/y+86Y\nL/G9MR9an5PziB/V45LjUCvX2RvyWB93GUvn8CZ5rObkr8r5lXk5mpulOnBkXuT3vn0+zeD/397f\nvVyTdW970L8YPwiGRkgIdgiK2MEvMEGJ+MErBLqTjbwbCUE0r5K9JijJjhIQ3VGE4I7Zd0NwU0EQ\nfr7n08/5PKPHPWqtqrXqY445jwNOrvuqqlU15xjnGDVrVd9355o/o86j7zr0jZFwLj6tUxgDed41\nAADzw8tcgKZ40crCa3y8sCJX4xEf/s7IUTwfD5PPolzk/Erf5vgqPNZRxzcK+Usg6ZNaU5zzeSz9\nU83U7vXE+lQuPiV7YuUaUixeeVvbtV/H5bjFY6SrakDXj7mX4u/6M1zLVu6l33///a9H/XHcq2Oj\nV67yi5AnqjHYS6sT68f5eEU8/u74vfJU9FMHHEc8+CPRY47R3jhV/vjWFz6ffsJzZF+cXevRN9Tl\ne2I+oD/2f5d7KAB8Di9zAZrimzUL1fHRgsoLZRZXY5IfLj+pKx4gx0X5iPlxjkbJk8bhcUGNemfO\noX4/o6faC/Hc1kg+mZEc96Oxjp44yw8zoXgoprl2svT/1NRxd8cv51866gHYz6s+Kul3/ccsW37R\n9nj8E2z5WdtX845zFmOwl/hZ5/QqdG57J443XvvK61+BYu05wDYxTtKrOrVP4vFneVPn8PngfnJu\nr8xD9NyW1+APiNNcuMbocwDzw8tcgKZ48QU9YHHVg/wAuOcLBH9BYJ3xpQNcg3ITc2w9/RDr/sDD\n9J95la+r6kwvtfL1LF2XHF1DzPOeGOe+S15qFCf1F/eYd9JxiuVV9VURcx9FTs/BHsjx1Tb9LVzF\necsf2i7pHHd6Yi9bY9f2mf2Tc+ocfUI8z5kx8xir/Hwz3lHwXGb22ZkoTtEDrtHsZUm/XxFXX6e7\n97oRc39X7cdrXuGlGXCMiM88qLZcZwAwN7zMBWiIF1/cqHvBQ0UPXF978hWPpR57odz5i52Y61f5\nvoLoIfiDrS/37vgCyA/CzkflE0nbtO+OMa1CrAWpqsXsjbt80Ykco6gcL8V4y+OS918Z43wtqRoD\nHKPygf5jlV9//XUz3z/99NNffuq4bnVVeUeazT95jmfMLZ7zm/Nt9R5tk7p5agvHS3OCY2T/Rl3t\nEXuTvN1D7gdn9KojRK+R8x9xbGbpy/AHrjnyCjA3vMwFaIgXp3cviuE7tKhi4dyH/IVDrLenH1Dh\nPJTLnGvn9I46jddbnVxXkn6/u19uPQgrR5VXJO+D74kxjjHNsSfefyCfVrUjaduRGlJMc5yjvP+s\nmvS19DNTjaM6Dv7Olg/8kjYr+0M/vb0z8knlH82rq4dybs/OUYzX3hhpTFuec6ztrZnwHLt66Sm2\nvCL99ttvl8dT19e1zq4d+JGYZ/35qT7gnFsz9qNPcL+nh82Ha48+BzA3vMwFaAgL0r6wwOqFasw5\nk/zFlH/XPupwHpTfmG/n+KqHXR6m6y/3HPOnass1rnFsoWOcvyxtXzmnZ5Bjq/+Pp//8Ki+r4LrJ\nteP4aP8Z9WMv52tY33g9nvcV1fU/veas2A85Tln2zCtv+Dxn+GcE7NEqFl18FHP7Ln/fEOOk61TY\na3FM8TPaP4t3KhyjLt4ZAXum8kquzavj6nHM7NEnUVzvzOdeos9Wr90YC5gP16B6HQDMCy9zARrC\nAqw3zt/qDxOdiA8+Fovkeam+YJK07awvgOIXHiui+W99uTcCR7/wkzfyfDynM32zEopZfIkrrRxH\nzb3ymHRX7cjLVW+0vH8P8TN7qK595HqzoXy/+n98S/LFUW84xvrcbFQe8lxH9JHyFsd5xxhzn9E1\n87aoo/7qTPQOvGbLM1t+yXV5ldc9Jv2E88j53srzk0SPXeWvDhCD+XEtrnJvBlgRXuYCNMMLURZg\nfdHCygtpFlk9yA+pFnU4P8qx+64lL3ybe59zNQ9VtTTilz7u0xrbUSrPWN4Hr9nquSN65So0z1dx\nGCEWr7wubfndn9EcjlJdc+s6s6F86/95u/efTf4Efdbnm5nKR5a2P1lburby6PHcXeu6lv7Z2xiT\nOJa7xzMKjsEKveZTsnftmb1+yTV5dqw1Dp8bzuHqnJ1JHOvI47wKz181CfPiHkyeAeaFl7kAzfAi\nbMUF6EywmO6Dc+V86QsuL5KpxbWIXoj5P/qlZjzPCmx9uTd67XisR/Mb0Wcr30jaPnoMniDGSz6p\nYjhr3FwruV4kx+IbP16J85RzFaV98SXRt3OprjWTNxzTrb+Bq5e62ne2J+y/Ub12Nopx5SVJ2++M\nQx7HXde216reI6luV/FDhfOi+MCfkS9e3bM+IdeBfj+L1frbVeS8d6kNjdtjXs0HnvOZ9QTjYY93\nqUkAOA4vcwGa4UUY9McPQCyoxyU+pOY8XflFA4yNcp3zL6/s9cAqnslf9DhOXb44uaJH61w5Jo6L\n9q30pVIm+6WKu7a92t+Rqk4sbe/qCY1bOYo5i9I/oe3931Jd44zz3o29sOUHSS9wf//9979+4ho0\nDl1L41gNezLHXdL2q+rRuY/XuppXftM27Y+xWNEPxjG4Iy9dyJ61R86skVyLZ8Rf4/NY4TNyXzgz\n53cRvbtCXTtnK8wV+I9WAGaHl7kAjfDDhwT9iflkoTUWysfeh7z8QMtD0lrE/FvatuUDHy+vzEqu\nH8+3W5+LPfoK7JMYJ+uVh2Yk+uWdV3LMusVJc6tqRNK2jrWyh605W9r3re/9+Xjeb895JY7Jq7hI\n+tu3msOdvvC1Z/TiXjT37CfrLF/lutCfr4x5vl687ta1tS0ee+X4RsQeOCPf3Xnlnyt9kevwm1xE\nP8Mxcv6710T01cz1HecJa+A61U8AmA9e5gI0wguxmRebq+GcstAah/jAs/fLifgZiRpdD+U8+6Dy\nwtb27lRf8O2tn5HxnK6eh85f+Ueyt2ZE885z3UuM1+jxcX3kGpFcJ1d7bAQ8Z+XLnq9iImm7j/uE\n6A/raZ+88oGU/1+49sYTeIwr+HIP9mvMj6Xtn3grn+8Kf2rc9l28lqRtuubeHMfxXjHWEYlzXpnK\nQ0/0p5gP6VMf0t+OE/P/RO6vYoW+5jnOOj/4EdWnaxUA5oOXuQCN8CKahdhckNdxiA+qn+TDD0vf\nnAP6k31gL8xY66N8wXcVTz0MR7/k2Gpf9/hm33zqmVxrI9VWnmPUp/PtjHO1lSPFQ/texUz7j8bN\n143aGsPZ2ANbc9LfuNU/Nx23fTrPs9H1PR74M/ZqzJul7e/8ZV/4M/rzmfn2+eM18rU+vV6c97t5\nzsBKc83II5p39tHZfv2E6EPpaH40fs8FXuNYfRrrDkQ/zeaJODdYC/fup/s1AJwPL3MBGsFCbE7i\nQxKLrWfID6rf5iE+OOnP5HVNlPvoheiJ7mgOI37BdwWe31Nz2/KR5H2dyHM5Y/zRi0/FQ/6Qcl1I\n2jZrfewh5nwvipU+V8VT0nbt3xtTHRvHIXnbWTj/r8b866+//sNvv/32wzH6fTR/eGyr+nYPr3xa\n+Uu/e/+ZObf34vWvuI6Ic8jzmwnPU/FbicpLZ3voLKIXpSN+9GegJvtgVA+cRZ7vLL1ttvnAfuxn\n/QSAueBlLkATVn2gXAXy+xyO/dnxj+eVeIham+iF6IlOvuj0Bd+ZeM4j9GfFOvcWa3Q/Zf+cHc8Y\nl7t86TnFeeUx3DGO0XFMvvGn/V3FWtJ27X8Xb+2PXpF87qO8yr8Ux+Rj8/53430Sj1c/YR/Kd86z\npJf48fdP/BbZ8pSkbdKV3tK54zVH9vGneG7f5qoDyl/l3at9dAYatxTHvSdnnuuM3v2WT+I5C3Hu\n3eftuayUP/g7vk+r1wHAXPAyF6AJLMbmxw+V5PgetMCNX1pcFXfX7tXXgXGJHtCfsye8fVRyrUj6\nfZUvwPwwLI2GfJNzI2mb9o2So+z5q8aVvXpFXeVrRK1UF3tx7s/Ohc4nbeXC+1/lQ/urz23h3L/K\nf7zmlle0rYNPNEaPGY4jL+if0o65l/Ri95XPtlA+9LlXnrrbV3Esn8xpVDSX2eZUIb9kP3XpTxnl\nynmzXuVPc/R84Q+yH1aNTfRR5x7gOXSsZzgHPAAwJ7zMBWgCN+L58UMleb6eGOs7vrTQ+Wd5MITj\nbOU9eiIeM4I/smetrl/yfYu/3Bp57vZOzpn0lK8Ur/jF4F1jiHH49pqaQ56HpW2r1sQeYh6uRteK\n18vy/ipX1ed8rHOc90vaXp2z8ktXn3geHcf+NNlX1YtdHSNt8cqDo3gqzvPVXLoQ5zMrM/WojGsq\nzm3Ll95Pf/uz72fxwjfkeHTD49/yPqyB+zw9DmAueJkL0AQvJmFuvPDu+NDQhScfzuK1JR6w5sc5\nf5Vr7cveeMofM3/B9w2av2PRAY238pRkv11NvP4THsrzPzJn10GuBclzuXs+HXHM7vBbRtfMHojy\nfqN86v9l+/PPP5fHS8q9PlPl3p6pPtPZKxq75wH7yF7Isdvypre/8pI0op/ifPTnzswyj0zlK/1u\nz82G5hV9KeWcOh4zzn8v2Rez+f4bFBvHpZNPou9hbexh1TgAzAMvcwEa4AUZi+s18AMV+T6XkR5W\n40MWuZ6XmOe9ZG9I2na1R3J9SPq9yxcXd+D4dIyJ/JPz6xxr35lzGqnXCl1/z1iqGrC0nVo4huOu\n2I2AxhO98Ikq/1S+mckvmofnBe+JXtjjA3lK/xGBP5Olc+iYDn6K9aVxd8Rz6Dr+itl71DuU0+hN\nSb8L97eZ8n2EXLOreOIosX7snZHpNFa4HvuB+gaYB17mAjTAC20WZGvgB0sWXecx4sOqxtTt4RCO\n8U3v1mf8+agzfaI62LoGvedHHKvuX/ppHlXeJe/7lNjTRum1Is9Xv2tsUhyzpW0jjb8biptjOUoM\nY76rnGe5FrJ3JL182/LNjJ7xXGec21lUPeYVR7yoY96dbyTinDqNW3Qdd8b+8nwk+2jVOtbcpRiT\n+PtKcdFccxzgNdErI8crjhNA+F6wau8HmBFe5gI0gAXZenghrsUXfMfoXyrFh65RxwjHOfNhOntE\n0rZPvbL1JR8Pee9xvGaJlX0UvWAd8ViXLwbf/Q04zYM6+B73lyd94FxqLLnfWc7577///je/V8dJ\nOrb6f57qn2We3TOan2MAf8Yesx/sqYp8bFT+3JYfddyTdbWXOPYO4xUec5fxVlQee+XJFYnejFoh\nRtkfeOMYHfra6OOD+1GNu94BYA54mQswONx818UPWyzGPyM/sI7+sBofEDVu8t4b5/LMPOpc0SdH\nr5FrQtLvo9fGSMzcl+UDzSt7xD7RvuyV7KkR/ZTHGPXTTz/95UUenEfsUXeiPDvXW/m2P995VPs1\njziXV9J5dezMeK7vYrcS2R85NvZa5Uf7dE88X3lR20fNSRyz/jwycazdeOWxUb0xAlVNje7Tb8jz\nnXmuV6KacgxHqzHnmNxCxp7lngAwB7zMBRgcFmXrEh8WWHgdw3UjdfoyI45bou57ckff1rnzl3fa\nlq8p7+fj9PuVY5uZ2Jdnx36K3rG0PftqlD6rcVS+l7RN0gvcuJ96OI+7YhrzXOVa0nYfd5TKQ/pb\nuPH3SrN6ybGgVn70RoyJ9un3ypPf+NHo3FI+t6Tt35z7CuJYNf9RiTHsQvahYzyaB0anqqdOPnhH\n9snIddiJGNMR/BJ9DJCxX7k/AMwBL3MBBocb79p4Yc6D135Ge7j6hPhA1nkeq+K83dG3dY3sF6n6\nfzrqd+4l37PifVkeq3wm6QXX0z3KdZA9L9n3Vb7inHQcfIfjeYUfnEPlqcqz9CrXe/D5t85r9Oct\nv1nad0UcnkJz9rxWJfvDvvD2uC8fcwXyl2suS9uvuu5RctxGGZdxDDXG0cmxtK702QpUMZW69/DY\nH/DI+cT4Pu0Vj6W7Z+EaVPvuAwDQH17mAgyOF4iwLn7AZHH+Gi9SrRkeWPNDIg/h4/Pkw7Suuer/\n0/FOVn4gjj1J/0Sx/2wpJnf1Kl1D1/M9Mo9j7xjinKQnancGYhzPQPl7lWPJed6b6y18nerce9Bx\nmv/W39z1f/Dw7TifxjHqPo9PyH2i+g+mJG074p2zsAfzeCRtl54mjm+E8ZgRx5RRfrPfnvDZrCiO\njmn0qTWyNyqyX7qNvxPRL0/FOY4BYAt7hPsGQH94mQswMF6YsQBfGz9gsvjaJj7E6OF1JuLcJPrB\nuMRc3Un+0kaqXipofPSQc3BMV4ln9ljsQ/pz9H6U952BxlB5XdI26Zt8xDmcNeaV+DZ2Mb9VjiXn\n+Js8G18rn1/j//b81bmjzrrO3XhO+rkKOZdb/xGLNEo+NY7Yz6K0/dMaPYM4rifHYTyeEcaS2eoj\nI3ltJhxrxzZ6VdLvI/okE8eNV+4hx/xufO0O/oTnyD0OAPrCy1yAgfHCkIUZxIcE+Dv5i46ZayV6\nYPa5duXu3GT/S/mLG42lOgb/fIdjqp+zE3tP9ldGx8bjo7zvCLqWPpM9LHksr8ZzlDz2o+NdFcft\nSLycuyq31tk51nkqP/k6V5A9VUnX13FXjeEsND6PeQX0t29jnqLO9uZVaHxbHtR26W7ieJ64vonj\nGAnl7M4eBX/gmOtnJPpE0u9P+nYL+SOPE+4j1+1d9Wp/km94h3tE7nEA0A9e5gIMjBeDAGLrIXNV\n4kOrYnLXQ9OTaI5+aJN4cBuHmJerkQ/iFwbSuxrI3rG0bYXaORvFzDGcleyzo/3GnstelbRty3u+\n7tbnqs+cTayVo/NejRirVyhvzq2Pj3LOfdyZVNfV71sevAJdK8ZK2vpnmX3sXWM7guM44tjOQPOq\n/ncFkv3ZFY1dvsq1INlzd6GxxOs/Edc496fZyk13z3UierJC+Ym5ubtmttC4o2/wzLNEn9zhjzuv\nBf2xX+gRAL3hZS7AoLx7oID1iJ5YfQEWH5T00Loacf4SD3DPc3UuVPNnfcmnMWYP6Vz46BjOx4z9\nOHrtU59lKt9Z+htw1YstXfus6x8lj5X6qNmKj3ImRS9FxdxekV+dU2PK13/KT8bjimOS9x2PuN3S\n8dKT4zYag8aksc6A5iNVsdc/qawXuyPE/Qqq+pDstzuI17/rmkLX0jWf9nHlPf0+q+dGx7l4FX97\nx7qzXjLVWOB5Yl6uzImvQ95hL3t6HACMDy9zAQaFxRlU2BfSiuQvPVavj+gH4vEczsMV8b/6i77s\nIUnbeMh7j2LkfMyC5xS9cAV6eZt9benFlvaP4EGNgXvONu4f7kk5XlHaHo+7imoMvu5obPVfK++z\nvP+pOXkcXbEHt7wq/f777389eg3kpyoe9tqV6Pzxendw9/UynfrUSij+zsU7om8l/X6Xn7J/8M54\nRH/s8dNR4vkB9nKkxwHAuPAyF2BQvEC/66EA+mBvrLYIyw9FPLT+geJiT9Az7ueqh+mcV+lK3+t6\ncS6+Hn56jXPUvR9p/NFvV3jN14jXsfQCt/qnTXWsPPh0fGNtXBGbjuhlV8xVlnOtWF0dL3urGkOH\nXMlfefyx9+rP0YNZ3n8XHmunOrBHKp/ob+D6z9q/OvJSFacrfabzxutcia919XUyVZ/S753qaHaU\nC+dmL9G7kn6/Mqf5evhnXKKfzs6Vz3l3H4P+2DsA0Bde5gIMCjdZ2CI+GKzyABe//OChpab6MgGu\nx948I96q5xG+6MtekrQNT/2IY6U8dSXn+0y/VZ6WtG3L2/Za/ozkfU+Qx/TUOJ5CudrKpxRzWuX1\nCqrxbPmqA/Z3nI+3RarjoqrPnIniq+so1iNT+cPjluJ/QNLZN1ey5bUrPGZfSVflI87lLiof4rdx\nca6O5ifXyRX1EX109vnhOs7O2xN9DObh0x4HAOPAy1yAAfECTTdagIpVFvH5wZVF53uiNxS7Mx4a\noeasOsw+d+6e9rvmF+do4am/oxw5Lt36U/ad/vwtOmc+bzy/vHMkTlselLzvbuJ4nrj+XbzKZZSP\nu4utMWnbneO4msr3ld80Z22vjre8/0x87pFirrG88oc9kmN1dmxmxT6KsZMU1zNjGPN3dm6uOm+m\n8qHjNFLNwI8oP87XJ+QaOcNr8ZwaFx7qR8zht5446zywJt/2OAB4Hl7mAgyIF3ss0OAV/pJg1oVY\nfOjhwfUYMXYSveQavomv/Jzz5HON6PWtsX4y99lwL+4Ui5jPb/urPqtzOA5RPvcZntY5NO6t62jf\nGdfZQ4yf1Cn3W7yKr6Ttzqe33TlvXTePzeOZmew16VXcncfqc5Ji5v3f4Fzo55PYFx5Pnqv22yM+\nNu+H42x5TDH91lsinvuM8wmfU2O8iuwxXw+f9UG5cu6+IdfHJz6OY/n0HDAO0ROf5tLnwAvwDfYh\nAPSEl7kAA+KbKw9+8Ir4gDfbgj5+EcLDyuf4gY9Yno9jezSmqtvOX/RpvtlX0sreci9WHkcn++/T\nvFU+lrTtLj9veVHyvquJ17/jemeiHGnMVR6lmMuYT8/5jvm+8tkdHhsJxduxt7ztFc5z/qylWO45\nT0bn9efvZssXHk/ljTj/Ff1zJVv+src+JZ7zm/OYM88V2fKjroPPeuJ8npG/6GP7Yg/RU/SseYh+\nOJpXHevPAnzDmT0OAO6Hl7kAA8IiDfYSF/UzLMbifGaZ0wjEB0e+XDqHox7VcfGLGan7lzP5CypJ\n26TV6PBQHPP1yRdIlYd9rqf7in2XxyZ531Xk6155rW9QfjS2KoeSttsXW7mMc72Symse2+o4jzk2\ne33nz+f45nPtOZ/PcXVedH6pGrO2SVtjyJ/bGyf4DHsn5ijG/qhX4rmUx0/xefTzLCpPvvIi9EE5\n/NZzmVwXW17cexz05pP7kr2BJ+BbruhxAHAfvMwFGAwWaXAUPwx0X4zZ+ywsryHGV6LHfM7ePl19\n0efPzfRln+bjmOR5rsLID8XZh3vz4s9VHtY27R/RxxqT5rg1bu27YtzxeiN4/1UcJG2XjsTCn71i\nfhpHNdajY1wJ5SHH62hu9vhE+6sc+Po65mx0vXeeqMZk8mf9GbgP+cMeydryVEXOpT57hDiGb8lj\nsfDXfDi3Z5Nrwn7O3sJT8xO98K6vndnHAAR+AugLL3MBBsMLtXcLOoCIF2MdffPtlzRwjPgwSLyP\nE+O3RfVl3ypfymR/Sdq2gs8835HyfPSLwcq7/mxXD9t/eU7S2d6M17k7XrqWrl/lz+P5Zkye25nx\nEpXn7o5dd6q8a9snMdzjI59b8vYz0Pl0/ura2rZ3Phpf/Kx+h2dRDnJeYn725DZ+/khOP/lMxt70\nuaQjnoR+ON9X5XirHiR8tQ57+9qeYwCOcHWPA4Dr4GUuwGB4oQZwBC3C7J1OC7I4br4UuQ/Fee/D\nI/yZVzFTXPmy7w8Un+gxa2avOff6+TSxt76Ku46rfCtpmz43k3+3fCl537fsjf236Do6d5U7Sdul\nM/IXY3YGrzw3k9/uxh6OMfW2T/Hnt3z2008//eXn77///tdPHGPLC9JRP+Rz6c8wHspT9qn1zq/x\nc6+OMz7+Ey9sefOoL6EnyvGn3tmLrvHzzz//yV97fA1zEfta5TfvxxtwJnf0OAC4Bl7mAgyEb6gS\nwFH8hUOXBdm7Bxe4npgDiYfE1zhe0a/q2649S78Ty7+TfSZp22wxGuEenv2oP2tbxMdk38bj82dm\nRHOUB7fioH3fxCH6/gyvvxqvpO3O39n4Gt/OQ2PL479qzKsT/Wed4UOd45UPvX8rp9pe+UDStk/9\noGvG8+CpHihPMXdR9lIm5/oV8Vx7qfyJp9bE+b8i99nHv/32299+l454Fvojj8X8R8/hCbgKewsA\nesHLXICB8KKehRp8SofFfv6SBL8/j3sPOXlNjE/2scSXfa9R3LLXpJn8Zk884YMc2ziGyq8Wvv2D\nLX9K3neUfL4j51BOdPyrvN2RO89B1/qEynt3jR1+9KB0xIfvqM4fpf16SfHLL7/84APJPvjUC/pc\nPN+Zc4N7US63/KTtMbc575V/fK49nvC1q15VnRvWwH440wM6V/RZ9Kf+bN9W+2F+Yv6jH/ABXMEV\nPQ4AroeXuQAD4ZspizX4FC3E/AAw4qIsPqDwBclYKDdbXy7A372rL6VjnCS8fJzYCyxt6+4792B5\n4i50zehJ+zFvj/t9DNTYizl20ic+jefa+qzyoX1VzqQn8qZr+fpHr6vj81zw3XPYtzEf3vYtzrNy\nW10nS/+s6Kf/LLPJ/sJbc2Ev5R4iRd9Gr3mbiNtfkX0k4SUw8oE9cQbRa698Zo/7WCn6G+Ym514C\nuIKzexwA3AMvcwEGgsUanIEfFEdblMUHWB5Ix4UvD34k/9Nn0qsvYWA/8lf1pUVn37nX3eGPGDv9\nzber/vbbyihmivNWXLVvT1yzz/0fhlTnlbzvyZx5bHvrUWPN89Hve2ME12M/Vzn6FJ1T59nqP/n/\nCRml6x69dh4/3pof5bzyVt5uL+XfI66BfD79jpcgY3984w35LXqt8mWFjvv0s9CbmHf1JoAr8PpN\nAoA+8DIXYBC8YGOxBmfgLyhGeODTIjF+YcIXJT3ID5ErfnmQvetY4OFrkMdyvLWtm/dcO5rLVVTe\nzMKr12BPVjF/5VfnbOvFlvbps6PkLM7xFRqvjs1+xH/jE3Nsbfm3Qvm1r/N5nP/sAZ2/uq7l/RX5\nWvozrIf8UXnO8r7sj8qr+j17FCBiz2z1pVdUPesTv7kv+jyfjgf6kPMt0avgCtyj8BdAH3iZCzAI\nXrCxMIcz0GJshIV/fBDhC5N+5AfJVfqT5hm/fLHw7z0oztl7Uhf/Xdl/db7qb4pL8ix99l7kycqr\nkvKkF7dVL4nS32YcMWce31bdacx5bvpdx+PBXihnOZdbeXTet3x91M+6jlSdS/L+eD39GY+ByN6I\nkheFPRv34SHYi3xizxwh97Uz/OZ+GM+r32E+Yn5j/yLfcDaf9jgAeA5e5gIMghdoPFjCWfhh76mF\nGQ8e82AvzZxP9d7oWQkPP4/invOibaPnw2M+Y5z2pr6YjnGQtF37WTs8j/4foHp5+9NPP/2QJ0n7\nfv3117/lKveckTytsVRj0pi1LdekfQi9UW6de0u/V/+veCv2IG/7FPsrjyFK19N+gIx8seVTCe/A\np9hXe+5zOib68ArP6ZySr3HVdeAZnNuY05hvcg1ncsb6DQDuhZe5AAPADRSuwg+Tdy76o5+lPQ++\n0IP8IDlDbjWH/OWfftd2z5eH5ueJ+Yga1Ycak8YnL31C5UtLLwv14hCexTnaytOrv5Ur37qvRF97\n25PE8ZjKj/p9xNqD71FeP/kXAOyRM3yhc1T/AUuUrhdrCdYm9q4t2TMAR3Bv089XRA/q2KvvkZXn\n8Xdv5BnnMhPzTZ7hTNzjru5ZAHAOvMwFGAAvzFiUwdnEB4I7FmfxIePdAy/0JOZY6ti3VAsatx9c\nrPjFS6wdGIut3I3mRY9xT+/VMVKeV1bHepsF52crR/ZglW9tl6rPaXs+55N59hi2/jamtu3xNPTi\nnb+jtvypc2i/zvENsVai3/Szqpd4rPY/WT9wP/Zu9kLcVnnGfgF4x7velj14t690PV/7qTHAOTiX\nW/mLud7yI8BR3vU4ABgLXuYCDMC7RRvAN9hfVy7Onn6IhfuJD5Ndcr71hZ+2Zzw/vDwuylv2oXNW\n5fRuNAaNZ6v32o/Zk5L+Rlr8W2lbPoXreJUf5+QTr+l4fa46r/42r//8RO9xPcVxSPhvTl55POdc\n3rA/LG8zOt77PsHjied/hY7XMdX4JW3X/jgPmIfsF0n/ckXMt/If/aB/6j5ui/vwCrzCXsseiR7U\nn5/0UOVtbYMexPy9Ivc+cgzfIk/t8R4AjAEvcwEGgBsnXI0X/Fcs9uODx9MPsXAvynXM/6gPk/mh\n951X45ygB8pZzJtz/LQnPRZ7rfKiZU/meWz5FM5DMXZuXuVHuTk7H5V3o3Tdq9Gc8gtcXxv/zYV9\nXuV6b76zX/U5bRM+9xHf5DHtHUdGn9E44rmiPM5Pzg1jkL2SZR9m4md8jH5K8fPxGHwCEXtIP0X2\njn01ApWvRxof1BzNVcwz+YVvcY/j3gcwPrzMBXgY3Sx10/SDAcAV2GdnL9DiQwQeXpfoA2mEB0r5\nPI/LY3tXA/FY6Meneb8C/+1a/W2hPCb1TMnj0k8/SHs/XINi7XjHmEdp+92+0fUq/0redybZc5Je\n6t45Z7iW6PWYZ+lbj1de9f9rV+feQz7HmR7XuaRq7tK384f7qDys37XdHnrnHR9XHavf4/4obccj\nIA/YE9GL9uGIZE/b5zAezpX8dISYY3IL3+Aed9SDAHA/vMwFeBgvwFh8wdV8+pBQocVefJDFvyDs\nsSd9kb0p6fe9X7ScWSfwLMpl9qTyerUv7cHsQ19f+7Mf4zh9DJyHY76VF8ddeRgl9h7v2WN9dV79\nxwfQn1de1zbt/8Q7W8iL1bV+//33vx7xI9mH+vPVaJxbY5W8/8zYwOdkj1ja5hwpX96+h3i8/lxh\nH/i4KG3HH+uS/wWLLl7IfrbHYRxibo4S83vHvRTmRP3MPgKAseFlLsDD+CGVB0O4A/vtmwe4/MCA\ndyEif9hn33rtCPJhvO6n/rx73HAPsW/FHJ+V58p/lv9WbuXF/Dl8dw6Kq2O7lRf3hyovI5E9UmmP\nl6vz6He9cPPvo8cCtnnlE3v9auzDeO3Km3Gcd42twmPbipv3Uxf3Unl5yycxV3vRsfG8r9A14/FR\n9gfMT/ak1nUdyV7Gw2PgvHyTC3k05rbqlwDvcJ/DPwBjw8tcgIfxggvgDuJC/5NFWnyQ5eEPXuEH\n0yv9Ig9HT0r6/dNrecx4e16UW+c56mjO5b3Kf5K2Se6x+untkTiOeDwcJ+ZDclyjHOOucY5+0d8O\nqnwsabv97JjkY6LfvN+fgR7Yy1v5jTm+G103j0nyP8FsjeY5104cY5T3PxXXmXnl5a14O1c65ij5\nentyqmO2/GFvwHzEnPt/nSF1JvsY/z5HzMUZxL5GTuEo9uMn91UAuA9e5gI8iG+WLLTgTj5ZpH3y\npQeAsN/suTP6Xfajz/2NL+M4YQ1izi1t2/KofZe9J9l/Wx70cT4mnuOMmliNGMcqH9K7nHQke1a/\na376uRUHy/GIxPPB+Lzy/Gh+9xjzC1ypy/+XWfWRay7K++Fz7OkYV3v5HTEPnxLze+Q8Gl/8bJS2\nfzMmGIPsTefU2zr0sHdkD+Pd+7Gfzox7zCv5hCOor9k7ADAuvMwFeBAvtFhkwd0ceXCIDwR7v2AB\niEQP7fVdRf5iRTrLk9+ODfqinGeP2guV56wj3vP5/U8uH/386ihOzsW7fKwQ0+hX/Vk4PjEmWTrW\nx4u4Hcbkle/t+RHxePP/YzIq+3F0PN5qLlK3+TyFPKs4ZU8f8bPzcEa8fa5Pz7c1H5/vjDHCvcRc\nZl/qz94+C7EGJHx7DzHuZxPPTS7hCO5/e+/HAHA/vMwFeJCrFm8A7/CD6LuFWnyY5UEAviU+WO71\nlPwZfSjlL1a+JY4L1qb6W2SWfPep9+L/l1Sin75GMXbt5/q3nIsze0Encj+Ncmx0zNZxjiteHA97\nv8qZczs6r3pe5cmOPtSYq7lY3g9/UPn6Ez/HmJ9FPKfG9A06V56nhB/GJ/rAOavw/tnYO384h6vj\nHPPZZe0Az+P717f3QgC4Dl7mAjyEFlNeXAE8gRf41UIt+lNi8Q9nEh8u9efKX9qWvwy76kE0jgXW\nw17Lfqt01COVj/XCGP6M4vQuD9ru41an8lWMUYW2y79bn9vqxXA9ivurnHbLTZ6HXuxWaF7xOOlo\njx0F11c1J8v7V0Nzzp7Q7596OsbzTDSeOMYzaq6au7SqF0ZFuY55eudPH3uGR0ZE3nQsJLx6Po7x\nHbGN3iaX8A7fC+UbABgTXuYCPMSdCziALby4jz60N1nEwZVEn0UP5i9UJP1+1RcmHkesAZgf+yx7\nrfJb9qqkbe88kz/nv6mm86+O4lvVepTzEHOxMoqDPJVjpt/z3yh/58342fg5a4+/4Tvs/yoH2tbR\n+7nn/frrr3+bzysqX2tb59p3veaYWJqv98+I/Z3n/G1OHc93nvqGOO4z86Nz5Zj4GrP6oAP2lLXH\nozpGx17pwxHIscGn5+GYftsT9xJzSR7hHb5X3eVPADgGL3MBHsI3SBZT8CR+GJX0ouGqLzAAtogP\nl1Hy4tUPEPHaMDfykhR7nKVte/wmv1R+zb0yX0d/Nt5+tbdH41X8JW2XfBz8nSpu+l2+i7HKx2Vf\nGns47tefvT3L++B7qlxa9n9H8rziXLxtD5UPZ/Gf4qF5vMr/DHOtPB798C0+59Vx0vmvvJZz7WtY\n9gFcT9W3juDPrUD2Kh79Dsfz7jjGPJJDeIV749G+CAD3wMtcgIfwQgrgaeLC3ou2s750AXhF9aWf\ndNc/Q/vUwzTcg/yl3FYec5/7tNflvinla1W9VL9738w4tlXsPX/HJ8cItr3rmL0iejMfH/dtsXVt\nSdu0j5ztQ3GStmKZ89ORV34TnvvRecbzWto2C4rHVp1J2t6l1jTGPI8rxm9P3OUDX+/qa+rc8VqW\nYwjnE+OtOH/iU3u+Q42eRfYp/jxOjOETZO8DVKiv4RGAceFlLsADeBHFzRFGIC7qf/75579uBbgO\nec5fglj6/eg/FfoN0fcwD/5SOftL0razv3STj6KX4rW28DEzfQGouTj2MQ6Wc+LjoKaKoeN2BB0f\nz+Femn/fw5bHfZ4j51oBxV4xqWphphrY8ljGx2nun1B5b0bPvfKNpO3aP5J3NJY8Xnv8bKIP7sT+\nvXJuEc0zzjVeW9vhO7Jnv4mpvaHzrUb2KN7czwgxi31NurqvQU/cK/EHwHjwMhfgAbwAZuELT5If\naC0WbHAFld/0e+W3O74kuPLccB/yz1Yv07Ytj51J9muU9mWPeaz62ZVXcffcHPur49+drTg6ft8Q\nvelr6Oen2M8+Z1Tl9VVwDq/K40hkv+6Zn4/9Jg6V92b2nGKluVWekrRd++/2Vs7/XWPxtZ7Kd5zz\nXWPQdSRf13oq992JOdSfz4ifz7dqLrI/76qNrjhe8t8IxPyRO8i4Z47iVwD4O7zMBXgAL5p4CIOn\niIt3P9DGbQBnIW/5YSB77hXyY/zcmQ+Z9vqZ54T7cL/KvpLsrXf+OoPsbftJP+2xKO/X57ytC45p\nFXNJ2++M/QxU8XQMzyR78ax/xl7j1LkrT2ib9s3shSp/nvsVeRyB7CX3tHc4Tvp5BnkcR8bSFc1P\nqjwnabv2X+W7yu/6/Q6fO99n+edTPA5Jf74TXS9eP0rbZ+w3Z6HY5HidhWti9fhnb54Z45kYMT4x\nd+QNIu6dT997AeBHeJkL8ABeMAE8QfwyJi/avY9FG3yDFv/x4dCSr45+4ZHPc8aDps+1+pcvnVCu\n5J/Yv6xPfPUtcRyvri+/5jFrm/5Je/15VA9qXI55HLul7Z73qHMYka2YOpZXka95Rh/N6JxSvE68\n3hXXvBN7fSt/mt+stZDnrT8fQZ//5HPvqPzW3Wd7cU1VfnQcpG88+crvd3rd1x0htxrD0+Nxbj2O\nKG2/Mzcjk/17hW91Pp8bfuzJT9XIiDg2I8Yk5o2cQcQ9lPsKwFjwMhfgZkZeyMHc+IHTqhZl8RgW\nbXAUeSZ+cSKd9eVJfNDUOT/tofTgHsgzlZ+c/7N8dRRdM45lr4/0uehha5T/T7nHV8VbijF/Iu7d\nUcxybO/ycPRd9uBe/x5F583Xite86rpn47zl3Emr1EOc+zee9XmuiFflN/0+e24iVQyivH9PTHRM\n9vw3uf8Gz0k/RyHGWXF5EufV44nS9pVqIJJjcmUc7rhGJxSHHH/9vjIxHqOivMWc4WcQXgs8fa8D\ngD/Dy1yAm/FibvVFLdxLfIh494VMhwcOGAv5yYv9vT77hOhN6WgfxdtjI78oR9lLkv10tqf2kj3+\njb+rOWrbUT9/w6tYS9ruOT4V8+5kz8TY3hlTXzf6S3+utl/BK69pm/aN5LGtvHm8I431SjTPOPdv\nfeLzKYZXoTFKedzfjr0jVSyicly2fP+k5+P4RyPHK8byKTSmrZznfM9KzsuV/cb4endcqxP2nHMh\nreDBCnukw/xj/ayaL/g76qnyAv0NYCx4mQtwM14cAdzBp182+DMs3GCL7K3oMe27El0jX3MPR4+H\n67GPKi9p29Ve2kP221lj+vXXX/90XuuKGtL5dN4qzpJzoONGiHlnFL8c56e8bO9WPS/6+s7x6brx\n2lHedyf2fM6ZpG1P5e4pcizOmr/O4XPeQeWxu701Eq6tHJNKo3je4xk5bzGmI41T+dvKt7aPHNNP\nifO908Pubbom/Ij95txIM/pvizj3LsQxr5QrqLEXRlgXAMAf8DIX4Ea82JcArib67egCLH6WhRtE\n5If4Ra/01Bd/+WHz1Rg6PkzPSuUhSdue8lJFHqf+fCY6v88tf+aY6PdPv0TRuatzxnNLo8S6O9kr\nMc5PxXhPz8vj/tRvn6LrxXFGed8VvKoP5+ypvD1JzsXZMXC874xt5a+rfNUFxb/yfpRi9GScnDeN\nc3Six0b0lvIdxxil7SOO+QjZz0/M54ne1g17zXl6Kld303WuMVcr5Am2cX/rcD8GWAVe5gLciBdF\nLIjgauIC/NOFVzwHQPXln35/+ouL6FNpq7++2w/XIY9U/pG0TTkZ7Quw6Ksrfe6Y+Pz6mT0tvYuR\nP1fFWNL2K+exKopnjvkocfZ45It3RM/tOf4KXnlY27Tvm7g6V1vnHyFnT+HYOB5XeUDXcbzvRnOS\nPEfP86q5jkjOs6Tff//99zI+UXfHKl63AzF2T/h7L/KAxpp9IN2d4zOI89Cfn+rjHsfIuR8F+8x5\nk7r5bi+eZ9f5xTzh7XV5cu0GADW8zAW4ES/0Z12wwvPkL2q+9ZrPxeJtTba++Buxh8UHTimO0ftG\nHPes2DvZP5K2ab80Gmf30Hfoeo5JRte2dy0dp236nH5W8fVx0ogx7k72SIz5KPG2b/RzL9lrRz57\nBbp+HlMc257xvcoV9fFjfO6Iia/1ZOwrX+3xU0cUZ80t18GrXPszVZz8We+/Al/3qvNfheIW4/Sk\nx/eiGGdvSFfm9wxyrJ8eq8ejWMI+7LGR8ng2nleHXrCFxh57xGw5gn3M4GWAmeBlLsCN+CYIcAXx\ngejVlzRH8TlZvK9DfnA721NXofHFOtCf4+9wLZVvJG3r4J+reug7HLNX1/vtt9/+NrZKXWLcmcrf\nI8b8256Xe+gIaBxxXFHeJ5SLKk+Stuk4auQPcjwdw6txbkbIQ47BnXG4mqoOPu1X+oziUsXL5/X+\nb4nX6EqcwxkxuQuNNXvGcxhlHtnXn3r6CjyuUcbThVgvVqe62cLzmmEuIuZpljnBfuhvAGPBy1yA\nm/ACSDdCgLO5coGtRZvPzQJubpTf+CWJNNIXJXuJ9WDx4Hk+8kXlGUnbFPMO3tEY49jv9oqvH9cH\n2qZxVLHNcqzhfCp/63dpVG97nN94Qp+Ncx7JX0drQ8ePmqsnyJ6+28u6lq87CvJT5fmRfL+XnF/p\n7BzrXK9qUNs/jZ/P0TH2EY2/81w05iq/2v7UfGJMpTv71h48PsUNjpPzKz3ltW+Jc5mJOK+uuYHP\nGHHtBrAyvMwFuAkvflj4wJnkL22u8pevwQJuPrKHnOfRviT5hDwv+u/32C85tpJ908k7cR4e/xN4\nDL/88svf/hzlmMfxeV0RpW34/Hvs8xjbJ/2xF3tCYz2D6LGRfFXlpxL18GdiPp/0s3M3Wj3ZL46R\n1MFDT/crXUcx2qpJbdf+d+Nx7HX8DHg+0ugeeoXGHudiOa9Xk/09qj80To8RPqfyWrf66TruPcT8\nzNKrYR/O+11rCwDYhpe5ADfBzQ/OJi+mr/aWrzXjg8mK5C9H7vLRnXheP//889/+jH+PU3lF0rau\nnon9U7rbF45pFVfpSGw19jwfCa8fo/K5flccO3hcY/S4zxxv9tYTsdA1papeYq1s1YLkfSui2ORY\nPInzqJ+jUvloNP9UNeFaeBLXYh5bHKP253F6/2hx/oZce0/n5luUGynOSXJOzyZeawRvv8Oe757n\nEah8doXHziaOe1Zm62uwD/obwDjwMhfgBuKCB+AMvJiS7nqwiT5mEdcX+SX6R+rwBclR/DDt+ogP\n13E7/Ii8IGWfSNqm2HX1S57XXd73dauYSvFv5H5D9rmkbfi9RnlRbHJe7vLFmXgOV+Q6180dftrK\njeT8vMrRu89r36vPz4DmF+fvuD2NxuAxjY584rFad/h/i5xTaXQ/a2xSHnccv/c9GdsriXOfZY7O\nq+dl2Y/fkH3eJWbubRo7nEPlsZH90GGMZzFjX4Nt6G8A48DLXIAb8CKURQ58ixdR1t1f3HjRziKu\nF/lLEefwbv/cieeZ5+h+7BjQl//AHsk+cZy0v7tfYu6lK+fzKp6Stms8cQw+9oxx6dx5vhJ+/wPn\nJ8ZGv2v7GfG/m5jrK4nXUbzOxnnJufH1vsnNVk1I3jcTea6jzc857lJv9kiO6V1xdW3E639bE0/h\nuFV1Lnl/x7m9QnOKc5wJ5yzmUVKOj+Yy+qKbxzVWjx3OJfvLnhsJj3G0cV1JzMtK814V53q2+zNA\nN3iZC3ADKy7s4HziYlkPt0/hMeDn8dFCO39Z1u2LkU9413NjLb06bnYqf1gz+STPU38+G1/jVTzl\ns1cx1T4feybZ75K2reZ7xVdzzjnS76/y0oGY16vJfvr2mq6deE5J267Kjcac52F5X1dyPPXnEdE4\nRx7fKyrvXOGZV7VxRV08RZ5flmtyhjlH71zhmRFwvmIO45y38uieEI/tiGt2phodiewt++1p4rhW\nI859hFzAddDfAMaAl7kAN7Dqwg7OQYul+GXO04vk+LDNQm5M5JH8BeBsX/5tceRhOh4rzf4Aqvzn\nfmJp24weiTk+c36OYxVLX0vXPno9f/6KPGg82fPSCr7PeTrTC0/jnN6dx+ilI9dW3KucSNp2d250\nLY1/azza18UrcQ53x/EoGpvH2pVYA9aRWthCscl+HD2fn+IYan5G26rYWt7flTi3WfNqXuVS2zX3\n7PfuMdHYPQ+4juwre+0pPJ4nx/Ak9r00e19bGfobwBjwMhfgYrjhwTeMujD2Awu+Hgd5Q/mwX0bz\nzF147kcepu1nf26mmNkX2RuS/TGjRzxvz/XbL1dexVHS9jO84/Pr55VEz1va9m2cRiHn39K2mfwe\n8/gE2Udb/nlVP87JKHlxHeRxSt43Gnm8I46xwn7oXpP2Rc7BkTy4RuI5JNfHrHier2JVxTfqaKxH\nIea74/iP8i6P0ixe93zgerKn7LM7iWNYndX62oo4vzOvTQBGh5e5ABfjxR2LGThKfDDQwng0vFjH\n289SfQGo31dcYLtmPqmXWG9SZ19XnrBW8EbunZ/M1zF8FUdd5+xY6ny+xh1oDtn7Ulf/O29xLp96\noAOj5Ct6yGOpcmF1yYnmEucW5X1PkmPczesaq8c9A5Vf3vmkqpNuefwUx+pVfCoc0xizKO/vQJxH\nlzGfwe+///4PP//885/yFuPQPRau6RXqeBRiLd3to3hNWLevrQL9DeB5eJkLcDHc7OAo+YudURfB\nGqfHiL/vRfGOD0qWtq2cixiHT8lxHbX+Isq5FPuGpW3SCr7QHOPc9+Yuxq+KoaTtd9WXx3B3zrL3\nJW0bvQacuzx2bbs7hnfifI2Sn99+++2HHFjKRfd8aOyK9ZbXtO/O+Tn/VtfYdh//Fjk/kmtVc93y\n0Wxx2CLG5xsUL52rirfl/aMSxz7yOM8izlee14vduC1K2zvGRL7U+DU/uJfspas95Ot19OmVxDwQ\nm7mgvwE8Dy9zAS7GixiAPcSFb4cvdTxeFnP3ID8o1vZIF5/cgb14xgOj4hlr8Yxzno29kP0g2RMr\n+SLG4V1NODZb8fM5lPcnYqhregxPoHlH/1uj1YFzGMeo35/I2d3E/DyJYl3lwdIL3lnzsVUnkvdd\nQY73Vde5C89FP2dkyyPWKj0r4/mf7V/F0vUX42wp3t4/EnG8s9bCnt7l/PmYqBHz9gqPe8X6HoHs\no6u8Q563iTmYta+tCr4HeBZe5gJciBcwnR484DnePeCOiseNz68jfwEi6XcW0H8QHxbPJJ5Xetrj\nlQ+sVf2wJ0eKi2P3Kn767Cgx9DifHk+Or6RtVZzvwHnMY9K2UXJ3B573E3l4VUvOQ/TNCrlxTcRY\nWN73Ldn7s8RVc/B8ZsT1UP2TsvqPHc7wRjdcK3fk3PH3NbM0Bu9/mlzjM9S3ifPSn/fMzbmLn7VG\nydkrPO6Z8tgR+SR75yx87tG9+CQz97WVob8BPAsvcwEuhAUe7CEvcrv5ReP32FnQnUf2haTf6Sc/\n4jhdFRv3cuuuHMgDlQ8kbZNWrbkclxiLGLd4TJSP92dGQ+PyOEdAns91IN1ZCzmXzuFqOA93eqOK\nv8ewlYfsl7u88jSKhea6FS/tO+rb2WPpWM1Uz1XNuFZyPqXZcvqKJ+f8qj4l1+iT+dC1PZ4nx3EG\nineM7zfz0WervGn7iHHy3DVmeB55JPvmG+L54D0xXiPWKxyD/gbwLLzMBbgQFnjwjriw1WJIC6OO\neB4s6L5HHshfVnT2xtXc9TCt68S8XPUg6vxnD0j2wepeiDmX9P9bexU3qWPsPPbRxpxrQdK2s2vC\nOY3XkZzLFdG8HYcrY6Bzv4r/kRzEej3bIx1wbcQYxni8iknOwaze9xz1szPKjfIZc/Yqb5UvXvlh\nBjznUea5lTNL27X/7rpznKRRYnUExSvGdKsGPmUrZ9o+Urw8rrv9A9vE2rJnPuHbz69IjD1x649z\nCQD3w8tcgIvQop0bHLwiPoTOsKD1fFicf0b+4kM6+8uPGXGs7vJdfBA967pV7i088HdynH766ae3\ncescO89NP0dEsc31IH1bEznPkvO5Oo7LFf3Occ+xj/H/NAdX9M2OaN45FjEmMS7xuNn9r7l5rh1x\n7XgOR3NW+SL7YQbiHEdFOdM4qz4oabv231GPMV66bhfiuKWrY7WVL22XnsTjusMvcIzs0yNeiZ+F\nY8TYdepr8CP0N4Dn4GUuwEV4oXJkYQhroAWPF7EzLYDivFjU7UNxyl9A6Hf6xj6e7LO+tnVkDMp7\nlXtJ2yRq6O8oFvp/C+ZYRTlmM8VNc/H8Rkf+z37Wtr11oblu1cNMOf2G2HPOYivu0hWxj3PY641Z\nUWwVg634W6vEyXHoVO9V/XxTN/ZEPt8sHvCcOs1HY5W26tT5ucq3Om+83lXXOQONLcZJf74b5yvG\nzGPR9rtx/p6IBewj+2WPT44cCz/Sqa/BNvQ3gOfgZS7ARfhhhkUeROIDw4wLH8+PRd1r8hcejhkP\nM/uJD4JPEetZetXvnfOcd8m5J/9/4FgoLr/88ssP8VopZvZLl3lqnLkuJG2r5qBtuSacW/gzMZaf\norhWMZe07Y7YH+mbK6H/YOXnn3/+U2xijGaPk3ynucqDI1PVj35Xfs6snVwnUmcPeD6j5/cdmoeU\nPWB5/9l9NF5P5x8Njcnj01ivvo/swbnwuOL47oyhrztCTGCb7JUtj/i4Oz00K6P3NXiP8wcA98LL\nXICL4MYGkfzlz8wLVs+TRfmPZB9I+p0H/OOM9DDtsVgeU5Vvi7z/HcXBsdqKl/5JZf+/cVdC89X8\nFZduqA5yPvW7XlpV23U8NVHjHuPecoRYXzHmjrv3300czyfzmgnn11KN5G2Wts8aL89xxD5Q1ZDr\n50oqH3TMf+exv8L1WPVXz1c6wyc6TzzvCOS6GGVcGefB47Q09qvH7PjoJ4xP9kn0h/zu7XAOMd5X\n1yKcj/vb1WshAPgzvMwFuAAvSli0g4gLf3li9sVOnC8Lu+e+AJyZ+OA3Eq/+KWDlnLz/gWJQ1cWW\nVn+4dxy6ekfj3qoN/c1rauI1n/Q711dVY+5DI8Q9zm3F/ug8xRhkdIzitJVL7Zslbp7jKPPJ+Xky\n5rpmrBfJ20bH4+4w1m9xTmKeorz/U//Ec+vPTxJrQ3/u0oecA489zuGb3Gyh8/n80Ifskegb/YTz\niLEmtr2gvwE8Ay9zAS6AhR6YuDhdaZHjea+8sNPiVvN3/h2PLl92jIzjOUKPdZ5zri29xFo955p/\nVQ+W46dj4j+r7G2r47jpZzeqvOd/Slb7WS9t4zi9i9G7Ghu1ljSuONZVvBBzdSQ/io8UY2Z5X1fs\nBcXjSapaGqmGqvyPmvc41hVxTcZcRXn/EWLPfMKX8fqeQ1de5Ufbz4qt+8koPQT2seUPOJ8Y55Hu\nt/Ae6gLgfniZC3ABvqGxCFkX5T5+EaQF6mp4/qvNXfONuZd4KDkPP+wppk+R6zvKuY4PpdJKdaD5\nv4uR4ySJleP1DsXIcemAxqv85fw75ybnXNK2eMzqOEZVPShOUlVnsca6EP1QzXcW4jy/nas+m88X\nz/vNuZ/C47/bu69qadQ6qnI/Ws5HHddTuC5jzqK8fw/Rr3fEN9dIt3vMO17lRtu/mavjpp/Qj8oX\nd9Tcitzd1+B7nLOZ7gcAo8PLXIAL8AIE1iQu+Gd70D2C5u04zB4DzS8+fKye+ytxfO98wFMeqxxL\n2raVa22L/WDWh9JX8ZFijHKc8ue2Yrk6jtHIscm53JtP1UWsE2vWetlLjIlxjHOcJcd6ZI+8I/tg\nJg/k+thTG0fQuRSvLW9oXwdvePz6eQc5L752h1gZ5baqHelJPKa7ctkN12zOXdS7PMbPvjruW/IY\nO9XHJzjucc6Wth+dv47356Ef9oJ6WfaFfodziTEmvuPj/sa9HuA+eJkLcDJefLDwWJP4hRAe+PPD\nz4xo8Rpz7rnO/iXHU9zZX53bnN+Y47159rit7r3Bc69iIzlu72KU47I3niui2Di2I7HlA+f/KNkT\nkrZ1r5lP8Pz1T7VXMZY+jfPoRB/MkPs4n7ty5rrxdaO8b0Tu6HVn961R0NhzzjWnp3LtMYzqtdFw\n/nIOLecyxzMen/d9S64V/Xk1qrqyqnxs4Th27jGrEvMtnHdvj/vgHGJ8ie34OFcAcA+8zAU4GS88\nWHSsRX7Y5UHt7zgus9TE1kO95kneryPG/CpyHUedkd/smy41oXm/i43jsydG+Vz6M7zHMdsT46up\n/GAPnIFqo+qzXWrmGxRDvcDNc5cU4zPjPDJd+2Uk18lTc9B1czzjmEaLrWN2ts9zPqRZ66nK9515\n9vVH81Yn5EvFr8qlJO96fzxG288gn3PGOjmKc+K4RDkPW+izOu6s/MA9ON9Vbp3z7AM4hxhb6mZs\nlB/lifsEwD3wMhfgZLzggHXIC00WMX/GD69S59ho7F6oku/7cczPfEhW7qq8Stp2RX41/ni9ER/6\nX8VFirE5Gh/65ec4dorbE2x54uo8Rs9Y2jZi7XyKa+lVfK+M8cjE/HfJec7l1TVyBI1DcdzymvY9\nPVZd3+P5lpyLONdRcnIlsX6sq+soXhPO41XtSr/88ss//Pzzz3/7/dM855q52i9dcT4cpyhtz3HT\n8d4PPYj5fYXz7WOlnH/4jFg3kn6H8XCezli3AcB7eJkLcCLcxNaDh9197H0YGhHVdf7iRL/zMHEf\nZ/pHedP5ck4l5/WO3MY5SU/2D8+5iomk7d/GJp//yfl2xvH7NA+fUHnDfrgTeSbXjdTVS45rjq2l\nv517d4xHJeb9Ce8dIXt0dH9qfHnMcexPjF/59Rg+xfUV5zO6d66kyvNV+Y3nh+uQlxXjrXuIdNTz\n8Vwr18snbOUi1pn3E9cexBzuQcf5M0c/C6+JsSWm46Ge5vwAwPXwMhfgRLzIYIExP3HBIvFQ9h4/\nwOrn6Cif8aHB0jZyfT8x/p+gnMl31Zcs2vZkTrPP7rh/2N9VPCTHSsedEZt4nafj3R3H8mqfKEcx\nb6PlL9eNpG131M83bMVV0vb4zyvDn8mxGy3XeXz6czdcQ55D1N315Vge6Tc6VmOMeZD0+5HzzE6V\n47Ny63N39H93tvxvabv2V7WgbfHYs/ywKlt5+PXXX//yk/oYH/cy6SjxsxY19T0xrsRzPNzzWG8B\nXA8vcwFOxDcwFhdzExeSPIztJ35RMOoiT+PKD9/6nUXpc7jejvRV5avKpfM5Wk5jT5HOvodorjpn\nFQ8pxuTMuOhc8Tpnz2tFYkyvQOfPPhmtXiLyVK4faRSvKW5VTKVYd8b7qJVtYr5HiVMc08j1cgTN\nQfPa8q72XTlPndvXeoeOzeOcJQ9XEn1rfVtTZ50Hvqeq3Sjt139ApH+eOW6jbs5lq49qO3UyLjFP\nn6LPxpx/ez4Ycw0If3Bk3QYA38HLXIAT8cIC5iR/WcQC8jhxAT4SfBE4Jn4o2OMXHSt/VV+YOJej\n5zPWh/Rpj3kVC0nbr/S3zhuvfeW1VsSxPSumOV9d85brR9K2T+voUxzPVzGt4urx3z3ejuRcPxUz\n5XGEcdyB5pbjHud9xdx9/q0+5FqLY+nWt0agyu0nOfU5jn4OriP3KP3N0OreJGm7ckf9XIfiG/+/\nxpa2UzfjoFw4L2fg8+Wcw2fkvkbPGoOYFwC4Fl7mApyEF2l6EIL5iIsTvij6Dn+J8HStKIceS8wt\nD1fj4L66lRPnMOfRuexap5733nlovz5TxcHnuCsecezSVu7gc5RH5/UbdJ7smbt8ciXyXPahdKUX\nHcscT2lPTON4YT8xblfmN5NrZ4a6OYJiHWMf5X1n4BjH2ObYS6vF/yoUw5xXxXZPPuPnYDxifvS3\ncWMN/fTTT3/7c5Q+I1Fb56J4Kr56qRvzYu2tObgG50c6myrf5PpzYh8jjmPgnHDfALgWXuYCnIQX\nZywk5iMuvLVAge+ID0lPLPR0zbj4d15ZdI5FrDujHFX5k7RtpjzG+Uvx3qI56vcqDtITsch5mSkX\nI+I4H41xzpM1a75yHUnaFuvpU17F8mg8/dkzxrUaOcdXxzBfb8a6OYLmr5hs1YL2fRojfc7n0Z/z\nNY7WGewn+1x6VVt7joFnyTnN9aP9Vd4t76fmvscxNVuxdw+F+3Aerox7zrV+J8+fEWNJDJ8nrtsA\n4Dp4mQtwEl5E8IAzD8pl/OKIBeJ5xIX3XeR8SvmLDBgH50h/g0B+ybmTnL+ZcxhrZUuKw5NezmOk\npq7H9aCfe1BO/BnrSc/cjTxa1ZK27UWxquIoaZvO9Uk8Pa4jY4Efifm9IpY59/oz/IhiH3MR5X17\nUczz3xr8ptbgOIp17nk5/vrduYExyf3LeXyF9ju3lbwfjuNcVH1sK+7ufXAdMe53kPPs3MMxYhyJ\n37OopzkXAHAdvMwFOAFuWvMRF4V6eKoetuA7/CCrn1dRfXlBPsdHL3CVq+r/K7VC/jQ/9aDsXUtx\nGSEOub70Z7gHxd5x3yLnxzkawTtPEu/vlrZVXwA5hjmOkuP4TSzjWOB7cm7P8nnM/+r1cwTXVcyJ\n5X0Vrrt4vF7qEvfnqHKZt23lE54l5kh19fvvv//td2lvXeV8Z3k/vEcxV8yUj1dsxVyf03Z64rk4\nvnf7OOfYeYf9xBi+qyu4Fq/f6E8A18HLXIAT8OKBRdcceAFCTq/FD7JXxFnnjnmU9DuLynGpcua8\nzZ47zU01UM0/xsAvua0n+5OuHcdHbd2P/RJjrz9L2Uvk6Efk4ehjK///BKPOjqPP+2Qtz0b2/zex\nzf4gT5+jvCh+VW1pm+rul19++WHfr7/++rc/wxjkupCUQxgL1VzMUe5f3/ZJfabyguX9UOM47V1T\nvIq3tp+5NlkRx/ZJz+b86vcnx9ONM9d/8Dm+97AuALgOXuYCnIAXXiwYepMXgDwUXY8Xe2fFO+dQ\n0u/kcjyUkypfK+TN834191fz9z3HuvPek3PGfe85lAvlwF7JftLvys+Wj+APFB+9SMr/nKt05d+C\ndx3r/HA+sU8ezWGup6s8sDLKT8xRlOpONWmcC3IwFrFGLOUUnuVI/4o1+E3udP5XNS15P/zBN33t\nVay1nV55nBi/p8m5db5hHzF+xO1+1H8cfwC4Bl7mApwAN6v+xEXfq4deOB8/zOrnJyhXPgc5HBvn\nKufLOYt/83QmXs1b8r4jnlXPiue742E1Xu/oeOF8FP9V/ynyb3lVk1VMz66vuOYgV9cR47w3j/Ez\n1NI1uP5ibrakfHhtoM/AODhHyktVa3vqDc6lysM74mfOyplqXOfK47HsmbOu1xHFyLH4hldx1nbu\nYe9x/EbzY86rfh9tjKMSY0fM7sdrPPoPwDXwMhfgS7xQ4AuGvnixwWLvOT6Jf/VloH5n0TgWVZ6c\nq5wv7+teh55zNW9J2zXHM7zqe5B1Rew0zquvAfupasr/P8kzPDUrjltVl9qWYyef52O17Qz/+7zU\n0j0ozjGHFbmuyM355BhLufb0Z8U+H2dpX65VuB/XlPJknLuYL+2nlq4n11bMyx5i3vTZs2vsXV3b\nJ6t5xfM/K95VDVorxncPMV6jknNKHvcR43a0J8J3uNcTd4Br4GUuwJd4kcCiqh964PECTzr7wRX2\nE3PxLg+qtfxlgH4nf2OgPEg5R86T8lflKj5wdcPzreYsvZr3WcT4Sfr9W3Ie9ecr5wDbKO7KafZY\n/J3c/Ej2sKVte/3s2OdzfFrT8VxwHzmH+l1kj+z1Bewjx/donJWnnDvL++B+Yg4qqpyRq2uIsf62\nf8VavTJfGqPOX/UGSdu1f/Ze7Pnr59k4xjm2krZfmd9OOAcd4pHzSQ7fozqIMZu9p4xCjDsAnA8v\ncwG+xAtAFga9iIvhKx6g4DivHmhVX94f80bdjYHzk3MU8/QuVz6+w4Ppq/lK2q553O3PMx/yzzwX\nfI69FnPhmjLeT47+iFcVM8dNMfqmLvX5Kh9HYu/Pka9nUNxj7vxncnIue3rXEfQ5naP6Z9Al5Y78\n3YNraE+8dUxVZ9/0YfiDXGNn+d/5PfOc79BcKq9Y2j6jb9zXNL8rcXxzXCVtvyvPoxFj0omcy1Xz\nd4QreiW8xjGfrW8DjAAvcwG+xIsC6IEWEyzmxiXnJedL0u8sCp+nyo3zczRHfigdtR4912q+krZr\n7KP40vG0jsQ151V/hnt5VVuVx7Rt5Vw5Xq9iVsXtG3S+XGfSuz7gzxypSTif+P9nl/SCEL7HdZFr\n0XX4LT6fzrV1LUnb3tUifIZ7mHQEfS5+VvI2OE6M5Vn1FYnnfyJHr+pbmqnGPcc757IVW21/It9P\nEefdEY075w+2ifEiVtfjHqOfAHAuvMwF+AIvCFgM9CAu4LSo4Eue8VBOnKMs5Y+cPYdiL1UP/9r2\naX5iXY6C51nNVfpmvndytOfF46XR5zcb9l3MwZ68CX9ulZxVsbL2xuwsVDe5djQGbYvEY+A5om/0\n/5r2n3O+YD/f9K4j+Br6manq0PI++J4Y00+p8kR+9qGauituMU9Vzd2JxiLlPhPHp/133vvP4lVf\nu4OtuDrms6K5eZ7d8Vxi7qAmxoo4XYvvV0/1NoCZ4WUuwBd4McBCYHziwo0FxZjc9WUg7Mc5yXmJ\nufk2Pz73k3301Twlbdf4Onox9j6pirPn/+oYuIYce0vbjvhNx/pzM6L5vYrV0XhdRa43yb0j/g73\nE3MQ8xBzNoqPOqA4KXa5Jq+MoXOoa7xC44p5jfI+OI5j+i7+e6lyRG5q5P1Ya1fWWSRf945r7sF1\nHMcW5f2jjPcVGqPGfFZdfcNWTB3PWXDMpZlQjnLe4EdinO7qpavifkKMAc6Fl7kAX+BFAIyLFg7x\noYRF7XjkHEn+2zLk636qfFhnP/DEh6m70Pg9x1fz1NjOnOvTxFhLrq24/ez8wjb2YMzJt/H3eWbJ\noeYhf1Z16liNOleNO9ecxw33Io9ED1V1pt9jntwf4UdyPKUqplfha++9no571Ue0766xd8dxO7s+\ndD4p5sbbYHv9didxDCPmRWPKcYry/lFr/Whfu4OtmHp7Zzyv7vPYIudt1nl+S1wXEKNrcIz1EwDO\ng5e5AB+ixbZv/jAmcSGrBQRf1oyDchEX0M6RcqZ9sb7I27U43jkfkrZdWTu+zpUPUHF+1Rwlbbf3\nZkbzi31R/59I//nKHMAf2IeOuXVWjfnc+tmVV7V6VpzuppqL6o2au57Y76R3/onHk58/U/WvJ2rS\nOdK1P0Gfz76wvA9+xDG7Mj7yUpWbVXOSa+5Tz59FzM3oOdH4Ki9Z3j8KzvPTOd5iK54a70hx3EOc\nx+zknHXL1R3EGBGf89F9TLEdtbcBdIWXuQAf4hs/N/0x8UMRORqLI18GusZY/J2P85BzEfNR5eRM\nruqhHvvW/KS75jgq8SWu9Ntvv/11D1yB/Rhjbg+eic7n83eiio+kbVfE6W7ifNz3olijnE/21JEY\n5xytnJ+qNu3jpzizz2keOd+W98Gfa+IuqryslI84/5Hug3lcXdC4K09Z3v8UZ/a1q9mK5dP3hr14\nvB3GehY5XyvNfQ8xPsTmfLyOHOU+BjADvMwF+BDflLjhj0X+4olFwxjkvEj6/V1+qLPzqHJg7cnF\n2fja315Xn/fc3s3v7jmOhuaf4xJ/p87Ow56M8ZXsxavwNUf2usb2Kj7y4cjjP4Lm4nlFvD1K26jB\n74m+0p8/9VLM0Wp5qerzm1iejcd25nh0LuU5z9tz175R5n83jsMTdVDlZOZcaF5xvk/E/B0aY8xH\nx1worlKcR5T338kVfe1qtuLonjkaHqvGtxpVrkbM0VPE2KzojytxbyOuAOfBy1yAD/HNHsYhL8Jm\nfdDvQv5Cwnk58uAQvzAgn8dQvKocSNr2ZI24Vj95iIzzquYmeW5PzW80HK8cH6EcxH2f5AT+To51\njvfV6Dq+5kg4Ljk2MT53xegu3OekrbnpmHicRR0eJ8fxjBhecc5RcY3G+ep3zXm02tR4PL6r0Lxz\n/i3vWwHH4MpY76HKx2x5iPPzfXFkYr/onAfF2V7yfLK8/0ru6GtXshVDzUfbR/Czx3R1LkemytPK\n8Yi4Bq3Re3AXuvc2gBHhZS7AB3gBxA1pHGZ5oJwBLdhiPlwrny6Iqbf9OPY5/jEHn+bhLOID5B48\n5q15SaPMbURivKWt/rj3OPgR+zPGT7Iv78ZjeboetuIiPRWbO/Hc99ZSrkF/llp8TfbZFd6KuZkt\nH1WddqhPj/WOcboOY4ws75uVOM9RqHLROQfycNe5xFx0zkFE+dBc4tyi1B+9/0yiD7rzKn7a/sT9\nxeM5O29dqXJEbP4gxoWYnIPXmU/UPsCM8DIX4AN8g+fm/jz5AZgFwnMo9ld9IejzUnM/UsXdOiv+\nZ+KxbeVS4/Wc3s1rtLmNhGMYY7YH398sam6bHGPJ3nwS53Bvzs/CNZlj4rGMEJu7iHV0FH0216FE\nLf5IjNPV/rrzWlfzqk67zMvjv3u8up68sBU/7evsjYg9r58jEmvSGnWsFbkOO9VfJOahU/z38qrm\nJdf9GXP3NWbpIcKxyXGTtP2Oucbrw5+p8qPfVyfGhHh8j3ubfgLA9/AyF+ADfGOfaaHdkbjIYmHw\nDKoBL85iLs6uDZ3P51+97jT/Ku6Stl0R/7NwzWqMJs6nmpOP93HwntgbpaNxy5/nIfbv2KsxPvpd\nMRrFnxqHx3b1mHR+zb2q3ZXr1jH4tnZyLfqc3563O/JU9Nxd8XjqumeRxy+5TruhMXv8T+J6jDG1\ntL1jbEWc0+hUOfC2UanG2xnXo9S1p+xFc1O+ci+N89f+T2LgOD7d167Cscsxkz6N2R6cq+51diWK\nTc7N6vGK8cA73zF7bwO4G17mAnyAb+rwDFoMxAcoFlf3k3Mg6ferHsKEF9QrLgId7xzzGPcrY38W\nHvNvv/22OR+p05xGwj5xHL/tjfEh9ozzdUVx1dyzX+3TEfFYr8iZfZbjMXpM7sJ1c2bsdS6fN+qK\n/I5M7nFP+S3mYvQc5JhZM9Sq5zLKPLbqVPK+LsRxd6KK/0hzqHrYTMS5dfPOpyinmmvVZyVt1/69\nfcqfmx3HLcbK0vaz/BOvAe9x7HM+VkU+jbHYW8fwI8QQ4Dx4mQtwEC9uVl7UPElcXOrhiMXAvSj+\n+WH1zjz42ivUn2KaY2118r7GKf3888+bc/F8usxpRK7sjav2Xc1T8/XcPX/FY/QYaHwe7xlUsfD5\npVU88Y5YK1cRr2FpmzQzed5Pz3e08WS2+tdMter56edoKM7yRM6BxzuaXyL29ohx3UuuT+npmOcx\nzXrfjPN8OuZP8Kr2Jdf/Vv79uVn9UeGY5VhJ2v6Nj+J5YD9VPlaOYaxnvPQZjiHxA/geXuYCHMQL\nG25C9+PYS1oMwD3oASsuYB3/Jx4ydU2PYbaHXM2nirWkbU/F/Civ5pHn0mE+o5NjfdW9KfbfK6/z\nNIqn5pb9a892wnP4ZNz6TPZWjIVi1C0ed+AY3VEfuoYUc3PXte8k+1B/HomYg6dj/6pmZ6xXzclz\nHJ2tepW0faT8xHF1R3PINXF3vHNdzhDXd2iOK833FZq/VPVmSdu13550X9P2FdH8t+LlWO5Fx/pz\n8BmOYc7DisRY4KnjrN7bAM6El7kAB/ENHO5jxYfgEchxl/S7tj+JF9IzLAQd4xznGOun4/0Oj7Ga\ng+fx008//eXP+ueV4TxizO2Xq4kPstIs/bjy8F0xvQqN3fPYg2OQ4xBj0TkeV+PaeKImcl16HN3r\nM3rRHhyRHP+74+7ajWMYOV5n4nl3mqtrM+bL8r6n8LieHMMVOK53xzpec5WaNHnu8Af2Xe7ZVozb\nSn7ZYitWjuMrfCxx/J7oS+td/GckxmHF+X+LY0dNAnwHL3MBDqCbjm4+PJDcR1wwrfYQ/ASKr2Ke\nH5pGi73H13ERrTjm+FodPK7xvZuD5yHFGoZzUFxjzO+ug5zXjnUotnzcoQ734jltzWcrBtJMcbia\nUfqcxhHHYnWrUfmu4/hj7K8es2Kka+T6Xa1u7RXNuyNbefSc7vR+9O/MxHlaZ8dZeY05vTOPI0Ec\n3qOYVJ60vH+lvr6F4lD1Sscoot+9D87Dcc3xX4kYA/kR9uP6pZ8BfAcvcwEOwKLwXnj4u4/8sC3p\n91EXWhqXxzn6YlDjq+IradvIcRavxp/nUM3Dx1HD35Pz8LR34sNspxxXfn46llfheeqn0Byr+fuY\nWeNwNY7hSDWgseQ8a9vIdZq92dGPim+M+dnjr+p35brVvB2HGXCNxvxa2n5lnuN1VqCK8xlz797D\nriDGehV/fYri8+uvv/4tXlnaTwz/iFO+Fzo+cTtcg+Ic466Yr+TLvBajJvfhNZtiBwCfw8tcgAP4\nhs3N+lry4oiH4OvIsZb0e4eY+yFixMWg45pjG+M7aow9tmrsHv/eOThH9MzvcSytkWI68tjMlqft\n5VnR3OJc49y9bU8twzb2v2I5IsptrlFptDrNY+zsSY091tsZsdY5cg27flfHcZktFsp5rgvL+87C\n1xm1j11JFedP4ludA/5OjA+xeY9jpRe72VtR2rd6PB2DHBv1s9VjczU57s7FKsT547V9OF6sXwE+\nh5e5AAfwjQeuIy6I+JLqGhTTGGdL27rF21/gjbB4Vuw8nqyRvaxxvRu7x39kDjrW54DPybnRn0dE\nNRjHOUJNisrb9vPMeN557qvM/y7ivbRDTHOdStr2ZL3mGh2ld5xB9IfmeJQcG5+H+v0zisenMe6C\n5ljVr+f9bd34XDPV3yfEmt0bk1yn1Og2Mb4z1+sZ2FPZS4ph5VPL+1cl1mKUtq8cl6vJnlzJh3Hu\neOw9W70NAPbDy1yAnfgmzYPHNeQHYRZC55NjbD93Xkhp7J7L3fPQ9aqYSto2amw1JtVXNe489m/G\n755JLX+OY2iN6KdMHvMT+VecKn+PWpNnsTXvX3755W8/4Vwc7259Tl7Jtep53FUj2a+z1ucnPbGq\n5VnjcxaO0yoxko+qGpaO1rHPs8ebq1DFtopPPo4afY9iRMze4zip92+hY+TByq+W969CnncVG8V0\npZjcSY63czA7cd6vahb29TYAeA0vcwF24hv0CouRu+Gh7loUTy2WYoz1+yxxdm3esSB0LHM8Y0xH\ni6vGoxhVY/a4zx57fKCB4ygPMV8d7zvRA3fNIcdNsrdnxDWb5+x5x7n7mFlj8QSz9DnNI3tIv19Z\ns0/0h6eJc67mW9Wy80DdvsexW8FLGc05+ivK+7aIn4MfUXxyXWrb77///qftr2IMNdF7xK/G8dl7\nD9BximWMbZTvKbPG2/Ou5ud5b8UEziXH2vGfGdVfnDNrt22IEcB38DIXYCfccK4hLvS0mIZzkE/z\nlw8zP6x4rlfMr4qlpe2j9QSNR3F4Nearx+1rzf7QdgW5J47mryPEuVzlh6367B67LTzfV3Ou5u1c\n6Bg4B8d9lj4n3+Sa9fzOqiX71+e2Z1chx9exzfW8WlzOQPFy7FZGcZCvsqccG+2LeF/eDn9G8ZFi\nPKWff/6ZWv2CGFM8+COu40/7mvtB5V2f1/u7E+f4jq2YOB7U9HnkODv2M+O69XzhRxwjag3gM3iZ\nC7AD3WR8Q4ZzUExZ6JxPjquk32dfKMUa/Xau+nwVR0nbRounxqL6qcb7xJg1Fl8X9pM9N1NPtCfO\nnFtVo3f6/E6quR6ds47xZ+B77OmZ6jSieeW6lde+mW8836y1upfffvvtT7F1TBSjlePyLe6TxPDv\nVLVsOV76Ce+RrxyzrG964+pEfxLHP+O121k1qvMpxls+1nbt75gH++jo2D3fHAufi/vJOeQYH81T\nN+J8Z5/rJ5zd2wBWg5e5ADvwzZgb8TnExY1u4CySv0cxzA9mq8U2+uooipM+n2MoOY6jxPLVWD3e\nJ3PvcdAv9xNz+WTurubb3q/jY6y+OdfIaC6v5vrpfH0+avM7oo9XIM7X0ra9HtRx+bOrslXXq8fl\nLBxb/YQfkceqepa8D2pi3erPquUqlsTwM/J9Yu/9ZQXsvStiYh9Hf0dpu/aPno9Yi9+g88RzRXWI\nQwdyfPX7rMS5zjzPT3FsqCuA4/AyF2AHvhFzE/4eFjXnoYVPfvjyFwyr4njo5zscvxzD0eKocahW\nqnF6rKOMl155DOUs5nKFuNkjR+bsWo2fG6lGz+BVnXuu385Xn/f54HOcl9X6nOab6/dVHOS36OfZ\nanYvOQ4xHvx/N8/FPU6C1/z6669/iZP+mWDHzJIn8eIf5J5XxUXbquOqY+E19MMfcUz082rUQxX3\nmIco94bR7uUe35mecSzi/ON1RotBN3Jsz8zdSMR1ieoH3/wd9xliAnAcXuYC7MA3YPgc3aTjg8Gs\nC7Y7yLGUWBz+gWLgmOR46PcqdpK2jRJDjUH1UY1ztLFG4kMZvCb7cMR8Xs27h/gcI0m/67hZYuU5\n5nl6rlfM09dazW9nYd9mv65Grl/HxHHJ+1eM11YPq2ovxuuq2l8Fetx7ot+MtuW6tbR9tXjm+t1b\nl1UMtQ32E2NI7P7womIhD96N4i/FWojSdu1/sj/YL1d6RfPzdbK0/cprz06O66yxjDWEX/7gyd4G\n0B1e5gK8wQsMbjKfExdpiuOTC/7OKG5xIUg8a6Lf/PCV4yY5dk/H79UYPc4OefZ4NRfYJvpz9XjZ\n+46F/j+S2pZroYP/91LNz3O8Y546v68Hx4hehT9QTHJPi1rNZ6/q+11t5zjqdzgOPe497zz2qq69\nb2by3D+5L1fxmz1uZxLjR9zG+Y9UlAupus9J3n/nOH3tu66p62iOcd6W5w/HyTGdMY5xjvjkDxwP\nADgGL3MB3uCbLjfcz4iLfWJ4HD0w5Acm/f70w9zIKDY//fTTn2I2Uuyc05zXOMZuOY4PJ1DjvMc8\nwx/oJa7jEuMjX3WqgwqNP+c+zlG6e46+fvfY3o3jxlqmpvrnWhWrFeJV1fintR3vp3jtMxw/+BH7\nS/7cgzysz2R/+xwzeTTX8Rlz0zkc83jemeJ2FTFun/bTWdDcHYeRsJer/iB5/1W5s0f08wle9UfP\nHY7hnMY4zkScH/7gX1MB+BRe5gK8gRvMZ/ihwyJ+x1C88oOBfieOP6KYVPGyfvnll0fj5rFtjc/7\nOufWc+GhpCY/mHbO9VkoBorLVl1IXf30quZd6096wOPST9iHa5iY/Ujub4pR3iZ1rect3MPyPF3j\n35DPO1vsrsY97sk+Oyrfekqfq3zvc3aNeZzTGTWcqeLmbfAa17NjtiLyo2MwMpXPo7z/jPqK1xkF\njSn61fK8YT8xv47hLMS5yS8r4962ehwAjsLLXIA3+EYL+8kLlK4P9k+g2OWHAGL4I4pHFSvHS/vi\n3/a7E41NY6jGJnl8s+TU9a6f8GfsBeeeGP0YE0m/a7ukGHWMWTUvy/MbBY3FY4P3uMdJI+XxabLn\nK5/H2Fna1qWuK/K8patqPMavc8zuRrlwXuDv2E9neUnniR6N8r7RyfV8x5irmHWI1ZPEmK0aK/v0\ninvNVShXld8t7/+EeI4R0bjyWsHjHXXMI6JY5fjNQL73dKrrs3EMAGA/vMwFeIEXDyy49vHEA/EM\n5LhJ+n3lRV2F45RjFeOVY+Zj9fMqXo3L11YtzJhPzcnzhD/j+4c9MGP+96K5Kx65Rl7FJcZPGu1+\nonFLVd1r2+g597hHHuMoOFajefBJcn2+85GOz5+RusRU89NYc73fUec5bl1i9jSOFz3uD6KPrmCr\nRiRtG9G3cax31HIm17ZEfW8T47VinORPzV1e7YryVvne8v53xHN0QOOteuPe+cKP/XKWuMV5reoF\n1wbrNYD98DIX4AW+ua56Yz2CHzAsbsbvUYzywv6JLxNGpoqR47Q3Vv7MWbWjub8AAFl7SURBVHXs\nMVXjkrRd11ohj/TIH8meXTk2Vf3q9yO1YY9ZT8ZT467mJHleR+b2JBqnxw3bRP/BOf0t17TP82Rt\nb1HVu2v9br6N+2o4XvoJ9/8tNte0rxul7U/eK/O47orJFlWsvA3+TIzTarXtdZs0A5pP5f2orTqI\n+7uxNeetucLfsWdy3LoT57SiB9zbWK8B7IeXuQAv8E0VXhMXINyEX1MtQiVt077VUQwkfwkXpW2f\nxEnH+xyfxNjjqcYkfTqu7kQfwx9Ej+jPq3lCuF4chzPikXumfr+LV/XvOXXNs+fRdfx34Bjd6bkR\ncR04Ht/Us1FMc21LI8Q6z1c6Y87fEuM1wnhGRrFxnFbHvnkqFlu1LnnfHeS6HrGGqjjdFZ8u5Dyu\n1Ac97xnnrDm5Hzi3UZq79jkGM9TF1nw9V6ip4tY9XnE+yv9qeO4AsA9e5gJsoAUlN5XX5IcpFp3b\n5FhJ+n3Gh7GjODY5PjFG38bJ59bPd7waj88hr6+eO8eDuv/z/WLVmLhuYhz0+5l1Eh90paviXM3F\nOntOT+J4ak7wI47PivUcuaPu8jV8nTtjf0cPO4M8zjtj1A3HaZae/SkjeUW50DhyrUnadtUYdd54\nrdE9kccrjZC/kYgxWiU28q3mq1qZHfeKqhYcA++fga25XtkXu1PFrHOsXN/W6PepM/GaYKU5A3wD\nL3MBNvDCgMVTTVw46ebLjbdGcfHihHj9nSoujs1V8fE1ck17LNV4JG3XZ1bPWYT++AfZx1d5d1Ty\n/O+Kw9n3H33+1Vyuns9TaE6eJ/yZ6LFVyTVxRx0o7jH21pX3mqr2O9R8jNOV8emMY6R8ropjMKpH\nNC6PMUvbv63DXN+jxmGLKj7eBmv2Qc93Nap7dZT2zVIbnsfWHOHPVPHqHKfO96xPUX1rvpo7ALyH\nl7kAG/gmyoLpR+Jiifj8SPWw4cX3t19KdEXz3noIuys2Or+v+csvv5RjkVbP1R4cq5XrX3OPvlnJ\nL1Ut6/c7Y5Djf9SLnkPVBzyXFXLq+a9cyxX2wqpxifV1d22bXOOStp2RE9d/PLd+17k71X2O0Rmx\nmQnl0rFZkeiPDmi82dOW9x0hnuupPnYWVWw+icmM5DzPju9dnf38CTHPQvPXtnwvtzre0ys0hzj3\n2eZ3JlWs9HtH4jy6zuEoni8AvIeXuQAbcDP5ES0W44J5lYXFXnJ8JP2+6iLb8cgxiXG5Oja+xtY4\nPBZ5+eqxzIIfLlatf/sp+mcF8rzj/J+sHfvReuXLrTlIT8/jKTRnzx/+YOUeZz9YI8RAY3BOvh1b\n1QNmqP0YnxFyNhLO94r9vbMnlK+q7iXl9NWccp3PVhNVXGab41GU8xiPmevdc5XHV8K53fK6e0as\n/Sj3jc7e0Pilan7d53YmVZz0ezfiHDqO/yiuXXwM8B5e5gIU+Ma52iL5FXExobhwk/07ikV+cFg1\nRlUsHI87YqLzewzVOKJ+++23v34K9hL7wIqs2Aermh5t7hpLzI3+7O3V+CVtWyWH73B8iMW6PS7X\nyai1ofzEcUra5pqv2OoB+sxMno/e9fzgj/wrHvLAStgPs8xb86nqWIq1HI/Rn2eq8UyueWn1uo/5\nnzkWnuPM/o7Y60dyqmOlrb6h7drfNYaeXzW3zvM6kyr/2taJmOPZ72mam+cJAK/hZS5AgW+a3W72\nVxEXQcTkD7TYyItD/b5afBSHKhaOh3TlojNevxqDx+Hj/Bnv8zbYh+O2os+jv2aff56v5VoaFeUl\njzkq9wL4A8XD8Vkde2WlHpfrpkN9aIxVvce86Zjcx0bvYWcQ47KSj1/heMye+8jMHtCcos8rreT9\nKh7etiIxFrPGwPe2VXqa8/nNfF0TeV1geX/HmGrMGvvWvFa691VUsdG2TkTfdhv7XuRTzxEAXsPL\nXIAC30RWX/jEGyrx+APFYMUvByOOQfUw5FhcFQ+fe+v6e8fgRb2OhX3EB6GViPO2t2bFteX5dpmz\nx53Hbulv4c+ctzNwrFaO02r3hVzvXeetvG3VvqX9K3l7pfvWHuyPVeLg/Ovn7Pz+++//8PPPP//N\n71HK+woxiMTat1aLgYhxmHH+6mWamzw+O87l2XnU+STfH7K8v9t9Q+PVuF/NaVWquHSKRxz/rHlc\nbb0G8Cm8zAUo8E1yZeJiYYUHhXdoQZEX+/p9lYVGNf874qDz+trvrn90DD7frIvhs3G8V4mXfTf7\nvPM8LdfVqGyN22PXC9wV8ncWjpV+rkhc84zs+7OItaE/d5+zxv/LL7/8bU5Ryu0KOc3kHrlyD1Qs\nFIMV+lvsZbMT5yopz9oWfR+1Ui/IsfH8V8J1L81wn8t4bjN7Ovr4anStqm4s7+8Ub411a06ez4pU\nMekSizj2GfPnvr3Ceg3gG3iZC5DwDXLGm+MedAPly58/yLGQZnwYrNAcq/k7BlfFIV63urav7+O+\nQZ/3Ob891+ys1hej967y+tNoTrnGRp6rxlWN2ePeGru9a618T3uFYucYrYh9Nbs/ZqqHV/0g/8cc\n3r5i/cecKwar4hhU94mZ8Dxn9nqu/S1fKwbR/1HeNztVDFaZu4lemWnentfMuXwyb64TjyHL+7ug\nvqnxxnroOpez0JyrWIxOHPfW/a8rqz+PAuyFl7kACd8cV1zQxJunFgazf+GxRf6SYJV4eN557nH+\nZ8fA59y67pXXFq53XQNq4gPD7Mhjnqs0233AtRbnqN81zyvq61s83jxmj1v79447+liaLbdn4DiP\n6IUrWaHHuZY8T9dPR/JcXs1H23LtS6P2vKug//29v+nnrDjPK8zR89xbx1u9wOeZvSaq+a8wbxPn\nPsuclVPncUZizkZA44ljyvL+Lmis8k73eZyB5tstBq5/a++9sAP25UxzAjgbXuYCJHxDXI24iJn1\noeAdikFe1Or3mRcSmlu1kL9q7jqfr/nuumdfewuPY/RF+1O4N8wcH3sye3AGNI9Ovc25yOM9Y8z2\nskXN/xnF1nFeidn9kH0/Yt2/Q2P+to/p8zkW+vysea+I819p3sL9TZqVmXOr/MX6/3aO+nzuJ/Hc\nHfvkXjS/as6zE+c9y3zt4Rn9OnquNK7oqSzv74DGWfXDTnM4A8212/zjmGfJlddr8iQA1PAyFyCw\n4o3j7IfjbuT5O/8zPhQJzauas+d99txfXc/yNc+87hF0XY/lqTGMSnxAmJU4x5k8oHnkutPvmu9o\nc6zG6vG6P5xJzvlq971XOCaz1ME77IUZPZDrquMcq95wRk/IPUDSthl9kMlzX2HOxl6asb85rzPm\nM/aAM+o/o5jlurC8b0aqOc86VxPnLC91x7Uxw1wizlMXP6onaazRX1nePzoaY+y53cZ/Bppnp7nH\n8c6QI9WT5wMANbzMBQj4RjjDTXAP8cZ/xcPxyGiueaE6aww812ph7jmfNW+fq7qWr3f2Nc/AtaCx\nwd9x3mbsidmnM+Rec1Ku4rw8t5HqzfWfx+mxag53jDffA2f0+VGcE/2cnZj/mci1pT+PVP/v0Fjv\n6mO6TvSBtUIviPNeYb5C/tF8Z+tvMZcz4XxZd/jU/Sde15JvZqwVzSnP2dtmRDmO95fO85yxp8W6\n74r7SK4ry71kdO9tzaHD2M8gz33kecexzpAb92jVEgD8CC9zAQK+acxwA3zHLA8xR9Fc49wl/T7b\nQkHzyfO8Yr46z7tr+XpnXfMqPIeV6uEVisOs8fDc7NHRvfmOqgZHm5fHmMcZx/rEeKMXpNXrXzlw\nLGZnxpx39rN7RBz/nX0sx07Stpn8kclzfqIH38ms/c1zmsWruRfc2QcyimnuS5b2zVYzuSd4njMS\n59p5jvbnLF50XmbynXKj+Wz1Em3X/pHn7PFtjX1m8rwdi9GQz+I4O/cEz0X+AoAf4WUuQMA3vpnR\njTEuJGdffIk8Z0m/d17gZDSXap6e61nzfXWdfK0zrncnGq/n0W3sVzBjLDSX6N3O/S/PxXL9jcDW\nGEcbp6ge1FfFORspP2fjfM+S51xro9XXK6o+8eT45YncD6RZe0KO/6zzNJ5rl/p4h72qec1Arr2R\n8qSx5fFZ3jcL1Txnmp+J8+w6P/e0GXpAzMfMqK9prvHeG6Xt2j/qfUpji7nK456VPGfHYTSir7rm\nQ973HADgR3iZC/BXfHOeYSG8RVyAaJ6zfJGxheYXFzOzzdvzy3OM8/x2rj5HdQ1f56xrjcAKfWAP\njkPXB4CKWfpfVY+jzMd9II/PYxw97hpb9In+PPJ4r0Jzds5mJOZ4Bjr2No0x9wn9rrmMRIytpW2j\njfMMOvroE2brb9GXnck9YfT8aLxVf5Bm6hGey6zzE3F+HfuCe5rUHc9jJn/twf0k9sAobdd+HTca\nGlesoTzmGcnzHXGecYxd8+B6GNH3AE/Dy1yAv+IbXteb3Tvi4nDWOYqth2ttm2EhoDm8Wuh/O0d9\n/t01fJ1vrzUqnvvMdfKKWD8zkP3cMa9bNelafBKP7dX4nh7jUfI9ZMVe4Hx2y90eZsmrcuO5dJmP\n+0Uct/vEyCi2uS9Is/WGPMfZ5mc8v+79zfnqnqfouw79oEJzyL3N89G+7l7T+GOe4txmQPOLc+uW\nL3uvs8/sr1k89Q2ut6qnSKP2FY3Jeeww3m/Jc9XvIxHHN9rY9iC/aOzyDwD8GV7mAvwV3+hmW2T4\nJjjr/IzmlRe8+r37fDX+am6e37dzfHX+fI1vrtMJzdPzX2XOEc+946I/E339ba08gcaba3OEeXhc\neWyjjO8sRn9IvxLl0PmcCee0cy5zXxi95vJ4PWbloGOvyH1B0rbOnsrEOc40L2M/dp5bzFFXcm+Y\nxWuaR8xPlPd1pppb9zmZOLdOc1Itacyqp67M5qUzUUykvJayRlxTeczVeEcb67fkeer3UYhj69Yf\n3NckAPgzvMwF+KfMeqPofPPei3KXF7b6vfMC0XPK84pz+3R++px8UZ3b5//2GjPg2lEsVmKWecu7\n0deaVxc09qo+XZdP8WpcT4/tSnK/7OSlb/GcZ8mt+1vnOcU5jD6PqmfM1CuUi5wPaZYekec2y7yE\nPKg5yY9d6Z6X2Btm6gsZzavqE5K2d66ral6d52PivLrMxz1N6ohjPoN/7kBxkvIay/L+Ufqqx7M1\n1ln6f56jfh8BxTd6ZZRx7cHjnsUjAGfBy1yAf4pvvJ1ubK/ofMPeQ56fpN87z7OaU5zbpwsYfU5x\neXVun//Ta8yKYzZb/bzCvug651xH9nYH8tifHr+uW43J45JHusT2DDTfGIMV+oJzr58z4Pl0zF2u\nxVFz8qpnzNwvcn+QtG2GPhHnNsN8jH3a0ZfOyah94BWKt/00m6f2oPlu9Ujt6+pHe9Lytq7E+XSZ\nR9eeFmMNn+F6cxyzvH8Eb2gMW2MdZYzfkuen30cgjmuUMb3Dfa3jegfgSniZC/BP8U2iy03tFVoA\n+Satec2wIDKai3PVfY4aczUfz+nTeekz8nF13m/PvRqKkeO2Qry8wO/aBz3+TjnTGKtafapGPZ5X\nY+oQ1yvJPutaL3tQrj3P7sS8dSPW41O94R3uHR7nyGO9Evks9wipe5/Ic+o+H2G/6mc3OuYh94gV\n+0NG+cu1ZXlfN6r5dJyHkD/jPEb3q8fbrae5L3T1yYi4f0T/Rnn/08izW+McZYzfkOc2wnzimDrE\nt2tfA7gaXuYC/FN8Q+tOvDnPdMPTTdwL/Ti/0R+qMp5Hnkucz9E56XjlvTqnz+tzw3FcU4rhzMTe\n0Q3XVfT86OQxe9xP1Gk1lqfHNDqxXiT9Piv2RncfdMzV6D7b6h30jT/I+ZO0rZMHMzHfnech5FHP\npRP2Vaf4e8wW/eFHFJMcJ0vbO+VbVHPpNgfTqe95nF2IPoHrUJyrmrS8/0lm64GRPK+n5xLHo/42\nOu7BrB0A/g4vc2F5fDPrcCPbQje2mb5gEXlOzlG3m3g1j2/mo+OV31fn7BinkXGsZ6irLbrO0f3b\n3h/Z91u94O5x61qvxjJ6HEci+k+asUfIC/ZGV5ynLvnJ9TlaTVb9g76xjXyXe4XUtV/EuXTPu33c\nZQ4x9h3IvUJ/hn0o1zF2MYba18mz0beSt3UizmHksXfraR1iOiOuQcc/y/ufQv7V9ase+PTYvkHj\nznN5CsU4jmXknmEf6CcA/AEvc2F5fFOdYVGgG1yXxfsWGn9euHWal8ZZzcHzODoXHascV+f79Jxw\nDMXW8Z4xzrGHdEF5iDUxcv/OY5Xurllda6uPeCx3jmc28n14ZD9+gufW0SPd+lv20igx1zhe9Q/Y\nR8yvpW3deoZynufQEc9DPu5Ap3hHr9MnvsM9wvGM8r7RUf7zHOSLDmM3cfyjjrtTT3M8O3lgRlyb\n0d9Z3v8UurY8Pdq4PkVjzvN4ihjXUWPZba0GcAe8zIXl8Q2s40Nmh5vvXhT/vEjT7x3y4rHn8cc5\n7J2HjlMuq3P5fD4n3EdcdM+G59Wlh8RcjFoLGlOuYf2usd81Xo8hj8NjoYecS/Sl1KWe9mAP6Wc3\nuuQj94xRxrvVy+gf36H85p4hdesbcQ7dxm48/tFxrEfvw6P2sllQfGPdRWl7h3hX4+/ikzj2Ue+F\nHt/IKG4dxrki7jFVnUryvfc/ga4b7zHWk2P6BI83z+EJ4jhGjaFzPmLPBXgCXubC8vjG1QndxOIi\nputNLc9D0u8d5lON/ZM56Dgtml6dq0tMZsc50s9Z8OJ91IV7JNfcaGPW+PIYpTvrt7q+x3DnOFbG\nNWV1qK13yDeeTyc69LdcsyPUqa6vmOVeQg+5hirW2jaybyMaZx57Jxz70b3dIb7Rx/SLe5Afcv9w\n/LVv5Bzk3iF16R8x5qON2WPrkPsu+V4Z+Uh5cs6y3GueyKWuWfW/p8bzCR5rHv/dxDGMGDvnWT8B\ngJe5sDi+aY14w9oi3mh1M+v4oKwx54XX6HPR2Kpxe+x7x69jlMPqPEfPBfeinDhPM+Qnzmd0Yr2M\nVh8aS65n/a46v3qcOn91/TvHAD+imMd79Qx5sMe6zCPGf1TiGCX9/iRVL9Hv9JB7yH3DetoXe4lj\n7zJmobhrzPL6qDi2o8bVMeyY/5lQ3O2VLO8bkWrcI4/XxDGPNNbRe1qMG/TDa5W8XrS0Xfvvrglf\nM4/nibF8QjX+u8cdrz/a+r/DWg3gTniZC0vjG9bdN8pPiYumLmOOaMx54TfaQiHyarHqcb8bu/br\n2OocPo/PBePjniF1x3MZuZeoLhzvkcaqcVW94Y5aftVTfP2rxwD7iP1CGrnW3iFP2WMdGDnmrmGP\n8emY5vF4TPSR59i6v4zeQ7r2PI93RM/HmI5G1cvoG2OgPOR6tLR91NqsxjzqWEUc70jj9JhGrMcR\n4wWf416T1yyW1y53elHXk7bGMjLV2O8ec8zlSPHyuFhnAPAyFxbHN6nR0Q3LY+12A9NY8+JOv486\nB483j3nvuF993ufQomjU+cN7nFv97Ep8SBgR11GsmxFqJo8rju3K8VXXzdeHcXn6ofws7MHR/eZ4\njxjnWMdP1m7VU+gl46F85P4hadvIuYpjHrEOM64F/RyNUeOYfUnvGBvlK/d8Sdu0b7T8ZX9Jo9WA\niWMdpYc416PmdcReC+fgdUvVb5x77b/Lm7pWrNE8jlGpxn3neOO1R4mTPUX/AOBlLiyMFhC+QY1M\nvJF2unEpvr7hxvGP9lCh8VRj9XjfjdmfrT7vcyiHo80bPke5dH675tXjH2VxHok9b4QYb9W4fr9q\nbDqvrxuv6eteeW24Bvk65nPE2nuHPGcPjkrsHyPViGNnPZX/qq/QT3qQe4hzN2ovibU4usdcnxrn\nSDiGI40r95DRYgbvka9ifUZ53yhUYx1tjCLXxdP9btSeFnMIa+B6jfURpe3af0fNeCxbYxiRasx3\njTVed4T4jNrXAJ6Al7mwLL45jXBjqsgPBaOOM6Ixx5t+HPsdC7S9eJzVolLbtH9rvNquY6rP+vOj\nzRfOJ/q8Gx67vDoSrq1YS0+Sx+MxXVXbOu+nfQn6EHuHpN874XGP6kXXzyhxVZxiTV/ZQ7bIY/A4\nFCN6Sk9yH5FGzGf23sj9zuMcKYajxS367oleBuejHFb9RNL2UbxXjdP3sZGIY3x6bB7HKHXq2IyW\nM7gX5V+Ka4Mo77/at75Ovr77ymj3t2qs2nY18bqKzdPYN6PlB+BueJkLy+IbwR03waPo5hRvmqPf\nrDQ+x3PUcXuMeZzvxvrqc/7siAs+uB57Qj87Ye+O1Pvyg8JT9eR691iuHtOr/vJkHOB6ouelEdci\nFfbqiOONMR2BnOO767nqZ/SVuZDHss+U49HqM45xtLEZj1HxGwGPZ4R45V4yag7he5TbfN+Q3FdG\nuH+4NqJG8mQc35Pjch5H6GkxJgAReSP6I8v7r+w9r8Zw9bWPUo1T265E84/XezIeI/U1gCfhZS4s\ni29GoxFv0KPfpHQj9w01jnmEBY/GUI3PY9wapz9Tfc6fHW1RB89hX3Txg/vL1Yv+veQafWpceRyS\nfr8ir9W1fL2rrgljEu/30ih1+Qr50+MdjVHimGv8zvFU/UW/awz0lrnJ/UTStqfrweTxjTIuM1Jv\ni7F6mthPWKOshfuH8x/lfU+i6+f7nbaN4NEYN43xCdzTnrp+xHl62jMwPvJIrJ8s77+KV9fX9lHu\ngdUYr4yLiNe8+lpbjNTXAJ6El7mwJL4RjXQT0I3JC90nb5Dv0DjjjTyO9+nFjccW42hpWzVGx736\nzKvPAQj5wl4Z3SOxbkcgjkd1dnf8XPsew1Vj0bleXYv+ArEWJP0+MvbySL51DJ+OXazzs3vJK6oe\nc+f1YRxUA7mnSKP0lTi2UcZkRultI8RHMfA4nh4LPI/8EGs3e+NJf/j6I41J5Bp6oq+M0NNibgCO\nUtV31JW1/q7vPVlXphrfVfEQ8XpXXucVvv4I8Qd4Cl7mwpL4JvTUDSgTb4qjfvmmMY34RaHHlccW\nx+cx+s9bx/szyoc/A/AOe0k/R8bjfLrvqbZizd09HveAOAb9fmbNv+ozvtaZ14M5yGuBp2t1C3nX\nYxyBGLeniGOQ7sid+0y8ruQeA5B9KWnbHf58xRP1socReptj89QYcl+hn0CFfBp9Ev2ifU95JvcW\n6en+EuN091h8bf18ilHyAHMgH1V1bnn/2ainbV33qmseoRrbVWOK13pi3u5rrE1gZXiZC0vim88I\nN4AnF/h7UIziGCX9/mTsqjF5XHFs+uljq+P9GcX9yflAf+ynEWtYxEX3k8Q6jLV6Ne4DvvYVY9i6\nxtnXgbmJtSqN2lM8vhF8/WSsct3fUetVr6HHwCtUG7m3SE/3lzimp8diPJ6n6unJeGSP0FNgD/JN\n9o7lfXdTjeeJcZg4njvHoRrWNbVGeALP+8nYw7zI3/JWrK8s7z8TX/eu6x0hj+uq8bi3WHeuF57u\nawAjwMtcWBLfdJ5EN6H4ZdydN8B35LFJ+v2phYnGU40pjsvH+LjqWB/v4wDOQn6yx0b0lsf2VA3r\nuh7DneNwP4jXdg/4Fp2jOr+vcdZ1YE2eqpm92Pf6+SSO0xPxiTm6ut5f9Rr6DBwh9xZJ256oIZHH\n87SfXWdPjMOxuDsXub/ozwCfIC/lmra0/W5v+5pPj0PEcdx5/Sd7mucLcAfuP7HWolQL3n8Wvma8\nh1pnX+sIuu4dY4nzvnOuvuYTfQ1gBHiZC8vhG9udN5uMxyDpBjjKTUjjyAuRp8bnseTxxDH9/vvv\nL4+Lxz4xB1gLe1A/R+LJnuf6zPV4JfmaZ15bn1ccX53/6vnBOthv9pj+PIq/NA6P6ylibO5Ec489\n4Mremq8lndHLAOTbWEPWlX7e4s6aeod7m8ZzJzEXdxKvS2+Bs5G/8j3MXtO+u/ym60SvxzHcifuL\nr3/H/D1vXe9OfN27YwxgXPf2YpZ7wJke1bl03nyts6+zF13z6nHEa9w1R8f4rnsIwGjwMheWwzeb\nu240mXhzf2oMGd0E86JDv999c6zG4bFIvLyF0bEPR6ptj+lu3Gutq2vSvSFe0/3gG3zequeccX6A\nd+RaGqW/uCaeqoG745F7zFX1r3NqTrnn0G/gKnKPkbTt7l4TxyG/P4XHcGe9+Zp3xTz3s7tzDevh\nnmLPRXnfHVRjuOva5s7aU637WncRYwwwClvra0vbtf+smty61pnX2Iuud+UY4vnvmJv7muILsCK8\nzIXl8E3mbuJCWtLvT6Lr58WFfr9zXLpWNQ6P5ddff/3LC1z9uTrGx/k8AE8jH9qbI3jSC+s7FtUm\n17T+fBX5WvGa38T/1Xm/PTfAp8QHZenOuq5QHbgu7ubu3nZH7Ku+Q7+BO5Gvs9elu+pM3FFr73Ad\n3tXbPOe7rhf7DD0GnkCeq3qNpO131L2uEWvB176rHuL8r56v53nX3O6aF8A3uA/lPmBp+1k9Yes6\n2n5nnehaV10/nltzvRpf666+BjASvMyFpVCjv+vmErn7xvYKxSAvJPT7XTdBXz+PQfrll1/+8vJW\nP6v9ksd613gBjmLv6ueTxL5zF7nXXVWn7iO+1rfXc0/J5/R5r5wLwBFUY9Gn+v1JPJY76yP2mauv\nm/uC/nwmOn/Oqa9Dz4EniXVmadtdPSde/65rGtWer30Hd80zzuuO6wHsRV7M90FJ27Tvyvuhzi/F\n63rb1cTrXnk91/7Za5gKz+mOawGciepE/q16kT2t/d/2I53DdRLl7XeQr3/WtRWbGL8r5+PrXHl/\nABgVXubCUvimdeVNJXLnzewdeSySfr/j5ldd29KLW17ewmzYz0/WvGvojjHkGr/imlUf0e+61if9\nwefL5/R5tf+T8wLcgXwfPftUr/E4VDN34Zq9es6xN7gnnIX7j89/xTUAzkB1lvuNdEfPyde945rG\n9Xl1TXqOV84t9xt6DYyMaiHXvuV9V1Fd98rriXhN1eYVqN59javxda6OG8DVyMNSvH9Gabv2f3M/\n9TW2zn01+dpnXTOe96p5uK9d1TcBRoaXubAUvhHffWPUdZ94aNY1Pec7x6LzV9eW9OL2p59++svP\nvE/y+K4eI8CVyL/29BNedv/p3ut0Lp3/rD6mz1R96ZtzAjxJrD/pjprP+Np31E+c71VoHr6GdGZM\nqx5E74Eu5H4jadvVfSde9+prGfcB1edVxHldRbyGRK+BTsiv2cOWtl/VD6prXnUtkdcGV1zL57+y\nBzhuV8YK4Cnkaymv4y3v/7TG/Pl8Xl1P268kX/eM68VzXjV+n5+1DawGL3NhKdzsrybeuK78EmCL\n/EDgcVx5k/M183UlvbzN2yyPixswzIb7gDx+N66vqxbOQjXr65x9LfeTeH79rmsc6RXuLVVf0jbp\nyPkARiSuOaQr677C9XXHda+cY+4VZ/WHqgfRe6Azqr/cd6Qre0C+3pXXEqpPX+sqrpxL1c8AuqNa\nyfdT+1v7zr6v6pxSvJa3XUG81tnXcE+7qhfEsQOsgHtB1ZMk7/+kL/mz+ZzudVeRr/ntteL5rug9\njv3ZvR9gdHiZC8vgG8mVN7/84HzltSp0vbyY0O9X3dzyfN9Jx3o83HBhBVwfd/aCO3pdrHvX9Lfo\nHGf0sK3zxHOdMV6A0XDtW1f2gIjqyde8Es/vinnl2J3RI3SOb/sZwOjk2pG07Yo6zTV1xTUivtYV\nNeu46RpnE3NCz4FZcZ+x16O87yxUQ/laqq0zr2Hidc4+v897Be6XV8QEoAPyfqzfLO8/ek/eOq97\n0JVrFEu/f4rGF8915nh97ivWUgAjw8tcWAbfkL65Eb0i3vDufHDWdbx4vvr6Omd1vS3pOI/livEA\njI5873q4owZiH7qCeH7pjH5a9ZSjPcznyOf55FwA3cnrkTPq9B2uvatq7arelvvPt7HK55OcA/oQ\nzIw8HuvU+ramKuJ1VF9X1ZbO62uczRXxObufAXRB3q/6j+vgzFqornN2rcVrnNl/3B/O7plxvADw\nB6qLql9Y3n+EV+fU9itr29f4lKvWJz7n2XMHGBle5sIyXNnkn3hw1jzidSX9fvb8fJ18rUo+Tp+5\nIs4AHfEiWLVxNa7Fs/tQ7jeu80/J5/vkvFvnOHoegBlx37GuXpuo3lx7V3D2PHL/+LZnVP2IPgSr\nojrN9aBtZ/Yh95x4/ivw+c+sZY317DGf2c8AuqPayj3ItaF9Z9RHdY2zzi1yjzvjvD6nxn0mHuOZ\nPQ1gNlQfkusly/v38up82n5WLxL5OkfGGYnn+fQcGffhM+cLMDq8zIUliIvhM9F54yL+6huIzp9v\npJK2nXntPK8t6RhJx189d4DOuJ7OWrRWxN5wJrnnfFPrVW9xD3mH+0z+vM+x9zwAK5Hr98oe5Guc\nXYeew1ljPysmr/oRvQjg9XPLWcTzn3le4xo/69xxvGegGPt8Z44TYBZUE7Hucr18WzPV+c84r4nn\nPuOcPtdZ6xSP76z5AqyA10exvrO8fw9b6y2f5+x6j+c+SjzHJ5/PeB2k9RrAKvAyF5bAN4wzbhYm\n3oSu/uJO585fGJ55TZ1H+uWXX/50jSxd09c969oAK6B6cR1dVTs+/1l9TuOMfUd//oR8nni+d7Hw\nZ199/t05AFZHNRLXLPrzFXXjOtXPs4jj/hb3E5/PPeQo+TzfnAtgFVTLVd2csWaJfUI645xGde2x\nnsFZYzyrnwGshOou9wvL+76hOve35xTxvN+ez33jrH7hcdF/AD5H9aParnqI5f3v8Lm+Occ78vmP\nnlNj9GfPWL/4XACrwMtcWAIvWs+4cYn48HzWOSt0U4vXks642QmdQy9vX73A1T5f74xrAqyMF72q\nqbPxuc/qRz6fx/tJ/eszn/Sv6nNHPg8ANbGupbP6hVFt+txncdZYv+1pW32JngRwDNVL7kWStn1b\nS/G83/aMiGv/rPHpfN+Q43fmXAFWwb1o696ufZ/WfK5R6ds6jef85lyak87xbR8SHtO3cwOAP+P+\nFOs+yj3qXe35PNU59nz+HfncR88X++83Y/F5Pu3ZAN3gZS4sgW8Q3+LFr3XFzULnjDc1yTfrb/n9\n9995eQvwIK7tM+rZxEX0t+T+c3ScVf+S3Fcq3G+2PvfqswBwnNgzpDP7kev4jJr1OL8Zn8bxzVyr\n3kRPAjgH1WNVX9/UvPuG9c25jMeon9/w7ZhyP/p2PADwd1SXuX9Y3neU6pyfnkvkNc2na5FvPy/i\nvADgWlSrqrm4BojS9ne95dU53n32Ff5sPt9e4mc/HYN7I+siWAVe5sL0+ObwbWOPN5krbhK6AeUb\nq37/ZpGtl7e//fbbP/z0009/Oq+l7XqBq2t8cx0A2IcXmtJZNefe9Oni1+Qed2R8OvZI/9L26jPx\nc1ufBYDvUb3H+vu2fxjVrev4G2I/+qQX5P7ivrKH/NlPzgEAx4g1b2nbpzUXz/dtf9MYfK5P8Xg+\nHUucD70I4FpUb7HmorzvKNX5PjmPiGuUT87hz3/TR76dAwB8jmpXtVc9r0jarv2vanzr89r+SV37\nc/lce4if++Tawp8HWAFe5sL0+Mbw6U1BN8BvF8yvyOeX9Psni2t9Zs/LW73kBYBncE9SnX+LzyV9\nivqGzyHt7XFV75K2+pePf/WZ6nMAcB2xh0hnrHFc49/Us8/xyXg+nZN7VPysexMA3IPqNdew6vDb\nXvBtLbs3fHKOOI6j5L70SRwA4HNUg6q7WIeWe9ORvhD7gfVJXcfzHP28xqvPafyf4Gt/+nkAOJdX\nfcq1qv1bvWrrs9ouHcGfyed5R/zMJ73F4z/SjwG6wstcmB7fED5p6vmGctaNQefJN0v9vucmF9F5\n9JlX/3SyXuDy8hZgLFz/R2s+4zr/9DyxD+3tcVv9q/psdey7zwDA/cT1jvRNb/K5VOOfEMdyhNxv\n9lxfn9H1cp+iPwE8T+5LkrZJe8l94chnIzqPPr+nr2Q+vXacPz0JYAzcg1ybUd63Bx2X1x7adqTO\n4zj2Xtf4c5/0lU+vCQD3oNqUco+xtF37q/r3Z/NnvH0v1XnefV7jiWM+0p90rD6jzwPMDi9zYXp8\nIzhKvPGcdUPINyefe+9NSsdpXO9e3vqfTgaAMfFiU/q0Vt2j3i2KK2J/23MOjTH3Lin3L/351bFH\n+h0A3MvRvrCFatzn+KTeP7l+7Dl7+kzVp+hPAGOiXpD7k3SkR8TPH/lcxJ8/gq+r/rKX2EOlT8cL\nANei2oy9JdftntqtzrH3syJ+9sg6xmugI71J+Hp7xwcAz+Oe4rrP8v7cP7x96/g9VOd499l4/N7r\nCH8GYHZ4mQtT45vAkRtA/oLvyGe3yOeU9Pu7xbb26/pbN12L/+8tQD/cn1Tfn+D6P1L3Ojb2k3d9\nKB9ffcbH5OPisa+uAQBj4d5kfbIOcj84+llfe+/n1FuOjFX7c69ynwKA8XGPiNK2PT0jf3bPZyLu\nHUf6xZFr6byxP9GbAPqgWlWd5zWGa1n73tVz7lHS3j4Vr7u33+hYfW4vcXwA0BfVslT1K8n7Y8/y\ntnys+9s7qs+/+lw8ds/5hefD2glmh5e5MDW+Aext/vGGoRvBNzcBfTbfHN+dU/s0hvy5St+ODwCe\nx7W+t0eZo71NxP4mbfWPrd6lz/sz1THxWHoTQH9iz3AP2It6gD+3l3i9d+Qe9KrvVP3q1fEAMD7q\nF7FnWHv6VPzcnuPN0b7m6xwd09FxAcB4qIZzXcf6flXj1edeHW/i5/Yc77XR3vWQz7/n3ADQB9V0\n7B9Z3u9esXW8eoq2v6L63NZn4rHvziuOrtMAusLLXJgaN/49eDG790axhW4g8VySfq8Wydqma+Xj\nK+mYrfMAQE+84JT21nZc1O5B5409Rn/O6Jh8nI/1vmq/j/FxADAXsd9IR9ZH7hd7e8Pea+QxbZ2/\n6ln0KoD5yD1B0rZXvSR/5tWxER//ro/E878i9yn9GQDmwv3IdR7lfRXV514dL+Lxr44T7j17+k48\nLwDMjfuMaz7L+18dq77iYyqqz1THa50Uj3m3/vJxADPDy1yYltj0X5Efot/dHLbQjSeeR9Lv8Xz6\nc3Xclvz5T8cEAOPjhazqfQ/uD9ViN+Nzx34S0e+5H+l3fe73338v9/sYehPAOsReIu3pP+oP7hfv\n8PlfnTf3o+rYqmfpdx1LvwKYG9W5e0nUq74Sj391nHF/edfXjl5b56NHAcyP6ly1n9cq7gPaV/WC\n2C+srf6Se8sWuo6Pe4eP27omAMyL6r7qQZb3bx13Rm+LPbPab3wcayqYGV7mwrT4pvCq0ccbh5r+\n0Yav4+NNJZ/H+/Mxr/TJOACgN+4Rr/qVcM/S8a/IvSmeV/v0e+5L+l0vcPUz7/N+fZb+BLAucd2k\nP7/rBz721XHxnBX6bOxJ7kWRfMzWcQCwBrGvWNomZfKxr/qG9ukY9ZctfL6tY3K/qsYEAGvgvuR+\nEOV9kerYfIzIfWarr/mYV33P16yuAwDroV5Q9SJL+9Rbto7R9txzqmO1LRKPyfuMzqv9W2swgBng\nZS5MixemVZPPi9utG8EW+fOSfn/1IkT66aefftjm418toAFgbrzolF71Ah/zqmfF/hN7y7u+FbfH\n/fQmAIjEB2lpTz/Szy1enefVtbZ6mo6hbwGAUD/IfUSKvUTkfpL3R3zcVp95dY44Fp2HXgUARv0h\n9ogo7zP6c14DaVvuKfF88fNGx2ufzrWFP0+/AoCM+oJ6S+w1WeovuV9ZuW/l8+hzsXfF/XG7cU+T\nAGaFl7kwLVsNPDZ3ae+i1DepfBPSC9pffvnlT9vivp9//vmH7TqHzrf32gAwP3FhWuH91aJV5N6m\n47StWjyrZ1V9y8fSmwDgHbFnSVVvin2pYquvuXf5s7Ev5X15PwBARe5ZkrbF/hOPUV+p8DHVfu+L\n5xSxF1b7AQAi6hnqE3m9I2mb9vkYKe73NhP3x+0i9qYKfzZ/DgCgYqsvWfoOquprkj6jz4v8eZ8z\n79O5/Bnj8+ftALPAy1yYEjd3NfFIbvp70A0g32yqv2Er6cZUvbyVqpsMAEDEveZV78rkHqU/V3/b\ndus/PNFxOgf9CQCOkvuPH7Ij3p97TOxrcV9eq7k/5Z4W9wMA7EU9JvYZy/0r7/N2o57jfZH4OZN7\nFz0LAD5B/SX3Jsv7qv3a5s97m/pQxD0q96b4GQCAT1BfUS+Ja6Gore/P9Rmr2i7iOb1NeJ2Wex3A\nLPAyF6bEDd8NPT9Ix0a/hT5TvfiI0v7ffvtt8wWJlBfFAABbeOEpxd7h/pV7l3udVS2Gt/55d3oT\nAJxF7kWxV7mvqe9Ecl+L/c/btc3HWfQvADiL3LskbbPitoj7UuxF+dj4+bgdAOAb1Etyf4l9Jq+b\nvD2vs9y/vF2fi/g4ehcAnIX6zVaf2lJ1vLZZcZuv4W0AM8LLXJgSN27fKPy7bgBetFbob7Nt/ZdB\nkj6vl7e//vprefPx+V9dAwDgFbFnVb8L9ZjYg7b+tQBLx7o/AQBcRexXkh+q3a/cg+JxuZ/pP5B7\n9a8IAACcjXpS7l/uO/F39zT1Iu8X/qz7VPycjwEAOBv1G/Wf3Kskfa+Vt+vY+H2Xfnc/k4x7WtwG\nAHA2r3pYpaqnxW36XXibzg8wG7zMhSmJjTw39Ygftrf+Bq6263P+J0vzjUPSNm4QAHAm7jX66T7m\nHhb72iv5s/QnALiT3KP0u7epLwnvc6+z8npM++lhAHAn1Tor9irtF/5dPcp/jsfRvwDgbuKaa690\nvHuXe1bcBwBwF+pBsSftVbX+8p8BZoOXuTAdXrzm/+JQqKGrmb+6Mehz//gf/+O/HZv3+/Ne6AIA\nnI0Xn5J7jX5u/YcnlnsT/QkAnsbrsSz9Cyf6+e5fQqGPAcCTqIdt9THJPazqaX72BAB4inc9LEr/\n8px+av3lz9DHAOBp3MfUm2LPOiKA2eBlLkxHbPJ68SG9a/w6RgvYrZuEtvGCBADuxA/S0j//z//z\nf+pJUe5PAAAjEnvZK9HLAGBU9n6RSB8DgBFRXzr6QgQAYDTUx472MtZlMBu8zIWpUJOumreV/1bb\nq5e9PIwDwNP8i//iv/hDb3LPoj8BQBdevdClnwFAF9SrtvqZtgMAdMAvRKpeJtHPAKAD73qZpO/P\nAGaCl7kz8X/7D5bXf/of/lt/atr/6i//0l+2Sd7/y7/8L/zDT/+lf/ZPx/lYH5/P21YAnak8vZjc\n0/4L//n/3D/84//pf3uu/vSJADpTeXox/fqv/yt/6Wlaiy3fzySArlR+Xkz/vX/63Kh+9i/8l/85\n+pkF0JXKz4von/yb/9pf5O/F9OfquOUE0JnK0wtI/cvrM+mf+2f/i+VxSwqmgZe5M1EV62LyIlRf\nFuZ9fikSpZe3+sy0D+AAnak8vaD4gjAIoDOVpxcUPS0IoCuVnxEC6ErlZ7S2ADpTeXpB8dwZBNPA\ny9yZqIp1MenlrF7Sbv3XhPFv3y7R1AE6U3karS2AzlSeRmsLoCuVnxEC6ErlZ7S2ADpTeRqtLZgG\nXubORFWsi0kvaPlnYYIAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGht\nAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0t\ngK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQ\nmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK\n1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR\n2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pb\nAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRV\nrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5\nGq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+j\ntQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5M\nVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6Az\nlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXy\nM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7m\nzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYA\nOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBX\nKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9Hagmng\nZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZr\nC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgB\ndKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2Y\nBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVp\ntLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyM\nEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9Ha\ngmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5U\nnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXK\nzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3ka\nrS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLo\nTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBd\nqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOV\np9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0t\ngM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF\n0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6\nU3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR\n2gLoTOVptLYAOlN5Gn2k//Q//Lf+4Z/8m//aX/Sv/vIv/UX+Xao+M6QAulL5GX2lV31N+6rPDCeA\nrlR+RpfKfa7aN4QAOlN5Gq0tmAZe5s5EVaxol/SA/M/8M//Maaqu8YgAOlN5Gl0qfWE4bD+TADpT\neRrtktZpkr70yz1qS34JUp1vGAF0pfIzOqzp+hpAVyo/o0sUv3vjZS7ARVSeRmsLpoGXuTNRFSva\nJV7mAgxI5Wl0qYbuZxJAZypPo5c6+qKjEi8+AC6g8jParW9727B9DaArlZ/R6VLvir2Ml7kAF1F5\nGq0tmAZe5s5EVaxol3iZCzAglafRZcoP18P1MwmgM5Wn0Utt9SVLXwJa1f4orfWqazwqgK5Ufka7\n9K5fte5rAF2p/IxOVdXTtK06dggBdKbyNFpbMA28zJ2JqlgflB4uh/zirFB+mRsfoj9RdY1HBNCZ\nytMPqks/+1SxB0ZVxz4mgM5Unn5QHdZp1d/geDfurRfAQ63PLICuVH5+WB162lZvcm+rPiO16WsA\nXan8PKBG73GVXv2HeUOuzSyAzlSeXlAd1oa3CaaBl7kzURXrA/ID6fCLs6C8wJym2QN0pvL0zVIv\ncD+TqmNm0KuH7Or4xwTQmcrTN8s9zX1NtV8dN4rcmzTeo2uzqq8Nty4F6Erl5weU12kjP8NpbLEf\nSUd78PB9DaArlZ8HUe5z1TEjKo+70nDrsiiAzlSeXkSd1oa3CqaBl7kzURXrzcoPqUMvzoLyg3F1\nTEsBdKby9M2KfWGq3pCU5xlVHf+YADpTefpm5fXO0RcJd0vrym8ewKsXH0M90AN0pfLzA8o1PvIX\ndvE5+Ztn5KH7GkBXKj8Polzv1TEjSf2oeomrbbEPelt1jiEE0JnK04so95+R14a3CqaBl7kzURXr\nzWq1OAvKD8XVMS0F0JnK0zcr9oWpekNQ9aVgVPWZxwTQmcrTNyvXu36vjptJcb7SUGtTgK5Ufn5A\nuaeN/IWdn5PP6Lv5i8ph+hpAVyo/D6JY61J1zAhSj8u9yXLfa/V9IUBnKk8votyHRl4b3iqYBl7m\nzkRVrDer1eIsKH8RUB3TUgCdqTx9s2JfmKo3/FW59+XfpepzjwmgM5Wnb1ZV89VxMyk/0A+1NgXo\nSuXnB5R72shf2GlsZ/Xc/MwtVcfdLoCuVH4eREPWelJea1naHvtyq+8LATpTeXoR5X408trwVsE0\n8DJ3JqpivVmtFmdBudlXx7QUQGcqT9+s2Bem6g1/VZybv2CM26T8mUcF0JnK0zdrxZe5w770kAC6\nUvn5AXV6mXu24ryHmTtAVyo/D6Jc69UxTyt/n6bfq57U6vtCgM5Unl5EuR+ttDZ8KZgGXubORFWs\nN6vV4iwoNvsuY94lgM5Unr5ZsZ9J1TFdtfUFaNwm5c89KoDOVJ6+WbzMHayvAXSl8vMDWvll7pBf\nVgJ0pfLzIIp1LlXHPC33I/181Yvymmzo794AOlN5ehENuT4aQTANvMydiapYb1arxVlQbPZdxrxL\nAJ2pPH2zYj+TqmM66tULnbhdip97XACdqTx9s1Z8mSvFOUvVMY8IoCuVnx8QL3MHmztAVyo/D6JY\n51J1zNPa239afV8I0JnK04toyPXRCIJp4GXuTFTFerNaLc6CYrPvMuZdAuhM5embFfuZVB3TUXmB\nG/fF7Xnf4wLoTOXpm7Xiy9y8NpWq4x4RQFcqPz8gXuYONneArlR+HkSxzqXqmC5q9X0hQGcqTy+i\nIddHIwimgZe5M1EV64VSQ8zKD9RqotVxUdW571Yec3VMSwF0pvL0Rap6kxR7g1QdE1WdezS9e5kT\n90lx3+MC6Ezl6QtV9aij67TqvN2keeQ5V8c9IoCuVH6+WLk/SdWapjrOqs7bVUN+WQnQlcrPNyv3\nKyvWuWv9lapzjyKNL85l6O/eADpTeXpC5f4n5fXRSmvDl4Jp4GXuTFTFeqFyg/xEoyze4pjyi43W\nAuhM5emLlL8M/FTVuUdS9aVnPibul/L+RwXQmcrTFyrX8ieaYU20p+89JoCuVH6+WLGOP9UMPc3i\nZS7AiVR+vll5vfKpRn45obHFsfIyF+AiKk9PptxPPtVMa8OXgmngZe5MVMV6oXiZ20AAnak8fZHO\neniuzj2S9ox3zzGPCaAzlacvVK7lTzTDmiivV6tjHhNAVyo/X6xYx59qpue8PLfqmNsF0JXKzzfr\nrOdRXuaeJIDOVJ6eTLzMPSiYBl7mzkRVrBeKl7kNBNCZytMX6ayH5+rcoyjPcavXxWOk6pjHBNCZ\nytMXKtfyJ+q+Jtrb9x4TQFcqP1+sWMufqntPs3JvG+aFCEBXKj/frFzXn4qXuScJoDOVpycTL3MP\nCqaBl7kzURXrhVLjzKoeLKvjoqpz3ymNIY55qkYO0JnK0xcq96bcG6TqmKjqvCMo9+ZXfS4eJ1XH\nPCaAzlSevlBVj8r/IZ56QXVcVHXuDtLY41yl6rhHBdCVys8XK/cmaaWeFnVkXXerALpS+fkBVT0r\n1rpUHRNVnXcUaXxxLrzMBbiIytMTKvc/adW14VvBNPAydyaqYr1ZaoKxaQ69OPur8phjQ8+qPj+0\nADpTefpmxd4gVcd00JF5HDn2dgF0pvL0zRr2BcDJ0potznPYuQJ0pfLzA8o9reXz2kHlOUvVcY8I\noCuVnwfRsPX+gfL6jJe5ABdReXoR5Ze5K6wNdwmmgZe5M1EV681qtTj7q6ov/N5JD9EtvgAF6Ezl\n6ZuVa786ZnRV/2VidZwVj5WqYx4TQGcqT9+s/BKgxVrmgLSmyz1v6HkCdKXy8wPKPW2FL+yOrutu\nFUBXKj8PoljvUnVMF7X6vhCgM5WnF1FeJ62wNtwlmAZe5s5EVaw3q9Xi7K/KYz6qob8IBehM5emb\nleu9OmZk5S859/SreLxUHfOYADpTefpmfdITRpHWa1Eau1W9wJW0XcdW5xtCAF2p/PyAck8but5P\nUJ6vVB33mAC6Uvl5EA1d8welHh3nwstcgIuoPL2IeJm7IZgGXubORFWsN6vV4uyvqh6KP5HOU53/\nUQF0pvL0zcp1Xh0zqnJv29uP42ek6pjHBNCZytM3K/eFIdcuG8oP5q+kY1s8uAN0pfLzA8o9beYv\n7PJcpeF6OEBXKj8Polz31TFdxMtcgJuoPL2I8jMjL3P/KpgGXubORFWsN6vjy1yNWQ/Cln7Pivvj\n/LK0v7rGYwLoTOXpm5VrvDpmRKlvfTr2Tz93iwA6U3n6ZuV1zHDrlhfa+zJXx3nNVp1nKAF0pfLz\nA8o9Teuf6rjuyvOUhuxxAF2p/DyIcu1Xx3RRfkblZS7ARVSeXkS8zN0QTAMvc2eiKtab1Wpx9oX8\nJWGcqzXUgzVAZypP36xc39UxIyovYI/0pfg5qTrmMQF0pvL0zcprl6HWLG+U+9peDT1HgK5Ufn5A\nuafN+IVdnqM0bF8D6Erl50GU6786pot4mQtwE5WnFxEvczcE08DL3JmoivVmrfIy16oerqVhbhYA\nnak8fbNybVfHjKbcl45+4Rc/K1XHPCaAzlSevlnf9ocRpTWXpLnk+UUNOVeArlR+fkC55mf7wq76\nj1iG7tsAXan8PIhyD6iO6aJW3xcCdKby9CLiZe6GYBp4mTsTVbHerLMWZ//3/+jf/od/8tu/9pX+\ns//43y7PfbaqLw6HWZQCdKby9M3KtV0d807/7//zv1/2qCP63/8v/1F57qzcjz7pRfHzUnXMYwLo\nTOXpm5V7xKcvBf5P/8G/UfaqI/p//R//5+W5z1C1NvtmvpcJoCuVnx9QrvVPv7D73/0v/lHZp47o\n//N/+ffLc3+i/ExtDdfDsgC6Uvl5EOU+UB3zTv+///R/XfatI/qP/r3/SXnuI+JlLsBNVJ5eRLzM\n3RBMAy9zZ6Iq1pt11uLsf/Pv/I/+dJ5P9L/9d//H5bmvUPWl4RA3DIDOVJ6+Wbmuq2Pe6f/5f/j3\nfjjPUf0P/zv/1fLcUVUfqo57pzPOcZkAOlN5+mblPvHpi4Hf/vV/5U/n+UT/2X/8j8tzn6mqL346\n50sE0JXKzw8o1/inz1//g//mv/yn83yis/4Dlapv6Zm6xZeRAF2p/DyIcj+ojnmn/+//9X/1w3mO\n6r/1X/sXy3Mf0VnfF94igM5Unl5EvMzdEEwDL3NnoirWm3XW4qzby1wpX3+IGwZAZypP36xc19Ux\n73THy9zce6VPe1A+T3XMYwLoTOXpm5VfEnz6YrPLy1ypejEyzEM9QFcqPz+g2V7m5i8gpaFfdmQB\ndKXy8yDKPaE65p14mfuBADpTeXoR8TJ3QzANvMydiapYb9ZZizP9k6L/lX/+p6/0n/yT/1l57quU\nbxhDLEwBOlN5+mbFmpaqY95J/8xy1aOO6N/47/83ynNbeZyfvqCR8rmqYx4TQGcqT9+ss17m/jv/\n6L9b9qoj+n/8J/9uee4rNOQaTQLoSuXnB3TWy9x/9K/+18s+dUTf/DPL+Rna+mY994gAulL5eRDl\nvlAd8076Z5arvnVE+o9eqnMfES9zAW6i8vQiys99vMz9q2AaeJk7E1Wx3qxWi7OTNeTcATpTefpm\nxZqWqmOeVl6sfvvFXzyXVB3zmAA6U3n6Zp31Mrebqhcl1XG3C6ArlZ8f0Fkvc59UnoOktV3LLx8B\nulL5eRDl/lAd00Wtvi8E6Ezl6UWUvx9ruZ66QjANvMydiapYb1arxdkFinOXqmNuFUBnKk/frOFq\nOil/Aegv/75RPJ9UHWNVY7pUAJ2pPH2zVn2ZK8V5S4/0sCyArlR+fkDdX+ZWL3Jb92WArlR+HkS5\nR1THdJF6dJwLL3MBLqLy9CLiZe6GYBp4mTsTVbHerFaLswsU5y5Vx9wqgM5Unr5Zw9V0Ul6o3qlH\n+jtAZypP36yVX+bmfjnE3AG6Uvn5AeWe1ukLu2oN174nA3Sl8vMgyn2iOqaLeJkLcBOVpxdRXl/x\nMvevgmngZe5MVMV6s3iZ+/e5S9UxtwqgM5Wnb9ZwNZ1UfRF4lx7p7wCdqTx9s1Z+mTvk3AG6Uvn5\nAeW67vKFXbV+m+LLRoCuVH4eRLlXVMd0ES9zAW6i8vQiymssXub+VTANvMydiapYbxYvc/8+d6k6\n5lYBdKby9M0arqaTqi8D79Ij/R2gM5WnbxYvcwebO0BXKj8/oI4vc/OYtZ6a5otGgK5Ufh5EsV9I\n1TFdxMtcgJuoPL2I8ndkvMz9q2AaeJk7E1Wx3qyVX+YOOXeAzlSevlmxpqXqmCelvnO28pyrY6xq\nTJcKoDOVp2/WkC80b9KQcwfoSuXnB5Tr+pG1yQHl8UrVcW0F0JXKz4Nopp6hHh3nwstcgIuoPL2I\neJm7IZgGXubORFWsN6vV4uxk8SUhwMlUnr5Zsaal6pjZNPScATpTefpmDblWuUlDPtgDdKXy8wPK\nPW30L+ziWDuM97AAulL5eRDlvlEd00Wtvi8E6Ezl6UXEy9wNwTTwMncmqmK9Wa0WZycr3zB4mQvw\nJZWnb1asaak6ZjYNPWeAzlSevlkrv8yN85aqY24XQFcqPz+gTi9zl+i/AF2p/DyIYt+QqmO6iJe5\nADdReXoR8TJ3QzANvMydiapYb9aqL3Pzw7lUHXe7ADpTefpmDVnXF2voOQN0pvL0zVriZUKhPO9h\n1qcAXan8/IA69bQ4Tqk6pr0AulL5eRDlFxPVMV3Ey1yAm6g8vYjy2pCXuX8VTAMvc2eiKtabterL\n3DhnaZgvEgA6U3n6ZuWH5xUWgnG+UnXMYwLoTOXpm8U67Q+xTgP4ksrPD6jLy9w8zml7L0BXKj8P\nopmeR1utQwE6U3l6EXVZG94umAZe5s5EVawPKDZNqTpmJuXF9VBzBuhM5embNdPD817F+UrVMY8J\noDOVp29Wpy/Rznrwzn18qAd6gK5Ufn5AXXraMl8sAnSl8vMgmul5lJe5ADdReXoRteozdwqmgZe5\nM1EV6wPqtNjUWD99mNa88lwlviQEOInK0zcr1/gKC8E4X6k65jEBdKby9APKNT7qOk1j05rq7HXa\nUPMF6Erl5wekeh66xv+q3It4mQswGJWfB5H6RewfnZ9Hc88eei4Anak8vYiqtWF13HKCaeBl7kxU\nxfqAqi/Oth5Yn37YjmPVGPeMR8dUc/Q5qs88JoDOVJ6+WdVCcNR+dpbyfKtjHhNAZypPP6C8htn6\nIk097cm+Fseovrt3jcU6DeAGKj8/pA49LY9RvcjjOVPVtW8VQFcqPw8i1XbsH+4hW8cO0Qs2lOey\n1a+HEEBnKk8vpA5rw9sF08DL3JmoivUB5QVabJ7+Ms6N9enFW27wlscZpWO3jpd0THWNRwXQmcrT\nD+hdn4i9ofp8N+V5Vsc8JoDOVJ5+QEfWaU+ubfL4rDjOKI95S0M+qAN0pfLzQ3rX0/Tz6Z72rj+d\npcf7HEBXKj8PpK0eEtdAPmbI9c5flfu1xlwdN4QAOlN5eiGpL8ZeE3vOKGvD2wXTwMvcmaiK9SFt\nNc6spxdvbt7fSOcYdsEM0JnK0w9o60vCStXnu2noOQF0pvL0Q9q7Tnvy4bYazydinQZwAZWfH9Te\nZ7qnetoZz5x79HivA+hK5eeBdOR5dNg1zz9Vnod6Y3XcEALoTOXpxTT62vB2wTTwMncmqmJ9UHu+\nKHx68aYx7hlnJY195IXyXwTQmcrTD2nvA3T12W4aek4Anak8/aD2rH+efrjV9T99CcI6DeBCKj8/\nrJF72qd97Kge73kAXan8PJhU33v63Mhrn/xM/fT3gS8F0JnK0wtq5LXh7YJp4GXuTFTFOoDUGCUt\n1KJGW2Tmccbmnsc98gL5TwLoTOXph9Wln30j97ghex1AZypPD6AufS2P89U6rfr8kALoSuXnQVT1\nM217sjd4TXW1qmvfKoCuVH4eVHk9ZA3TB94o9qyhxwvQmcrTC2vEteHtgmngZe5MVMWK1hZAZypP\no7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVn\nhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3W\nFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm\n8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5U\nfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrT\naG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZA\nZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLo\nSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2p\nPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGht\nAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0t\ngK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQ\nmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK\n1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR\n2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pb\nAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRV\nrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5\nGq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+j\ntQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5M\nVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6Az\nlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXy\nM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7m\nzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYA\nOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBX\nKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9Hagmng\nZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZr\nC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgB\ndKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2Y\nBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVp\ntLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyM\nEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9Ha\ngmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5U\nnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuQAAAAAAAAAAAAAAAAAAA8LLXAAAAAAA\nAAAAAAAAAACAAeFlLgAAAAAAAAAAAAAAAADAgPAyFwAAAAAAAAAAAAAAAABgQHiZCwAAAAAAAAAA\nAAAAAAAwILzMBQAAAAAAAAAAAAAAAAAYEF7mAgAAAAAAAAAAAAAAAAAMCC9zAQAAAAAAAAAAAAAA\nAAAGhJe5AAAAAAAAAAAAAAAAAAADwstcAAAAAAAAAAAAAAAAAIAB4WUuAAAAAAAAAAAAAAAAAMCA\n8DIXAAAAAAAAAAAAAAAAAGBAeJkLAAAAAAAAAAAAAAAAADAgvMwFAAAAAAAAAAAAAAAAABgQXuYC\nAAAAAAAAAAAAAAAAAAwIL3MBAAAAAAAAAAAAAAAAAAaEl7kAAAAAAAAAAAAAAAAAAAPCy1wAAAAA\nAAAAAAAAAAAAgAHhZS4AAAAAAAAAAAAAAAAAwIDwMhcAAAAAAAAAAAAAAAAAYEB4mQsAAAAAAAAA\nAAAAAAAAMCC8zAUAAAAAAAAAAAAAAAAAGBBe5gIAAAAAAAAAAAAAAAAADAgvcwEAAAAAAAAAAAAA\nAAAABoSXuQAAAAAAAAAAAAAAAAAAA8LLXAAAAAAAAAAAAAAAAACAAeFlLgAAAAAAAAAAAAAAAADA\ngPAyFwAAAAAAAAAAAAAAAABgQHiZCwAAAAAAAAAAAAAAAAAwILzMBQAAAAAAAAAAAAAAAAAYEF7m\nAgAAAAAAAAAAAAAAAAAMCC9zAQAAAAAAAAAAAAAAAAAGhJe5AAAAAAAAAAAAAAAAAAADwstcAAAA\nAAAAAAAAAAAAAIAB4WUuAAAAAAAAAAAAAAAAAMCA8DIXAAAAAAAAAAAAAAAAAGBAeJkLAAAAAAAA\nAAAAAAAAADAgvMwFAAAAAAAAAAAAAAAAABgQXuYCAAAAAAAAAAAAAAAAAAwIL3MBAAAAAAAAAAAA\nAAAAAAaEl7kAAAAAAAAAAAAAAAAAAAPCy1wAAAAAAAAAAAAAAAAAgAHhZS4AAAAAAAAAAAAAAAAA\nwIDwMhcAAAAAAAAAAAAAAAAAYEB4mQsAAAAAAAAAAAAAAAAAMCC8zAUAAAAAAAAAAAAAAAAAGBBe\n5gIAAAAAAAAAAAAAAAAADAgvcwEAAAAAAAAAAAAAAAAABoSXuQAAAAAAAAAAAAAAAAAAA8LLXAAA\nAAAAAAAAAAAAAACAAeFlLgAAAAAAAAAAAAAAAADAgPAyFwAAAAAAAAAAAAAAAABgQHiZCwAAAAAA\nAAAAAAAAAAAwILzMBQAAAAAAAAAAAAAAAAAYEF7mAgAAAAAAAAAAAAAAAAAMCC9zAQAAAAAAAAAA\nAAAAAAAGhJe5AAAAAAAAAAAAAAAAAAADwstcAAAAAAAAAAAAAAAAAIAB4WUuAAAAAAAAAAAAAAAA\nAMCA8DIXAAAAAAAAAAAAAAAAAGBAeJkLAAAAAAAAAAAAAAAAADAc//AP/39JDkdsad0yFgAAAABJ\nRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('./images/ff_one_step_univariate.png')" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "from keras import regularizers\n", - "from keras.models import Model, Sequential\n", - "from keras.layers import Dense\n", - "from keras.callbacks import EarlyStopping, ModelCheckpoint" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "LATENT_DIM = 5 # number of units in the dense layer\n", - "BATCH_SIZE = 32 # number of samples per mini-batch\n", - "EPOCHS = 50 # maximum number of times the training algorithm will cycle through all samples" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "model = Sequential()\n", - "model.add(Dense(LATENT_DIM, activation=\"relu\", input_shape=(T,)))\n", - "model.add(Dense(HORIZON))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use RMSprop optimizer and mean squared error as the loss function. " - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "model.compile(optimizer='RMSprop', loss='mse')" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense_1 (Dense) (None, 5) 35 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 1) 6 \n", - "=================================================================\n", - "Total params: 41\n", - "Trainable params: 41\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Early stopping trick" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAFvCAYAAABaYRrTAAAAAXNSR0IArs4c6QAAAARnQU1BAACx\njwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAHA9SURBVHhe7d0HeBTV/j5wf//rLeq1996we/Va\nsfd2rQiiiCLSewdBmqCAgnSlihQpSickEHonEELvPYRQ0xPS2/vPezirIWw2ISRhsvt+nmceyJnJ\n7OxsxHlzzvme8yAiIiIiIiIlSsFLRERERESkhCl4iYiIiIiIlDAFLxERERERkRKm4CUiIiIiIlLC\nFLxERERERERKmIKXiIiIiIhICVPwEhERERERKWEKXiIiIiIiIiVMwUtERERERKSEKXiJiIiIiIiU\nMAUvERERERGREqbgJSIiIiIiUsIUvEREREREREqYgpeIiIiIiEgJU/ASEREREREpYQpeIiIiIiIi\nJeycBa/MzEzExcUhMjIS0dHRSEpKsnvyl5GRgbS0NGRnZ9sWICUlBbGxsUhISPiznX+mp6efdixf\nIyYmBidOnDilPTdeV3x8PKKiosy18Rp5noK4XpNbbnwtvmZycrJtERERERERX3NOgldwcDC+//57\nVKtWDZUqVUKFChXQokULTJ482QQpdxi6fvvtN3z77bc4fPiwCTrz58/HV199hU8++QR169bFsWPH\nzLEMOYMHD8YPP/xgQhnDkJ+fH5o3b26ObdmyJRITE82xua1evRq9evVC9erV8eGHH6JixYrmGrt2\n7YrZs2ebEJUfhrTu3btj+PDh5muGyVGjRqF+/fr4+OOP8eOPP+Yb9kRERERExLuVavBiIOrfv78J\nW9yaNm1qwlHbtm3x5ZdfmjYGq4iICPsdf2F46tChgwlEe/bswdSpU83xtWrVQpMmTVC7dm0cOHDA\nHMtQ1ahRI3z66acmpDEM8dg6deqY1+Q+BjIXhqQhQ4bgo48+Msc1aNDAXAc3/t3V/vXXXyM8PNx+\n16nYzmMY6thL1qlTJ/N1vXr10KxZM3Tp0sX0pomIiIiIiO8pteCVlZVlAlDlypXRunVrbNy40e45\n6ciRI6bHiL1D7HXKG1IYvL755huzn71XDGqTJk0yIYc4NNA1nI/BiwGLxzCgsdcqMDDwz14uBjvX\n8EEOK2zXrp05L3vd1q9fj9TUVLOP+LqbN29Gq1atzLUzWOUObS6HDh0yvWkMkaNHjzaBKyQk5M9z\nsTeO90BERERERHxPqQWvrVu3mmDSuHFjE7LcYaBhsGEI2rZtm209yRW8GH5q1qxphiXmhwGLvUzs\n8WIvF4ckusOhf2PGjDHn7Nixo9tA5cJeMfa48diRI0fa1r8wePH1atSoYXrJduzYYfeIiIiIiIiv\nK5XgxflZHGrHIXtLliyxre4FBASY43766SfbchKDF+dacR/DlKdiFQxenM/FY9u0aZPvED/2Qn3+\n+ef47LPPsGHDBtuaP84B47wvzgFjD1tuDF5Vq1Y1rzlo0CDbKiIiIiIiUkrBa+fOnaaniL1BBVUI\n5DwtzuPisL/cXMGL5/n1119tq3u5g9eMGTNs6+nmzZtnzvfdd98VqvAFAySHSfL6VqxYYVtPcvV4\nMZhxuKKIiIiIiIhLqQQvzq9iIOFcKg4h5DC8/LY1a9aYYxnS8s61YvDiMMSCes1yBy8OccxP3759\nzTFjx461LQVjbxbD2u+//25bTmLwqlKlitk8DVkUERERERHfUyrBa+LEiabCH8vGM1R52tibxGMZ\nYI4ePWrPcDJ4cbgi97HYhSeu4MXXy68KIbmGPy5YsMC2FIwFPRj+hg4daltOcgUvlrVnz1hR8b3l\nnd8mIiIiIiJlW6kEr/Hjx5teIlfFPxanKGjj97DioIuruAbDGXvGPHEV12AQYjn5/LA8PIPXqlWr\nbEvBWFGRRULcBS+2M/AVNXjxPbLIR7du3VQBUURERETEi5RK8Jo2bZoJXmdTdMIVvNjjtWvXLtvq\nHoMXy8mzaIZrUWV3OLeLwcvf39+2FIyLIrPHi3/m5gpenop5FGTdunXmPvE8W7Zssa0iIiIiIlLW\nlUrwWrx4sempYjn2ooaSkghev/zyiwlew4YNsy0F69mzp3kvc+bMsS0nuYIXi28U5T2yh4sLNruG\nXHJh6cIU/BAREREREecrleDFSoWs+McgxMWLi6IkghfLwzN4sYKiayFmTzj0sXbt2uZ7Dh48aFtP\nOtvgxUqIDFycl8aNPV+eCoOIiIiIiEjZUSrBiz03nTt3NmEi79yo/OSd41QSwYtBqmHDhuac06dP\nt63546LNDF0cMpm3N+psghffm6u3yxW8XL1eRe0hFBERERER5yiV4EVr1641wYuLDHOR5PyG0R05\ncsQU18hbjbAkghdxyCBDTrVq1cyQyPxwHxdOrlWr1mm9XXQ2wSskJMS8L1fwYmVH/p1tmzZtskeJ\niIiIiEhZVWrBi1iK3RUwevfubcJYaGgotm/fbhYk5sLIDEvsVWJ7bgxe7DXj9xYmeDVp0sSEvIKC\nF3FNLoYmBp5+/fph+fLlpnLi/v37zTX+9NNP5nVZVGPu3Ln2u07F4MX9LVu2PKPgxQDKOWaNGjVC\n48aNTSVGDsvk39kbV9Bi0SIiIiIi4nylGrw4fJDl2NlrxADGjYHH9XdunTp1MuXdGbRycw3HYzDZ\nvXu3bXWPwYsBiD1Ux48ft62esaIg53oxfDFA8U++FgMXN/ZksWcqPyxb//nnn5tFos80eEVGRpq5\nb1FRUX+Wk+ffXW0iIiIiIlK2lWrwcomOjjaLFo8YMcL09nBtr8DAQFNMIr/1qxhQGLgYkBisPOE6\nWlyEmAUrUlNTbWvBkpKSEBQUZErF87q4cT2xjRs3Ii0tzR7lXnJysnm9gtYYKwhL3LM3UERERERE\nvMc5CV6SP/bq/fjjj/YrERERERHxBgpeDlPmgld2NpLcFBsREREREZG/KHg5TFkLXmnR0ZhfvjzW\n1auHVM1HExERERFxS8HLYcpij9ehGTMw69ZbMfeRRxAZFGR3iIiIiIiIi4KXw5TVOV6JYWFY/v77\nmHrZZdj900/Izsiwe0RERERERMHLYcpycY2s1FRs//57TLnoIqypUcMMQxQREREREQUvxynLwcvl\n2IIFmF2uHBY98QRiN2+2rSIiIiIivkvBy2G8IXjRif37sfzNN+F/xx2IWrXKtoqIiIiI+CYFL4fx\nluBF6QkJWFGpEvyuvBIRS5bYVhERERER36Pg5TDeFLwoPS4OQR99hJk336xhhyIiIl4kOzsbWVlZ\n5s+SUhqvIVJaFLwcxtuCFzF8zX38ccx74gmkxcTYVhERESmrMjIyMHToUAwYMADRJVhMa86cOea5\naLN+eSteQMHLYbwxeFH89u3wu/56BNeogez0dNsqIiIiZVFaWhqqV6+Ojz76CIcOHbKtJ6Xn/H9+\nzJgx+P777xEWFmZbi6Zfv374+OOPMXfuXNtS+uLj4/HTTz+ZkBmjXyDLWVDwchhvDV50JCAAk84/\nHwfGjbMtIiIiUhYxeNWpUweffvopDh8+bFtP2rlzJypWrIhPPvkEY8eOta1Fw8BTqVIlzJ8/37aU\nvsWLF5v3wpC5RHPW5SwoeDmMNwav6OBgBFevjohlyxBSrx5m33svMhIS7F4REREpazwFrxMnTqBH\njx5o0aLFWQ8RLOngxWGSy3KeT3bt2mVbTscevXbt2qFDhw44ePCgbRU5cwpeDuONwSspLAxL3ngD\nM6+6CoEPPIDJF16oEvMiIiJlmKfgRRxuGBcXZ78qupIOXuPHj0flypUxffp02+JeSkqKCZQiZ0PB\ny2G8dqhhVhZCx4xBwC23YPL//R/2Dh1qd4iIiEhZU1DwKi4lHbyGDx9uhhD6+/vbFpGSo+DlMN48\nx4sSw8Kwrn59+F9xBdbm/IOdcvSo3SMiIiJlhbcErxEjRpjgFRAQYFtESo6Cl8N4e/ByCZ86FXPK\nlcPcu+7C4VmzbKuIiIgUBoe+RUREFHo4H9fCYkU+fk9mZqZt/UtCQoKZ57RmzRps2LABR48eNd+T\nn4KCF18rKirKlJ0vyLFjx7Bp0yasXr0a27ZtQ2Jiot1zZsGL18w5ZcHBwea9xMbG2j2nSk1NNfeB\n1zhw4EATvP744w8z34vXHBkZecqwQt4v7uPxhVlPjFUQd+zYYd7P2rVrsW/fPrf3PK/k5GRzXUlJ\nSbblpNDQUHOeLVu2mOsrbnxPfA1+9tz4d0+fPfH+8Fr5c+jC6+b75pa7nfeDx/JnxoVt/Kx3795t\nhqXmh1Ux+bOxYsUK8/55noLw/bj7+Tt+/Lj5+Thw4MA5WxdOwcthfCV4UfKhQwj+/HPMuPZaxKxf\nb1tFRESkIEeOHEG9evXQuHHjQj2Mbt26FfXr10fHjh3/fLDnAy9DVq9evVCzZk0TQD788ENUqFDB\nlIrv1q2beQh3x1PwYsho3769ub7w8HDbero9e/aYZ54vv/zSVEHkxpBVt25dzJgxw7zGzz//7DF4\nMXjOmjULbdu2xec5zxS8fp6H87Zq1aqFCRMmnDY3KygoyLwm3yNL1fP9VqlSBV988YXZuO/XX3+1\nR8M8wPO9sMAGA2p+GDj4flz3ktfhOjc/Jz8/P4/zxGbPnm3e+5QpU8zXDBydOnUy38/3xfvAc7PE\nPsPq2eLnxCqNbdq0QdWqVc1rcPvss8/w9ddfeyw4wmqVvFZ+P88zc+ZM8/PA+857unLlSnskTBl+\n7mPo4c8cP5MaNWqYe8T7zQCWG+8RP9NmzZr9eV28lzyenw2XKdi+fbs9+nR8ja+++goNGzY0Idq1\nHABfi+do2rRpof6bKQkKXg7jS8GLsnL+UV3w7LNY/OqryPLwGw8RERH5C3skGG74oMuH3oIwSLjK\nu7t+28+HYz7M88GWD9+jRo0y4eC3335DkyZNzLn5oO8ufBUUvBhU+LCcX3BjJUEGJT4I81j2PE2a\nNAmDBw9Go0aNTDvnXzF48Tz5BS8+M/FBn+GElRQnTpxoCmXwfGzje2B77h4nBoAuXbqYZy6+B75/\nvmbXrl1NO7fcc77YU8Jr4LF8iHeH981Vcp4P9gxHDFAjR47EN998Y+4zr6Vz58759lrxeJ6DBT8Y\naFyBbdiwYZg6dSoGDRpkwgPPw8+H11VU7PUbMmSIuS5+ht27dzf3n+uvsXoj2xly+Dm5w8+J18oF\nrnm/eX9atmxprpHvd/ny5fbIk8+2vGYGXt4PHssQ6zqWAdOFgZL3iMfzc+Vnwp9d3hsGONfPBvcx\nqLrDn03+3PJ9MdzzHHxNXgcDGN8rf3FxLih4OYyvBS9ib9fUSy7Bzj59bIuIiIgUZMGCBeYBlQ+v\nfJDOD8MCeyfYk7F//37bChMu2FPEIJJ7aBixJ+mHH34w5++T8//nvEOzCgpe7G3g93JYV15c56ta\ntWrm4ZkP4nl7gTjUkL0iDB58+Gcwche8+Dp87wwmfGDPHa6IvSKunpXcPTB8L+wV4TA0fi/3s4eN\nX3PjvtznYu8I3wt7DN0Fr3nz5pmgwvs7bdo0M2Qw9/3i+djj2KpVK3MePvjnvd/EcMVrYfDj++b8\ns9zDLomfH8MHz8NAUtQhc7y/PAd7thhOcg/J4/VywWp+tuwVzP0z4zJ06FBzrQzHvMecI+d6T/x+\nbi7sOWXw4fvh+RjmXD+v/DlyvTbfK3+ZwPMymLHHLfd5+F5dPxvsCeP1M8zl5frZZEhlQOTnxp8F\n1+vwtfP+rJQWBS+HKWvBKz0jExHRCcjKOruxstt79MD0K69E3JYttkVEREQ8YSBgoGJA2bt3r209\nHefH8GGWv/l34UMse0w8DX3jAzcfbvmwzDlOuZ1N8GLw4PXwAdpTcOCDOgMNh+u5C158kC5oXa3f\nf//dBDz2gLl7rcIU1/AUvHgP+YDPYFFQgQ5eK+8ZX89dTxKDF8/D98wes/zmWfF7eQ5eT1F6vThv\nisGXPzvu5ue5MJTyfbNnKi8GL14nz5N7WKY7DF48lj9HDKb5YW8l3xd7+ThHyxN+rjyWPX/8WcyN\nX7MXla/Jnq9169bZPeeegpfDlLXgtXrDXtz76tdYuXaPbSkaDjlc+PzzWPTyy8jO9dsNERERyR+H\nTvHhmMUh3GHY4FA7PqTmHv5VGAw2XASZwSXvnJqiBq+NGzea8/HBOG9vTl4Me3xYz6/HqzDYm8cw\nw7lt7nqZfvnlF3NvPJWT9xS8xo0bZ/bx/Ll7Z/LDYXkMBAzBeYOVK3ix58xTIGLREAYOnoeFO84U\nh+zxe9nL5wmDIo9jQMvbo+oKXhwu6ulaicHLFRTzKwbDz5o/Txy+uHjxYtuaP/7suO4Bi5jk5gpe\nfE0+V+fuzTvXFLwcpqwFr6TkNDz2Xhd81nyYx99aFUZUcDCmXnYZduX8gyAiIiIFY6U3BhN3v/kn\nPjyzR6ZBgwZntKAxwxMLSXAoH8/v7uG2KMGLQ9MYvBhYCsIHZg67YxgpSvBiEOIQP14j74+7YYJn\nE7wYnDgfivs4J6swOCSS18Ohcnk/D9dQQxbU8DQUju+LQY+vy2B5JjgMksMYGXDy9mLmxWvge+bP\nT95iHq6hhpyPVRBX8GLgyw/fB49hQY28VR3zwx5T/iyNHj36lGdQ/mwyLDKUFWb+Y2lS8HKYsjjH\na2rgWvz9rlpYv/X04QRnakfPnph26aWIzTXRUkRERNzjQ6arV8rdkCoWfeADOosmeMKCD/x+Fixg\nkQ3O7+JDMM/LB9jcc6SoKMGL38OeHrYXpleDOESQr19Q8GIIYiEP9uqxV4lzexjaeI2uYOoueJ5N\n8GLFPNeQNk9DPXNjmOTwN14TQ2FuruDFohcFYWU/fjYcRnom2HPJ98Lwxe/lHKn8Nt5L3jeGtLw9\nngxePA9/VgriCl6eQpDr5zT3cNiC8GeC94Dnz93bmDt4sWqnkyh4OUxZDF4nElPxdMVuqNxwEDIy\nPa/7UJCMxEQsev55LHnzTTP8UERERDzjAzsfWtmblBsfRlmtkOHI3ZA0BiSuecXeExZI4FwqBgI+\nzPLBnHNtONSvuIIXe9AYEtmDxSGHhVHQOl48J+cGMSDwWnj9fB/sUeLDt6sKXkkELwY93h8ODeQa\nYoXFIhu8Tt773FyfI6tKFqR3795FCl6rVq0y95Ovzz8L2nhv+Hnl7fF0BS8GpoK4gpenoa78xQCP\n4XkLi/eP18aCHOzJc3H9bDIw5ldV81xR8HKYshi8aGLAGvy9XC3MX37qWgxFEbNunalyuKNvX9si\nIiIi+WGxBD78sycld7hg9UA+mObXi8CHXT6A8xj2oPDBnz0drHLnChg9e/Y0xxRH8OLcJIY5tvPa\nCsPTOl4sLMGqfDwf1+ziQzvXf2IvB4dYsneJ64hxqBwDWHEHL4ZZFpdgaOUxhcU1pnhP84aZMwle\nfFYsSvBi+GEw5WfH8vGTJ0/2uLGMO3sQ837GruDFcvIFcQUvLs6cH1a35DEcNlhYXFSa95E/A+6C\nF382Dx06ZFudQcHLYcpq8GJ1wyc+6Iq3qp9ecrYotvN/AJddpiqHIiIiBchdQCN3QHKVSl+6dKlt\n+Qsr4/GhlQFp9+7dbgsQMEDxobm4gheLW7B3jUHK00O4C4cP9u3b123w4j4u/Mz3x6p7+VXBYzhi\nAYiSCF5cC6p27domuOady5Yf3meGRN5Td0MNSzp4Mazwevn5nA1X8AoMDLQt+XMFr7w9fLkx5PF8\n/AVAYXE5Bd6D77777rShhgpeUihlNXjRzPkbcNH99bAwKP/VxAsrM+cf5wXPPIPFr72mhZVFREQK\nwGDEh1vXgyt7lxgU+ACad8FeV1ArqIIcH2Y5RK+4ghdft3///uZ1uU5UQRhSXL1DeYMXiz0wQLDH\nicMN87N+/XoT3NjT5il4FaWcPO8Bh05yn6dQkRuHJLL8P+9B3rBYGsGLnxVfn9/Ln5GiKu7gxSGQ\nPB8XYeZ9LQwWaOH74GeYm4KXFFpZDl6ZWVl484veptcrNe3sw1J0SAimXX45duX8Iy0iIiL5Y6hg\nMOCcIw7B44MsH3bdrbHEtbtc84y4SG1++NDKh2EGnOIIXsT1l9jOtbwKGiHD4YIMKO6CFwMVh8y1\nbt3atrjHoXJ8vaZNm7oNXq51vDyVVs8veBGLeHBfYXtqOGyPr8deGnfl5HmukgxevOcsmsLPlAs/\nF1VxBy8GUg6XZSgszLpbLCfPMO3uvApeUmhlOXjR/OVb8c+762Dxqh225exwyCGrHMZtO/u5YyIi\nIt6KD9SsMMcHUQ7B4two/t1dUQ2W62ZPEvd7KkfORXzZW8StuIIXv2bhC57T02vzHHwe4nHuFlDm\nMD22s0x+fhhAWSSE58gveDGY8T54qs7nKXhxfh1fgyGooF4vlm/nfeH73+bmuaY0ghctWrTIvGcG\nsIJ6vfhzlXsYn0txBy+G0LFjx5rjWKI/77pheXEuH4/lufmzkpuClxRaWQ9eGRlZeLrid/ik8WDb\ncnYyEhKw8LnnsOSNN5BZyHUdREREfNGOHTvMwyiHETIMcD5Vfjgvig/uLBvPB9Xc+PX48eP/rGxY\nXEMNXfiAzX3Nmzd32+PGYMgKjQworqGOeYMXe+1YNIPvl0EzLz5w8wGec7t4nvyGGnKuG8/Rrl27\n03qgXDwFL3KFNxY34fncYUDjmle853mrT7qUVvBiIQq+X74Wf1byq8jIHsc+ffq47YEq7uBF/Hz4\nc8Nj+XPJ4JwXgyBfk71jnLvHQjB5KXhJoZX14EW/z1yNyx5qiDUb99uWsxOzdq2pcqiFlUVERPLH\n4OB6oGYvj6f5WyyzzWp8PI4L9nKNJVbZY2n2tm3bmodfzsNiAQsOS8v7gM+HWxaJ4FBAd8GLIYXn\ndlfOm3Ob+LzD12B44nA9vhaLgLDSIodB8ntZqpz7eFzeYXF8AOfwQB7HB2z28PH72ZvDOT8ccsle\nLr4nTwtIc/6b6z4wZCxcuBDTpk07pdgGgxf3szy9u+DFIJO7d5ChgQsqczgkX58V+3g9fB8MOu7O\nQQxwDFOFqezHz4X33lOJdk/Y48bPzxUouXYYAyw/Zy5MzPPzvnH/Jjdrq/J4XivXfSsIh1XyPHmr\nOLrDZQYYmng87zfncbEQC+8lf0a4NhvvMcM0f775c5BX7p9NBS/xyBuCV1JyGh5/rwtqtR3p9j+I\notiW8w/VVA05FBER8YjBgQ/5LLHNoW2ecKgfj2Mg4OYKDuyJcj0kM9DwIZbV8HJzrRHGHgoWusiN\nwYvn5YMze03cYVjh8D4+HPMhO/c1MHhxjhrxGAYjdz1JvAaGJL5fnoPfy3Owh4zBgT0m7M1hrxnX\nesov8PC1uBCy6xwMFLnnxjGc8b0wkOZXyIPvmcPfGPZc9zH3xmtgUGRlx/zw+9nLyABWEPY48diQ\nkBDbcubYG8n1wHjPXJ8Br5V/MmwzQG7ZssXtsxx7Lfn6hVkImwVV+BkWdjFj9g66irC4rin3dXE+\nHa8rP66fTYbtM1lfrTQoeDmMNwQvGjFxKa57ojkOHvH8j35hZZw4gflPPYVl77+vKociIiL5YCVA\nBg53vTvucFgfy8mzh4ZrMrHHIXe4YFhhj0/eOTd8GGewYyhxV4qevVqRkZGnzb/JjedgjwRDHnu3\neA0cLslhhC78u7vXz437GSJ5/ez12rt375+vyz95jbweT78M5nvhOdiDxHuQ+xp4Dr4XHlPQL5R5\nvzh8kj1H7EXkn3xP+YW+3PhZ8LNj4YiC8DNi4C1oLlRB+N4Yjhk+eb18//x5YKl8T58dr5HX6ilI\nurh+htgTVVi8zwxNDGvs7eTwQoZMrsvm7uctt9w/m57ew7mg4OUw3hK8IqITcO3jzTBsQsG/CSms\n44sXY9I//oFDHioPiYiIOFYBD+0i4t0UvBzGW4IXf9vQ5JtxeOL9rkhL9/ybiTMRXKMGAh980PSA\niYiIlAXp8fHY2qWLKRYlIr5LwcthvCV40dLgnbjhyeZYsnqnbTl7ifv2YeZNN2FDy5a2RURExJmi\n1qzB6urVsfCZZzD9oosQcNdddo+I+CIFL4fxpuBF/327M9r/WPAk0TMRPnWqGXJ4cOJE2yIiIuIc\nXAplc/v2mJwTthbkhK6dPXtiS87Xe4cOtUeIiC9S8HIYbwteX30/EU9+8C2SUwo/obIwNrZpg+lX\nXYXjixbZFhERkXMvPSd0BX38MaZfeSX2DhmCDK1BKSKWgpfDeFvwWrhyO/5+Vy3sCT19Ebyzwf+R\nrcz5H9uMyy83RTdEREScIKRuXQRcfz2i85RfFxFR8HIYbwteh47G4JZnWuHnMaevKn+2OFk5qHJl\n+N1wAyLteh8iIiLnyuGZMzHl4otxaPp02yIi8hcFL4fxtuCVkZGFCnUH4p0a/WxL8eKQjiVvvIFZ\nN9+MmPXrbauIiEjp4kiMeY89hpUVK9oWEZFTKXg5jLcFL/pp9Hzc+mwrhIZH2pbilXL8OJa++SZm\n3nILotessa0iIiKlh/O5plx0EeI2b7YtIiKnUvByGG8MXsci481iygNHzbctxS81MhKLXnnF9Hxp\nzpeIiJSm+O3bMeOaa7C5Y0ezjqWIiDsKXg7jjcGLmn87Afe/1h4pqem2pfilx8ZiTY0amHrRRdj6\nzTdmDpiIiEhJOrF7N+befz8WPv+8FvcXEY8UvBzGW4PX2s2huPQ/DeG/cINtKRlZ6enY/dNPmHrZ\nZZj/1FOICgqye0RERIpX4oEDmPvf/2LBY48hMTTUtoqIuKfg5TDeGrwyMjPxbs3+eL/OAGRmZtnW\nkhO7ebMpujH5wguxtWtX9X6JiEixSj58GAvKl8ese+7Bif37bauISP4UvBzGW4MXTZ4dgqsfa4KN\n28NsS8nKTE7G3sGDMfXyyxFUpYrpDRMRETlbiXv3Yt7jjyPwvvsQv22bbRUR8UzBy2G8OXilpmXg\nrpfaokPvqbaldESuXIkpF16IPTkhTERE5GxEBwdjzv33Y95DDyFh1y7bKiJSMAUvh/Hm4EU/DJmF\n255rjeSUNNtSOrZ99x2mX3kl4nfutC0iIiIFy0xJQdyWLdjevTvmly+PgGuuwcIXXtCcLhE5Ywpe\nDuPtwSto3V5c90QzLA8p3d8SZiQkYP6TT2L5Bx+YRS5FREQ84TIluwcOxJJXX8Wkv/8dM2+8ESF1\n6yJswgSkx8XZo0RECk/By2G8PXjFxifhobc6ouuAGbal9HB9r6mXXoqAW2/FrLvvxq6+fZEWHW33\nioiInJwfzOq4fjfcgFm3347Vn3+Oo4GBJoiJiJwNBS+H8fbgRR81+Bnv1epvKh2WtvXNm2PKeedh\neYUKmHHttZj7yCOIWrXK7hUREV92IjQUS995B1P+/W9s6dwZJ/bts3tERM6egpfD+ELwGjh6Pu5/\nvT2ORZZ+iXeW/w0oVw7rmjbFib17sfStt0wv2J4hQ5CdVfJl7kVExJn4S7jZd9yBeU88geiQENsq\nIlJ8FLwcxheCV8jmUPzz7jrYvCPctpSu8MmTsdPe46yUFGz55htM+de/sKldO2Sfg144ERE5tw77\n+8P/2msRVLEi0qKibKuISPFS8HIYXwheMXGJpsDG+BnOGeIXNn48Jv7tb9gzaJBtERERX8DQNflf\n/8Lq6tWRkZhoW0VEip+Cl8P4QvDKzMzCh/UGokabEbbFGTZ36IAZ112HlGPHbIuIiHgzrvM47Yor\nsKZWLVNUQ0SkJCl4OYwvBC/iel53vdy21Nfz8iQ1IsLM/1rfooVtERERb5URH4/ABx7AiooVNcxc\nREqFgpfD+Erw2rAtDDeUb44ps501gXnvoEGm2Ebshg22RUREvNHOnj3hd/31SNi927aIiJQsBS+H\n8ZXgRf/7si/er90fGRnO+U0jF1de9PLLmF++PFI1wVpExCslHzpk1uliyXgRkdKi4OUwvhS85i7b\ngn/eXRuLgrbbFmdI2LMHsx94AEtfegmJ+/fbVhER8QbZ2dlY26AB/G6+GWkxMbZVRKTkKXg5jC8F\nr/SMTFSq/zOe+6g7UlLTbaszxO/ciUVPPWXmfB2ePl3j/0VEvEBmSgo2f/21GVJ+eOZM2yoiUjoU\nvBzGl4IXbdkZjsseaohhExbbFudIjY5GSN26mHHhhVjx1ls4Mncuf1Vq94qIiNPlrlIbs24dluf8\nWz7r2msR9vvvtlVEpPQoeDmMrwUv+ur7SbjxqRaIiE6wLQ6SE7SOL1yIpa++Cr8rrsDC55/HnsGD\nkXz4sHrBREQc7MSePVhQvjzWN21qfokWkBO4Fr/0EqJzApiIyLmg4OUwvhi8jkbE4ZZnWqH5txNs\ni/Nk5YSsY3PmYE3Nmgi4/XZMu+QSrKxUCXuHDDGTtEVExFm4MP6k887D3IcfNoGLvzTLSnPOEiYi\n4nsUvBzGF4MX/TpxGS5/uCFWb9hnW5wrKTwc4VOmIKhyZQRcfTUWPvecWQNMREScI/jLL7HolVfM\nv8+ZSUm2VUTk3FHwchhfDV7p6Zl4qcoPZsvKKjvzqBJ27TLrwGxo1cq2iIjIucalQfyuuw47+/Sx\nLSIi556Cl8P4avCiVev34pIHG2DExGW2pWwIHTsWUy+4AMeXLLEtIiJyLh0OCMD0q65C9KpVtkVE\n5NxT8HIYXw5e1OK7Cbj12VY4cjzOtjgf5wxwvtfcRx9F8pEjyEp3Vml8ERFfkpGcjOXvv4+5jz+O\nzJy/i4g4hYKXw/h68IqISsDNz7REj0EBtqVs4KLLfjfcAP+bb0bAnXdiS6dOZi6YiIiUnojly7Ho\nuecw6/rrcXDiRNsqIuIMCl4O4+vBi7oOmIG7X26HtPQM21I27B0+HJP+7/+w7N13MeueexBYrhwO\njBtn94qISElJi47G5nbtMPPSS7Hygw8Qu3Gj3SMi4hwKXg6j4AUsDd6F655ohiWrd9qWsoFDWhY8\n+yyCa9ZEelwc1jVqhMkXXIC1DRuar0VEpPgdmT0b8+6/H4F33IH9I0ciOyvL7hERcRYFL4dR8AKS\nUtLwwBsd8E2/6bal7IjfsQORK1far4CDU6aYIYgsaXxi717bKiIiZyvl+HFsaNoUMy+/HGuqVcOJ\n/fvtHhERZ1LwchgFr5OqtRiON6r1Rmpa2S9UwZLzLLwReNddiA4Jsa0iIlJURwICMOfOOxF4660a\n0i0iZYaCl8MoeJ00adYaXP5wI4SGR9qWso3VDle8/z6mXXmleWAQEZEzl5GQgC0dO8LviisQ/Nln\nSDxwwO4REXE+BS+HUfA6KexwFP79QH34zV9vW8q+jBMnEFS1KqZfcomZkyAiIoXH0QOLXn4Z0y+7\nDPtHj7atIiJlh4KXwyh4nZSUnIrnP+6Btj9Mti3eITM11RTfmHLRRTji729bRUTEk8jlyzHzllsw\n7/HHEb1unW0VESlbFLwcRsHrpOzsbFRv9Qsq1B1oW7wHqx+urlYNUy+7DBFLl9pWERFx5/DMmZhx\n9dVYWbkyUo8ft60iImWPgpfDKHj9pWPvaXjorU72K+/C8LXyo48w48orEb1mjW0VEZHcDk2fbkYI\nbGjZUmXiRaTMU/ByGAWvvwybsBjlXvwKMXGJtsW7ZMTHY9n//oeAO+5A/JYttlVEROj4okWYdtll\nWN+sGbIyytaC+iIi7ih4OYyC11/mLttqgtfG7Qdti/dJi4rCopdewpx770VSWJhtFRHxbbEbNmDG\nNdcg6OOPka3QJSJeQsHLYRS8/rJ9z2Hc8UIbBCzcaFu8U/KhQ1jw5JOYX748knL+LiLiy9Lj4rDg\n6aex4JlnTPl4ERFvoeDlMApef0lMSsVtz7U2Qw69HdeimXXPPVj0yitIj421rSIivmdL586YfvHF\niN20ybaIiHgHBS+HUfA61X/f7ozOfafbr7xb/LZtCChXDsvfegupERG2VUTEdxxfsgRTL7kEewYN\nsi0iIt5DwcthFLxOVbnhIFNWPjvbNni5mHXrEHDjjVj8+utIjYqyrSIi3i8zMRHznngCy955B1np\n6bZVRMR7KHg5jILXqdjbxYWUk1PSbIv3Y3n5mTffjGVvvIHUyEjbKiLi3bb36IGpl16KhJ07bYuI\niHdR8HIYBa9TjZ0ehJufaem1JeXzE5UTvvxvvBFL3nzTVD4UEfFWXJ8rdMwYs17Xrr59bauIiPdR\n8HIYBa9TrVy7B+ffWROHj/lewYnokBDMvOkmLHntNQ07FBGvFL12LVZ+8AFmXHwxNrRqpSGGIuLV\nFLwcRsHrVCwp/+8H6mPjdt9c4yoqOBgzb7wRS1lwQ8MORcRLZJw4gR3dusH/mmuw8JlnELF0qd0j\nIuK9FLwcRsHrVGGHo3Hrs60xY9462+J7WHCDww4Xv/Ya0qKjbauISNnEtQsXv/oqZuWErj0DByIz\nzXfm8IqIb1PwchgFr1NFxybisXe7oN+vc22Lb4pavRp+N9yAlR9/jMyUFNsqIlK2ZCYlYfl778H/\njjtMj76IiC9R8HIYBa9Tpaam4/XPf0TrHn/YFt8VuWwZplxwATa2bGlbRETKlp29e2PapZeannwR\nEV+j4OUwCl6nq9psKCo3/Nl+5dv2jxqFyTnh68Bvv9kWEZGyIeXoUbNUxpYuXWyLiIhvUfByGAWv\n0zXqPBYvfNzDfiUbW7fGjCuuQNzmzbZFRMT5NrVti1l33625qiLisxS8HEbB63RdB/jhife7Ij0j\n07b4NlYDW/zyy5j36KNIOXbMtoqIONfRwEBM/uc/sX/0aNsiIuJ7FLwcRsHrdMMnLMHD/+uEiOh4\n2yLJ4eGY8/DDWPj880g6dMi2iog4B9fkSouJwe6BAzH98sux6rPPkJmaaveKiPgeBS+HUfA63ezF\nm3H3y+2wbfdh2yJ0Ys8ezL7vPsy55x4cnDhRDzQics4xbB2dOxebv/4aS956C9Mvuwz+112HDS1b\nIiNevzwTEd+m4OUwCl6n27H3CG56qgUWr9ppW8Ql5cgRBH/+OfyvvRaB//kPNjRvjug1a5AeG2uP\nEBEpHaxUuOx//8PMq6/G7HvvRUi9ejg4YYL5JZGIiCh4OY6C1+lSUtNxzWNNMXbaStsiecWsX49N\nHTpg4VNPYdL552Peww9jc7t2ODZvHrK0OKmIlKD0+Hhs6dwZUy+6CIueecb0eGVlak6uiEheCl4O\no+Dl3nMfdUerbr/bryQ/fACK3bABm3NC2JyHHsLM669HwJ13mp6wyOXLkRoZaY8UETl70WvXYvEL\nL8DvyiuxM+f/XekJCXaPiIjkpeDlMApe7rXMCV1PffgdMjOzbIsUJDszE8cXLsTm9u0x58EHMfH/\n/T/TE7a+ZUskhYXZo0REzlzCjh1mPS4GroXlyyN2/Xq7R0RE8qPg5TAKXu75zd+AC+6ti0NHY2yL\nnAn+Fppzv9jzNatcOfjdeCMOjB+v4UAiUjhZWWYO17bvvsPchx7C9CuuQGDOvyX8xU56XJw9SERE\nPFHwchgFL/f2HDiGm59uiVGTl9sWKaqUo0exrmFDTP7Xv7Dq00/V+yUi+crKyMDhmTOx9K23TO8W\nf2mzoVkzHPLzQ1J4uD1KREQKQ8HLYRS83OMQw3dq9sN7tftruGExORwQgMD77oPfDTcgpFYt7Bsx\nAkkHD9q9IuLLsrOzcdjfH0tffRXTL74Yy959F4emTdMcLhGRs6Dg5TAKXvn75Y+luO6JZti574ht\nkbPF3q/VX36JKeedhxk5m/8tt2BTmzY4sXevPUJEfE3U6tVYUbGiKQu/8oMPELF0KbKz9AsvEZGz\npeDlMApe+YuKPYEr/tsI/UfOsy1SXA5OmYK5DzyA5TkPWZy/MfXii7G+SRPEb9tmjxARb2fKwnfs\naMrCB5x3HtbWq2f3iIhIcVDwchgFL8+adZ2A+15rj7T0DNsixYW9X1np6abk/N6hQzHr7rvhd911\n2N6jBzKTkuxRIuKtduT8v8cvJ3BNZ+/3Nddg75Ahdo+IiBQHBS+HUfDyLGRzKK58pBH85qt0cUnj\nXA6Grmn//jeWvPEGEvfvt3tExJvEbtyI9c2bY+YNN2DWLbdg41dfIW7rVrtXRESKi4KXwyh4ecbC\nGpUbDsLLn/6AlNR02yolKTokBHMfewz+t96K8OnTTa+YiJRtGYmJOL54MVZVrgy/a65B4IMPYmff\nvkg5dsweISIixU3By2EUvArGXq/zy9XE9LnrbIuUtNSICKypVQuT/vY3LHvnHRwNDER2hoZ7ipQ1\nrFy6o2dPLHzuObOkxPI33sDBiRM1nFhEpBQoeDmMglfBsrKzUaXJEDz+XhckJqXaVilpLC99dM4c\nLH7tNcy86irMe+QR7B44EHGbNpl9IuJM8du3I+yPPxBUuTKmXnIJAu++G8E1ayJmzRr1YIuIlCIF\nL4dR8Cqc9VsP4PKHG+HHYbNti5QWhqyooCBsbN0aftdfj4Cbb8ail17Cjh9+QMLOnchMSbFHikhp\nY9n3jPh4RK5YYSoU8r9NDhOectFFWP7uuzgwfrzW6xMROUcUvBxGwavwegwKwKX/aYgde7Wu17mS\nceIEDs2YgeDq1c1izBP/9jfMf/JJbOnUCUcCA5GZmGiPFJGSknz0qPnvjVUJV3z4IWZccw2mX3IJ\n5j/+OIK/+AIHxo41w4VFROTcUvByGAWvwos/kYLH3u2CivV/MkU35NxKPnzYzP1a37SpKUU/89pr\nMf/ppxG1apU9QkSKS1ZaGiKWLcPqzz7D7HLlTO+z/803Y1WVKtg3YgRi1q1DWnS0PVpERJxAwcth\nFLzOzPwV23DhfXUxNXCtbRFH4HDEnMC1/P33zWKs+375xe4QkbOVsGuX+W9r0vnnY8krr5hiGdFr\n1qjgjYiIwyl4OYyC15n7svUvePDNDoiNV1Uup+F8r+3dusHv8sux5osvkBgaaveIyJnKzsxE6OjR\nmHH11Zj7yCM4Mns2MpOT7V4REXE6BS+HUfA6c7v2H8VVjzTGj8NVaMOp+IAYWK4cZt18Mza3b4+Y\nkBBTBEBECofrbq1r2NDMo1yb86eGEYqIlD0KXg6j4FU0rbv/gbteboujEXG2RZwmJSLC9H4FPvAA\n/K6+GrPvuw8bW7Uy88JO7NmjstYi+Ug5ehQr3nsPM6+5BgcnT7atIiJS1ih4OYyCV9EcPByNK/7b\nGANGzbct4lTpMTGmAtvmDh0w97//NfNUAm6/3ZS9Dq5WzbRzC65RAysqVMCyt99G8JdfYv+oUeYB\nVMSXcO5W4H/+gzn33YeYtZrLKiJSlil4OYyCV9Gx16vcS18hJVU9J2VFVmoqkkJDETZ+PNbWr49l\nb76JBc88Y7Ylr7+OFZUqIaROHSx57TUTzqZceKEpXX980SINVRTvlp2NvUOHYuqll2LZO+9o7S0R\nES+g4OUwCl5Ft2HbQVz9aBNMn7vOtkhZlJmUZLa8Enbvxv6RI7Hw2Wcx44orsPCFFxA+dSoy3Bwr\nUhaxRHxSWBh2//QTFj7/vAldW7t0UQENEREvoeDlMApeRZeVlY13avTDRw1/RkZmpm0Vb5OdnY3j\nixdjZeXKmH7xxVhUvrxZIJYVFEXKotiNG7GzXz8sfe01TPrHPxBw661mPa5j8zV0WkTEmyh4OYyC\n19lhb9fVjzXBjr1HbIt4s5j16xFSvTr8WV77sccQ9vvvSE9IsHtFnIlDbNmDu3vAACx49lnMvOEG\nzLjuOgR9/DHCp01D4oED9kgREfEmCl4Oo+B1dhKTU3HHC23Q55c5tkV8AYsOrK5WDZP/+U8sfvpp\nhI0bpyqJ4jjx27djZ+/eWPrGG5iU87Pqd+21WP3ZZwgdMwapERH2KBER8VYKXg6j4HX22v4wCQ++\n0QHpGRpu6GtiN2xAcM6DrP9VV2HhU0/h8MyZmh8j5wzDf/y2bdg7eDAWPfcc/K65xgwjXFmpkikL\nn3z4sD1SRER8gYKXwyh4nb2gdXvx7/vrodcwLajsqyKXL0dwlSqYeP75WPzii9j3yy9Ij9Mab1I6\nuC7djp49sfj11zH90ksx/YorTM9W2IQJSA4Pt0eJiIivUfByGAWvs8fiCz8MmYV/3VsP7X+cghOJ\nKrrgi1huPmrVKlOkYNZtt2H6VVeZdcIOTZ+OxNBQe5RI8YjdtAl7hwzBIlYjvOQSzLrjDtOzxbCV\nGhVl/l0SERHfpuDlMApexYMVDodNWIzLH26E1z7rhd2hx+we8UXxO3ZgD0t0P/OMWQtsdrlyWP7h\nhzgwbhxSIyPtUSKFl52ZiaTwcOweOBBL3ngDftddh2mXX45Vn36K8EmTFO5FROQ0Cl4Oo+BVvDZs\nC8Pj73XBrc+2RsCijbZVfBUfljkMbFf//lj61lvwu/pqTLnkEqyuWtX0TOhhWQrCn5+9w4Zh2dtv\nY8oFF2DW7bcjqHJlHPjtN6RFR9ujRERETqfg5TAKXsUvOjYRddqNwiUPNsDykN22VXxedjbitmwx\nizIv4VycK6/ErDvvxPIKFXDwjz+Qevy4hoeJkRYTgyMBAWbo4Ow77jDDVhm2wqdMQeL+/fYoERER\nzxS8HEbBq2Qkp6ThxU++N8MOU9MybKvIX5LCwsywsRXvv48Zl1+OGbYgAnsyUo5oXThfxCItG9u0\nMUNTp/z731jx7rvYN2yYCeUiIiJnSsHLYRS8Ss6ioO244N46mDI7xLaInM41HDF01Cgsfvll+N90\nE2befDNWVKyIQ1OnIungQXukeCPO+QvNCdsLn30WATmf/ZyHHsLOnH+TuQZXVoZ+aSMiIkWn4OUw\nCl4lq2qzoXjk7c5a40sK7cTevaYnbPm772Ly3/+OmTfcgFVVq2Jnnz5mmOKR2bPNFrliBU7s24eE\n3bs116cMyjhxArv69cO8Bx7A1Isvxprq1XF0zhwzJFVERKQ4KHg5jIJXydq+5zBufKoFBoyab1tE\nCoeL4TKE7Rk0CIteeglzHnwQs++9F/533omAcuXgf9ttmHnTTfDL2WZcd52ZBzQjZ5ud8yDP4xe9\n+CKCPv0Uaxs2REj9+tjesyd2//yzOR/nDx1ftAgRS5aYRaDjNm9G3NatZs2npEOHkHLsmFkIOis1\n1fTIeZPM7CzsTjyCTXGh2JZwEEmZqXZPKckJVodnzcLchx+Gf06o3tS6tQnQIiIixU3By2EUvEpe\nl/4zcNUjjREarjLiUnRckJnDDrl+E7eolStx2N8fR3Ie4sN+/x17hw4129auXbG+eXNsaNECQZ98\ngqVvv41l775rHvQZ2ALuuAOT/vEPTDrvPPyRs7Ek+fSrrzblyWffdx9m338/5uQcy+C26OWXTeny\n1VWqYF2TJua10hMS7BWVPTsTDuHTkD64cV4tXBpQFVcFfoFXgjpjxtFge0TJSjl6FGtq1sSUnPvP\nexq/bZvdIyIiUvwUvBxGwavkxSUk4aH/dULlhoM05FBKV3a2mSfEXiv2YGUkJpotPTbWDE9MOX7c\nLPocsXy56QHjUMa9w4dj94AB2NiqFdbnhLc1tWtj6ZtvYn758vC79lpMv+IKrKlVC0cDA81wubIi\n8Ph63L6gHs4LrITz/D/EeTPtNrsS/hXwMTrv+B1ZJTjM79i8eZiTE2xn3XorDowdqyGFIiJS4hS8\nHEbBq3QsDNqOix+sj74j5toWkbKFww6jQ0KwZ/Bg0xs2/bLLMPexxxCWEyKcPhwxNOk47lrQMCdk\nVcR5MyqcvuUEsP/nXxF/HFpuv6N4ZGdlIWHnToTkhFe/Sy9F0AcfaFihiIiUGgUvh1HwKj0MXX8v\nVwszF2ywLSJlE9cbi9m4ESH16mHahRci6OOPzbwwJ+KcruZbR57s6XIXulzbrIp4eHFzxKSdfS8e\nh4UenDIFQR99hMkXXICFTzxhysJ723w5ERFxNgUvh1HwKj2ZmVmo1fZXXPVoE6xcu8e2ipRtx+bP\nx6xy5UwZ9KjVq22rc0SmJeC+hY1PDi90F7hc28wP8W//KlgWVbR5Vxy+GblypSlmMvuuu0yhk+Xv\nvGMKmaTl7BMRESltCl4Oo+BVuuJPJOO9Wv1x23NtsPeAFkUV78B1yJb973+YesklZgHguC1b7J5z\n71B6LP4961Oc5+cmbOXdZlXE5OOr7HeeisMGk8LDTeXH2I0bcXzJElP+naX/Q+rWxbyHH8bEv/0N\nC556Cpvbt0dMiNbvExGRc0vBy2EUvEpfdGwi3viiN/7zZkfsDnXm8CyRM8U5YHuGDMGsu+4yZdLn\nPfYYNrdrh0PTppkgxsBSmGIcDDjZLAiSa2OBEBYDSY2IQIqbjYsQs+Ljid27zbpmri0xJxBu2xaM\ni2d8nBO8Cujxyglm/+dfET171MXG+vWx5M03TUVIVnn0v+UWBNx5J/xvv938Oeuee/78M/Dee7H4\ntdew44cfELNuHTLKcNVHERHxLgpeDqPgdW4cj4rHc5W7477XOmDt5lDbKlL2pUVF4eCkSab8/Pwn\nnzSLA0/+179MUFn4/POmxP26Ro1ML9GaOnVO2YJr1MDy9983gSf3tuydd0whD5a5d7fNfeQRE4q4\nlhlL47s2v5xt7K3X4/Z+L+O8gHwKa7g2/w9x0aQPMPjzN7G6YkUzf21tgwbY1q0bdvTqZUr1832F\nT51qqkByWGX8jh3ITEqy71xERMRZFLwcRsHr3DkaEYe3qvfBlY80xuTZGpYk3oel69lLFbN+PULH\njsXmDh2w4qOPsOi557Dg2WdP2RbmbFw3LPjLL08LZSE52/YePUyZ+539+p2+9emDA+PGmflmR+fN\n+3NjCffIpUvQafUw/N+sSp6HG86uiBeXt0d8YpyKYIiIiFdQ8HIYBa9zKyExBQ06/oaL7q+PHoMD\ntM6XSAmIzUjEfxe3wHlzPnIfugI+xD/8K2NB5Gb7HSIiImWfgpfDKHg5w5Bxi3Dlo83wYb2fcOhY\njG0VkeKyMnonHl/a+uRcLy6czCqH3GZXwnXzamLYAa2xJyIi3kXBy2EUvJxj+ZrduOeVdihf4TtE\nRGuCvkhxO5Yaixvn1MSlgZ/hhpw/b5lbG7U2/ox1sVrUWEREvI+Cl8MoeDnLrn1HcUP5Fvik8WAk\np6TZVhEpLnfMq4/++2YiKzvbbCIiIt5KwcthFLycZ+6yLbjwvrpo/+MU2yIixSEL2bh9Xj0M2Odv\nW0RERLyXgpfDKHg5E+d8/b87amBKoKodihQXBq+b59ZGv70zbYuIiIj3UvByGAUvZ8rOzkbzbyfg\n6kebYEXIHtsqImeD/10tjNyM/UlauFxERLyfgpfDKHg5V0pqOqo0GYLrnmiO2Ys32VYRERERkYIp\neDmMgpezJSan4svWI/CPu2qjzy9zkJmVZfeIiIiIiORPwcthFLycLy09A90H+eNf99RBnXajzKLL\nIlI0KVnpSM/WQuUiIuL9FLwcRsGr7PCbvx7Xl2+Jlz/tib0HjttWETkTVdf2xc/7Z9uvREREvJeC\nl8MoeJUtG7aF4ZF3vsFtz7XGghXbbKuIFNajS1qi447x9isRERHvpeDlMApeZc/RiDhUavAz/nl3\nHVN2XkQK7/nl7fHVtjH2KxEREe+l4OUwCl5lEysedug9FZc+1BiNOo9DVMwJu0dEPHl71XdosHGo\n/UpERMR7KXg5jIJX2TZ1zlpc92QLPPZuF2zaEW5bRSQ/b6/+DvU3DrFfiYiIeC8FL4dR8Cr7tu85\njFeq9sTlDzfE2GlBtlVE3Fkftw/bE/RLChER8X4KXg6j4OUdWGK+VbffceF9ddGs63icSFLJeRER\nERFfpuDlMApe3mXSrDW46enWeLFKT9MTJiIiIiK+ScHLYRS8vM/OfUfNWl83Pd0KE/xW2VYRoeTM\nNCRlptqvREREvJeCl8MoeHmnxORUtOkxEf+6pw7qdxiNyJgEu0fEt7Xb9huab/nVfiUiIuK9FLwc\nRsHLu81csBG3P98Gj7/fBVt3HbKtIr6r2rr+qBj8g/1KRETEeyl4OYyCl/cLDY/Ekx98i3IvtsWu\n/Udtq4hvqr5uACqv6WW/EhER8V4KXg6j4OUbjhyPQ/kK3+KZSt0RHZtoW0V8j4KXiIj4CgUvh1Hw\n8h3s7brxqVao3XakbRHxPQpeIiLiKxS8HEbBy7cELNxo1voaMGq+bRHxLTtOHMK2hIP2KxEREe+l\n4OUwCl6+p9ew2bjovvpYvGqHbRERERERb6Pg5TAKXr4nMzML1VoMx+3PtzaFN0RERETE+yh4OYyC\nl29igY3H3u2CV6r2RGKSFpMV38HFk+MzkuxXIiIi3kvBy2EUvHzXtt2Hce3jTVGj9QikZ2TaVhHv\n9sOeafhsbT9kZWfbFhEREe+k4OUwCl6+bc7SLbjo/vr4dqCfbRHxbi22jMSLyzsiCwpeIiLi3RS8\nHEbBS/qPnIfz76yFwWMX2RYR79Vxx3g8vawdMnOil4iIiDdT8HIYBS/JysrGdwNn4oL76mPQbwtt\nq4h3+mH3VDy4qCnSszS8VkREvJuCl8MoeAllZ2fjm37T8fe7aqHrAD8TxkS8Ua890/DfxS0UvERE\nxOspeDmMgpfkxuGGlz7UGFWbDkVEdIJtFfEeh5KjsDEuFNma4yUiIl5OwcthFLwkLxbcuKF8czz5\nwbfYtf+obRURERGRskTBy2EUvMSdbbsP4ZG3O+O259pgafBO2yoiIiIiZYWCl8MoeEl+jkfG4/06\nA3HlI42wYOU22ypStiVnpiEiNV5DDUVExOspeDmMgpd4kpiciqrNhuGG8i2xeUe4bRUpuyYeWoEn\nlrRGala6bREREfFOCl4Oo+AlBUlITMErVXvh1c96IjVND6tSto04MB/XBFZHSmaabREREfFOCl4O\no+AlhbEiZDcuebA+JvoH2xaRsunXAwtw/ZwaCl4iIuL1FLwcRsFLCuuTxoPxdMXvkJKqXi8pu0aE\nzsd1c75U8BIREa+n4OUwCl5SWGs27sc/766NBStUaEPKrtFhi3DrvDoKXiIi4vUUvBxGwUsKKzUt\nA5Ua/IyH3uqEY5HxtlWkbIlMizcLKGdlq6qhiIh4NwUvh1HwkjNx4FAU7n31axO+VoTssa0iIiIi\n4jQKXg6j4CVnat/BCPyveh+cf2ctfNl6BEI277d7RERERMQpFLwcRsFLiiIpOQ0T/FbhkXe+wXVP\ntkCttiMRfiTG7hVxrpSsdIQnR2kBZRER8XoKXg6j4CVnIy09E+NmBOUEsC647fmvMGPeertHxJnm\nHd9gimskq7iGiIh4OQUvh1HwkuIQE5eIpl3H4+IHGqD38EBkZak3QZzJ72gw/p9fRSRnKXiJiIh3\nU/ByGAUvKS7Z2dnoOXQW/u/2Gvh2oJ9tFXGWwGPrcUHAJ4hKT7AtIiIi3knBy2EUvKS4jZm6Ehc/\nUB9d+s9Qz5c4zsKIzbjIvwrCkiNti4iIiHdS8HIYBS8pCaMmL8cF99bF0PGLbYuIMyyJ3IprA7/E\nweQo2yIiIuKdFLwcRsFLSspX30/E9U82w54Dx2yLyLl3IjMFW+LDkJaVYVtERES8k4KXwyh4SUlZ\ntyUU1z3eDHe/3A6tuv2BzTvDkZyiggYiIiIipUHBy2EUvKQk7T1wHN8PnoWnK3bHP+6qjZc/7YVZ\nizbZvSIiIiJSUhS8HEbBS0pD/IlkrFy7Bx81HGRKzv88ZoHdI1K6UrPSEZYcgdTMdNsiIiLinRS8\nHEbBS0oTS86z2iFLzrfu/gdOJKbYPSKlY13sPjy4qCk2xR+wLSIiIt5JwcthFLzkXGDVw2seb4Zn\nP+qO4I37bKtIyVsVvRNXzq6GkJg9tkVERMQ7KXg5jIKXnCvrt4bhhU9+wOUPN0H9DmNM8Y2srCy7\nV6RkrI7ZhWsCq2Nt7F7bIiIi4p0UvBxGwUvOpdS0DAz6bSGe+KArLrq/Ht78og/GTQ/C0Yg4e4RI\n8WKP11WBX6jHS0REvJ6Cl8MoeIkTJCSmYNaijajSZAiufKQxHnijI2q3HYklq3eafSLFJSR2D+6c\nXx8b4vbbFhEREe+k4OUwCl7iNOFHotFnxBy8UrUXLryvHu559Wu06TERc5dt0TpgctaSM9OwO/EI\nUrJU1VBERLybgpfDKHiJU6WkpmP91gP47qeZuDcnfF33RDPc80o7NO0yHgtWbsPhY7FIS8+wR4uI\niIhIbgpeDqPgJWVBdjaweNUOtOz2O56u2A1/u7Mmrn28Gd6u0RfNv52AwWMXYfbizThwKMqUrBcR\nERHxdQpeDqPgJWUN53ztPXAcY6cHoXqrX/DkB9/inle+RrkXv8Jtz7XGTU+1wFvV+5iesbHTV5qF\nm3l8XEKyPYP4Mi6gvD/pOJIyU22LiIiId1LwchgFL/EGMXGJ2LTjIKYGrsXA0fNRr/0YvPlFb9xQ\nvrlZrJl/PvXhdyaosXds3ZYDyMxU6XpftOPEITyyuCUWRW62LSIiIt5JwcthFLzEW3H+FwNZ+NFo\nBCzciK4D/PD65z/i/tc74Ponm+Pax5uiUoOfMWTcIixfswuHj8XY7xRvtjXhIG6aWwuBx9fZFhER\nEe+k4OUwCl7ia1iUY8nqHSZwfdxosAlgl/6nIR54owPerz3AVFTcuuuwKe4h3ofB69Z5dTDn+Hrb\nIiIi4p0UvBxGwUt8HUvUb9oRjr4j5uLdmv1w32vt8a976uLx9781BT3Eu2yJD1OPl4iI+AQFL4dR\n8BI5VdjhKNz54lc47876qNNuFCKjE+we8Qac4/Xw4uZYGLHJtoiIiHgnBS+HUfASOd2aTfvxWfNh\nuPKRJrj+yRaonRPAJgYE43hkvD1Cyqq07AyEqqqhiIj4AAUvh1HwEnEvKysbu/YfRf+R8/DEB9+a\nghy3PNMKFeoOxLgZq7D/YITmgYmIlIKUlBT7t5JTGq8hUtoUvBxGwUukcDZuP2jmgb1XawAue6iR\nKcjx2uc/ouV3v+MP/2CEhkfaI0VEpDhkZGRgxowZ+Oabb7BixQrbWrzS09MxadIk8xrBwcG2VcQ7\nKHg5jIKXyJlJz8g0lRG5ZlittiPx8P86mzlh7BEr92JbVGkyBD8MmYU5S7dgx94jiI1Pst8pTpCR\nlYm9iUcRlaa5eyJOFxUVhRo1auCTTz5B165dkZVV/OsvHj16FJ9//rl5jR9++AHZ2dl2j0jZp+Dl\nMApeImePAWvK7BD0HDoLnzUbhv+82RH/uKs2bijfAuUrfIvKDQfh+8EBZpHnjJzgJudOZFo8Xlje\nAUND59gWEXFh6NiwYQOmTp2K1NRzPw+SPV5//PEHWrdujWXLltnW4sUer7Fjx5rXWLVqlW0V8Q4K\nXg6j4CVS/JKS0xAVcwKBSzabhZvfq9UfD73VCZc/3AgPvN4BnfpMx/I1u3MeKor/t7fi2fHUODy0\nuDn67/O3LSLikpiYaHp+2AN04sQJ23puMQyWdAgsjdcQORcUvBxGwUukdEREJ2BR0HZ83WsK7nml\nHa78b2M8W6kbho5fjIgoDXsrLQxe/13cAgP2BdgWEXFh2KpYsSK+/PJLE8JEpGxT8HIYBS+R0sfh\nhsvW7ELd9qNxxwttcdUjjVH369H4bepKbNgWViLzGOQkBq//LGqGfnvV4yWSV3JyMipVqmSCl6r8\niZR9Cl4Oo+Alcm4dOBSFEX8sxXMfdcd1TzTDbc+1wWPvdUG7npMRsjkUcQnJ9kgpDpzj9cqKTvjl\nwHzbIuLbOMyOvVsxMTE4fPiwCV7Vq1fHkSNHEBsba7b4+HhkZv41P5XD8nh87uF5/HrLli3YtGlT\nvr1lPNeOHTuwZMkSLF26FKGhoebcniQlJSE6OtrMxcqLQZH70tLSbMvJ6+A1LF68GOvWrcPx48dP\nuXZ3CvMauffxa86FW7RokfkzIiLijH5hxnOFh4ebKopz587F2rVrTZEPF4Zevo/iCL+8NwcPHjTz\n1+bNm2fuDa/fE94vfla5P0f+fc+ePeae8v268Py8Vt5DF36mO3fuNPeG+9zh9x06dAjr16839yAo\nKMicvzBDXF33J/fnzkIsmzdvNlvua/F1Cl4Oo+Al4hyRMSfgN389Gnb6zVRL/H931DB/ft1rMpaH\n7LZHydnIQjYOp0QjPl3/YxYhPsSymh97ubhVqFABH3744Z9fc2vcuDH27dtnvwPw9/dH7dq1Tbih\nadOmoVq1avjoo4/w8ccfY9asWabdZevWrRg4cKAJdDyG4Y4b/96oUaM/z+POmDFjUKtWLaxevdq2\n/GXChAlmn6vU/MyZM1G3bt1Tzs8/+dr5BQD65ZdfzHkYFPIaPXq02cdwxJA6ffp083Xu1+B7Hjx4\nsAkrBWHY+P7778195ve6Np5j6NChJniwhD7v7+zZs+13FQ3fD5/z+Hm67gX//OKLL8ACKvkF0r17\n96JOnTr46aefzNchISFo0aLFn9fZo0ePP4Mm7wuvlZ8FMVTXq1fvz2OHDx9u2nNjKGOVytz3wHU/\nmzZtCj8/P4/hiT9vvL6VK1ea65g8eTI+++wzc57KlStjwYIF9khR8HIYBS8RZ4qOTUTwxv1o3X0i\n7n31a1MhkQU6ev8yB1t3HUJqWoY9UkSk6Bi8+IDdqlUr89DLh3Q+ADdr1sw8bLds2RIdOnTAgQMH\n7HfAVBrkQ3VgYCACAgLMA+9XX32FUaNGoXv37qesubV9+3Z8+umnZu4YX2PkyJGYM2eOCTB8gGc7\nH5Z5LncYmqpUqeI2nDGocB/Px8qEvCZe6++//27CH98XgyOv7+uvvza9V+7wOYjncVfVcMCAAX++\n/ogRI8y1durUyaz9xffO63OFzs6dO5/SC5MXwyNDiStgDBkyxJyD4bJ9+/bmXvCe/Pzzz+Z8EydO\ntN95ZhhGGN5YKIWf53fffWeCEe/ToEGDTHDka/Xp08ftPeFnxvfJz3LXrl3m8+N183t5P3i9rtDG\nz5r3neGVAY3vrUmTJiZw9e7d23zOLrw3rpDE6+JnxXvKz4qfX5cuXcy5+N67deuGuLg4+52n4uvz\nOPY4MoTxWtu1a2d+/vhe3YV0X6Xg5TAKXiLOl5qWjtmLN6Nhp7G46emWuPC+embx5u4/+2PzznB7\nlIjI2eHQQT44c+0sTwGCgYAPx3zYZo8Veyhyy92TsmbNGhO4+IDOHqO8GBD4mvXr1z9lCJsLwxMD\nBHtS8ho2bJh56Gbo4zW7C2/sXWHvCF8jv3DHgMDXcPfAzmDlerCvWbMmFi5caPf8hUMs+foMMwwD\n7rAXiWGBxzA45B1GyHvGEMZjGEx4HENKUXC4Ha+ZPYzuyvBz6CE/Ex6Tt3eSOByU94tBks+JvD+5\nhwDyc3R9lux14s8Cj2nbtq0JUrl/dnIPwWQg5rG8V/ktD8BeOoZS3of+/fu7HcL522+/mev79ddf\n0aBBg9N6BvPryfNFCl4Oo+AlUrawTL3f/A2o3GgQ7nnla1zx38Z49N0u6DVsNoLW7cGho/kPp5Gc\nh4DsLOw6cRhHUnSfRPLiwzUfaNlL5KmqIYMXj2NAYIjwhEP8PM3j4pAy9qoxBHDOU14FBS9eB7e8\n4S83Do3kA39+vV4FBS+en0GIPUb54dA9vgf22uQtTc8g0LdvX7OfocFdAHXheVyvV5Tgxdfu2LGj\nea38QiC5eiLZO5X382HwYo8U97N3z9OwPwYv189Cr1693AYl2r17t7kmnpPB0BMGQ/YiMnxxKGNe\n/Jnja1atWhXjx4+3reKOgpfDKHiJlF3HIuPNnLAmXcbj1mdb45IH6+P+19vjjWq9c9rGYeDo+Zi3\nfCsOHo42a4tl6LeASMpIxetBXdBtV9F+kyzizQobvDjUkEGGYYVFIs4W50fxXO7mNBWmx6t58+b5\nDiMkXiPXJuNwOXe9aoXp8WKvmrviGy779+83QYA9gHnnkzHkcB/nnx07dsy2usf3wTl1vL9FCV4s\nWsLA8s0333js+eE+PgPy82avZG4MXgx+BYVNcgUvbu5CkguHVfI+8vMsDM6t4/Hs9cr7PhheeX8Y\n4lg8RfKn4OUwCl4i3iE5JR3BG/fhpzEL8GXrEXj505545J3OOYGsFS5+oAGufKQxnqvcw+zrNSwQ\nsxZtQvgRz5WtvFFSZirKL/sKHbaPsy0i4nImwYsPxQXNaSoMBg0OWeSDNOf55FVQ8GLI4EO9JwxC\n7NnheRiQ8iooePE1ODfNEwY6BjsGLBbQyI29cYW5Thf2HBUleLEnjXOw+Nlw2GJB2HPE9513CKZr\nqCF/DsLCwmyrewxefD2GRVYWdIc9apwzyPfEcxfGtm3bzD3jMNG8P4sMXnxNzgPTsELPFLwcRsFL\nxDtlZmbheFQ8tu0+jMWrdmDc9FXo2GcqPmk8BPe91t6sHcaiHW9V74Mh4xZj/8EIpKTm/9tcb8Hg\n9fSytui4XcNTRPI6k+DFB3bOsSmsjIwME4A4h4dBhIUxGNw4n4dhha/rLtwUFLy4j/PEPOF8Kg4z\nZA+Ouwf/goKXu3CSF+8Xh0xyiF7uCpDkGhJZ0HW6sLenKMGL75O9f7wGhlmWaWePlbuN+1jIgwEm\n73BR3iO+Ps/lqZePGLwYkDjEMr8QxLDL3inOOStsDynL6/N4vpe8gY7Bi5+Ju6Aup1LwchgFLxHf\nw9+K7g2LwM9jFqBSg0FmmOL55WrhhY+/xzf9pmNKYAh27vtrTRlvwuD1+JJW+Hqb/octkteZBi/+\nWRgsPsGS9fwenp8P9dxYhpyV7dgbxXZWpcurMMGL61N5wvDAeU8MXhz2l1dhgld+xSBcGHo4HJFB\ngYU0cmOlPbZzrarCYKAoSvDiZ8YeIr4W3yvvaUEbg1fe4X+u4MX3UxBX8OrZs6dtOZ2rB43BtKB1\n21zYk8qhmXwvnPOVmyt45a6YKO4peDmMgpeIhB2OMkMP67QbhbtfbodbnmmFO1/8Cg++0dEMTRw3\nPcgEMW9YzDklKx2fru2DAfv8bYuIuJxJcQ0+sHsqaEH8JQ97itjb4Xo45xA4FlfgwzR7MlgMgg/Q\nfNAvao8Xe288KY7gxblTnngKXm3atDFrVrlbJ8wd1xymMw1eLILBOWa81wzFLIHPAhv5bdzPjSXj\nc3MFL661VRDXUEOWwM8Phw3y3rOSYmGDF3tIOXST9zNvL5lrqCF77sQzBS+HUfASkbz2HjiOybND\n0KnPNLxXqz+ue6IZzi9XE4+/3xVd+k83+0XE+5xp8HJXijw3rv3F4WKsULdu3TrbejrX+bw1eHHO\nFl97/vz5tsUzFhspSvDi++TwTX6GmzZtsq1nzhW8uI5XQVzBi0NH88P7wXvIcvwcQlgYLELCn0Pe\nz+joU+cju4JXQT2douDlOApeIuJJekYmjhyPxbLgnfjq+0m455V2uOaxpqjcaDDmLN2Cg0eikZau\nxZxFvMGZBq+CCji4SqwzSHjiKmBR1KGGTg9erqBQ2NLnLOHO44tSXIOLHPMzdFchsrBcwYvFKwri\nCl6eCoew8AjX2+J1cV21wti6dau57yzakbdipYJX4Sl4OYyCl4iciZi4JDP08P3aA3DR/fVQ7qW2\neP3zH1H369EYMGoeuJZY/InknAcA+w0iUmbkDl78e34KG7y4dhXPx3W08sOA17p1a/Og763Bi9fO\n+8VAxeM8OXz4sFlgmPftTIMXucIuC2dwuF5RFHfw4tpeHGbKcD18+HDb6hmLg7jOm3fdMwWvwlPw\nchgFLxEpioyMTDPk8NeJy9Cw01g8X7kHHnyzI258qgUue6ghHn3nGzToOAbDJizGipDdjqqYGBS9\nE5vjD9ivRMSFc4QYutyVRM+tsMGLwYgP8J5Ksc+cOdOEDG7eGrw4l409N3yPy5cvt63ucd0qHsdr\nLUrwYgVBDu/kOQpTzCMuLs7+7S/FHbxo/fr15j1xvh+LrXjCqpBckJlb3vlnpOBVeApeDqPgJSLF\n5WhEHFat34vfZ65Gp77T8L8v+5j5YZc/3AhPffgtvh8cYI45155Z3g411g+0X4mICwMKy67zoT1v\n4YLcvQ6FDV4MK3yAZ3W6vOtnsfT4ggULTGVDV2Dx1jle5AqYnOfEsJK3F4c9jAyeXOiZPYBFDV48\nL4MJ7zt7zhj08pZ55zEJCQmYMGGC28BUEsGL1+Cau1a/fn0TCt2Vn9+4caNZYoDHsbpj3vtECl6F\np+DlMApeIlJS+D9M9nQtWb0TtduOxF0vtzO9YQ07/Qa/+etx6GiMPbJ0vbKyExpsyn8iuIgvYxVC\nBgT2NnA9KQYwPlTnDk6smMdhYwwTnnAY4TfffGMektkLwwdphi0GN677xHAxbtw4s74VH7TdrQvG\n4FOlShVTfS8vFnTgvoKq2zF4tW/f3rwvVtjLi89BPM+qVatsy1+4IDH3uQt+uTF4uQLTnj17bOtf\nWB6d86+4nxuHYbLYBq99xIgRZs0s3ifef84F4/2YNGmS/e4zw0qR/fr1M+dgEGSAYsjivednx9dm\n4OXrubvnDKfcxzL4BVmxYoX5WShoHh8x7PG1eW7eA1ZN5HvlfWCI4mfNa+bnxJ85vg93uO4YX7Og\nwC0KXo6j4CUipYWFOH75YymertgN1z7ezASx92v3x4g/lmFfWOkt4PxmUFd8vq6f/UpEcmMhA86v\nYSVCPrTzIZhrQ+VeFJhBiT03helx4DA7lhpnTw7P5woDPCerInIeEsMHe2cYDvJiKKlVq5bpWcmL\nD+Dcx9LonvA1OOeJwyh3795tW//CQMTzrF271rb8hfeC+woatseQwCDBgBkaGmpbT8XrYC8h753r\nXvD+8k+WWncFP74m2zzNjSsIP8dp06aZkux8DdfG1+VQUgZRvid3RVQYHPl59OnTx7bkb82aNeb9\nuBsm6g4DKj/vZs2amZ5EBjC+V/7Jrxle2bvIsJwfBlK+ZkFhWBS8HEfBS0TOhR17j6Dfr3NRoe5P\nuLF8S5x/Zy28UrUXBo9dhONRhVvnpajeWNkFHwR/b78SEXfCwsLMgznDAEt758ZhcUeOHDmt2pwn\nLCMeHBxsejc4nCx38Q4+/PN87BHJi+s+cZ+7ohSufZybVhCWJOc1uHug5zyngl7D3b7c2MPv6TVy\n4/vknCf2bnEoIINO7iF1fDZjGGEP1dniZ8TS8gzJDCpcQ+348eOm4EV+GBD5nmNiCh6VwMDJYwu7\nPpcL3y+HZLLHjEGMwzy5/EBhFOXnz1cpeDmMgpeInEtZWdmmJ2z24s2o3moEbnqqJW59tjXa9ZyC\njdvDEBGdUOw9YY03DUfrraPtVyIizsHQ06JFC9M75a6whMiZUPByGAUvEXGS0PBIdB/kj4f+1xn/\nd3sNPPhmB1OuvnqrX9Ch91SMmLgUi4K248ChKGR6+I2tiEhZxPlVnF/HoXSF6XES8UTBy2EUvETE\nieISkrB+axgGjp6P5t9OwFvV++LRd7vg/tfb444X2uCG8s3NQs6PvdcFb1TrjXrtR6NjTjD7+bcF\n8F+40RT02LAtDLv2HzVFPBISU5CRqaAmIs7F4X/du3c3xSdYXMLTcECRwlDwchgFLxEpKzgF4vCx\nWIRsDsXMBRvMGmLf/TQTTbuMQ6X6P+GVqj1x10ttTeXE88vVwtWPNsFtz7U2Ye25j3rg9Wo/onLD\nQWjSYRy+7TMTQ8cvxvgZq7By3R5s2RVuwllqWgbSMzJPmW8hInI2OOeL87U4pym/f1s4P4xVGllk\ngkVA8pbfFykKBS+HUfASEW/AhxkGpqTkNMSfSEZUzAms3RKKecu34pffl6D7z/6m56xSg59xTcVG\nuPi92njiva6455V2uP35Nrj28ab49wP1TVh78I0OeLtGX1RtNhTtek4264+NmxGEqYFrsXjVDqze\nsA879x1F2OEo81oKaSLiCQtQsGohe7JYXdHPz88ULmEVRRYbYdl+Vh/kflaTZMEJkeKg4OUwCl4i\n4mtqbhuIN4O7IjomEfsPRmDzznAErduD2Ys3YfLsEPQaOhttekxEtRbD8epnvcxwRpa/v+yhRrj+\nyea45ZlWuPvldiagPfbuN3i+cg+8/GlPfNZ8GJp0GYdew2ab3jSeb1nwLhPQWKkxJi7R9KqdyNnS\n0k/2rImI9+OQQVYUbNOmzZ9l3Vm1kBvDFr/mWmEcZsjFi0WKi4KXwyh4iYivqb5uAN5Z3c1+VTD2\naGVkZpqwtPfAcTN3jAtA/z5zNXrmhLROfafhi5a/4JPGg00hkGc/6o7/vNkRd774lelBu/C+ujjv\n9pq4KufvnJ9232vtzXFvVe+DGm1GoMk349Co01i07v4H+o+ciwGj5pm5bRP8VmHGvPWYNmedqfq4\nbssBrN0cipBN+02PW1TsCVP1kVum5q+JOB4DGCsVsrT75MmTzRplXGuLwxDDw8PtUSLFR8HLYRS8\nRMTXMHi9veo7+1XxYjjj8MNjkfGmQuP2PYdNYFoRshsLVmzDiInLTG8YC4FwbhqrNb722Y8miL34\nyQ+49dlWpleN28nS+q1MDxs3BjnXxrlsDHD3vvq12R7MCXoPvdXpz409dVWbDcOnTYeajaGQQy05\n5PK7gX7oMcjfBEcGu+lz15lhlEuDd2J36LE/N/bUHY2Iw5Hjceb9JCal2ncpIiJlgYKXwyh4iYiv\nqRrSF68HdbFfORdDD4dCHjgUia27DmHesq0mvC1cuR3T5qzFkHGLMGzCErOxyAiHR7q2ul+PNoVE\nPm402Gyu3rgn3u+K8hW+M8Mnb3q6pRlCyflt1z3RDP+8uzbOu51bLbNddF+9nAB4cj+D3wuffI85\nS7fYqxMREadT8HIYBS8R8TVdd/6B5lt+tV95Lw6RzL1xIeq4hGTTIxcbn2QqRIYficnZok3J/X1h\nEdi+54jppeO2MGg7Js1agymBIRg3PQgV6g40AW3ZGi3qKiJSFih4OYyCl4iIFAaLgVRpMgQ3P90S\nu/Yfs60iIuJUCl4Oo+AlIiKFxZ6yV6v2MotZH4uMs60iIuJECl4Oo+AlIiJn4uCRaLP2GeeQZaia\nooiIYyl4OYyCl4j4mnVx+zAvYiMysxUaimrF2t24+MH66NJ/BrK1frSIiCMpeDmMgpeI+Jomm3/B\nk0vaICUzzbZIUfw6cRkuvK8e1m4+YFtERMRJFLwcRsFLRHxNqy2j8OLyDgpeZyk1LR0vVfkBler/\nbFtERMRJFLwcRsFLRHxN150T8dTStojPSLYtUlQsN88S81t2HbItIiLiFApeDqPgJSK+psfuKfjP\nomaISkuwLVJUJ5JScf/rHVCjzQjbIiIiTqHg5TAKXiLia8aHL0XtDYMQn64er+IwfkaQmevFhZZF\nRMQ5FLwcRsFLRETORmZmFpp1HY/LHm5k/ly5bg+SkjV/TkTkXFPwchgFLxEROVsZGZkYMGo+Hnm3\nC656pAmueawpmn/7O/YeOG6PKF0xcUlYsnonxkxdgX6/zsWU2SFmmz53nWnfvDMch47GICU13X6H\niIj3UfByGAUvEREpLvEnkrF8zW4MHrvQzP269dlWmLlgg91bspJT0rBt92G0/WES/vt2ZxMAr3q0\nMcq9+BX+dU8ds11wb92c9sa4/fnW+M+bHfFMpW5444veqPXVr+g1bLYJZxu2hSE6NhGJSalIzwmU\nIiJllYKXwyh4iYiv2Z4QjqlHViEpM9W2SEmIjU9Cg46/4fxytcxCyyw/X1RZWdmIijmBg4ejsH7r\nASwK2o7pc9dj6PjF6DEoAPU7jMGj73bBP+6qZf7s3Hc6tu85jLT0DGRkZuW8dobZEhJTctqPYN6y\nrRg5aRm6DvDDl61H4N2a/VG+wrco91JbXP5wI5x/Z82cv3+F1z77EXW/Ho1Rk5dj4/aDyMwqvkW3\n09IzMWfpFrT/cYoZojlw9HyM+GMp/Oavx9LgnSYAHj4Wi8Rk/ZyKSNEoeDmMgpeI+JohoXNw+7x6\nCE+Jsi1SUjj/a8TEZbjsoYb4pPFgHDgUieNR8TlbQs7fo7AvLALBG/ebXrFJAWvQe3ggvh8cgEad\nxqJai+F484s+Jkg99l4XPPBGB9NLdecLX+GOF9rglmda4drHm+GRdzqb49r1nIz5K7aZ3qqiiIlL\nRGh4pAk8i4J25Fz3UrTu/gfeqdkP1z/ZHLc919r0pLXs9jtWrt1jhjOeKfag8T3zPfK6r3uiuTnn\nK1V74u6X25nX4ftiAGTwe/DNDmY/78HbX/Y1IbD7z/74wz/YDJnkuY5GxCEiOsH00PG9H4vk/Y03\nf3IIqIj4LgUvh1HwEhFf82vYAty/sAnCkxW8SsvS4F24/fk2uCYnKN30VAvcUL4FzrvtS5x3ey1c\n+UhjMyeMwePxnID1TMVuqFB3ICo1+DkngP2G5t9OQO9fAjHot4WYGrgW85dvNUMKGSxKCwMN54fx\nWhgCz7utOu59rT069ZlWqHlsO/cdxfDfl5ietX/eXQc354QrhksGuLw492zr7kOYu2wLJvitxk+j\nF5gAWK/9aHNfnq74nRk+yZ453r+rH21iwtqzlbqbe8h11W4o3xzX5oQ63icR8V0KXg6j4CUivkbB\n69xg78zEgDUYP2MVZi3aZApcbNkVbnqZwg5HmSDF4YkcDsiesuxs+40Ow2vksEMOZ2SYZNBhLxiH\nQPI9rd0cioVB282wQQ61ZK8VgxGP/bDeTyY8cghhUfC+cB4de7n2H4w0rzd/+TYT0MZND8r5cxV+\nn7nabGzjtYqI71LwchgFLxHxNcNC5+KOefVwMDnStogUDeed/TBkFv7zVifTg/f3crX+7MVj2Hq1\nai906D0Fk2etwZHjRQtbIiJFpeDlMApeIuJrAo+vR60NPyMitfSGqol3Yy/UwSPRpucu/GiMmXPF\n4YkqVy8i55KCl8MoeImIiIiIeB8FL4dR8BIRERER8T4KXg6j4CUiIiIi4n0UvBxGwUtEfM3+xGMY\nc3AxYtOLtt6TiIhIWaDg5TAKXiLia6YeDsLVs7/AjoRDtkVERMT7KHg5jIKXiPgavyPBuG1eXew6\nocVlRUTEeyl4OYyCl4j4miVRW3H9nJrYHH/AtoiIiHgfBS+HUfASEV+zImoH/u1fBeti99kWERER\n76Pg5TAKXiLiazi3q2pIH+xLPGZbREScKTo6GpGRkfYrkTOj4OUwCl4iIiIizrRw4UI0adIEU6ZM\nQVxcnG0VKRwFL4dh8Ordu7f9SkREREScYtmyZfjwww9RsWJF1KtXD1OnTjW9YCKFoeDlMJ07d0a3\nbt0QERFhurK1adOmTZs2bdq0OWPz9/c3watChQp/BrBGjRqZABYbG4vs7Gz7RCdyOgUvh5k7d675\nj7hSpUrmT23atGnTpk2bNm3O2FyhK/fGZ7bKlSujYcOG2LNnj32iEzmdgpcDhYaGYv/+/dq0adOm\nTZs2bdoctE2ePPmU8MUwVqVKFXz//ffYtGkTEhMT7dOcyOkUvERERERECmHFihV/9nIxdDFwbdy4\n0e4V8UzBS0RERESkEBYsWGB6uLp3744tW7YgIyPD7hEpmIKXiIiIiEghcDoIhxSKFIWCl4iIiIiI\nSAlT8BIRERERESlhCl4iIiIiIiIlTMFLREREREQ8YmGRAQMGYNu2bbZFzpSCl4iIiIiIeNS/f3+z\nUPScOXNsi5wpBS8REREREfHop59+MuuXzZs3z7bImVLwEhERERERjxS8zp6Cl4iIiIiIeKTgdfYU\nvERERERExCMFr7On4CUiIiIiIh4peJ09BS8REREREQ/S09MRGRmJLVu2mO3YsWNIS0uze93j9yQk\nJJx2XFxcHPbt24eNGzfiwIEDOHHihN1TePyegwcPmnNs2rTJXE9SUpLdW3jZ2dnmevbs2WPOtX37\ndkRFRSE1NdUe8Rd3wYvHHTlyxFzD/v37ERsba84p7il4iYiIiIjkY926dejWrRsqVqxoggf//PDD\nD9GpUyesWLHCHnW6uXPnon79+pg6dar5+tChQxg8eDA+/fRTcx7XuRo0aIDZs2cXKrCEhoZi+PDh\nqFev3p/Xw43X07RpUwQGBiIzM9Me7dnOnTtNifjPPvvslOtxvbewsDB75El5g9eqVavw9ddfn3Id\nPNfQoUNNmJPTKXiJiIiIiOSRlZVlQtPHH39sQkW7du3wyy+/YOTIkejYsaMJHB999BFmzJhhjs1r\nypQpZt2r3377Dbt27UKdOnVQtWpV/PDDDxg/frwJUK1btzbn4LkYbBITE+13n27p0qX48ssvzfG1\na9fGzz//jAkTJmDIkCFo06aNCXQ8z48//ojo6Gj7XadjMOM1f/755+Z9tWrVCqNGjTLXNGjQIPM+\ned0MVrm5gtf8+fPN93/yySdo3Lixef0xY8aga9eu5v3x+jp37mx6v+RUCl4iIiIiInmwF4pBo1Gj\nRli7dq1t/cuyZctQrVo1VKlSBbt377atf2FoYxDq27evOQcDDYcW5sXzMFAx7EyePNm2nmr9+vXm\ndXg9w4YNM0MY89qxY4cJUQyKPXr0MEMd3fHz8zPXxaA2c+ZMtz1tISEhZghhbgxe7A1jqPriiy/M\ntWZkZNi9J3HIIXvj+F5mzZplW8VFwUtEREREJBcGpFq1aplwwjld+Zk2bZoJGQxXeQMMgxeDCoNQ\n+/btPfYALVy40IQqhpbjx4/b1pMYspo3b272jxs3zuOQxKNHj5peKF5TUFCQbf0L53KxV4r716xZ\nY1sLhz1sDGzc2DuWH/aG8VpbtGhhW8RFwUtEREREJBcO4WM44dBCT0GHc5mqV69ueqxYlCI3V48X\ne6o2bNhgW91LTk7+c9hh3p6iJUuWmHYGqsIU4pg+fboJPi1btjxlvhf/3q9fP/O+OLfrTDF48TrY\nexcTE2NbTxcREWFeg0MZPQ2d9EUKXiIiIiIiFgMKe2sYmrZu3Wpb3ePcrg4dOpj5TixWkRuDFwMQ\ne6sKg0P3GFh69ep1StjjnC0GnokTJ9oWz+Lj4//s1WL1RBdWPmRI5PDI3O2FxeDFc/bu3du2uMdK\nh3wd9hayoIj8RcFLRERERMRiYQr2UnGIIOdAcRhgfhsLTXBeFYcUrly50p7hJFfwKiiouLB4Bs/T\ntm3bP+dncQ4VQyCDV2GHBjI4ssIhz8VzunDIJM/D8xWlJ4pzvPj97A30hNfMsMlj84ZRX6fgJSIi\nIiJicR4UQxeDC4NTYTb2BOUdIsjgxfDBKoiFwcIUPJ6hxbX2F4cysiQ9e9/cFeZwh71l3bt3N9/D\n8vIuDIq8TlYfLIq85eTzw+DnGjbJgh/yFwUvERERERGLiwgzNHCOEsPUnDlzCty4ZhcXNM7NFbxG\njx5tWzxj+XaGPQYjV7VAFtqoW7euCVGHDx82bQVh8Pr+++9PC17svWPw6tmzp205M2cSvNgLqOB1\nOgUvERERERGLAYqhgYsBn01xCFfwGjFihG3xLCAgwBzPBYhdWEyjYcOGpt1TdcXcXMGnQoUKp6zF\nxbL1DF5cHNlTwZD8KHidPQUvERERERGLYYu9XWcbHFxzvL799lvbkj8GIQY0FungwssuruIdvBau\nK1YYLG7BdbZ4rtzFLfheeB5WR2QBjjOl4HX2FLxERERERCyGoC5dupjg8Pvvv9vWM+cKXhwqWFDP\nGUvRc90wzi1bt26dbT2Ja2axp+qbb74xoaYg7OXi67KcfO6eLRYN4Xwxvsby5ctta+EpeJ09BS8R\nERERkVwYfljZkAsaHzlyxLbmLyUlxf7tLwxenGfFraBKgK5wxYqGec/FwNSgQQMTehYsWGBb3WPA\nc4WevD1kDGFc44v72rRpY9YOOxMKXmdPwUtEREREJBeWc2dlQPYOcahfWFiY3XMqLhY8ePBgt4HI\nFbzq1Klj1rRiEOLQwbxYAIP7eWxISIhtPRXL1nM/F2pmdUJ352GQ4rUwwLVv395tL1tSUtKfFQd7\n9Ohh1vZyh+uX5S3moeB19hS8RERERETyYJENFrZgkKlRowaGDx9uAhbDEQthcEFhLhTMgJFf8GJQ\n4fcNGjTIBKfOnTvD39/f9Kix2EX//v3NMTzHtGnT7HeejkGLvWact8XzcCjkjBkzEBwcjCVLlmDs\n2LFo0qSJuVYGq/DwcPudp+PaWlzLi8dy6CEXbubwxLVr15pQNWDAAPMaq1evtt9x0sCBA811soKj\nJwxeHObIc7BCpPxFwUtERERExA0Wp+jTpw+qVq36Z0BiyXeGCgaXr776ysyXYk9SXgxePH7MmDGm\nN2rUqFGmZ4vn4Tlc52KxC57DXS9WXhs3bjShxnUtvA7Xn9WqVcOvv/5q5osVJCYmxvRgMcjx+13X\n5DovS9rnHWI5bNgw8xqLFi2yLe4xeLGXkAU+du3aZVuFFLxERERERDxgDxKH+/n5+ZnerqCgIOzb\nt+/P9bbccQUvBi6Xo0ePmt4xnoc9Vuxlcjc/zBMOg2Rpea7LxfNwW7lyZZEqFbJXj+uQuc61dOlS\n7N+/3+49VWxsrLkPBRUK4Vwyrj/G0OpaCFpOUvASERERESlm7oKX+DYFLxERERGRYqbgJXkpeImI\niIiIFDMFL8lLwUtEREREpJgpeEleCl4iIiIiIsVMwUvyUvASERERESlmU6ZMMSXnR44caVvE1yl4\niYiIiIgUMy5U/Mcff2DTpk22RXydgpeIiIiIiEgJU/ASEREREREpYQpeIiIiIiIiJUzBS0RERERE\npIQpeImIiIiIiJQwBS8REREREZESpuAlIiIiIiJSwhS8RERERERESpiCl4iIiIiISAlT8BIRERER\nESlhCl4iIiIiIiIlTMFLRERERESkhCl4iYiIiIiIlCjg/wMHClG9K7RngAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('./images/early_stopping.png')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Specify the early stopping criteria. We **monitor** the validation loss (in this case the mean squared error) on the validation set after each training epoch. If the validation loss has not improved by **min_delta** after **patience** epochs, we stop the training." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "best_val = ModelCheckpoint('model_{epoch:02d}.h5', save_best_only=True, mode='min', period=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 23370 samples, validate on 1463 samples\n", - "Epoch 1/50\n", - "23370/23370 [==============================] - 1s 62us/step - loss: 0.0146 - val_loss: 0.0027\n", - "Epoch 2/50\n", - "23370/23370 [==============================] - 2s 65us/step - loss: 0.0016 - val_loss: 8.8017e-04\n", - "Epoch 3/50\n", - "23370/23370 [==============================] - 2s 94us/step - loss: 8.4388e-04 - val_loss: 7.8345e-04\n", - "Epoch 4/50\n", - "23370/23370 [==============================] - 4s 179us/step - loss: 7.5352e-04 - val_loss: 7.6891e-04\n", - "Epoch 5/50\n", - "23370/23370 [==============================] - 4s 184us/step - loss: 6.8899e-04 - val_loss: 5.7843e-04\n", - "Epoch 6/50\n", - "23370/23370 [==============================] - 2s 99us/step - loss: 6.4656e-04 - val_loss: 6.5477e-04\n", - "Epoch 7/50\n", - "23370/23370 [==============================] - 2s 70us/step - loss: 6.1258e-04 - val_loss: 5.1480e-04\n", - "Epoch 8/50\n", - "23370/23370 [==============================] - 4s 179us/step - loss: 5.9428e-04 - val_loss: 5.3005e-04\n", - "Epoch 9/50\n", - "23370/23370 [==============================] - 4s 154us/step - loss: 5.8010e-04 - val_loss: 5.0697e-04\n", - "Epoch 10/50\n", - "23370/23370 [==============================] - 3s 114us/step - loss: 5.6687e-04 - val_loss: 5.6766e-04\n", - "Epoch 11/50\n", - "23370/23370 [==============================] - 3s 122us/step - loss: 5.6162e-04 - val_loss: 4.9836e-04\n", - "Epoch 12/50\n", - "23370/23370 [==============================] - 2s 94us/step - loss: 5.5403e-04 - val_loss: 4.4434e-04\n", - "Epoch 13/50\n", - "23370/23370 [==============================] - 2s 86us/step - loss: 5.4949e-04 - val_loss: 7.3764e-04\n", - "Epoch 14/50\n", - "23370/23370 [==============================] - 2s 86us/step - loss: 5.4249e-04 - val_loss: 4.4281e-04\n", - "Epoch 15/50\n", - "23370/23370 [==============================] - 2s 88us/step - loss: 5.4028e-04 - val_loss: 4.2500e-04\n", - "Epoch 16/50\n", - "23370/23370 [==============================] - 2s 65us/step - loss: 5.3656e-04 - val_loss: 4.3892e-04\n", - "Epoch 17/50\n", - "23370/23370 [==============================] - 2s 69us/step - loss: 5.3333e-04 - val_loss: 4.2791e-04\n", - "Epoch 18/50\n", - "23370/23370 [==============================] - 2s 74us/step - loss: 5.3011e-04 - val_loss: 5.1643e-04\n", - "Epoch 19/50\n", - "23370/23370 [==============================] - 2s 81us/step - loss: 5.2492e-04 - val_loss: 6.5587e-04\n", - "Epoch 20/50\n", - "23370/23370 [==============================] - 2s 74us/step - loss: 5.2655e-04 - val_loss: 4.8191e-04\n" - ] - } - ], - "source": [ - "history = model.fit(X_train,\n", - " y_train,\n", - " batch_size=BATCH_SIZE,\n", - " epochs=EPOCHS,\n", - " validation_data=(X_valid, y_valid),\n", - " callbacks=[earlystop, best_val],\n", - " verbose=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Load the model with the smallest mape" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "best_epoch = np.argmin(np.array(history.history['val_loss']))+1\n", - "model.load_weights(\"model_{:02d}.h5\".format(best_epoch))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "plot training and validation losses" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAJWCAYAAAA+z3HMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4lOW9//HPnUxmksxAEmYyIYIi\nsiUIihVXVBRRcUE9brUurf6sHOtSa6tH22N71GNPe7qdbi7V1mqttbbuFKsVRai7YFGUXUQJCtkg\nZN/m+f3xJFG2kJk8M88zM+/XdXFNnMzc842Xwod7+d7GsiwBAAAgveW4XQAAAAAGj1AHAACQAQh1\nAAAAGYBQBwAAkAEIdQAAABmAUAcAAJABCHUAAAAZgFAHAACQAQh1AAAAGcDndgGpFolErH333dft\nMgAAAPZoyZIltZZllQ7ktVkX6vbdd18tXrzY7TIAAAD2yBjz0UBfy/IrAABABiDUAQAAZABCHQAA\nQAbIuj11AADAOZ2dnaqqqlJbW5vbpaS1/Px8jRw5Unl5eQmPQagDAAAJq6qq0pAhQ7TvvvvKGON2\nOWnJsizV1dWpqqpKo0ePTngcll8BAEDC2traFA6HCXSDYIxROBwe9GwnoQ4AAAwKgW7wnPh3SKgD\nAADIAIQ6AACADECoAwAAaWvr1q268847437fKaecoq1bt8b9vksuuUSPPvpo3O9LBUIdAABIW7sL\ndd3d3f2+75lnnlFxcXGyynIFLU0AAIAjbp37vpZ/ss3RMSfuNVT/NXv/3X7/pptu0gcffKApU6Yo\nLy9PoVBI5eXlWrp0qZYvX64zzzxTGzZsUFtbm6699lrNmTNH0md3wTc1Nenkk0/WUUcdpVdffVUj\nRozQU089pYKCgj3W9sILL+j6669XV1eXDjnkEN11110KBAK66aab9PTTT8vn8+nEE0/UT37yE/31\nr3/VrbfeqtzcXBUVFWnRokWO/TvqRagDAABp64c//KHee+89LV26VC+99JJOPfVUvffee3393u67\n7z4NGzZMra2tOuSQQ3T22WcrHA5vN8aaNWv08MMP695779V5552nxx57TBdddFG/n9vW1qZLLrlE\nL7zwgsaPH68vf/nLuuuuu/TlL39ZTzzxhFauXCljTN8S72233abnnntOI0aMSGjZdyAIdQAAwBH9\nzailyqGHHrpdA99f/vKXeuKJJyRJGzZs0Jo1a3YKdaNHj9aUKVMkSQcffLDWr1+/x89ZtWqVRo8e\nrfHjx0uSvvKVr+iOO+7Q1Vdfrfz8fH31q1/VqaeeqtNOO02SNG3aNF1yySU677zzdNZZZznxo+6E\nPXUAACBjBIPBvq9feuklzZ8/X6+99preeecdHXTQQbts8BsIBPq+zs3NVVdX1x4/x7KsXT7v8/n0\n5ptv6uyzz9aTTz6pWbNmSZLuvvtu3X777dqwYYOmTJmiurq6eH+0PWKmDgAApK0hQ4aosbFxl99r\naGhQSUmJCgsLtXLlSr3++uuOfW5FRYXWr1+vtWvXauzYsXrwwQc1ffp0NTU1qaWlRaeccooOP/xw\njR07VpL0wQcf6LDDDtNhhx2muXPnasOGDTvNGA4WoQ4AAKStcDisadOmadKkSSooKFBZWVnf92bN\nmqW7775bBxxwgCZMmKDDDz/csc/Nz8/X73//e5177rl9ByWuuOIK1dfX64wzzlBbW5ssy9L//d//\nSZJuuOEGrVmzRpZl6fjjj9eBBx7oWC29zO6mDzPV1KlTrcWLF7tdBgAAGWHFihWqrKx0u4yMsKt/\nl8aYJZZlTR3I+9lTBwAAkAFYfgUAANjBVVddpVdeeWW756699lpdeumlLlW0Z4Q6AACAHdxxxx1u\nlxA3ll8BAAAyAKHOYTWN7TrhZwv19DufuF0KAADIIoQ6h4UCPq2pbtLGLa1ulwIAALIIoc5hBf5c\nBf25qmtqd7sUAACQRQh1SRAOBVTX3OF2GQAAYAehUGi331u/fr0mTZqUwmqcRahLgnDIr1pm6gAA\nQArR0iQJwsGAPtnKnjoAQJb5+03SpmXOjjl8snTyD3f77RtvvFGjRo3SlVdeKUm65ZZbZIzRokWL\ntGXLFnV2dur222/XGWecEdfHtrW16Wtf+5oWL14sn8+nn/3sZzruuOP0/vvv69JLL1VHR4disZge\ne+wx7bXXXjrvvPNUVVWl7u5uffe739UXv/jFQf3YiSDUJUEk5NeyjVvdLgMAgIx3/vnn6xvf+EZf\nqPvLX/6iZ599Vtddd52GDh2q2tpaHX744Tr99NNljBnwuL196pYtW6aVK1fqxBNP1OrVq3X33Xfr\n2muv1YUXXqiOjg51d3frmWee0V577aV58+ZJkhoaGpz/QQeAUJcE4ZBfdU0dsiwrrv+AAABIa/3M\nqCXLQQcdpOrqan3yySeqqalRSUmJysvLdd1112nRokXKycnRxo0btXnzZg0fPnzA47788su65ppr\nJEkVFRUaNWqUVq9erSOOOELf//73VVVVpbPOOkvjxo3T5MmTdf311+vGG2/UaaedpqOPPjpZP26/\n2FOXBOFgQF0xS9tau9wuBQCAjHfOOefo0Ucf1SOPPKLzzz9fDz30kGpqarRkyRItXbpUZWVlamtr\ni2tMy7J2+fwFF1ygp59+WgUFBTrppJP04osvavz48VqyZIkmT56sb3/727rtttuc+LHixkxdEoRD\nfklSbXO7igrzXK4GAIDMdv755+vyyy9XbW2tFi5cqL/85S+KRqPKy8vTggUL9NFHH8U95jHHHKOH\nHnpIM2bM0OrVq/Xxxx9rwoQJWrdunfbbbz99/etf17p16/Tuu++qoqJCw4YN00UXXaRQKKT777/f\n+R9yAAh1SRAJBSRJdU0dGlPqcjEAAGS4/fffX42NjRoxYoTKy8t14YUXavbs2Zo6daqmTJmiioqK\nuMe88sordcUVV2jy5Mny+Xy6//77FQgE9Mgjj+iPf/yj8vLyNHz4cH3ve9/TW2+9pRtuuEE5OTnK\ny8vTXXfdlYSfcs/M7qYXM9XUqVOtxYsXJ/UzVm7aplk//6fuvPALOmVyeVI/CwAAN61YsUKVlZVu\nl5ERdvXv0hizxLKsqQN5P3vqkiAc7J2po1cdAABIDZZfk6CkME/GSLVN3CoBAIDXLFu2TBdffPF2\nzwUCAb3xxhsuVeQMQl0S+HJzVFLoV10zM3UAgMyXbi28Jk+erKVLl7pdxnac2A7H8muShIN2rzoA\nADJZfn6+6urqHAkl2cqyLNXV1Sk/P39Q4zBTlyS9DYgBAMhkI0eOVFVVlWpqatwuJa3l5+dr5MiR\ngxqDUJck4VBAKz7d5nYZAAAkVV5enkaPHu12GRDLr0kTYfkVAACkEKEuScKhgBpaO9XRFXO7FAAA\nkAUIdUnSe1XYlhZm6wAAQPIR6pKktwFxLQ2IAQBAChDqkiTSM1PHvjoAAJAKhLokCYd6rgqjATEA\nAEgBQl2ShJmpAwAAKUSoS5IhAZ/8uTnc/woAAFKCUJckxpieWyVYfgUAAMlHqEuicMivumZm6gAA\nQPIR6pIoHAwwUwcAAFKCUJdE4ZCfPXUAACAlCHVJFAkFVNfcLsuy3C4FAABkOEJdEoWDfrV1xtTS\n0e12KQAAIMMR6pKorwExS7AAACDJCHVJ1NuAuJZbJQAAQJIR6pIoEmSmDgAApAahLok+uyqMmToA\nAJBchLokGhbsCXU0IAYAAElGqEui/LxcDQn4VMtMHQAASDJCXZLZ978yUwcAAJKLUJdk4Z4GxAAA\nAMlEqEuycJCZOgAAkHyEuiQLhwLc/woAAJKOUJdkkZBf9c3tisW4/xUAACQPoS7JwkG/Ypa0tbXT\n7VIAAEAGI9Ql2Wf3v3JYAgAAJA+hLsn67n9lXx0AAEgiQl2SRXpn6mhrAgAAkiitQ50x5ghjzGvG\nmIXGmIeNMXlu17SjcO9VYczUAQCAJErrUCfpI0kzLMuaLmmdpDNcrmcnxYV+5Rj21AEAgOTyuV3A\nYFiW9cnn/rFLUsytWnYnN8doWNCv2mZm6gAAQPKkbKbOGHO1MWaxMabdGHP/Dt8bZox5whjTbIz5\nyBhzQZxjj5Z0sqS/OViyY8LBADN1AAAgqVI5U/eJpNslnSSpYIfv3SGpQ1KZpCmS5hlj3rEs631j\nzHBJj+5ivHMsy9pkjBkq6QFJF1uW5cnpsHCIq8IAAEBypSzUWZb1uCQZY6ZKGtn7vDEmKOlsSZMs\ny2qS9LIx5mlJF0u6ybKsTZKO2tWYxhifpIcl3WJZ1qok/wgJC4cCem9jg9tlAACADOaFgxLjJXVb\nlrX6c8+9I2n/Abz3S5IOk/Q9Y8xLxpgv7upFxpg5PUu/i2tqagZfcZzCQb9qWX4FAABJ5IWDEiFJ\nO05jNUgasqc3Wpb1oKQHB/C6eyTdI0lTp05N+SWskZBfjW1dau/qVsCXm+qPBwAAWcALM3VNkobu\n8NxQSY0u1JIUvVeF1XMCFgAAJIkXQt1qST5jzLjPPXegpPddqsdxNCAGAADJlsqWJj5jTL6kXEm5\nxph8Y4zPsqxmSY9Lus0YEzTGTJPdRHiPy6rponemjn11AAAgWVI5U3ezpFZJN0m6qOfrm3u+d6Xs\nNifVsk+zfs2yrIyZqYuEmKkDAADJlcqWJrdIumU336uXdGaqakm13pm6umZm6gAAQHJ4YU9dxgv6\ncxXw5TBTBwAAkoZQlwLGGEVCAdUS6gAAQJIQ6lIkHPKz/AoAAJKGUJci4SD3vwIAgOQh1KVIOBRQ\nHS1NAABAkhDqUiQc8qu2uUOWlfJbygAAQBYg1KVIJBhQR1dMTe1dbpcCAAAyEKEuRcI0IAYAAEmU\nNaHOGDPbGHNPQ0ODK59PA2IAAJBMWRPqLMuaa1nWnKKiIlc+Pxy0Z+roVQcAAJIha0Kd2yK9M3WE\nOgAAkASEuhQZFuzdU8fyKwAAcB6hLkX8vhwNzfeprpmZOgAA4DxCXQrZ978yUwcAAJxHqEuhcIir\nwgAAQHIQ6lIoHAzQ0gQAACQFoS6FmKkDAADJQqhLoXAooPqWDnXHuP8VAAA4i1CXQpGQX5YlbWlh\ntg4AADiLUJdC4SANiAEAQHIQ6lIoHKIBMQAASA5CXQpFekJdLQ2IAQCAwwh1KfTZ8iszdQAAwFmE\nuhQqKshTbo5hTx0AAHAcoS6FcnKMhgX9NCAGAACOy5pQZ4yZbYy5p6GhwdU6wkG/apmpAwAADsua\nUGdZ1lzLsuYUFRW5WkckFFAte+oAAIDDsibUeQVXhQEAgGQg1KVYOBjg9CsAAHAcoS7FwiG/mju6\n1drR7XYpAAAggxDqUqw01NOrjhOwAADAQYS6FPvsqjD21QEAAOcQ6lIszEwdAABIAkJdioWDPfe/\nMlMHAAAcRKhLMZZfAQBAMhDqUqzQ71OhP5e2JgAAwFGEOheEQ37VNTNTBwAAnEOoc0E4yFVhAADA\nWYQ6F0S4KgwAADiMUOeCcDBASxMAAOAoQp0Lwj0zdZZluV0KAADIEIQ6F4RDAXXFLG1r7XK7FAAA\nkCEIdS6I9PSqq2UJFgAAOCRrQp0xZrYx5p6Ghga3S1E42HNVGIclAACAQ7Im1FmWNdeyrDlFRUVu\nl/K5WyWYqQMAAM7ImlDnJeG+5Vdm6gAAgDMIdS4YVshMHQAAcBahzgW+3ByVFOaxpw4AADiGUOeS\ncIgGxAAAwDmEOpeEg37VMlMHAAAcQqhzSSQUYE8dAABwDKHOJeGQX3WcfgUAAA4h1LkkHAxoa0un\nOrtjbpcCAAAyAKHOJb296rYwWwcAABxAqHNJ3/2vHJYAAAAOINS5JBzquf+VtiYAAMABhDqXhIO9\nt0owUwcAAAaPUOeS3pm6WtqaAAAABxDqXDI036e8XENbEwAA4AhCnUuMMQoHaUAMAACcQahzUTjk\nZ08dAABwBKHOReFQQLUsvwIAAAcQ6lwUCfpZfgUAAI4g1LmI5VcAAOAUQp2LwqGAWju71dLR5XYp\nAAAgzWVNqDPGzDbG3NPQ0OB2KX1oQAwAAJySNaHOsqy5lmXNKSoqcruUPhEaEAMAAIdkTajzonCI\nmToAAOAMQp2Leq8Kq2tmpg4AAAwOoc5FvXvqapmpAwAAg0Soc1F+Xq5CAR/LrwAAYNAIdS4Lh/ws\nvwIAgEEj1LksHKQBMQAAGDxCncvCoQAtTQAAwKAR6lwWCflV18xMHQAAGBxCncvCwYDqmzsUi1lu\nlwIAANIYoc5l4ZBf3TFLDa2dbpcCAADSGKHOZTQgBgAATiDUuSxCA2IAAOAAQp3L+mbqCHUAAGAQ\nCHUuC4fsmTqWXwEAwGAQ6lxWUuiXMSy/AgCAwSHUuSw3x2hYoV91NCAGAACDQKjzgHCIq8IAAMDg\nEOo8IBwMsKcOAAAMCqHOA5ipAwAAg0Wo84BIKKBa9tQBAIBBINR5QDjo17a2LnV0xdwuBQAApClC\nnQf0NiCub2YJFgAAJIZQ5wG9DYhZggUAAInKmlBnjJltjLmnoaHB7VJ2Eum7VYKZOgAAkJisCXWW\nZc21LGtOUVGR26XsJBzsvf+VmToAAJCYrAl1XtZ3/yttTQAAQIIIdR4QCvjk9+WolgbEAAAgQYQ6\nDzDGKBKkATEAAEgcoc4jwqEAe+oAAEDCCHUeEQ75Of0KAAASRqjziHAwwPIrAABIGKHOIyIhv2qb\n2mVZltulAACANESo84hwyK/2rpiaO7rdLgUAAKQhQp1H0IAYAAAMBqHOI7j/FQAADAahziMiIXum\nrpbDEgAAIAGEOo/gqjAAADAYhDqPGBbsDXUsvwIAgPgR6jwi4MvVkHwfDYgBAEBCCHUeEgkFOCgB\nAAASQqjzkHDQz546AACQEEKdh9j3vzJTBwAA4keo85BwiPtfAQBAYgh1HhIJ+lXf0qHuGPe/AgCA\n+BDqPCQcCsiypC0tzNYBAID4EOo8hAbEAAAgUYQ6DwkH7avCaEAMAADiRajzkEjPTF0tDYgBAECc\nCHUeEg4xUwcAABJDqPOQ4oI85Rj21AEAgPgR6jwkJ8doWDBAA2IAABA3Qp3HREJ+1TJTBwAA4kSo\n85hwyM+eOgAAEDdCnceEgwHVcfoVAADEiVDnMfZMHaEOAADEJ2tCnTFmtjHmnoaGBrdL6VckFFBT\ne5faOrvdLgUAAKSRrAl1lmXNtSxrTlFRkdul9Ku3ATFLsAAAIB5ZE+rSBVeFAQCARBDqPCbcO1PH\nvjoAABAHQp3HRHquCqtlpg4AAMSBUOcxYfbUAQCABBDqPKbQ71NBXi576gAAQFwIdR5ErzoAABAv\nQp0HhUMB1bL8CgAA4kCo86BIkPtfAQBAfAh1HsTyKwAAiBehzoPCoYDqmttlWZbbpQAAgDRBqPOg\ncNCvzm5L29q63C4FAACkCUKdB/U2IGZfHQAAGChCnQfRgBgAAMSLUOdB4SAzdQAAID6EOg+K9MzU\n1XICFgAADBChzoNKgj3Lr4Q6AAAwQIQ6D8rLzVFxYZ7qmll+BQAAA0Oo86hwkAbEAABg4Ah1HhUO\nBVTLQQkAADBAhDqPioT8tDQBAAADRqjzqHAwQEsTAAAwYIQ6jwqH/NrS0qmu7pjbpQAAgDRAqPOo\ncM9VYfUtLMECAIA9I9R5VIRedQAAIA6EOo/qnakj1AEAgIEg1HlUuOeqMBoQAwCAgSDUeVQkaM/U\ncf8rAAAYCEKdRw0t8MmXY2hrAgAABoRQ51HGGIVDXBUGAAAGhlDnYeFggD11AABgQAh1HhYO+dlT\nBwAABoRQ52GREDN1AABgYAh1HhYOsqcOAAAMDKHOw8KhgFo6utXS0eV2KQAAwOMIdR7W14CY2ToA\nALAHhDoPi/TdKkGoAwAA/SPUeVg42Hv/K4clAABA/wh1HsbyKwAAGKisCXXGmNnGmHsaGhrcLmXA\nemfqamlrAgAA9iBrQp1lWXMty5pTVFTkdikDVuDPVdCfy0wdAADYo6wJdekqHAqwpw4AAOwRoc7j\nwiE/p18BAMAeEeo8LhwMcP8rAADYI0Kdx0VCfpZfAQDAHhHqPC4c8qu+uUOxmOV2KQAAwMMIdR4X\nDgbUFbO0ra3T7VIAAICHEeo8rrcBMfvqAABAfwh1HhcJcVUYAADYM0Kdx/VdFUZbEwAA0A9Cncf1\nXhXGTB0AAOgPoc5pbQ3Sa3dKm95zZLiSwjwZw546AADQP0Kd06yY9Ny3pbXzHRnOl5ujkkK/6pqZ\nqQMAALtHqHNaQYk0pFyqWenYkOGgX3XM1AEAgH4Q6pKhtEKqXu7YcOGQX7XsqQMAAP0g1CVDtFKq\nWS3FYo4MFw4FmKkDAAD9ItQlQ7RS6mqVtq53ZLhIkJk6AADQvwGHOmPMccaY0T1flxtjHjDG3GeM\nGZ688tJUaaX9WO3MvrpwKKBtbV3q6HJm5g8AAGSeeGbq7pTU3fP1TyXlSbIk3eN0UWmvdIL96NC+\nut4GxPU0IAYAALvhi+O1IyzL+tgY45N0kqRRkjokfZKUytJZ/lBp6EjHTsD2NiCubWrX8KJ8R8YE\nAACZJZ5Qt80YUyZpkqTllmU1GWP8smfssKNopWPLrxGuCgMAAHsQT6j7laS3JPklfaPnuWmSnGvI\nlkmiFdKHi6TuLik3nn/NOwuHuCoMAAD0b8Bpw7Ks/zXGPCGp27KsD3qe3ijpq0mpLN2VVkrd7dKW\nD6XIuEEN1bunjrYmAABgd+JqaWJZ1ureQGeMOU7ScMuyliWlsnQXrbAfq1cMeqghAZ/8uTmq5aow\nAACwG/G0NFlojJnW8/WNkv4s6WFjzHeSVVxaK+0JdQ4cljDGKBziqjAAALB78czUTZL0es/Xl0s6\nVtLhkq5wuKbM4A9KxaMcmamT1BPqmKkDAAC7Fs8O/hxJljFmjCRjWdYKSTLGlCSlskwQrXQu1AUD\nnH4FAAC7FU+oe1nSryWVS3pCknoCXm0S6soMpRXS2hek7k4pd3CdX8Ihv9ZWNzlUGAAAyDTxLL9e\nImmrpHcl3dLzXIWkXzhbUgaJTpRinVLdB3t+7R5EQgHVNrXLsiwHCgMAAJkmnpYmdZK+s8Nz8xyv\nKJP0nYBd/tnXCQoH/Wrviqm5o1uhwOD63gEAgMwTz+nXPGPMrcaYdcaYtp7HW3tulcCuRMZLJseR\nE7A0IAYAAP2JZ/n1R5Jmyj7temDP4wxJ/5uEujJDXoFUMtqRwxK9DYhraWsCAAB2IZ51vHMlHdiz\nDCtJq4wxb0t6R9J1jleWKaKVjszURYLM1AEAgN2LZ6bOxPk8JPsEbN0HUtfgwljfVWG0NQEAALsQ\nT6j7q6S5xpiTjDGVxphZkp7seR67E62UrG6pds2ghhkW7L3/lZk6AACws3hC3X9Imi/pDklLJP1K\n0gJJNyShrswRrbQfB7kEm5+XqyEBH3vqAADALvW7p84YM2OHp17q+WUk9TZMO0rSi04XljHCYyWT\n69hhCZZfAQDAruzpoMTvdvN8b6DrDXf7OVZRpvEFpPAYh0JdgOVXAACwS/2GOsuyRqeqkIxWWiFt\nfm/Qw4SDfn1U1+JAQQAAINPEs6cOiYpOlOo/lDpbBzVMOBRQXTMzdQAAYGeEulSIVkiypNrVgxom\nEvKrvrlD3THufwUAANsj1KVCac8J2EHuqwsH/YpZ0tYWDksAAIDtEepSITxGyskbfKjrvf+VE7AA\nAGAHhLpUyM2TIuMG3avus/tf2VcHAAC2R6hLldKKQc/URXpn6mhADAAAdkCoS5VopbT1I6m9KeEh\nwlwVBgAAdoNQlyq914XVrkp4iOJCv3IMe+oAAMDOCHWp0ncCNvF9dbk5RsOCfu5/BQAAOyHUpcqw\n0VJuQKpePqhhwkGuCgMAADsj1KVKTq4UGe/ICViWXwEAwI4IdakUrRzU8qtkn4Blpg4AAOyIUJdK\n0QppW5XUti3hIcIhPy1NAADATgh1qdR7WGIQS7CRUECN7V1q6+x2qCgAAJAJCHWpFK2wHwfRhLi3\nV109++oAAMDnEOpSqXhfyVcwqJm6MLdKAACAXciaUGeMmW2MuaehocG9InJypNIJg5up673/tZnD\nEgAA4DNZE+osy5prWdacoqIidwuJVg4q1EWCzNQBAICdZU2o84zSCqlpk9S6JaG3987U0dYEAAB8\nHqEu1aIT7ccE+9UV+nOVn5dDA2IAALAdQl2q9Z6ArUlsCdYYo3AwoFpm6gAAwOcQ6lKtaG/JHxrc\nvjoaEAMAgB0Q6lLNGHtf3aBOwAZUx+lXAADwOYQ6N0QrBterLshMHQAA2B6hzg2llVJzjdRcm9Db\nw6GA6po6ZFmWw4UBAIB0RahzwyCvC4uE/OrojqmxvcvBogAAQDoj1Lmht61Jgkuwn/WqYwkWAADY\nCHVuGFIuBYoSnqkL990qwWEJAABgI9S5wRh7CTbRUNd7/yszdQAAoAehzi2lFXYD4gQOO0RCPTN1\ntDUBAAA9CHVuiU60739tqo77rSWF7KkDAADbI9S5ZRDXhfl9OSoqyGNPHQAA6EOoc0tppf04iH11\ntc3M1AEAABuhzi2hqFRQknivumCAmToAANCHUOcWY+x9dYPoVceeOgAA0ItQ56bSCql6ZUInYMMh\nv+pYfgUAAD0IdW6KVkrtDdK2T+J+azgY0JaWDnV1x5JQGAAASDeEOjdFew5LJHACNhLyy7KkLS2d\nDhcFAADSEaHOTX0nYOPfVxemATEAAPgcQp2bgmEpWJrQTF04SANiAADwGUKd20oTuwO2d6aulrYm\nAABAhDr3RSdKNaviPgEbCTFTBwAAPkOoc1u0Qupokho2xPW2ofl58uUY9tQBAABJhDr3JXhdWE6O\n0bAgDYgBAICNUOe2aIX9mOC+ulpCHQAAEKHOfQUl0pDyhK4Li4T8LL8CAABJhDpvSPQELMuvAACg\nB6HOC6KV9gnYWHxXfoVDAdXR0gQAAIhQ5w3RSqmrVdq6Pq63hUN+NXd0q7WjOzl1AQCAtEGo84IE\nrwsbPjRfkvRhbbPTFQEAgDRDqPOC0gn2Y5zXhR01NiJJWrCq2umKAABAmiHUeUH+UGnoyLgPS0SH\n5uvAvYv1/PLNSSoMAACkC0KdV0Qr415+laSZFVEt3bBV1Y1tSSgKAACkC0KdV0QrpNrVUiy+Qw8z\nJ5ZJkl5cwRIsAADZjFDnFaWD6qP+AAAgAElEQVSVUne7VP9hXG+rGD5EI4oLNH8FS7AAAGQzQp1X\n9F0XtjyutxljdMLEMv1zTS2tTQAAyGKEOq8o7Ql1CVwXNrOyTO1dMb2yttbhogAAQLog1HmFPygV\nj0rourBDRw/TkICPJVgAALIYoc5LopUJzdT5fTmaPqFU81dUKxazklAYAADwOkKdl5RWSLVrpO7O\nuN96wsQy1Ta1652qrUkoDAAAeB2hzkuiE6VYp1T3QdxvPXZ8VLk5hiVYAACyFKHOS3pPwMZ5XZgk\nFRXm6ZB9SzR/Of3qAADIRoQ6L4mMl0xOQoclJPsU7KrNjfq4rsXhwgAAgNcR6rwkr0AqGZ1wqDuh\n53YJlmABAMg+hDqvSfAErCSNCgc1Lhoi1AEAkIUIdV5TWmEflOhqT+jtMyeW6c0P69XQGv8JWgAA\nkL4IdV4TrZSsbru1SQJmVpapK2Zp4eoahwsDAABeRqjzmmil/ZjgEuyUvYsVCfk1fzlLsAAAZBNC\nndeEx0omN+HDErk5RjMqolqwqlqd3TGHiwMAAF5FqPMaX0AKj0l4pk6yl2Ab27r01of1DhYGAAC8\njFDnRaUVUvXyhN9+1LiIAr4cPc8pWAAAsgahzouiE6X6D6XO1oTeXuj3adrYiOav2CzLshwuDgAA\neBGhzouiFZIsqXZ1wkPMrCzThvpWrd7c5FxdAADAswh1XlTacwK2OvF9dcdXRiVxuwQAANmCUOdF\n4TFSTt6g9tWVDc3XgSOL9DytTQAAyAqEOi/KzZMi4wZ1Alayl2Dfqdqq6sY2hwoDAABeRajzqtKK\nhHvV9Zo5sUyWJS1YWe1QUQAAwKsIdV4VrZS2fiS1J37QoWL4EI0oLtDzywl1AABkOkKdV/VeF1a7\nKuEhjDE6YWKZXl5bo9aObocKAwAAXkSo8yoHTsBK9r66ts6YXllb60BRAADAqwh1XjVstJQbkGoG\nt6/u0NHDNCTgo7UJAAAZjlDnVTm5UmT8oA9L+H05OmZCqeavqFYsxu0SAABkKkKdl0UrB738Kkkn\nVJaptqld71RtdaAoAADgRYQ6L4tWSNuqpLZtgxrm2Amlys0xLMECAJDBCHVe1ntYoibxE7CSVFzo\n1yH7lmg+rU0AAMhYhDovi1bYj4O4LqzXzMoyrdrcqA31LYMeCwAAeA+hzsuK95V8BYO+LkySTphY\nJkkswQIAkKEIdV6WkyOVThj0CVhJGhUOalw0RKgDACBDEeq8LlrpyEydZN8F+8a6ejW0djoyHgAA\n8A5CndeVVkiNn0qtWwY91MzKqLpilhaurnGgMAAA4CWEOq+LTrQfHehXN2XvEoWDfs1fzhIsAACZ\nhlDndb0nYAd5XZgk5eYYzaiIasGqanV2xwY9HgAA8A5CndcV7S35Q47M1En2vrrGti699WG9I+MB\nAABvINR5nTH2vjoHetVJ0tHjIvL7cvQ8p2ABAMgohLp0EK1w7ARsod+no8ZGNH/FZlmW5ciYAADA\nfYS6dFBaKTXXSM21jgw3s7JMG+pbtaa6yZHxAACA+wh16aDvurDBH5aQpOMro5Kk5zkFCwBAxiDU\npYPetiYOLcGWDc3XgSOLuF0CAIAMQqhLB0PKpUCRYzN1knR8ZZmWbtiq6sY2x8YEAADuIdSlA2Mc\nPSwh2fvqLEtasLLasTEBAIB7CHXporetiUMnVivLh2hEcYGeX06oAwAgExDq0kV0on3/a5MzIcwY\no5mVUb28tkatHd2OjAkAANxDqEsXDl4X1mvmxDK1dcb0ylpnWqUAAAD3EOrSRWml/ejQdWGSdNjo\nsEIBH6dgAQDIAIS6dBGKSgUljl0XJkl+X46mTyjVCyurFYtxuwQAAOmMUJcujLH31Tl4AlaSTqgs\nU01ju97d2ODouAAAILUIdemktMJefnXwztZjJ5QqN8doPrdLAACQ1tI61BljyowxrxpjFhpjXjTG\nlLtdU1JFK6X2BqnxU8eGLC70a+qoEvbVAQCQ5tI61EmqlXSUZVnTJf1B0mUu15Nc0d7DEs7tq5Ok\nEyaWaeWmRm2ob3F0XAAAkDppHeosy+q2LCvW849DJL3vZj1Jl4QTsJJ9ZZgkZusAAEhjKQt1xpir\njTGLjTHtxpj7d/jeMGPME8aYZmPMR8aYC+IYd4ox5g1JV0t62+GyvSUYloKljvaqk6TRkaDGRkOE\nOgAA0pgvhZ/1iaTbJZ0kqWCH790hqUNSmaQpkuYZY96xLOt9Y8xwSY/uYrxzLMvaZFnWUkmHGWPO\nk/RtSVck7Sfwgt7DEg6bWVmm3/5znRpaO1VUkOf4+AAAILlSNlNnWdbjlmU9Kanu888bY4KSzpb0\nXcuymizLelnS05Iu7nnfJsuyjtrFr03GmMDnhmqQlPmbwnrbmjh4AlaSTpgYVVfM0sLVNY6OCwAA\nUsMLe+rGS+q2LGv15557R9L+A3jvF4wxi4wxCyR9Q9KPd/UiY8ycnqXfxTU1aR5aohVSR5PUsMHR\nYafsXaJw0K8XWIIFACAtpXL5dXdCsmfZPq9B9sGHflmW9ZqkYwbwunsk3SNJU6dOTe+rEz5/WKJ4\nH8eGzc0xmlER1XPvb1Jnd0x5uV7I+wAAYKC88Cd3k6ShOzw3VFKjC7V4X7TCfnS4rYkkzZxYpm1t\nXXprfb3jYwMAgOTyQqhbLclnjBn3uecOVKa3J0lUQYk0pNzx68Ik6ehxEfl9OZq/vNrxsQEAQHKl\nsqWJzxiTLylXUq4xJt8Y47Msq1nS45JuM8YEjTHTJJ0h6cFU1ZZ2SiukamfbmkhSod+naWPCen7F\nJlkOH8QAAADJlcqZupsltUq6SdJFPV/f3PO9K2W3OamW9LCkr1mWxUzd7kQrpZpVUiy259fGaebE\nMm2ob9Wa6ibHxwYAAMmTypYmt1iWZXb4dUvP9+otyzrTsqygZVn7WJb1p1TVlZZKK6SuVmnreseH\nPr7Cvl3i+eWcggUAIJ14YU8d4hWdaD8moQnx8KJ8HTCyiNslAABIM4S6dFQ6wX50+LqwXjMry7R0\nw1ZVN7YlZXwAAOA8Ql06yh8qDR2ZlJk6yQ51liUtWMkpWAAA0gWhLl1FK5NyAlaSKsuHaERxgeav\nINQBAJAuCHXpKloh1a6WYt2OD22M0czKqP65pkZtnc6PDwAAnEeoS1ellVJ3u1T/YVKGP76yTG2d\nMb2ytjYp4wMAAGcR6tJV73VhSToscdh+wxQK+DgFCwBAmiDUpavS3jtgkxPqAr5cTR9fqvkrqhWL\ncbsEAABelzWhzhgz2xhzT0NDg9ulOMMflIpHJS3USdLMiVHVNLbr3Y0Z8u8MAIAMljWhzrKsuZZl\nzSkqKnK7FOdEK6Wa5LQ1kaTjJkSVm2M0n9slAADwvKwJdRmptEKqXSO1J+ee1uJCv6aOKmFfHQAA\naYBQl872my7FOqU7D5dWzkvKR5wwsUwrNzVqQ31LUsYHAADOINSlszEzpEv/LgWGSH++QPrT+dKW\n9Y5+xPGVZZKkF5itAwDA0wh16W7UkdK/L5JOvF36cJF0x+HSop9IXe2ODD86EtTYaIjbJQAA8DhC\nXSbIzZOOvEa6+i1p/InSi/8t3TVNWveSI8PPrCzT6+vqtK2t05HxAACA8wh1maRohHTeH6QLH7X3\n2v3hDOnRy6TGTYMadmZlVF0xSwtX1ThUKAAAcBqhLhONO0G68nVp+k3SiqelXx8ivX631N2V0HAH\n7VOiYUG/Hn+7Sh1dMYeLBQAATiDUZaq8Aum4b9vhbuRU6dkbpXuPlTa8FfdQuTlGFx62jxasqtGs\nXyzSotXM2AEA4DWEukwXHiNd9Lh07gNSc530u5nS01+XWurjGuZbJ07QfZdMVXfM0pfve1NXPLhE\nVVtocwIAgFcYy8quez2nTp1qLV682O0y3NHeKL30Q+n1u6SCYumE26QDL5ByBp7t2zq79buXP9Sv\nXlwjy5KuOm6s5hyzn/LzcpNYOAAA2ckYs8SyrKkDei2hLgttek+a901pwxvS3odLp/5UGj4priE2\nbm3V/8xboXnLPtU+wwr13dMmamZlVMaYJBUNAED2iSfUsfyajYZPki59VjrjDql2tfSbY6Tn/tOe\nyRugEcUFuuPCL+ihrx4mvy9Hl/9hsS69/y19WNucxMIBAMDuMFOX7VrqpRdulZbcLw0pl2b9QJp4\nphTHjFtnd0wPvLpeP5+/Rh1dMX316NG6esZYFfp9yasbAIAswPJrPwh1u7HhLWneddKmZfb1Y6f8\nxD5kEYfqbW364bMr9fjbG1VelK//PLVSp04uZ0kWAIAEEer6QajrR3eXtPh30ou3S11t0lHX2b/y\nCuIaZvH6en3vqfe1/NNtOmK/sG49Y3+NLxuSpKIBAMhchLpdMMbMljR77Nixl69Zs8btcrytcZP0\nj5ulZX+VSkZLp/zYbmgch+6YpT+9+bF+8twqNbV36ZIj99W1M8dpaH5ekooGACDzEOr6wUxdHNa9\nJM27XqpbI1XOlo75D6l4bym/eMB77uqbO/Tj51bpz299rHAwoG+fXKF/O2iEcnJYkgUAYE8Idf0g\n1MWpq1169VfSoh/bS7KS5MuXQlEpNFwaUmYfsAiVSUOGf/ZcaLhUGO7rgfdu1VZ976n3tXTDVn1h\nn2LddsYkTRpR5OIPBgCA9xHq+kGoS1BDlfTx6/bSbNMmqXHzZ4+Nm6T2hp3fk+OTgtG+4GeFyrS8\nsUBPrOnW+o6QvjCxUhccf6iKS0dIuZyUBQBgR/GEOv4kxcAUjZQmn7P773e29gS+zbt4/FTa8pHM\nhje0f0ud9pekPElr7F+WjBSMyISG27N9Q8ulI66WSiek5mcDACADEOrgjLwCadho+1d/ujqk5mqp\ncbOqNqzT3197Ry31VaroatZheV0qbq6WPnrV/nXFy3GfvAUAIFux/ApXWZalue9+qu/PW67N29p1\nzsEjdfPEGhX/9Wx7tu6k77tdIgAAruGaMKQNY4xOP3AvvfitY3XF9DF6aulGHf2Xbr1bfq6s1+6Q\nPnrN7RIBAEgLhDp4QjDg000nV+jZbxyjw/YbpvM/PFlVVqnq//RVba6tc7s8AAA8j1AHTxlTGtJv\nv3KIHrv2BD21z7c1rL1Kz/7iSt346Lv6oKbJ7fIAAPAsQh08qbJ8qK6+7P+p8cDL9JXcZ7Vx6fOa\n+bOF+tofl+jdqq1ulwdgdxb/Xnr5/9yuAshKhDp42pBT/1sqGa0Hwg/oG0fvpZfX1ur0X7+iC3/7\nul5eU6tsO+gDeFpXu/TCrdKC/5Fa6t2uBsg6hDp4mz8onXmnchs+1rXWQ3r1phn6zikVWrO5SRf9\n7g2d/utX9MyyT9UdI9wBrlv1d6l1i9TdIb33mNvVAFmHUAfvG3WkdPjXpLfu1ZBPX9OcY8bonzce\npx+cNVmNbZ268qG3dcLPFuqRtz5We1e329UC2WvpQ9KQvaSySdLSP7ldDZB1CHVIDzO+Kw0bIz11\nldTeqIAvV186dB+98K1jdccFX1BhIFc3PrZMx/xoge5dtE5N7V1uVwxkl8ZN0tr50oHnSwddJH3y\ntlS9wu2qgKxCqEN68BdKZ94pbd0gPf+9vqdzc4xOPaBcc68+Sg9edqjGlIb0/WdW6MgfvKCf/mOV\n6praXSwayCLvPiJZMWnKhdLkc+27n5mtA1KKUIf0sc/h0hFXSYvvkz5YsN23jDE6elyp/nT54Xry\nqmk6ckxEv16wVtP+90X911PvaUN9i0tFA1nAsqR/PSTtfZgUGSsFI9K4k+yg182sOZAqhDqklxk3\nS+Fx0tPXSG3bdvmSKXsX6+6LD9bz103X6QfupT+9+bGO/clLuu6RpVq5adfvATAIG9+WalfZs3S9\nplwgNW2W1i3Y/fsAOCprQp0xZrYx5p6Ghga3S8Fg5BVIZ94lbdso/ePmfl86NhrSj845UAtvOE6X\nHLmvnnt/k2b9/J+67P63tHg97RYAxyz9o+QrkPY/87Pnxp0oFYbtwxMAUiJrQp1lWXMty5pTVFTk\ndikYrL0PkY68Rnr7AXtj9h7sVVyg7542Ua/cOEPXzRyvtz/eonPufk3n3v2qXlixWV3dsRQUDWSo\nzjZp2WNS5Wwp/3O/v/r89t66lfPsNicAki5rQh0yzLHfkSITpKe/LrUNbPa1JOjXtTPH6ZWbZui/\nZk/Uxi2tuuyBxTrsf17Qd55YplfW1hLwgHit/JvU3iAddOHO35tyAT3rgBQy2daRf+rUqdbixYvd\nLgNOqFoi/W6m/QfHGXfE/fbO7pjmL9+secs+1Ysrq9XS0a1w0K8T9x+u0w4o12Gjh8mXy997gH49\neJZUu1q69l0pZ4f/XyxLuvsoyZcvXf6CO/UBac4Ys8SyrKkDea0v2cUASTPyYGnaN6SXfyZVniGN\nPzGut+fl5ujkyeU6eXK5Wju6tXB1tf727qd6aulGPfzmxxoW9Ouk/Yfr1MnlOnw/Ah6wk22f2Ach\njr5+50AnScbYf+l67jtSzSqpdELqawSyCDN1SG9d7dJvpkttW6UrX5MKSgY9ZG/Am7dsk15YsVkt\nHd0EPGBX/vlT6YXbpK//Sxq2365f01Qt/bTC3gd7wq2prQ/IAPHM1BHqkP4++Zd07/HSAV+U/u0u\nR4du6+zWS6t2FfDKdOrkvQh4yF6WJf16qhQqky59pv/X/ul86dOl0nXvSzm5qakPyBAsvyK77HWQ\ndPQ3pUU/liaeLk042bGh8/NyNWtSuWZNKu8JeDWat+xTPbX0Ez385gYCHrLXhjelurXSUdft+bVT\nLpBW/91uGj5uZvJrA7IUoQ6Z4Zj/kFb9XZp7rd3VvnCY4x9hB7zhmjVpeF/Ae2YXAe+UyeU6Yr/w\n9gHPsuxTgL6A43UBrlj6kJRXKE08Y8+vHT9LKhgmvfMnQh2Sq71R2vKRNHyS25W4glCHzODz23fD\n3jtDevYm6ax7kvpxuwt4T/cEvJLCPM2aNNwOeAVV8v3tGqm5Trr8RWloeVJrA5Kuo0V6/wlp4plS\nYMieX+/zS5PPkZY8ILVulQqKk18jsk9Xu30ae+Ni6fIF0l5T3K4o5VgrQuYoP9A+hffuI9KKv6Xs\nY3sD3i+/dJCWfPcE3X3RwTp6XKmeW7peyx74pvTbGdpWu1HdrVsVe+RiqasjZbUBSbHyb1L7NntZ\ndaCmXCB1t0vvP568upDd/n6jVPWmlBeU/vYNKdbtdkUpR6hDZjn6W9LwydLfrpNaUn8VWF/AO7JN\niyO36krf03qraJZO6vixrmn5qnI2vqUXf36pfv/Kh/qwtlnZdlAJGWLpQ1LxKGnUtIG/p3yKFJ0o\nLf1T8upC9lpyv7Tk93abq9k/tw/QLb7P7apSjuVXZBaf374b9p7jpGdukM75XWo/v71Rmn+r9Na9\nyineR7r4SR0x5jgt6OzW6+uO0csv1mnG5of0H8+U69a5x2mfYYU6dkKppo8v1RFjwir0878kPG7r\nBmndQunYm3bdm253envW/eNmqXaNFBmXvBqRXTa8Kc27XhozQzr+e5LJkf71oN1up+K0rNrywkwd\nMs/wydL0/5Dee1Ra/lTqPnfN89Idh0tv/VY6/Erpa69JY46TZM/gHTshqqPm/FLa71j9b+AB3Tk9\npvFlIf11cZUue2Cxptz6vC767Ru6d9E6rdncyCwevOmdP0uypAPPj/+9k8+TTC6zdXBO4ybpkYul\nohHS2b+zW+YYI536M3uP3XPfcbvClKJPHTJTd6f02+Olho3SVW9IwUjyPqulXnr229K7f7bvoz3j\n19Leh/b/+num2/s95ixUe/4wLV6/RS+tqtbC1TVavblJkjSiuEDHjLdn8aaNDWtIfl7yfgZgICxL\n+uVBUtFI6ZIE960+dJ60aZl03Xv0rMPgdHVID5xm//d02fM7n3hd+CNpwfelix6TxqbvqWuaD/eD\nUJdFNi+XfnOMVHmadO79zo9vWdLyJ+1l3tYt0lHflI65fmBtSz59R/rdidKIqdKXn5RyPwtsG7e2\natHqGi1cVaOX19aqqb1Lvhyjg0eVaPqEUh07PqrK8iEyxjj/MwH9+ehV6fcnS2feLU35UmJjvP+k\n9NevSBc9Lo093tn6kF3+dp29b+6c30uTztr5+13t0l3TpFindOXrUl5B6mt0AKGuH4S6LLPoJ9KL\n/737/+kT1bhJmvct+xRg+RR7dm745PjGeOcR6Yk59lLtrB/s8iWd3TG9/dEWLVxdo5dW1Wj5p9sk\nSdEhAR0zvlTHTijV0WNLVVTILB5S4Kmr7FB2/WrJH0xsjK526SfjpXEnSGf/1tn6kD2WPCDN/bo0\n7VrphNt2/7oPF0kPzLY7Ixz/3dTV5yBCXT8IdVmmu0v63Uy7GeVVb0ih6ODGsyzpX3+UnvtPuz3D\ncd+RDr9Kyk3wgMPfb5TeuFs6617pgPP2+PLqbW1auLpGC1fX6J9ratXQ2qkcIx20T4mm94S8SXsV\nKSeHWTw4rKPZDmP7nymdccfgxpr3Lfv/o+tXS/lFztSH7FG12J4xHjXNXlrd0zL+4/8uvfeY9LVX\npNIJqanRQYS6fhDqslD1Suk3R0vjT5LOe9DeRJuI+g/tGys+XGj/ZnL6r6TwmMHV1t0p/eEMaePb\n0mX/kMoPGPhbY5aWbthqh7xV1Xp3Y4MsSxoW9OugvYs1JhrS2NJQ3yOzeRiUpQ9LT14hXfqsNOqI\nwY21cYndKHz2L6SDL3GkPGSJxs32nuRcvzTnpYHdHtRUY99TXLa/dMm8xP8McAmhrh+Euiz18v9J\n82+xT0dNPie+98a6pTd+Yy/jmlzphFulgy+Nr51Df5qqpd9Mt2f75ixM+IqzuqZ2vby2Vgt7lmnX\n1TaroyvW9/1IKKCx0aDGlIY0Nmr/GlMaUnlRPvvzsGf3nyY1VElf/9fg/1C0LOnOw+1Zusv+4Ux9\nyHxdHdIfTpc+WSp99fn4trwsud/+S/kZd0oHXZi0EpOBUNcPQl2W6u6S7jtJqv9AuvINaUjZwN5X\nvVJ6+mqp6i1p3EnSaT+zT/45rXc5Yd+jpAsfdeRUYHfMUtWWFq2tbtLa6iZ9UNPU9/W2tq6+1wX9\nuRrTE/DG9j0GNSocVF4uXY8gact66RcHSsfdLE2/wZkxX/mF9Pz3pKuXSJGxzoyJzDbvW3bLqIT+\nch6Tfj/L7pF4zZKk3A+eLIS6fhDqsljNaunuo+yj7ec/1P9sQ1eH9MrPpUU/lvwh6eQf2b+JJHNG\nq3fj71HXSTNvSdrHWJal2qaO7YLeBzVN+qC6SZ80tPW9zpdjtE+4UGO3C3v2cm4oQJPkrPLSD+1f\n31gmFe/tzJiNm6SfVdqnxtN0AztS6O0H7b9gH3mNdOLtiY2x+X27I8KB5w9+X2gKxRPqsuZ3ZmPM\nbEmzx47lb4RZq3S8NONm6fnvSsv+uvuDCRuXSE9dI1W/L0062w50yexz1+vgr0ifvG0vFZdPsTek\nJ4ExRqVDAiodEtARY8Lbfa+pvUvraraf1fugplkvrqxWV+yzvwAOH5rfE/SC2icc1MiSAo0sKdDe\nwwo1lH56mSUWs68F22+6c4FOkoYMl8YcL73zsH3giJ512J2qJdK8b0qjp0vH35L4OGX7S0dcZc8S\nT7lQGnWkYyV6BTN1yC6xbum+WVLtartv0eevj+lokV76gfTar6VQmd2RvOKU1NbX1S7df6rdY+/y\nF6RoZWo/fzc6u2P6qK7ls5m93tm9mmY1tXdt99qh+T7tPazQDnklhT2Br7DvuSCzfOnlw3/aDV7P\n+q10wLnOjv3e49Kjl0oXP9l3+wqwHYf2HPfpaLZv/vEXSv/+T/tqSY9j+bUfhDqodq109zRpv2Ol\nL/3ZXlJd/7L09DVS/Tr7NN4Jt7nXamHbJ/ZvYoEh0uUvSgXF7tQxAJZlaWtLp6q2tGrDlhZVbWmx\nv65v6XuurTO23XuGBf2fzez1hr5hhdq7pEAjigtV4GfGxlOeuEJaOU/61ir7D0IndbZJPx1v71c9\n+15nx0b66+6UHjhd+uRfcXcH6NeqZ6WHvygd/1/S0d90ZswkYvkV6E9krH3p83Pfkd68V6pZYXcl\nLxktfWWuNPoYd+sbupd03gN2w8wn/l06/2HnTto6zBijkqBfJUG/Jo/cOQRblqW65o6+kPdZ+GvV\nyk8bNX9F9XYndCX7lG7vUu6O4W+v4gLl5xH6Uqa90b4/efK5zgc6ScrLt7c4LH1Yatsm5Q91/jOQ\nvp77jvTxq/YssVOBTpImzJIqZ9vXiE06SyrZ17mxXUaoQ3Y67AppxVzp7zdIJkc64mrpuP9Mzh9c\niRh1pHTSD+z6Fv1IOvYmtytKiDFGkVBAkVBAB+1TstP3YzFLNU3tu5zhe7dqq55971N1dm+/mhAJ\nBTSipEAjiws0oqRAexXla0RJoUb0/HNRAXv6HPP+k1Jni3TQRcn7jCkX2n+pWv6k9IUvJ+9zkF7+\n9ZD05j32781OL/tL0qz/lT44VJp3vXThX9Oud93usPyK7LVlvbTgf6RD/10aebDb1ezMsqQnv2Zv\nJP/SI/bfLrNMd8zS5m1tPbN8Ldq4pVUbt/b86vm6fYeZviEBn0aUFPSFvB0fI8EAN24M1H0nS801\n0tVvJe8PPcuS7jhUKgxL/+/Z5HwG0svGJfZ/e/scJl30ROI39uzJa3dKz31bOveBpB1McwJ76vpB\nqENa6Wzt6a/3oXT5Avp57aC3PctnIe+z4FfV89jYtv1BDr8vxw54xQXaqzhfI4oL+0LfyJICDS/o\nVp4vz14azGZ1H0i/+kJq9h31Nge/5u3B39KC9NZUY98YYXLtGyOC4T29I3HdXdK9x0rNtdJVb3p2\n+Z89dUCmyCuQvvhH++DEIxdKX51vH6CApO3bs0zZe9cHSra1dWrjllZ98rkZvqqexwWralTT2C5J\nylFMX8p9Udf7/qJWU6Af+K/R6oKDFAzkKhjwKej3qTCQq6Df1/PPPc9/7vvBgE+Fn3/eb/9zWt7Y\n8c7D9taEA89P/mcd8GDgtkEAAB4iSURBVEXphdukd/4szfjP5H/e/2/vvuOkqu7/j78+OzO7LG0B\nAZVuAcSCKKDYktjFFkS/BiWK0cQkRk1+3xS/KfYUE6N+E2tssaIRu8aKih0FFTQoxYagfqUvsH1m\nzu+Pc4edXXeHBXba3ffz8ZjHzN4yc+bundn3nnPPOVKYEg0wbQpUr/QdI7IZ6MDXAB79N7j5YHjh\nDzD+z9l9vRxQqBMpdD0GwX/9E+48Dh75iW8qKMaQkCfdO8Xovm2MEdu2/F94bUOCVfNfpvvzv6Hr\n6nks6b4n5XXLubruAp4rn8hdse+xpg6+WltLVV2Cqvo41XUJ6hPJFp+vOTPoHEsFPR/2Opc2hsKK\n8hg9Osfo2bk0eFwa/ByjotwvK43muKNMMuk7L+xwkO+4k23d+8H2B/og+a1fF2zHIMmyZ34Hi1+F\niTfBtrvn5jUHjIaxZ/jr93afBP32yM3rZolCnUgx2P5bcMjFfuDkV//XzzohW27dV3SafiH95t4D\n3frBCbcycJeJvtl7+kUc/OY/ODj6Hhx3AwzYr8mu9fEk1fVxquoTVNXFg5sPfVV1jcur6+Ksr0tQ\nXR9nfV2c6mD58vV1fLqymsqaBtZU15PMcCVMl9LIhrDXo3OMHuWlVATBL/W4R3mMnl1K6VEeC34u\n3fww+MmLsHYpHHbJ5u2/OUadDA+cAZ++7Ac6lo5lzj3wxg0w7ietDwyfLQdf4DvOPfYzP4xUEQ+E\nrVAnUiz2PceP1/TcJbDNSNjx4HyXqHglGvx/5i/8CeK1fqqqA34OZV39+tLOcORf/ODTD/8EbjnU\nB+lv/s+GwUpLoyWURkvp0Q4dppNJx/r6OGuqGlhTU8+a6gbWBGFvTXVD8HPqcT1fVq6lMtgmkSEN\npsJgRXmMivIYnUsjlJdG6FzqawvLSyN0KY1QHjQTdy6NUB6LMGrWP+lV2p0PKw6gfGVVsE+U8liE\nSLY6mex0FJRVwJypCnUdzRfvwOM/gyEH+DFCc61TBRz+R/9PxaybYe8f5r4M7UQdJUSKSX0V3HyI\nH6D4hy+GanylnPl4Bjx5HiyfDzse6q+jyXRxfm0lPPUbmHMXbL2br7XbZtecFTcT5xzr6uI+4AXB\nb3V1A5XVjcFwdXU9ldUNVNY0UF2foKbB1xpW1yeoqU80mf4NoBvVvFl2FvcnvsH58dO/9ppl0ZIm\noTAVBFPLOjdrVk4Fyg23YFlZtIXakMd+Cu/eB79YqGtHO4qqFf6aYbOgY0QOpmRsiXNw10RYMsv3\n9k6fbSjP1Ps1A4U6KXorP4KbDoSKQf5i4kIZW6/QrVkCz/zWD6bbcwgccRkMO6Lt1ycueBIePRdq\nVvu5Svc9N3tDLeRQfTxJTX1wrWB9gk7v3smAV/6H2Yfdz7Juuwbhz69rKRRuuG9oXLauNv616eOa\n6xQr2RD0epSX0r08xki3gHM/PYtnh17AF9sdv2F999R2QSCMRXTNXSgkGvy1wktnwelPQ79R+S3P\nyo/gun1g+Hg/AHyBUKjLQKFOQmHhMzD1RD/S/8Qb1XEik4ZaeP1qeOkK//MBP/dN2ZszZEnVSj+x\n+PsPw4CxMOGG8A0zc8thvnbyrJlbdF7FE0nW1saprGnYcFtTXc/atJ8bl/v7tdX13F13NstcBd+p\nv6DV5+5cGtkQ+MpiEUojRrSkhFi0hFiJEYuUEI34+1jEiEZKKI2UEC2xZtv49X47v09p831L/LrS\nqFEWjdApFqFTrITyWOpxFpukw+6pX8PM6+C4f+Sml3VbvHg5vPB7mHw/DD0036UBFOoyUqiT0Eh9\n+RxxGYz7cb5LU5gWPAVPnecHmh5xLBz+B9+beEs4B/95AP79c4jXwaEXw9gfhKPH5opFcM0Yf13T\nfj/NTxlevgKeu4RV33+D1WUDNgS/tc0CYOpWF0/SEE8STyZpSDgaEkniwX1DMklD3BFPJqmPJ4kn\ng+WJ9v27F4vYhoDXJPBFI5Q1CYCNj8tikeBxSZN1ZWn7lUVLgiDp71PLSiMlxTlMTrq59/ppEPf+\nMYy/LN+laRSvgxv29/dnzSyIlhCNUyfSERzwc3+B8dO/hW12gyH757tEhWPlR74WYNHT0HsYnPIw\n7HBg+zy3Gex2AgzeDx49B578Fcx/HL597ZYHxnybM9UP+jryO/krw8hJ8Nyl9Fr0IL0O/E1WXsI5\nRzzpiCcc9Ykk8YQPfE2Dnw9/8USS+uBxbUOC2oYEdQ1JaoLHtQ1JauO+2bkuHvzckNiwfl1tnOXr\n6ppsm3q8JXzgK6EsFml83EIALIsG62Npj9PWd4pFWt8uVpIWMBtfJ7qlzd9fzPHXTw7eHw67dMue\nq71Fy+CoK+H2o+Gly+GQC/Ndok2imjqRYla7Fm46yF/n9cMXoWJAdl/POVj/la/RWbkIKj+HPjv5\n6XwqBua/Gbi+ytf0vHY1RMrgW+f5aeCCHqvtzjl4+w4/8TjmaxxGTc7/cdgcyQRctav/B2Hyffkt\nyx0TYNVHcO7ccNSAtsA5R108uSHgNYZE/3NdPEFdPOlvDY2Pazc89uFyw+N4Mvg50Xjfyv7NO8ds\nqkiJbQh4TUJhC0EyPRR2Lo3Qu2QdJ759CiU4Zh7yIKUVW9OlLEK3TtHGsRxLo/lv0n7ox/DeffCj\nV6DviLwWRc2vGSjUSegsX+CDXe9h8L0n22d6q4YaX9u1chGs+DC4X+iX1a1N29CA4Duke38YNA4G\njvP3W++Su/GenIN5D/nBS9d+7mt7Dr0Yum2Tm9df/akf+mTxKzBsPBzzN+i2dW5eu718OB3uOr4w\n5sF8dxo8+H2Y8jhsd0B+yxJCqdrH2gbfLJ0eCmu/Fgobw+PGAuXX923ctqYhQV19PbdF/sjokkWc\nUH8h77ntWy1jeSxC105RuqbNztK1LErXIPx13TCLS9NA2LUsSqdohHgySSLpa2RT96ka2cblvqk+\nkXQ0JB2JtPXR2lWcPOt4VnbejqkjrifhLG1fv1886dh52+6cvv92Wf19qflVpCPpM9wPs/Gv78IT\nv4Bjr25bTZFzfmiUlYt8zVuq9m3Fh1C5hA1hDaD7AN8hYPdJsNVQ/3iroT40LfsAPpsJS2bC4tf9\n9WYApd1g4FgYtI8Pef1HQ2mX9n//yz6AJ37pB63dZjc44Vb/ernUcwhMecwPnvrcxXDdODj6Stjl\nuNyWY0vMmQrlPX3Pv3zb6Sgo6+7LpFDX7qJBJ5HOWarAbo176jfYzPdZN/5qrtnxeNbVpgbq9gN0\nV9XFWR/0nG5p+ZeVtVQt9+vW18W3uAl7YxZETuQv8ZtY9eptPGwHEi0pIVJiREtsw30sUli18qqp\nEwmL5y6Fl/8KR18FY9LGF6uvgpUfNgtui3ytW0NV43alXWGrHaH30KbBbasd2h7GnPOB8LM34LPX\nfdhb9j7goCTqB01OhbxB46Br381/v7WVMOMyeOMffkyzg8+H0d/L/2jwyxf6C8C/eBt2PQGOvBw6\n98pvmTamZjX8dTiMnuLLWwgePRfeuz8Ys65rvksjWypV+7rXD/3A3u0gnkhSVZdgfX1j0KsKwl40\nkh6+GsNYNGJfD2fBsmiJEUnfz6DktiOxFQvh7NnZn4u2FWp+zUChTkIrmfDDnHz8op9yafWnPsyt\n/TxtI/MX8zcPbr2HQrdts3MtWM0aPw5VKuR9/pafxQGg1/Y+5A3c29/3HrrxMiST8O698OwFfuDS\n0afBQefn7Qu3RYk4vHIVvHgZdO7ta0+HHZbvUrVu1i1+qJYzX8z/WGEpn82EWw+HCdf781mK1+LX\n4M6J0H9POPURiMTyXaK2++p9+McB/pKOCdfmpQgKdRko1Emo1ayG24+F1YvTAlvqfpgPUe1xzd2W\niNfDl3MbQ95nr0PNKr+uvFdjLd6gffyk3tGyxn2/eMc3tS6d5ceJO/Lywp6A+8u58NCPfG3lnlP8\nkCqFOFPCTQf58fx+/GrhdPJwDq7e01+redrj+S6NbK5PXvb/bFYMgNOegK598l2iTffshX7O7dOe\ngCH7bXz7dqZQl4FCnYRe6jNdKH+cN8Y5X6O4IeTN9D0fwfdg7T/ah7zqlb6naZfefhy1kZOKo2dk\nvA5e+CO89nf/h23C9YU1/Myy+XDd3nDYH2Dfs/NdmqZeuhye/z38dK6mxCtGH8+AqZOg52B/zemW\nXG6RT/XV/jMSLfe9YbPVm74VmxLqiuAbUUQ2iVnxBDrwZe09FPY8FSZcB+e+Db9YBCfeCWO/D4k6\nH4jeuQvGnQXnvOWb44oh0IGvaTz0YvjeU/66wtuO8mPoNdTku2Te3Km+XPkcm641IycB5geqleLy\n4XMw9Tu+dWDK48Ub6MAPQHzkX2HFAv9dVMBUUyciha++yoegfE323V7qq2D6RfDmjb45/LgbfE1k\nviTicNXOvgwn3ZO/cmRy+7H++tBz5xRPkO/oFk2He0/25/ipjxTW9a5b4l+nwKJn4KzXfVjNEdXU\ntcDMjjGzGysrK/NdFBHZVKVdij/QgX8fR17uZ7ior4abD/UzgtSty095PnreDyY9anJ+Xr8tRk2G\nNYt987wUvoVPw70n+aGWpjwankAHMP7Pvlb7iV82XuZSYDpMqHPOPeacO7OioiLfRRGRjm6HA+Gs\n12CP78Lr18I1Y/3wHbn+QzHnLui8FQwt4J65I472Yx7OmZrvksjGzH8C7p3sBx6f8mjhD+Wzqbr3\ng4N+5wfqnvdQvkvTog4T6kRECkqnCjj27/D96dB1a3jgDLj9GN9xIReqV8GCJ2G3E3N+4fcmKe3i\nZ7iY9xDUrc93aaQ1HzwG950C2470NdHlPfNdouwY+wPfK/+pX/uxMguMQp2ISD4NGAM/eN5PIv5/\n78EN+8Ez52e/SfY/D0CiHvYo4KbXlFEn+4GyP3gs3yWRlsx7GO6bAv32hFMegvIe+S5R9kSifoD3\n9V/5ntkFRqFORCTfSiIw9gw4520fYF77O1yzlw9e2WqSfecuP63aNrtl5/nb06B9/JAmc9UEW3D+\n8wDcfzoM3AtOedDXQIdd/9Gw1w/gzZvg87fzXZomFOpERApFl6387BNnTPeDtN5/OtxxLCxf0L6v\n89U8+HIOjPpu+z5vtpj5DhOfvARrPst3aSTl3WnwwPf9OJKT7y/MgbWz5aDf+csmnr0g3yVpQqFO\nRKTQDBwLP3gBjrrCz0px/b7+j0d7XVM2ZyqUxGC3/2qf58uF3Sf5e41ZVxjm3AMPnQmD94PJ0zre\n/LydKuDE22HijfkuSRMKdSIihagk4gdfPudtH2he/ZvvJTvvoS1rkk00wLv/guFHFNdwEz0GwZAD\nfCAt0OEkOox37oKHfwzbfQNOvs93ZumIBo3zPWILiEKdiEgh69Ibvn0tnPGsD2HTToM7J8DyhZv3\nfIueharlhT02XWtGTYbVn/ip5CQ/3roNHvmJH5bnpHv9bAtSMBTqRESKwcC94MwX/XRFX7wTNMle\nuOlNsnPuhi59YMdDslPObNr5WCjt6t+D5N6sW+Cxn8KOh8KkeyBWnu8SSTMKdSIixaIk4nvdnf2W\nn6v11f+Fa/fyQ0q0pUmyagUsfMrvG4llv7ztrbQL7DzBv9/6qnyXpmN540b493/DsCNg0t0Q65Tv\nEkkLFOpERIpN1z4w4Vo4/Rko7wXTpsCdx8GKRZn3e28aJOPF2fSaMuokqF8HHzye75J0HK9fB0/+\nEoYfBSfeCdGyfJdIWqFQJyJSrAbtDWfOgPGX+/GyrtsHpl/cei3WnLuh3x6w9c65LGX7GrQv9Bis\nMety5bWr4elfw4hjfW/PQp59RBTqRESKWiQKe58J58z2Q5S8cqUfuPj9R5s2yX75rp+xophr6QBK\nSvwAzR+/CGuW5Ls04fbKVfDM72CX4+CEW4uzyb6DUagTEQmDrn3huOvhe0/5aZruOwXuOh5WfOjX\nz5kKkVLY9fj8lrM97D4JcPCuxqzLmpcuh+kXwa4nwMSbFeiKhEKdiEiYDN7H95I94s+wdBZcHzTJ\nvncfDD8SOvfKdwm3XM8hMHh/jVmXLTMu8/OajpzkB9eNRPNdImkjhToRkbCJRGHcj+Ds2b5m7pUr\noXpl8Te9pht1Mqz6GObeA7Vr812acHAOnv8DzPiTP1cmXOd7XEvRMNfB/ssZM2aMmz17dr6LISKS\nO4tf87f9/194/kjXrYdrxsC6LwGDPsOh/xgYMNrf9925OGuYqldB3Tro3j+35XcOnr8UXr4C9jgF\njvm7v35R8s7M3nLOjWnTtgp1IiJSlGorfRPz0rfg89mwdDbUrPLrYp19T9/+o2HAGB/0Kvrnt7zp\naith2XxY9j4snw/LPvD367/y6y0CPQb6puae2wX3abfyHu1XFudg+oV+KrrRp8FRVynQFRCFugwU\n6kREQso5P43Y0iDgfT7b9/hN1Pv13bZtGvL67ZH9iejr1sHyBT60LfsAln/gw9y6Lxq3iXXxNY19\nd4a+O0FZd1jzGaz+1L+f1Z/65vN0nXp8PeilbhUD2t6xwTnfw/X1a/xcw+MvV6ArMJsS6oqwblpE\nRKQFZtBre38beaJfFq/zwS4V8pbOhvnBwMVWAn1G+CbbAWN90OszfPOaqOurfHhLr3Vb9gFUpg27\nEi2HPsNgu2/48NZ3Z+izE1QM3HiQql0LaxYHQS/t9tV/YP6/IdmQdhwiPtilQl6vZjV95T39ds7B\nU/8Db9wAe/8IjrjMH0MpWqqpExGRjqVqJXye1mT7+VtQu8avK+3qa/BStXkDxkC3bRr3baiFFQub\n1rot/wBWLwaCv6eRUug9DPqO8KEtdd9zSHauaUwm/LWFqz+FVZ98PfhVr2i6facKX5ZoOSyZCeN+\nAof/QYGuQKn5NQOFOhERacI5WPlRWsgLmm2Tcb+++wBfw7Z6sW8OdUm/vCQKWw31tW59RjTWvvXc\nrrA6adStC8r+adNb5RI/sPA3z1OgK2AKdRko1ImIyEY11PhZOFJBb+WH0HNwY5Np3xHQawdNmyVZ\np2vqREREtkSs3M+tO2jvfJdEpM3UxUVEREQkBBTqREREREJAoU5EREQkBBTqREREREJAoU5EREQk\nBBTqREREREJAoU5EREQkBDpMqDOzY8zsxsrKynwXRURERKTddZhQ55x7zDl3ZkVFRb6LIiIiItLu\nOkyoExEREQkzhToRERGREFCoExEREQkBhToRERGREFCoExEREQkBhToRERGREFCoExEREQkBhToR\nERGREFCoExEREQkBhToRERGREFCoExEREQkBhToRERGREFCoExEREQkBhToRERGREDDnXL7LkFNm\nthxYnIOX6g2syMHrFDodh0Y6Fo10LBrpWHg6Do10LBrpWMBg51yftmzY4UJdrpjZbOfcmHyXI990\nHBrpWDTSsWikY+HpODTSsWikY7Fp1PwqIiIiEgIKdSIiIiIhoFCXPTfmuwAFQsehkY5FIx2LRjoW\nno5DIx2LRjoWm0DX1ImIiIiEgGrqREREREJAoU5EREQkBBTqNpOZ9TKzh8ysyswWm9nJrWxnZvZn\nM1sZ3P5iZpbr8maLmZWZ2S3BMVhnZu+Y2fhWtj3NzBJmtj7t9q0cFzmrzGyGmdWmvb8FrWwX2vOi\n2e93ffA7v7qVbUN3TpjZ2WY228zqzOy2ZusONrP5ZlZtZi+Y2eAMzzMk2KY62OeQrBe+HbV2HMxs\nnJk9a2arzGy5mU0zs20zPE+bPlOFLMOxGGJmrtn5f36G5ynqcwIyHovJzY5DdXBsRrfyPEV/XmSD\nQt3muxaoB7YGJgPXm9kuLWx3JjAB2B0YCRwN/DBXhcyBKLAE+CZQAZwP3GdmQ1rZ/nXnXNe024yc\nlDK3zk57f8Nb2Sa050X67xf/+agBpmXYJWznxBfA74Fb0xeaWW/gQfxnpBcwG/hXhue5B3gH2Ar4\nLXC/mbVpANIC0eJxAHriL34fAgwG1gH/3MhzteUzVchaOxYpPdLe36UZnqfYzwlo5Vg45+5u9t1x\nFvAx8HaG5yr286LdKdRtBjPrAhwPnO+cW++cewV4FDilhc2nAFc455Y65z4HrgBOy1lhs8w5V+Wc\nu8g596lzLumcexz4BGjxvyvZINTnRZoTgGXAy/kuSK445x50zj0MrGy2aiIwzzk3zTlXC1wE7G5m\nOzV/DjMbBuwJXOicq3HOPQC8h//eKQqtHQfn3JPBMVjrnKsGrgH2y0shcyTDOdFmYTgnYJOOxRTg\nDqfenJtEoW7zDAMSzrmFacvmAi3V1O0SrNvYdqFgZlvjj8+8VjbZw8xWmNlCMzvfzKI5LF6u/Cl4\nj69maErsKOdFW76YO8I5Ac1+5865KuAjWv/e+Ng5ty5tWVjPkW/Q+vdFSls+U8VssZktNbN/BjW6\nLekw50RwWcI3gDs2smnYz4tNplC3eboClc2WVQLd2rBtJdA1LNdPpTOzGHA3cLtzbn4Lm7wE7Ar0\nxf93eRLwy9yVMCfOA7YH+uObmB4zsx1a2C7054WZDcI3y9+eYbOOcE6kbMn3RqZti5aZjQQuIPPv\nvK2fqWK0AhiLb4Yejf/93t3Kth3inAicCrzsnPskwzZhPi82m0Ld5lkPdG+2rDv+2pCNbdsdWB+2\nKmUzKwHuxF9neHZL2zjnPnbOfRI0074HXIJvngsN59wbzrl1zrk659ztwKvAkS1s2hHOi1OBVzJ9\nMXeEcyLNlnxvZNq2KJnZjsCTwE+dc602z2/CZ6roBJfvzHbOxZ1zX+G/Ow8zs+a/e+gA50SaU8n8\nz2Coz4stoVC3eRYCUTMbmrZsd1puQpgXrNvYdkUrqF26BX9R/PHOuYY27uqA0NRMtaK19xj684I2\nfDG3IMznRJPfeXBt7g60/r2xvZml18KE5hwJmtemA5c65+7cxN3DfI6k/qlr7TsjtOdEipntB/QD\n7t/EXcN8XrSZQt1mCK6FeRC4xMy6BCfht/E1Vc3dAfy3mfU3s37Az4HbclbY3LgeGAEc45yraW0j\nMxsfXHNHcHH4+cAjuSli9plZDzM73Mw6mVnUzCbjrwt5uoXNQ31emNm++GaRTL1eQ3lOBL/7TkAE\niKTOB+AhYFczOz5YfwHwbkuXKgTX684BLgz2Pw7fS/qB3L2TLdPacTCz/sDzwLXOuRs28hyb8pkq\nWBmOxd5mNtzMSsxsK+DvwAznXPNm1lCcE5Dx85EyBXig2bWDzZ8jFOdFVjjndNuMG35IgoeBKuAz\n4ORg+QH4ZrTUdgb8BVgV3P5CMD1bGG74a0EcUItvHkjdJgODgseDgm3/CnwVHLOP8U1tsXy/h3Y8\nFn2AWfjmkDXATODQDnpe/AO4s4XloT8n8L1aXbPbRcG6Q4D5+GFeZgBD0va7Abgh7echwTY1wALg\nkHy/t/Y4DsCFweP074v0z8ZvgCeDx61+porpluFYnIQfLaAK+BL/z942YT0nMh2LYF2n4Pd8cAv7\nhe68yMZNc7+KiIiIhICaX0VERERCQKFOREREJAQU6kRERERCQKFOREREJAQU6kRERERCQKFORERE\nJAQU6kREcszMhpiZazboqojIFlGoExEREQkBhToRERGREFCoExEBzKyfmT1gZsvN7BMzOzdYfpGZ\n3W9m/zKzdWb2tpntnrbfCDObYWZrzGyemR2btq7czK4ws8VmVmlmr5hZedrLTjazz8xshZn9Nodv\nV0RCSKFORDo8MysBHgPmAv2Bg4GfmdnhwSbfBqbh53yeCjxsZjEziwX7PQP0Bc4B7jaz4cF+fwVG\nA/sG+/4KSKa99P7A8OD1LjCzEVl7kyISepr7VUQ6PDPbG5jmnBuUtuzXwDBgMXCEc25csLwE+Bw4\nMdh0GtDPOZcM1t+Dn2z9EvxE7eOcc3Obvd4Q/ETuA51zS4NlbwJXOufuzdLbFJGQU88rEREYDPQz\nszVpyyLAy/hQtyS10DmXNLOlQL9g0ZJUoAssxtf29QY6AR9leN3/S3tcDXTd7HcgIh2eml9FRHxo\n+8Q51yPt1s05d2SwfmBqw6CmbgDwRXAbGCxLGYSvyVsB1AI75OQdiEiHp1AnIgJvAmvN7Lygc0PE\nzHY1s7HB+tFmNjEYV+5nQB0wE3gD38T6q+Aau28BxwD3BrV3twJXBp0wIma2j5mV5fzdiUiHoFAn\nIh2ecy6BD2Oj8Ne6rQBuBiqCTR4BvgOsBk4BJjrnGpxz9cCxwPhgn+uAU51z84P9fgG8B8wCVgF/\nRt+7IpIl6ighIpKBmV0E7Oic+26+yyIikon+YxQREREJAYU6ERERkRBQ86uIiIhICKimTkRERCQE\nFOpEREREQkChTkRERCQEFOpEREREQkChTkRERCQEFOpEREREQuD/A/lSJQjlc9n2AAAAAElFTkSu\nQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_df = pd.DataFrame.from_dict({'train_loss':history.history['loss'], 'val_loss':history.history['val_loss']})\n", - "plot_df.plot(logy=True, figsize=(10,10), fontsize=12)\n", - "plt.xlabel('epoch', fontsize=12)\n", - "plt.ylabel('loss', fontsize=12)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluate the model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create the test set" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load
2014-11-01 00:00:002,514.00
2014-11-01 01:00:002,434.00
2014-11-01 02:00:002,390.00
2014-11-01 03:00:002,382.00
2014-11-01 04:00:002,419.00
\n", - "
" - ], - "text/plain": [ - " load\n", - "2014-11-01 00:00:00 2,514.00\n", - "2014-11-01 01:00:00 2,434.00\n", - "2014-11-01 02:00:00 2,390.00\n", - "2014-11-01 03:00:00 2,382.00\n", - "2014-11-01 04:00:00 2,419.00" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "look_back_dt = dt.datetime.strptime(test_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", - "test = energy.copy()[test_start_dt:][['load']]\n", - "test.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scale the test data" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
load
2014-11-01 00:00:000.16
2014-11-01 01:00:000.14
2014-11-01 02:00:000.13
2014-11-01 03:00:000.12
2014-11-01 04:00:000.14
\n", - "
" - ], - "text/plain": [ - " load\n", - "2014-11-01 00:00:00 0.16\n", - "2014-11-01 01:00:00 0.14\n", - "2014-11-01 02:00:00 0.13\n", - "2014-11-01 03:00:00 0.12\n", - "2014-11-01 04:00:00 0.14" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test['load'] = scaler.transform(test)\n", - "test.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create test set features" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "test_shifted = test.copy()\n", - "test_shifted['y_t+1'] = test_shifted['load'].shift(-1, freq='H')\n", - "for t in range(1, T+1):\n", - " test_shifted['load_t-'+str(T-t)] = test_shifted['load'].shift(T-t, freq='H')\n", - "test_shifted = test_shifted.dropna(how='any')\n", - "y_test = test_shifted['y_t+1'].as_matrix()\n", - "X_test = test_shifted[['load_t-'+str(T-t) for t in range(1, T+1)]].as_matrix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Make predictions on test set" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.22],\n", - " [0.3 ],\n", - " [0.39],\n", - " ...,\n", - " [0.53],\n", - " [0.45],\n", - " [0.42]], dtype=float32)" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions = model.predict(X_test)\n", - "predictions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compare predictions to actual load" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timestamphpredictionactual
02014-11-01 05:00:00t+12,682.272,714.00
12014-11-01 06:00:00t+12,952.852,970.00
22014-11-01 07:00:00t+13,236.503,189.00
32014-11-01 08:00:00t+13,373.253,356.00
42014-11-01 09:00:00t+13,477.253,436.00
\n", - "
" - ], - "text/plain": [ - " timestamp h prediction actual\n", - "0 2014-11-01 05:00:00 t+1 2,682.27 2,714.00\n", - "1 2014-11-01 06:00:00 t+1 2,952.85 2,970.00\n", - "2 2014-11-01 07:00:00 t+1 3,236.50 3,189.00\n", - "3 2014-11-01 08:00:00 t+1 3,373.25 3,356.00\n", - "4 2014-11-01 09:00:00 t+1 3,477.25 3,436.00" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", - "eval_df['timestamp'] = test_shifted.index\n", - "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", - "eval_df['actual'] = np.transpose(y_test).ravel()\n", - "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", - "eval_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute the mean absolute percentage error over all predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.014663125866382389" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mape(eval_df['prediction'], eval_df['actual'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plot the predictions vs the actuals for the first week of the test set" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAH9CAYAAABYwFKVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8XHW9//HXyb4nzaRrtknSLW2h\nBQoUAQFxARQKXESgIgpSRVBQueByUVSu/tQrKggiiCBeEC1aEK+IoMi+FQo0bdpmafY2y2Tft/P7\n43POZLJPkknmTPJ5Ph59TDIzmZ52MjPf9/l8vt+vYZomSimllFJKKaVUWLAPQCmllFJKKaWUM2hA\nVEoppZRSSikFaEBUSimllFJKKWXRgKiUUkoppZRSCtCAqJRSSimllFLKogFRKaWUUkoppRSgAVEp\npZRSSimllEUDolJKKaWUUkopQAOiUkoppZRSSilLRLAPYC6kpaWZbrc72IehlFJKKaWUUkHx1ltv\nNZimuXiy+y2IgOh2u9m1a1ewD0MppZRSSimlgsIwjHJ/7qctpkoppZRSSimlAA2ISimllFJKKaUs\nGhCVUkoppZRSSgELZA7iWPr6+qiqqqK7uzvYhzJvxMTEkJGRQWRkZLAPRSmllFJKKTUNCzYgVlVV\nkZiYiNvtxjCMYB9OyDNNE4/HQ1VVFTk5OcE+HKWUUkoppdQ0LNgW0+7ublwul4bDADEMA5fLpRVZ\npZRSSimlQtiCDYiAhsMA0/9PpZRSSimlQtuCDohKKaWUUkoppYZoQJwnEhISAKipqeGiiy6a8L4/\n+9nP6Ozs9H5/zjnn0NzcPKvHp5RSSimllHI+DYgONjAwMOWfWbFiBY899tiE9xkZEP/2t7+RkpIy\n5b9LKaWUUkopNb8s2FVMh7nhBnjnncA+5qZN8LOfjXtzWVkZZ511FieeeCK7d+9m9erVPPTQQ6xb\nt44rr7ySf/zjH1x33XUcf/zxXHvttdTX1xMXF8d9993H2rVrOXToEJdddhn9/f2cddZZwx73Yx/7\nGAUFBQwMDHDzzTfz9NNPYxgGV199NaZpUlNTwxlnnEFaWhrPPfccbrebXbt2kZaWxu23385vfvMb\nAD772c9yww03UFZWxtlnn80pp5zCK6+8Qnp6Ok888QSxsbGB/T9TSimllFJKBZVWEIPowIEDbN++\nnffee4+kpCTuvvtuQPYTfOmll7jkkkvYvn07d955J2+99Rb/8z//wxe+8AUArr/+eq655hrefPNN\nli1bNubj33vvvRw6dIjdu3fz3nvvsW3bNr70pS+xYsUKnnvuOZ577rlh93/rrbd44IEHeP3113nt\ntde477772L17NwBFRUVce+217N27l5SUFP70pz/N4v+MUkoppZRSKhi0gggTVvpmU2ZmJieffDIA\nn/zkJ7njjjsA+MQnPgFAe3s7r7zyCh//+Me9P9PT0wPAyy+/7A1pl19+OTfffPOox3/22Wf5/Oc/\nT0SEPM2pqakTHs9LL73EBRdcQHx8PAAXXnghL774Iueddx45OTls2rQJgOOOO46ysrLp/rOVUkop\npZRSDqUBMYhGbgthf28HtMHBQVJSUnhnnPbXybaVME1zSltPmKY57m3R0dHer8PDw+nq6vL7cZVS\nSimllFKhQVtMg6iiooJXX30VgN///veccsopw25PSkoiJyeHHTt2ABLg3n33XQBOPvlkHn30UQAe\nfvjhMR//wx/+MPfccw/9/f0ANDY2ApCYmEhbW9uo+7///e/n8ccfp7Ozk46ODnbu3Mmpp54agH+p\nUkoppZRSKhRoQAyi/Px8fvvb33L00UfT2NjINddcM+o+Dz/8MPfffz8bN25k/fr1PPHEEwD8/Oc/\n56677uL444+npaVlzMf/7Gc/S1ZWFkcffTQbN27kkUceAWD79u2cffbZnHHGGcPuf+yxx/LpT3+a\nE044gRNPPJHPfvazHHPMMQH+VyullFJKKaWcypiorXC+2Lx5s7lr165h1xUWFpKfnx+kIxq+2uh8\nEuz/V6WUxTShuBhWrQr2kSillFLKAQzDeMs0zc2T3U8riEopNR/985+wejUUFQX7SJRSSikVQjQg\nBonb7Z531UOllIMUF8tldXVwj0MppZRSIUUDolJKzUd1dXLZ3Bzc41BKKaVUSNGAqJRS85EdEMdZ\nxEoppZRSaiwaEJVSaj6qrZVLDYhKKaWUmgINiEopNR9pi6lSSimlpmFOA6JhGOGGYew2DOOv1vc5\nhmG8bhhGkWEYfzAMI8q6Ptr6vti63e3zGF+3rj9gGMZH5vL4g+Xf//43r7zyyoweIyEhIUBHo5QK\nCdpiqpRSSqlpmOsK4vVAoc/3PwR+aprmKqAJuMq6/iqgyTTNlcBPrfthGMY64BJgPXAWcLdhGOFz\ndOxBE4iAqJRaYOwWU60gKqWUUmoKIubqLzIMIwP4KPDfwFcMwzCADwCXWXf5LXAr8Etgq/U1wGPA\nL6z7bwUeNU2zBzhkGEYxcALw6kyO7YYb4J13ZvIIo23aBD/72cT3Of/886msrKS7u5vrr7+e7du3\n8/e//51vfOMbDAwMkJaWxv33388999xDeHg4//u//8udd97J/fffz8c+9jEuuugiQKqD7e3ttLe3\ns3XrVpqamujr6+O2225j69atgf2HKaWcr7cXmprka60gKqWUUmoK5iwgAj8DbgISre9dQLNpmv3W\n91VAuvV1OlAJYJpmv2EYLdb904HXfB7T92eGMQxjO7AdICsrK3D/igD6zW9+Q2pqKl1dXRx//PFs\n3bqVq6++mhdeeIGcnBwaGxtJTU3l85//PAkJCdx4440A3H///WM+XkxMDDt37iQpKYmGhga2bNnC\neeedh2RrpdSC0dAw9LVWEJVSSik1BXMSEA3D+BhQZ5rmW4ZhnG5fPcZdzUlum+hnhl9pmvcC9wJs\n3rx5zPvYJqv0zZY77riDnTt3AlBZWcm9997L+9//fnJycgBITU2d0uOZpsk3vvENXnjhBcLCwqiu\nrqa2tpZly5YF/NiVUg5mt5eCVhCVUkopNSVzVUE8GTjPMIxzgBggCakophiGEWFVETOAGuv+VUAm\nUGUYRgSQDDT6XG/z/ZmQ8u9//5tnn32WV199lbi4OE4//XQ2btzIgQMHJv3ZiIgIBgcHAQmFvb29\nADz88MPU19fz1ltvERkZidvtpru7e1b/HUopB7IXqMnK0gqiUkoppaZkThapMU3z66ZpZpim6UYW\nmfmXaZrbgOeAi6y7XQE8YX39F+t7rNv/ZZqmaV1/ibXKaQ6wCnhjLv4NgdbS0sKiRYuIi4tj//79\nvPbaa/T09PD8889z6NAhABobGwFITEykra3N+7Nut5u33noLgCeeeIK+vj7vYy5ZsoTIyEiee+45\nysvL5/hfpZRyBDsgrlqlFUSllFJKTUmw90G8GVmwphiZY2hPrrsfcFnXfwX4GoBpmnuBPwL7gL8D\n15qmOTDnRx0AZ511Fv39/Rx99NHccsstbNmyhcWLF3Pvvfdy4YUXsnHjRj7xiU8AcO6557Jz5042\nbdrEiy++yNVXX83zzz/PCSecwOuvv058fDwA27ZtY9euXWzevJmHH36YtWvXBvOfqJQKFrvFdPVq\nCYjmhF32SimllFJehrkABg6bN282d+3aNey6wsJC8vPzg3RE85f+vyrlADfdBHfeCd/6FnzjG9DZ\nCbGxwT4qpZQKLYcPw8c/DnfcAcceG+yjUf547TXZSiAmJthH4kiGYbxlmubmye4X7AqiUkqpQKur\ngyVLICVFvtc2U6WUmrqbb4aXX4ZXZ7Sbmpor9fVw0klw5ZXaOTNDGhCVUmq+qa2VgJicLN/rQjVK\nKTU1r7wCv/udfO27dZByLo9HLn//e3jwwaAeSqhb0AFxIbTXziX9/1TKIerqYOlSrSAqpdR0DAzA\ndddBejokJAwFD+Vs7e1ymZoqz19hYXCPJ4Qt2IAYExODx+PRUBMgpmni8XiI0Z5vpYLPbjHVCqJS\nSk3dfffB7t3wk5/AsmVaQQwVdkC8806Ii4NLLgHd7m1a5mofRMfJyMigqqqK+vr6YB/KvBETE0NG\nRkawD0Ophc00RwdErSAqpZR/PB745jfh9NPh4ovhpz/VCmKosLeEW70afvtb+OhH4cYb4Re/CO5x\nhaAFGxAjIyPJyckJ9mEopVRgtbRAb+/wFlOtICqllH9uuUXeR++4AwwD0tJkNVPlfHYFMTERNm+G\nr3wFbr8dzjwTLrgguMcWYhZsi6lSSs1LdXVyqRVEpZSamt274Z574Npr4aij5DqXSyuIocIOiAkJ\ncvmDH8Bxx8FVV8l2T8pvGhCVUmo+qa2VyyVL5EMyLEwDolJK+eMb35CK4Xe+M3RdWprOQQwVdoup\nHRCjouD666GpCaqqgndcIUgDolJKzSe+FUTDkCqitpiGpoICeOyxYB+FUgvH/v1w1llD7fkgFcSO\nDl3sJBSMrCCCPH8AjY1zfzwhTAOiUkrNJ3ZAXLpULlNStIIYigYH4dJL4eqrg30kSi0cLS1Drfm2\ntDS51DZT52tvh9hYCA8fui41VS41IE6JBkSllJpP7BZTe1CjFcTQ9Kc/SQWxuRn6+4N9NGq6/vhH\nePXVYB+F8odpjh0Q7QqUBkTna2sbXj0EDYjTpAFRKaXmk7o6GdBEWItUawUx9AwMwK23Dn3f1BS0\nQ1EzdO21soqicr72dqnc+7aXwtDJNp2H6Hzt7bKCqS8NiNOiAVEppeaTurqh9lLQCmIo2rED9u2D\nrVvle61chKbWVgkVOjANDfaJNK0ghq729tEVRDvw6+twSjQgKqXUfFJbKwvU2LSCGFoGBmQFxfXr\n4XOfk+t0YBOaSkvlUp+/0DBeQNQKYugYq8U0IkKeU+3EmJKIYB+AUkqpAKqrg02bhr5PTtaAGEoe\nfVRWUtyxY2hgqgEjNJWUyKU+f6FhvIBotyhqBdH52ttHtwiDPIf6OpwSrSAqpdR8MlaLaWurzK1R\nztbfD9/9Lhx9NFx4oba2hTqtIIaW8QJiVBQkJWkFMRSM1WIKGhCnQSuISik1X/T0yHzDkS2mpimt\nNyMHPspZHnkEDh6EP/8ZwsJ0cYVQZ1cQ29uht1eChnIue672WBUol0tP1ISCsVpMQQPiNGgFUSml\n5ov6ern0DYh2KNSFapzNrh5u2gTnny/XJSVJUNSBaWiyAyLo/KdQMF4FEaTdWyuIzjfWKqagAXEa\ntIKolFLzRV2dXPq2mNpnw3UeorM9/7wEih07wDDkOruKqAOb0FRaKlXD3l55Dn1fl8p5JgqIWkEM\nDdpiGjBaQVRKqfmitlYutYIYeuzqRH7+8OtTU3VgGor6+qC8HDZulO91cOp8LS2y4mVs7OjbtILo\nfL290NuLGT9BQNS5+H7TgKiUUvOFXUEcOQcRtILodK2tcpmUNPx6l0vDRSiqqJAtS44/Xr7X59D5\nWlr4VuQPuPuXxujbtILofO3ttJDEkv/3FZ54YsRtixZJOGxrC8qhhSINiEopFeJME845B/74zCK5\nYuQqpqAVRKezBy4jA6JWEEOTvYLp5s1yqQHR+VpauKfnM3zta0Pna7zS0uTK3t6gHJryQ3s7+1hH\nQ0csDz004jZd8GvKNCAqpVSIa2mBp56Ca/50Jg0xGRAfP3SjVhBDgz0iHTl/RiuIocleoEYriCGj\nraGH+kEXbW1w//0jbrS3nNHn0bna2ihiFQD/+Ics6u2lAXHKNCAqpVSIswtMjd3xfC3ix0OLnMBQ\nBVEDorO1tkqwDw8ffr1WEENTSQlER8uc0rAwHZiGgNJaObEWEwM//7ksLOyVliaXOg/RudrbvQGx\nvV3W/fLSgDhlGhCVUirE2flhY2IJ97dfwquv+twYFSWLLmiLqbO1tY1uLwWpXNj76KnQUVoKOTkS\n+Bct0oFpCChplBb9m26S9YV27vS50a4g6ska52pro5iVpC/uITYW/vpXn9s0IE6ZBkSllApx9pjl\nx0t+TEZMPddcM+Lsd3KyVhCdrrV1/P27QPfRCzUlJZCXJ1/rEvshoaR1MQDXXw8rV8Ltt/vcqBVE\n57MqiBtW9nDmmfDkkzI/H9CAOA0aEJVSKsTZATGrbR8/PWkH774Ld9/tc4fkZK0gOt14FUR7YKOV\ni9BhmhIQc3Plew2IIaG0cympMR2kpsINN8BrrzHUjaEVRMcz2yQgrswb5NxzoawM9u2zblxkLeCm\nr0O/aUBUSqkQZ49ZXJ6D/MeJVXzkI3DLLXD4sHWHlBStIDpda+v4LaagA5tQ0tAgbcFaQQwdg4OU\n9GaSlyqV+k9/WjKFt4povw61guhYDYf7aCWZVavD+OhH5bonn7RujImBuDh9HU6BBkSllApxjY1g\nGCaLBuoxli7hzjuhuxtuvNG6g1YQnW+yFlOtXIQOewVTDYiho62NEvLIXdIOyHpR27fDn/8Mhw4h\nASM+Xl+HDlZUHgXAyvxI0tPh2GPHmIeor0O/aUBUSqkQ5/FAStIg4QzCkiWsWgU33wyPPAL796MV\nxFAw0SI1oAObUGIHRG0xDRn9nhbKySZvRbf3uuuukwVo77jDuiItTSuIDlZUHQvAqg3RAJx7rrQI\ne58yfR1OiQZEpZQKcR4PuBKsVS6XLgXg4ovl27ffRiuIoUAriPNHaalc5uTIZWqqvP4GBoJ3TGpC\nFQc6GSCCvOyh1b0yMuATn4Bf/9o6v+Zy6evQwYqPJBBOP+5ciTYf+xgMDsLf/mbdQQPilGhAVEqp\nEOfxgCuuU75ZsgSA1ashIgIKCtAKotOZJh0t/fy48KN0dY24LTFRnkgd2ISOkhJIT5ftZWAo5OtJ\nGscq2S/B0C762r70JZlO+sQTaAXR4YrqF5EdXkWUdJpy7LGwfLlPm6kGxCnRgKiUUiHO4wFXVJt8\nYwXEqChYs8YKiMnJMimxpyd4B6nG19PDUwMf4qbnzuHXvx5xm2HIwEYrF6HDdwVT0CX2Q0Bp8SAA\neWsihl1/zDGyleXBg2gF0eGKmtJYFV3h/T4sDD76Ufj7361tZDUgTokGRKWUCnEeD7jCmyVM2Pt1\nARs2+FQQQauITtXaSgVZgMx3GhwccbvLpQObUFJaOrRADWhADAEl5RFE0UP6qrhh10dGQlaWNa1U\nK4iOZZpQ3LaEVXE1w64/91yZ3v3iiwwFRO/miGoiGhCVUirEeTzgMj0ygAkP916/fr2swNcebS10\nogHRmVpbKScbgOJinzkzNq0gho6uLqip0YAYYkqqo8nhEGGLkkfdlpdnBUSXS9qE+/tHP4AKqvp6\naO2PZ2VS3bDrzzwToqOt7S5SU6WUOKqPX41FA6JSarS+Pnjf++Cpp4J9JGoSvb0yR8bVX+ttL7Vt\n2CCX+1oz5AudA+VMbW1UkMXqFW2kp8PPfz7idm2NCh32AjXaYhpSSmvjyaNE2vFH8AZEuztDn0fH\nKS6Wy1Wpw0+kxcdLSHzySTAX6etwKjQgKqVGO3BA1od+7bVgH4mahF1YcvXUeFcwtdkBcW+9FRy1\nguhMVotpXkYP114Lzz5rtQbbdO5T6LADolYQQ4ZpQoknhdywctnvcIS8PHnqmmOWyRX6WnScoiK5\nXLl49GfcOefIy7Ji0DpRqq9Dv2hAVEqNZo9ONVA4njcgdlSMqiDm5sp4p6B6kVyhFURnamujnGyy\n0gfZvl2eM+/ea6AVxFBi74HoGxDtOcD6HDpSQwO09caQF1sz5u32U1nSkzH0A8pRioognH5ylnaO\num3TJrnc27RCvtDXoV80ICqlRtuzRy41IDqeHRBT28pHBcTwcFi3DgrKE+QKfT4dqaOuAw9pZLsN\nXC64/HL43e98xqEuF3R2ykq0ytlKSmRrEpdr6LqICAmJWnlyJG/RN6l+zNvtgFjabr2/6vPoOMXF\n4A6rIDI5btRt69fLZUHtYvlCA6JfNCAqpUazK4itrcE9DjUpbwWxswIWLx51+4YNUFAULd9oBdGR\nKitkVb2sXFli//rrJQved591B21RDAmmCZ1F1ZIoDGP4jVoFdiy76JubOvb7oz2dtKTR6sTQCqLj\nFBWZrBwsgoSEUbelpMCKFbC3yppfqq9Dv2hAVEqNpi2mIcMbEPEMBQkf69dDzeEwmlikz6dDlVfJ\nyrPZqyXIr18PH/wg3HWXrBflrUbpwMbRfvADyHr2fvYuPm30jRoQHcsbEBe3jXl7YqI0Z5TUWuFD\nK4iOYprSYrqKg2MGRJD31L2l1vxSfR36RQOiUmq4jo6hnhsNFI5nf9a58MCiRaNu9y5UE3+CPp8O\nVXE4EoCsNbHe6264Aaqr4U9/Yij468DU0Q4eGMQzsIiPvHorFRUjbtSA6FilpbAiopbY1Nhx75OX\nJ3slEhurFUSHqa+HtjaDVRRJmh/D+vVQeCCMwchofR36SQOiUmq4ffvkMj5eA0UI8HggOmqQODrH\nrCDaAbEg+jhtMXWoivpYwulnRfpQW+LZZ8OqVdZiNVpBDAme6h6WU0P7QCwf/vCIHKEB0bFKSpAV\nTMfY4sKWm+uzF6KeqHEU7wqmFE9YQezsNChL3qivQz9pQFRKDWe3l554ogbEEODxgCuhFwPGrCBm\nZspJ1QLjKH0+Haq8MZH08CNERAxdFxYGn/yk7DTTEmEFRB2YOlrD4V7Ws5cnb3uP8nL46Edlj1JA\nA6KDlZRA3mDRhAExLw8qK6EndblWEB3GDoirGHsOIgwtVLM3drO+Dv2kAVEpNdyePdJGc8wxGihC\ngMcDrvgu+WaMgGgY1kI1/Wu0guhQFS3JZEXVjrr+pJNkfs2bh3SD7lDg8UAaDZx6vos//AF27YKL\nLoLeXiQgNjXB4GCwD1P56OqCmhrI7T8waUA0TSiLW6cnahymuBjCw03clI3bYrpunVzuDTtK30f9\npAFRKTVcQYG8my5aBD098kc5lscDrugO+WaMgAhWQOzMw2zWwO9EFR2pZMWNrkqccIIE/NfeiYGo\nKB2YOlxDSyQuoxGysjjvPLj3Xnj6abj1ViQgDg7qytAOc+iQXOZRMrRf5Ri8eyFGrtUKosMUFYF7\nSReR9I9bQUxOlm6avf1rNCD6SQOiUmq4ggJJFElJ8r0OaBzN4wFXpPUcjTPA2bABPH1J1Hoixrxd\nBc/AAFR2LyY7cfSgJTkZ1q6F198wtEXR4fr7obk7hrTYTuxe4auuglNOgeefR7cqcSh7BdM8Siat\nIAKUmLl6osZhiopg1VLrM3CcgAjSZlrQlauvQT9pQFRKDfF44PBhSRT2h6W2mTqaxwOu8CYJ9BFj\nB0Dv/Ivm9Dk8MuWPI0eg34wgK2XsEzFbtsg8RDNVF8dwsqYmMAnDFdMx7PoNG6CwEMxFGhCdyF6w\nO5fSCQPi0qWybltJX6Y8hwMDc3SEaiKmKS2mK11NcsU4LaYgn4P7W1Yw4NGpFv7QgKiUGrJ3r1we\ndZQGxBBgmjJWGW+LC5t3JdMOt/yQcgx7O4SstM4xb9+yRTraSuM2aLhwMDu7p9nzgS35+RIea1kq\nV+hz6CglJZAQ289i6icMiIYhK5mWdiyV91Cdz+0IdXXQ1garUurlikkqiN0DkZR2LtWpM36Yk4Bo\nGEaMYRhvGIbxrmEYew3D+I51/YuGYbxj/akxDONx6/rTDcNo8bntWz6PdZZhGAcMwyg2DONrc3H8\nSi0Y9gqmWkEMCa2t0tqWOtAwYUBcsgTS4jspMNf7LKuonKC8XC6zl3aPefuJJ8rla+aJWkF0MHta\nmiuxd9j19uIY+zwaEJ2opATylnXIKtATBESw9kJssirBOg/REbwrmCYekS8mCYgAe1kvZ23UhOaq\ngtgDfMA0zY3AJuAswzC2mKZ5qmmam0zT3AS8CvzZ52detG8zTfO7AIZhhAN3AWcD64BLDcNYN0f/\nBqXmvz17ZB7bihVDH5Y6B9Gx7Lzg6jsy5h6INsOADenNFLBBA7/DVJRLRTdzef+Yt69fL61tr3Ue\nreHCwbwVxKSxA2LhEesEjj6HjlJaCrmp1nviBIvUgATE0vpEBjH0ZI1DFBfL5crYaggPh5iYce/r\nXcmU9fo69MOcBERT2KetI60/3j4nwzASgQ8Aj0/yUCcAxaZplpqm2Qs8CmydhUNWamGyF6gxjKFF\najRQOJY3IHZXT1hBBNiQ28Fe1mM2aWuUk1SU9pNCE0mLo8e8PSICjj8eXm9apYMaB/NWEFOGz01b\nvlzOte0rj5cr9Dl0jMFBWcU0L8V68vyoIHb3hnMY3QvRKYqKJBe6wyqkemgY4943IQGyl3ZpQPTT\nnM1BNAwj3DCMd4A64BnTNF/3ufkC4J+mafqWKk6yWlKfMgzDKgyTDlT63KfKum6sv2+7YRi7DMPY\nVV9fH8B/iVLzlGkOBUTQFtMQ4A2InZWTB8TVfbSRROXBrgnvp+ZWeekA2ZQPnZAZw4knwu66dLq6\ngc6x5yqq4PJWEFOH73NoGDIPcd+BcBmh6sDUMaqrZSpaXry1B+kkATE3Vy5LyNMKokMUFUFODkR2\ntU64QI1t/coeDYh+mrOAaJrmgNVKmgGcYBjGBp+bLwV+7/P920C21ZJ6J0OVxbFODYy54oJpmvea\nprnZNM3Nixcvnvk/QKn5rqZGJt5rQAwZ3oDYVjZpQLTnXxTs0UVqnKSiErKomHBws2UL9A+Gs5tj\ndGDjUA0NEE03cYtGV4LXrZOVTHWrEmfxrmAaVSWtiVFRE97fu9UFeVpBdIjSUut5aW+fcP6hbf06\n2M9a+ut1DuJk5nwVU9M0m4F/A2cBGIbhQlpH/8/nPq12S6ppmn8DIg3DSEMqhpk+D5cB1MzNkSs1\nz9kL1Bx1lFxGRkJsrAZEB7PHmq6+wxPOQQRYvykSgIIDkbN9WGoKKmoiJCBOUkEEeI0tWrlwKI8H\n0mjASBw9SF23DmprwZOUowHRQbx7IIaXTVo9BMjOhvBwk5Kw1fo6dIjDh2XJBNra/AuIx0TSSzQl\nRYOT3nehm6tVTBcbhpFifR0LfBDYb938ceCvpml2+9x/mWFII7FhGCdYx+kB3gRWGYaRYxhGFHAJ\n8Je5+DeoKfrhD+GnPw32Uaip2LNHLu1SE8iHpi5S41j2GGURTZNWEBdlJ5FOFQWlcXNwZMofra3Q\n3BYxaYvp8uUyd+Z1TtSA4VDG08ViAAAgAElEQVQNdQOy3cwYg9T8fLksjNqoz5+DlJZCWBhkDRzy\nKyBGRkJWlkFJdL5WEB1gcFC2uVi6FKkg+tNielwsAAXFY8/5VkPmqoK4HHjOMIz3kJD3jGmaf7Vu\nu4Th7aUAFwEFhmG8C9wBXGItdNMPXAc8DRQCfzRNc++c/AvU1Pz613DffcE+CjUVBQUyEnW5hq5L\nTtYKooN5PJCSOEAEA5MGRJKT2UABeyonHwipueHdA3GSFlOAEzf2aAXRwTz1g6TRMObz6F3JlHwN\niA5SWSnVp8i2xklXMLXl5ekcRKdoapJtnpYuxe8KYv56iT17K8Y/IadExFz8JaZpvgccM85tp49x\n3S+AX4xz/78Bfwvk8akA6++HsjL5uq9PTrsp5/NdoMaWlKQB0cE8HnAl9UIbkwfEmBjWhBXzsucM\nTHPCxd7UHBkWECeoIILMQ/zjP7KpKX2RFXNwbGpqGurh6HEqiFlZEBcH+3pXakB0kKoqyMxEPuP8\nqCCCBMQd/87SCqID1FprC3kriH4ExPh4yI2sYO8R16T3XejmfA6iWgAqKiQk9vcPbVKjnG1gAPbt\nGx0QtYLoaB4PuOKs7vxJ5iAC5MTV0t4brWNUhygvl8tsyietIG45Q1qjXn8vdrYPS02Dp8kYt4IY\nFmatZNqRJQHR1IWinKCqCjIymHJAbOxPprmud/I7q1k1KiD60WIKsD6+nL2Ny2fvwOYJDYgq8HxD\nYWFh8I5D+e/QIejq0oAYYjwecMV0yDeTVRABd6K0RdkFfhVcFRUQGT7AMo5MWkE8Zks0kfTyetHk\nz7OaW4OD0NgSPu4cRJCAWNi0TLpqOjrm+AjVSKbpExCbm6cUEAFK6yavVqnZNSwg+tliCrA+9TAH\nO9Pp65u9Y5sPNCCqwPMNiPv2Be84lP9GrmBq04DoaB4PuKLa5Bt/AmKqPJeHDs3mUSl/VVRAZmIz\nYRHhssz+BGJiYFPkPl6r0AZTp2luhsFBq4I4ziB13TqobE6ilURtM3WA5mbZUnQ6FUSAktY0OTOg\ngsYbEBcPykkXfwPiMg99ZiRFRbN4cPOABkQVeCUlsj1CVpZWEEOFvYKpvZqCTVcxdTSPB1LDm2VC\noR8DHHeaVC60gugM5eWQFe+R1ig/JoVuSdrLm/Vu+vvn4OCU3+zpaC4847a52W+t+1mrAdEBKivl\nMmNZvyRFPwNibq5clgzmyCopKmhqayE8HFJjOuUKf1tMs+Sk6l5d4nJCGhBV4BUXy2k27+7Ayun+\n5zE3ty36iczg9pWcLL39AwPBOTA1rt5e6apxYa3AFzb523nK4khSwlo0IDpERQVkRddN2l5q27K4\nlM6BGG/BXzmDvaDlRBVE71YXupKpI1RVyWVmqtXu6+cqpomJsDipW1YyrdFtuIOpthaWLIGwDquL\nxs8K4trcXsIYYO8erQBPRAOiCrziYli5Uj4R9+/XNowQ8Nuik7i97bOjnyp74KpVRMexx5iuwXq/\n2kvlzi7cRoUGRAfo74fqasiOrPE7IJ6YdRiA11+fzSNTU+VPBTE3F6IiB9nHOg2IDmAHxIyEZvnC\nzwoiQF5mnwTE6upZODLlr9paWLYMOYkNfgfE2KVJ5FLK3nd1EuJENCCqwBoclN1n7QpiV9fQUn3K\nkUwTSrtX0NSfxHvvjbjR/tDUeYiOY1ctXH1H/A+IeXm4B4o5VKIV4WCrqZG3yyyj0u/WqNzMPlxG\nI7t2zfLBqSnxp4IYEQFr8gY0IDpEVZU0XSyLtJ68qQTEVYYGRAeorfVZwRT8fh8lNZX17NUW00lo\nQFSBVVMD3d1DFUTQhWocrq4OOs04AP797xE3akB0LG9A7KnxPyCuXk0Ohygr05X2g80+b5Y1WOZ3\nBdFIc7GKgxw6pE+ekwxVEBtlw8NxrNtgaEB0iKoqqT5FdlqfbVMJiOtjqSSTnrLDs3R0yh/egNg2\ntRZTUlPJp5CiskhdyXQCGhBVYJWUyKVvQNR5iI5Wun9oP6dxA6K2mDqOt8W0s9KvPRABWLUKN2V0\ndofrPs9BVlEhl9l9xX4HRFJTcZuHKNOA6CgeD0SG9ZOYYE642FD+hggOkUNXrb6fBtuwPRBhSgEx\nZ2U4JmFUHuyanYNTkzLNMSqIUwyI/QNh3iGrGk0Dogose4uLvDwZtC5dqhVEhyt9T95c35d7hBde\nGDFlVCuIjuWtILaXT63FFCld6TzE4LIDYmbXQf9bo1wu3JRRUWnoulEO0tAAruh2jMSJB6jr1oFJ\nGAfKoufoyNR4KitHBEQ/F6kByM6Wy/IyPVETLM3NslDbdFtM85HChdYvxqcBUQVWcTFERkJmpnyv\nK5k6XmlhDwCf/nANTU0Mn4doVzY0IDqONyC2lPofEKOjcadLT43uhRhc5eWQlgZx7f6vYkpqKm7K\n6OszOKzdbY7h8UBaVOukA1R7q4t9VX4+32pWmKYExMxMplVB9AbEmsjAH5zyi3cPxGm2mK5lP6DD\n04loQFSBVVICbrfMyAdpMy0s1AlPDlZaMsgKqjn7gxIchrWZagXRsTweiIoyiR9o8T8gAu41Ur3Q\nCmJwVVRAdrYpZ7/9DYguF9laAXachgZwhbdMOkBdtQrC6aewzjVHR6bG0toq+6oPqyD6+xpEfi7M\nGKTc42cgUQE3LCBOtcU0JYVE2slIatGAOAENiCqw7C0ubPn58gasp7sdq7QiklxKyViXxMqVGhBD\nhccDrpQBDPB/DiKQtC6DVKNR57EFWUUFZC23dryfQmuUmzJAF4d2Eo8H0sI8kw5Qo6JgZcIR9jWv\nmKMjU2PxbnGRgfQqxsVJ55OfoqJgRWI75V2LZVE+NedmFBAjIiApifzkwxoQJ6ABUQWOaUoF0Tcg\n2j01+ip0rNIjseRSCosXc/rpDJ+HGBMjH5waEB3H4wFXkrUE2xQqiKxaJQudHOyd/L5qVpimBLys\npdbgcgotplpBdJ6Ghon3QPS1zlXLvs7sOTgqNZ5hAbGlZUrtpbbsJV2Uky0rt6s5N6rFNCpK/vgr\nNZX8uHLdqnsCGhBV4DQ0SO9GXt7QdbrVhaN1d0N1czy5xiFITeX00xk+D9Ew5MNTVzF1HI8HXPEy\nf3RKAXH1atyU6V6IQdTWJie9MxZ1yhVTqCDG0s3ShHYNiA5hmlYFcbDOrwpG/rJmivvd9Or5maAJ\nSEDMHKQMt+6FGCS1tbKPpcuFvJn6Wz20paaSH1FER8fQ74MaTgOiChx7BVPfCuKyZbI6mFYQHam8\nXFbVy02oh7AwTjtNrh/VZqoVRMfxeCA1xgoYUwyIORyirCZKpwYHiT2mTE+yFlfwt4IYEwNxcbgT\nPBoQHaKlBQYGwNVX618FMbuDfiIpLtDWxGCprJRznytWIE/gFFYwtWWvjKSKDAYqtYIYDLW1sGQJ\nhIcjAdHfk2y21FTy+/cAOjwdjwZEFTj2hjK+FUTDkCqiVhAdqbRULnNdEgAzMhg9DzEpSQOiA3k8\n4IqyAsYU5iCSlYU7rJLuvgjq6mbn2NTE7K60FXHN8sUUFsggPR23UaYB0SHs1YTT+g77V0FcKW3h\nhW91zuZhqQlUVUlrYlQU068grounn0hq9jUH/gDVpLx7IIK0ZEy1grhpE/klfwU0II5HA6IKnOJi\nCYQ5OcOvt1cyVY7jDYhLO7zXnX46PP88Q/usaQXRcey2NleENTiZSgUxIgL3Culv05ARHHZATI9u\nkC+mcvb7vPNw175Bebmpc2ccoMF6Cl3d1X4NUt0rwwGoLO6ZzcNSE6iqstpLQRapmU5AXBMDQPlB\nfR6DYVhAnE6L6Yc+xOL+GlITe3V4Og4NiCpwioshKwuiR2wCvG4d1NUNnWpVjlFaCjFGN8vSw73X\nnX66fGZ65yFqQHSctjbo7weX0Sg9NlNsr3HnyfOtATE47BbT5ZFWuphKBfGSS8geLNW9EB3CW0Gk\n3q/X4aLMRGLppKq8f5aPTI1nWECcbgXRbQC6mnCwjAqIU20xPfVUjOho8hOrNCCOQwOiCpySkuHt\npTZ7oRp9FTpOaSnkhpVhLFnsvW7UPERdpMZx7EGpa7BB5s8YxpR+3n20BJJDpVqCCoaaGnlZxfc0\nyhVTCYjHHYd7mVQtNOAHn7eCyOTbXAAYrlQyqKKqamqvWRU4gQiIWVlyWX4keuI7qoAzzQC0mMbG\nwqmnkt/5tg5Nx6EBUQWOtQdiby9s2wa33GJdr1tdOFZpqUnuQBEsHgqIo+YhagXRcbwBsf/I1NpL\nLQnrs0mjnrK9HZPfWQVcdTWkpzN04mUqZ78NA/d5RwNQ/p6+LoNtqILY4N8gNTNTAmKNBsRgaGuT\nj7PMTKC3V5bynkZAjI+HtOhWyhunGEzUjLW2ytM2oxZTgA99iPzmV2hogPr6gB7ivKABUQVGSws0\nNNDvXsm2bfDII/DYY9ZtWVmyEa0uVOMopgmlJabsgZiWNuw2ez/EgQGkutHaii556RyNVuHJ1XN4\nagvU2KytLsoO6PyZYKipsVZQbGuTlvyp7N8FZF/1QQDKntKTbsHW0ADh4SbJtPgX9F0uMiLrqGqI\nmf2DU6OM2uICprWKKUD2olbKO9J0I705NmwPRJheiylIQETeQ7V+MZoGRBUYJSUMYnDVPy7mscdg\n9WrpOO3vRzarWbNGX4EO09AA7R1hEhB9KogAZ5zhMw8xOVk+ANvbg3OgahRvBbGraloVRG9ArAyf\n/L4q4IZVEKfSXmqJO349S8IbKHtTT3sHm8cDrqQ+DPCvimEYZKR1Ud2erLkiCIYFxGZrka9pVBAB\nspf2UG5maflpjo0KiNNpMQXYuJH8VFnKW4eno2lAVAFhFhVzHb/goX9n873vwde+Bn19PnNk1q3T\nCqLDHDokl2MFRHse4osvMvThqW2mjuENiO3l0wuIK1aQE1FFWUOCDlLn2OAgHD7sU0Gczplvw8C9\nrIeyI9G6UXeQNTSAK8Ha9d7P5zIjHfpN3WYmGMasIE4zILqzTcrJxqzS1+BcGhYQ+/ul33Q6ATEs\njKwPrSHO6KRwn3ZIjaQBUc2YacJNd2XxS77AzV/u5ZvflIIhwIED1p3y82V3Wq1COYZ3i4sxAuKK\nFfJ+W1qKBkQHsgNiasuh6QVEw8C9tIuegUjvh+284fDE29AgY5qZVBAB3EcnUoYbduwI6PGpqfF4\nIC2hS77xc5CasVLaS6tKtMV7rtkBMT2dGQfE7FWRdBFHwz5N+nNpWEDssObRT+dEGxD2kQ+xxtxP\n4S4dm46kAVHN2B/+AP/z4haujfsNP/hJFIYhLaYABw9ad7IXqtm/PyjHqEazA2IOh0bNQTQMmTpa\nUcHQh6euZOoYHg8kJ5tEtHimNwcRcLvlcl6thLl/vwwUdu0K9pGMyy74rVjBjAJi9oYkyg03g7//\nQ8COTU1dQwO4YqxN7/0NiOvlPbXqbQ0Wc62qCpYssXbjmmlAXC+hpHyvhou5VFsrM5cWL0a6MGB6\nFUTwzkPUCuJoGhDVjD3/PKREtHHHpge8q+2npcm4dVgFEbTN1EFKS2FZQhtxdI0KiDBGQNQKomN4\nPJCaYkq1bDoVRMC9Lg6AsuJ5tB9bURF0dsL99wf7SMZVUyOXM2oxRQJ+rxnFkTfKh/rF1ZzzeCAt\nxhqk+ttiunkZAFV7mmbrsJyn3xnvM5WVI7a4gOkvUnO0fDaWF/cG4MjmieJi6Oqa1b+itlaGLOHh\nDHWlTTcgZmSQn9ZAZXOSNriNoAFRzVhhIeSHHSBs1fA9EFev9gmI2dlyqfNlHKO0FHIT66WCET16\nLydvQLQrHBoQHaO+HtKS++Sb6QbEzXJS4NDu5kAdVvDZv6N//KMsYe9A9lvgjFtM3XJZhlv+vWrO\nmaZVQYywuiv8HKSmHZ9DFD1UFc/uQNoxamvB5YInngj2kYzeAxGmX0HMlUW+ysp1KA1IMNy0Cb76\n1Vn9a0btgQjTPtEGkH+8vG73v6st3770t1rNWGGhSX7vu7J5no81a3xaTGNjISZmaH1+FXSlpZAb\nXT1q/qEty1qcrStKK4hOU1kJmWlWW9s0A2LchlyWUEvZvs4AHlmQ2W3QjY3w9NPBPZZx1NRIC/fS\npcjxzqCCCFCedyY8+mjAjk/5r71dFmNLi2iGyMgxT7SNJcy1iPSww1RVzvIBOsWTT8rv+htvBPtI\nhgdEexXTaZ6kSUmBxLAOymv9e97nu44X3+b9HX/jm7/OYbBp9sYLwwLiTCuIQP7HpLhR+NeSGR7Z\n/KIBUc1IYyPU1Rmyl0ze6ApiTc3QCR5crqHVNVRQ9fZKyMg1yiYMiABV7Vb7jQZERzBNKyCmWC+s\nac5B9G51cWgezb3wrQg88khwj2Uc1dUyuImMRN4cpzsH0WrKKFt7Frzzjk+7hporDQ1y6TIapzxA\nzYhvpqphgQSLv/xFLu2J70HS0QFNTT4BsawMli2zehWnzjAgO6GB8qbpVSDnm9u+H8aLvJ/v9/0n\nV3zkMH19s/P3BDogrvzEcYTTT+Hz823FtpnRgKhmxF5zJp/CMSuIINOCABnIagXRESoqZPpa7kDR\nmPMPATIzrft64mVGuC5S4wjNzTLQyUqw5i9Ns4KIy4U7spqy2nm0YXdrqySvyy6Tdjbv2SnnqKmx\n5h/29UlL1jQDYny8nNspi7Pmd7/1VuAOUvnFPt+ZRsPUA6Kri6q26c19CyldXfDss/J1kAOi3d5t\nf7ZRUABHHTWjx8xObae8c+zP0IVk/374yQub+VTS49yW8Uv+9821nHuuOSvz+gLdYhrlSmRlbLXu\nhTiCBkQ1I/YLai37R1UQR211oRVEx/BucdFZMGkFsaLSkEGsVhAdoaJCLjNjrM2ZpxsQDYOctDbK\nWxc5fWcI/9lz+rZtk4Hp448H+4hGqamx5h8GYGDjdkNZgxVMdFO9OeetIA7WT/l5zMgwqRpYhtkx\nj1q8x/LPf8prMS8v6IspDdsDcWAA9u6deUBc3kP5YKYjT0bNFdOEa681iaOTH33sBb55Wxz3cyXP\nPmNyxhmBfWtqb5d1yAJZQQTId3dR2Lx86EWtNCCqmSkshOjwPtwJnlED1bw8acHwzkPUCqJjeANi\ny+5xA2J6ujx/3oVqNCA6QqU1bykz4rB8Md2ACLgzB+k1ozh8OAAH5gQtLdJe+r73SXp6+OFgH9Eo\n1dU+K5jCtCuIIG2mZdWREBGhATEIvBXEvsNTryDmxdBDDJ5d83wF2ieflPB8xRUyqT2IQcp+78zI\nQD4Eu7thw4YZPWZ2tkEzi2g9MF/eRKfu0UfhX/8y+L75dZZ+8Ci4+GKuTH2CJ076IXv3yttxoHLX\nkSNyGfCAeEIixayk9+nnZvQ484kGRDUj+/fDmvgqwrMz8O5xYYmNlQGMVhCdp7QUoqNNlveVjxsQ\no6NleoZ3qwsNiI5gD3KyqJB2yvj4aT+We3UUAGUH5snqbXYF0TCkzfSZZ4Z2VXaA3l4ZI3v3QIQZ\nBUS3G8rLDQbTljjq37lQeCuIvYenXkHcIO2lVW/O42AxOCgB8SMfgbVr5bogVhHtCmJ6OtJeCjMP\niKvkPbR898I8+d3aKouWHpdVz+f4FZxyigz+rrySj752C8/8voHSUvj5zwPz99lvc6NaTGcaEM9Y\nzgARFD8zz0/YTIEGRDUjhYWwNrxoqB9xhNWrx6ggmvNoUYwQVVoKORl9hGGOOwcR5GmtrEQDooNU\nVEjBaGlvpVQPR5yYmQr3Jhmklr0xT6pPLS1Dgeuyy2SA+gfnbCRvV2oD2WLa0wO1rnVaQQwCj0em\nZ6d0H5l6BfE4GeFW7plH28yM9Pbb8kt/7rmQmyvXBXEeYlWVnKeOjQX27JH3znXrZvSY7qPl/aa8\nsCMARxh6vv1tqerdveFuwhe7htai+PznYWCAk9+5i/PPh7vuIiDzEUcFxPZ2eUKnudCQLX+9xKHC\ngoEZPc58ogFRTVtXl5wMzO9512fW93Br1kgF0TSRd+a+vsC8S6gZKS2F3KXWB9o4FUSQp1UriM5S\nWSkBI7ylcUbtpQDZW5YDUPbePFmAqLV1aE+z9eth40ZHtZnW1MhlICuIAGXx67WCGAQNDfISDG9v\nmXpAXCOV/6qiebwX4pNPSoI+5xzHBMRhC9Tk5s6oAwMg+zg5wVpe3D/Dows9774Ld9wB27fDCQd+\nByefPHTCMi8PzjoL7r2Xm7/aT1MT3HffzP9O+21u2TLrivb2GVcPYajAfaB8Hi3aNkMaENW0HTwo\nwS+/c9e4FcQ1a+T1e+QIQ8vx6zzECbW0wGmnwS9+MTuPb5pQUgI5i6zAN0FAzMqSgGgmJesqpg5R\nWWkNchpnHhBjj1rJYuqoLHHmpvJT5ltBBFms5o03oLg4eMfkw15FMT2dgAbE8qhVWkEMAo/HasBo\nb59yJXjpUginn6qqedxR85e/yAS0tDR5r0pJCXpA9G5xsWfPjBeoAViSHUs03ZRXLrzh9De/KU/r\n96+vlUHFKacMv8O110JNDSceeYLTToOf/ETa7GeitlYyqHfY0tY2oy4MW0ICJEd3cbgxWhYwUhoQ\n1fTZW1ysZf+ELaZgzUN0ueQbnYc4rsFB+OQn4YUX4LvflfaxQGtqkrFpboI1oJwkIHZ1gSd6xcKo\nIN5/v+P3k6uosF5uTU3T3wPRlpREangrTXWztGHVXPOtIAJceqmMJhyyJ+KwCmIAWky9eyHilpGT\ntu/PqYYG62OtrW3KVYzwcFgR30JV/TytWFRWyv6c5547dF1ublADYmWlFRC7u2X/rRnOPwQpkGZF\nHaG8LnbmBxhCamrgqafgc5+D1H0vyZUnnzz8TmefLW9Sd9/N174mJ8hm+lZcWyuvuYgI64oAVRAB\nlqb0UDuYNrRU+AKnAVFNW2EhGIbJag5OWEEEa8ytFUQZwH7ve9J6M0ar7Xe+A3/9K3ziE7KYxY4d\ngT8E7wqm0daM/UkCIkCFmSkBcT4PQAcG4Oqr4f/9v2AfybgGB+VDNjMTCYgzrCACLIrroalp5scW\ndKY5tEiNLSNDyvEPP+yI392aGoiKskJFACqICQlSnCnrS5dBr7bvzymPB9Jcg/J/P42gn+Hqoqrb\nNT+7M/76V7l0SEDs6pLnKyMDGZAMDAQkIAJkJzZS3pI8+R3nkd/9Tj6PPv1p4OWXISYGjj12+J3C\nw2Uu4r/+xUeyCtm4EX70I2a0rdKwPRAhsAFxKdSy1Gfz7oVNA6KatsJCyElrI5bucQNiRobMHz54\nEK0gAvzf/8G3vgXnnSeB+cwz5R1z/34ef1yqhldcIWfZVq+Wid2B5g2IRpksVTrBHAz7aa0cWCHz\nR7u7A39ATtHWJiHi5ZeDfSTjqq2VpyGQATEl2aS5PWLyOzpdd7f85ySPGKht2yZvQBNsJP/uu3D8\n8fDSS7N7iPYWF4bBUCiYYXtUdjaUdVgneXQe4pxqaABXkjX3bBqD1Ix0qCLDMS3QAfXkkzIPzZ7c\nBRIQDx2aWUKYJru9OyMDaS+FgLSYAmS7OijvWhKQxwoFpgkPPCAFw1WrkDfOE06Qs18jXXklREVh\n/OoebrpJxo32uYPpGBUQW1sDFxAzozUg+tCAqKZt/35Ym3JERjvp6WPeJyxM3kC0gmixlzF84gn4\n8pdlhHHzzRTmX8DlF3VyfF4j99zZR1gYfOEL8Npr8PazjfDQQ3DjjQE502yPRXL7D0r1cIJVMO0J\n/RU91jvyfG4ztf9tRUWOnc/l3eIifQCamwNTQVwcTtNAYuifuBmnIvd/iZfwhbB7aHvgsTF/rLRU\n1lLYtUsWW+ibxW7bmhqrvRTkhERc3IxX33O7oazZCsUO/b2dj0zTqiAmWvMAphMQ86KpIgPz4Dwb\nkLa3wz//KSdCfT9fcnNlEprdaz2H3nhDLletQhaoiYy0vpm57BV9HBlcSnfbPGnVn8Rrr8mY7jOf\nQXat3717dHupbckS+PjH4cEHuficdtxu+OEPp/93DwuIAwMyEA3Q87g0O0YDog8NiGpaBgbkDSI/\n+pAsJzXWmSPLmjVWBdEOiKE+EJ2Jw4elFePcc+Vd8t13adlXzflpLxNndvDnkqOJWeuG73yHK6q/\nT1xYF3d/6M9SVvzJT+Bvf5vxIRw4IHk+oblqwvZSkJujo6Giw6r+zsdWKJtv+HVoFdGeGpG5yGol\nnOkcRGDR8liaWOT4uZeTsp8/n4BYUQGXbU/gl4Of45R7L6fi0PDFB+rqZIu2nh55ORYWzt7iUCBV\nDO+5tJHtsNPkdkN5fRwmzI8KYk9PUPfK81dnpxStXXHWKqTTaTFdn0wn8TTvqQzw0QXZM89IEPRt\nL4W5Xcn0wgvhnnu83z74oLxWtmxBAuLatRISAyDbLSG44u0A7QbvcA8+KOe2Lr4YSd79/eMHRJCz\n3a2tRPzxEb76VXjllel3awwLiAcOyIm2E06Y3oONsHSZQTOL6Nnv/PefuaABUU1LWZl8jucPFIzb\nXmpbvVo+D3oNq51xoVcQly8fdlb1G79YQWlzKo/9M5WMv/xS2l5uvZWUn9zCtsX/4JHIK2j6++vy\nMwEYxB84YM0Nra+fNCAahrWSaavsl7cgKojg2IBoVxAz463XUCAqiNlJNJOCuT/EA6J98sJqMbXn\nxwwOwq+veYvy/nROOK7fW0lobZU1FKqrpfP7P/9TKom33jp7OWtYBbG1NSCr77nd0N0TJme+50MF\n8Wc/kyBxzDGyu3Z9fbCPaEz2ec60WGu7oOlUEHPlxGrVnvkwCdjHk0/K63DkqpZzFRBbW2HnTvjp\nT8E0qaiAZ5+V86xhYQRsBVNb9hpZaKj83Xm8p+VLL8GJJ9L55l4efRQuush6+7KT3vveN/7PnnSS\nbDl0111c+RmTtDR5n51qt0ZnpxSnvQHRfjMPVEC0HrfuwDx7PU6TBkQ1LYWFcpnf/uakAXHNGqk4\nHjqEzENc6BVE7wY+8v+yY4e82Z56ericcf373yUJ1Ndz7dNb6eqL5IG9J8j/88GDM/rrTXNEQExL\nm/RnsrKgotEa/CyEgOuxRAoAACAASURBVJiQ4OiAGBcHqYPWmepAzEF0JzNABG17ymb8WEE1osX0\n5z+H556TvHHV7et5Jf7DxPW1cNppMsf3wgtl7uFjj8n4xTDkZ7q64OtfD/zhtbXJH28Fsa0tYBVE\n8FnJNNRVV0vbQkQE3HCDJOoLLoB9+4J9ZMM0WC9BV7RVzZ9OBdHacmHe7YX49ttSURpZocvKkoQ2\n2wFx7165PHgQCgp46CH57LviCuR9oqIiYAvUAGQfLSelygs7A/aYjvP1r8Mbb7Dzg3fR2motTgPy\nWbl+/cSfRYYhVcT33iPu3Ve59VbpQD7zzKm9Zdn3HRYQk5KGlsufoSXWNNLayl6pii5wGhDVtHi3\nuKh/0Wfn2bEN2+oiNVUriMuXe799+WXJaRdcMOJ+GRmQmsrGjfI5e/fdMLh67YwriPX1MnVtzRpk\nhDNJBRHkM72ywVqKfSEExA9+UBY06XLeoK2iQl5uRrN1hjMQFUSXzIFr3jf384ICyn7+kpPZt0/G\nM+eeK2skEBPDuos38Lp5IsduGmDbNhmgPPCA7OFtW71apgY/8AC8/npgD2/YFhcQsBZT++23Kn7t\n/KggdnTIias335RKzw03yJP11a8G+8iGsQubi6N8TixNkTcgzre9ENvaxn5vioyUD5QpBMRpbUlX\nUOD90tzxGA8+CKefDjk5PrcFsIKYfswSwhigvHSe7p/38stSKbzuOh7ougR3eAWnucvlyXn11Ynb\nS22XXSbvd3ffzbXXysLSu3bB5s3yUvfHkSNyOSwgHn+8VRaeOW8FcSBV2uQWOA2IaloKC2HJ4kFS\nu2v8ajEFn5VMF3IF8ciRYQFx5045WX722eP/yLXXyh60/4jdKgFxBsv12/lyTW6vfIj7ERAzM6Gm\nPpI+IhZGQDznHOl98fdTaw5VVvqsYAqBmYNojeOaikJ8/oxVQeyNSeLyy6Wgc999Pt3c27axuKOM\nf173OF/+Mvz613D55aMf5r/+S16iX/xiYBdbtAPisApiAFpMvc9fQub8qCB2dAytrLxhA/z4x7B1\n61BVyCG8gT/a+jybRkCU2QYmVe0pzI+9Ziwj9oXs65Pdne64A15OPZeOotEno0xT/gtefVXmAX/m\nM3D00fL5+NOfTvHvLyiQv//97+elh0opKbEWVLFvg4BWECOXucigmvKqmS045Vg//CG4XJR/4Yf8\nq/9UPh35MGEfOlP6dlta/AuICQlSwt2xA+rquOwymYsYHg6nnion5SZjv70tW4ZMAH733YC1l8JQ\nQKxl6Yy7teYDDYhqWgoLIT/LmnsxSUBctEhyyIKvIHZ3yyegFRBNE/78Z/jQhyYeJ/7Hf8gb112l\nZ0kDvr0S6jR4A6LLGtT4WUE0TYNq0hdGQLTTugPbTCsrrZdbUwAriHbAqGgL7bYa6/n73q+X8fbb\ncO+9I5ZDP/10WL6cmB2/4/bb4aqrxn6YxETZeebNN/0btPjLXmY/0BVE+/lrjlsxPyqIY+1rtm6d\n/PI7aJEsOyAuj7ROrEwj7EdGwrKUHtnqYj6tnNjePuz/45ZbZHen66+HU96+g6Q3nmH9ejj/fJmm\nmJtrtc6nylS2L35R1mPLyJDuxf/+7ylu8VlQID948cU8UH4GCXED/Md/+NyWkDDpuGVKDIOs6Foq\nGmID95hOUVAgc0q/9CUeeiwO0zS44pGzJK1t3Sr3GTnXdDzXXCOLF/3mNwBs2iRVxFNOkU6P226b\n+MeHtZi+8458Xh1//PT+XWMYFhDn0+txmjQgqikzTWuLC5f1wejHG613JdOFXEG0+yOsgLh7t7QM\nXnjhxD8WFSX7t//fXjdlZM/ozNb+/XJGNivKOhY/AyJABVmOGqAFXEuLjNjS02WFO4cFxN5e+RXK\nzGToJEsgA+JAYmi31bS2cpBVfP+nsVxxxRht2+HhcOmlMvKc5CTVtm1yUvzrX5eFEQJhtlpMExLk\nn9YUtXT+VRBt69bJpT23wQFqauTjLKbbWphkmnuxZWaY8ysg9vdLe771//H3v0sB6nOfk5Mkf7l8\nB7fwPXKz+ykuls+3k06C666Thboff1zOBRw5Ii/VX/1Khgw+C5JOrqAANmyg/cMX8kcu5uI17w39\nSu3ZI9XDALUl2pYkdOJpjwnoYzrCj34EcXEMXnMtDz4IZ5wB7guOkc0MDUPGMzk5/j1Wfr48wD33\neHuH09Lkd+TSS+Hb35YK8lhMUzrNIyOtYUuAF6gBeduJjzepjcqcP6/HGdCAqKasrk4KGPkJ9qZs\n/gXEYRXEIGyUG3R25c9apObPf5bPqJErgY/lqqukivcYF81oHuKBA7JlUHijNYHGz0VqACqiV8//\nCmJysnzonXyyBEQH/Z5WV8uHpLfFNDoaYmd+xjrFWqA25Le6aGnhrciTGBw0+M//HOc+27ZJv9tj\nY++JaDOqq/jBxkepr4eH/zcw88OqqyUPJiQgv1cBCoiGISG/KWLx/KggThQQHbRQjXdFWru0NfKY\n/ZSRGzW/AmKH1VmUmEhNjbRxH3WUtImuWAHnfnSQW/kOT/5oPwUF8K9/yXy0H/8YvvIVKUplZAy1\nhm/ZItPCf/xjP0/W1NXJnw0b+NMry+kggc80Wz2qpjkUEAMsddEgnp7p/Q44Vnk5/P73sH07LxW6\nKC31adU97TT5jNyxY8K9lEf5whfkcZ96yntVRIRkxsxM+NSnhn6FaGvz3udXv5K/6r/+y9pV7Y03\n5BdqnD24p2vpUoPa+Lz583qcAQ2Iasq8K5iGHZA9/fwIGatXy8ntlrjlQ4OjhcYOiFYFcedOeY/1\n478Ptxs2bTJ5IuyCGQfEtWsZWoLPzzmIABVRKxdGQATpeWluHvpld4BK3/MxTU0BmX8IPi2KpIR2\nQGxtpSxaJjzbK3uOcswx8gJ45JHRt3k80pd6+umQlcUpd1/KRt7hjh93z2Tar9ewLS4qKiSo+nvm\nfRKLFkGTsUh+L3p7A/KYQTNWQMzJkRMiDgqI1dU+ATE2Vka505CRHU6VMY8qFlZgHohL5LLLJNT9\n8Y8+57Im2urii1+UTdVH+Na3JPPdd9/Yf+Vzz0mAbG9n2BzDBx6AlWnNnHzod1J9rq2V1/lsBMQl\nkTQOJGP2hPjrz9ftt8vlV77C009Lp8L55/vcfuyx/s0/9LV1q4yBRmw4m5QEv/2trLdw443ACy/I\nZ9xTT7Frl7Qnn322BERAAmIAq4e2pUuhNnIenbCZgTkJiIZhxBiG8YZhGO8ahrHXMIzvWNc/aBjG\nIcMw3rH+bLKuNwzDuMMwjGLDMN4zDONYn8e6wjCMIuvPFXNx/Go4e8y8tmu3taTi5GeP1qyRy4M9\n2fLFQpyH6NNieuCAjHVGtcFNYOtWg1cGt1D/3vTmIPb2ymeyd4sL8CsgxsVJiK0Mdy+cgGh/6Dmo\nzdS7B6JdQQxAeynIVKGwMGiKXRH6ATEsj8WLJyjmGIZUEZ9/Xv5DS0pkH4wPfEAq+5/7nLxOb70V\n48UX+SJ3UlAcy/PPz/zwqqt9TnbbQceujM3QokXQNGj97jp030C/jRUQIyLkjctBAdEb+EcsyDJV\nGRnQaibRuj/EVxG2WVWf7z2zheeflxW41671uX28gNjaKitHPfYYvPfesJtOPVVOpv7oRzKV39dL\nL8m6YjfdBCtXSiWqn3BKkzbx/PPw6c8YGAB/+tOsrGBqS10RQw8xdB2sDPhjB0VDgyTybdsgM5MX\nX5Q8OON1tSIj4Utfgqeflj8+TjtNqsj33ANPXfEo9PfjueNhLrpI3p5/9zurM7ixUQLcbAVEc7FU\nOUP9ZNsMzVUFsQf4gGmaG4FNwFmGYWyxbvtP0zQ3WX/esa47G1hl/dkO/BLAMIxU4NvAicAJwLcN\nwwjMKEn5bf9++fzObNjt90Rv71YX7dYIaSEGxMOH5d1t8WJ27pSrhp2Nm8R558Eg4fx1T/a0/vrS\nUmn79wbEsDC/Q0ZmJlSQuXAC4sqVEp4dFBArKuQyMxOoqhq2Gu5MhIVJm2lTck5oB8SWFsrIHr96\naLv0Urk85hh5nr/8ZSlP3Hij7N9WWCgli1NO4bJj9pMa0cKdd8788IZVEL1tGPkzf2CsgNhrhapQ\nbzMdKyCChGmHBMSBATmP4K0gzmDUbG91UV3UOaMVqh2jvZ1/cQbf3bmBT33K2nvQV2qqlItGBsSd\nOyX9hYXJcqcj3HKLvIZ8F47as0emaGRlyXzFVavgmh0fYEN4IV/9gQvDgE99MVkmOe7YMSsrmHr/\nWW75HWjcUx3wxw6KX/xC5pLedBM9PVKwO/XUAD32l78sA5EvfGHUdlK33QYbVni4suwW6jecweV/\n38bhwyaPPSZzfgFZ2QZmLyB2J0un22zv1+lwcxIQTWGvQRVp/ZnonXAr8JD1c68BKYZhLAc+Ajxj\nmmajaZpNwDPAWbN57Gq0wkI5I2hUVvgdEPPypD3hQKNVsVqIC9UcPizvPuHh7Nwpi29NsoXkMMcc\nA5lJzTxRd9K0zmx5VzC1A6LL5fdE/awsqOhfMb9bg30Doj0P8aWXgntMPiorJQjExyNnT1f9f/be\nPLyxq77/f13Ju7xIsrzOjD1rZjIJZCY7k5CE0JAVhpCQkBDyBZKyBtpSKLRspQQKlJZfCJC2hKQU\nEhKW7AuBhkwWJnsmyyTM4pnM6lWWJVvyLt3fH597r2WPbMu2lnut83oeP5JlWTr20b33vM/7s6zJ\n2Gv7fNBXsQgcxPGlswvEVaukZN5xx4l7uGePLBz/9V/lIEuKiCi/8Gz+evw/uece3RLos/LYY3Jg\nJ22C6bosbi0H8S9/ka7M1opnYfh80DdsxPA5vVDNTALxzTeTEpTyR0+PiMRMOYgAhwaqJazd6QwM\n8BWuZ0XjMD/+cYqfa5qEDE9dfN9+uzx+7bWSlBic3Hbn7LNF533nO3L5278fzjtPIlz+8AcJP3zi\nCbhn7RehpJR77tE45xzjGvv+90tLhLvvluPO7IieQfyrJOQ/tMPhGzQg/+Abb5Rw0PXref55GBnJ\noEAsLYWbbpLPwJTSpWWDIX4RfR+9WoDjg4/wMOdzw3v+NLlYqVmg5sQTMzSgCerroTdayjjugg8z\nzVkOoqZpbk3TXga6EZFntiH+lhFG+gNN00qNx5YAyT79IeOx6R5P9X4f0zTtBU3TXuhxesiNzfjL\nX+DotQkRPGkKxJISWZft6DQW4IXqIDY2cuiQnN/mEl4Kcl19z8ld/IFzGNw+952tSQIxGEwrvNSk\npQUOjDQUjoMIkoe4d+9EaHCesVpchEISYrp6dcZe2+uFcHG9/K0O3QRIhPvZP9wwu0AE+NnPpCTe\n3/zNRMhbKi64gE/yE9B1bropzYHcfTfWQW4QDErKoeUgvvFGxtxDMARirES+cbKDGI+LozCdQARb\nVDKd1NMyVVuOOWAJRJYuqIWRbYhGOUALZ5wQm/7fsnLlZIHY1SU99a68UsIPh4cl3DQJTRMX8cAB\nSY1717skv/GRR6DVCKrR0NncfhPbP/Lv3HEHEwLV7HHxxBNZcQ8BatcYArFtEaxtgkG5zhgtn558\nUh5Ot5tFWrzjHWIvf+97k3ucfv3rbIg+xT9fF+RQZzFX1T7Mx3f83WR3/bnnxKVIvl5niIYGKQgY\nJKAEYq7eSNf1uK7rG4ClwMmaph0L/COwDjgJ8ANfNJ6eKqlNn+HxVO/337qun6jr+ol1c1gIK2Zm\nYEDWPuuaIkklFdNj3TrYsb9CvilEB7GzE5qauOce+Xa29hap2LwZhqjg/347953mnTvl5FdTg2yB\nz1Eg9o9VEOmzT1XPjDNVINosD/HAAeNwMy9amXYQMcqZOtRF7AqXMpIoSU8gpsvJJ9Pqj7J52Uv8\n9KdHREOlxvy8bNtmPTSpxYWuG7tsmRWI4X6XXAyd7CCaZSpTKQsbVTKdNJ8LDDE1Nw0OsXTihR2M\n3j9AN/U0NM5Qm2DlSnGDzUX/nXdKSN+VV0r/wne+U9TdlL6s550HJ56o84//KOfDBx6YovcOHICB\nAYreup7LL0/aQ2tpmQhHzJJA9Ne5AQjtH5jlmQ7ArB5qVFl+8kk5/NIpqDcnvv99eY9PfELm/7XX\nJGn14x/niz9o4oEH4L+/ehBt+2sT51Ndz1qBGkjqhVh9lBKIuX5DXdfDwBbgPF3XO4ww0hHgViSv\nEMQZTFYeS4H2GR5X5IjXXpPbY3zGv30OzWbXrYNde93EcRWug9jUxF13ydrQLNwzF868vJFqItz7\nx4o5/+6OHUnvOQ+BCHAwsvCy/LYkkZCLYrJAPP54qdJrE4F48KAhENva5IEMOog+H/SNGYtyhwrE\nfWERuBkViG43nHsun4l8i95euOOOWZ4fjUooG0gjZ4PDRlrSkiXIRlE4nLECNSDzF49rDJQ6vNWF\nGT6aykFcvVqK1dhAIJrzmYkQ09JSqK8dXzQCMdIzyhgl1DfPUNV15UpxCc3ojNtvl5Bv85j47Gdl\nJ9pM1jfQNPjW8pvxEeI33959ZAHNmXIMzeqoWShQAxNFpUPtwzM/0QmYUSRVVcTjcgnMWHhpMoGA\niMSnnoJbbpGIjpoa+OY3cbvhwguh/Or3y0HyP/8jv3PwoGyCZVsgNm1QAjEXb6JpWp2maV7jfjnw\nV8AOI68QTdM04L2AcXRzH3C1Uc30VCCi63oH8AjwLk3TfEZxmncZjylyxNatcntqjVFkYY4CcXRU\nY1/lWwrPQYzHoauLYM0qnnhi7uGlJiV1NVxQ+ifu377c7DObNjt3zl8gWq0uRuolVm6xMTAgO5PJ\nArGkRC5CNshDjEYlqrSlBbloadrMoZFzxApRdLudKRB1nX0x+TxnVCACXHABZ0Xu4dhVg/zwh7PU\nEXn2WTnWa2snCcRJjlOGC9RAUi/LwBpnO4gzCcTiYql2ZgOB2N4uh2BDAwt2EAGWLtMWjUDs6pAo\nk4alxdM/KbmSaVubHDcf/ODEzy+8UPIRpxar+bd/412//RhBAlz0ZorKUTMJxKuukrjUc8+dw1+T\nPqZA7O2e44XZjpgOYlUVr70mejErAhHgwx+GM86AT39a8re/+c3Judk+n1Tzu+02rGo5kH2BWLse\ndu3Kyns4hVw5iE3AY5qmvQo8j+QgPgDcpmnaa8BrQAAws1UfAvYCbcBPgU8B6LoeAr5pvMbzwL8Y\njxUuIyMSnpFW7NPC2bpVzu2N/caBM8cQU4AdnhMKz0Hs6YFEgi2RjcTjUnltvmxe8So9w9U880z6\nv9PbK1/r1iEL2FBoTvEi5j7AAVoWZx6i+TdNzWk47TQJbUmrQ3P2mNTioq1N7pSVZez1vV7o69PQ\nlzu0kmksxj4kEal1fkV+p+fcc9E0jeuO/hMvvzyLofzUU6IcPvxhEfJGTzjTcWpqIuMtLmCiGHGf\nd/micxB1Ha65Bk45Ba6O/oTrnzqL3/xGOiEkkiPeX3pJig9NCUvMBu3tspAsKmLBDiLA0hY3h1yt\ni0IgdvdIaGn9stLpn5QsEH/1KzlmPvCBiZ+73XDddXI8vfSSPHbrrdLL4gMfwPXezdJccepcb98u\n58ZUuWmNjZKwOJfKcHOgvBxKi8YJDZZOavDuSJIEopl/mDWBqGnS10LXxd39+MePfM6HPyxrlgcf\nFIFYUgJvfWtWhmMJxMpVcuHN0drajuSqiumruq5v1HX9rbquH6vr+r8Yj5+t6/pbjMeuMiudGmGn\nn9Z1fZXx8xeSXusWXddXG1+3TveeBcMvfykn1o0bmZNimAe6LgLxtNOQAycQkBJiaWK6VzuKjy08\nB9EoPrBrSC5OC0mDOP+UEEWMcd996f/OpAI1oZBM5hwcxMZGKHInCk8gvv3tsgjJs4s4SSBmuIIp\niMAYHYXhNW9xpkCMRNjHcuqqhqbvgThf6urg5JO5qvP7eL1iQgQCE19LlkguFCDq8S1vkYZeum7F\n5Le3S3W84mLEQayuzlibEpgQiOGqlkXnIP7iFxJ9NjYGj4U38NXQ33HZZRKR2No60Z1E/48fiIh4\n4YVpXjxzWC1LdH3BRWpACtUc0haJgxiUXLyGZvf0T2ptFWGwZ484Q2eccaRw++hHZX1x441w333w\n138tB9/Pfy5uY1cXbNky+Xdeey1rOYazoWngrxojhF/yK53MFIHY0jKnYLG5c/TRkuj48MPGrssU\nzjlHDrhbbxWBuGGDhJ1mgepqeemuYqN61J49WXkfJ5DzHERFhnnhBbmYDg6KcvvCF7K247F3r5yT\nN20iqWJG+vj9skjaoa8rPAfRyLVoi9TR1LSw9UTNscs4iy3ce1f6oSxHtLiAOQlEtxuWBoZFIC7G\nqsDTCcQzz5St4dnUeF/fkR2cM4gpEK0Q0wzmH0KSA9VynLx+wmHFiPr72cdyltdnyek9/3w8Lz7B\n//ywn49+VPbkzK/KSqmxEOuPyybdaafJAgZg2zZiMVn3WBGlb7wh7qE2QxGPOWLNX8WSReUgdndL\ny7RNm+RSd/C/f08UD9vu2MnPfy77ojfcACecAOt+9TX+jc+jP7Yl68O0WpaMjsoG0gJDTJcsgVDc\ny9DB4OxPtjndfRJaOmMnidJSUcW/+51cnK688sjneL1S5fL22+Hyy2WSf/c7cY8uvFD+57/61cTz\nx8dl8yVPAhHA79MXlUDUK0UgZs09TOaUU5L6AE3B7YYPfUhOpFksUAMToeNdurE+KuA8RCUQnc62\nbdJQb/t26R/0/e/T85az2fnrVzL+Vmb+oSUQ57GltG4d7BhZUbAOYlt39cLX9mvXspl72dnmTtvs\n2blT3Ivly5mXQARoWRLnIMsWRyn2qUwjEA+FKvj75l9x9a3v4H3v0znnHDj1VOnHdfHFkjbxrW/G\nuWXNtzlwzTeyNrwDB+TCtaTcaHGRBQcRoK9pvWwwmYrUKRgO4vKmufcHTYsLLgBdZ7Prfn70IyZ9\n/exnEkL6b//QIwur006Txa+Rh/jNb8q/89vfNl4rwxVMIWn+yppEVTlN4JtMEYif/awYdDffbLRs\nXb8eD4NsSLzE1VfLvk1XF/z3371BQ6KDf+DfuPW2kqwP03IQTadlgQ6imXIVOuz8cLbuSCkaidkz\nGFaulHVLcTFcemnq53zmMyLCW1slvND8P5eXS17a734naTYgofejo/kViPXFi0ogtnVX09mZI4E4\nGx/+8EQbnCwKRDAE4rCxFlACUeFIxselYt7GjeKL/9d/EbvvUU7f/0s2Xr6GV+7MbL+orVvlbY45\nhoUJxOiSwnMQDVG1+2BpRgTiexBH69570/uVnTsnigBaAnGONauXLS8SB7FABOKTT8qm9Y/2X8ST\ng8ez+9VhYjF5SmWlrEfuuAO+8jU31/T+G2tv/xrf/JdEVozEgwclzLd4n3GxypaDWGu8rsPCTBPh\nfvbTyvKWLBWIOOEE2VB56KEjfnT66WJwfO+WWg6yVASipsGGDbzxdIR//3eJltu0CTnvdXVlNP8Q\nkuavqE6uC05tuG7kbFJZyX33SXr9V7+apKePOkrchKRCNX4//PXIj9lSdj5nNOzk71//CB0HsldI\na3RUNLjV4gIW7CBa89c1OksVJPvT1V9OrTucMlJwEmYe4vnnT1R4mcrRR0vhkieeOPJ6deWVct5+\n+GH53ixQk6Uqpengbygi5ApM7vHoRAYGwOXiyRfKAZsIxHXrZHcWciMQe4vlnK8EosKR7NwpYW3H\nH2899Hf3n83u+Eo8riHe+8EKel/PXJPvrVvl+HRHI1LWap4CMThcRTDkYs5lOJ1MRwdR71I6O7WF\nmz8rVtBS1MHGhsNzEoiTKpjC3B3ENaUcYinxw/ZoHJ9RkgSirksLrrPPliinl7dEeNO1mtc++B22\nbpU6B3/8o6S79PbC0JXXsJ1juIgH+NrXXRx7bEodsSAOHjQON7PFRYYdRKsKZs1yueMwgdh1YIQR\nyli+IkuXNJdLmrA98kjK89Z3vwt6QudL5TdYVXL04zbw6Tc+RVWVzne+YzwxCxVMQfSJywV9LmOh\n7dQ8RMNBjMQr+eQnpQ7FP/xD0s9LS2VzJLmSaSIB99yD6/xz+ek/vckQ5Vz3//qzNkSzM0MmHUSr\nRcJ4leOja7oHPdSXpJGnbgrE5OqlqTjrrNTxqu98p4hGM8x0+3Y5CMxqeHmgtlYj5K5bHA5iZSVP\nPqVRW5vx09X8+fKX4T3vyfj1byr19Uak/lGF3QtRCUQnYzYO3bgRkJZBP/0pfOELGg/8PER7vIEP\nbNrP+MDCw1YiEVkQb9rElISouWGeu3dy1OIsdjIdHR20+U4CMmD+FBfDypVc7H+Cp5+G/ftnfvr4\nuOgKSyC+/rqsKBsb5/S2LctdjFNMx17nh0EdgfFZHC6t4ZprpIDeeedJusPRp/nlg59KjcdilN17\nJ8e8exW/4TL+8JFfUVQkKTKbN2eumJ3VAzELLS4gqcgJXgkTcJhA3LdPbpevns22WAAXXCCL9+ef\nP+JHra3wec9/cvvQ+3j6GcktvH3wvWxJnMm/fqZjYi8mSwLR5TIq0SYMpe/UPERDIH7xe7V0dkr4\nbsnUiNH16ycLxOefl5jPiy/mqA8czz/zz9y1pZa77srOECe1LElyPBeC5SDic3yhmq6hahrK07i2\nv/vd0ptwviW9i4vl9++/X+bhtdfk4lpePr/XywB+P4QS3sUhEI0CNaefntF06YVx0UVyHXZlV7o0\nNBiR+quVQFQ4lW3bpNT92rUcPiwpiCecIG1kTrlqDTd95g3+r/8U/vGkPy44J+XZZyXyxco/hHmV\nizYF4l842vE7pXOis5M2z3FAhja/1q7lqvjP0XX43/+d+alvvikVAC2B+Pzz8kGZ40nW7C9nLsYX\nFZEIFBVxwaXl3HorfO1rch2yIk43b5Zw7ql//H33yaL285+HjRs5p+0mXn0V/vVf5Udmb9+FoOtJ\nNaGy0OICkhaoYU0+KE4TiAelYuLydZn9v0ziXe+SYyaVPXzoEF/s/yeaqqP8zd9Imujf/+YUTuZZ\nrl29ZeJ5b7whroxksAAAIABJREFUC9iM9+IwelmOGULFwQ7ik5zOf/1PKZ/7HJx4YornrF8vi7ZR\nI9/07rsldv6ii6C+nr9f/3s2VLXx6U/LPGSalAJxgSGmloOI3/ECsXvUS31FbPYnHnectKpYiKC7\n4grJSbv3XnEQ85h/CDKPg/Eyhve2OztUeGCAjvKV7Nljk/DSHNPQYHQDW/IWOR5jaXyeFyFKIDqZ\nl16C444jrhXxoQ9JtOntt0/suH70hxv51Nu28f2d7+FX7//dgt5q61ZZG51yChMCcR4OYksLlJXE\n2UGBVTLt6KCtSNTxqlUZeL21a1mxfwvvOEvnf/5nZv1vrvXXrUMWVa+8Ms3Ka2ZM57OtPf3WJo4h\nEqGvqoXHHtP4ylfgG9+Yop83b5bbqdVMf/lLEWynny6W49atlAxF+NKXRGdZ7Q8WQCgka6BstbiA\npBDTPpwpENvlpNe6PtM9LpLw+2W1dOutE8LA5M9/ppIY3/lcD88/L8Vvu0NF/KT4b3G/um3ieX/5\ni/x/3TO0AJgnPh/0jRiLbQc7iL9zvZ+KCjkGU7J+vazezJ39e+6RMERjl6P4Hafzs7H/R0+Pzuc/\nn/khmvptyRIyFmK6mBzE7jEf9VU56htrFoS69VbZPLOBQAQIDZU59xgEGBjgSf10oHAFIkCX34j0\ncHpO6TxRAtGp6Dq8/DJs3Mj3vy953D/8oYRMJ/ODxzZwesMurrnrQl75wZ/m/XZbt0rud3U1IhCL\niuYcogiyLjqqZVgEYqE4iLoOHR3sHl9BQ8OCN5uFtWthZISPvDvI3r0zt+mb1OJi+3ap+nbSSXN+\ny9ZWcGtx2np98xuznYlE2FMhxQ2SUnonWLNGwgKTw0y7uyUn7YMfFDV5/vmycP2//wMkcmrLloWH\nmU6K6G5ry3iBGpDjsro6SSAePOioXdN9PR7qtB481ZkXXpP49rfh0CH4l3+Z/PhTT4HHw1X/uIwT\nT5Rot09+UuOE48blPG1itrjIAj4f9EVL5LPoYAex3b2MZctmaLFr/v/eeEME986dUtHS5KyzOH54\nK5+/sp1bboFHH83sENvbJbqxtpaMOYjV1eBy6Y53EIeHIaLX0FAzkps3dLmk18yjj8ouqV0EotMr\nmQ4M8OTISXg8VgZTQWEJRN3Ifc1GKIIDUALRqezbB+EwrzeczVe+ApdcIpXyplJSqvHb55fjdQ9w\n9VdbGZtHcbe40d5r0ybjgYMHZddunrvg69YkCstBjERgeJi2webMmT9GvOj7Vr5MVZVsoE7Hzp2S\ny+/3M9FEeh4OYnExLPeGaYs1SmLjYiISYW+x/E+ndXg3b4bHH5+4WNx5pxwcV10l3596qqz0fv97\nQCLeRkeloM1CsCK6qyNyzGQpQd/rNYpfmrHIDsq92BeqYnnR4ey/0aZNcM018IMfTFRNBPjzn+GU\nU3CVFHHzzfKRuP56pB/iyy9PNFQ/cCBrFR98PiNEOBBwrnsRi9GhNdPUNMNz1q6VpKg33pDwUpgs\nEM84A4Cvr/kVq1fDF7+Y2SEePgxNTUaEQYYcRMkh1egra3a0QOzplrDKel+W2s2k4oorJu7nsYIp\nLDKB2L+Bt71NrvuFhiUQR4zQmv7sFb2yM0ogOpWXXgLgN4c3kUjATTdNn0jcsKyEH1/8KK/GVnHD\nt6KpnzQD27dPtPcC5t3iwmTdMW7eZAXDnQ4txT5XzB6Iff7MmT+GVew58Bcuuwx+85sjo95MJlUw\nff55uYqtWDGvt13dFKON1c5dgE5HJMIeTSZn2n/N5s0iCM0ctNtukzyaY46R74uL4ZxzRCDqOqed\nJqLr/vsXNrQdRrea5fE9cicLDiIYAqOPiWP7cA4EV4bYF/GzvCxH1XW/+11JTv3Up0T4DQxI2LZx\ngjzuOPjFL4ywwQ0bIBiU/6U5kdl0EPuYqLDgRGIx2vUmye+bjvJyKdL0+usiEE8+eXKD7fp6WL+e\n8q2P8olPwIsvZjZCzOqBCBkrUgNGgZPSJkcLxK6DIgwbAjmsUL5xo1wPS0qydm5Ml8UiEKOROK/2\nt3L66fkeSX6wBGLMOK4LqaBiEkogOpVt28DtZsvOJjZunL1jwcVfXs9m7uHr/1o65yIjW7fKreUg\nWhUz5se6DWUkcNO2xy6lsbJMZycxKmjvq8jc9au+XhapO3fykY9INOBvf5v6qZME4gsviHs4z7Jk\nq1vHaWM1evsi64UYibAnvpz6+hmixU4+WcKq771X3LVnn51wD03OO09CEF9/naIiiTp98MGF1Yh6\n6CEp91/fa1TAzJKDaAkMo0k5Q86oVptIwL5YgOWVwdy8YW2tiMQnn5QKUc8+K4OwdtCS2LBBbl9+\nOWsVTE1MB1ivq3dsiKk+EKVjvH5mBxFEZD/+uJzPLr74yJ+fdRY89RSXvEdCZn63sBT8SRwhEDVt\nhnjY9PH5oK+4ztECsfuANIGtD+SwQIumwbe+BV/6ErM3X8wulkCsXuHovLXDkUp0XPnW23nD55OP\nUlfUuBYqgahwFNu2MbxuA8885+Kss9J4/nHHcWPrv6PFx/n0p+dWYGvrVlkXL1+OOCiHDi3IQTz6\nGPnY7XizdN6v4Sg6OtiDxC1mbG2vTVSb3LRJNlBThZkePixrxbVrkQX/a6/NK//QZPVaNxG8hHbl\naDGeKyIR9o4umbmAkMsliYUPPwy33CJzkBzeBCIQwQozffe7pe3kc8/Nb1jhsKS3XXghkn+YhRYX\nJpZANBe7gzkqNLFAOjthVC9heU0O80Q+8hF429vgC1+QSkSaNtHEOZm3vlV+ZgrEoqKsOsBjYzAY\naHGsgxiJwJBeNrODCCIQzb9xOoEYjbI89BInnjj95tl8aG9PMiyNfnGZ6APg9xvOk4Oc+6l0HxIH\nsb4xx0vLSy+doapR7qitlduQd6WjHcTOmOySzqPMxKLA5ZI9+K6IsUZVAlHhKLZt45kllzAyQnoC\nUdNYdvkmrte/wkMPze2C+ec/i3uoaUi45Pj4ggSiWUhnR3v1vF/DUXR0SFgmGV4bGgJR0+DDH4Yn\nnoA9eyZ+3NUllfkrKqSFG6+8IgJ/HvmHJqveIuKh7TVnuEtpE4mwJ9Y4u/bavFlcg//4Dzj77Mmh\nbSC5ucceKyIS0Ytu9/yrmZp92S+6CHEts9DiwsQSiGbZeYcIRDMiYkVtDvNEXC6J6+/thRtukNwn\nqydKElVVctC//LLkzK1Zk7WkHqsSZlWLYx3EjoicX9JyEEHcWCs8Iokzz5TbLVu49FLZoJmtX2w6\nDA7Kps0kBzEjVceM4y9eIzse8RyGaGaQrnbJTW9oznKxKJvi8cjhHapsca5AHBujc0ys0EIViGBE\n6ve6ZUJVDqLCMXR2QkcHW7R34HKRfpz4JZdwXeIGjm/t5bOfTW9TpKNDznNW9JQZq3PyyfMZOSCC\npbWknR3B2nm/hqPo6GB3kSxoMioQTzpJ3Nxt27j6almzmn33urpEv+zbJyGKxx7LRIPvhTiIJ8gi\nuG33wvpq2opEgpHIMAcHvLO3IHnnO2UVMDoq1UtTcd55En4YjeLzyfE53zzEBx+UXelTTiFrFUxN\nrCI1poPokBBTUyAubxzO7Rsfdxx89rNyP1V4qYlZqOYvf8la/iEkCcTKZSJcHCLwk2nvl5yftBxE\nmFycJhkjD5EtW7jkEnnorrsWPj4jnXxifKaDmAH8fgiNeiRc2aEOcHenTgUxPHWLsBVSGmiazGNv\nSZOk4jixmNvAAJ2IMixkgVhfD11dmmz8KQdR4Ri2SV+tLV3r2LhxoofZrJx0EkXLmvnvluvp7oZ/\n+qfZf+Xpp+V20yZkV/PGG+WblL0A0mdddTs7IrNtEy8SOjpoKzuW+nqjTUim+NCHZDF/440sWSL1\nUX7+c1nEvOMdE+LQ3EznhRfkjD/r6mt6VqwtQSNB2/6SjPwJtiAaZT8t6LhmdxDLykQAlpXB+96X\n+jnnny+xfo89Boj79+qrcOA/H5JcmTTju+NxMSJNFzJbPRBNfD7JZR0rdlaIqSkQW5tyWDnR5Bvf\nkPjfqbmoyWzYINZ+W1vW8g8hSSCWGqs6B4qMjpicIGd1EDdulFYjpkBPhZGHuLp1jA0bMhNmakZ/\nTnIQMyQQfT4ID5WSQHNsHmJXNzTQlbH/iRPx+yHkrpMTuNmjyEkYArHYHbfOKYVIQ4MRiKEEosJR\nbNvGMKU885ea9MJLTTQN3vc+TnjuJj77iRFuugnuuGPmX9m6FUpLjV44Dz0kC52/+ZsFDF5YVxtk\nx1DrnHIhHUtnJ22uozJv/ni9cPXVcPvt0NPDRz4i16MNGySc6uGHk8QhiIN40kkLypcpK4NlxZ20\ndS6iBUAkYuWIzuoggoQUPvZY6pBCEDfJ47HCTN/9NsnXfOCTD8BXvpL24u+556QA5kUXIe0tstji\nApIERrRYFKlTBOKbCerpoiKQB9eiulrih60KXikwC9UkErkRiCVGCT4HCsT2IfkjZhWIbjd89asz\nWxxGHiIvvcSll8q1bKHpfeahm40QU78fEgmNfqodKxC7g27q6VYCMWFcG5wYZmoIxAbviLRyKVBM\ngahXK4GocBIvvcQzzZcwMqLNTSCCNEwcGeGbJ97H298uNTZuuCH1Uw8fltC4k04SkcgNN0jOVaqi\nAHNkXVOEmO5xcj5++nR0sHusNTtr+898Rhrf33wzmzfLIjEaFW1itAMTBgakzP4C8g9NVld10da3\niMKD+/vnJhCXLEldkMSktFRCUR9+GG67jbXvWcsabTcPLPm4/PzFF9Ma1oMPyjr43HMR9wmyGmJq\nCQyzUI1TQkz3xFnOvgzb8xkkudN0LkJMXUYpRQfmIXaM+KkqGc6M5pqShwgLDzM9QiBmMMTUmj98\nzhWIfcUiEDMkmp2I3w+hEaP6pYMFYqN/Hk2zFxENDZJJEqloUjmICgexbRtbvO/F5YK3v32Ov7tp\nEzQ0UPngnTzyiETJ/e3fSjNhsxS/rsNPfyprmYMH4XOfQ5ohPvoofPrTGSmysK5VFp87XndmMv5c\nGGwPc3ioNjtr+/XrRYz85CeUFY3z8MNSdX+SOATpm6nrC8o/NFkdCNM2NP8wVdsRibCXlZSXxjOX\nc3HeeRL7eNVVcNRRXHS1nz8F30pMq0xbIJrGlM/HhEDMooNohqpbeYhOcRD3IQJxOkc33zQ2SkKL\nWXk4S1gCQzfuOM1BjMdpj9fTVDX3Xr0pMfMQ772XtUfpHHus9ItdCO3tcmhYH7UMO4gAIWodKxC7\nIqUqxNQPoWiJ7O45sdVFf78IxLrFvzabCasXYmmLchAVDiEchr17eWzwFI4/fh5rIrdbVOHDD1OW\nGOTXv5Z+z9/7nlTC3LFD9MbHPgYnnCBdES6+GPjhDyW+8GMfy8ifsW6NnHx2bHPGInTeDA2xJyJu\nW9bMn898RorV3HMPp5xiFKSZygsvyG0mHMQlQwQTtUT6FkmhGiPEdOWSkUxUqxcuvlgOoH//d3jq\nKd79/2oZGdH445IPi1ifiTff5NCBBK+8YoSXguQfZrHFBaRwEB0gEBMJ2H/IbW8HUdMkZ3vVqokK\nsVmgpkbeqm/cECxOcxAHB+mgiWZvBj93110nifS33sqll0rLmI4FtHA1eyBa54lsOIi+lY4UiIkE\n9ETLlYPoh1BIk0rvTnYQGwsh/2d6LIFYvFQJRIVDePllhijjmcNL5x5eanLJJbL4+/3vcbvhRz+C\n66+HX/xCUmRefFEcxEcfNULuenvlh1ddNdHoZ4E0LC+nhjA7XnNgla+50NlptbjImvlz0UXSpPLG\nG6d/zvPPQ2sr1NUt+O1WrZALx56XFslJ0xCIq1ozuGPa2Cii/HOfA7eb00+XBfwDZZfM7CAePAhr\n1vDQB34OGP0PIestLmCKQCwvd4RA7OyE0TGXvQUiyLH5619n9S1cLvmM9Q0Uyf/CaQ5iLEY7zTT5\nRjL3mh//uISafu5zvP+MLnQd7r57/i9nCkSLDBapsRxErzMFYl8fxBMuGrTurJ6n7E5trXwsRlvX\nOFIgxiNRuqmnsbmw5YElELUGFWKqcAjbtvEMpzI65pq/QDzzTDmLGS0rNA2+/GX43/+V/s9vvAHX\nXpu0S/rTn8Lw8MwV4+aIVutnHTvYsStTlo1NSRKIaeW3zQe3W0J/n3hCeh2m4oUXMuIeAqw+WkKM\n215aHCdNPSwhpitXZe+zWFwsUad3tZ/KrR3nEtvTmfqJW7ZAPM4DT9ey3Ns3kbKW5RYX4MwcRKvF\nhZ1DTEHmLjkXMUtYvSylRnvW3y+T6NGYOIiBDFajdbng5pthdJT1/3EtRx+tL6ia6eHDSQIxkZCy\nvxnsgwhGmxIHCkTz41ZfNrCgQmhOxxT6fc3HOFIgBjvGSOCmcWl2+rU6BUsgJupFIBZERcXJKIHo\nNLZtY0vlu+fW/3AqRUXS8Pv++6XAicGHPgS33DKl9/fYGPz4x9JU7y1vWdDQJ1FbKwLxzdLMvaYd\n6ehgN2sIeMfTb0cyH665xmp5cQR9fVJ9NgP5hwCrjpMd87Y3MrjTn0c6D40zRAWr1mX3gvilL0Fj\nXYKPcivNb63luuuk/cUkHn+coZpGHi06lwvDt6Hd9kt5PMstLmAiB9FJIaaTBKKdHcQcMUkgOsxB\n7O8aYhAPTfUZzn1avVrayzzwAJeu3c7jj8/vX6PrUxzEwUF5MNMOYlmzIwWi+T+t92Qoh9ShmPPY\nW7dOVHMslt8BzRFT6De2LvK12SwEArK/1B2vlZYlDpvHTKAEotPYto0tJefML/8wmcsuk/yJ66+f\n+Xl33y35bRlobTEJvziIh3vLF7d739FBG6tZszrL+Xo+n4QA33abhAQnk8H8QwDPygaaaKetbXHs\nEu89UATAqqOz29txwwZ4/bUET/J23rP6DW6+WXqtn332xBTxxBNsWftxBsdLufC4w/DRj8oxGApl\n3UEsLZXI0nAYx4SYWj0Q2W9vBzFH+HzG/FlNvJxD+wFJN2huysJO/Wc/C6eeyqV/+hSJhLSvjM9R\nh/b3yyExqcUFZEwglpfLMdhXbIj7MWdVkTQ/bg1V9o88yCaW0K9ZIXfMk5RD6OwWWdC4rLAdRLdb\nRGLXqGHtF2AeohKITmJ4mKE33uSZyNHzDy81ede7JJ70+usltjQVvb3y85Urk5KhMkRtLSuRCl/7\n92f2pW2FIRBXZ9mdAqRYzfCw7JYnr35M9XHCCZl5n6YmVtNG26HFscO4p10Kh2QzxNREq6rk9HVB\nftH6VdrbpYbN9u1i7l7x3iHe3D3Gg0WbqaiAd/z+i+IaXnaZ/HKWHURIcqAc5CDWV8aoYEg5iIgL\n7FQHseOQnLOamrNwHLrdcMstvGX4eT616vf85CeSut3Xl/5LmKaeFWEzMCC3GSzI4vdDyGXk+XdO\nE4ZuUywHsXo4vwPJM5ZArGyROw4LM+0MyoZpxip6O5j6eugaMo7vRe1kpEYJRCexZw/PJE5iNF60\ncIGoafCf/yn2xbXXSu7TlPdi0ybYuVP6H7rdC3zDKVRX06zJBXAhVeXsztChXg7Swuo1OXDbjj1W\nGlv+4AdiV/3hD/L488+LuMhUjGtFBauLD9DWszgcmz3dVWgkWL48R294wgnw0kv4/VLDpq1NcoDv\nfbiYdezgf195K+98J5Q1euGhh2QbE7LuIMIUgeiQHMTl1SGJBfJ48j2cvDMpxDQYnOhd5ACsHoPL\nMnytMTn6aLRv/DM/3nM+//WpV3j0UdmY2b49xXPvv/+IBsFH9EDMsIMIxvyZTdYdFmba3Q0u4tT6\nnPOZywaWQCwxFJbTBGJYNn7NHLxCpqEBuqLGdUU5iApbs3s3WzgLl0uff/5hMiUlUqhm9WppfbFz\npzz+zDPwtrfJAuPRR5Nq7WcQl4smryxAF7NANNsg5cD8EW67DX77W3F/zj0Xzj8ftm7NWHipyeqa\nHjpiNYsiLH9vyMuy4i5Kc2WInnCCVLswYrKqq8Wo3335V7mq6E6igy4uv9x4bmsrPPywhHivW5f1\noTnRQVxe0SP/xAIujGFizV9VleTHOWAOTTq6ZDnS1JrFUO/Pfx6WLeNj+7/Mli2SVnTqqVP6I+q6\nPO/zn5fQboMjBGI4LLeZdhBHKye/oUPo6oK6oj5cVYW9UWMJxDHjc5H0GXICnZEKPK7BQm5ladHQ\nAF39RmsiJRAVtmbXLrZwFidsiGcu3cbrhQcflMI1F1wAP/sZvOMdctF7+ukFVMKZnaZaqVbnsOvg\nnGg7JOW+c2D+CJombUzeeEPiF59+Wq7cGSpQY7KqXsKrnNgHeCp7BupYWZHDcC4z1HdKu4slL93P\nz955O/39GldemfSDDRvg//v/Mu/ip8ASGA7JQTx8GJaWdKv8QwOfT+qODRUb4bYO2sFp7y6ikgGq\nGiqy9yZFRfCBD8Ajj7BpbS8vvghvfatEcf/xj8ZzXnoJdu2C8XG45x7rVw8fltumJuOBhx+WY/K4\n4zI2PJ8P+oaMFhEOuzB2d0ODqyejjqoTqa6Wj0Uo7JLzaNRZRXs6o5U0ljhL1GaLhgbo6jM2rJRA\nVNiZ0R17eYZTOfPsosy+8IoVcN99ckG69lpZkD7zDBx1VGbfZwoVdR6q3bFF7SDuDkpYZ84Eoklp\nqcQv7tkjlU2vuSajL7+6RSqYtrVl9GXzwp7BJlbVBHP3hhs2yG2yQAwG4fXX4cwzqazMnxnm9RrG\niANCTONx0bBV8bDKPzSwWiVg3HGAyDfp6C2hiY7shwpfeaWIv9/9juZmCZJZswY+9jFDT992m0TX\nLF0Kd95p/Vp7u+xDeDxI6O7tt0vvmgz0ljXx+yHUXyQKw2ECsasL6unOqKPqRDRNjsNQCBHLThOI\ng9U0lhWeGEpFQwMMDrmI4lE5iAp7c2B7P6OUcswxWXjxU0+Fu+4SUfGnP2X0ojctfj/NRd2LVyDG\n47QNNFJbHrMWbjmnthauuy7jC+hVRkGXtt3O7g0UjUL3eC2r/HOoVrFQqqtl8yVZID75pNyecUbu\nxpGCSSGmo6OykLYppvapVALRwhKIZh6bkxzEvnKaac++QDzuOAnXvv12QEyem2+WcOWvfjkBd9wh\n0TRXXSXqMSibR5NaXDz+uFiKV12V0aHJ8aeJTekwgdjdDfXxzoJ3EEEuu44ViCM+Gj0D+R6GLbB6\nIdKgHESFvdm/RxZrra1ZeoPzz5ewxPLyLL3BFGpraaJj8QrESITdrGZ1/eI72XpX+AjQQ9sbGWxq\nnQfMENmVDTleSBuFaiwefxzKyjIeCjxXfD65DsZLjTA/G7uIpvbxjPapEFMDSyDGnRdi2tFfQZPW\nBcVZrvisaVLM64knrLjRM86AT3wCbrhR49mOZeIyXnaZ2NR33QWIXrMqmN52myz+3/OejA7N7xc9\nMda4zIECUachfrjgHUSQeeztxZkCcayWxirnnDeySX293HYrgaiwNQMDHAjJzmrWBGKu8ftpih90\n2nUwfUIh6YG41DlhXmljtrrYYV+HKR32tIkDuqo5x0LohBPg4EHo6ZHvn3hCCkOVZLcX42yYAiOi\nGRVvbRyiaBWRHAkpB9HAEojjxiLdIQJR16F9oIrmkp7cvOEVV8ibJoWQfve70Fzex7WuWxh910US\nCr5mDfz614yMSDum5makldBvfiOF3Soymy9pzV/dUY4SiIODEI1qEmKqHEQJFXaggzgyAn26l0Zv\nYbcqMTELiPeWL1Uhpgob09bGflrRNJ2lS/M9mAxRW0vT+EE6OnR0Z0cqpmSsu4+DLGNlyxw7MjuB\n5mYRiG9mv3BKNtm7QxzQVa05FrrJhWrCYXj5ZTjzzNyOIQXmAjWsG46cExzE4V7lIBpYAmPUCNN0\niEAcGIDB8VKaSnMU6r1mjVR2NsJMAapLR7hJ/yTbE8fwnRvKQdNIvP9y7vhTPUcfFae9HU47DSnq\n1t8PH/xgxodlVcD0rnSUQDR7IDbQpRxEkgRiVZWjBGJXpyzEGv3OjgzKFKZADJYvVQ6iwsbs2sV+\nWmmqG8+3yZA5/H6aaWd4WFuUx15o/wA6LhqWZLiokB0wHMSDPaWMjOR7MPNnz84xvPThayrL7Rtv\n3Ci3L74If/6zuBl5zj+EiVaZVg6bExzEwW7lIBpYAnHESBNwiEC0WkhUhHP3pldcIcff7t3y/UMP\ncdHgr7nirA6uvx5uvRVOufcfuUK/nepEH3/4gxSy4bbbpIv42WdnfEjW/FW1iMIYdoaTY3TsUQ6i\ngVMdxM79cjFvrFuEm9rzwCzFESxpVgJRYWN272Y/rbSuWERTtn69VK1jcfZCDB4U96V2Sa4a7OWQ\npiZWsQdd15zWB3gSe/fAKvbk3oGqqZHSti++KPmHJSVSKCrPWAvUMWORZ2OBaDmIYyoH0cQU+OFh\nY8PDIQLRPP83VeVwMX355ZKP+Ktfyfe33w51ddxwex3V1fDRj0JnpJyfN32JF1ddzjnnIBWcHnxQ\nxGVR5jf+LAex3Eh2dMiF0XQQVRVTwe8Xk3msokbscYfQuU82JBobFmFI1zyorJRLc9DdqASiwsbs\n2sWBopW0rnB2SN8kTj+dpkpZEDgomiZtgodlNy7QsggbB1dVsbr0EODsVhd79rtZyd78CAyzUM0T\nT8DJJ+euONQMOEkgWg4iUeUgGrjd8q/oGzQ2pRwiEC0HsTqHAnHJEnHtb79dFn/33w+XX05dUxF3\n3y3dgXbt0rj6r0txP/EYdHbCb38r1X2zEF4KE8dfqNgon+iQC+OkEFPlIFpCP1xc5ywH8YCEljY2\nK2kAsn8UCEBQq1M5iAr7ktjVxsF4My0t+R5JBikqovmvjgag46Czi52kordL/qZA6yIUiJrG6iZZ\nfDpVII6Pw76O0vw4iCACcf9+eP55W4SXQnKIooOqmBJTAjEJnw/6okYlUBsL/GQsB9GX45DKK6+E\nnTvh61+XCh1XXgnA298u3YHKy5Fqprou4vCXv5QWGccfn5XhmMKiz20kPzlEIE4KMVUO4oQT7Ao4\nSyAeltBoRW9bAAAgAElEQVTS+uZFmBYzTwIBCOp+5SAq7EvnzgijesniqWBq0PT+twPQ8fS+vI4j\nGwR7JEyjtmFxnmxrl5RR4446ViAeOgTjcVf+BKK5yEwkbFGgBpJCFM0cNhsLjEkOogoxtfB6oa/f\nLdvfDnIQPdogVdVabt/4kkskVPSGG2DFitRh3sccI18/+pG4/R/8oPxvs4B5/IUSxh2HCMTubqgu\nH6WMEeUgIn0QAUJarWw8jI3ld0Bp0tmhU0uQEr+aQ5NAAIJxnxKICpvS28uBsOzKLTaBWLX5bDxE\n6XjuYL6HknF6Q7KIMC8Wiw2tuYnVRfscKxD37JHblezNjwNlCkS3W1pc2ICKCmlD1zdk5LDZWCAq\nBzE1VrN1j8cxArGjA5rcXWiVOY62qK2Fc8+V+1deOb3wu+wycRrN52WJoiIjRHi4XJKfHCIQu7qg\nvsqINlAOouUg9urGHYcch53dLhrpVHOYRCAAwdFqJRAVNsUoUAMsrhBTAI+HJk8/7TsHWGy9LoKR\nYjyuQTuklmWHpiZWxndZzeadhikQ8+Yg+nywapWEmtrkgqxphsAYNEol2zjE1HQQKxhUDmISIhBx\nlEBsb4dmOmTMueaaa2RX5Kqrpn/OZZfJ7aZNsHJlVofj80GoT5Omiw4RiN3dUF9hfNaUgzgRYmo6\nwQ4JM+0MupVAnEIgAMHhSnGCnVyyfR4szti3xUaSQFxsDiJA8xKNjl01sG1b1nI78kFwoJTakgEg\ns82UbUNTE43jh+ju1oEch4ZlgL17odg1zlK9PX+Lmp//POPNtheKU3LYYjEoLxnHPZpQDmISThSI\nHR1wvH44PwLx4oshGJz5M7RuHfzTP8E735n14fj9xvw1NkphHAfQ3Q1ryg2HRQnECYE4bnymnCIQ\n+0rZRCdUrcv3UGxDIAChoXLiuHD390/0vigAlIPoBHbt4oDWiterL8p1UNN6Hx00wb335nsoGaV3\nqJxAuTMWaPOiuZkAQSIRzSkpFpN4801orQrhrqnMWk7RrJx22kRPRJvg80HfgLF3aGOBGI1CZYnR\n0Fk5iBZOFIjt7TrN8YP5ExfpXFi/9a2s9D6cis/nvCbrXV1QXxKBsrKstP9wGjU1ckkJjRqfZwfM\no65LWxflIE4mEABd1+ij8PIQlUB0Art3s7/8aFpanOfSpEPT8jI63EvhnnvyPZSMEhypIlDpjEbH\n86KpiTp6ANmAdxqRCPiLBpS4mILXC+F+49JgY4EYi4Gn2BCIi3HnbJ74fBIZPFLudYRAHBiAWEyT\nnrj5cBBthuUgOqTJejwu5/+Gol7lHhq4XIbQHzE+zw6Yx4EBGBorFoGo5tEiYBQUDhIouFYXSiA6\ngV272O9esSjDSwGamiAar2Dg1b04NqFtKokEwXEvtdUOtNbSpamJAKIMnSgQo1Go1FQFzKlYRU4q\nKmyfg1hZNCz5Y6Wl+R6ObbBalZQ02Frgm1g9EGlXApEkB9EhDnAwKO5TvSuonKck/H4ImcW+Bgby\nO5g0MKOZG0v6pHCaApgiEJWDqLAVug67d3NgpGHRCsTmZrldVGGmAwP0UkvAl8j3SLJHkoPY05Pn\nscyDaBQ8uhKIU7FCFCsqbC0wYjHwuIYm4rkUQJJALKpzhMCweiAqBxGYcBD1CmcIxO5uua3Xu5Tz\nlITfD6GYsXHlAAfRFIgNFfYXs7lECUSFfensJBJ1ERmtWLQCsalJbjtWnLZowkzHukKE8S3aFhcA\n+P3UFYUB5wrEyni/EohT8PkgHAa9rNzWAlEcYNXiYioTAjHgCIGhHMTJ+HzSNi9W6neEsDAFYkOi\nQzmISdTWQmjAqAbtgHm0HMQq+58zcokSiAr7sphbXBhYAnHD+fDUU86MV5xCaJ/EqgcaFnGohqZZ\nf58TpywWg8p4WAnEKfh8klcULa+ztUCMxcCjx9T8TcEUiGFXrSMEonIQJ2NWwOxz1crxl7B3FEpX\nl9zWjx1WDmISfj/0Rozrv5MEYo190wrygbnJr3IQFfZj1y4OIMpwsTuI7a1vk4vhAw/kd0AZoPeA\nLMwCzSV5Hkl2qV0iORaOdRBH+5TAmILXaN3VV9Jg/xzERL9yEKdgOYj4HCEQ29uhoixONf1KIDIx\nfyEMpWjjYxCSHMTRg8pBTMLvh1DYWGI7RCC6Gad2MafFzIOKCqio0JWDqLAhu3ez370KWLwC0euV\n6tgd7qWwdHFUMw0ekuqltUvL8zyS7FK0pAGfK+w4BzGRgFhMx6ME4hFMymGzsYMYjYInoUKEp2LN\nn+6MKqYdHdDkHZJOqkogTjiIGBNpc3ERCkkKsHcwj/1kbYjfD+GwRry0wvZzCCIQG4pDuKrVHE4l\nENAIuhuUQFTYjF272F/zVkpKoL4+34PJDpomLmJHpwannw7bt+d7SAsm2C7l9wOti3zBs2kTdYku\net60/wUwmaEh6W1UqSuBMRVLYLgDthaIsRhUjoWVgzgFywFO1MD4OIyO5ndAs9DeDs01xudMCYwJ\nBzFunJdsLvJjMXFZtOiAchCTMIV+2LPEMQKx0dWt5jAFgQAE3Y1KICpsxu7d7C9bS0uL9NZZrDQ1\nGcUKrCZQzqa3Ow5AYOUiX7xedhl19NCzw1kWornmqkRVMZ3KJIFo0/A2XTcFonKAp1JcLEZc37ix\n0LOxyAfDQaw0KicqB3HCQTTnz+YCcXDQmLZoVAn8JMx5DJU7SCDqnWrDLQWBAARddSoHMRtomlam\nadpzmqa9omna65qmfcN4/DZN03ZqmrZd07RbNE0rNh4/S9O0iKZpLxtfX0t6rfOM32nTNO1LuRh/\n3kgkoK2NA/qyRRteatLUZBQrMAWizRPzZyPYK7e1TYs7B5GWFgL+hOWYOgXzeq0E4pGYDlRY89lW\nXIgDDJ7RkFqUpsDng75RQ2zZXGC0t0Ozx9iZVwJxwkEcMz7XNhcXsRhUlOtSelUdixaWQCxtsv0c\ngiEQ44eVg5iCQACCeq1yELPECHC2ruvHARuA8zRNOxW4DVgHvAUoB65N+p0ndV3fYHz9C4CmaW7g\nx8D5wHrgCk3T1ufob8g9Bw/CyAj7BwOLtoKpSXNzkkDUdcfv1AT73FRog5Qv7hREAOrW1tIzXAVv\nvJHvoaSNEojTMymHzaYC0Zq/eEQtSlMgArFCvrGxQBwYkLlsKjOiRpRApKpK+pT3jdh//sBwEMsl\nYkaJiwksgVjcIB90G5NIQHe3TmP8kJrDFAQCEIz7lEDMBrpgbqEUG1+6rusPGT/TgeeApbO81MlA\nm67re3VdHwXuADZnbeD5ZtcuRiihI+IpCAcxEoHBCqPpTCiU3wEtkN7+YgJFhXEyCZzQSpAA+h13\n5nsoaWMKDA+qTcJUqqoknL1Pr7GtQDTXzB5iSlSkwOeDviFjd8rGAsNscdFcEpTY2OLi/A7IBmia\nUQHTAfMHhoNYYghEtVljYQnEonrbO4i9vRCPazTSqQRiCgIBiIxXMhq25/UwW+Qsq03TNLemaS8D\n3cAfdV1/NulnxcCHgN8n/crbjJDUhzVNO8Z4bAlwMOk5h4zHUr3fxzRNe0HTtBd6nFiDH2D3bg4Z\nmrkQBCJAB8YdhwvEYLSc2lJ7XxQyRd2KSsYpJvKrh8T9dQAqB3F6XC4JM+2LV9s2B3GSA6wWpUcg\nArFUvrGxwDAvzfXuXiX0k/D5oG9QWgjZef7AcBBLx+QbJS4szP55va462wtEqweiEogpCRi+RW94\nEfe1TkHOBKKu63Fd1zcgLuHJmqYdm/TjnwBP6Lr+pPH9S0CrEZJ6I2D2PdBSvfQ07/ffuq6fqOv6\niXV1dZn5I3LNrl3sL1sHUBAhpgAdcaNUq8ML1QSHPQQqCmO3yTy8etrC8Mor+R1MmqgQ05nx+aBv\nrEoEog3zgZWDODM+H/TFjPxnGwsM6zgcD6t5TMLvh1DUcFNtLi5iMagoMgSi2qyxMC8rYc1n+zlU\nAnFmTIEYjBRWhEPO62Lquh4GtgDnAWia9nWgDvhc0nP6zZBUXdcfAoo1TQsgjuGypJdbCrTnZuR5\noK2N/XUnAgXkIA6bGfrOdhB7R6sIVI3kexg5wTp5uhrgjjvyO5g0UQJxZrxeCI8ZC/bh4fwOJgXK\nQZwZnw/6BorkGxsLREvoj4XVPCbhlPkDw0EsNq51SlxYFBXJRzpMjRKIDsda4wyWQzye38HkkFxV\nMa3TNM1r3C8H/grYoWnatcC5wBW6rieSnt+oaZpm3D/ZGGcv8DywRtO0FZqmlQAfAO7Lxd+QF7q6\nOFC6Bk2DZctmf7qTsQRizCix7GSBqOsE4z5qa8bzPZKcYDmIG/4K7rzTEWGmEzmIg2phmgKfL6lI\nhg3zEJWDODM+H8SG3IxRZGuBYQ6tYlQ5iMn4/RCKGOFsNp4/MBxElyEQ1bl0EjU1ENGrlUB0OJZA\nJGD7ucwkuXIQm4DHNE17FRF5f9R1/QHgP4EG4Okp7SwuBbZrmvYK8EPgA0Ytm3HgOuAR4C/Ar3Vd\nfz1Hf0PuCYXYn1hGUxOULPJuCbW1Up+gPWIsEhwcYjreP0gYH4Fa+wulTGCdPI/7K9i3D557Lq/j\nSQcrB7HatbgbjM4Tnw/6ho0iGTbMQ5zkICphcQRmq5II9i00BBND84yE1Dwm4fNBX58mF36bL0gH\nB8HjNs4RSlxMwuuF8LgRqm9j56mzEypKx+V8qubwCCYJxAKqZFo00w81TfsF0+T4JaPr+tWz/PxV\nYGOKx1O+v67rPwJ+NM3PHgIemm1Mi4JQiP2VjYs+/xCkcltTE3T0FEFFhaMdxNCePsBDoC5Vyuzi\nw3IQW06QBc2dd8Ipp+R3ULNgrrkqagorpyBdJhU5saHAmOQgKtfiCKxelngJ2NiBsuZxuBcalEA0\n8fshHIa4twq3jecP5PRQgSEQ1bE4iZoaiPQktSuxaRP6zk5orBlC60YJxBSYBYcKTSDOtnXeBuwx\nviLAewE3kgvoQlpMhLM5wIIlHodwmAODgUWff2jS1GSUPff5HC0Qg29Kz6Paxhn3XxYNHg+Ul0NP\ntBzOP18Eog0LmyQTjUKFexh3jVrQpMLng/CgEbZgQ4GoHMSZMXtZhvHaOkRxkkBU82hhzl+kosnW\n85dIGA4ixhiVuJiE1wthM1Tfxk5wZyc0eIzxqTk8gpISqK4YKziBOOMKVtf1b5j3NU17BLgwqdIo\nmqadDnw1e8MrYMJhEmgciHh5XwEJxLY2ZPvUwSGmvQdlQR1oLs3zSHJHIADBIHD55XDvvfDUU3DG\nGfke1rREo+BxDakd72nwemFkzM0QZZTbUCAqB3FmLAexqM7WAiMWk8VX0WC/EohJWD30yprx21hY\nmPWrKvSYhOqXl+d3QDbD64WdI0a7koGB/A5mBsJhaCxRIn8mAr44wcEA9Pfneyg5Yy7JN6cCz0x5\n7FngbZkbjsIiFKKLBkbj7oIIMQURiO3tGBn6DnYQD0vCfqClIs8jyR11dUZPs3e/W5JJH34430Oa\nkVgMKl2DalE6DaaD0YfPtjmIpUXjFBFXc5gCSyCWNtheIHo8yXcUkHT8ldh//gAqEgOyUaMVRlpF\nutTUQGTIiMSwsdCPRo3roRL50xKo1QvOQZyLQNwGfNuoQmpWI/0W8HI2BlbwhELsR6zDQgkxbW4W\nXThSXedsgdgp1UtrlxfOTpzlIFZWSsC+zecvGoVKTS1Kp2OSQLSpg+gpHpUFqVrQHIElEEvs7yAq\ngXgkloNYbG+BaBUZig8oJz8FXi+EY8VSyMPGAjEWM66HVVVK5E9DIKApgTgDHwZOAyKapnUhOYmn\nAzMWqFHMk1CIA4h1WCgC0Wx10Vm+wvYCYyZ6eyT/rnZl4fTXsxxEkIWCjcNpwBCIuspfmw67C8Ro\nFCqLhmX+1ILmCJwUYurx6OJSK4FhYR1/bnuX1bccxLGImr8U1NTAeNzFEOW2nkfreqjCS6cl0OgW\ngVhAIaZpV9HQdX0fsEnTtBakbUWHrusHsjWwgifJQSykEFOAjqJltDo4BzHYq1HOIBW1BRhiCnKR\nsfHFEGR4VfqAEojTMKnIiU1DTD3uYShV85cKjwfcbuhz1dpS4JvEYuApNwpaqWPRwnIQtVpbC3zL\nQRwLK3GRguRqwhU2vSbquiEQE/1qDmcg0FCkHMTZMEThc8AhTdNcmqapJmLZwBCINdUJagrEiDIF\nYjvNsii14cI0HYKRIgJu5wrc+RAwNrqHh3GEgxiLgSehCmNMh7mwsauDKDmkynWaDk0zwttcPlsL\njFgMPKVGfzh1LFpMcvBtPn8AFaNhdSymwFy7Raix7abpyIgUzffElUCciUCdxiAeBoP2ux5mi7TF\nnaZpzZqm3a1pWi8wDowlfSkyjRFi2tJSOOFTzc1y2xGvlzsOdRF7B0oIFBfOLhNM9EK08hBtejE0\niUZ1KscjalE6DU4IMfWoIkMz4vU6o82Fp1RyttVcTlBaarQD1n22PpdaDuJISImLFCQ7iHadR6tl\n0LhygWciEJBbM4WoEJiL+/dfwCjwTiAKHA/cB3wiC+NShEK0u5exdFnhCMS6OgmL6hg1upI6VCAG\nYxXUltlvUZ1NzJNnMIhcZGzuIEajUIkKMZ0ORziIRJVrMQNeL4QTNbYXiBXFxh6zOhYn4fNBX7za\n9vMHUDHUq47FFDjBQTTnsHJMifyZsNY4ocJZk89FIG4CPqrr+suAruv6K8A1wN9nZWSFjtHmoqEh\n3wPJHS4XNDRAx6BxVnVooZrgSCUBjzPDY+eL6SD29OAQB1E1WZ8Jtxuqq40iGTYM9Y5GwaOKDM2I\nCMQq2wsMT/GofKPmchJ+P4TGqmB0FMbsGahlOYhDQSUuUmA5iO6AbTdNLQdRucAzMiEQ3fkdSA6Z\ni0CMI6GlAGFN0+qAGLAk46NSoAd76UrUFZRABAkzbR8wdiIdKhB7x2oIVI/mexg5ZZJAtLmDGI/D\n0JAmTdbVonRaJIfNnkVOYjGoTKjS+jPh9UJ4vNLWAnFwEDxF0jdWHYuT8fmgb9T4n9h0Di0HMdaj\njsUUWA5iab1tN00tgTisRP5MWAKxvyS/A8khcxGIzwIXGPcfAe4E7gJeyPSgFNDXM86YXkxjY75H\nkluamqCjr0y+cWCI6fg49Olear3xfA8lp0wKMTUdRF3P65imw9Q7ykGcGZ8P+tz2FIjRKHjiKod0\nJrxeCI95bCsuwHAQ3cPyjZrLSdTUQGTUuBbadA4nHMQeJS5SMKkfqc0FonKBZ8Za4wyU5ncgOWQu\nAvFDwOPG/b8FHgO2A1dmelAK6OwRG7vQHMT6eujuK5ZvHOgghg5LOJ55MikUfD4JEbYcxETClqGJ\nkLRjqgTijPh80IffdgJR1w0HURUZmhGfD8Ij5TJ/CfsVVkgkDAfRZZwnlAM1Ca8XwsPOEIgVDKr5\nS0F5ORQVQcRda1uBaOUgxlWRmpnw+0EjQXCocK45c+mDGE66PwR8MysjUgDQFZZdikJzEOvqpI+g\nrrnQHCgQe/cNAOUEGgonTh0kZ83vNxzERmOhEI1KKT6boQRievh8sFu3Xx9Esyx75VifWpTOgNcL\ng2MljFJMyfCw7Y5F82Pl0UwbSh2LydTUQGTICGezsbgoLdVxjySUuEjBRLsZ+wrESddDNYfT4naD\nv3yI4HCl7FJqi79YzVzaXBRrmvYNTdPe1DRtWNO0vcb3hROQmysSCboG5GJeaA5iXR2MjWlEvK2O\nDDEN7pOzbW1jcZ5Hknvq6pIcRLBtHqISiOnh80FYr7adg2jueHvG+tT8zYAZ3hbBnpVMrXnEvKPm\nMhmvFyKDxSTQbDl/IKeGijLDnVabNSmpqYGwZt92JUogpk+gcpig7rfdpmm2mEuI6feAvwI+DhyH\ntLc4G/huFsZV2PT306lLL8BCdBABeqpWOjLEtPeQEWK6tCzPI8k9lkCsTHIQbcikhalalE6L12uU\n2beZQJy0oFGL0mmZ1IPNhgLDOg51MwlKHYvJeL2g6xpR7FtoKBaDilIj316Ji5R4vRCh2rbXQysH\nkZiaw1kIVI8SJAD9/fkeSk6Yi0B8P/AeXdf/oOv6Tl3X/wBcDFyWnaEVMEaLi2J33GpYXSjUiy6m\nx7PckQIx2C7VSwOthbfYCQSS+iCCchAdjs8HsXg5Y4P2qsirBH56OEcgDkBxsXwpLMwKmHZusj44\nCJ5So7i92qxJidcL4bgSiIuBgHdcBGIkku+h5IS5CMTpAm4XfyBurgmF6KSReu9oIYQ5T8J0ELvL\nWpwZYtopF8vaFdV5HknucYqDqARiepibU30D9lq4KwcxPUyB2IfP3gIxPqCOwxTYXeCD4SAWGz0a\n1bGYkpoaiMQ9tr0exmJQWhynmHElEGchUKsrgTgNvwHu1zTtXE3TjtY07TzgHuNxRSYxHMTGQGG1\nSoCkENOiJkc6iL1BnXIGqVhSYNYv4iD29kLCY1xkbHpBVAIxPSyBGLNXmrlyENPD7gLDmkdVjTYl\nVg89m+aQguEgFhsRBkpcpMRqN2PjiJrKMsMFri68je25EAhoBAmgh5VAnMo/AP8H/Bh4EbgRaXXx\nhSyMq7AxHMRCK1ADSQLR1eBIgRjscxEgWJALnro6KV3fFzcuMja9IE4SGDar7GgnTIEYHrSXQFQO\nYno4RSBWjEXUPKZg0vzZdLMtFoMK94h8o+YwJdLP0mg3E7ffpn80CpUlSuSnQ6DRzSilRLvtlZef\nLWZsc6Fp2tlTHtpifGmA2QX7dOBPmR5YQWM4iBuXFFarBICyMrnO9BCAcFgUh2su+xj5JRgpobYo\nAlpLvoeScyxxP1JFLdh2UWMJjLK4oz5bucYKURwuz+9ApqAcxPSYJDBsVmgIkqvRhtU8psDuVWhB\nPlaN7mH5RomLlHi9EB0tZRw3RYODtvs/RaPKBU6XQJNslgYPj1AI/6nZ+iD+bJrHTXFoCsWVGRuR\ngkQwRDf1NCwrzMVrXR30jPmk10wkgpMq9fRGSwmU9uZ7GHkhEJDb4KCx2LOpgxiNSsPbck9hHl/p\nYoWYjlTYqu+TChFOj4oKKCrSCY/b20H0jKp2JamwitQU19ty/sBwED2GQFQOYkrMeeynGn/Ufq0k\nYjGoVCI/Lczq9MHOcVbkeSy5YEaBqOt6IfwPbEeofZhximlozvdI8kN9PXRHjbNqKOQogRgc8tDi\nOZjvYeQFy0GMlEhFQhs7iJXFI2iValE6E5ZA1GtgdBRKS/M7IINJDqJalE6LpoG3Rifca0+BaJqa\nnqEgNKpjcSqWQCyph+i+vI5lOgYHwVMZU1VoZyDZyffb8JoYjUKle1DO72oOZySwTKJpgj36LM9c\nHKgtdBvS1SGNZwutB6JJXR30mC6UwyqZBkerCFSO5HsYecFyEIPIwt2mDmIsBh7XsHItZsESiPhs\nFaKoHMT08Xrtn4PoGe5V85iC0lJJuYgU+W05f2A4iAyqjZoZmFRsyK4C0WW/0Fc7EmiQtK9gMM8D\nyRFKINqQzm4J5SrEIjVgCMSo0WjeQYVqxschHK8iUDOW76HkBctB7EEuNja8GELSjqlalM5ISQlU\nlIyJwBgayvdwLKJRKHLFKWFMLUxnwevTbC0QNQ3KBkPqWJwGrxfCLvsKxMFB8OgqF3gm7F5sKBo1\nNtuUQJwVaxO8rzDqgyiBaEO6esXmL2gHMVwsia4OEoh9faDjotaXyPdQ8oJZYMjuDmI0CpWaWtSk\ng9czZjsHMRZLqrqn5nBGfD7NtgIjZhyC2qA6FqfD64WI5rOlsBgbk03RioRy8mfCCQ6iR1cCMR1q\nasDNOMFIYYTiKoFoQ7oi4p4VsoM4OuZigCpHhZgG22XRGqizRzGPfBAIOMRBVBUw08JXaT+BGI2C\np2hUdiTchbGTO1+8XghrPlsLxIk7iqnU1EDYplVMrRDhRL+avxmwu4MYi0FlvF8JxDTQNAgURwia\nEW6LHCUQbUhn1EOJa8w6sRQa9fVy20OdoxzE3v1y8jfj1AuRujpDINrYQYzFoFIfUIuaNPBVx0Ug\n2ijENBaDyqIhNX9pYPccRI9Hl8+WChVOidcLkUS1LefP3DOqGFMCcSasYkN4bXdNTCSM82lC9SJN\nl0DpAMHBwuifrASi3dB1uoZqaKiM2aWqfM4xc9m6S1scJRCD++UiXttsj2qP+SAQMEJMbe4gehJK\nIKaDryZhuz560agqMpQuXi/0JWpsNX8msRh4yo1wfDWXKampgXC80pYC0RxSxbgSiDNRXS23dgwx\nHRqSDkaV42HlIKZJoDxGcLgwxLQSiHYjGqVTr6ehejjfI8kbVrGTyhXOCjE9LNVLzVLIhYgTHMRo\nFCrjEbWoSQNvjf2qmMZiUOlSLS7SweuFYb2M4f7RfA/lCGIx8JTF5Rt1LKbE64XweKXthAUktSlR\nfSxnpKgIKit1W4aYWhWhR/vU+TRNApXDBEcLQ0wrgWg3QiG6aKCx1n4X9FxhCcRyZzmIvZ1GDuLy\nwj3R1tU5w0GsjIfVoiYNfH77CcRoFDyoKrTpYKYpRPrtF44Si0FFybh8o+YyJTU1EBktt7eDOKrO\npbPh9Wq2LDZkDsczGlICMU3q/HG647VSoWmRowSi3QiF6KSRhrrCrIQJSQKxuNlRAjHYlaCMISqa\nCzR5FAkxHRyEwVKfbR3EWEynUhVWSAuf30UEL/GYfSIaYjGoZEAtaNLAKpAxYL+86FgMPEogzojX\nCyPxYoaj4xILaCMsB3FEtSmZDa8XwkW1thOIpsivHO5VIaZpUl+v0Ust8a7F3wxRCUSbkQiG6KGO\nxqbCnZqKCrne9LgbHRVi2huCAEHw+/M9lLxhiXutHoaHbbfLNjYGIyMaHlSIYjr46kRYRHrtM4+S\nQ6pK66eDJRCjRfkdSApiMfAUq3YlM2E5wHqVnE9thOUgDiuBOBs1NRBx+W0nEK0QU1WkJm3qm4vQ\ncdG7qzffQ8k6hatCbErvgShximhYYr8Lei6pq4Nu3VlVTIN9RdTSO5GVXoBYjWQx7tjsgmjtmKIE\nRvjL3FEAACAASURBVDr46qTfUzhkn4gGVXUvfSyBOFiS34GkIBYDT5Ehegr4nDkTkypg2izMdCIH\nUQnE2ZB2MzbOQSSqzqdpUt8qLS66d0fyPJLsowSizejcLzuqDa2F0WdlOurqoCf+/7P35sGRZPd9\n5+dVoQpAFY66C0Cje9DdQHPYmJNzaMThmCJXByVKFq2VVpRlLu2VQmGH5LBWinCs1+FYb8TKYa9s\na+1d2xuyZAV3JVuSqdGKJkXLtDmiOSJFcoac6WOGM+i70QDqLgBVBdSZ+8fLqkYPe7rryAvo3ycC\nkUAByHxAVma+7/v+jtihEoiF3QDxsR3wPbiXVc9BbJsuqpcfiDKpuS+RlBYWpaJ3wtsqFbPqnpy/\n+9ITiHveq6xcq0FYme1TRCDelTt66HlMIPYcRGoiLu7D7CxsGzPefh7KOeyL1Ckdipu94q1zaQcP\n7kzWo2TWmwDMLT/Yk59kEnKNGR1W46EebPeiUJ0gPuGth7jTdAVivmXObDyWhygO4mBEkzqSobTt\njUdFo6HDhMNNqULbDz2BUfdeZeVqFcLKtKEk/+mudB1EL7ZI6DmIVOVavA+RCJQ7M559HkrKRf+k\nzuibavZm3eWR2I83nvpCj60tvU0f996Kr5Mkk5DbM29YhyQPsbgfJh46HGLWLrohprm66Qh4bFLT\nq9omk5q+iEb11isCsSfwpepeX/QEYnvKU/nAjYYeThjzhIqDeFcOjYMo99J7MjsL260wxq43n4dT\nVGSRpk9SJ/V7PbvZdnkk9uONp77QI5PXRSHm5lweiMskk5CrTGLAoQgzNQwoNqeITT247UlAT2jG\nxiC3bz5sPLZiKiGmg9ETiLveyInurXgbu3L++mByEoL+lucERu88dsz7g0xO70qvSA2znjp/oB1E\nn89gnLpci/chEoGWMUZt11uiQkJMBycaU/hpkc15r3WQ1YhA9BiZUpBxVX/gF1RTKdhvjlFh6lA4\niNvb0GaM+Kx3VundQCldxLVQM0PaPOogikDsj65ALFe9IRBlQjMYSkEk1PCwQNzRKnbMG+8vr3FH\nkRqP3UtrNQhNdFAg99L70AsV3vXWlLv7lpI80v7x+SAZKJMtHf17lrferQJbO5OkgyXU0V+cuCe9\nYiccjkqm3SHGo96p9ugW8TgUamaRJY85iJKDOBiTkxCgSanqjSqYd+TMyPnri0jYww5ia0fCS+/B\n1JR26bzoIFarEB6XPpb90AsV9shCW5dKBcLjTXwYIhAHIDW5S3bXe3ndViMC0WNkqtPMhXbcHobr\nHDaBWMhpYRiLP+DKHi0Q8zumoPDYqrc4iIOhFETHdijVvFFVWRzEwYlMtygR9ZTA6OWvNbclvPQe\nKAWz0x3PCXwwHcSgCMR+6DmItSB0vLOIXK1COKgLI8r9tH9S03tka0f/viUC0WNs1SOkp2tuD8N1\n7hCIhyDEtLCui9PE095aIXSDRAIK2+b/wWMOohSpGZxooEJp3xsCURzEwYnMeE9g9M5jvSgO4n2I\nRLwZYlqtQihgigu5Fu/J7WJDs56qyl6pwFTArJsgCzV9k4o2ybai0PZWTqnViED0EoZBphVnLnL0\ny+fej55AVOlD4SAW17Woj88HXB6J+8TjUCiZtxaPTWrEQRycaLBGuR5yexiAnL9hiMx6rwqmCMT+\niUSVJ0NMazUIj5niQq7Fe+LVXFItEPf1FyFv3OMPA6mkQZYU5HJuD8VWRCB6iHZljxxJ0omjvSrR\nD6mU3mYnTxwKgVjY0DfZ2MLRj0u/H/E4FAoKIxT2pIM45msTDCrw+90ezqEgMrFHqemNCeAdDrCE\nRPVFz4GqeScypScQ9wviXNyH2Yii7LEQYTAdRL+5mC0C8Z7cUY3WawLRv6fPn0/kQL+k5sfYZYa9\n61m3h2Ir8o7wEPlLZTr4mUsbbg/FdcJhXSAjF1w8FCGmxYwOtYkel0lrPK77nFXDKU89DEFPaqYC\nddSUTGj6JTqxT6npjUm8FBkanEjM510HcS8vDuJ9iEQU276o5+6ltRqE/ab7JNfiPbnDQfTQomml\nAlM+qWA6KCmzT3lurezySOxFBKKHyFzWD4D0gjgbYPZCHJs7HA5itkOEEmOJiNtDcZ14XG8LoeOe\nm9RUKuakRiY0fRMN1Sm1vTGJFwdxcCIJP3Um2C/vuz2UHj2BWMmIQLwPs7NQVt4S+GA6iL493aIk\n6I0qx15lchICYx3POYjVKoSlxcXApE7q+UP2snfEvh2IQPQQW1d18nL6uNxswRSIpA6HQCxAjOLt\nxnEPMD2BOL7gqdVSeEdIjdAX0akGZWMGwwOBDdUq+FSHCUTk90skofOiy3nv9GjtRruGKxkJMb0P\nkQiUDY/mICoRF/2gFMxOtb2Zg8iunMMBSa1oSzh73TsFh+xABKKHyNzUCd9zpyRZGEyB2IkdjhDT\nbR9xCiIQOSAQg/OeehiC+UBUNREXAxCdatFmzBOnslLRZdkVyKSmTyIpveBYLnqrvD5AuCFFau5H\nJAK7nSnau97JIQXTQTTkXtovkRnvOYiVCkx1dmWRZkBSS3qOnt3wzqKbHYhA9BBbG/oBnl6WixW0\nQMw2o4fDQdwJEKcok1YOCER/ynMOYrUKU0paJAxCZEbfl0o59x+G3RxS/H4Ja+uTSEK3nCmXPGAB\nm1SrMD5u4KcjAvE+dPPXdra9c/7AdBAlF7hvvNiuRAvEHZm3DEgqrftdZ492jRpnBKJSakIp9XWl\n1OtKqYtKqf/VfP2kUuprSqk1pdTvKaWC5uvj5teXzO8vHdjX3zFff0sp9QNOjN8pMlnFJDWmT4gL\nBbqSaW5vCsplTzWXvRuF6gSx8YqOJXnA6QlEX9JTD0MwHSiZ1AxEdNYUiFvut9/ROaR1ff7kWuuL\nblBDeds7/69qFcKT5j1d3It70quAueud9fxOR7fzC7XlXtovsxHlKQex3Yb9fZhqlUUgDkg4rPNv\ns8WjXS/EqTtOHfiwYRiPA08AH1FKPQf8I+DXDMNYAUrAz5g//zNAyTCMZeDXzJ9DKXUW+DiwCnwE\n+JdKqSNzhrYKY6TJokLSKgG0g7jXClI1JmF72+3h3JPi3iTxCW+FALlFLKa3BeKecxB7ITUyqemb\naFQ7F14QiNWqmUMqE5q+6TXp3vGOwKhWITxhtnMSB/Ge9Cpg7npnqtPt9R6We2nfRGJ+TzmIvTDv\npgjEYUhN7JDdnnB7GLbiyBPD0HSvioD5YQAfBj5tvv4p4GPm5z9qfo35/f9GKaXM13/XMIy6YRhX\ngUvAsw78CY6QKU+QDhRkZdwkmdTbHElPh5m2WlBuThGf8k6VQDcJBPScr2B4rzR7L6RGJjV9E43p\nx0Qp23R5JKaD6JO8p0HoCcTKmLsDOUC1CqGgGbIsAvGe9M5fNeDuQA7QLTIUam7Ltdgns1GfpxzE\n7jCmmpIaMwypcI1s7Wi/9x1bUlRK+ZVSrwFZ4AvAZaBsGEY3sWUdOGZ+fgy4CWB+fxuIH3z9Lr/z\nzuP9nFLqFaXUK7lczuo/xxYylTBzE0e7r8ogHBaB2K2hE5t2P0fLK8TjUGjNagfRC+UvTapVmGqX\nZVIzANG4fkx4oQpmL4dUJjR90xUYpYp3BEa1CuGAueAgIab3pBdiWvPW+QMIt0Qg9kskqjzlIPYE\n4n5BrsEhSEUaZBsRHat7RHFMIBqG0TYM4wlgEe36vfduP2Zu72ahGfd4/W7H+3XDMJ42DOPpZFdp\neJytvRnSYW+VsnaT7mnLkvJ0JdOudo1HvZ0n6STxOBQaMzpZZd8bzqphmA5iUwTiIETiOrStVHD/\n/a1zSKXI0CBMTMC4qlOueaeojxaIZsiyOIj3pBdiuj/u7kAO0HMQG3Iv7ZfZWagyRWvbG3O8nkDs\nbMuC2xCkEm09N83n3R6KbTielGAYRhn4U+A5IKKU6sa9LAIb5ufrwHEA8/uzQPHg63f5nUNNqwX5\n5ixzs5LH1iWV0luvO4iFgt7G4hIa3CUeh0LdnDh4JA+x0dDXWbgtq96DMB0P4qNNyQNtEqpVM4dU\nJjQDEQlUPSUwqlWz2BCIQLwPPQexGfKMW9F1EEONktxL+6R3Hkvu30fhgAuMRGQMQyrtI0sKY3PL\n7aHYhlNVTJNKqYj5+STwvcCbwEvAj5s/9kngj8zPP2N+jfn9LxqGYZivf9yscnoSWAG+7sTfYDe5\nHBj4SEfdz/PxCoclxLSQ1yZ2POmdIhBuE49DoWb28/RaSI1UMR0I31SICGVPmPiVihTGGIZIsEZ5\n3zvFz6pVCPvMSicS3nZPuvq5TOS2decy3WGE94tyLfZJzwn2SBbRHc9DEYgDk1oM0iTI9pWC20Ox\nDaey1ueBT5kVR33A7xuG8Vml1BvA7yql/jfgW8Bvmj//m8D/q5S6hHYOPw5gGMZFpdTvA28ALeDn\nDcPwxpLaiGQyejuXOhJ/jiVMTeleWbl60tshphv7wCTxOe/kiLhNIgGFqulYeMRB7K6YikAckMlJ\nopQob7sfoqj7IEpY26BEJvYpV0NuD6NHtQrhqKkyZHJ6TwIBCI832a6bBU48IKjFQRycnoO4441I\nIxGIo5Fa0vfT7KUdIi6PxS4cEYiGYZwDnrzL61e4SxVSwzD2gZ94l339CvArVo/RbTI3G0CQ9Jy4\nUF2UgmRSkduah8K33B7Ou1K4tQdMEls42iWPByEeh+1akCZjBMRBPNyEQkQpUdpecHUYvb5dSsqy\nD0pkok6p7J3/Wa0G4YgZ2uaTZ979mA01Kdcjt5WZy/QcRAlP7Jueg+iRasJ3PA89sOhw2Eid1v+z\n7LUaZ1wei13IndkjbF3Rd9z0MW/cPLxCMgnZsWO3E/08SHGrgZ8WswsiOrrE43pbJOYZB7H7QJQi\nJwMSMkNMd929N/VyZsS1GJhIqEG57Z1JYLUKYWNX8g/7JBJu6RBTjwjEnoOItJzpl56DWPFGP8s7\nImpE5A9Mz0G81XB5JPYhAtEjZG/oSo+pE+JCHSSVgpwv5WmBWMi0iVFExaJuD8UzdAVigbjkIB52\nug6iy20SeuevLQ7ioESmmpSNGU+0nOl0dKP1cFsEYr9EZtqe6qF3h4Mo99K+6DmIe+6H6sM7Fkzl\nfjowqbQOFc5uuX9PtQsRiB4hv9kkSJ3pxVm3h+IpkknIdRKeLiVcyBvEKEJUBGKXOwSiRxxEyUEc\nEjMHseRym4Q7qu7J+RuIyHSbMhGMPfdbzvTERXtbQtv6ZHbGEAfxkNNzEPe8UU24UgGf6jDBvgjE\nIUgk9DabP7oy6uj+ZYeMfLZDgjwqHnN7KJ4imYRcK+JpB7FYVsQpiEA8gDiIR4iJCS0Q9yZcNaCk\nqMLwRGc6NBhnv+C+wLgdKlwWB7FPIhGlHUSPCMReH0QRiH3Tq0Zbn/SEk1+pwNR4UzcXl/vpwAQC\nEAvskC17wxG2AxGIHiFfgCQ5iIlAPEgyCdXWBLW8N8p7343C9pgIxHfgRQdRchCHRCmSgW0a7TFX\nT6Wcv+HpuhflLfcdxJ771BSB2C+zUZ/nHMTxQBs/HbkW+8Tvh+nxOtvM6Bhrl6lUYCpo5s+JQByK\nVLhK1kPVoa1GBKJHyJfGSJAXkfEOer0QywHPNAl+J4XKODFVkpvsAXoC0ZcUB/EIkBrXzbuyWffG\nICHCwxOJ6nwZLwnE8H5RQkz7JBL36xDhXW/cS2s1CE+Yz2O5FvsmEmpooe+BZ6JuGVTXX8g5HIrU\nTJ1sfdazc9NREYHoEfK7QRKqIA/Md9ATiCQ82wuxWJsgPl7VfTkEQD9vgkEoBOY94yBKDtvwpCb0\nOczl3BuDFFUYnkhcV04sZZsuj+SgQMyLg9gnkcQYLQLsletuDwXQAjEUMN9Lci/tm9lwS4cKe+CZ\nWKlA2L+vz5+0mhmKVLxFlpSna2SMgrwrPEK+OkliQkTGO0ml9DZH0pN5iPW6DoGNh91fmfcSSmkX\nsTCW8sRqKehhjI+1CNCSSc2ApMJ6Vi8O4uEkktAtSsr5lssjOSAQ90Qg9stsUuc5lQvecCqqVQiL\nQByYbrEorwjEKd+eLLaNQCqFFohbW24PxRZEIHqAVgtK9RCJsPtx6V7jtoPoTYHYHVJs+uj2whmW\neNwMMfXAwxDMB2KgDmNj2t4U+iY5pe9NbgpEcRCHpycQPSAwegKxvSMRM30Siemp2nap4/JINLUa\nhMbMZ54IxL6ZnTWLDZXLbg9FPw+V3EtHIbUQoECC1oaLD0YbEYHoAUolMPCRmHU//Mdr3CEQPWjj\nF4t6G591f+LlNeJx71UxDY/VZUIzBMlp7ZCLg3g4iaRMB6rovsC4I9RbHMS+6PXQc19XAKaDOGZG\nzci12DeRmNIOogfSZbRAlIrQo5B6aBKA/CWPXJgWIwLRA3R1TyIqIuOdzMxAMGhoG9/DDmI85n7Z\naq8Rj0OhE/WMg1itwpR/TyY0QzA+FWDWv+sJB3ESCYsalNk5PZEpl92/T4lAHJxeD70db6Sg1GoQ\n8u1LNMaAzMbGPOMgVqsw1dkVF38EUqf0cyh71RvVha1GBKIH6AnEhLvj8CJKQSrpfYEYS8il9E7i\ncSi0Zj3lIE75RCAORShEyl903UEMBxv4MOQcDshELMQEe5S33RcY3R56YaoyOe2TXpuSHW88Z6pV\nCCmzwInUTeibSDqoq9GW3BeIlQqEO7uy2DYCXQcxe9MbxaOsxht3mwecfE6v6ibSfpdH4k1SaUVG\nzXlSIBYL+tzF02Muj8R7JBJQaExj7HjDQezlXIi4GJzJSVK+vOtVTMMBM+8pdHR7T9lCOEyEMuUd\n958x4iAOTi/EtOKN50ytBmFVk3vpgMwmg7QZo5pzv69zpQJT7W0RiCOQSuvFkezm0Yz+E4HoAfK3\n9OpDYkFCNe5GOq3I+hc8KRALG/rcxefl3L2TeBxahrvN1Q9SqUiLi6EJhUiScz3EdGpsX4tDKcs+\nGJOTWiBWvCEQfT6DceriIPZJL8S0FnB3ICbVKoQMuZcOSiRqFhvKuFv1vNGAZhOmWtK/eRS6VfYz\nuaP5PDqaf9UhI39TVwiMH5dV8buRSkHGoyGmxc064+wzmZKJzjuJx/W2UBl3dyAmlQpMGbsyqRmG\nUIiUseWqQCyXIRKQSelQ+HzEfGVPXIs6VLiFAnEQ+2RyEsZUi/KeNxYiazUIG1IsalCiUb0t5Nwt\nFtUr+NUQgTgKkYi+LrMlbyzcWI0IRA+Q22gQpsLkfMTtoXiSdBqy7ThG3nsCsZBpEaeAikXdHorn\n6ArEfH1K93JxmWoVpowdmdQMQyhEqrVJLgcdl+Y2xSLExiRnZlhSY0VyFfcXIatVCAXNit0iEPtC\nKYgEa2zvT7g9FAzDPIcdEYiDMj+vt1s5d538blmAqUZBXPwRUApSk7tkdyfdHootiED0APlMmwT5\n2zNq4Q5SKWgYQbaz3ksELuQ6xCncXhoUevQcROK3lyxdpJdzIZOawUkkSLU36HRut3ZxmlIJoj45\nf8OSCm6Trbn/v9MtEsx7uUxO+yYyvke54b7Abzah3Tb7WMq1OBALC3q7UXRX6Pd6yrZ3ZMFtRFLT\n+2T3Z/RFccQQgegB8nlEIN6DdFpvs3nvvV2LJYhRFIF4F+4QiC4nIhqGmYPYEoExFAsLpNDxpW4V\nqikWIaYkJGpYkhO75PanXXOAu/QEos8nxYYGYHaiTrnp/v+ru9YXknvpwHQdxI1td/9vPQcR6YM4\nKqlok6xH+3SPivdm3A8g+ZJfBOI96CUCl4J6pu8hCuUxcRDfhTsEosutLvb29FtnqlmWSc0wHBCI\nbuQhGobpIFKS8zckqXCVDn7XHOAu1SqEfXs6vFRaJPRNJNRgu+X+ZL7XpqQpAnFQJichEqyyUZ11\ndRwiEK2j14Ytk3F7KJYjAtED5HeCWiDGYm4PxZP0HMR2zHWh8U4KuwERiO9CNApKGZ5wEHtJ+c2i\nTGqGYWGBJNo6dEMgVio6jTXWzsn5G5JUXIdAudmqBEyBqGoSXjogs+EWZWZ1CUoX6QrEUEMW24Zh\nYXqXzX135wu956EIxJFJzfu1QNzacnsoliMC0QPkK5MkgjsQOJqVkEal5yCS9lQlU8OAYm2CmCrL\nZOcu+P0QmWp5wkG8Y8VUJjWDc+yYqw5iqaS3sXZOJjRDkuz27HKxEi2YAlF6IA5MZKrNNrOu30t7\nfSzrstg2DAuzNTbaKZ3M6RLiIFpH6vg4NcJUb3hnbmoVIhBdpl6H3eYEidCe20PxLMmk3mY91uqi\nWoVGe4z4ZE1Cpd6FeKTtCQdRHogjMj1NPFxH0XFFYHTDIqONjExKhyQ1r5usZzPuhulXq2aLBBGI\nAxGZ6VAm4nrBr9sOooR7D8N8vMEGC7C97doYekVqqMri9oikTun5RPaKt6LbrEAEost09U5ixt2w\nES8zNgbx2aZ2ED2UCNw9d7Ep71VX9QrxmOEpBzGM9NEbFv+xORLju64KxFh9UwT+kKQe0qXYczfc\nXYysViHc3pWJ6YDMzkKVKVrb7grEnoNIVa7FIVhItdhkHqNUdm0MsmBqHakTuiJt9vrRM3lEILpM\nV+8kokevRK6VpBMdzzmI3UlrfMb9Hn9eJR5XnnAQ78i5EIE4HMeOkfIVXMlh64aYRvc35fwNSXxp\nWjvALk9kajWzmrA4iAMRieoole0t988fQIiaXItDsLAATYIUrru3aHrHgqkIxJFIdUP3b+y7PBLr\nEYHoMj2BmHB3HF4nNac8l4PYHUo86nLdeA8TT/k95SCKQByBhQVSxpa7DiIFmdAMydhcghhFsuvu\nRat0m6yLQByc2aierpWz7kYb9dpciEAcioXjfgA2Lrsn9KtVCI61CdKU++mIdGtkZG+5l1NqFyIQ\nXaYnENN+dwficdLHxjznIPZCTBNyGb0bPYHokRxECTEdgYUFko1bZLPO57D1HERpczE8qRQpsmS3\n3FvQajTMJuuNkoSYDkgkoXNIt/PuTkR7bS7kXjoUCyeDAGzccLdIzVTQXGgQgTgSvRoZLleHtgOZ\n2bpMPqNDSxPzUsH0XqTSPjLMeUog9kJMUyLu34140keFaRrb7oZFlc10j1mkd9fQHDtGqrPlSpGT\nYhECAUMmpaNgCsRcwb2CWj33qV4SB3FAZhN6jlDOu5vSIA7iaMyfCgGwse5esahKBcJjpkCUczgS\noRBMBetkKmHdcPkIIQLRZfLr+g0VPx5yeSTeJp2GHWbYz+64PZQehby+wcfmgi6PxLt0Q6cLeXfD\ncMWBsoCFBVJkKZV9jrdiK5UgNtNCgax4D0sioR3Eknv3q9sFTqSK6aBE0uMAbBfdrVcgDuJozL9H\nv+83Mu5NvysVmBrb0+fPJzJgVBYT+6yzCNevuz0US5F3hsvkbzWIUCKQkkbr96IX573pnWI+xUyT\nKXYJJmSi827E43pbKLp7qymVIDzeJEBLJjXDYgpEcL6YcLEI0SnTOZHzNxzBIMngDtndSdeGcEcF\nTAkxHYjInK6WWC6536bE5zMI0pBrcQgmYiFiFNjMuRc1Vq3ClH9PFtssYul4h6uchGvX3B6KpYhA\ndJl8pkWCPMRibg/F06TTeut2k+eDFLYaxClAVMT9u9ETiCV3bzXlMkQnzSpjMqkZjmPHegLR6Uqm\npdKBdjIyqRma1HSNYj1My6UoxTsEojiIAxE9oQV10eVojFoNwuOmmy/30sFRigV/ho3ShGtDqFRg\nyleTe6lFLJ0JcI0lEYiCteRzaIHYnUkLd6XrIGaK3snVLGQ7IhDvQ08g7robhlsqQXTCzA+QSc1w\nzM+TRCtDpxdqikUR+FaQmtWxwW61kxUHcXhm4gHG2SdTcDfnvVqFUMAssCLX4lDMB4ts7LgnzioV\nmJIWF5ZxcjVEkTg7b226PRRLEYHoMvmSXwRiH/QcxB33Vt3eSbFoEKMoAvEeeEogBqs632J83NWx\nHFrGx0lF9MTQaYFYKkGsK/BlUjM0yYQOT3QrEkMcxOFRCubHcmwW3b1/1WoQDkiBk1FYCJXZqM66\ndvxKBcJGRe6lFrF0Ukup62/WXB6JtYhAdJn8TkAEYh/0HMT6LI5XyHgXCiWfOIj3ofu2ztfcy3sC\nUyCOmT0QlXtVHA87qQVdat8VBzHY7VUik9Jh6TV1FoF4KJkbL7G14+77v1aDkFTAHImF6V226lE6\nLkULVyow1dkRF98ilpb09tpVd/ODrUYEosvkKxMkVFEu1PsQDusiI17qhVjYCYhAvA+TkzDpr1PY\nc7dKrxaIOzKhGZHZ4zMEVNNRgdFqwc4OxAIiEEcldUyH6Ocy7sxMJcR0NObCu2zW3BXW1SqE/fvg\n90s0xpAsRGu0jDFXQ72nOtviIFpETyBuHq3rQQSii9RqsNcKkgjviavRB6nZOhnSnhCInQ6UqkEJ\nMe2D+GSNQt3dyWCpBFElPRBHRR1bIKVyjhap6fawjPm39SdyDocm9ZB28rPX3AmFEgdxNOZnamzV\n3S1oV6tByLcv0RgjMB/XofobG84f2zBMB7FVFoFoEckkTAaaXNuNHaleiCIQXaS7epSYrrs7kENC\nOt7WDqJby24H2N6GjuEjrkqyEn4f4qF9Cs0Z/WRygWZTPxCjqiziYlQWFkh1tsg66EAVi3ob9ZUh\nEICg9B0dlshDs/hpkb3hziTmjh56IhAHZi5Wp9CJupplUa1CWO3JvXQEFtK6XZcbAnF/Xy9wh5si\nEK1CKVhK1nQl0yPUC1EEoov0BGLUO739vEwqjWccxO4Q4uL+3pf4dJ0CMf1kcoGuAxU1ijKpGZVj\nx0iSI3vLuT4JpZLexijJhGZEfOkkSXLkbjVdOX7XQQyNNSU8cQjmk3qukNl0r9VFrQYhVZN76Qgs\nLOjtxnXnr8OKGak/VS/K/dRClk60j1yrCxGILtITiPGjldhqF+kFv2dyELuuRmzapYZih4j4TIsC\ncdjddeX4XYERbedlUjMqCwukyLrjIHYKcv5GJZUyz587z5xqFcb9TfyzMjEdhrl5vRi5tebOdPza\n/QAAIABJREFUvRTMNheGCMRRmFvUxb42rzq/aNpdpJnqbEv0k4UsnQmKQBSsoycQU3Ia+iG1OE6O\nJO1c0e2h3HYQI+L+3o94pK0FYnfp0mF6ArGVk0nNqHQFYnHMsUP2HMT9DZh1rzT8kaArEAvuPHN0\ngZO6hJcOyfyi7oG4ebnq2hhqNQgbu3IvHYHx5AwJcmzccH6BuecgIm0urGTp7NHrhSjKxEXyOb2K\nm1iQnJp+SC8G6OCneMv9JOCeQIyJ+3s/4jGDIjE62y47iM2sTGpG5dgxUmSp7o/18snspucglq7A\n/LwzBz2qxOM6RLjszjNHC8Q9cS6GZO6kLjK0dc2dcH0wHcR2Re6loxCNMs8mGxvOzx9EINrDUeyF\nKALRRXIbTXy0iSy42wLgsNDrhbjhvmvXdX/jSbmE7kc8AR38bG+5c+PsCcT6lkxqRiWVIqX0m9+p\nSqa985d7+3byjjAcfj+piV1yVXeeObrASU0cxCFJndT3r82b7jwDOx2dSh5uS8ugkYhEWGCDjS3n\n5w9dgRimKgLRQnqtLq64lx9sNTK7dZH8rToxiviT7patPiyk03rrVpPng2QyEKBBNC3u7/1ILOhi\nFIXr7oRF9QTG3oZMakbF7ycZ1WFRTl2HxSJMTRkEMuviIFpAanqPncakKzWjqlWpYDoKwbkYCXJs\nbboTudKNGgg1pWXQSJgCcbPg/PxBHER7OIq9EEUgukh+q0WCPMTjbg/lUNB1ELN599+2mS2DFFlU\nTHog3o/4Q/ohVLjucg5i7ZZMaiwgldaFMpwUiLFIR/crEYE4MsmorpzoZC/LLtUqhI2KhJgOSyzG\nHFts5fyuHL7XpqQpLYNGwhSIW+UJ2g6bwb0iNch1aCW9XoiVOI7lX9iM+zPtB5h83hCBOABdBzFT\ndn+FJrPRJk0GoiIQ70f6jC4ssnXDneZdpRKEQgZBoy6TGgtILepVb6cEYqkEsSnzvSMCcWRSCe0+\nuSYQ27viIA5LJMI8m2wW3cshBQg1RCCOhHke2x2f49ehOIj2cBR7IYpAdJF80ScCcQCiUfCrNtnK\npNtDIbPZEYHYJ4un9GRmfd2d45dKEJ018wJkUjMyyYd0/pqTDmJ03CxMJQJxZFLz2n1yI1RfC8Qd\nEYjD4vczFyyyteNODmnPQWxIT9KRmJhgIaBzuTc2nD205CDax9KJzpFqdSEC0UXy2wERiAPg80Eq\nXCWzN6uz5V0km0MEYp8kkzpfcz0bcOX4pRJEZ8w4HhGIIxN+KEGYCtkNZ0q0l0oQC+zoL0Qgjkzq\nmL4OnTp/B6lWDcJt6b82CnOhXTarMxgupCHumJfhFNLmYlQWpnVV702HuyKUSuD3dcRBtIGj1gtR\nBKJLGAbkKxNaIMakSE2/pGbqZElCuezaGAwDMoUxEYh94vPBsfEC60V3JhSlEkSnzMmwTGpGx2x1\nkbvhTLuZYhGiyrzeRSCOTM8BvuZ8nkxl15AiNSMyP1Oh0Qm48gjs5XNTknvpiCxE9f3TaQcxn4d4\naA8fhghEi1k6O3mkeiGKQHSJnR1odfwkxisQcMdZOYykY00ypG83InSB7W1oNH0iEAdgcarMesWd\nJuelEkTDdf2FTGpGZ2FB99JzwIEyDNNBbOe16yTnb2SmT0QZZ5/cTWfLmLZaUCqbaRXiIA7NXFTn\n425tOX9sEYjWkU7oqBY3BGJy0kwmlXNoKSdPaUl17U33e3VbgQhEl+j20UtM190dyCEjlTTIknJV\nIGYy5ljIikDsk8VYlfX9hCvHLpUgOikC0TIWFkiRdSSHbW8P6nWINjLiHlqESqf0+XM4xLRY1Nsk\nOXEQR2A+qc+b06GJIALRSoKxKZJjRVcEYmLc7GPpEwlgJb1WF1fdaUNjNfLucImeQIw4nwdymEnP\n+8iQxsjlXRtDVyCmydzuvSHck8Vkg/XOAkbd+UqmpRJEJ8wVPZnUjI4ZYpotjdl+qO6ENLZ3SwSi\nVSSTpsB3dhLTrdaYIC8CcQTm5vRWHMRDTiTCgi/jjkAMbEt4qQ0ctV6IjghEpdRxpdRLSqk3lVIX\nlVJ/y3z995RSr5kf15RSr5mvLyml9g587/8+sK+nlFLnlVKXlFL/XCmlnPgbrKYnEONHY6XBKVKL\nQfYIUd3Ydm0MPYE4vQchd6rJHTYWjxnsM0lxzVnnt9WC3V2IBLvl92RSMzLRKCl/kezupO2FMrqu\nU2z3ughEq0ilSJIjV3S2l15XICbJSYjpCMwv6vO2ecvhBnpogTg12SJAS+6loxKJsGDcctwJzuUg\n4S+LQLSBRAJCgcaR6YXolIPYAn7ZMIz3As8BP6+UOmsYxk8ahvGEYRhPAH8AvHjgdy53v2cYxl8/\n8Pq/An4OWDE/PuLQ32ApXYGYTB9Kfesa6aUJADLXnc2fOUhPIC6406z4MLJ4UufZrl9wtrJCt5BD\ndExXjJOHogUoRWq2TrMzxrbN6zRdgRgtXxWBaBWRCCmVJ7vt7Cp375knIaYjMbMwxQR7bF1zPj1F\n53M39RciEEcjGmW+dYONDedMgk5HZ+ckVEGehTagFCyljk4vREcEomEYm4ZhfNP8fBd4EzjW/b7p\nAv53wL+7136UUvPAjGEYXzUMwwD+H+Bjtg3cRnoO4rw7DW8PK6luBb5bTdfGkMmAjzbx4+Ie9svi\nshb2629VHT1uLySqZdoX6bSjxz+qpBK6zYzdTZ57IaaNTRGIVuHzkZrcJVsJOdoqQUJMrUHFY8yx\nxdZN55+BpRJEQ5LPbQmmg5jJ6EgXJ9jehnYbEuREINrE0gnjyLS6cDwHUSm1BDwJfO3Ayy8AGcMw\n1g68dlIp9S2l1JeUUi+Yrx0DDrbbXueA0HzHcX5OKfWKUuqVnN2zmCHIZzsEaDCdFpExCOk57bhm\nttwLzc1kIOkr4F+UCWu/LJ7VE8L1q85OanoCcW8DZmdhctLR4x9VknPONFvvOYiURCBaSHKmzl57\nnKqD6zV3CEQJMR2eeJx5NtncdP4ZKPncFhKJsMAGnY5ypOAXHDAm2lm5Bm3iKPVCdFQgKqWm0KGk\nv2gYxs6Bb/0Ud7qHm8AJwzCeBH4J+LdKqRngbvGYd71LGobx64ZhPG0YxtPJZNKaP8BC8rfqJMij\nEnG3h3Ko6NaEyebdq6+U2TJIdzZhYcG1MRw25h5J4KfF+k1nJzU9gVhdv13dQRiZ1KKOfMhm7D2f\nPQeRoghEC0nFtGXh5NppPg+zE/sEacrkdBRipoOYdf4ZWCpBdFzyuS3BFIjgXEXankBsboqDaBNL\nZycpEWP7LReqSFmMY3cYpVQALQ5/xzCMFw+8Pgb8GPB73dcMw6gbhlEwP38VuAycQTuGiwd2uwg4\nXAPKGvJbLb2SGheBOAhdgZgputc7MrvR1BVMj93VvBbugn92inm1xXrG/sqXB+kJxO1rIjAsJHVK\nTy6yN+zNBS4Wwe/rMM2uLMhYSCqphb1TzgWYxTEmKtrFl96/w9N1EAvOp6eUShANVvQXIhBHIxrt\nCUSnKpn2BGJjQwSiTSyd1LLq+ptSpKYvzBzD3wTeNAzjn77j298LfNswjPUDP59USvnNz0+hi9Fc\nMQxjE9hVSj1n7vO/B/7Iib/BavK5jgjEIQgGIRKokN2dcG0MmS1DC0SZsA7EYjDLesHZkOqeQCxc\nEgfRQhIruv9n9krF1uPoHpb7OnREBL5lpOadCRE+SC4HyeCOuIejYjqIxeoEdYfr1JRKZsEvnw8m\n3HsGHwkiEebR1qHjAnHvpghEmzhKvRCdchCfBz4BfPhA64ofMr/3cb6zOM1fAM4ppV4HPg38dcMw\nzGwU/gbwG8AltLP4edtHbwP5ok8E4pCkQ7tkqu5NMjJ5Pymy4iAOyGK4xPqus8UpegIx97YIDAsJ\nnpgjSpHcTfsdxFiwoiejs7O2HutBIrmoK5jmNpzLCc7nIRkoSYGaUZmdZU5pZe+kwG82oVqFqM9s\nsn44O4x5h0iENBmUMpwXiLUbIhBt4ij1QnQk3sswjJe5e/4ghmH81bu89gfocNS7/fwrwCNWjs8N\n8uWAKRCfcXsoh47U9B7ZnVkwDMcfUpUK1Opj4iAOwWKkyuevJRw9baUSTEwYTNQkh81SFhZIkWVr\nw14XoVQyJ6Tz8zIhtZBktxr01SoQceSYuRy8z1cUgTgqSjE/vQs7Onft+HFnDttbbFNlCS+1gkiE\nAC1SUzU2Npz5f+bzMD5uEK6Xxcm3ie/ohXiIe2W7V+njAabdhmI1KA7ikKSjDTJG0pVGpL0eiCon\nLRMGZDGxT7UTYmfn/j9rFaUSRKfNhtISYmodCwsscY0rt+xdJS0WIWYURNxbTOh4nCl2yd50JkbR\nMMwQU3IyMbWAuWgDgC0H62D0BCIlEYhWENELMwtTO44WqUnEOtqtEQfRFo5SL0QRiC5QLkPH8JHw\nleRhOQSpeIcsKd3x1WF6AjFShzFnC64cdhaP6d556zc6jh1TN3Y2J8EiMqxjaoqVwHXWchFbe+kV\nixBtZeXcWU0qRYos2c22I4fb3dUhisnOljiIFjAf1wLRKWEBBwRipyAC0QrGxmBqivmJErduOXPI\nfB4SEfOaF4FoG0elF6IIRBfo6prE1L6ETQ1Bek5RJE5zM+/4sXsCcV7O26AsPqQF9fobzlmId5Rl\nF5FhKSuxAjuNSVtbJZRKENvflHNnNckkSXKOtbnoHifZ3JRFUQtIzflQdNxxENt5EYhWEYlwPJjh\nxg1nDpfPQ2JWLy6IQLSPpUfCXJt+FN7/freHMhIiEF3gzBlofuwn+IljX3F7KIeS1JKO6c5ddDBD\n36QnEBedLzF+2Flc1vlq62851527V3UPJMTUYlaWtXW4tmbP/jsdKJcNoo0tEYhW03UQi35HDtcV\niIn9dXEQLSCQmCXhK7ojEJtZEYhWEYlweuwGxaKOLLObfB4SU2ZEjQhE21haCVLaDbDN4S6sJgLR\nJcZKOQKJw/3mcYv0WZ23uXXOPYGYXJIH5KDMn5lG0WH9inO12UsliFLWfddiMceO+yCw/IxudbF2\nbs+W/W9vg2EoYkiBIcuZniblK5DdcaZVQbd6YnL3shT3soJ4nDm23AkxbWREIFpFNMoprgBw9ar9\nh8vnIRE2I2pEINpGt5LpIU9BFIHoGoWCFKgZkhNn9Y3t2pv2TEzvRWajTZw8gePiRg1KcDFFmozz\nOYjtvHYPJZzbUpY++BB+Wlz6c3viFItmYyMRiDagFMlwlVwtbGsOaZdeiCk5WFy0/4BHnViMuc4G\nW5vO3ksBovubIhCtIhLhVPMtAK5csfdQrZY+h4kJM4JHQr1t4+RJvT3kKYgiEF1DBOLQrKzo7dtX\nnAmPOkj2xr5ucSE9EAcnnWaRddY3nSnu027Dzo654i0Cw3ICTz3GSa6ydsEeR/iOqoly/iwnNVOn\n2Rlje9v+Y/VCTMk715fhKBOPM88mm7ecE4jFotaFgaq0ubCMSIRT+28A9gvEUklXE06MmzUAxEG0\njccf127tj/yI2yMZDRGIbmAYIhBHYGYG0hNl1racXwHLbLRIkZUwqWGIRllUt1gvOBPW1s3piO5t\niMCwg8VFVsausXbdnlYX4iDaSyquqxk60Ww9n4fxQJspKuIgWkEsxhxbbGV9jjjAYEZjRIFqVQSi\nVUQizO7cJBazXyB2w7wTY+aKkAhE2wgE9PT+sActiUB0g2oVGg0RiCNwJlXm7cqC/j86SCbnEwdx\nWJRiMVRkfdsZYd9zoHZvSIEaO1CKlbkd1kpxWyapvfPn39XdhwVLSSX1SXNCIOZykAxVdf81uXeO\njukgNpo+R4qbQFcgGnr+IuLCGqJR2N7m9GmDy5ftPVRPIPrNG6ucQ+E+iEB0g26fCxGIQ7Oy1GSN\nFceDvDOloBaI4iAOxeLsLuVGmErF/mP1BEblhjhQNrGyDJVOmMyG9f30eg5i0g8+eVRZTXIhAEAu\na78FlctBIrANs7OS+2QFpoMIzvVCLJUgOtvREVDiIFpDJAKGwanFpnMOYuWaFociEIX7IE9dN5ie\nhn/8j+G559weyaHlzGqQDHPsnLvm2DH392Fnf5z0WMGMtREGZTGh89WcaAwsOWz2s/I+Pdlfe2nd\n8n33zt+xkOX7FiB9QocGb163v6pwPg9JVZD8Q6swq5gCjrW6KJUgOt3SX4hAtIZIBIBT8zWuX9eF\nZOyiJxBzb+oqKoc9/lGwHRGIbhCLwS//Mqyuuj2SQ8vK07pFyNrXio4ds9cDMdKQm+uQLM7pJ+C6\n9XriO7hDIEqIqS2sfEjnk629nLF838UihNQe48ckvNQO5k6FmKTG5Yv2C8RcDpLtTck/tIpYjHm0\ndeiogxhu6i9EIFpDVyDGd2i17H0udgVifOP87TKbgnAPRCAKh5Izz5gC8cK+Y8fsCcSUQ1UBjiCL\nJ/Qt5+YN+/+H4iDaz4kPnWaMJmuv1yzfd7EIMSUFauxCpVMsc4lLb9tfCTOXg8TeughEq5iaYm5M\np6o46iCGzMUEEYjWYEYinZrV59LOMNN8HsJhg8nr3xaBKPSFCEThUHJ6WTt4b192pmUCHBCIC863\n1zgqHDutK5iuX7bftRAH0X7GwuOcCt5i7ar112Gp0CHaKYhAtIuUFohr1+y9h9brsLsLyb3rIhCt\nQilmYmNM+huOOIjNpq5NEw2ayeOm8yWMSNdBnNKVouwWiIlYR59IEYhCH4hAFA4lk5NwfDLHWsa5\nggeZLe16pZcmHTvmUWNiMUGCHOuX7Hd+SyUYH2sxyT6k07Yf70FlJVlmrRCzfL/FTENaXNhJKsUK\na1zeDNG2vsZQj25oW5Kc5CBaiErEmRsvOeIgdhfbYm3zZEolWmswBeLxsU3GxhwQiOE9/cWpU/Yd\nSDgyiEAUDi1nUmXe3p3H1tnNATI3tOuVOi1V+IYmlWKRddZv2B/WVipBNFjVLRKCQduP96CycqrN\npdZDGNmcpfstFToSHmwni4ssB2/QaPltzX3KmW+LBHlxEK0kFmN+LOeoQIw2zDAaOY/WYApE/06J\npSVsbXWRz0NyfEd/IQ6i0AciEIVDy8pSi7eNFYwbNx05XvZalRm2mViScMWhSac5zk3WN+2/9ZRK\nEPXtSHipzaw8EaZGmM0vvmnpfoslJQ6infj9LJuh+pcu2XeYOxxEERbWYVYydSLEtCcQq+sQCul2\nJcLozMzognelEqdOOeAgKrOo39KSfQcSjgwiEIVDy5mzY5SJUvjWDUeOl1lvSg/EUUmntYOYG7f9\nUKWSFKhxgpUXtABf+6/WzlRLu2Ny/mxm5RntYNhZqKbrIIpAtJhYjLn2urMO4u4NfQ6lirc1+Hxa\nbJfLtwViuw2f+pTlajGfh0RrC5JJ6YEo9IUIROHQ0p3cONXqIrNlaIEo+RfDk0iwyC0K1Un29uw9\nVKkE0VZOBIbN9K7Db1Us22e9DrVGgBglyR+1kYXnTzLBHmuvbNt2jF6I6VRdOyaCNcTjzNevUSzq\n68VOegKxeFmef1YTifQEYrEI5R/6y/BX/6rulW0RjQbs7EBi76aElwp9IwJROLSc+e44AGvnnWl1\nkSkExEEclbExFqfKANy6Ze+hSiWDaGNLQkxt5vhxCKoma5ete5z0imJMN2DMuUrFDxq+p57kNJe5\ndM76NiVd8nlQdIgdl9YIlhKLMd/S6RV2h5n2BGL2LXGBrcYUiKfHdSLw1f9yRbuKN61LnSnoLhok\nti+LQBT6RgSicGg5edqHnxZvX3Gm7URmZ5L0eFmXUBWGZjGurUM7C2MAlIqGtElwAL8fTsdKrOUj\nllkZRTMoIBqVUDZbWV1lRV22tdVFLgfxsW38x2VhzVLicU5yFbA3dw0OCMStN0UgWk0kAq+8wqm/\n85MAXPlfPgUvvGCpQOzmASeKb0sFU6FvRCAKh5ZAAE6Gs6xt2V9VtNmEYj1MesYZt/Ioszivq87a\nKRDbbdje8UkOm0MsLzVZM5bhTWsK1XQFYiwl7qGtjI+znChzuRilY1MaYi4HCUMqmFpOLMYKawCs\nrdl7qFIJwqEOgfa+hJhaTTQKm5ucPBMA4PL4WX2t2CEQOxlxEIW+EYEoHGpWktu8vTMPhmHrcbK6\njy3phDMtNY4yxxa1K2SnQNw2U6qilCTE1AFWHp3kEst0vvW6JfvrORbzE5bsT3h3Vlag3glya92e\ne2g+1yHZ3pQeiFYTj3OMW0wE244IxOh0S38hQt9a/spfgV/6JWa/8nnicdMNPn5cr5LVrAn9vqPV\njAhEoU9EIAqHmpWlJmvGaYxNe0u5Zcz2T+k5CXkblfCxCFFKtgrEnsAQB9ERVp6JsM8kt/7smiX7\nu3FN21nzS/ZXu33QWX6fLhyz9ud5W/af22xJBVM7iMXwYXA6XbG1TQmYAnHCrComDqK1/NiPwT/5\nJzA5ebuSaXcxxaKHZM9BFIEoDIAIROFQc+bsGFWm2Pyava0uMhvaOUwfl4brI5NOs8hN1q/b58be\nIRDFQbSdlffoR8naqzuW7O/c1/eJUmRhRQqb2M3y92jhdulLG7bsP5eTFhe2ENdF2lbiRWccxIBZ\npVjOo22cPm0KxO7/2KIw065AjKkynDhhyT6Fo48IROFQc7vVRcHW42Qu64dj6pT0DxqZVEr3Qrze\nsu0QPYE4vgfT9ueoPuisrOjt2tuGJeHe5891eJTzqGNS2MRuFr/vvYyzz9prVcv33elAYXtMOxci\nLKwlFgNgeTrL5cvYlkMKpkBU27qicCpl34EecE6dguvXoTVvvYMYCVYJHJ/TxRsEoQ9EIAqHmjMf\n0A+rtfP2NoLKXNoFIH1m1tbjPBCk0yyyzs11+24/PYGYHJOmzg6wuAgTgRZrtYWR+5d0OnB+bYLH\nOCfhwQ7gm5nidPAml65afz2WStAxfNpBlBxEawmFYGKClYmb1Ov25nSXSuiK0AsLurm7YAunTkGr\nBevKvFYsdBATvqKElwoDIVe6cKg5fnKMIA3bW11kb9YJUWVqWcIVRyadZoU1sqVArz+T1fQE4pzk\nsDmBzwenF+tcYhlee22kfV2/DpW9MR7lPDz0kEUjFO7FcnKbS/mI5fvtFsdIju/CzIzl+3/gicVY\nGdM9LuwMMy2VINrISP6hzXQ7UFxeH4dEwlqB2M5KiwthIEQgCocavx+Ww5u2t7rIbLZJk9ErqMJo\npNM8gRYRr1tT9PI76ArEyKKEBDvFymqQNVbgwoWR9nP+vN4+NntDHESHWDnV4VLzITo5a1dsesUx\nUkqcfDuIx1luvw1gW6GaZhMqFYjWbkmYsM109VuvUI1VIaa5DonmhjiIwkCIQBQOPSupMm/vzNna\n6iKT82uBmE7bdowHhlSKx9HK0E6BGKBBaDFmzwGE72DlvQEuc5rOhTdG2s+5c3q7+mRQRIVDLD85\nzT6TbPwXa/pYduk5iAtS3MsWYjGOVd9mYsI+B7EXjbF7QwSizSwu6hTBnkC0ykHMtKWCqTAwIhCF\nQ8/KQ00ud07SyRdtO0amHCQ9bibpC6MxMUFqps58eNs+gZhrEaWEmpeQYKdYXoY6E9x8bTQX6vy5\nDie5yvRTZywamXA/lv+CjoxYe8naRLaeQHwoZOl+BZN4HF+pwPKyAwKxsSUhpjbj98PS0oFKplYJ\nxKJPBKIwMCIQhUPPmdWAnpj+mX2tLjLVKdLT1jStFYB0msenr46arvaulLbq0gPRYe6oZNoevoXJ\n+VcbPMbr8MQTFo1MuB8rT+viW5e+tWvpfnNb+n2QOC3FvWwhFoOCFoh2hZje0TJIHETbuaMXYrms\n43tHoFaDvbpfBKIwMCIQhUNPt9XF218r2bL/dhvyjRnSsaYt+38gSaV4IvgGb7wBjYb1uy/lmtID\n0WFWV/X2leZjcPXqUPvY34e3rwV1gZrHH7dwdMK9WFyEoK/JpcvWhvTmb9SYYpeJJbkObSEeh2KR\nlWXDtlYXdwhEcRBt5w6BCCPnIfbygMe25XkoDIQIROHQc+YFnRe4dn7flv3nctDBTzptX47jA0c6\nzePtb9JswpvWpj0BUCoa4iA6TCoFT56p8jk+OnShmjffhHbHx2Njb8DDD1s8QuHd8PvhdKzMWjE2\nsmNxkNzNfWlxYSexGDSbLB+vU69bFpF4B+IgOsupU1AsQjmypF8Y8aTeLhTlkxYlwkDIu0U49Myf\nnCCsqrx92Z5WF98+py2ulVM2diJ+0Jib44nSS4A9hWpK2z4RiC7wwx8b4yu8n+I3Lg/1+90CNY+u\n1KWhs8Msn2zrNiXdk2ABuS2zOIYIC3swi6atdN4C7AkzvUMgShVv2zl9Wm+vtM0WP1YJxBOSBywM\nhghE4dCjFKyEN2xrdfHGF3Tj77PPhG3Z/wPJJz/JSvMNJn37vPbq8Plq70apGiRKWfeSEhzjoz82\nTgc///Gl4fpPnj8PE+yx/EzU4pEJ92P58TCXWKbz6rcs22e+qLSDKALRHj72MThxgpV//jcBewrV\n9ARiMgBBqUZrN71WF1WzYrpVIaYn7W0FJhw9RCAKR4KV1A5v76ShXrd83xf/yyYzbHPsL3/Q8n0/\nsDz7LP7f+g0e7bzO6//+LUtblHQ6sL0/TnSqoWPnBMd45hlIBst87s3hiiGcf6XOWd5g7H2PWTwy\n4X6sPDnFHiE2vzJc/ujdyG0HSfpLEIlYtk/hALOz8Fu/xcLVl5nwN2xzEEP+fYKLKet3LnwH3Toy\nV24GtEM8qoN4UxfXS7wnPurQhAcMEYjCkeDh5yJc6Syx//ufsXbHhsHFN/2sRm6hojLJsZSf/mke\nf5+f1zbTGP/wH1m221IJDHzEZiUk2Gl8PvihlUv8x/JztPZbA//+uXOGFKhxieUVXaDm0itlS/Zn\nGJCrhknMNKSfpZ18+MP4/uYvsNx+i7Wv5izffakEUd+2uMAOMTOjI3nPncOSVhf5y9v4aBN5r6Rb\nCIMhAlE4EjzyIyfp4Ofb/+cXrN3xhQtc3D/F6qpMcOzgif/hKYrEufU//1/w6U9bss+cBYXsAAAg\nAElEQVS339bb03NVS/YnDMZHP1ihSJw/f3FjoN/L5WCrNMFjnBOB6ALLy3q7dtVvSWnhWg32O0GS\nMetDyIV38A//IStTm6x9vQzb25buulSCWEfySJ3k+efh5ZfRxZ1GDTG9sUeMIv5laXEhDIYIROFI\n8Mhj+q184Rs1SzP1c7/9J+RJcvb7pLy3HTz+hBberz38cfjEJ+CVV0be58WLert6am/kfQmD8/0/\nMcsYTT736cH+/+fP6+2jyQxEJQfRaU6cgIC/zaX2SXjrrZH3lzPNrGRaphm2Ewqx/KOPcLl1gvbf\n+iVLd10qtIm289LiwkE+8AG4fh1uRh4d3UHcbEoPRGEo5M4tHAlWViAQMLigHoPf+A3L9nvxD74N\nwOp3z1i2T+E2j5mpZq9/7O/D9DT8o9FDTS+c7zBJjZMrYyPvSxic2WfO8AJf5rN/NpjI6wrEx56U\nvFE38Pvh1PGmrmT6xhsj7y+3qUOME8eGK1gkDMbKBxdoMM76p/4z/If/YNl+S7mWtLhwmBde0NuX\n68/Azo7+GJJ8ARL+siy6CQMjAlE4EgQC8PDDioupD8Fv/ZY13devXOHiZT256TYBF6xlelqX9X7t\n0hQ8+6wlZfgufqPGWd7Ad/IhC0YoDEw4zEdjX+VCNsX16/3/2vlvtUiSJf1dS7YNTbg3y+8NsMbK\nbRt+BPKXdC5j8uTUyPsS7k8vRPih74O/9/cs22+vp6w4iI7x6KP62fhy/j36hRHCTPM7QRJTEk0j\nDI4IROHI8MgjcIFVyGbhMxYUq/nDP+Qiq8xMdaT9k4088YTZC3F5WYcHj1jR9OIFg1Uuwg/+oDUD\nFAbmhx/TYVGf+1z/v3PuG/u6QM0TT9g0KuF+rLzHzyW1gnFhdIGYWzMF4vLsyPsS7s/Kit5eWvlB\n+Pa3dTlnCyjt+MVBdJixMfju74YvXzZF+Qhhpvm9MMmo5AELgyMCUTgyrK7CtUyI3cX3wq//+ug7\nfPFF3gg/y+qjPinCZyOPP651YeX4e6Faha2tofdVKsHm7jSrJ3ZlxdtFzjwb4TSX+Nxn+5ukdjpw\n8dK4FKhxmZUVqBkhbpwbvZJp7rouEpV8r/QidYKFBZichDWWdbunEYubADSbUNkPiIPoAi+8ABeu\nhigRGVogGh2DfCtCIiVTfWFw5F0jHBkeeURv3/jBX4YvfAGujtDPa3MTvvpVLhrvlfBSm3niCW0a\nnveZwmCEIkMXv6ArZ65+r1i+bqIeWeWjfI4vflFXs7wfV65ArRHg0fE1KabgIu9/v95+6crxkXvK\n5m81CNBg5mG5Fp3A59Ph+pdq5v/bgnD9srlOEJ3Y0zGPgmN84ANgGIqv8v6hxf7u5SxNgpIHLAyF\nCEThyNAViBfO/CX9tBylWM0f/RFZI0G+FhaBaDNdw+i1nVP6k1EE4r/XoXGrn3x61GEJo7C6yg/z\nWfbrPr74xfv/+LlzevvYe+r62hVc4bHHIDZV5yXjg7f7xQzJ1pZBggIqHrNodML9WFmBtazZr9cC\ngVgq6W00Jtek0zz7rA41/XL4I0M7iNmX9TUcX5ECNcLgyFUvHBlOntQhNhc3YvDRj8K/+Tc6RmYY\n/vAPubjw/QCcPWvhIIXv4PhxXWDt9VtxXUpxFIH4cpmwr8aJD5ywcITCwDz8MH+BLxMONPrKQzx/\nroOiw9nvEpfCTXw++OCze7zEh0auZPr6epzV0FUkPt85Vlbg8o0x2uMhS9o99QRiKjDyvoTBCIXg\nqafgZfXC0ALx1c9nATj7ESnYJgyOCEThyODz6TzECxeAn/s5ncv22c8OvqNSCb74Rd44++OAVDC1\nG6W0i/jaOb9W+cNObDY3ubgV4+x8SUwotwmFGD+9yPenvsVnPwut1r1//Nyf77HMJULPyMXmNh/6\naJjrLHH15VtD76Nehwvbx3n6eMbCkQn3Y3kZGg3F+on3W+sgHguNvC9hcF54Ab5eW2X/Rnao3//S\n1yaY9lV48gWpJCwMjkyjhCPFI4+YAvEjH4FUCl58cfCdfO5z0GpxceY5ZmeRCqYO8MQTug9e+/SZ\n4QWiWXV29ZmwtYMThmN1lZ9W/471dfjJn7x3Stv5c4YUqPEIH/p+7Rb96VeHz1s6/419mgR56rEh\nIziEoehWMl1LWiQQ87r6ZfS4CAw3+MAHoNEJ8MqN1ODVvQ2DL906zfPzVxmTlsDCEDgiEJVSx5VS\nLyml3lRKXVRK/S3z9b+vlLqllHrN/PihA7/zd5RSl5RSbymlfuDA6x8xX7uklPqfnBi/cHhYXdX1\nZQrbY1p1vPnm4Dv5wz+EhQUu5tOcPSsRUk7w+OO6mMmlxHNDt7oo/N5/JsMcq++XsvqeYHWV/3br\nX/Brv9rixRfhYx/7zoI1zSb8g38AlzZDPKFev51ILLjG6iokg9u8tDZ8W4NXPqedw6c+KMLCSXq9\nEEOPw+XL0B6tvUHpxi4A0VOSw+YGzz+vty/vvQ+2twf63ew3rvNG+2G+59k+qoQJwl1wykFsAb9s\nGMZ7geeAn1dKdTO7fs0wjCfMjz8GML/3cWAV+AjwL5VSfqWUH/gXwA8CZ4GfOrAfQejNLy9eBB5+\nGN56azCxYRjw8ssY3/t9XLyoJLzUIbrG0etjT8HODuTzg+2gUODiyzoe6pFHRdF7gtVVaLX4xY98\nm9/4DfiTP9GtKXd29Le/+U145hn4u38Xfnzhq/zC8p/oxBvBVZSC7zl9g5d23oexP1wl01e/2iBK\nkaUPn7J4dMK96La6uMQyNBojt7roCcTluBXDEwYkkYD3Htvmy7ww8Ln8r7+j8xY/+JekSJQwHI4I\nRMMwNg3D+Kb5+S7wJnCvpjo/CvyuYRh1wzCuApeAZ82PS4ZhXDEMowH8rvmzggAcqGR6AS0QKxXY\n2Oh/B5ubkM2SO/M8hYLkHzrF2bO6Ytvre2f0C4OGmX7mM1zsPAzIOfMM3RNx8SI/8zPwb/8tfOUr\n8L3fC3/7b+sqfdmsNux/P/DTRJ467e54hR4fem6PdY5z+YvXh/r9V98M8bT6Jmpl2eKRCffC59Mu\n4lrVmlYXpY09QlQJnpQeiG7xgaf2+DOep3N9sEI1X/pTgzAVnvpxaRskDIfjOYhKqSXgSeBr5ku/\noJQ6p5T6N0qpbhzDMeDg1bBuvvZur9/tOD+nlHpFKfVKLpez8C8QvMyxYzA7e8BBBPj2t/vfwbe+\nBcDFqe8CRGw4xfg4vO998CcXzbC2QQXiiy9yYeq7mZkxWBw+Mk6wkocf1jPWi7r1yMc/rlOCz52D\nX/1V+Gt/TRfK/Fj7D+D6dW0nCp7gQ39xBoCX/r/BwtoA9vfhQi7FU8nrSPKT85w5A29ummH2IwrE\nYrZJlJJ+sAqu8IHvCbBNhItfrwz0e3+6tsDz0TcITMo1KAyHowJRKTUF/AHwi4Zh7AD/CjgNPAFs\nAv+k+6N3+XXjHq9/54uG8euGYTxtGMbTyWRy5LELhwOlDhSqGUUgNnW2v7S4cI6f/ml49eIEF9Uj\ng01sdnbgP/0nLkbez9mzSnJGvcLEhO7cbQpEgB/5EfizP9Mf//pfQ+T8l/WJf/55+Bt/w8XBCgd5\nzw8sMccmL31l8EI1589D0wjw1JnBJrSCNTz1FFy6FqA0MT9yq4tSwSCqyjrWUXCFF35Yi/0vf32i\n79/J36pzYW+ZDz5StGtYwgOAYwJRKRVAi8PfMQzjRQDDMDKGYbQNw+gA/xodQgraGTx+4NcXgY17\nvC4IPboC0UjPwczM4AJxeZmLlyelgqnD/NRPacPhU9O/MNjE5o//GBoNLlYeEsfXa6yu3iEQQU9g\n3/9+dAGpH/1RWFqCP/ojnTwleAI1OcH3TL3KS5ePD1wv6tWX9wB46jnpnecGz5qzqFfmfnj0ENMd\nH9HxmlRqc5Gl5TEWfFu8/Fb/RseXf1uHhn/wI/2LSkF4J05VMVXAbwJvGobxTw+8Pn/gx/4ScMH8\n/DPAx5VS40qpk8AK8HXgG8CKUuqkUiqILmTzGSf+BuHwsLoKxSJsZZR2EQcViE8+yRtv6P3Ic9E5\nkkn4oR+C397/cVprV/v/xRdfJJtcJV8OiED0GqurWuz/s3+mL8ouGxu6FU0wCJ//PMSlCIbX+NDy\nDbb2o7z99mC/9+pLO8QosPTC8fv/sGA5Tz+tt18PfXB0gVgNEg01LBiVMCxKwQciF3h5o/+CT1/6\nfJVJajzzUys2jkw46jjlID4PfAL48DtaWvzvSqnzSqlzwIeA/xHAMIyLwO8DbwD/Efh502lsAb8A\n/Am60M3vmz8rCD2+o1BNvwKxXIarVzGeeJKLFyW81A0++UnYbMT5wrf7nFy22/CFL3Dx6U8CkjPq\nOX72Z7Vl+Iu/qO34T3wCvvAFvRJQLGr396QUUfAiH/puXcH0pS8M1svwldf8PMWrqEfkYnSD2Vn9\n2Pt64wm4cmWkVheF/TCx2ZaFoxOG4YUT17lZT3HtWn8//6evR3n/+KtSXEgYCaeqmL5sGIYyDOOx\ngy0tDMP4hGEYj5qv/0XDMDYP/M6vGIZx2jCM9xiG8fkDr/+xYRhnzO/9ihPjFw4X3yEQ19dhd/f+\nv/jaawBkT36XVDB1iY9+FGKhPT5V+bE7Had345vfhHKZi6kPAXLOPMfSEnzta/ra+tmfhc98Br7/\n+3XY6ac/rSsTCZ5k+fk0x1jnpc/230dtfx8u3Iry1Ng5fe4FV3j2Wfha9iRGowE3B6t+2aWcbXCr\nPc97lsRBdJsfeCKDjzb/7P+4f7x3qQTnyif44OlbDoxMOMo4XsVUEOwmmYRUykx9es979Iv/f3v3\nHmdVWfd9/PNjgOGkU6MJIooKKCoiioyHMk3tNk08ZaaZaWlPeS718Zj15F15yEPl4X6yzENZiZkn\n1KwHFfXWWwUZUA6eEQHxhEKgIDDX88da6ISzhwFmZm1mf96v17xm772uvfYPLtZmf/d1rWu1ZJ7U\n8gVqug4DDBtFqK6GI/aYwx0cxHsTWjDNdMwYACanrT1ntJxttx1cdVU2tfSmm2D0aNhnn6KrUjNi\nyDZ8gQd56H+qW3we4jPPwNKGKob3fztbwVaFqKuDN+b3YCb9Vnua6cT75wAwbAf7sWiDhnbnWK7j\n6mtWfnr+I6PnkejE7p9fxZOHpRV45KtDWq2VTCdMgL59mfJ6dmFZA2Ixjv5mYjHdGPXnFkxtGjMG\nhgxh8is9GDLEc0bLXs+e2TRTw2H523JLvhBjeXNeN6ZMadlTxo/Pfu84zGmJRVq+UM2T1K32Sqb1\nD2eXOBm2pxdaL1y/fvyEH9O1cwNnn91804due4dufEDdIV7vSWvGgKgOaciQbASxYbMBUFXV8oC4\nfXb+YU0NbLjhyp+i1rfjAX3Ziinc+I+VDAcuWgSPPkraa28mTzbQS62qWze+0P9lAB58sGVPGffo\nImp5h/47++ZZpKFDoWvXxJOdd13tEcT6eujNHPrs2vLFUdRGRoxgw27vcWbtddx2W3aZoFLGPlHN\nzjxBt12dvq81Y0BUhzRkCCxYADPeqIbNN195QPzgg2zZ/e23Z+JEVzAtUnTvxtE1d/LYaxs3/9nm\n8cdh0SLeGL4fc+caEKXWttmwGvp3nrV8JvdKjX9iSbZAzbZD2rYwNau6GoYNC56s3m31A+LLNQzr\nOgU+9alWrk6rbNNN4U9/4vRZp9G32zucflpqctr3e+9B/Zw+7N57WjZbQ1oDBkR1SMvDQotXMn3m\nGVi2jOd778bjj8O++7Z5iWrGN7aZQCeWcdNNzTQaMwaqqphcsytgQJRa3dZbc8iyW7n77rTSaaaL\nFsGzL/dgR8Z5MJaBujoYt3hblj3/0io/98MPYcq7fRi2gZeZLhsHH0zPX1/ITxedwRNPBqNu+WRC\nfPThBhqoYvcRLV9YSirFgKgO6RMB8YUXml/uO1+g5prxO9GlC3znO21fo0rbaJtPsXeXh7npJmho\nKNFozBioq+PZV7JvSv1MKrWybbbh3PRTevVo4Mwzm2/60QI1PabBRi6vX7S6OliwtDvTXu66ype6\nmDYNPkxd2W6gQaOsnHwy3/z+emxHPWefOJ9Fi/5989g736Uri9l5//WLqU8digFRHVJNDQwYkC2W\nmLYcDIsXw6uvln7ChAksrOnLDbevy6GHQu/e7VermjBoEEcv+S0zZmRXRviEefPgqadgr72YPBlq\na+0zqdVtsw3r8w7nHfAM99xDs1NNx43Lfg/f6n3n55eBjxaqWbo9zJixSs+tf2whAMOGV7V2WVpD\nVZddwqW73cX0uTWcd/Bkrr+ugXPOgUMOgd/9pRc78QTdd9ux6DLVARgQ1WGdfnp2Mvd97+6cPdDc\nNNMJE7i592nMmxeceGL71KdmDBzIIfyNbQe+zzHHNNF1Y8fCsmW8tu1+3HNPdhUFP5NKrWzLLaFT\nJ07ufzf9+8MZZ5QejBo/LlEbc+m/w3rtW6OaNGgQ1PRcyhPstMrnIdaPnU933meLz36mjarTauvU\nib3/cSb7fvpxLv/7Nnz7uE5cdslSpj4xj8/XPsuPelz28ert0howIKrDOvbYbH2ac2/cggaidEBc\nupQ0cRJXzz2CoUNh113bt041YeBAurGYu08dQ3U1jBwJc+c22j5mDG9068/eP9yJBQvgF78orFKp\n4+rWDQYMoNvUCVx4Ybay5R/+0HTT8U8sZcf0lAvUlIlOnWDEDstW61IX9RNhW56haust26g6rZFu\n3fjjpO34+5kP8MLI03i/pi9TZ3+KO2fuyN67LPQapGoV/itSh9W1K1xwAUx8tjOj1jmudEB87jke\nW7wDk97uy4knOhJVFjbPllbvP28St9+ezZA69FBYsiTb/M7949i784PMnNWJe++F4cMLrFXqyHbf\nHW6/ncOfOp26EQ2cdx68v8KpaYsWwbPTqhjO+GwJaZWFus91ZRJD+WDq9BY/JyWof6WGYTERNtus\n7YrTGqnt14N9Lt6TgXddTue3Xs9W9b7gguxHagUGRHVohx+efV45f8mPWDKlxDSbCRO4mhOpWWcZ\nRx7ZvvWphJ49oW9fePFFdt0Vfve77FpsJ58M8194gy8990teWLQxd90Fn/1s0cVKHdhVV8FJJxFX\nXM5lC49n9my47LKPN7/2Glx6KSxd1ikLiK4WVTbqdgqW0ZkJ40ut9PVJr70G7y7qwbD1Z2Xfsqr8\nVVXBzjvD+ec7BUqtpnPRBUhtqaoKfvYzOPDAftwwcXuaWpz0jUdf4K+cxwnHhJcOKicDB340Neqo\no2DKFLjoIvj7bT2ZxTBuv+QV9tprUMFFSh1cdTVceSXsvjufO/ZYDunyZS7++X588EFn7r0XJk7M\nmm1XO4M9YxJssEGx9eojHy1U82ItLY0N9fXZ72FbLGyTmiStHRxBVIc3ciTs0n82P1lwGh/MfOcT\n23/7j/4soSvHn+jhUFYaBUTIgv5BB8Fr7/Tg5p7fZf9TNi+wOKnCHHooPP00Fw36PUsWLePiixqo\n6bGESy6BqVNhwsDD+PTQjYuuUo1suCH0W+c9nnx7c1i6tEXPqZ/QQNDAtjs4eihVMj8Rq8OLgJ9/\nbwaz6Mc1F//r37YtXZL4zfR92HujqWzp+fjlZeBAmDMHFiwAsvPubx2VeHHDz3PYPvOy4WFJ7WfA\nAAY9fQtTjruCt6I3Y1/oy/9e/3oGD1pGTJns9NIyVDfoPZ5MO7b4Uhf1jy9iEC/Qa8imbVuYpLJm\nQFRF2OOwDfgP7ufCG/rw05/CWWfBCSfAwV/6gJlpI04cuWrXiVI7GDgw+z1hQnYdy5ToPONlNpv9\n37DXXsXWJlWq6moG/PZsausfyC6D8e1vw4gR2Rc5LlBTdupGNPASA3ln/PQWta+fCMOox29Mpcpm\nQFRl6N+fC7v8mPnvd+b88+FXv4Jbb4XJkxNfZjT7H/XpoivUipZfy+nzn8+W2+/SBbbdNnvMgCgV\na9tt4eGH4frrs5VNAIYOLbYmfULd3jUAPPXQys8pnDcPXpnTw4AoyUVqVCGqqthhy4XM3+RrVN1x\nG126ALNnw/77w/xpsP0nz01UwYYMyVL8rFmwcGE2QrFwIfTpA1tsUXR1kjp1gmOOgQMOgEceyVZS\nVFkZ/sVaggYe+ttcvvTrZc1OzZ80Kfs9rPvz0Lt3O1UoqRwZEFU5Bg+m26RJ0IVs2uLIkdlXprfe\nCt27F12dVhSRLYwhqbzV1sKBBxZdhZqwbk0wcvgsrh0/kvMu/Q3rnHVCybYfr2D6vhcEliqcU0xV\nOQYPhpdegr/+FXbbLfsP8NFH4ctfLroySZLaxDlXbsS71HLtj2Z+PB24CfX1sEGnt+izzXrtWJ2k\ncmRAVOUYPBiWLYOvfhW22gqefBK2267oqiRJajM77xLsucsHXPbhySw64bSS7eqfbmBYw9PEYM8/\nlCqdAVGVY4cdsnNmvvIVGDs2u0iUJEkd3Ln/2Z3X2ZAbR9fC7bd/YvuSJfDsZFcwlZQxIKpybLUV\nvPoqjBoFPXoUXY0kSe1izz2zS15c3PV8lp70fZg//9+2T5sGHy7pZECUBBgQVWn69ctGESVJqhAR\ncN4PO/HKh/24ZfZucN55/7b9owVqqP/4GrSSKpaflCVJkjq4/ffPrh50Ye0lNFx1TXaqBfD883D1\n1dC9ajGD+i2Cnj0LrlRS0QyIkiRJHVynTnDOOTB5bl/u7vtdFh72Lc49ZQFDhsDUqfB/N7mQzoMd\nPZRkQJQkSaoIhx0Gm28OZ3a9gq3eGsuFV/bi64c38PxziW++c4XnH0oCDIiSJEkVoXNnOPtseH56\nNbUb9+RRPssNvc+id7yZLVxjQJQEdC66AEmSJLWP447LzkUcMaKWzqdsB5deCkuXZhu32KLY4iSV\nBQOiJElShYiAXXbJ71xxBYwbB7/8ZXbfEURJOMVUkiSpMlVXw623Qm0tdOsGm2xSdEWSyoAjiJIk\nSZWqf3+4775sKVOvEywJA6IkSVJlq6vLfiQJp5hKkiRJknIGREmSJEkSYECUJEmSJOUMiJIkSZIk\nwIAoSZIkScoZECVJkiRJgAFRkiRJkpQzIEqSJEmSAAOiJEmSJClnQJQkSZIkAQZESZIkSVLOgChJ\nkiRJAgyIkiRJkqScAVGSJEmSBBgQJUmSJEk5A6IkSZIkCTAgSpIkSZJyBkRJkiRJEgCRUiq6hjYX\nEW8Br67GUzcBZrRyOWpfNcC8oovQGrEP127239rPPlz72YdrN/tv7VcOfbg+0DOl9JmVNayIgLi6\nIuKtlvwlqnxFxLUppf9VdB1affbh2s3+W/vZh2s/+3DtZv+t/cqhDyNiXEppx5a0dYpp894rugCt\nsbuLLkBrzD5cu9l/az/7cO1nH67d7L+131rVh44gNmNVkrYkSZIklSNHEFvPtUUXIEmSJElrqMW5\nxhFESZIkSRLgCKI6kIj4UkQ8FxEvRsTZ+WM35489GxG/j4guRdep0kr04XURMTEiJkXEXyOiV9F1\nqrSm+rDRtisjYkFRtWnlShyDN0TEKxFRn/8MK7pOlVaiDyMifhYRz0fE1Ig4peg6VVqJPnyk0TE4\nOyLuKLpOlVaiD/eKiKfzPnw0IgYWXWcpjiCqQ4iIKuB54IvATOAp4AhgU+C+vNmfgIdTSv9VRI1q\nXjN9ODOlND9vcznwZkrposIKVUml+jClNCUidgROBQ5OKRnyy1Azx+CZwOiU0l8LLE8t0Ewf7gR8\nATgmpdQQERuklN4srlKV0tz7aKM2twF3ppRuKqZKNaeZ4/AO4MCU0tSIOAGoSykdU1ihzXAEMVci\n6Z+U308RsX7RNapZdcCLKaWXU0ofAn8hOwjvTTngSaBfoVWqOaX6cHk4DKA74Lda5avJPsz/s/wF\nWdBQ+Wqy/wquSaumVB8eD1yQUmoAMByWtWaPw4hYB9iTLGyoPJXqwwSsm7epAWYXVN9KGRD5KOlf\nDewLbA0cERFbA/8N7A28WmB5apmNgNca3Z+ZPwZAPrX0KODv7VyXWq5kH0bE9cAcYDBwZfuXphYq\n1YcnAXellF4vpCq1VHPvoz/Lp3lfERHV7V+aWqhUHw4AvhYR4yLivogYVEh1aolmP88ABwNjln95\nqrJUqg+PA+6NiJlkn0nLdjaUATFTauRiQkpperGlqYWiiccajzRdQza99JF2qkerrmQfppS+BfQF\npgJfa8+itEqa6sNq4KsY7NcGpY7Bc8i+nBkB1AJntWdRWiWl+rAaWJQvcf9b4PftWpVWxco+zxwB\n/LmdatHqKdWHPwD2Syn1A64HLm/XqlaBATGzsm9rVP5mAhs3ut+PfOg+In4MfAY4rYC61HIl+xAg\npbQMuAX4SjvXpZZrqg+nAwOBFyNiOtAjIl5s/9LUAk0egyml1/OZ+ovJPtTUFVKdWqLU++hM4Lb8\nsduBoe1cl1quuc8z65Edf/cUUJdarqk+fBPYLqX0RP7YLcCu7V1YSxkQMyv7tkbl7ylgUERsFhFd\ngcOBuyLiOGAfshO8GwqtUCtTqg8HwkfnII4EphVYo5rXVB/ekVLqk1LaNKW0KfB+SqlsV26rcKWO\nwQ3ho2PwIODZAmtU85rsQ7Lz1fbM2+xOtoCGylOpPoRsNsbolNKiwqpTS5Tqw5qI2CJv80WyWVFl\nqXPRBZSJZkcuVP5SSksj4iTgfqAK+H1KaXJETCQ7h/Tx7LMNf0spXVBgqSqhqT4ke/N8JCLWJfsi\nZyLZYgsqQ6WOw4LLUgs18z76QER8huwYrAe+V2SdKq2ZPrwIuDkifgAsIDsXSmVoJe+jh1PG560p\nU6IPJ0bEd4DbIqIBeBf4dpF1NsfLXAAR0Zns27S9gFlkyf/ryw/IfFrUjimltwsrUpIkSZLamFNM\nyZI+2Sp795ONWIzKv3E7JV9pqB8wKSJ+V2SdkiRJktSWHEGUJEmSJAGOIEqSJEmScgZESZIkSRJQ\nwQExIlJEXNbo/hkR8X8KLEmSJEmSClWxARFYDBwSEesXXYgkSZIklYNKDohLgd0VgSwAAAYXSURB\nVGuBH6y4ISL6R8SYiJiU/94kImoiYnpEdMrb9IiI1yKiS3sXLkmSJEltoZIDIsDVwJERUbPC41cB\nN6WUhgI3A79OKc0ju0j37nmbkcD9KaUl7VatJEmSJLWhig6IKaX5wE3AKSts2gX4U377D8Dn8tu3\nAF/Lbx+e35ckSZKkDqGiA2Lul8CxQM9m2iy/WORdwL4RUQsMBx5o49okSZIkqd1UfEBMKc0FRpGF\nxOUeIxshBDgSeDRvuwB4EvgVMDqltKwdS5UkSZKkNlXxATF3GdB4NdNTgG9FxCTgKODURttuAb6B\n00slSZIkdTCRUlp5K0mSJElSh+cIoiRJkiQJMCBKkiRJknIGREmSJEkSUGEBMSI2jogHI2JqREyO\niFPzx2sj4p8R8UL++9P544Mj4vGIWBwRZzSxv6qImBARo9v7zyJJkiRJra2iAiKwFDg9pbQVsDNw\nYkRsDZwNjEkpDQLG5PcB5pKtaHppif2dCkxt25IlSZIkqX1UVEBMKb2eUno6v/0vsnC3EXAgcGPe\n7EbgoLzNmymlp4AlK+4rIvoBXwZ+1w6lS5IkSVKbq6iA2FhEbApsDzwB9E4pvQ5ZiAQ2aMEufgmc\nCTS0UYmSJEmS1K4qMiBGRC/gNuD7KaX5q/H8/YE3U0rjW704SZIkSSpIxQXEiOhCFg5vTin9LX/4\njYjYMN++IfDmSnbzWeCAiJgO/AXYMyL+2EYlS5IkSVK7qKiAGBEBXAdMTSld3mjTXcDR+e2jgTub\n209K6ZyUUr+U0qbA4cADKaVvtEHJkiRJktRuIqVUdA3tJiI+BzwCPMPH5w6eS3Ye4ihgE2AG8NWU\n0tyI6AOMA9bN2y8Atm48LTUi9gDOSCnt315/DkmSJElqCxUVECVJkiRJpVXUFFNJkiRJUmkGREmS\nJEkSYECUJEmSJOUMiJIkSZIkwIAoSZIkScoZECVJFSciNomIBRFRVXQtkiSVEwOiJKkiRMT0iNgb\nIKU0I6XUK6W0rB1ff4+ImNlerydJ0uowIEqSJEmSAAOiJKkCRMQfgE2Au/OppWdGRIqIzvn2hyLi\npxHxWL797ohYLyJujoj5EfFURGzaaH+DI+KfETE3Ip6LiMMabdsvIqZExL8iYlZEnBERPYH7gL75\n/hdERN+IqIuIxyPivYh4PSKuioiujfaVIuKEiHgh399/RsSA/DnzI2LU8vbLRygj4tyIeDsfMT2y\nff6GJUkdhQFRktThpZSOAmYAI1NKvYBRTTQ7HDgK2AgYADwOXA/UAlOBHwPkYe+fwJ+ADYAjgGsi\nYpt8P9cB300prQMMAR5IKS0E9gVm51Nbe6WUZgPLgB8A6wO7AHsBJ6xQ15eA4cDOwJnAtcCRwMb5\n/o9o1LZPvq+NgKOBayNiy1X6y5IkVTQDoiRJmetTSi+llOaRjfa9lFL6fymlpcCtwPZ5u/2B6Sml\n61NKS1NKTwO3AYfm25cAW0fEuimld/PtTUopjU8p/U++n+nAb4DdV2h2cUppfkppMvAs8I+U0suN\n6tx+hfbnp5QWp5TGAvcAhyFJUgsZECVJyrzR6PYHTdzvld/uD+yUTwt9LyLeIxvR65Nv/wqwH/Bq\nRIyNiF1KvWBEbBERoyNiTkTMB35ONgK4OnUBvJuPVi73KtC31OtLkrQiA6IkqVKkVtrPa8DYlNKn\nGv30SikdD5BSeiqldCDZ9NM7+Hg6a1Ov/1/ANGBQSmld4Fwg1qC2T+dTYJfbBJi9BvuTJFUYA6Ik\nqVK8AWzeCvsZDWwREUdFRJf8Z0REbBURXSPiyIioSSktAeaTnWe4/PXXi4iaRvtaJ2+zICIGA8e3\nQn0/yevYjWw67K2tsE9JUoUwIEqSKsWFwA/zKaGHrqxxKSmlfwH/QbaozWxgDnAxUJ03OQqYnk8Z\n/R7wjfx504A/Ay/nU1P7AmcAXwf+BfwWuGV168rNAd7N67oZ+F7+upIktUik1FozbiRJUlEiYg/g\njymlfkXXIklaezmCKEmSJEkCDIiSJEmSpJxTTCVJkiRJgCOIkiRJkqScAVGSJEmSBBgQJUmSJEk5\nA6IkSZIkCTAgSpIkSZJy/x82MDYr14Zj0QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "eval_df[eval_df.timestamp<'2014-11-08'].plot(x='timestamp', y=['prediction', 'actual'], style=['r', 'b'], figsize=(15, 8))\n", - "plt.xlabel('timestamp', fontsize=12)\n", - "plt.ylabel('load', fontsize=12)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "clean up model files" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "for m in glob('model_*.h5'):\n", - " os.remove(m)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/5_multi_step_RNN_encoder_decoder_simple.ipynb b/3_RNN_encoder_decoder.ipynb similarity index 99% rename from 5_multi_step_RNN_encoder_decoder_simple.ipynb rename to 3_RNN_encoder_decoder.ipynb index b0edebc..e787b22 100644 --- a/5_multi_step_RNN_encoder_decoder_simple.ipynb +++ b/3_RNN_encoder_decoder.ipynb @@ -855,7 +855,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.5", "language": "python", "name": "python3" }, @@ -869,7 +869,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.5" } }, "nbformat": 4, diff --git a/6_dilated_cnn.ipynb b/6_dilated_cnn.ipynb deleted file mode 100644 index de75237..0000000 --- a/6_dilated_cnn.ipynb +++ /dev/null @@ -1,880 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Multi step model (vector output approach)\n", - "\n", - "In this notebook, we demonstrate how to:\n", - "- prepare time series data for training a RNN forecasting model\n", - "- get data in the required shape for the keras API\n", - "- implement a RNN model in keras to predict the next 3 steps ahead (time *t+1* to *t+3*) in the time series. This model uses recent values of temperature and load as the model input. The model will be trained to output a vector, the elements of which are ordered predictions for future time steps.\n", - "- enable early stopping to reduce the likelihood of model overfitting\n", - "- evaluate the model on a test dataset\n", - "\n", - "The data in this example is taken from the GEFCom2014 forecasting competition1. It consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. The task is to forecast future values of electricity load.\n", - "\n", - "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import warnings\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import datetime as dt\n", - "from collections import UserDict\n", - "from IPython.display import Image\n", - "%matplotlib inline\n", - "\n", - "from common.utils import load_data, mape, TimeSeriesTensor, create_evaluation_df\n", - "\n", - "pd.options.display.float_format = '{:,.2f}'.format\n", - "np.set_printoptions(precision=2)\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Load data into Pandas dataframe" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
loadtemp
2012-01-01 00:00:002,698.0032.00
2012-01-01 01:00:002,558.0032.67
2012-01-01 02:00:002,444.0030.00
2012-01-01 03:00:002,402.0031.00
2012-01-01 04:00:002,403.0032.00
\n", - "
" - ], - "text/plain": [ - " load temp\n", - "2012-01-01 00:00:00 2,698.00 32.00\n", - "2012-01-01 01:00:00 2,558.00 32.67\n", - "2012-01-01 02:00:00 2,444.00 30.00\n", - "2012-01-01 03:00:00 2,402.00 31.00\n", - "2012-01-01 04:00:00 2,403.00 32.00" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "energy = load_data('data/')\n", - "energy.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "valid_start_dt = '2014-09-01 00:00:00'\n", - "test_start_dt = '2014-11-01 00:00:00'\n", - "\n", - "T = 6\n", - "HORIZON = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "train = energy.copy()[energy.index < valid_start_dt][['load', 'temp']]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.preprocessing import MinMaxScaler\n", - "\n", - "y_scaler = MinMaxScaler()\n", - "y_scaler.fit(train[['load']])\n", - "\n", - "X_scaler = MinMaxScaler()\n", - "train[['load', 'temp']] = X_scaler.fit_transform(train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use the TimeSeriesTensor convenience class to:\n", - "1. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example\n", - "2. Discard any samples with missing values\n", - "3. Transform this Pandas dataframe into a numpy array of shape (samples, time steps, features) for input into Keras\n", - "\n", - "The class takes the following parameters:\n", - "\n", - "- **dataset**: original time series\n", - "- **H**: the forecast horizon\n", - "- **tensor_structure**: a dictionary discribing the tensor structure in the form { 'tensor_name' : (range(max_backward_shift, max_forward_shift), [feature, feature, ...] ) }\n", - "- **freq**: time series frequency\n", - "- **drop_incomplete**: (Boolean) whether to drop incomplete samples" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "tensor_structure = {'X':(range(-T+1, 1), ['load', 'temp'])}\n", - "train_inputs = TimeSeriesTensor(train, 'load', HORIZON, tensor_structure)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tensortargetX
featureyloadtemp
time stept+1t-5t-4t-3t-2t-1tt-5t-4t-3t-2t-1t
2012-01-01 05:00:000.180.220.180.140.130.130.150.420.430.400.410.420.41
2012-01-01 06:00:000.230.180.140.130.130.150.180.430.400.410.420.410.40
2012-01-01 07:00:000.290.140.130.130.150.180.230.400.410.420.410.400.39
\n", - "
" - ], - "text/plain": [ - "tensor target X \\\n", - "feature y load temp \n", - "time step t+1 t-5 t-4 t-3 t-2 t-1 t t-5 t-4 t-3 t-2 \n", - "2012-01-01 05:00:00 0.18 0.22 0.18 0.14 0.13 0.13 0.15 0.42 0.43 0.40 0.41 \n", - "2012-01-01 06:00:00 0.23 0.18 0.14 0.13 0.13 0.15 0.18 0.43 0.40 0.41 0.42 \n", - "2012-01-01 07:00:00 0.29 0.14 0.13 0.13 0.15 0.18 0.23 0.40 0.41 0.42 0.41 \n", - "\n", - "tensor \n", - "feature \n", - "time step t-1 t \n", - "2012-01-01 05:00:00 0.42 0.41 \n", - "2012-01-01 06:00:00 0.41 0.40 \n", - "2012-01-01 07:00:00 0.40 0.39 " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_inputs.dataframe.head(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[[0.22, 0.42],\n", - " [0.18, 0.43],\n", - " [0.14, 0.4 ],\n", - " [0.13, 0.41],\n", - " [0.13, 0.42],\n", - " [0.15, 0.41]],\n", - "\n", - " [[0.18, 0.43],\n", - " [0.14, 0.4 ],\n", - " [0.13, 0.41],\n", - " [0.13, 0.42],\n", - " [0.15, 0.41],\n", - " [0.18, 0.4 ]],\n", - "\n", - " [[0.14, 0.4 ],\n", - " [0.13, 0.41],\n", - " [0.13, 0.42],\n", - " [0.15, 0.41],\n", - " [0.18, 0.4 ],\n", - " [0.23, 0.39]]])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_inputs['X'][:3]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.18],\n", - " [0.23],\n", - " [0.29]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_inputs['target'][:3]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Construct validation set (keeping T hours from the training set in order to construct initial features)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "look_back_dt = dt.datetime.strptime(valid_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", - "valid = energy.copy()[(energy.index >=look_back_dt) & (energy.index < test_start_dt)][['load', 'temp']]\n", - "valid[['load', 'temp']] = X_scaler.transform(valid)\n", - "valid_inputs = TimeSeriesTensor(valid, 'load', HORIZON, tensor_structure)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Implement the RNN" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will implement a RNN forecasting model with the following structure:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGkAAAJICAYAAAGlM4mUAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFuoAABbqAeWOQxAAAPPYSURBVHhe7N0HfBvl+Qdwhw1lFdrSPf/dizYt0Jm2EDCxrWU7CSE0zFAooWwKHWa1UPaGsBLbiW05CQkhke0MAmU4TsJsoIzYspPYTsKmlDJz/99zeWRk+7V9d5ZknfT7fj6P9d7pdOP1q1ePXp1OBZRDDltuFRzSlN4or99et0a54tJ741bVyq4BY87jm4zz3URBYWxn3RzlCjYc8iTRcGat3tLrn335rCb7NtFw+t4fCgZ7TfeNC2+NWlfULLPLbDg5KNFwjj/1bPv27L/faN9ee/fD9m2i4Uz67bH27eRjptq3yctI3Lb8Oft29poXe+aFwyH7lg0nByUazomnn2/fDtRwjpxyvH2baDi3a0NJxKxVm+3b5IYz8+H19i0bTg5ijkOesOGQJ2w4lBLl5eWWFvsJhUI/KS4u3k0njYLB4N5apHxSWlo6WMMZr0UiZ9Bo4lrsJxKJvKNFyld4qSnRYg/0Qt/WIpHZhAkTBnypSoZciB9cUkFBVUv3W8nvhGoefWmwXGeTFimfVbd093r7nBy6CFF/pgaTiFsfaP+ULkb0oarmrv+aGkwiZq/ewl6H+qtc2fmmqcEkgg2HBmRqMIm4vbl1P12MqDdTg0mELkJkhlznteQGI+fV6F1EQwuFQmww5F4wGOyW28LCQvtUCDSk9+SW/GOU3o4IaTiRSOQbaEjv6ix/G+x8Ea/wrHpYi1kjHA5/QovDVlJS8iUtDgl1cZfcJvc4iH9IeUSUlpb+FDvwrE56ltxw8Gz4rhaHJdsbDp75W7XoSXLDQZ0t0aKR6UNO1M+Ap1SMuIZ4nZUcOrufoqKij2pRKuR7WuylqaP+gz7rm6l3GaEx7o4KNZ65FttQ873kdS3rnDesHi95XRI6e1DYN+P+N7ZHe61r6ca5xvNicHw7aVHWdbMWe1nedXfvdW2YM6zjzIjkHU6OCqtiO13EMdN6JJrW17uuiIZ4dJlpXRK6iGOWZY0yrUdCF3HFtB4JPGk8HKd5XRK6SPYx7Wxy6GKOrLHW7GhaRyJ0McdM60gEnu2uTi0wrSM5dDFHGuO1/zCtIxG6mGOmdSSiqT3qOD/KiMRJz6adTQ57YQekO17WNc+4jkQ0ttZdpIsPSnKxRfH6T5rWkRy6+KDw0jBBbk2PTw57YQfKysp2NT0+OdCom3XxQSGP+k1DW+1/TetIxJL1WfqSZdrZ5NDFhoRKOH0JXpdN60hErK12kS4+KCTyb8Rae+c2ptDFHTE9Pjl0sSGhIZ5lenyfcJTs4wnSHIvXvWl4fE9Ineri2cW0s8mhizmCbvU3pnUkQhdzzLSORNy36e4RaTgCT4C/mtaRCF3MMdM6EiE9ry6WfUw7bEdbdJYu4phxPRq6iGODvfTpIq6Y1iOhd7tiWo/EEk9vAszrktBFslffHY611d2gd7nWd13DeZ3GW9xe65LQuzxJ5br6vh3Hcb6pd7m2vLv3kyRrc5tMiEQiT2hx2JBDTdRi1sG+tWtx2JD3+O+zKfyju/Cu4eM6OWxIJC/V4rAlD6INF/7R38Fx7qOTw1ZSUnKQFocN+5a/PU1CIBD4nRaHbfTo0TtqMevgCfI5LQ4b1vWcFonIFTx7SrU4bGPGjNlBi1kHL6Mp+1YlcpyTtJi/sjXHSbVU7ltWfxKeKWg4f9fisGVzw0llb4iGk7J3aET5Bc+er2gxFUb0VM5MwVt7fo8qlTlONifHqYQn2zIt5q9wOMyG4xIaznItEpErqRzfoDxSUsIcx63Di4qjWsxu1tNzrMFCF3PE9Pjk2Lq2fq0uOqSta6OFpnUkhy7qiOnxyaGLOWJ6fHJs/dfcw3TRIUmdmNaRHLpodjHtaHLoYo6YHp8cbDj9ZX3DwVvjS7TYi2lHk0MXc8T0+ORgw+kvaxqO6fSDQCCwR1lZmXEHTDuaHLqYI6bHJwcbTn9Z1eOgdzlab/e3ZwAbjnkdidDFHDE9Pjl823CkkYRCoU14O/x5nTXgmWWmHU0OXcwR0+OTgw2nv6xqOG6YdjQ5dDFHTI9PDjac/thwwPT45GDD6c+/DefKAmuw0MUcMT0+ObZeUeC84VxeUGhaR3Looo6YHp8cupgjpscnx9YrC5w3HNSJaR3JoYtmF9OOJocu5ojp8cnBhtMfGw6YHp8cbDj9seGA6fHJwYbTX1Y0HHkLrkVbJBLptVHTWI5pR5NDF3PE9PjkYMPpLysaTiAQCGvRFgwGz9SizTSWY9rR5NDFHDE9PjnYcPrLiobjhWlHk0MXc8T0+ORgw+mPDQdMj08ONpz+fNtwiIiI8lCozy+gYHpfLQ4b1vWYFkcc9mW8FuUda0CLw4J3wsO6ivuIwE4fp8VhkYaDiAQCgR9FIpEvpKLhyL4ddNBBu2JdnTrLs8Rx4p+9xZ7hER5fLrfYp6n2jBTAvn2gRX9I/uppWVnZZ7ToSWlpaap7HPvrv1hPxfjx44f1LiOxL2PGjNlloJ8UcAr/ZOPPCAwHGuNSLRIREWWFQ5qsYUXxUvP85KDckvzjraaobjHPT0TBbxqN85NDN0W5wvRPTg42GurH9E+WqF61adutqdG0dFuhcMguD9RoIpHSnrJuinKF/FNvW/6sdceKF3r905Mbze0rnremL33GeH+i0dx+33M6f3OvW3sZyi2Jf2zfGKynmbV6S0850WgS85IbS2KebopyReIfPFAwp6F+TP/k5GCjoX5M/+TkYKOhQU2ZMmWX5J/eJiIiIiLKeaZ3PDw5iwbUt8EkQu/ugUb0ohYpn5kaS3LoYgV8K049TA0lOXQxog+ZGkpy6GJEHzI1lOTQxYh6MzUWCb2byIwNhogyo7y8fPds/ilrcmDq1Kn9fvAkUyKRyJcR39DJzCkuLv6Y3AaDwXfsGVkmHA4fpMVhKykpsdcVCoXesGekANY17IsPJGBdzVp0LRAI/FKL6eenRoNKbdCiJ8mNBsdba88cplQ3GuzXvTrpCh77Jy1mhH3lBbnSgXR39hyDWFvdVQ3xOisR93XfPazsPXldEjq7n+TfvhxomLyxI9prXfVWvfFHWxM/5orbvVDJxh+vX7pxbq913bdp/pDHKVeawE2/H7CPdUU/nrwuCb3LaKB9SnCzrhHX95+SHLqIK6b1SOjdrpjWY0dbTc8FhpwyrkdDF3FsyYbZXzWtR0IXccW0HonY87GddZHsYtrZRDTGoyfpYo6Y1pGIxvaoqwpd1qdX6Bu6mCMrNtd/0rSOROhijpnWkRy6mCOmxyeHLpYdkFxVxdpqbzTtaHLo4oNC13u73Joenxz2wkOzXwpMj08Oe0kH5CJGfV+WDPGuLj4oHOcMuTU8vlfYCw8hkdyaHp8c9sLZAknoBw1ttQ+adjQ5dPFBIWf6otyaHp8c9sIOmR6fHLrYkHCcDw7VaPDkcdpo7LzEtI7ksBd2yPT45NDFsotpRxPRtD76T13MEdM6kkMXc8T0+OTQxRxZ1DH7o6Z1JEIXc8y0juTQxRwxPT45dLHsYtrRROgijsU21vzAtB4JXcQV03okmjrqHfUMyUzrSYQu4tiy1pr9TOuR0EVcMa1HAnf1e9eWNZrW15t22JOG1rpDUrUu0XddjR31vX6Zxo0lG+b0Wtfyrnme923hs7M/lrwuCb3Lk1SuK6Pw+r9eizkNOdj7WqThQqLnKocZTGFh4c5ohCk5EToSiTyjxZTAfqX0mYz1vazFYZFR7UMOOWQvnfQHvA28SYs5DU8Ozy9xRDRceK0/V4s5DS8np2mRhiuVOU02w3G+qkUaLvQ0D2gxp6HRvK5FIso4vNb/UIs5beLEiZ/WIg1XvuQ0eBlu1SINF3qafEmE27RIRBlXUVHRc84ukSMlJYG8eHkqLilZp0Vya+vTc96xnp5jDRa6qCOmxyeHLuaI6fHJoYs5YrUvMq6jJ3C/LuqIcR1JoYs5Ynp8cuhi2YONRiNfGw3eRh6mRcfYaDTyuNFcp8Xt5I+TL5Kz0Wjkc6MJh8Of0kn724uhUGhhYWHhnjqrHzYajXxuNGgkvTaCefdg3oCjn2w0GvnaaLxgo9Fgo3GOjUaDjca5rVcWvGNdWWANFrqoI6bHJ4cu5ojp8cmhizli3WBeR0/gfl3UEeM6kkIXc8T0+OTQxbIHG40GG41zbDQa+dhoSktLPa2cjUYjHxtNJBLpWTneZj+SPF1SUvKl8ABfDmOj0cj3RiPQcKZrUcqHhUKhi3SyFzYajXxsNEMZ6OqQbDQabDTOsdFosNEQERHlBLy7+qYWC8rKylL6OjrQ232nki9QPVx4J9mtRZvX8S0T1GGFFvNDotGgUo+X21Q0HKzrOC0OizSaxLrQAAP2TI+wnq6SkpL9cHuizhq2xL7lXaNJhn9MISrgBZ30JLnnGi7szzFatH/aRoueYF1XarFg3Lhx3ywqKvq+TnqSfGn+VDUaNMLPaZGIiIhouC69N97rd0jdxpzHN1nVLeb7nEbBbxqN891EQWGW/pALEW3DzoaIMoKdDRFlRN/O5sTTz+81Xd2yqad8/LSzrGvvftiqXvXhvL6dzZFTju8pS1Sv2vzhdEt3T/n0C6/qKSd3NrOw/KzVW3qmB4rTL7yy1zQ7G6IsN1Bnc8HNtVY4ErHCobB9m+hgnHY2N8eesB8X6vP42Y++aJ101l97lpcYqLMJBEq27YO9nmDPMpXNnVagpLhnWoKdDVGW69vZFBcdbv3xiuk903c+0Nrr/mvnPTRoZ1N8+OHWiWd8mB3dtvzfPeUTTj3HOuEP2+L4U8/qmZ/c2VQj+5H75XbbvA+zIYlIaZl14a311viJR/Saz86GKMtxzIaIMoKdDRFlhdJQ0Xta9KQsWPgvLbpWFjr8acT/JkSK+cVMolwWDAbn6e2d9gyX8LhJoVDoPp10JRwOPy+3ePxcewYR5bZJkya5ziqG82WzsrKyXbVIRPlkwoQJjjubSCTyBS0SEbmDtzNhLQ6qoqLC/uEcp5D9cByGiAoKqlZ2nVW5suut6pburbh9r2plpz1+0xeymWu0OCR0MOdpkYjy2Ycn0g0dRx1/0q36MCIiZ5LPCHYTs1dvGfCtUElJSaEWiYjQ0azsuszUkTiO5q53dVUyvsNxGCIyq33sZXMn4iJ0VUREA6tu7r7A1IE4jcrmzrd1VUREg3MzMJwcg43ZEBENKPniVkPFzMdf+ow+jIjIu8qW7mkzmztfqX/qdau6ZfM7lSs779K7iIhSKxwO/0Nve76I2fcn9ILBYK0WiYi8mzhxYq9xmcLCwl7XjQmFQsO6BIVvFBcXf0yLNvSy72gxa5SXl2ftIBpesQ7SojSah7U44kpKSnr2S2Df3tDiiEOdfUKLsl+dWhxxqLMvaVH2q1mLw9b3i5gDdTaol9n2jFwlnQ0O0koEDvxNvUs6nl9ocUQl75+Ezs4Kpn078sgj90R5RJ9E0tkk7xf+l6+5/aJfusiTKxGJOssGqKOXsU9bNHpOtBsudC57anFIqI9h/b5vVjNlNqNHj95RyjjwKnumB0s6aj7dGK9dGmurfTkWr9vUEI9eqHe5NlBmgyfU97ToSkNbzakN8doOe9/aau9rar+n5xXNLdRRv8wGdejp18TrrfrtUWdR2a+GtrpXGtpqPV1wSQyW2aAc1KIjK6wZuzTE6zYu2TDXalpfby3rnGs1tNZ6fuVHnfXLbKZNm7YzynfYM11Y2jH3y0s2zHlL9ktiedc8C21tod7tiimzwe0Z9gwP8H98aFnnPHu/lm6cY+H/2b3g33fsoXfTcNiNMF7nKBa1zRr2dTucdjaWVTDKtA+mkMaqD8sIbLOj7z4MFLF1NX/Th6VdY2v0ANM+DBTSUepDPcMT29GnNY3xustN+2CKxvbosP+f6BynaXFIpn0YKBa31ozVh5FTqLTzTJU5VKSiIQxFXllM2x4qFrVFx+sq0qJ+bf1Opu06CV1F2izBK7Fpu0PF0o1z075vpu06iab2+ud0FWmxdAMyF8N2hwrJenQVNJRFHbM/aqpEp5HOBoo0dqNpm05DOgRdVcqZtucmdDUph1T/LdP2nEdtta4q5fB2ybA959HUUT9aV5VSyLSuNW3PcbTVfaCryh2lpaV2I8Xt+qSyhZiVKMutjJ4nRtBlXllZ2XdxW5y4X8ZQxo8fLwOPl6JxbjBWoIuQ9UYikWcT20tsA9tN3sdjMf2ZxP2yf4mPFHXeKKzj6sT9ciuZk2l7TqOm+TZ732R9fetEb6uSt4ftb0yUE7d9juH0QCDwy5vuuXyyaXtu4je/GPt71P9fZN14+/FHGQeRAX1EVOfNlZByYh62fVGijNvnEfaYEG7tV33Zx6aO4dXZsq65PXWG+ngxUdbjt6/fkpjXt06xv19BfU1M3C9tIDFeJ/Vo2p6biLXW9uybtJ3kbWN6P2zjxMT9sr3k/53etiaVZV1zUe8vyQumaXtuQtZJQ4jF6w4yVZ7TSOdbKUlRTdt0GvPaqz+lq0o50/bchK4m5WJtdW+atuc0GuPR23VVKef1rUoimuL1++uqUqqpLXqpaXsuImWffOU8pJFvGyrQUegq0qbR+yt1Wj+6xpO6wrBNR9HUXfURXU1aeH27snRDFo/ZdNQ/oatIi2UesxsZH9NVkBumyhwokK7/Vx+WdnhPfLdpHwYKfVhG4Elg3AdT3Nd9d8b2LdYe/ZZpHwYKfVhGxNpqzzXtgymkfvVhGWHah4Fi2froAfow8mrFhnmfxSv31qb1H75Cbjv/oaZeFxkxsda6i2RfEuM5iU9eFj03+8u6yIior6/ffnFb7XtL5HwMrTP73Ix4rT0ONJJiW2M74//ZKZmL1J28PUU226R3j6imdVWfQOfz1jLs13J0xg3tdt1N17tHVENbdLF0dlJnOq6zeeGa6bvp3ZQOoVDoai1mDexT2sYWhgv7NjoSiWQs83MqDHKLfcu6K/yjzt7XYlYJBAJlcov9+6M9g4iIfA4vhv/UYtbBvl2qxaxSXl6etvN7hivx0W82CgaDX9RiVkFW8x8tUjqhorO2s0HjZGfjEjrorO1sxowZs4sWswqeA69rkdIJT+i9tZh1Jk+enNaPkHMRnjhf0WI2GqW3WaWsrMzzF32JiCjbcMzGvSx/G5W14w99L7eZLSKRSIcWKZ04ZuNeNnc2+H++qsWsky0XB+sLdfaYFimdUNGHajHrBAKBH2gxq2Trk0aggz5Xi+QQngMnaJGIiHwPr4QxLWYdvOJUaDGrZOvYg0CdZe3b4myFDDq3L2SeLbK5cWbrmE02dzaos1YtkkN4DszRIqUTGudVWsw6aATHajGrlJeXD/t6vumCOntAi+QQ6uwmLdJwbH16zjvW03Os4YSuKuVM23ITW9fWr9VVpdTWtdFC0/bchK4q5az2RcbtOQ48XleVcsbtuYit/5p7mK4qpaSdmLbnJnRVNBh2Nu6xs/HGuD0Xwc7G59jZuMfOxhvj9lwEO5s0CQaD12nRtcSFnp1gZ+MeOxtvjNtzEexs0iTR2SR3HInLA4RCIfuXDOTXMCORiH2FusR9WH4fzHN88Oxs3GNn441xey6CnU2aSGejp733fBMWnYz9w2vJHRCWuwfL7aWTNmY224KdjYdgZ+MpdFX+hA7ju1qUDuVqxDk6KUah47F/DxkZzYH2HMAyCwKBwB64LdVZQ2Jn4x47G2+M23MR7Gx8jp2Ne+xsvDFuz0Wws/G5rUunvWMtPdUaTuiqUs60LTexdcm09HQ2S6cVmrbnJnRVKWc9fJZxe44Dj9dVpZxxey5i65I/pKezWXrqWtP23ISuigaz9cqCd6wrC6zhhK4q5UzbchNbryhIT2dzeUGhaXtuQleVctYN5u05DjxeV5Vyxu25CLTV9HQ2aCem7bkJXRUNhp2Ne+xsvDFuz0Wws/E5djbusbPxxrg9F8HOJoWCwWBNKBSycLtFZ8nH3e8jNumkTF+G+9/Erf1Liyi/j2i374RwOHyQLI94R2cNip2Ne+xsvDFuz0Wws0mx5BPyysvLrUQkfoIDHcst9p2AeadrUebb/wg8/hB7BmDe/VocEDsb99jZeGPcnotgZ5Ni6ECeGTdu3BekjOzkLUx/JxAI/Bq3RTIPHUjP7yCjfKYWezobLPtnPG40pk/E7ZCX9GRn4x47G2+M23MR7GyyDDqbX2rREXY27rGz8ca4PRfBzsbn2Nm4x87GG+P2XAQ7GyIiIiLymWAweFogELgCt56vs5NuxcXFu2kxK8iXYkOh0N06mVVKS0vHY9+qdDLrhMPhE7VIuUoaIJ4k1+hkj/Hjx4/o+9JIJPIz7JuFfbtZZ/WQ++QW9+9rz8iwkpKSa9EJ34Ci8Yfx3VzyI8Xk6gBvos6u1+l+sN8faDHjsG+Lsf1rdbIX3JcVP9OD/93HsS9bUYe86HmqoWK/qUUj3H+SFjMO2+73pMUroH0OUiJ0dsYN9vMt0mC1mHF4MndpsRfU1Yj/DC/2oVyL/WRLZyNGskMmIiIiIiIiIspLRY3fLzikyRpWFC01z89kHL6cJxYSZa2ipnDVyi5rOFFwaJNxvtOof2yTNXtVt/E+pxG47El2NERZix0NEaUdOxoiSjt2NESUduxoiCjtXHY0s1ZvsU484/xe89x0NFfXP2BFSsusa+Y82DOvb0cj20iU+0e3FQyUWMFgoNd8djRE2axPR3PpzEW9nsDJUd2yybrzgVbrd2f+qdf85I6msrlz0I6iumVbh1JxY41VpeW+HU1R4WE9ZYmB1venq+/qKbOjIcpmfTqaC2+pt6YvfaZn+uaGJ3Db+23NYB3NrUuetm6/77meaemYEp1Lckz67bE95eSOZubDG6yiwwt77UMw0Dt7mbVmi3Xjvat7dUDsaIiy2SAZTTgSscJhBG5POPXsnvlOM5qQfPFX1oGQcmKZ46adac1O6iQGymikg7IfGwrZt4kOq3rVJuumxY9b181/pOcx7GiIstkQb53cZjR93zr1zWiKxx3eU07EUG+d+mY0iSgaV9hTZkdDlM36dDSSLfz5+sqezqHykY099yVi6unn9ZpO7mjk8edcetOHj0fH03Mf5k2ZerJ1wh/OsUPGfGR+347mmJP+YJ1x4dU909OXPt1TvnXJWuusS66zjj3pNHRom3vms6MhymZ9OhovkdzReIm+HY2XYEdDlM3Y0RBR2rGjIaK0Y0dDRGnHjoaI/O6oyK8mTCgt9tQJTAgd9kB58PCXykLj3tRZRJSLQqFQN+J5nXSloqJiOzz2acSwfiMNj39Ui0SUa0pKSr6nRXmyj9GiY3jMoVp0rby8fKdwOPx7KWM9X7FnEhEli0Qiv9aia8Fg8DYtEhGlXmlp6be1SESUWsXFxR/DW6WDdJKIaGB423OOFh0LhUKjtUhENDh0GFdo0TE85iktEhENLhAILNSiI6WlpT+aOHHifjpJRDQ4ZiVE5MnsNZ0fq1zZuUmuLyNRubLrlZkt3f0+EZLzXbToSDAYvFOLRJSvKldt/EHiglQDR+dFsiw6jS/aD3IAyx6lRSLKZ5XNnQ+bO5b+UfPoi5bbbIaI8lxly6a/mzqUwWLWqs1v68MHFA6Hj9ciEeU7U0fiJJAF/VxX0UsoFJqhRSIi+y3T+6ZOxEnIBcd1NUREAzN1IG5CV1Nw1FFH7Yu3Sj/USSKiD5k6D1fxcPd38FbpPl0dEVF/xs7DRZz99xuv11UREZmZOg83Ub2y61u6KiIiM1Pn4SZ0NUREA6tq6fqfqQNxEvzUiYgcM3UijqJ5w4G6CiKiwVW1dF9o7EgGidmrN/9XH05E5Ezlys5lpg7FFPJdJ30YEZE7lWs6Pz979RZj55IUp+viRETeVaxdu1Nlc2fz3LX/seb86w2rqrnz6buaN3xV7yYiSp1wOPwbRFgniYhSr7S09BfFxcW9vr8UDAZrtFgwZsyYHbRIROReKBSyr6QnUO75/WyU39Oi60t5EhE5ktzRTJ06dUctElGqfOtb3+r7Cj5Kb/MG3jq9H4lEviGB8nd1dm7De0hffZ6Pf07W7C9emR7Wog3T47U44rAvm7Qo6fkntTjisF9tWrRh+gAtjijsx1ot2tABfE6LKYdt9XvrFAgEcvuLlexovEODYUfjEvaLHY2ho8H2HkQ8as/MReFw2EoOmYeK6ERMsRfIAsn7l20dTfK+YXo8GsvJuGvE3w5IPSXvm8xDo/489nG1vcAIQf20Yh/eS4qs6GiwX09gX7YkAtNp62hMsM2H9HaMPSPXmDIaee+oxayT6Gjw5LnKnjGC0CiMGU3iVWokYV/6ZTR48hyNejvRnjlCsF+DZTQj1kFjP4wZDW5jkydP/og9M43wf/kE9uGfOpl7TB0NDnrYp0g3ttf9LdZW+xLi5Ya2uoamdVWf0LuGJdHRoAGMs2e4VL+2fqfGeN0i2S/Ei9i3S/Uu19Aw+nU0w3mv3dQWnRJrq3tG62z14nWzfqZ3uYZ9Mb51kgatRcca2qLXrNg032paX2/H/VsWWLHWmmP1blewX8aOBv/PW3DjuqNBfc2+r/vunn1b3jXvg8Xtda7rDfvRr6MpLi7eTSdda4jXHr1i04Ke/boP9dfQVnuN3p1/ioqKPqrFXryeSGRXaLxuwIjFa/+hi3qCBrC33rrqaNC5/Lqh3bxPEsvRWHVRx/AE3l2LNvmosrCwcE/dR8dPmqaO6NumfUrE4ra6dbqoY9i3vbQotpM/ZWVln7GnHGqIR1eZ9ic5YvH6P+rinqHze3D06NE7Gj6RGlBjR/RV0/70ivZ5ji/0jY7ma1q0JX/sjBc3x18dWNxW+wfjviQFngP8rW2vYs/f/RVTpZpi6ca5rp/UfbnpaGLx6GbTfpji3vV139GHZQQyP+N+9I0lG+YMu87cWNY5z7gfpmhsjw75Q2gOOeqcpS5M+2EKPKkf0Ie5ZlmWvT/I+r9nzxgC6uF10z6YQupXH0ZOydsRU2UOFvinZKSi5S2IafuDBdgZQLqZtj1Y4FU8I3W2ZH30fdP2B4+aXm8j02XpRuedTCIWr6v5nT48bRrao/NN2x4sMv3i4XvSaZgqcshon532n/s0bneIyEQn6CZj6BXtda/pKtIitq72YON2HYSuIm2a2qOzTdt1ErqKtDFt01G01QZ1FTQYZAx/Nlagg0j3E1reopm26yjaoqfqalJuzZrpOxq36TB0NWnh+UUD4WWcyw3TNp0G3kI9oatJOck0Tdt0EpnK7H1vedfdxgp0GrHnr9tZV5Vypu05jVSMIw0kFq/rNG3TcbTVnq2rSjnj9lyEribloo9EdzVtz2nIJz+6qpQzbc9N6Gqor1AotFmLw65kZESX6KpSIvHx6T2tNfsZt+ci7BWmCPZrYeKTvGVdHt82acTaav9jrzRFsG/2maqLW2u/Ztqem7BXmELYt1a5RUZysWl7bsJeYYpgv3rWZ9qWm2jK8AcQaTVx4kRrwoQJduXIuTORSOQLiKMS59GUl5dbEon75Rb3r02U9TGxRFluw6HwoB/LOonaltusxPpk/5L3UW9nJJVl2a5EOXFbVlaWfP9ZwWDwu3+b/tfTTdtzE7q+ZxLrltu+9YSYgu19LnG/7L/UdeJ+uUW9XZcoy+1w3p5IrNg8X85Ctj9Wxu2xiTL2oz4QCNhv+VCOJm4RCxJlLPtNLPNLlJ/TeW2YF5fyKef8zvXAed8oKQr0+h/KeTs4/pMSxy//q+T/l9zi/rbk+sF0faIst1LfM++74QXT9twE1ivxQfK6Mb2lz7ZvS5Tltm+bxP1fxe34xP2HHXL4TNO2XEVH3SGyLuoDlTwZDcg+R8FYcW6ircbuvFIFDeEluZVXCeP2XIS9whTBk/sHeFIfJ2U3H8+aItVvA7Bf9XLeyL3rZn/VtD03oatMGbSz1+V2cWvNhabtuQl7hSmCOpuXyFBN23IVHTXftldKA2saxkCYxL3ro65OInPDtD2nkc5BuiXrh9fR4G1Ei64q5UzbcxO6mpSLPR/b2bQ9p7GEYzT+1hCPPmeqPKehq0kL0/acRtP66IO6mpRb9ELdr03bdBpYRdq+EzScT1DSfV7IcN5yxtpqH9HVpFwsXveeaZtOgp86uWCqQCeR6kHNvha31p5i2q6T0FWkjdcnzdI0P5ljz9cdZNquk9BVpM2S9jm3mrbrJHQVaWPappPAc+BQXQUNpaG9ttZUiUOFPjytlnW6P5cG//y5+vC0Wdxa6ekTHn14WjV11L9r2vag0RZdrA9Pq2Vezo1aVxvRh6dNUzxaadz2IIF63qoPJ6eWbJz7lqkyBwp9WEa4yR6w7Lv6sLSLtUXvMu3DQNHUNidjv9Ps5vwoPGF6vimeCa5OxGyrna8PS7umjuh64z4YYnkXv+vk2eJ47ZAf9S3dkL4T4QYjZ62a9ic5FrfVztHFMwbv74d8q2K/j7cyf60W7Ns9pv3pFa11af8aiUlje91G4/5oSJ0tXhfN+PV4G+LRI0z7kxzImJfo4jQc0kCTT0qTT1lQuVsb2ud9ShcZESs21+/e0FbzfvKnPvLKgle9+3SREYM6O1ne5iWyL2QJ9sfYDa21v9BFRgz+d1MRH0hnLYHye0vQQerdI6qhve4S1NfW5H1b2jH7y3r3iFn4QvQneOF6L2m/PliEetS7KdXC4XChFrNKKIuu79sX6uxxLWaVQCDw6WAwuL9OZhX8PzdoMauUl5d/HnWWH790MFLwhHmvpKRkrE5mFezbjxFv6WTWQKO8U4tZB/X1e0SRTmYdaW9azBr4f55WXFwc0klKtYqKip5ruuDV5t9azApokE/jlWbEr+trIvuFxnmznBqvs7IC/oc9v7qI+rO/3pAtsG9PI9s6RiezBvarQovS4WRVnRERUa6Qa9RqMevg1e9MLZJDyLJG9NcdiIyy9a2TkLdOWiSH8DYlbdfoISIiyl7MaHIL6iylF1AjSgmvv1uVCXgbMFmL5BA6mp9qkSirZPyUfqcCgcAeWiSHSkpK9tMiUfbgW6fcwjojIqL8lM0ZDd463aRFcggZDc+8peyTzR1NOBzm2wCXIpEIOxoiIspDHAzOLagzXkyKsk/yt8uzTVlZ2de1SA6hzj6uRaLskc0dTSgU+okWyaGA/kInUVbJ5rdO6GjqtEgOoc7WaDEbZe3JoURE5HdZ/vE2P6p1CXUW12I2YkaTr7L8U6esvW5wtkKdpe0njFOAHQ0REaUJB4NzCzKa17SYddDWttciUfZgwyTKEVl+cfLztUgOIQvs0GLWyeZztijNsvmtU1FRoEaL5FAgEMzaH81nR5MC1tNzrOHE1qfnPKOrSqmtT0XHmrbnJnRVKWfalqtoX5S1+6arSTk5ZtP23ISuKuVM23IXcw/RVdFAzBXnPNjReAh2NJ5CV5Vypm25C3Y0QzJXnPNgR+Mh2NF4Cl1Vypm25S7Y0QzJXHHOgx2Nh2BH4yl0VSln2pa7YEczJHPFOQ92NB6CHY2n0FWlnGlb7sKnHU0og78LZK4458GOxkOwo/EUuqqUM23LXfi3o1mqxbQzV5zzYEfjIdjReApdVcqZtuUucqSjKS8v30uLPZzOG4q54pwHOxoPwY7GU+iqUs60LXeRAx0NyufJbTAYvCpxantJScmX5DYSidiVj2W+Fg6HC3Xef+XWKXPFOQ92NB6CHY2n0FWlnGlb7sLnHQ06ll6Vi87mZS3a11jFciulPH78eM//BHPFOQ92NB6CHY2n0FWlnGlb7iLHOhrMfxOZy2cDgcC3ZBodz11yy47GHLqqlDNty1Wwo/EUuqqUM23LXfi8o0FHMsmeAYcccshexcXFu6GjOV1nyVXJ7MrH8j0/VYHyei06Yq4458GOxkOwo/EUuqqUM23LXfi0oyktLf2pFguKioo+g87jHrxV2lVnSWfyR3QyYWQ8++ssuYp8uYzj6KRj5opzHuxoPAQ7Gk+hq0o507bchU87mkwyV5zzYEfjIdjReApdVcqZtuUu2NEMyVxxzoMdjYdgR+MpdFUpZ9qWu2BHMyRzxTkPdjQegh2Np9BVpZxpW+6CHc2QrKWnWsOJrUunpaejaTx1rGl7bkJXlXKmbbmKh8/K2n3T1aScHLNpe25CV5Vypm25i1PY0QzFurLAGk5svbIgPR3NlQVjTdtzE7qqlDNty1XckL37pqtJOTlm0/bchK4q5UzbchWXF7CjGYqx4lwEOxoPwY7GU+iqUs60LVfBjmZoxopzEexoPAQ7Gk+hq0o507ZcBTuaoRkrzkWwo/EQ7Gg8ha4q5UzbchXsaIZmrDgXwY7GQ7Cj8RS6qpQzbctVsKMZmrHiXAQ7Gg/BjsZT6KpSzrQtV+HHjiYSiXxBixlhrDgXwY7GQ7Cj8RS6qpQzbctV+K2jCQaDmxEvIR6Q6VAodFdpaalVWFi4p05XYvrbMk++YClfupRr0kydOtX+1Ubc/6x0VHI/ynfIvKEYK85FsKPxEOxoPIWuKuVM23IVfs5o0FEca88AdCg3yy3mLbJnAOa9r0W5No39T8D9r9ozYOzYsR9BZ/QxnRyQseJcBDsaD8GOxlPoqlLOtC1X4eeORjIVuR6NRFJHktzRtGtR5r+efJuA6SGzGmPFuQh2NB6CHY2n0FWlnGlbrsLPHU3iWjPJhupoMO81e4bCW6gfaXFAxopzEexoPAQ7Gk+hq0o507ZchR87GnQa/0QnM1bLryCb2Qe3HTo9ZEaD+K88JpEFDcVYcS6CHY2HYEfjKXRVKWfalqvwY0czHIkOxw1jxbkIdjQegh2Np9BVpZxpW66CHc3QjBXnItjReAh2NJ5CV5Vypm25inzraLwwVpyLYEfjIdjReApdVcqZtuUq2NEMzVhxLoIdjYdgR+MpdFUpZ9qWq2BHQ0RERERERERERETkQiAQuEJCJ7NOKBS6WotZIxwOXxUMBv+uk1kF+zUT0fNLp9mkvLz881qkXIXGt06LfY3S26yE/X5Xixknl+XQohE6wcO1mHHY9te02CMSiXxDbhOXHxkp2Ld+X/qVLxHjBe2vOpkVsE/ba5FSAf/gU/GEfQ1xic7KGtinq9Awr9TJXvDEeQT3bdXJjMKTdWf5Aiz270ad1deIddCyT4jKoqKij+qsXuR33bWYcWhr1+B/thbRczmUBMzLmo4G9Xct9vV6djYphoq1MxpU7jEoH4cn0afsOwDT35Xr3OjkiJH9kpAy9u8VuR2pjkYkMhrsw09030pkuqSk5CDMWziSjRTbtzOa5DpLwP5N0eKIwL7ZGQ1uT5B9S7qAGzOaXId/+EBvnWxoBNdoccSNGTNmB8kmJLBfEj0XA8ukod46ybWFtJhxqJN+b50wb8TeyiXDfhivl4T57GhynVxeAp3Nd3XShumDUdl7oQEs1FkjAh3Kj7XYD/ZtxDIa7FcnoifzE5g+aNy4cZ+UJ/VIZoHY/uwpU6bsopM2zOtGNvM9iUQWMRKwHx8gTB1hVnU02J/zKioqttNJIiIiIiIiIiIiIiIiIiLKfkVN4aub2q05j28asVj0zBar4NAma+4T5vszEfc+jX34TaN195ObjfdnKkqveMoqKIztrP8dIiIicgxJzaX3xq2qlV0jFvJiLklNdYv5/kxE/WPYByQ1s1d1G+/PVAQue5JJDRERkSdMauxgUkNEROR3TGrsYFJDRETkd0xq7GBSQ0RE5HcZSmpmrdpsnC+R/qSm25q1ejPWv8lw37ZId1JTvWrTtn3Aren+RDCpISIi8mqIpObqOQ9YJ597ofG+oeK25c9aRx59gnXS2X+1fnfmnwZ8QR80qWnutI456Q9ICLb0v2+IuGPF89YJp51rb3f2oy9ZMx7qsAIlxdZNix/vt+xgSY08fvwRR9pJSd/7horqlm7rT1ffZc1e86K9DzMfWm8FAwHsw2PG5ZnUEBEReTVAUiOjGiedXWFNPuYEq3zCEUgsTrPOuexm+0U6eblbGp6wzrn0RpTNyYDcXnv3w56SmjMuvMrebmlZmXXMyafb0Xf7dz7Qak0+9sR+8weKv89YaJ158bVWVZ/lB0pqJPk45qTT7UTkWGz/6BNP7bctSVhCwSCOz1nS87sz/2z97a57jPcxqSEiIvJqiJGaS2cusk48/XzjfRI3I6k5++/mpCYRXpMaicrmTuvIKccPOFJjJzXHTB0yqZEk7Rzs53HTzjbux2AjNfLRWVHhYQPugyQ1kvQMlNTIiNFhh/zKKj680DrulDP6JVTJwaSGiIjIKw9JTeUjG62ZD6+346ZFj1pn/e16lDfovA29lpVIeVLT3NWz/dvve87+iKvykcT21/d+PPYnGAxYl1UuHnD7El6SmsT2JKGSbci+mvahb9xx3/NW+cRJxiSJSQ0REZFXQyQ1V0Xvt449+bRtIyGGEYabGx5HUnMdygOPPgw3qZGPv2Q0xLR9GamZNOXYbfvX575z/3Hrto+a+sw3xeDn1Gy2iscVWpUrO/vdJyHnypQUjTOO1FQ2b7Rmyb7rtNRBxY019kdQphOXmdQQERF5NURSI3HXP+PWxbfNw22b8f6hQkZv5CMY030Sg54orCHnoExf8ozxvoFCRnGmL33aGH2XHSypkZBRlStqllnXzW823j9YyCjSpVUx65I752PbzyCxGTgBZFJDRETklYOkJt3hJKlJdwyV1GQqmNQQERF5xaTGDiY1REREfsekxg4mNURERH7HpMYOJjVERER+h6Rmtwkrrd0neo89yu8zzncaeyAKgg8b73MSu41/xNq57CHjfU7D3oeA8334yIRma1dsd5fyh+1tJ8K0rJvYqQz7waSGiIgo8yKRyPWhUMgKh8N36qy0w7YmBoPBjYh/oRyWediHJ+07RwB24Z/Y/t2Iu3QWERER+QlezJ8JBAJ7TJgwwSosLNwZL+rdeldGYPtPl5eXj8btySUlJWN1dkYgoboQx36glMeMGbMLjn2VfQcRERH5C17Uf6HFXiKRyGFazBgkFBu1mHYVFRXbFRcXf0wnbTjmSVokIiIiP5ORGi2mVTgc/iwiYwmMkBEoJC1bkDhFdBYRERHlqrFjx35EizkDScxlWiQiIqJ8gQRgpRZTLhgMPhiJRH6pk2kXDodvwc2obVNERESUVzL18VM6ICH7ChIZC4nTN3QWERER0fAFg8G9kWi8r5NEREREmTNx4kRfjNQgYfpiOBxu0UkiIiKi3ooOP6xJi55EIpHqkpKSI3QypZDIlIRCobfKy8t30llERESUz2Y2bzi8cmXnf2av2WL8zaK+Ud3SbdU9/opV1dxZpasgIiIiGhkzV3ZeNPvRF41Ji8d42bKsUdOmTZNrv7ynm0kZ+aZUOBy+RCeJiIgo31Wu7FxhSEhSFrWPv2LVr7VS8nEQkpi/hEKhhTpJREREVFAwq2Xj/jWPvmRMRNIRs1ZtekY37cnkyZNz7qJ/RERENEyVKzceW71qkzH5SGdUt3S/qrswqPLy8u2DweD/wuFwoc4iIiIi6i36yPp9RiKhSURlc9dy3ZV+kMgsmjp16o46SURERDSw6pZNcVOykamoe+JVq+qJ7l4fJR155JF7MpkhIiIiV+Tr16ZkI1OBpMq6bMa9E+XnCsrKyj6ju0VERETkzsgnNd3WrNWbf6a7Q0RERORNdUtX1n38REREROTajMfje88awROFqx7ZOKyfWSAiIiLqUd3cNXlkvgHVuUV3gYiIiCg1qh/p/OHsDF58r6ql+2ndNBEREVHqVTZvWGZMQlIUctXiNWssfl2biIiIMqOypfuPTn+V22F06qqJiIiIRsaslq5fzlq1+b+zV2+xv4JtSFh6BZa1R2SqWzqvll/m1tUQERERZa+iwsPu0yIRERGRP0UikTfGjx9vhUKhd3UWERERkX/Ir2Yjodmgk7ZwOLwuEAjsoZM9CgsLd0bS855O9oL17DTQfUREREQZNWHCBEuLRkxqiIiIyBeCweB3tWikSY2F5WoR9cmB+XNw+5YuSn6Hf/bHB8tyI5HIB1qkQRxxxBED1qF83qtFShIOh1ejQ/mJTvaC+WsCgcCROkmqpKTkZ6WlpZt0shfU16dRp2/rJCm0pQ7U23462Qv6t42otwN1kgAv8HcXFRUZf6ka91UPVJcjCf/jP2rRyO1Izbhx476AebWIi3QW+UVxcfHH0EkO+KKLRvyOFmkQeGIMlhgyqTFAh/EwXoQP0sle5D7EeJ0khReUg1AvxqQGbfCTuO8NnSSFOmlDO/uETvaC+zoRB+gkAepjLdrZl3SyF9zXjNeEz+lk1kjlx084vs1aJD9yk9RMnTp1R/zzp8q7RZ1FikmNe2hLD+Nd8g90shfc9xCiJ6nBi1IA02dLG9RZeUmSGjwnu3Syl75JDdrdIajfi2QER2flJdRJG+riC+jrdusbUpe4n0lNEtTHWqkvnewF92VlUjMUPDe2x35foJO9yH3oX3ruw3I9n07geB/A/bvrJPkBntiOkpqysrJd8Q+eYs8ElB/SIgGTGvfQhh5G+/uhTvYi7QvRb6QG8xq1mJfcJDUJ6LAvxE3eXnwMdcKRGhfQvtYi9kefv09yoH3thbpag/uyLqmZOHFiyvpYHON6LUpdXIznXNZ93EaDcJrU4B/9Eyz3bXsmYPopLRI4SWrGjBmzC+rzGdRdBE+U79l35jHUg+OPn1D+GupugU7mLUlqUBdOP34apcPujbgvo+82Y89ft/OCf9+xRyJWWCt20LsyDsfvKqnBsmehrd2LYmYTQatgVNMTVR9JrrcKq2I7vTdjUB+OP34KBAJXaHFE1Fv121uWteMRRx6BG2unGStm7KJ3Ub6SpGawF2Q8wXs+a0SDfkESG9zerbMyYo21ZsfGeN11S9bXW0s3zLEa4nWDhiwjy6J8WaYujz3YZ7p4l9PrPnQK4zKR1MTao8ehDt5funGu1dge7VdPybFE6kzqtq3ujhnxzHQMaEcrEcYThVFHLbjvCCmjDT6PCCDKERPRXneyF0qDhvZoUUM8+qZdZx2D11lToj221z22qGPul3UVaSX1hSTZmNSgbj6F+K+UJcFBHR6G5/c3cPucvUAaNLbVfT8Wr9u8dOPQz8tESL0uwfKx1tr5K+Ir0t7WUCed48aN+6RO9oL+bGNyG0Rd2dc9wby7cJO2vgPPs/LGePQDJ/1ZIpas1+doe905upq0wLE7SmrQtj6PaUkKVyCMz+NUWYE+CXVWLfU1VF+WHPI8jrXVvtbQPs84IkyUMbGtsZ3R+f3H1FC9BNa1OVt+/wOdQtqSGrwoz29sN9eB20Bi+MZIvsPOlMXx2plDJTBOY1nnPKupPfobXXVOWhGfvzeO8x3T8XuOtmizrn7E4IX5DMTZGqvwPD0Xb0h21buHDS/Khy3vmmc+fg8hieHieJ18tDjikDh+AvV1sU6mDN5gNJmO3Wsg+X5v3rp5xlE7orSIPV/92VQ+8fvGis3zrUVr643v2jIFHeY35V21TqYE3sWlLAHsG/d1320t6pidkZGITGpaX/+i6XhTEU0d9dbi1trrdVM5YdFTsz+6rHOu8XhTFUs2zHlRNzeiEqMRqRBrrT1ORvVMx5uqwBuZGt1cxgQCgWNQT+vQnz2LmKqzU6KxPbrBdJypCnnz0fhCre9OeCafaYzX/dfUANMRjR11r+pmfa2hte4KN8Oxw4nGjmhO1Fls3ey/ZqrOJCGcnwOdJ140O0zHl47YNmpWe7Ru2tfk4w/TMaYj5M3g0lfq99JN+9KiF2qD6U4Ae0V77Wu6aaLUSufozEAhHY5u3pca2qLzTceVzpAORzfvSw3tdTHTcaUz5PyuRW11v9Rd8B0cwxt9jyndIUknEqm/6S74kn3+i+HY0hmSEMaen/dZ3QVfwf6fl6k3G8kRa6vjD2FSauGF5jVTY8tELG6r3aK74SsN7dG/mI4nEyEnhupu+EqsrfavpuPJREhis7Bz4W66K76xuK3uQdPxZCK2vcDVflF3xVfk40fTMWUiVmya77s3Hg3t1Z8aiYQmEYvbalbprhA5IxdzCgaDe+tkj1jr7BJTI8tk4EXa+LXikVZeXr59cXHxj3WylxWbFxiPJVNxb+vsrLy2h3xtPhwOf18nexnpOkO8oLuSdfDc/JUWe0xfM31HeYE0HEcmY6PuTtZBW9sBba3ft2piHfU/NxxHRiPWlp2jXGhnB2uxl8b2unbTcWQq5GPi2PPVe+ruEDmHTuDHct2WkH5dF0++NaZGlsnAPqywdy5LHXLIIXuh3p5FhzBTppvi9ftn9HNnQ6DOlts7l6XkK7yos02BQOAamW5or/vhSNeZHz7uRBu7C/X278LCwj0b4tGfjOSIg8RyvNjormUttLE9UGfrUHd3yjT2e07f48h4tNW9Yu9clkJd/R2vAd0lemG7VH370GvIKJGfPyKmEYbGLD8U1j72e2M/EmurzdgJiANGW+3TumtZC51AKepsKzrQH8iLzUh3Aoisv/giOsyTpM4QX4m1zv75SNfZ/VsWWLsXfPLjsj9I7L+quymJ/mdlnkTiGjxyi+l9JVDuuXBeYp6EzuqZJ9ec0lnyWzd7JuZXVFQkvpY/Skb/JDCv56JuiXkojpIrx6KtvYQ4q3F99ICRTgTlWyrb9jK7ob4m4P/4RlFR0XcaO+prTMeS0cjyj9UlEUTblDcd9ogS+jTzcWQoJKmRETZ754icwJP+KMSZOtmjoa3mz6ZGlslY3Fp7iu5OVpEXM9TZIzrZY8Xa+t1luNR0LJmKxnjtSbo7WQWd5KfRWS7RyR5yddaRrjNEVnxd2QQvyE/1veBafX399lnwkV3PJeuzDZLI3dDWlulkj0Vtcw40HEdGo7GtrkJ3J6ugvlajX/u8TvZAUhE3HUem4r5N862m7qqP6O4QDY+8gzU1tEzEfZuyf3jbpLEj+rTpeDIRfq2zpo7ov03Hk6loXB8t1F3xjVhbXYPpWDIR8u55SUeNL3+ME/v/bt/jyVQs7/Lf83Nh5+yPjfBI6v26K0TDZ3+ckqKr4LoJ+6cU2ut8e/nskRh5kEu1N3XUj9Zd8B05R8N0XBmIrD4HaTAN7dHNhuNJa+g3Yc7TXfClTF6jJhHyceHSjZU9H036iYyYj0hi0x59U3eBKHWa1tWPzuR1HeSzejyJvqab961Gw7GlK/QnAIy/CeMnmT75FR31PN20bzV1RJ80HVs6wj6Pp60moJv2NfRpW03HmI6QERr5nTzdtC/FWit/nsnXASTP9m99EaVNLJ6BE4fb6/6tm8sJi9qip+o727RF04b6Vt1cToi1Ro9Nd53JTwrk0uf0Czun7yaJrelYUxVN66MdurmccS8SNBnhNB1vSkJGudujN+nmckIsXrfWeKwpimVdeG6uq+JvQFHmNMSjban8SGrbC1g0bb9WnA1ibXUVaXiXs6HC+vCbMrmmMV532rIUf0wgL/zz4zN8edE4J+RX3HGcKTtnREbOGuPRpbr6nLW4Y86PUvmR1FIkzXjxP1lXn5NwfPek8ht4Te3R92MvxXg9Gho5C5+d/TH52reXFx77x/fa6p5f2urv30PxYnG8psnLOTeSFOGFfsOKDf681PpwNLRFa73UmSTM6Hjfi8XrJ+qq8oY8txritavlh2JNdWMKqS95bsbitbfqavJO4/q7D8AL9qblLn4gVN+wvNXYVvdbXU1ekd+5Q7v5wM0Iq1w8Eq8fT8mPsepqiLKPZNqNHTVj0Sn+ae6TM65Y0jHnfDTcc/Fi/Gv5urMuRn00dNT+Ai/cf2hor/vznMfvurKho+68xnhN4YrNrLOBNMVn7d8Yjx6bqDP7pxbaouOXdszNuV8tT4fCQwov1iI5NPproz82evTovHsjNhxsZ5QTSktLfxEOhy+VKxTrLHIAdSZXdL6+pKTk2zqLhiB1FgwGb0C9fVNn0RDwvHxJb/9nz6Ahoa7GoY1dhLZ2Ofq3fj9dQf0l2hmeo2xn5F940l+CJ/+hiH/KNG5fnzJlyi72nWQk9YN66pCryaL+LkUZN/0viEgfKisr2xX1FEdR6uxmRAk6z9O33UsDQR29JbeJNxy43SS3NDDU2W2I76O9HYs3HAfhthjt7QK9mwwSCXOinaH+fPkDxZTn5EVZrrYrZTRiO6kR6AD21yIZ4In/DblF3e2EertUyvK7UsmXzKfe+tTZzVre3bKsUVKmwZWWlnIU1SX0Y8cjofmJTpIDePPBdkZERERElDXwjqZnpIackVEHvBu0R2rIGa0ze6SGnAuHw3wH7RL6tDPQ1nL2kgDpgDp7XYtE/lZSUvI9LZJzo9hpujYKHedXtEwOIan5lBbJocmTJ38ESbT8ajo5hPr6pBaJ/A2dZpEWySE5hyYQCPxIJ8kBPbn6pzpJDiERvF6L5JD0aWPGjNlBJ8kBtLN/aJHI39CY+fGTS/z4yT1+/OQNP35yD+3sEiQ1/CanC/z4iYiIiIgom+CdIEdqXJJRB9QbR2pc0DrjSI1LfAftnrQzaW86SQ6gnbVrkcjfgsHgvVokh6TDRCfwZ50kB6ZOnboj2trlOkkOoZ2t0SI5hHZ2gbQ3nSQH0M5WaJGIiIiIiEYcMnR+/OSSnvTKj59c0Drjx08u4fn5qhbJIdRZHb/95A7qTH7KhMj/eIl/b1hv7rHOiIgorZChX6dFcmj06NE7ot5O0ElyQN45B4PB03SSHEKdPa1Fcgh1VsME2h3UWYMWifyN335yT7/Jw4+fXODHT96gnfHbTy6hzpYyqXEHdfa4FomIiIiIaMSFeKKwazxR2D35+ElO4NRJcgjtrFWL5BDaGb8G7xLqbBluRm2bIvIxdJp/0SI5pOeHTNBJckA+DkDHeYpOkkNoZydqkRxCO5uiRXIoEAhM1CKRv6Ex76FFcqGsrGxXLZJDY8eO/YgWyaFwOPxZLZJDrDP3yvkr3ZQr8K6GHz+5xI+f3OPHT97w4yf30M7atEgOoc748RMRERERUdbAO8H7tEgO6UjNJTpJDuhIzWydJIc46uAe6oxfg3cJdTYH/dr2OknkX2Fep8Y1SWpQb/z4yQVJalBnUZ0kh1Bn/PVkl1Bn/9EiOVRaWjqXSQ0RERERUbYI8URh13iisHs8UdgbnijsXjgctrRIDvHjJ8oaW19Y8I71wgLLazy/5FbLar3HeJ/TwD48o7vjC1ufnzfWdBxOY+vz863Oh2Ya73MaWMda3R1f2PrCvELTcTiNrc8vsDpW3G68z3F0NfnuxcrqbjIfi8N4ubnKON9xYPu6K74h/2fjsTiJdQuszQ/NsG+N9zuMrS/MP0x3xxekPzEdh9P4z+pZxvmuonXBIbo7RN5tfXrOO9bTc6yRDOyDv5Kap6JjTceRydi6tt5fSc3aaKHpODIa7Yv89wKNfTYeS6aCdeYptv5rrr+SGvQnpuPIbMxlUkPDx6TGPSY17jGp8YZJjXtMatxjUkM5g0mNe0xq3GNS4w2TGveY1LjHpIZyBpMa95jUuMekxhsmNe4xqXGPSQ3lDCY17jGpcY9JjTdMatxjUuMek5o8FQqFlgWDwet0MqPKysrS0rkwqXGPSY17TGq8YVLjHpMa95jU5CkkNUuZ1KQ+mNS4DyY1HoIv0O6DdeYpmNR4CSY1GWdKagKBwB6Y/2p5ebmF27cl+cAymwsLC3fWRWxYrgj3vxcOh7cmLXe13t0Dyx2IZd6LRCJy//tyi/gCk5rswaTGPSY13jCpcY9JjXtMavJU36QG048jFupkL5j/IuJ2nTTCupqRwFysk3Ily5fwmH6JDhKa/5PkRidTikmNe0xq3GNS4w2TGveY1LjHpCZPIeHoSWomT578kcFGT7DcL2SkRSclMfk6pjfJY5C8/BfrWox4HPPukfuHGo0Z7L7hYFLjHpMa95jUeMOkxj0mNe4xqclTyUmNQHIiHzmN18leMP9uxBotX4R4wb4jCea1J5IaIYkLkptv6GQPLLM3R2qyB5Ma95jUeMOkxj0mNe4xqclTSEL6nVMj80pLS+X8l9tQnozbGjm/BrdH6yJilCyD+1fKMoFAoAoJUTeWuRnRk9RUVFRsh/n/wzJbEH9A+XzEuyUlJeM5UpM9mNS4x6TGGyY17jGpcY9JDeUMJjXuMalxj0mNN0xq3GNS4x6TGsoZTGrcY1LjHpMab5jUuMekxj0mNZQzmNS4x6TGPSY13jCpcY9JjXtMaihnMKlxj0mNe0xqvGFS4x6TGveY1FDO2HplwTvWlQXWSAb2wV9JzZUFY03HkcnYekWBv5KaywsKTceR0bihwH8v0Nhn47FkKlhnngJ9hL+SGvQnpuPIaFxewKSGho9JjXtMatxjUuMNkxr3mNS4x6SGcgaTGveY1LjHpMYbJjXuMalxj0kN5QwmNe4xqXGPSY03TGrcY1LjHpMayhlMatxjUuMekxpvmNS4x6TGPSY1lDOY1LjHpMY9JjXeMKlxj0mNe0xq8kg4HP5UMBjcWydzDpMa95jUuMekxhsmNe4xqXGPSU0ekR+SLC4u/rxO5hwmNe4xqXGPSY03TGrcY1LjHpOaPFBWVvYl+cVsSWrC4XBhaWnp90Kh0Nf0bhnB6QwGg4/i9hOYHIXljpYfnUQCtNu2Jewfu1yEmI9l4pMmTfoo7t8V5RrEVkQ57nu6vLx8r4MOOmhXlOdg3hv6UBvmvYGYgvnv4tbediAQ+BbK72Lb99sLDROTGveY1LjHpMYbJjXuMalxj0lNHpGkBvEFnbQhybCQXPxSJ3sg2TgA8V+dTCQ1q3SyBxKSLsyv1MkemPcG1v0bnZTlXkNcpZO9YFlJdI7QSc+Y1LjHpMY9JjXeMKlxj0mNe0xq8ogpqZF5ZWVl++jkgJB0LEJSMl0ne2BeO+JMneyB5V/H/J4ng0ybkieB+2Sk6Aad9IxJjXtMatxjUuMNkxr3mNS4x6QmjyB52IrE4gc6acO8M/p+VJRQXl6+kxZlueEmNa8i3tHJHph3qHzUpZPDwqTGPSY17jGp8YZJjXtMatxjUpNHkKRsjySiFcmGnMdync4WozD/OsTbCPko6HnET/Q+G5a/BHGaTvbAcrORFJXpZA/MvwcJ1I900k5yZKQG6/guyi8i3kN5HeKLusiwMalxj0mNe0xqvGFS4x6TGveY1FBGJJIanUwLJjXuMalxj0mNN0xq3GNS4x6TGsqIcDj8ZjAY/JVOpgWTGveY1LjHpMYbJjXuMalxj0kN5QwmNe4xqXGPSY03TGrcY1LjHpMayhl48i1ALBrhuEV3xxesawr2NxxDpuMm3R1fQKc12nAMmY7luju+gReb+wzHkbnA9nVXfAP7vbzfcWQ6ri74oe6OL+D/fLPxODIYSGr2190hIiIiIiIiIiIiIiIiIiIiIiIiIiIiInJBfvYhGAyeo5NDwrIvIY4LhUJTJKSsd+UVHHe/n8FwIhwO/7a0tNRC3e2rs/IG6uz4MWPG7KCTg8Ky8mOvP0Vxu0gkcp78Htu2e/IL2sqvioqKPqOTg0LbegtxS1lZ2a543LfRxqQO+13xPB/guPdGTNLJoWyHZc9Bfb2HqNB5lAT1EpGr7+skUXaS37xCY5XkRH488xcIeREZFBp2Xr64JKDOPo36+gnCwgvIQYieX10fCuq3SR6Dx25F5E1SI52htC9JTHB7MOrw13qXY6iv+YigTuaDUairX+GYX0ZMlvK0adN21vscy8fnK+prDOrrAtwulrIkeHrXoLDsXxFMapJIglxSUvIz1MtW6eskLMsapXcTZR801m+iA1ink0PC8vKr5vKCLi/MW9DoHb2LzDVSD1ockoxOJP9AqXQQiLwbqZERKqcjNXgx/iTqqA7xFNrnxsLCwj31rryCY+9CHXxNJ13B4yQh6vV7dfkC/VM5jv0OnXQEyzOpGQDa4QccqSFfwJO4X1KD6asQ10rg/uuRqf+f3tUP7r8dSU7efQSF4+6V1KCuzk3UmQQ61SKZj+WaESdNnTp1R3QKO0nHgOmt8qIt0/aD80TfpCYQCJQl1xliwI9KUGcnINboZN5AnfRKavBc/FKfOrtZ77KhTg+Ues7XNxsJpqQG09cn6g3lm9AWd9G7bJjHpGYAqDMmNeQPeBJ/BbFeJ11DY5dfOE/r71dlo+Gc44H63nrooYfuo5N5Q+pMhrN10hXU2c/Rzlp0Mm/guFuRyDj6+ESSGdzwowFAWylB1OqkI6hrJjUDQL38z+koK9GIw5P/YMRGNNx/6CyjI488ck8ssxjLvo/blXg39Fu9K+/gBfoLqIMnUBcLdJZjeMzNkydP/ohO5g15Z4w6ewCxTGcZyTtC1NFZiHaEnJh+cT6/S8Tx16DO1qIOdtdZ/eD+fbHcLYjb+sSdiL11sbwSCARkdK/TaT+FehqHx9gjrNTb6NGjd0T9LEF9rtZZRERERERERERERERERERERERERERERERERETDNW5JR8EhTdaIxmFLzPMzGbIPYw3zMx3FS+/T/wwRERE5VvSgNf+pzdacxzeNWEy69l9W1cou432ZimkznrVuum+98b5MxeJnXrQKDm54U/8zRERE5BgSmprV3XZCMVJRftVT1vQHNhrvy1ScePsz1lWN7cb7MhWS1BQc3MiEhoiIyDUmNHYwoSEiIvIzJjR2MKEhIiLyMyY0djChISIi8jMmNHYwoSEiIvIzJjR2MKEhIiLyMyY0djChISIi8jMmNHYwoSEiIvIzJjR2MKEhIiLyswwkNNUtm4zzE5HuhKZ61SZr1urNxvsSke6Ext6HVYPvAxMaIiIir4ZIaIZ6EXYSE4+cYt35QKvxPonBEprqlm47TPcNHd3WCaf90QqHw1ZJcZF1wqnnWFUDrGuohKbaYz3MfHi9NeXEaVYoFLICxcXW8aeePWCCx4SGiIjIq0ESmlmrt1hHHfc7q+bRl4z3DxaShJx/1e1WpLTMCgaDnhOa408507pp8WPG+wYL2X5pWbl1/YKVVs1jr9gh+3Pk0cfbx9V3+cESmr/ducD6y/XVxvuGilub/mWHbL/28Ves8664zZp8zFTjiBETGiIiIq8GSWhmr3nRHlmoeexl4/0SpuRA4qLpc60Lb41iHS9ZwUDAc0JTNn7CoAnNYCMnfZOGakwXjyu0Kpv7b2uwhOZP19xlh+k+CXsEyeEoktRp0eGHWrMNSSITGiIiIq8GSGhuX/6sdfTv/mAnNMeefLo1Zeop1oyHOnotIx+dBEqKjR9LyTkjiVuvCc3RvzvV/rjotyf83jrmpNP6rUO2P/W0P1p3/bOt1/yBQpKf4sMloensd58poZF9lzqYeNQx1iSE7MP5V93RaxmJK+vusy65Y36/+aaQRCYYDOC2f5LIhIaIiMirARIaGcW4/b7n7YTmjvvXWdOXPm1V9UkEJKGQc1MGO89mOAnN9KXPWKXl462r6h+wy30TEdn+CX8413FCc+eKF6zxRxzp6iMn2e45l91sh5SlLvouM1RCIyNFUkeyv8ec9AfrotvmGpdjQkNEROTVMD5ySndCIzHYR07uEppOKxAosW5tWmu4b3gfOQ2W0MjxH3PyH6yiwsOskqJx1j9mNdkjRaZlmdAQERF55TKhkdEG+RgoHInYIfcnyvJRyu33PddrHalOaGT7ZROO6NlmOPzh9iVuWLiq1+Pl3BaZV3T4YdatS8zJjITbhOa8q+5I2gfUR/jDfTj1z5f2WlbqQM6zkRGm0y64wpr022ONo0RMaIiIiLzyMEIjX0WWqHxkoz1CIx9FJeYlLyeRjhGa5O3LV7HvWPG8cfuy7T9ePt064qgp1iyUk+/rG24TGtl2YptX1Cy1P0ZKTMt9ycsmh+xTaXm5cdSJCQ0REZFXOfyRk3zV+ndn/gn7MPD+JSJdHzn1i5Zu6/hpZyEJWtbvPiY0REREXg2S0MjHInJS7oyHzC/0klDIRzmma6okYrgJzRG/Pdq6fkGL8T7ZviQHdz7QP6GRbxPJvs0e5CvnyTFYQnPx7fOsMy66xv7YyPT17Ctql2OZu/vNl7C/Ip70GKnT4nGHG/eZCQ0REZFXgyQ0EtP+9Dfr6BOnWWf//UZrxoP9X/CnLx34vBQJSWhKioo8JzQX3FxrTZg02frrDbOsOw3fMJJvYpm+hj3z4Q124jD1tHOtE/5wTq+4OfZ4v+UHS2juwr7LCb1/vXG29aer7ux3/8yHOox1I8c+YdJR9tWBL7y13jr70hvt820unbmo37ISTGiIiIi8GiKhkXNP5COVa+Y+tG2EwrDMUGH6yndyDJbQyDblar+Xz2oy3j9gYHuSbMm2+8bMRzb0W36whEbituXP2qMwpsRlsJARmWvvfti68JYo6nHFoB/PMaEhIiLyaoiEJhMxWEKTqRgqoclEMKEhIiLyigmNHUxoiIiI/IwJjR1MaIiIiPyMCY0dTGiIiIj8jAmNHUxoiIiI/IwJjR1MaIiIiPyMCY0dTGiIiIj8jAmNHUxoiIiI/IwJjR1MaIiIiPwsvMrafeJK7zHhEcTD5vscxk5lzdZHDPOdxi5lD1m7jcd+GO5zGruUN1u7TTDf1zdkX2V7u5Q/bO2MbSdiV0yblncaexyx0ioouZ8JDRERUaYdFfzlpCPCvzlRJzMqWlaw6/jQYbPLQof/98hwUUBnp9348NiJ5aHDHy0PH95ZFhr3Lm6fKQ8XWRNDB5+nixAREZGflJaWWpFIxNLJtBs7duxHgsHgdGx3K25vKSsr2ycUClViH76gi2QUtn8Atv0a9uG/OouIiIj8BAnFPMTR4XC4ELFMZ6dVeXn5XojdpYxtjwsEAgfi9i37zhGAbe+NY/8sEpp/6iwiIiLyCxkpwQv5SryQj0FS8SPcNiDR+KTenXZIJL4YiUQ2aPlle2aG4Dh3wvE+pZMFKN+H2FcniYiIyC+QRGy2LGuUTtqQ4GQsscD227UoCcXTWkw7HGM5EqnNOmnD9HNaJCIiIj9BQlGixR54YT9MixmDBOPHSGhO0cm0w3EfrEVbYWHhztiHT+kkERER+VEgEPi1JBU6mXaZHI1JQBKzN+I0nSQiIqJcIyMWcmKuTqYVEqcWJDQH6GRGYHt/QDxfUVGxnc4iIiKiXFNaWnowIu0JTSQS+RkSi9/pZMYgiTpVi0RERJSrysvLt8+10QskMd8pLCz8uE4SERERDQ8Spp8HAoFjdTLtkMxcGgqFHtJJIiIiygdINn4QiUS+oZMpJde1CQaDr+lk2uFY9kAyM1UniYiIKF+k86RgJBertZhW2M7PtUhERET5KJPfckoHJDO1iIU6SURERPkIycC+5eXle+lkSmCdHVpMK2xnSiQS+aVOEhEREaUGkozFwWAwpJNpgfXvr0UiIiKigoLi4uKPIUHYWyeHRU/KrdDJtAiHw/djf2/RSSIiIqJt59Bk4sJ6qYB9fTRd38giIiIiH5OEZrgnBePxX8d6anQy5crKynbVIhEREVF/hx9++HeLig75qk66pr9W/T+dTCm5gnEoFGpFZOzXuImIiMgHqlZ3H1jZ3LW8amXXq1UtXe9Xr9pkJaKqueu/iO7qlV0nVq98aU99yKCQbFTKzyfoZEohUdqK+IROEhERUT6zLGtU1cruWPTJ1ywkMo6i5tGXcNv94uyVXaN1NURERESZZycyzRtumb3mxX4Ji9OYZY/cdG6pXPPK53W1tlAo9OiYMWN20MmUwPp2wXpfCwaDv9JZRERElM9mrIjvUt3S/a4pSfEStY+9bFU2d54g6w6HwzOReKT0N5OKi4t3wzrfLS8v311nERERUT6rXrXx68MZlRkokCBZMx5eHw0Uj7tGN0VERESUerc3b9qv7vFXjAlJqqJ61eZZurlhkZ9ckFEZ+aaUziIiIiIqKJi1eosxCUllzFq92apeuelE3aQn4XB4LJKZ11N9Hg4RERH53Ow1WzaYEpB0RM2aF63ZT3V8VDftGhMZIiIi6qeyeeMEU+KRzpi9avNm3bwj4XD4s4gPdJKIiIiot+qWTSn7RpPTkI+eqpo3OPrZhFAodAZivU4SERER9XZXc+dYJDTGpCMD8YruxqBKSkr20yIRERFRf5XNXRk7d6Zv1Dz6oqW70U9ZWdm3gsHgcp0kIiIiGpj90Y8h2chEbPsNqO6jdVd6hEKh65DMPKKTRERERAOrad603+w16f+q9mBR2dw1X3enBxKan2iRiIiIaHDVK7vK7N9bMiQamQr5yEv2pays7DdIZA63d4yIiIjIqVnNm86UnyQwJRoZi+bOd4uLDq9BMjNXd4uIiIjIuZmPdF5StXJkExr54cpf//zA0bpLRERERO5UNneN+AhN5cqu93V3iIiIiNyb2dIZHulzaBAdujtERERE7mXDt5yqW/p/y4mIiIjIlZG+Dk3lI52TdFeIiIiIvKls6WwzJRuZiMGuFExERETk2IyWjQfbV+w1JBwZiBd1N4iIiIiGp7ql+21DspHWkI+6Kh+O/0B3gYiIiGh4qlZtnGhKOtIc3bp5IiIiotSYtXrTekPSkZaQb1bNXtP5Md00ERERUerMXp3+r3DPWrXZqnxk4xTdJBEREVFqVT287hN1T7xqTERSEfZViZu7q3RzREREROlRtar7OzWPvmRMSIYT275J1TlTN0NERESUXhWWtR0SkDdMiYmXkB+gnLmy8whdPREREVGmWKOqWzb9Qy5+Z0pSnMTsNS9alc1d629/ZP0+ulIiIiKizKtYsWKHyke6auVjKCcX4JNl9OTi12Y2b/qeroaIiIgoO1Q+1PWjypWd0armrudqH3vp3Tn/esOSmLv2PzIS82Jlc+fDlSs3HquLExEREWW/cYcc8s2Sww77tk4SERER+U8oFHo3HA6/p5NERERE/oJk5hQkMzWIS4LB4Pk6m4iIiMg/kNBs1WJBJBJ5VYv9YLmbEF/RyV4w/2+IA3SSiIiIKHOQhCwuKSnp+QZTeXn55zFvhU72EgwG28Ph8I91shfc1xIIBMI6SURERJQ5SF4ellskKgclEhvMWzh69OgdpZyMCQ0RERFlNSQkByMhOVAnjZjQEBERUVaThKa0tJQJDREREfnX2LFjP1JWVrarThqFQqE4YimSl/o+EcX8V5nQEBFRthtVXl6+k5b7Gew+yh1IXGSEpiwSiXwjOZAIfR0JzVNMaHIE/qlxxJd1shf8s9fhHx3QSRoAniwX48lyrk72gvvORdypk6SKioo+OmHCBEsn+xk/fvyA9+UzPFdflrrTyV7QBt8qLi7+vE4SoE4+hResN3WyH9y/RYsE6O4/jf7qAZ3spbCwcE/c96xOZg3s0+eQmH5SJ42wjKuPnDDvHEQN4rs6i/wA/7DnBkpocN86xDidpAHgyfBX1NM5OtkLnkSn476bdZIUOqC9SktLB0xa0CaZ0BigLW1G7K2TvcjQOdrbZ3WSQF7oUF+v6WQ/qLNNWiTA8+4LqK+XdLIXSaQHe86OFOxvSk8KxvS/p0yZsotOkp/gn8eEZpiY0LjHhMYbtCUmNC4woXEn3xMaOX60iSn2HeQ/+GcyoRkmJjTuMaHxBm2JCY0LTGjc8WNCg//h17DPX9RJI9zf4SShwbqu0TbzACJqL0D+gX+a44QG//QfIE7HP5wn0iXRhOY0nexF5iOY0PThJqE59NBD90FndC46m5/rrLyFtrSluLh4N53sJTmhOfLII/dE+VTEkfadeUpenFAvrxcWFu4s9ZYc0o/hPiY0SSShQZ28qJO9ZGtC4wSO6Qzs/2d0shfcNxV9+Le0vBTxBylLm0G5QcrkE+ggn0OnZw0UuN9OaNCQf4R/7hH6mM1yS9tIQmOqu0Sg3m7SRUlJQiNJi6m+JFBnPR0n6vdU3IzCvGLEodvm5iccf6epvpLCTmiwnPxuzaiysrJ9UJ4h8/KRJDRSL6iD9waIjboogSQ0Wl9bDPGi3KeLZg38j7eX0MlhwWtbjRZtON7/aZH8QBIaJyM0aMz/smcCyhUDvUvMRxyhcU8SGi8fOaEuL9diXsLxOxqhSYbHNGkx70hCg+PnR04OSUKD+npZnp+SDCeHvE5k4wgN9nfIC+s5hfV8D/ErnZSEpkWL5AdoDI4SGinbMwEv4IegI/iaTuY9TWgcnUODetsX84xDuvnES0KDervFsqxROpmX0JYcnUOD+pWPU65ErLbvzFNeEhrUYQAR08m8ogmNo3NosNzRiAZEDHGVzs44bHvIk4LdwPrmoV0sQRtYL88jnU1+gH+e64RG5knD18m85zShwe0teKKMR3TYd+YxtwkN6uw+1N+gJ/7lA9SBq5OC8c76/zB/kU5mRIVVsd2Cf9+xRyIWrpk+YqO5XhIazHsg03UmVqyo2CG53urX1mf8xdRlQjNPiyPmkfXRXaecMKXouN9P+ZVdZ1Z9Sj56Ip9Co3T6kdOT9kxAecTOCWmM14UQ1bG22scRL0s0tNW90oBpRPWidTVFumjGuBmhEZjeoMWMiMXrDmporZm+uK1mFerrlUS9xdrq/o06m4M4ShfNGDcJDeqr5+POTFkYn/0N1Nt1sbaaf0r76mlr8bp2zF/Q2B49a8Xm+t118YxBXbj+lhOWb9Vi2jTGo4WLW2ua7uu+21rWOc9qWl/fE0s2zLFk/pL19a9judsb2qs/pQ9LO7cJTSKRwWMycjIo+rLT0K4ev3/zAmvpxt71tnTjXGsF5sdaa1sb4tELVlgrdtCHpY3LhGa5FjPm7o2V+6K+bm/sqH/VblNoW8l1thxtT+oM7Wzp4vbaYn0Y5Qt0gOsGSmgwfx2e4HajQOP9Ipa9Fg36QJTr7QUyZIm8IMfrNssTXBotygNGUwc6AjRylNfHWuuMX9NLNdTHhairgRKas3D/bTppw3TaE5plm+7Zr6Et+pA84Zest+tjwLDrDHWL8usNrXWH6CrSCnWwN15sBkxoysrKeu5DG6xCPZZLoJ5/rbNTbv7jM/ZGcjdf2o+2oQEDCY1dZ+g4P0A9y0nLGYE6eFHqTid7QT39p1ivFIzlqlBX38DtkQjj+V2p0Nhe9zepK2lDpnoyhbRJ3L7fsL7uMF1N2sg3W3D8A57Yif6s58Uby4UT7Qt1nLaEpnF9dJ+G9uh9SzfOsdtR3/oZKKS94U1IvKk9+iVdVcrh+B0nNCg/ija3FiFfdU7ryMjiddHfIPl7e6jnZXIk+jW8AblWV0O5Ti5nXVFRsZ1O9iL3TZ06dUedtH8EDPP6vQNMl3taa/CiXPfKUC/IA4U8Dtn8i7Hnq/fUVabFmDFjdpk2bdrOOtmLfPUPL869fjgt3QkNOr2Hl3fdbayToUISRtTZm/eujxq/4phCo6SD1HI/iRdtOWdGyolAx5mWURG8C75nOd7xmerESaDj/CDWFk37BblkZGug84gOOeSQvXBjP5fRJnfAi9NXE/WYarH47HFLN8z9wFQXTqOpAy/m7bXdazoXjvgXDJAIfgz5TDWKdv2h3uRE6pS/SC+O117n9bmZCBmFQL+4TFeZUmhfOwX0K8x9SdKC5+z3dbKHPI+R1Lyikyk1Iz5jFxxzh5uE2RTLOudtbYjPiehqiTJrcXvdOUvwDsbUON2GDIEvbq09RVc94tBZpiWhWbJh7ldlGNZUB25D3gnhHdFFuuqctaCj5tM6YpCSaOyI9nw0m6sWt0avH2qk1E0s75pnxdbPy8ho6kDwnPwF4iy8MJ+NOAPxLBKck/XulMCL8r9Nx+818Bx9LVvOGUHdpfzbQLHno98azpuMvoHnpiSCkrQSZY68+7DfvRkapdeQDB/voOfrJkZUOhKaho45Qf3YKGVhdwDxuvt1EzmnqT36m1TXmURjR/3bCztH7kTYdMJz82k3H5M4DRlNXdxWa1/QLBvgOZqyj5zq11bshOfSe6bjHm7om7UR/8YpEsD/aDElZLTTzcdLLqNdN0OUXkhkHjM0wJRFrL3uEd3UiJGTiLWYEotemF2ejhfmRDS21z2lm8oZTW21h6azzmSkbM2aNT0f1+aCxnjdP03HmqrYNipYU6ibG1ElJSUpO08FyczbpuNNVcgohnzbRzeXMUj6XkYi8y/crpOP1nX2sC18YfZP0vnclMDrzBO6OaL0QEO7Ih3v/pJD1r+4teYK3aTvLeqY+2U5udB0rKkKqTO8mN2om/Q9+ZbN0s70dpjbova/uknfi8Vr/6QjdmkN+b/ENlRn7Dy9dMML59Om40x14E3H27pJX4u9VL2nfY6Q4RhTGdKnxdpqc6ZPoyzT0FZ3WCo/lx8s5J1grL32YN20r8mQs+kYUx1ynsni1uhY3ayvpXEou180xqOrdLO+FXu++rOpPM9oqFiCfkA37WsNrXUXpvsNWnI0xmt939ZQX2kdzUoOaWex9qjxBGiiYclUMpMIOUdHN+1bDW21c03HlrZA56yb9q2GeO1C47GlKWRUY/G6Wd/VzfsSkrJXTMeWzpCvg+vmfUmuGZOpNxuJkI9psuF8Gq/Qv5xtOq50BhKolJ77Q4QXmegFpsaW7mhqz9z1Q1Jtwb8X7CHfDjEdVzoj1lY/VXfBd5a21u+Vqm+BuYmmjnrjdT38INYWHTPcr8x6CRlF013wpYa2urtNx5X2aKvr1l3wnUyOZiVCttkUn3O47gLR8Hm9zsxwA+8CP9Bd8B25EqbpmNId0gHoLvhOrK1ukemY0h3ycc2idfWjdTd8Bfuf8dGZRCxqrZmsu+E7I/FmQ0JGaWJbr0vZCbqZEovXhEciodHIifOPKAvE1tWNy/THTYmQz1Ab10cP0F3xlZGss0xdgTnVZN9Nx5SJQDLlyx+JTPe3TQaPWl++0DS0R4tG8MXZisVrr9Nd8Q3s9xt9jyNTsaxzrsXfgKKUwJOv0dTIMhWxttq5uiu+0dhW9/1MnqTZL9rqMvrTF6nQFK/ffyTrTD620V3xjVi8buJIfNyUCPl/6a74ChL+FabjyVSgT3tZd8U3RmqUXkLOc0Od+fajdBoBkUjE+BtBy0ZoaDYR2fxCU1pa+iMt9tLQVnu16VgyFdIB6K5knWAw+FMt9hJrrb3OdCyZChnpkN/w0d3JKqFQaN+SkpL9dLIHEpqo6VgyFZLQZPO3UNCn/cz0G0YjOTojIT+toLuSVeRnS0zX90n11bq9BNp6xn9dnXwMLzTHo+P834QJE76os2wy3GdqYJmKbP6KKJ78/4c6s8Lh8O91lg1PvrRe4GyokI+7dFeyDtrZ/qgvC/U2XmfZkAQ+ZDqWTIU90tFWG9TdySpyUTTUVxtiISZ7fieqQX6N3XAsmQpJnBvj0WN1d7IO6utriA/Q5k7UWbaR+jg4EdKnrYjP2EV3J2tI8oe6ekRCZ9lirTVlIzkSqLFRd4fIsVHoAOYi1shE7PnYziP95JeL0tl7lsXQARyHF+m3kOB8T6Yb4rVbTMeSqZDRBnvHshjq6yy8g34Rbe0rMo39frHvcWQy5F17rK02pVeITjVJBlFn/0OdnSTTsbaRO68hEbHW7P89MdTXVNTbm2VlZfZoUiavc2QKu62l+Qd5hwPt7HOoL7nK8J9lelFb7dkjPaol27d3jrILGspU+Yl3jTt0dgGebPY8udVZBRMmTLDnya3Okse/kHg8Gpx9TQO8OJQl5uH+efaCgIzbnjd+/Ph+60yeh+k1icdjXT8ePXr0jliPNXHyxIsycfXRwUISqlAwbO+bHI/usuxzXWKfEUfIPNTdl5Lm9fweiKkeTfWN6Zv1sRL2qMsRRxzxsaR5PV/vTaxz4sSJPY9H3X1QNK74SdRZxi4+ZYpB6myOHoeEPUKC4/+/pHmt9oLgos6m62Mlfifz5OORxDy0oy32gjBAnVlF40qWNbTXvWs6lkzGnctuWI7n1HmIPyKKdRdlH8/XeefpLHmRnIuOP4q4R2fJC8HfdV5U6lXmFRcX/xjT9TIPjznbXhCSHt/zfMW8ZzH9HG47Er+wj23PlHkSqDv74zrcXxEoCb6z8NlZ/zMdRybj8pkXJf73EtfI/sGoRFuR0HkF8n+X6eQ2hfbRmVgOx2pfgRjzjk7MQ7nSXhAS/Vlymza1U0z/O/F47IedxKDOgtKnBUoCj470mzSJIyZvqwuJSZMm2b9qj+M/LTEP+9pz4rDTusT0hsRyqKPPyzw89reJeVhnzw8/OqlL7E+5bLtm5W234/lpPI5MxYrN83v2k8gx+QwVT/63EUessFbskuofoXQbfhhtGDNmzA54wXkCEZVpvNN/x3QsmQo/1FnSxyj25c1RZyOe0Nz9VOUd2J+vSKAz/4S9o6AfLdrzdZa8QO4rgYTlYzpLXiT2SsyXNqHzdkrMCwQCe9gLQmKehM6SZbdPhM4qkMQmeZ78zhge8/q+BfvugReZV03HkbHAi1xjWzSrR7WE1KE+P2tleqTPB5HRBrlOlb1zWQrtX5L4/6K9fToWj54+0iM0DW3+vYQHjQBk4ruiAT+GJ32NziqoX1u/00ie3S6R7RfwQp1dg+hC/X1cZ8mL80bTsWQqsr3O0EnOQIf5bFFRkf3OVMTa6jpNx5KpsDvstrpzdHeyDtrYAXiH/R5ue87zibXVPGM6lkzFttHb2qN1d7IS6utqtLUOPD97Tvge+XNo5mTlOTQCbeyX2s4iOqugYd2syIifQ9NWu0F3h2hoaMDPS1Kjkz1G6gJUiZDOR3cl66DOZiAB/IVO9oi11t5jOpZMRTZ/Mwx1tggvMN/XyR5IJu41HUumQk7UbGqv+5nuTlZBnY1G9Hz0ktDQEZ1tOpZMhYx0ZPOl/NHOFqDefq6TPUb6xVl+fVt3Jaug//86+rOZOtlj3rp5nxjx847idQt0d4i8Q2P6b9/GlcnAO/f/6a74xuJ43ZkjPETru1+Rlt+JGck688PHdH01xaPhkXxx9ut1aBraojHT8WQwNumu+MZIXvRy20hgfVaPBJJPNHbMud3UyDIVjfHai3VXfEN+k2iEv+5+oe6Kb8yPz99bkgrDsWQk/PpjqCNZZ4jXdTd8JdY+5+AR/rLDZborvoF93tTnGDIWy3z4ZoOyVOz56s+OVKcpQ7NN66p6Ts70k8b26AemY0p3SJ0titd/UnfDV7D/W/seT6aiqT2a+IaOr2DfR+Tco8b2OmtxvC6ku+E7cjkI03GlO6QvhZ5rCflFrKP20BEcQX1Nd4No+Braat83NLK0B95FbdZd8B352Ml0TGmPdv/WWUNH7RnGY0pzyC983/1MZc+3jfzk3udmHzAS39rx68dNCbG2uhmm48pAtOku+E5jPPNv0uyPVDtq+52nSORZbF3twZn++rb9bqBjzrd1F3wJ72IzmgjKMHpTe7Tfpcv9ZOmGzI8GxtpqW3TzvrRkff1m03GlOXquyeNHFVbFdpLIGo4rbbGsU75gUdvrSux+0tBWd6LpuNIZTe31r+jmiVIHCUZGv4rc2FH/jG7atxri0SNMx5auaFpf/4Ru2rfk5D/TsaUr5LfK1qyZvqNu3pfkqrPbXizNx5jqwJubd3TTvhZrq5mW4XNpmnTTvtW0of4Vw3GlJWQU8N710c/opolSJ/b8dTtn6ocqpXOW7emmfQ2J4DrTMaY6ludUndU9aTrGVIc9nN0WPVU362sN7dHfZ+L6KvLclJPedbO+1xSvX2M6zlQH+oE3dJO+tsJasUMmkmd7hL41eoFulij1Yq11P0739Qjk20Hz1836rm4yJ6T7q7VyouGijtmjdXM5Acf1Xt/jTHXEcuzaFjimOX2PMZWxFM/Ne1tz73yGho6610zHm6qQPm3t2vqddHO+t+D56m+lPalpjz6gmyNKn8VttX9I17ee5PyJxa11x+umcsbSjXfvK98+Mh3zcMN+V95W2/MbQbliwYsL9khXnWm8oJvKKfJL7/INJMPxDiu2XYYgu68K7JV862jJ+jmvm457uLFkw5ytK3z6rcPBNLTVBNKV1DTGo4/qZojSb0l77cFybQBTY/Qa9sdMrbP7XdUzV8ilzhs7oikddbCv4txW23Mp/FxTsaJiBxmqNx2715DRslhrXc8PSuaixe11l6TyTYc815dsmPtVXX3OQjK41v6ow1AHXgLrerXCsuwfGc1F9z4X/Uwqv/4u58ygzq7V1RNlTuPG2s+l6oS6pvX17zauj/b81koua+yo/1cqOk28YH2wsLXS/kXdXLe4rbY5FR/bSdK8uLX2FF1tTpOPhpZumDOsb9lJO22M1z29sHPhbrranNfQFj17uD/3si2ZrO33EwK5yH6j1l732HBfC5asn/NBrK32UF0t0choaI96fje4bcgyer6uKm80PTfrl+gA/uPlq/DyVVO8k7xOV5U3GuOzv4EO72UvP5Zqfz23tbZZfnVZV5c3Gtvqp8kbBjeXrpeP+ha31a1v+Hf113U1eQcJyaz7Ns1HUmeuI1Pcv2WBPDf/uWJFhf1L6/lkUcfcL8daa9ru2+T8Y2L5uBxvVD5AXefdawBluYaOunK84LwpyY1E3xdryeBleHIJAsu9GuuYXaIPzVsLW+t+jLp5TkYf5ByFvqMQ8g5ZhmHt8xfa5De16o9esWJF3nWWyZa1R7+FDnAVEuGtkhD3G7nBC5DU2bbzb2rfb2yruSqXvpXj1aJ47TdRP9V4wX1X2pXUTyLsj3vbardKG8Nyf1z01OyeX0HPdzJq0NAWbcbt+0s6trUr+ban3Eo7sy862la3LtYeLcvHRKYvuYQAkuFz0NZelzYlbSu5rcnrQCxeKx+91zW8UOPr64xRnoi1V3+rMR6dhMb7p9qW229saI/+JdZed6R0qroI9SEf4TWhU2xor/1L7arbr0dneT6mj2tal1vfXkqlpu55n2hsry2W9lXTctsNDR3R81E+dUm87iC/X1smE8aMGffJooOLvqyT5NBhBx9+hRbJgUMOOeTT48aN+4JOEvlTSUnJ98LhsO9++XmklZaWWpFIhB2AC1JnwWDwczpJDoRCoQ7U2X90khxAn/Zt9Gnvod7211k0BLSzjQj+HhP5GxrxVjzxj8LtFJ1FQ0BneS6SmQmos/d0Fg0BdXY+ogx1lhNXsM0EtLGf4bk5HfV2Fm4n6GwaAurL/g0rtLUP7Bk0KNTTzxE3Ic4OBAJlOpvIX9BJHocn/++ljFtm5w4l6godwHmI8fZMGhTq7FW5RX39Ee2u1J5Jg0q8MAvU2/tapEGgbZ2JejtSyridhjjGvoMGhLa1VYtSf0wCyZ8SHSYa8Vr5+AQNe459Bw0IdfQA6uuLibpDvfn6F40zAfX1UHl5+edxu0WmUYessyGgXdmJH9rZj1Ff40tLS3/E5+eQRqG+XpcC6uotvWVbGwTqx35Thrb200AgEEZ5NGKu3k3kD3jiz0V8R8pozGvlFp1o86RJk/jtiQFI0oc6e0TKuLU7Sjz5f45ytZSpP7QtSf4e0nIiofkJolLKZIb6sT/OxIuMJDL2KCBu1yMxzJnL86ca2tcihH2OFurKPi8Qt6PR/i6VMvWH+npXblFPP0E5pPPWFRYW5sRvzlGewDu+nq/j4QlvJzTSWRYXF+fNBbrcwovLHlOnTrW/mSMnuNozoaio6PtapD6kzsaMGWN/VRad5sv2TJCT0bVIg0CdHYC2xo81XcKbj/9pkRzA8/FneB0I6yQRERERERERERGRV8FgkOeAuBQIBOxzacg5tLNFWiSHwuHw99HWAjpJDqGtbdAiOYAm9q0QL91BuQBPfvscGnIOLzT89oRLaGf2ScHkHF5oek4KJufQ1vg1dxckcUadnayTRP6FDpMJjUv8urZ76DB7TgomZ/BCY39tWyfJIdQbr6fiAp6b+6PO7GuSEfkaGvIPtUgO4UXm51okhwKBwIFaJIfkW3VTpkzZRSfJIfRpn9IiOTB69Ogd+Q1XIiIiIqJsEAqFIlokh4LB4PFaJIcCgYB9SXpyDu+aP19aWvoDnSSHwuHwDVokB4qKij7DUWfKCXhx5jk0LqHD5Dk0LqGd8aRgl3hSsDd8frqD+uJJwZQbmNC4xw7TPSY07jGh8YbPT3eY0FDOQId5kRbJITz579IiOYQ6u1aL5FBJScl+kUjkqzpJDiERPF2L5EBxcfHHSktL+XMkREREREQjjr+w7V5ZWdnHtUgOhUKhfbVIDskPxhYVFfH56RLa2le0SA5IO+Pzk3JCWH9tm5xL/rVtcgYd5itaJIfQzr6NevuDTpJDwWDwJS2SA/KxJursEp0k8i80ZCY0LvGkQ/fQznhSsEuBbb+xw4TGJbS1zVokB0pKSv4PdXaxThL5Fxryg1okh/Aiw8v4u4R29m8tkkPyQoO2xh8NdAl1tlKL5EAkEvkCnp+n6SQRERERERERERGRV6FQ6CktkkOoM55D41IwGNykRXKIJwW7p9/YYZ/mAk8KppyBhsyTgl3iScHuoZ3xpGCXeFKwe/IL5WhrT+gkOcCTgiln8Gvb7vFr2+7hhZknUruE5+Z3EDxZ0wUZoUGdPa2T5ACem19D/E0nifyroqJiOy2SQ+g0t9ciOcR2RkRERERERDSYUCjEH1p0KRgM3q9FcgjtbL4WySH5KABt7TidJAcKCwv3RJ1V6yQ5UF5e/km0tSt0ksi/8OTnOTQu8aRg99DOeFKwSzwp2D28OO+FOmvQSXKgqKjoM6izO3SSyL/QkJnQuBSJRJjQuISEhr+v45KcFMyExh20s71Rb006SQ6gvj6LdsaRevI/vAs8UIvkEDrNg7VIDqHD/LkWySH5CnJ5efnuOkkOyMnnRxxxxMd0khyQLznwV92JiIiIiLIB3jkXa5EcCgaDR2mRHEKdhbRIDpWVle2D5+fhOkkOyEnBgUCgXCfJAbSzXdHOjtVJIv/CCw3PoXGJJwW7h3b2pHyEopPkQElJyZfwQnOZTpIDeG5+CnU2QyfJATw390adLdZJIv9iQuMeExr3mNC4x4TGPSY07jGhoZwRCATYYbqEOputRXIInebfeYVld+SFBvErnSQH5CRq1Nk4nSQHxowZswsSQX5MR0REREQ04uQkOi2SQ/yKo3tsZ+7hnfMOkyZNYltzQeqMz0935KvuJSUl++kkkX+F+WvbrvHXtt0LhUJry8vLd9JJcqCsrEzOofmHTpIDqK+vyMebOkkOSAKI14GYThL5F578TGhc4knB7qGd8aRgl3hSsHuS0CD+ppPkAJ6bPCmYcgMa8yNaJIfw5H9di+QQ2tmDTGjcQZ19DnGuTpIDkUjkC4FA4GydJAfk42D0afxmGBEREREREREREQ1XKBR6XIvkUDAYfF+L5BDa2Rp+5OQOTwp2D8/N7yKm6SQ5UFhYuHM4HObrAPkfnvw8KdglnhTsHtoZTwp2iScFuycJDersFJ0kB+Tbh6izx3SSyL/4tW33+LVt99Bh8mvbLqHOvoLn5+U6SQ4UFRV9H3XGERoXZIQGbe1fOknkXxUVFTtokRziSIN7csEzLRIRERERERFRP8FgcLoWySHU2RItkkOBQOBWjtK4g3b2uXA4zOvQuIA62z8UCh2uk+SAjDijzhbpJJF/oQPgOTQu8aRg99DOeFKwSzwp2D3U1wFoa6U6SQ7wpGDKGYEAExq3gsEQExqXSgKBJwo4QuPKYcHgFwvHFfMy/i4UFYUO+M2hh4d0kpwYPXrHouISJjQ0sqy19btb6+6xrBcWeIvWe6xnGm423+c02hf57sXd6mw0H4vDeGzBdai7hcb7HEUe1tmzjbdY1vPzjfc5ja0vzL9Wd8cXtq675yrTcTiND56923rr8VrjfU5j6/Pzr9Ld8QXs73Wm43Aa7z0zz3r3X3OM9zkOtHXdHd+QPsV4LE4Cz8tXWqrN9zkNH9YZZRk7oXlmrmU9jSfwSAWeDLo7vmG13Ws+lkyFH+ssPsJ1hti6do6/Epqn51xlOo5MhuyD7o4vbF1bf53pODIaaOu6O75hv1kwHUumAn2q7gqRN0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjR5KBgMXoybUdumMicSifwyFAqdoJMpw4TGGyY07jGhcY8JjXtMaLxhQpOHysrKpNIzntAgkboA8YROpgwTGm+Y0LjHhMY9JjTuMaHxhglNHhrJhCYUCj2ukynDhMYbJjTuMaFxjwmNe0xovGFCk4eY0KQhmNC4DyY0noIJjftgQuMhmNC4DyY0mTdYQlNeXr6XhE4OCMnJ3tOmTdtZJwck66qoqNhOykxosgsTGveY0LjHhMY9JjTeMKHJQ6aEBonGH5F8WLjdGg6Ht5aWllpIQI7Wu3vg/tW63P8ikYjc/leSG727B+avHD9+vKzjHVkXphsR5yGY0GQJJjTuMaFxjwmNe0xovGFCk4f6JjRITBYh0XijqKjoozpLlvk45r2PuF5n2TB9kRZtmL4HsUEnbUiIOjCvTSdtmL4Myc3LuGVCkyWY0LjHhMY9JjTuMaHxhglNHkpOaMrLyz8vIy6BQGAPmU6GROerMrqik0YyOpO8DMo/GOgjLSQzLzKhyR5MaNxjQuMeExr3mNB4w4QmDyUnHEgwKhAdUjaRZXH/ATrZA0nQ7khmPof7xicnNJhXg3n36WQvuO9y3MeEJkswoXGPCY17TGjcY0LjDROaPJSc0CDJWIBokrIJEpAXI5HIJJ2U6Sp5vCQxeNy/EDf2SWgexTJX62QvuI8nBWcRJjTuMaFxjwmNe0xovGFCk4f6jNDMQDwtZZNwOCwjNIdLGbdrEA/Yd6jRo0fvqOuz4f5lSFyqdbIX3HcZgglNlmBC4x4TGveY0LjHhMYbJjR5KDmhQcIyEUnG21Luq7i4eLfkZEXOtdFiDzz+E/JtJ52UpOVqJDT/1slecN+zTGiyBxMa95jQuMeExj0mNN4woclDyQmNQJLxHhKTC3WyB+YvQSzWSTuhwWO/pJM23N8mozg6KbaTj6CKioq+qtM2JD3f0NEeJjRZggmNe0xo3GNC4x4TGm+Y0OShvglNcXHx52Ueko3nkXScjlu5XsxGlF/VRWzBYPAqGY3BfX8MBAKn4/7XEUXJozgCy50v83A7E3E04l48bovMZ0KTPZjQuMeExj0mNO4xofGGCU0eQmJRqsVeZD4SjrtxOxOJyg91di9IVA7AMlVY5gb5qrdlWaNM65s4ceJ+WO4mxBzcf7DMQ+L0DZR/ZS+QQkxovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke0xovGFC4x4TGveY0LjHhMYbJjTke9aKk3e3lp1qWUtHMFac5r8n/4Nnmo8lU7HidP/V2UMjXGeIrUun+SuhWXbqVabjyGRsXXKqvxKaJdOuMx1HRgP9g+6Ob0ifYjyWTIUP64yyjHVjwe7WlQXWiMY1Bf578l9vOI5MBuvMU2y9osBfCc1VBVeZjiOTgTrzV0JzecF1puPIaKCt6+74hvQpxmPJVPiwzijLMKHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0JDvMaHxhgmNe0xo3GNC4x4TGm+Y0OSB8vLy7YPB4E91MucwofGGCY17TGjcY0LjHhMab5jQ5AEkM2eFQqHHdDLnMKHxhgmNe0xo3GNC4x4TGm+Y0OQBJDSnIR7VyZzDhMYbJjTuMaFxjwmNe0xovGFCk+OQyPwnFApJvIfyFsRrepcN87+CeZtKS0st3L4fDocv17t6YN6rcotl70bZknXh9gKZV1FRsR2mH5fH4/ZtzD9d5icEAoEDMW+dlHH/HfJYXXZTJBL5gr3QMDGh8YYJjXtMaNxjQuMeExpvmNDkuPLy8v2RqFyO+HdZWdm3kFx8X++SZOenmGdhXkDOs0F8EuVNSDaW6CI2TUCeQnJSptPfw3LyuOORlGxFlMh8rOu7Ml/WK9MCj/klpl/D/Mdwe2ZhYeGeBx100K5Y35W63n11Uc+Y0HjDhMY9JjTuMaFxjwmNN0xo8gCSitOROPQ7hwZJxlbEj3XSJomNJDljxozZQWfJcpJ4XKSTNkz/TuYjmZmks2yyHOJJnbQTGiwjSc40ndUD8x7Fss066RkTGm+Y0LjHhMY9JjTuMaHxhglNHjAlNEgm9peERCd7wX1diIN10h6hQaKzl07aioqKPiqJD+bvpLNs2M5PEK/rpJ3QyON1speSkpL9JNnRSc+Y0HjDhMY9JjTuMaFxjwmNN0xo8oApocH0eQhJSPqFJBm47wxdVD5Kkvnb62QPWVaLPZCkHIRk6C2dtBMarOttneyluLh4t4GSHTeY0HjDhMY9JjTuMaFxjwmNN0xo8sBACU04HH5JJwc13IQG0//TyV5klIcjNCOHCY17TGjcY0LjHhMab5jQ5AEkFWf0TWjk3JmBPnLqa7gJzUBJC7Yvht0AmNB4w4TGPSY07jGhcY8JjTdMaPIAEoxSJDTdOtlDP1o6XCcHlIqEBtuZrLN6YN7riD/rpGdMaLxhQuMeExr3mNC4x4TGGyY0eQCJx16SVITD4R8igfimzpaEYrycw4IE5ByU90XyIV/rPmv8+PG9/ikp+MjpNWxnA27PnDBhwucw7+vY3hZEvyTLCyY03jChcY8JjXtMaNxjQuMNE5o8geThBMT/EL1O0EUC833M60C8h3gTScdMJCp9v7n0kFxATyd7YH6/r1xj3jcRi3Sy1zk0mD8D5XcR76Dc62vgw8GExhsmNO4xoXGPCY17TGi8YUJDaZWc0KQLExpvmNC4x4TGPSY07jGh8YYJDaUVE5rsxYTGPSY07jGhcY8JjTdMaCitmNBkLyY07jGhcY8JjXtMaLxhQkNpFQqFxoTDYSY0WYgJjXtMaNxjQuMeExpvmNCQ7zGh8YYJjXtMaNxjQuMeExpvmNCQ7zGh8YYJjXtMaNxjQuMeExpvmNCQ7zGh8YYJjXtMaNxjQuMeExpvmNCQ76HD3BUd1uKtVxYsGrG4oqBRd8c3sM/LjMeSqfBjnV01wnWGQMc5VXfHF7DPx/c9hhGI43V3fEH+x4ZjyGygf9Dd8Q3pU4zHkqnwYZ0REREREREREREREREREREREREREREREREREREREREREREREREREREREREREVHaFBYW7hkMBq8KBAJXJKKkpGS83k0OoP4ODoVCJ+gkDQB1VIyYhahFnf1CZ9MgysvLdwqHw+ejzu5GnZ2ls8kh1NvtWiQiP0JCUjhp0qSP6uSgIpHIV9FR/gud5m/x5J8igXk/07vzBhK5b3l9kUWdvYNYqpN5Ay+2e+G4J+vkoLDcT9DGLkcC/fGysrKvo65fw7w/6d35ZBSO+49aHhTqaH/U2ZtYfgzqbWdMX1JaWpq3PwiI5+gJaHPb6+SgUGdfQX29hfrjDygaTJ48+SOoozN0kih74Ym8EU/kT+nkoNBJ/AAN+yadzFuog/mot6N00jHU87l47I147HKdlTdw3BEc90yddEVemJA4592LTXFx8W6os26dHBQSv3202AOPXYR6m6CTeUWSOScJDdplI+JxKWN5JjQGqJ+fIB7WSaLshATll2ioW9DxlaL8a8nE9S4jdI4lWM7RO8Zchbr6FeJB1NvfpFxUVPQZvWtQqLc9UH+v4lZGd/IqocFx/xLJ3F9QZ41a/o7e5Vi+vdignr4ho6doKy+j3n4uz1W9yzHU88V4bF6NbI0ZM2YH1NkvJKHB8f9G+jW9a0hMaPpD+zkA9fh71OlalMeg/EO9iyi7oJHKaMF/0FBvx+0NaKyDjtRguVOwTEAn8xLq6TrEOkSTlh199CTJjCSMWH5/RF4lNDjeq9B2FuH2GcS1aEPH612O4DEXyON0Mi/ghfhIxE2otzdxew3iSr3LMTz2MTzuWzqZF6ZMmbKL1BfamIXb69FubtS7hsSEpj+0oT+jDqOILsR1qFN+9ETZC43U8UdOaNxXY9kP5N0PyltRvlnvyis4djnp0vFHTlj2TjzmPC3nXUIjcPyuPnLC8pehfT2M2xdxe7rOzituPnLqCy88v0a9vaaTecfpR07JmNCY4TnIj5zIH9Bh9kpoIpHIlzHveMRxEmjIA53IKScs/hPL1Op03sBx90poysrKdsW8qUl19ju9S5Y9FPP+pZNMaJLgRfcEqS8JqT95Ade7CoqKir6PF6UD0R6Pw+27WOZovStvmBIa1NOxiTqTGDdu3Cf1rh4lJSUykvqqTualvgkN6uRnyfWG+hmrd/VgQmOGNseEhvwBT+5eCQ3KP8Q8+SjlWgk05L/pXUb52AmgTnolNHhh3gPT8vGdXWeYvlXmo/w5LLtVyqinnSTwQn0A5q2oqKjYzrKsUXJfPsAx90toME8+ErDrDHHjkUceuafe1Y+8QMnHCTqZF0wJDaavTqqza+UNiN5lQ52uRPur08m81TehQb2MT643RL+PPZnQmKHumNCQP+CJ7fgjJ5OysjLpBPLmhVngye3oIycsJ+cmvYP6lRMUewLzLbwQWbjvV7pozsMxe/6Wk8BjHxo/fnxenZDo9iMn1PHLWL5UJ/Na34TGCSY0ZmhXTGjIH9ABtpeUlPyfTrqCx+2Hhm6PQOQT1FkN3gX3fKzkBurse6izZTqZN1Bn4xBzdNI1SQDzbYRGP8p8QycHhfZ4Oup3uk7mPS8jekxozPAm7Mdoh0/rJFH2QmOVa6rcfOihh+6DJ/TuOtsIy1bjXePnZTm8wPxMOgDM+77enTfw4lGGJ/hjcuVkp1/bTkBd5+U5NKizPST5RX19FOWv62wjLNeJtrW/jFBg2U+jjT2I29l6d16R5xgSm8/gBfp7OssIbeol1FuxJMzJMVRd5yq0mU2I30r7waSjEWSpay1SErnGkSSIcovIq2/NkQ+hM5yHWIUO4BM6ywgdplwd+GnEK4g75B2k3pV3cPxXItoQB+gsR1DPcl7NH3Qyr+DY5eTfTtwOeoIvkuVvYJn7sax8PPcQEpsf6115B8cvV01+DreDfv0Y98v5SNMRt/WJi3WRvCJ9E479QYTjq3JjWc8fieY6JIbyJq4NbTEvv3FIREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREQ0kKL7wwUlD1sHV6yxSi9/wgr/Iz+j/MonrW+f8ohVcPgSq+Tvj1sRwzL5EFIPPzpzpVVwWJN12IWPWpE8bhPjURdfPwltonDZmwWFsZ31GUNERERERESUJkVN4YKiB61L741bNau7raqVXXkZcx7fZJVf9ZRVcGiTNf2BjVZ1i3m5XI/6xzZZJ97+jFXwm0brqsZ2a/aq/G4TgcuetAoObuQgDREREREREWUAB2ns4CDNtuAgzYfBQRoiIiIiIiLKLA7S2MFBmm3BQZoPg4M0RERERERElFkcpLGDgzTbgoM0HwYHaYiIiIiIiCizOEhjBwdptgUHaT4MDtIQERERERFRZnGQxg4O0mwLDtJ8GBykISIiIiIiosziII0dHKTZFhyk+TA4SENERERERESZxUEaOzhIsy04SPNhcJCGiIiIiIiIMouDNHZwkGZbcJDmw+AgDREREREREWUWB2ns4CDNtuAgzYfBQRoiIiIiIiLKrFwYpGnptmavedG6ueFJ6293LbBmPNhuVWOecdkBwpeDNDjGWas32+W7/hm3roreb118+zzr4jvmW7cuedqeL/e7qQt/DtKgHlZtsipXdlo3Ln7UuqJ2mXXhrVHrsuoG68ZFj1ozH16PethiL2d+vDk4SENERERERESZNcxBmmq8Ob616V/WdfNX2mXTMmkJHZi5fdmz1rmX3WKFIxGreFyh9bsz/2zd+UCr633xPkjTbW/v2rsfse68f53rwSGvUfnIRhz3TVYkUmqNP2KydVrFFVbFjbOtS26fZ/3pmrvseggGAlbZ+AnW3+5a2DOYM1QMZ5BGjv2GhautWxqfsv8/pmVSHfJ/vvHeNfb/fvKxJ1hn/e166683VNv1cP5Vd1gnnnG+FQoGrFAoZF06c5EO1pjX1Tc4SENERERERESZNYxBGhkk+ftd91qBkmJr6ml/tGoee9m4XCqjetVm6x+zGq3S8vFWMFBiTZl6inVl7XLruvmPWEG8Gf/dmX/K6CBNZfNGe4Bo0m+PtW5a9JirQQDP0dJt3bHiBaviptnWjAc7tm2zz6CI1FM1bqeefp5VdPhh9gCOk33zOkgzC9uTQZHDDz3Y+tPVd2amHnqiE/+vTcZtyn5VPrzBOuakU61AIGD97a57rNmPOmunHKQhIiIiIiKizPI4SFPZ3Gm/Kf77jEX2WQoyGDB7zUv2fAnTY/qHnIXSZl00fY513fxmx2ehyACFnLUy+9GX7DfnMiBz7d0P22eOZGqQJnGcMx/ZaJWVT7COPPp4+6s1MjjiuA5wvDMf3mBdUbPMuqxyMda1AfPdDZQNFrIvV0ZXWMXjDrdOPucCa8ZDHUPWsZdBGjlW+T/I4IwMCJ1/9V2968FBXcj/67Zl/7Yuvm2udUvjk47bgpOQdipnHcm+/fmamVYNB2mIiIiIiIgoK7kcpJE347ctf9b63Vl/saacOM0enJBBmrIJE61jTvqDdfTvTrV+e8LJ1tmX3jTkoICs6+aGJ6yS4nHW2X+/wT7rwcsgxUgM0px+wZU4/lPs4w2Hw1aktMw66viTrKO1DuTW3o8hjl+WOeEP51qTjznBuuufbYMu7zbkK07nXnazVVR4qPWX66scnd3iZpBG6vimxY/Z7eDo3/3BmnjU0fb/QG4T9SBnOp135e1DHpeclXVl3X322VGX3DHfHuQxLec2Zj/6onXDvaut8olHWEeijuWreU7XzUEaIiIiIiIiyiwvZ9K0yBv0zVbNY69Yl1XG7EEaufZH7ROv2fPtaBl6kOTDQZoi6+y/3+irQRpZv/1mv6Xbvu6LDFbdHHvS/ipNog5Mj0uO3oM0U1M2SLPt2DutMy+6xioqPMw646Krdd7Q6/ZyJo0cq5xF9edrZ9gDQnKbXA9O2sKHgzQBT4M0co2em2KPW9fOe9j62533WH+9sdo65bxLrImTp1hHn3iKdWnlIt0P5/XLQRoiIiIiIiLKrGFek0YuxmoP0px+/qDXpJGvvcjXeZJD5smZGPYgzd9usJeTrw/1Xm5jv3X1jZEYpEmEHIM9SDPlePtYBjtbRQYSko9NHnv7ihe2DdIcfYJ1x/0vYF7f45evQJnX1zeqV2+2B3rkIsJynaDfHn+S/YtXTs6gScRwrkkjFyyWQSG5HbQeDMco/y/5VSb5H8ovVFViub7LyONM65OBrZkPdaAtLrb+fF2Vdf5Vd1qn/fUf1sln/9UqP2KSNf6II9Eu/mL/f9wM/nCQhoiIiIiIiDIrA4M09hvwmqXW7/94AeLCXnHiGX+yL/g7+dgTrVPOu6jXfSed81frj1dMt+S6NYOdjZHtgzSyL3K9lWl//rv1+3OT6+Ai62Qc44RJR9nrkHLy8duB5W9tWmsPRPRdrx2YL3UjF8Q9Qr5uFAxa5/zjlm0/Q+7ybBSJtA/SYH+lzZx09l96Hecp511sHT/tLCsUDNlfm/t9n7Zw8rkVVsWNNfbjjevtF1gOy8pPc0vdnX3pDVbR4YVY10XWjIfkJ9qHbh8cpCEiIiIiIqLMytCZNNsGE3qHvLGXi8TKmTTnXHoj1rfFfvOcvIyTN+XZPkiTiOTjkpDjlzNfTjjtj/bXnWb8M94zqJAcA61Lzi4565LrrJKiw63jfn+GdVPDE7p9d//H5MjEmTQSfY9RLuZ7VXSF/T/8250L7Mf3Xcb5AE2fwOPkAs3H/f5M+yLKsp2h9k+CgzRERERERESUWSkapJGf4Hbyxjc5ZEDGr9ekSYSbQZq+Iccv++r2mjR2vcWesMZPmmxfC+emRY/a/wvTsm5j2IM0hx9mnXflbVr/zv+Xsv/erkmjAzjG+7aF1NeMB+PW+AmTrHAobF1/TwsHaYiIiIiIiCgLDWOQRt6I39r0lDXxyN9aEyZNtn9Gu+bxV3oGDAa6hkgi5M319CVPW1Om/t76642zXQ+sJGIkB2kkjj/1bPsaMBffcbd9MWU5fhkYMC2bHHL8d/0zbl/Y9+RzL7Dukq8oORikkZ8el6/tyPH+fca9VvSpN+wzUYaKKgf75HWQxv4fzHvYChQX2b/odPt9z9n7abeF5qF/glsGTa6b/4h19O+mWVfMXuLo/yd1fPvyZy35BSv5GXO5jo1sU9YlIWX5atOFt9ZbpeXl1oQjj7LbidMBLQ7SEBERERERUWYNY5BGQt5M39LwpHXCqedYZeXjrXCk1D6z5PQLrxryJ7gTIWdhOFluoJA369cvXGVN+u2x1h/+erk98OFkkCQ5vA7SyHbuenDbQMv4iUdYERx/+YSJ1hFHHbNtsMjBcck6nA4qybJyjR65hssRk4+2tyO/YDRUyHVvbkAdDbUdr4M0EnL2iwzUyE9vR8rKrEgp6mLiJOvsS2+099v0mF6BurLPpnLRFuRrTBdNn2tfx6Zs/ET7p9DDkYhVWlZulWN64lFT7J9Lv3XJWsd1nAgO0hAREREREVFmDXOQJhEyGCFnKCTOZPB8/RDP0W2/CXf7RjwRwzmTJhEywGDXgZxJ4/jrOt4iMbDjJkzr6RvDGaRJhGxr1pptZ7Jkqi1I+7PPntE2KLcy7WhwaIDgIA0RERERERFlVooGafweqRikyYVIxSBNrgQHaYiIiIiIiCizOEhjBwdptgUHaT4MDtIQERERERFRZnGQxg4O0mwLDtJ8GBykISIiIiIiosziII0dHKTZFhyk+TA4SENERERERESZxUEaOzhIsy04SPNhcJCGiIiIiIiIMouDNHZwkGZbcJDmw+AgDREREREREWUWB2ns4CDNtuAgzYfBQRoiIiIiIiLKLA7S2MFBmm3BQZoPg4M0RERERERElFlFy+xBmr8vjNtvyCubu0YkZjaP3LYlZHCi/MptgzS33r/RfpNuWi7Xo+7RTdaJt20bpLmyod2a1TKy/5eRDGkTgUs5SENERERERESZUtL0pYLiZX8vOLzxuoLDm67JeBQuvXL3cfUzv11ywYt7FtVVFRQuv9K4XKZi3FLz/HTEYUuuLjjs/ksLDlt2xd7jqpZ+vujq1/8vcLW197iZS6VejI/JVKSjHvC/3eHwu2fsOa568T5Fdz3wqXE3Pf/Zous7v1h01TtfLr7S+nIJQm4RXym5yvpM0Q3t2x+++KaCw1FPpvVlIsYtvbageMmfCsrrt9dnDBEREREREVFuCgQCnw6FQhsikYiF25cRX9G7cs7o0aN3LCsr+0wwGCzFcd6DeBPxX0RrOBy+BbdVCKmDA/QhOQXHVYyYg7gJdXAOYkJpaemvysvLP4n//5cxfwbmfYC6sBBxtI0f6EOJiIiIiIiIKJ3wxvyXiC68OX9BB2lW4PZFvFEfp4vkhEAgUIRjehexBSGDMYfi9nPl5eXbI3bSxQow7xnEvYWFhXn11Roc818QXeFweCzqpgLxFqZ/qncTERERERERUTrhjfh4OWMiEolMxRvyX40fP17Onvgh5mOWPWBzgi6akwKBwIE43k4c55NFRUVflkEJlN/AvN/rIjlJBqVwrF/UyV5w/JPlf4/7S3QWEREREREREaVTOBy+APEOolymDz300H1QLjzyyCP3lGm8UT8E8SretF8t07lEvtqDY30Yx/diIBA4RGfLoM2tON4u3H5aZ+UUHO9Xg8FgDMcug3FViE/oXTYc+891gOY0nUVERERERERE6YQ34Vch3kfsr7OMysrKvoQ37i/jzfyd8rUgnZ0LtgsEAt+qqKjYTqelTr6IkK86RXVWzsD/7vP4P25EPI7jM36FKRKJfBn/524sc53OIiIiIiIiIqKRUFZW9nG8SS8vKir6qM7KKTIIM3Xq1B11sp9AILAHjn8i7KezfGvMmDE7yAWSdZKIiIiIiIiI/CQYDB48ceJEq7S09ECdlRPkjJlwOPw8olXOFtHZuWgUjvXAUCj0JP6XHyAulsEavY+IiIiIiIiI/EIGaSZMmGDJG32d5WtlZWX74JjujUQi8hPbQZ2dk3CcZ4XDYbnQ80L8/76us4mIiIiIiIjIj/Am//uIFXij/zWd5XsTJkwY9CtORERERERERESUYnIR4HA4/Nny8vLddVZOkQs3h0KhCI5xE+LVXDnjiYiIiIiIiIhySCgU+ko4HH4B8e/i4uIf6+ycgGPbF/EAjk2+znTjuHHjPql3EREREREREVEukmvS+O3CwTqAMR/7/g72+widTURERERERETkXz69cPAo7Pfe06ZN21mnfauwsHBnHMu0UCgkFzpu0NlERERERERElG98cibNqHCOXXcmEAgUhUKhZ3Fc7+B/cE5hYeGeehcRERERERERUfYJBoNfDIVCa3D7Em7H6GzfmzJlyi4SOklERERERERElJ30V40qI5GIXDj3BJ3tOziOvYLB4LU4hlfkrCWdTURERERERETUWzAY/FVpaakVDoez7teRiouLdwsEAnvopG+MGTNmB9Tr0ajT7kgk0i1l+alwvZuIiIiIiIiIqD85uyNbLhwcDoe/j/34tE76Wmlp6Y/kLBqdJCIiIiIiIiIaXGlp6cGTJk0a0QsHh0KhfcPh8DLc/hdxqM72Bez3Z4PB4L2RSORWnUVERERERERENLjpCzt3q35o49crm7vGVa3s/n1VS/eFMx/ZcNFty569oqq588KqlV0Vclu9svtY3I6d0dz9xelr1uyoD085ue5MOBy+KhKJvB8MBs/BrFHb7sluZWVlu2J/L8W+v4l9fzQQCPxS7yIiIiIiIiIi2qbqie6PVK/sPLRyZefFVc1da2ev2WLVPPqiNXv1FmvWqs2ITVa1REv3ELFp2/KrN9uPrXn0JatqVff7VSu770ecU/XY5p9WWNawr7MiAzUSOukL8pWscDg8EUVfDCoRERERERERUQbIQEllS9ePZjZvXFC1sut/tY+9bA+uoJzWkMEf2RbKr1Y1d95S9UD3l+rrrSEHW0Kh0Ncikcg3dDLrlZeXjw6Hw1VyjRmdRURERERERET0IfsrSSu7NtY9/op91kvyAMpIhAwMyaBNZXPXU1Uru3+ju9lj7NixHwmFQg3hcPgNRFhnZyW5Rk4wGJweiUTeQXlpaWnpt/UuIiIiIiIiIqKCglsfaP/UzOau2bNWb94qX1kyDZZkQ8xavcWqXtn9TlVL1+VXNDV9JFhSdElpaakVCoUq9FCyWjgcPj8QCGT1QBIRERERERERjYDK5q5vVq/s+lfd469aVSu7+w2KZGvIGT5yps+Mhzfcf1Pjvz6nh5NVgsFgSSAQKEOR15chIiIiIiIiIrP6+rU7Va3srK5Z86JxEMRPIdewwbFcooc2okKh0DeDwWAsEol8EA6Hb0N8Vu8iIiIiIiIiIuqtamXX1FmrN7+diYsAZyr0F6Y239W8YZweZsaFQqExiEW8EDARERERERERDap+7dqdqld2z9NfTsrJkJ/zrmzpvEIPOW0KCwt3DgQChwSDwb11FhERERERERHR0Kav6dytcmXnqtk58PWmoaLW/lWq7unyE+J6+ClTWlr6i3A4/FgkEnk7GAxeHAqF9tW7iIiIiIiIiIgGd/sj6/epWtW9TC60axrUyMXQs4VusywrJRftLSoq+mgwGFwQDofvLS8v/7zOJiIiIiIiIiJyRgYpqld2Xbft15vMAxq5GnLNnZkrO0/RqnAlEAjsMXHixP10koiIiIiIiIhoeCpXdY2ZtTp3LhDsJuSrXdUt3R13rmz/llbHkEKh0BGIOOK1YDB4vFx7Ru8iIiIiIiIiIvKucmVnSz5ch2agiD75ujWzuet6rY4BhcPhiaFQ6I1IJHJ9WVnZPjqbiIiIiIiIiGj4qpq7D6xs7noxX8+kkbB/7am5s2XmI+s/o9UiRpWXl++uZSIiIiIiIiKi9Kpe1XVy1crOD6pbuo0DGPkQ1as2ye1bdY+99mOpk2AweFYoFHpTvtJUUlLyM7uiiIiIiIiIiIjSqbql84KaR1+0qvJ5kAbHPvOhDuu435/xv5KicS+Fw+Hfl5eX76RVRERERERERESUfhyk2RbRJ161qls2HazVQkRERERERESUWZXNG0+uaubXnaqau/4r1+fRaiEiIiIiIiIiyqzKlq4fVTZ3bsnrCwc/Zl84uPmOhzo+rdVCRERERERERJR5MkBRk8c/wV3/5OtWZUvn1VodREREREREREQj466HOn4xa1V+nkkz2x6c6m6vfmjj17U6iIiIiIiIiIhGTvWqTf+oe+LVfoMYuR5yPZrqls7jtRqIiIiIiIiIiEZW/ZpX9qpa2dVY9/grxsGMXIzax162Zq3adL1WARERERERERFRdrju+ed3rl7Z9bD9k9yGQY1citrHX7VmPtJ5kx46EREREREREVF2mb5mzY5VLZvq5CwT0+BGLoQMQs1q6b5QD5mIiIiIiIiIKHvNbO4+prql++1cuqDw7DVbrOqWzVtmNHf/Sg+TiIiIiIiIiCj71a+1dqpq7qzy+1k11S3d9q84Vbd0/UUPjYiIiIiIiIjIf6oe7v5OVUv3o3779ScZnKmRAaaW7sVVT3R/Qg+HiIiIiIiIiMjfbn/ktX0qmzfeXr1q09bZq7cYB0ayIWrWvGjNWr35f1XNnRfOWBHfRXefiIiIiIiIiCj3zHy484iq5q6O2sdflgER42BJpkLOmJFr59Q+Zv98eEtly8af6G4SEREREREREeWPyuaub1Y1d95Z3dL9ct3jr9qDJn0HUlId1as2WXWPv2xVNneur3yk67Lbmzftp7tDRERERERERET1a9fuVL2y61tVj3SeU7Wy80nEG9UrOz+IPvGqJWfd6FeRBh3IkQGY2VimZs1LeMwrVh2icmXXe4hXsK77q1s2HV/b/OoX6+ut7XWzRERERERERETkRIVlbXfnP5//+MwHO749c2X3r2c1d0+Y1dJ5wp3/jJ90ec3yy25b/ty0Wau7j5N51S2d4ZktXb+sbNn4tegjr+2jqyAiIiIiIiIionSoqKjYLhQKzSgrK7NwOxezttt2DxERERERERERZURZWdmuwWDwwUgkIgM0FsrvI1own2fOEBERERERERFlQklJyZfC4fAziPtKS0u/HQgEbpV5oVCoFvM6Uf4/XZSIiIiIiIiIiNIhGAzur2fNTC8vL+934d9QKPQ3xNZwOPwbnTWkwsLCnbG+DXjcB4gDdPaQsP2dsJ0WPOZ9RERnExERERERERHltlAoNLm0tPR/4XD4fJ1VMGbMmB2Kioo+mjxgg+WmYhkZqJmmswalgzTteNx7eMyPdfaQZJAGj5NBmvcCgUBYZxMRERERERER5baysrKPh8PhT+ikLRgMHjxx4kSrtLT0QJ1lk+UQn9LJQXGQhoiIiIiIiIhomGSQZsKECVYgEOg1SOMGB2mIiIiIiIiIiIYpFAqNCYfDMkjzI53lWvIgDW5/mpg3WIwePXrH8vLy3fGY1RykISIiIiIiIiJKARl0CYVCbTLYU1paapWVlTkO+QnwYDD4Hw7SEGURPc3tMDyxx48dO/YjOtuRkpKSQnQGYazjkzqLyDO0wW+iOU3E7dd0liN4cfmqNEO8uPxAZxENaOrUqTuiz/uV9HlITvbR2Y7I46StIT6rs4gGJO0L7awY7aVIPrHU2UOaMmXKLnhMAI8NYh276myiftAn7Y24ETETudheOtsRtK9b8bp5O3/qlwYiF7RF2/oc4ovy2qmzh1RRUbEd+q7PSNuSdehsSiMZpMH/Sc6kebe0tNTxGTnoN7bH45rxOEdn0sj/Fjejtk0RUdoUFxd/DE/O52TUFW92v6yzHcHj1iHeQYzTWUSe4cXhr3ixkNH8c3SWI3gzc7p+CnCzziIakLyRQTLysPR5aDsH6WxH5HHS1nA7XmcRDQhvUA5Cv7QZ7WUTbvfW2UOSDz7wmFcRb3BAkAajbaUN7es1tJVeFyMdCh7XKW0T4fjneim/oF19Ee3qabzuveTmPYIOUK/SnO5zOpsGgDrK6mvSYP4PsMyjiFZEDZa9FfFPxBRdhIhSjYM0lC04SEOZgDbGQRrKCA7SULppW+EgDaUFXu++gPaxFu3rJfRnX9LZQ5Kfk8bjmuV1Fo/lIM0QUEdZO0iDdd2JWCq5k84iokzgIA1lCw7SUCZIooFkhIM0lHYcpKF007bCQRpKCw7SZAbq6eBJkyb1+wluN9IxSIN5Z2Bda4888sg9ZVryJyzzaf3KExGlEwdpKFtwkIYyQZIMJB4cpKG04yANpZu2FQ7SUFpwkCajhnWdF71w8HrE++gLXA3SYHkZpHkfEdHZNkzPRqxE3IFlbsH/shRtYgKmH0J5C4Lv/4jSJTFIo29yL8Qb5d8jTh0qsOzJiJfwRP2f6UmKecfhvsdwW4/bOYg2xB/1bqJ+0K7+qi/o9yBO7tvmBojfoV3N1zfON+mqiAaUGKTRPu9qtCFHfR7i93hcHIlKv0EaTB+AdTXh9iHEDJRrEM+hfIUuQnlIBmnQBmSA5k3EuYhphnbVK/CYU3D7Zzzuf4jX0d56DdJg3kmY9zjWNRMxHdOrcHs/HvN1XYTyiAzS4P8v14n4ALEUcS9ikYO4F23nXYQM1HCQhoxkkAZtZS3ayKu4/QXCvojwEPE59FHfx2Me4yCNv+F/twT/x7bEmTTJcF+Jtov9dRYRpVLyIA2ebDciLkLneomDuBCPew3Rb5AG67gd82p0sgfmP4Dt8I00GeFNhj1Ig3ayXNpXn/ZmDCxbgVjKQRpyKnmQBm1oBsqO+zwsuxG3/QZpBvrVC9kOggM1eUoHabrxevgWbq9E27k4qT0ZA8tJe7wWj5GzVPsN0phguXOx3P14Pd9NZ1GeSJxJg/gP+rRf4lZ+JfE7QwWW/QbazRYszzNpaEBoJ3ImzZNoM/K69xRiFWL1ECHLPIb4jzwO7YyDNEPQsy434vZ7Oisr4P8nr0lPmX6hC/N/gngFy/xQZxFRKqX66054wn4F8aw8eXVWDzyRyzH/Mdx+SmcR9ZBBGiSc8oKe8q87Yb3bSwJbVlb2cZ1FeSoxSCN9HtpO2r7uJP0c2qScTRPUWZRnNPFO59edRqEdfxvLPYrljtF5lEcSgzRoX2n/uhO2cSn6P3l95s/v5gn8v+2vOyFexP//izp7SEN93UlyMvlwo2/k6891o46GfeHgdMH/sRYhA2/flGvR4H+3E8rY5WAXbqfqYkSUaqkepEGSMBbTrXgz/Bmd1QP3/VjuQ3xXZxH1SPUgjSYJ8nWo+xBPIjZh2e/o3ZSn0MbSOkiD9e+O+29Fe7STGp1NeSgdgzR6ccjTEJW4fw5u78ftNfJmShehPKJtJa2DNPJVB6x7KZaT19l7MYuDNHkiMUiD/3tKr0mD+2YhnkbedzruP1MC02cjjpA+ThfLGzj+gyX/zcZBGoH/y77YxxLEWYgT0S5+xosHE6VZqgdptEOXM2nG6KwemDcVL/QPyZsYnZVXLMsa1bg2us89z1Z9qbE1ekBT25wDkyP2fN1BTR31o+9pr/rSypeq+33/M9elcpAG65Gr1X937NixH5FptL3DMb0h204lTYcKq2K7J7qbPjL/X3d97t7n6r7ft51JLG2d9+MFbdVfX7rx7n1jz8fyKiFC20jLII30gwg5o+ES+URQZ+e0FSsqdrjnqZr9Fvy7+utL4vMO6tvOZF6steZ7C1srP78iPmMXfVjeyMCZNDYs/3ms/yW0zcN0lu+hX9oz9nzND2LxmjDitIb22psa4tGFi9tqn4611f4rORowryFedz/aWtXieO35mD6qqX3uzxraqz8l/aGuMidpW0nbIA3W+R3cH5e2hdsbsZ0GzM6pQZp6q377hnjtFxfF6369eN3sY2Lx2osb2qOVaEerYm11a/u2N8RTmD8PbfGaxvbaU7BsUaw9+q2FndNz7uuGmtOndJBGcmHctxjzL9ZZuc8qGHVPa81+jS/U/hT92BHor85D+7kT7WiF9F+L19U8c88zVfHFrdv6N/u2tSaGtngr2uYZTa01ZQ3tdT9c9NTsj+oaiSjXpXqQRqDzvQxxX/IbFUzvi3gCy4Z0Vk6yKqztFj47+2Ox1uhkdLRL0cF2oBN+c3nX3daKzQus5d13W8s651pN6+sHjKUb59rL3b9lgbWsa56F9fwH0dbQVnc3onxpa/1e9fX12+smc0aqz6RJJm0UkVODNGut+p1i8Tk/WByvuSzWWvtvtI0XG9ujH9y/5R7rvk3zreVoZ0s3zDG2MYmlG+egnc2z26Usj0TgbSQGXQ1t0ftirXUnL4rP+GTFihU5d+pxOgZpMF2HuEMnc8oKtIGm9uiXGtui56KNrEFi2YUE8x1pN3afhj5K2pKpjUksQRtc1jnPbmP3v7hA5m1Ff/Yy+sVn0G5va1pX97NH1kd3lcRdN5kz0jBIM2r06NH9BgCxbrmAo3w48jWd5RvyaeySjgWfxhuVv6BdPCqvdys23W3dh9fAJWg/aGueoqmj3n79XIF2h37xXay/FX3knYueqzlw+po1OTOIms5BGsyX6yM9U1hYaH9NGNN3YTu+HqSZEZ+xS0Pb7MPQzuai/+lE//Teis3zrWXIu9BOjG1pyGivs/s56eOQ30n/9gra20PI/05a+OzCj2Gzvq2vdAzSlJWV7YP7Hsb8kw866KBdc+3MGRn0WyADzG21t+D18oXGdrxeSk6G/qipw2MbQyxZLznbtr4xFq97E+3rCbS9Sxa1zf1CLr4nIMp7chorOkv5NZIH8GLs6loxeEwlogGP7/cCj3lyQam5iAcQKxDXHHroofvo3Tkl1lr/c3TE1Y3x6IvSgQ6nE3YSjVi/DPogCd2EN9O3NbxQlxMX7UJbOgrRjLYy5PU+kuExpQj5dZNTdVY/uN/3gzQP/XvBHnhjOw1trQVvet+XwTxT+0hZIPHUpOI/eHNTv7i1ZqwkH7o7vjV58uSPoC1ch/byT7Q1V19HwuOuxeOkP+s5UxAJ567oO6sxT5LO5j7xKGI6HrOHLp71Kixru8b2+iPxJqNhSUf92zKojCTT3EZSFE0b6u0+raEt+kxDvPaChvZ5OXHdMmlf+P/LV5LqE2f1OaFvYubjcfckX0cLb8h3x7zbcJ9cnFN+dWMhohHt77e4zzfPTfuDjHjtnxrao+u3vWZ6H4xxHdqvLd0w941YvKZuSUfNj3S3fEkuFo02cTTiRCnrbEfwengcHnc8bvfTWTas5xtoV08jztZZNrSzO7G87wZpFq+L/gavnTEZkEn762afkHzNHiiM162NtddNa+quctwPZAMZmMH//elIJCJn6jn+IFf6MDxuNfqlfoM02o/JzzhPQcgZ9nJR/scRr2P+UbqYr6BP+0asrfaupvVzXpPXMs8Dfl4CfZoMECJX67I/tNswb8izL4mIcpJ88tcUrwnjTcwL8oI/nE/7UhH2J9WSeLTVPYkXiUMti98X7wsv/L4cpImuje6D/+mV+D+/ZX/Sl+YBwMHC/mR6Wzvb0NhW/9s1a6bnxVd68sH0NdN3a8SbZryReMU+0y+Tb5r7hCS30q/idiva2t2N8dnf0N0kH5OzpWLx6OmN7XVv2//fEezLkkNev2V/FrfVzVneNjfvr+uDN8p/wxtseWN9P+IeRM9PdiM2ILYgYohZ2Tz43Lih7vvI0R60P2jYMLI5WiKkb5P9icXrNjfGo5PkLEXdXYLwtl8ei6MNnqCzspqcbYz/60zpQ5ZsnGMPlvT9n2c8sA9yBnVDe/S9hrboX+Rro7q7RES5S75mFIvX3rpkw5x37U7Q1EGOcMiATdP66Dux1rrrFnYu5M+xKiSUvhqkibXO+zHeoD4mCV1GP5FxGPZXWeSNfFtdtVxnSXebfGZZe/RbeCNzn54xZfxfj3Rsew7UbcGbmmN1t8lH7l0f/Qz6iWXyNbeRHPxzEvL1qMVttRvwnOAvshkEAoHb8QZ6oU5mpcXxmt/hf/mK/C/7/n+zKRJfB13cWjtTrg2nu5/X0La+Eg6Hn0GcqLOyUmO87texttrns72NJT7wiLXVPcIPO4goJzVtrN+/IV771NLOzJ4mO9ywz3qI161eFK/N+1+YwYt/MV74NxYVFX1fZ2UduSYH3syc2NgR/Y8MtvX9f2ZryPVGsM9PL2qrycpfJaD+GtdHJyHJfNVP7ezDhLNmxqIOXjwx2zXG536jMR5dm+1vZEyhZ9e8vXhdze/0cAjwGlqFaEQx687WbYhHL1i6YRjXlRnBkK/8NXbUPzRvXZWrawr5FdpQEXKy80pLS79XXFz8eZTla6HnI15E+SIskpVngze215WiffkqP0uE9MPY7/ZYvM7VdfiIiLLSivj8vRvb6hb5McnsifZtnbN89z72fP79YpRfLGqbcyD+Xy/58cU/EXIxO/n1FXne6GFRlml4Yc63kWS2+7mdydkYOIYPGtpqe10vg7KDXJi1MR69QwZvTf8/P4U8T9DWOpri9fvr4VGWaWqP/qZpfX2nDOCa/od+CRlckgvDNsbrLl9h5f7XoORHS0pLS3+A2x9HIpGvVlRUZO0xN26c/zm0sdXyVWDT/85PYffLbXUNPHuLiHxrcWvtKU0dc97P9tOznYb9/f/2uvcXt9X44ru++UIGNPBmc758pcP0f/NbSKIpt4tbZ5+ih0hZQH4adnG8bqb9ia0PP2k2hb4p28AzuLJHLD574pINc9708yBgv9ALDcfaamtWbK7fXQ+VRpicTYf/zZLlm+TDAcP/zachX4FCH/16Q2vdIXqoNELkhxJi7bVXygedufK6KSFfbcbxbJWf9tZDJSLKfo3ro/vgTXOzflUo58IeDGira+DZDiOvsc2+sOEb2XIBzVSGDAbE4nUL6tfyTc1Ii8VrfoD/yeu52M4k5NPNWGudnCJPI6gxXnej389mGCzkzTNeO1+Qi4XqIdMIwfP9x3ijuSGnBgOTQgYE7EGBtrpz9JApwxY9Nfuj+B8053KfJseGfjsqX7XXwyYiyk4NbdGvo1OO53KnLGGfUtsefU5+BlUPnTKsMR4txJvmV+3E3/A/yoWQ51Gsve6Rpif89ZOjuaQxXjsJ7eztXDkjcKCwf/msPVqrh00ZJF/NiLXVzZafgDX9b3Ip5AcD8HzqWNxa+zU9fMqwhnj0J2hvH8gZTqb/US7FfZvkzMe6Cj10ypAV8fpPxtpqW+1fbDL8X3Iptv10d/18v/00PBHlkXufm/kZdFhb7E8vDB1ZroV8AoVE5zl+LzXzGtqiASSa2z4pM/xvcinkTU2stfZZDghm3uJ4XUj+B/nSp8k1kdCnzeCngpljWRXbIcG/bXlXbn3lZLCQazo0ra9f2/hC9P+0GihDYh31P0d7e1Eu7Gz63+RibDvbIfonrQJKs9iG6s82dURbcuUr6E5i23U36+fK17u0GoiIssOK+IxdGlrrVubCRcHchP3JZ3vd3fVr63fSqqA0a9gY/TreSP4vX944S9jtrC06f0V8xS5aDZRmS9bN/WpDW91/86mdSUhbi3VET9dqoDTDG+YTc/0sLVPI4HNDe3QhXzszZ5n8lHsceVoevXmW2Ha2be0bTR11JVoVlCYrVqzYAa+ZM3Lhouduw75OTUctBwOJKLvgTfNVKzYvMHZcuR4rNstATfRUrQpKI/nUOdZWuybfBgMltJ39XquC0kg+DWtoq3ssH9uZhAxMxeJzfqDVQWkiX/nBc3p9rl4XZKiQN8+x9trjtDoozRo7ohff1537X6kzhX1WR0f0gXtaa/bT6qA0kLNP5XIApv9Brof043iOdcXW1/1Yq4OIaGQ1rav7Dt44d+Vrx4xOWW47G9dG99EqoTRpiNcejbb2ntZ5XoV8StPQVrtxfnwGL1idZotaa4/L13b2/+2dCXhcVfnGW3YFWURkF1kEUUSw4IJLESiEJrMmYWulglo3QHHlL2hdQURUEEUWZc9k0rKUJpMUKAVEBCx7gbY0maRlKzvKTsn832/yJU/STNsU5iSTmd/ved7nzv3umTOZe7+ce+47555ruv5Ru5Uz1ey7AwKRyaZO73nsfuHjUO7qmbsu9YCNxPVdAoG4ob1hS/1Pv1RpIwP7K/9kvmzqKN8lEADl2H/KfU7KVcl+rNY+OMd3BwBAcUkkEsfU1tbmYrHY9Xp9gIdXSiabPrGS7j0tpPxw9a6mL/sugSFQV1f3LuXZ1cqx1+Lx+BlabuebCpJZlFk/k21MV8LkmiuT5VlLV+PRvktgCEycOHGr+vr6fym/no1GoydHIpFV/pJqF4zqZM2o5Dwzw13/a0+2djZ+wncLDIFkMvlFtWnPqT27VcvDpk6duq5vGkTm8fQWLdnUTZV87ux52lPq+bau9ATfLTBE7Pwp3aCcs3xb/fmzIz2lUk3nXuXNg87GK3LMGzIklF+7KL+e1LXAYuXYN6uqqtb3TQVp7mj4lM6dFTXf0Yry0bf/aXsktb3vFgCA4mMXM2qYz1ED/YKWL2v5XTXaW/jmPP5UitZKHa7dq/wwx2xj2ncLrCHqCBykHLtRHc1uLf8tHTxu3LgBFzj25DBdOD6Sn8ugwDGoBOX/z9pTPIHnbaL8OkK5dbfnWbMupPebNm3aWr45T3M2tbv29eJKzrP8r+0djd1t7enjfLfAGlBdXb1ZNBr9jXJsmXLtFek0tXE7+OY8LYsb9tG58+lyfjrd6mR5ZhfOLe2pn/hugbeBnS/VP/un8my5dIuZhePHjx8wOimTTV1S6f20vEnVkXp07rKmjXy3wBAwQ1A59k3l1kLpLb2+SMs9fHMf+j8+LtOR6q7k0Vo9Rmjq9eZHUvv5bgGA1VFfX7+edZx0Itu0V7ZeU1Pzbi/SR1VV1cb9y/Vqxc58iDrtl7dCdU6YMGHQo93UCXxP/3K90t814FcCu9gtVOfkyZNXW6fq2sTcc/1d71bDHJMelt6QZsYmxvayiUzbOhsXVOLEh/2V72gubrh3zJit391//5ns2Pvu7cOOZ6FjYjnlRfJYfvQv06tCdVrevZM6J02aNKhOOzkXqtNywov0MrZ/mV5Z/vj2PlZXp07+2ym/7ALnNW17XPqpwu+67vHp+2hf/6+Sc63ngqbhLtsf/fefyf53bf/1Z2V5tuIv/MOZZ2tSZ4g86/07dSHzYeXYBYov1/IR5d3XFV579tLpn8pkG1+q9DYtP4Fwe+p021dFZqyOwdorasVzoVGonMk396fodVrMcmhFKT5oolvL00JlbZv9rym3JijH5kl2gXPLAV845PPXLrjsQF04v1nJFzSmm56emZu58DK7PWDtFf9Xe/dhf7T/N+lfrlfaNOCJZHZMCv3/l1qfb2V1vt0+n/bZtor9STlnRvSj0klbjtlyw9bOxtmVfBtKXvbI8Y7U8l+dc/IOn/zk4OOj3TekHHoneTmcOfRO6ix0LWI5efzxx6+v3Pq41mcqt3LSvcrLentPazb1c8sxXRMU3v8Vovz8gV2NB+V3JACsHmtU1JicLP2wn05WR/0QL9KH4t9Q+R/3L2vr1rh5kTy1tbUftTpWKPcTqdqL9KFtX1uxTukkawS9SB41drspPqhOLWNepA/Fj1H8pP5lpf/TCWTAaBfFdvY6+sqpgf2JVOtF+lC5o7V9UJ29twjY/tL7Moott0b6S18+KtnSnnqs0ofR2i9UVz9w8bKJVRNPXGHfnaT9NGhiRMUiKx4TyY777l4kj534VW5QLur9dkE5AG07VBqU4yr7MS+SR3VupNiP+pfzOr/lRfpQ3C4uBtWp3B8wqah1WlYoYzlmn2G/xA/opNivfIqvWOcp+qy+yda0vrne/xN9Tk7xxyZOmHjKHxt+fWxbV+PrlXxRY6M7rrzv4icL5Zl0rO++PrTvotKgPDODwovk0b7eVPEB//d6n+Xd17xIH3rvxEJ1KjbglzW7oPA6Vqzzm16kD8UOlgrl7l5eJI91Olcok88z1TtoQmXFDrA6Vih/iv6ufbyIfe/tpd9Znmlbe9XBE48/v/Wsw9SZr/iL5zlPXJn7Y/q0Jw89uLpT++hZ6RnXq9JffRf2of13s/R8v3LPaP05LQe0P9r/Byl2m0nb/+W6S+u/8iJ9KH6hdHu/cqbbVcdHvEgerX/BtvWvU6/v0tJMpgHtj+LnSnf0lvOyd0gDcs3yWdsuVPwf0t9dl+mzvqfNAy5oFP+BdHG/cqZL+v+dOtdbH2S6/n9yNdU1N//o1BP/cO2Cy16rdDPQLmguaDvr5gPHH3y89k///1VrUwbdbq34cdq3A85fphUvSFVmL8UHtSnSwV6kD8VslMCAtkrv/7GO3wDj23OiUDs10Yv0ofjUFeuUrD8wYE4xa4sVH1Cn3mf9yKgX6UPv/YrV0b+sr2/uRfJo/ZPSUzovW7v2dM3EmlOu+Pf5d1b6SJq8Ohrf+tIxk34aq4n9QPum/z7/wYqjjxQfJ53Sv5xkx/tAL9KH3v9txQfkpa2vaLapXMFrEZUt+WsR/Y0/UTyfl/p/+7DWz1VddrvdvV/83EFHNt114Tk2n1mlmzQ32UNUMGkAIDS6oN9KnYj/UyP8kvSU9FszDnxz7zwh8yp5yLbJTkw2v4DvFlhD1DlaR7llHcurlW/dOvnbBVbSN+fJZBv2bs2mnqrkXLNfqfT/Nsd3Cawh9oujcutA6TZ1Li3P5qjP+QXfnKd58RXjtK+5DeUx5VpH6me+W2ANsZGqasN6R5++qnxrUNv2Id+czzPt32WVPH+D5ZkZB9oPP/bdAm+Pscqxz6g9m2UmoJZmQtb4tjzax/+odJPGJt/PZFNdTfO53WlNMcNSOZVUO/agZKOcr9FywA8zmfYrvpXpaHyrkn/gsB+stQ9eVT/t075bAACKRyQS2UWN8fWS/QpznxrjiXYR7ZsHMC03ba3WzvQllT6Mtqej2fhn3y0wRHTiP1r5tVSy2wD+Ie3qmwbR9mhqe3U0K/Lx273yCV3/5LsEhoAZM8or+yXwWetcanmG8m2lk/o1d1y+Q1s2dVcl51n+YkYdzbZsmiehrAFTpkzZQLl1qnLsv1o+o3w7fsVfqHtpW5J+ry4Yr5/zeOU+3cmMULXpz7ZlG7/ouwXWAOWXjaZeoqWNOD03mUzupPCAkWO9zF7SeESljw70furFTU1MHDwUbGSR8uuPasvsR1obFfmDurq6lT7F1H5IU5u2rFKf9Gq64bErc7om+vd1XQ3b+G4BACge9gvgkUce+T5fXS1qkL40t4KfhGKyzubsbOpQ3yUwRNSxfL/Nd+Srq6WtK33BTU9dU/AYVILyt0Z0NA4aFg2rxkYEFppHYGW0dqb+Ucl55r+4d7VmUx/0XQJDQHm2djQa3U0vC14or0hbR8NvbrCnO1Xo7QH5i+aO1D1NuRwXzW8DXThvbiMcfHWVNM+/aCudO56rZKPGnqTW1tk46DZ/WDn2g0YulxtSe2Yox/5VyT/a5uej6Wj8g+8OAICR5bqua7ZR43R7pf7y3HNBk7559r2XDproD4pLa3b6/trnFfmIx57RWum5ty1JD9lsgLdHS2f6APuFv1JvRcl/74707313QCCufiS1/XVLpnfY7bKFjkO5y0ZstXSkDvfdAYFpWzrjpPxFZIFjUe668Ymr7Pa62c1dVxQc2QbFobVrxkGVeltd/omQneklsxY3DnryFQDAiNHafsVXM9nUW5U2gXD+V6mO1PK2bLrKdwUERhePFXdvveVZJtv4ZqYjNWjSSwiD9vvF11XgxXPPPfWpJ+x2HN8VEJC2zqZJlTh5sN8WkJo7d27BW6mh+GQWpbdQvt0054nKusXOTGf10Z5rZjLX4NhTotqyTedUWo6ZbER9S1f6O74rAABKh7Zs6oJKuqixC+eeiVzTg55KAuGwkSTa/wsrZmLXTr+gyTb+1ncBDAOWZ23ZxvsqaQJhN9nfaGlPT/DdAMPA9V1NZ9gv/Ssej3KVtWdtnU3/uba96QO+C2CYaM5evtfsrvQTlfRDR36OlI70Cb4LIDBzH7vifbO7muZWXJvWkb7I5un03QAAUDrYZGyzO5vS+XvsCzRi5aae++kbL/SvD8NI68OpD6oTcK+bF2Wt/Mm/K/0X/+owjDR3XbFTW1fTA5WQZ2bQtHWm38i0Nwx6lDuEJ9PReG4l/PpstwRksqkFdpu0f3UYZlq7pn+0NZt6JT8SuMAxKidZP61lcYrRDcNMZlFmY+XY/flbgAocl3JSjxmVvmTevHnr+tcHACg9Mt35R3I3lvtEwj0T0KX/gms+cmSeyWzc0tl4dzlfQOdP/p2pn/pXhhGg+fEZO6gDtrjcJ0O0W25md6Yn+9eGEUDH4bf26PMVj025yP6HdN78z9zs1Zv6V4YRYtaSxj1mL2kq23bN5jtSm/aGNNW/Mgwzs5+4dMO2rvSccu6j3fDolTaa/m/+lQEASp9MNnVSOZ787ZcnnfTfymQbvutfFUaQ8+adt64uLK8rt0mrLc+k7uaOBoZolwBzc3PX0f/91WbOFjpeo1l224M60k81P5Laz78ujCAt7Q0T2rqaniyn21GsPevJs8az5uea1vOvCiNMekn6XZmOhivK7SLablFVzi1Vmz3OvyqMIC2djT+a3ZVe7rfTloU8x15Wm3a0f00AgNHDrIXpbTPZ1O3l0gHIm06d6Zuvb2/axL8ilAiZxQ0JnTBfLIf5Q+z/RR2aOzKL/r6Ffz0oETKdqQN1jJ4ulwtoa9Mynekz/etBCaHjc0Y5PPXJcmx2Z/rezNLLtvOvBiVGW8eVH9cFdMdo/2EtP3pmSdObmfaGE/2rQYlgtz8px+beUAY/3uandGhPXZxZdNb6/vUAAEYnrZ0N1WrYXhmtj7Pt6SinXmhZnDrUvxKUILlcbmwm23iW34o26DiWuvK/NHc2/q+1o7HevxKUKDpev7ALmtGYZya7jU4XMnc1L7xiJ/9KUII0d8zYoaWj4c7R+NhkM5szHY0vZdobJ/nXgRKnpf2K75nRMdr6atYO23lfudZ6NbfSlTStj1xxiPrTz47GUal23mxpTy3ItE/f078OAMDoZ17uvHVbsg3fyGRTL4yWicRsboC2rvSjmfb0sWYA+FeBEsd+sc10pPKP6R4NF9FmAupvfdZ+/SPPRg/XPnbF+3RRc/bsrvyw54LHttSUn++kM31ny+LGz/rXgFFA8/yLttLxu0x51l3qtwzYr8wtHakHbdSZ//kwirBHKOtcVJfJNj5a6iO57H/BpH7l6W1L0u/1rwCjgEx7477Ksdt7RqgXPr6lIDu323lTOTbz+i5+1ACAMqc5m9q9tSP1z57bOkrrFxv7e2Yvmd6t17Ov5/Ggo562bOMxOpbPlNqcNfkTvzrAmY7UPS2L0x/zPxdGKS3ZxnhrNtU15/HSezpPz1wg6TdaO9O/n33vpRv6nwyjlJbFjcfoeD55YwmNGLRz+fVLm15Te3YBtwOXD5mlV26Xvzh9dHp3qfy4ZqaMPZhC5/YFLdnpjG4e5TTNb1ov097wp+uWNr08p1SmRlC7ak/am93Z+Gymo/H4XC7HA0IAoLK4dt55727Lpo5Sx26R3ac6Eo56z8XyjPyFjNbva+1IxWwyPf8ToUyY3ZneUcf2LzrGr9gw2+tGwBy0PLt+6Qz7lXmpcn5qZtFlG/ufB2XCzPaGLds6Uz9Trj1vF67ergyrzGi2z9bFzFuZbOM1LYsb9mlqalrb/0QoE6z9aNH5szWbXtSWP+YzhudHD52jzWB24/vFTGfq922PpLb3PwvKlFmLL91DF6wX6Zi/ZiMLhsu0sXnmLNdsFFlrNnVn8+KG6nnzzuNRx2XIdV0N27R1Nk7TeeuZ69TGDNctxWb85dtP5Zo+e4n1zzCbAQD60bwwtbsax5/pRPyg3fvZe7tKsRrp3rqs4bcGWZ91T0t76ieZRamd/U+ACuCi7EUbtC1pjOtC+ip1CPKmTVFvWdFFjNVl+dtzn3yqM38hs7Tx4/4nQAVgT4Rq7mj8gpmD6gQuszatqHkmWV15U8aMx0env9aSbZyt9vPLVz10yeb+Z0CFcNWjV21ux76lI3WZcu4p+yU4f5Fjt4QoT9Yk73rLm65b0tOOqZ7XWzsabmjrSP141uLGPfxjoQIx03d2x/RP6YL2l8q3O5Qjy/Mjo3WR2z93CuVWIfWWt7asp3+Wn88o25ZN/W12Np245uFr3uMfDRWE+ue7trQ3fD/T3pBR+/Nq/gc2uy54h22a/Vhm7aNy7LnWbENjW0f6a83Zpq38YwEAYAiMndmZ3tEecdfW0XhRpiN1l9QhPSu9cdNT1+Rufnpm7qanr8n1vjbZUNjWjsY3pKfVOLer7DxdOJ+nzsThNzzZsKXXDdCHPcq7Odv4xbZs0y+VN3MyNjlcR+MyLV81Q683t/rnmi11wn+rtT31fCabXqL33a18m67X32ztSO/G/DKwItPmTlvn2s7GT+gi+js2yiWTTT2gZZfaqP/O7kq/ecsz1w7KM4vpwqVb73lNOfm4tEjlb810pE9taU9PmLusaSOvHmAA+cnUF521fqb9Mpv/4YjWzvRP1U79XXl3s/Jori6Cbpq14PJ/tyxuuKUnlpqhNuyMTLbh2JauhgnNXVdsRjsGQ8VyZdaSi7dtyzZUKde+bbmkZYvOozfrwvqGmQ9fdofWb7TcU67dqJz7m86hP57d2VDX2tXw0aZc09pjcmPIN1glzff/dbPWbGp/u51deXSq8qypNZu+ubc9s3zL55gt21OXaPsvbNS+ynwmsyizPm0aAMAwccgBh37nkIMO/YOvAgShvr5+beXZeYccNPFLHgIoOpZnBx9YdUHVwVU8FQeCkkgkvl1XV5eLx+O/9BBAEJRj/+e5drKHAIpKLBb7ruWY2rVfeAgAAEYCu5hRo/xX6XWd+F+QWhXjPlIoOjrxb6E8u1OyPHslmUz+xjcBFA11Lt+v/JqnPHtOy5e0/ivfBFBU7NypdmyZGTXSYuVbs51TfTNAsRir3LpEOfaU8u2bev28Xp9LrkExUV79TXn1pJbHaZmVrhk3bhxzFwEADDfjx49fR43xv9QQP6jO5vZa30CvZ1kjHYlEuKUJikZNTc2HlVdPSFfauvJud71eomWLVhk2C0UhGo1+xNov5dV0W9cFjeWd5dm1+QIARUDt2buVU1dJzyrntrHYlClTNtD6vcq5O5VzW+cLArxD1DfbVPk0T7l138SJE/NzfijHdpAeVHxufX39evmCAG8Ta8+UZ9dIz1hu9casPbPc6807AAAYBsyUkRZJd5hZo2VEnc1626ZG+SLpOcX2yxcGeAcoj/ZXPtnw2d/5+tf1el/7hUbLBdJtmILwTlEOHeB5dpqtK8++pNhnvbN5n+K3Su/PFwZ4m0yYMGFD5dMC6dbq6urNzKRRrtlo1L38XNqgbS8pvpu/BeBtYTmkNqtLsh8zrI37tHLrj/X19R/Qtvco1+6QHtZ2TEF4W1geKX8eUl7dbu2Z8ml7rZ+r5ce0eaxeX2btmcTDQQAAQqPGdpxkt5xcMm3atLU8dosa5fn5AiKZTH5f62+pAa/zEMAao7z6hk7yy6Vv2br96qfXOeVW/kK6rq7uXXqdlp5RB3QXiwGsKZZflmeWb7Zueaacekr6a++6tl1uMS3pbMLbQudDG6n1qHJohocsto+1aYod5iHLx9N0Dn1ZinsIYI1QDh2gnOpWm9V3u6Zy7RjFXjazxkNrqVyT9GRtbe2eHgMYEmqfPqx8ely61kYCWkyvP2PtmfKur+1S7JfSK4rVeggAAIqNTu5bqrHtkk7yUB6tDzBpDGukpaXaNt5DAENGeXOwZPfQf9FDg0yaXmxdZe/Stu08BDAklDeHWp5Jfe3UiiZNL1o/VeXmVVdXb+shgCFTU1PzCeXQgb6ap5BJYyi2r8ru76sAa4Ry5/OWW76ap4BJY6ylspH+7R/AUFDe7KV2qkov+245Vx4NMmkMMwGVf1/wVQAAGC7UMP9QjfLPfRUgCHY7gE70F6iTmfQQQNGp75kQ/UzpKA8BBEEXNDZR9XF1dXWMBISg2MgH5dvXmSMEQqFz51bKsePVnu3oIQAAAAAAAAAAAACACufggw9+bzwe39xXAUIx1m65q6+v38jXAUIwtqqqagtpY18HCII/1Wn3SZMmkWsQlLq6Ouun7T516lQeiwxBsKe8RqPR3WwSYQ8BAMBIkkgkbpEGzEkDUGxsrpDa2tq+J/AAhMDyTBczzynPBsxJA1BslGP7JpPJQXPSABSbWCz2A+XZW1p+0EMARUW5ZfPU/FfL/MMeAABghNGJf9DEwQDFxi6e1QEYNHEwQDGxPFOODZo4GKDY2OSu1qZh0kBolGPfU5u2XMKkgSCoLfu48uxF5RgmDQBAKaBGeaZ0s68CBMFHODwtnewhgKJjtwOok/mQ8ux0DwEEQRc1eyjXFmppT0kBCIby7MvS/Lq6Op5OB0GwW52UY//RufNIDwEAAAAAAAAAAAAAAAAAAAAAAAAAjDR2q1MsFnvAVwGC0G9OmlM9BFB0fE6aZWrX/uIhgCCoPWPiYBgWlGu/tlyzJ/B4CKCo6LzJxMEAAKWEOphMHAzBYeJgGA6YOBiGCyYOhuFC7dmvLdcwaSAUyi8mDgYAKCXUMPMIbgiOXTzzCG4IjeWZOprPKs8waSAoyrNPWpsmYdJAUJRjv66rq8OkgWBEo9G9dd58Sbn2bQ8BAMAIM9YFEBpyDYYD8gwAAAAAAAAAAAAAAAAAAN4msVjsz4lE4mJfBQjCuHHj1rX5j6SpHgIoOuPHj19HOTZTbdqJHgIIgvJsV+XZQzqHfsVDAEFQjp2mfLtv6tSp63oIoKhEIpEdlWO3Sz/0EAAAjCRqkJk4GILDxMEwHDBxMAwX0Wj0Izp/Pi99x0MAQbD2TFpm7ZuHAIpKJBLZRW1ZVnn2Kw8BAMBIogtnG92ASQNBsc6lPUJU+YZJA8Fwk+YZTBoIjdqyPaQXMWkgNMqzc5Vnz2LSQCiUXzYysEv6tYcAAGAk0cXMXrW1tfv4KkAo1lInYHxdXd2Ovg4QgrFq0/arrq7+kK8DBMFurdMFzdZabuQhgCCoTdu0vr5+K71kQnQIgrVnEydO3KqqqmpjDwEAAAAAAAAAAAAAVDjxePzQWCwW91WAIEybNm2taDR6jPJtnIcAio7n2RGJROLTHgIIQiQS2VLnzl9Ln/cQQNGpr69fWzn2Jen71r55GKCo1NTUvE/9s5N17qzyEAAAjCRqlJk4GIJj99Lr5M/EwRAUn5OGiYMhOEwcDMOBPdFJOdaoNu1euyXFwwBFhYmDAQBKDEwaGA4waWA4wKSB4QKTBoYDTBoYDjBpAABKDHU0T5ZO9VWAIFjnUnl2qVTvIYCiY3mmTuY5yrOjPQQQBF3QbC4dl0gkPuEhgKJjtzspz2qsTeN2JwhFdXX1ZsqzryWTyc96CAAAAAAAAAAAAACgwpk0adLGsVhsU18FCIb98lxTU/NuXwUIgv0iOHny5A19FSAIdmtdJBLZUctNPARQdGz0TCKR2NrkIYCiYyO2lGPbVVVVbeEhAAAYSdQo3yIxJw0ExS5oamtrc8o15qSBYFiexePx55RnzEkDQVF79lHl2osSc9JAMOxHNOXY9WrT2rjdCUJRV1e3rXLsHuXaPzwEAAAjiRpkJg6G4NjFszoATBwMQbE8U44xcTAEJ8rEwTAMqE3bRO3ZdcqzVkwaCEV1dfW2yrG7pQs9BAAAI4lO/s3qbP7LVwGC4CMcnle+/dRDAEXHnoSiHFuoNu0MDwEEIZlMfkht2j3Kty97CKDoqC17j3LsEuXaRVod2xMFKC6RSGRL5di1jHYGAAAAAAAAAAAAAAAAAAAAAAAAgBIiFovdFI/H7/NVgCD47U7d0m88BFB0xo8fv45yzO6rv8JuffIwQNGpq6vbUXnWIZ3uIYCiE41Gt1GO3ZVIJC72EEDRsaciKs/mKM8yWuW2OgCAkUaNMhMHQ3CYOBiGAzNplGP3qV1rxKSBkNjjt5Vr7cq133oIoOjovLm1cmyeZHPSAARBbZk9RewGqUWrmDQAACONOgA8ghuCYyYNj+CG0PhImvnKs7TlnIcBio7ybGflWaf0Ow8BFB176o5yzB6NfKmHAIqOjaRRnt0ozdYqJg0AwEijC5m1Tb4KEAy7gOYRohAa2jQAAAAAAAAAAAAAAAAAAHj7xOPxP0oX+ipAEMaNG7duLBabI33VQwBFx0bQKMfOV5t2io3c8jBA0VGebS/9U7l2kocAik4ymdxBOXarcu1HHgIoOjp3bpJIJBqUZzZBNbc7AQCMNDr5M3EwBEcdACYOhuAwcTAMF0wcDMOB8mtnyZ4ixpMRIRhqy5g4GACglNCF8y1qlDFpIChm0iSTSSYOhqD4xMH3S42Wcx4GKDpqz3ZSe9Yh8QhuCEYkEtlFOZbl3AkhsYmD1abN0bmzVauYNAAAI01NTc2+0md8FSAINmGw8uxgdQQ+5CGAEIzVRc2nY7HYx+x1Twig+JghGI1Gt7FfoD0EUHR688xuR/EQQNGxPloikXh/XV3dFh4CAAAAAAAAAAAAAKhwotHoQbFYbKKvAgTBfqVRnh2VSCQ+7iGAEIyNx+OHKtf243HvEBK7PUB59v1kMnmIhwCKTiQS2VJ59lMbIeghgKJTX1+/ts6dR6qP9m2tMgoVAGCkUaPMxMEQHCYOhuGAiYNhuGDiYBgOlGMfk15Qnh3nIYCiY3005dh06R4zbDwMAAAjhRpkTBoIDiYNDAeYNDBcYNLAcKAcw6SB4PQzae7GpAEAKAF08v95NBo9w1cBguCTH6bVATjSQwBFxzqXatN+p1z7Dh1NCInybFO7NUA6wEMARUf59X6dN3+o5b4eAig6fu6slb6qVW53AgAAAAAAAAAAAAAYM3ny5A3r6+s38lWAYCjPNpkyZcoGvgoQBGvPampq3u2rAEGw0YGJRGJrLXkENwRD7dl6sVhse9o0CIxNur+5TVTt6wAAMJKok3mLxJw0EBTraNbW1uaUa8xJA8GwC2d1NOcrz9KWcx4GKDp1dXU7Ktc6pNM9BFB0otHop5LJpM3nVushgKJTVVW1vtoym5PmXp07uVUYAGCkUYPMxMEQHLtg1oUzEwdDUJg4GIYLJg6G4UD59Uk/d2LSQDCsj6ZcY+JgAAAjl5u2Vu7+GR/ufuCq3UdCudy/P3jM5CPmTTnq8Edyr96+Y6Eyw6L513wkt7B5J98tEIDue2dv2P3g9I8W3P+BlVtw7YefvOXiPY86vD53wtQvn5/LPbJ9oXLBZXl2/wzyLCC5+U0bjWSe/e/Oxj2mTD5iwdQvT8pYzuU6WncrVDa4bB/cP5Nh4wGx/Ttiubb0ug/NvOA3E6YeO3nJj0746gWWe4XKBVc+zxrIs4CMaJ4tm7PzBaefdPhXp0zKnX7KCd/JLZu7S6FywyLbB+pH+G6BAFj/xPopBfd/QOUevma35/598Z4nfH1K2zeOnfzQ6/dM/+iItWn67O57LyXPAGBk8Qua13MPzcjlHpw+MlpwZY8KbRsuLbo6p/3wkO8WCED3/ekJuY5Zhff/cGnhVbncwyOYa5Zn85sYNRaQ7vnpqlx2hPOsFNq0zmbl2vQ/+W6BAOiccabt54L7f7j0sM7dDxWID5csz7QffJdAAHTOOKsk8qxQfDildr37gRmH+G6BAFj/xPopBff/cMiuRUbyesSU76fOOMh3CQDAyFASJk0pCJMmOCVh0oy0MGmCUxImTSkIkyY4JWHSjLQwaYJTEiZNKQiTJjgjbtKUgjBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpAKAUwKRxYdIEB5NGwqQJDiaNC5MmOJg0EiZNcDBpXJg0wcGkkTBpoBKIx+M31NfX57Q8W6tje6LlTSwW+7l/5/s8VNJg0rgwaYKDSSNh0gQHk8aFSRMcTBoJkyY4mDQuTJrgYNJImDRQCcTj8evr6upysVjsLK1WjElj31nf/R4PlTSYNC5MmuBg0kiYNMHBpHFh0gQHk0bCpAkOJo0LkyY4mDQSJg1UApg0pQ8mjQuTJjiYNBImTXAwaVyYNMHBpJEwaYKDSePCpAkOJo2ESQOVACZN6YNJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0kAlsKYmTTQa3Vtlf6X3XavlP016fYuWMxOJxE+1fTcvulqmTp26bjKZPETvO1N1tKiOW0163ablnxWv8qJDor6+fj19/iS993LVcbOW9vdZfTOlKdr2HiunGCbNaBQmTXAwaSRMmuBg0rgwaYKDSSNh0gQHk8aFSRMcTBoJkwYqgfgQTBqV2VXb59TW1uaSyeSb9lqxaVIyEol8NpFITPL1262M1t+S/q5tW3oVg1A9S9woeVj1/Unlj9ByP61/TsuvaNmmWLfVp9c/9LcVJCpU9jGv7ym9/+/St2pqasbrb6jS6x8o3vu3zdX6nzFpRqEwaYKDSSNh0gQHk8aFSRMcTBoJkyY4mDQuTJrgYNJImDRQCcRXY9IkEoljVOYtbX9LyyM9vFKmTZu2ltXl5kq33v8J3zQAxfetr69f21cLYu9VHW94XZM9PACVucy26zNfWNln9WOs6rnUzRpMmtEmTJrgYNJImDTBwaRxYdIEB5NGwqQJDiaNC5MmOJg0EiYNVALxVZg0iUTiCDMztO1VqdbDQ0L1/sEec633LbTbkDy8RowfP34DvX+6/30pD/ehzzglmUya2fKE9BkPr5IpU6ZsoLIz3fjBpBlNwqQJDiaNhEkTHEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSQCUQX4lJY/PFaNuFZrRo+WAul1vtfDX9UX0Rvc9ujXrFXnt4ABMmTNiwtrZ2H5WbnEgkztWyVWUX6vXL9jeZzIRxo2imvy2Ptr1X5ecedthhtr3Jw0NC75tmdWuJSTOahEkTHEwaCZMmOJg0Lkya4GDSSJg0wcGkcWHSBAeTRsKkgUogvhKTxibZ1bZmNzPaPDxk9P4v6n3Pq943tDzMw3mSyaRte9RHs/xXZS7W8muRSGTPiRMnblVdXb2ZPvddNgInkUic73/fAJNGdeyk99zntzqd5uEhob/tZ5g0o1CYNMHBpJEwaYKDSePCpAkOJo2ESRMcTBoXJk1wMGkkTBqoBOKruN1J235mI1W0XKLt23t4SOg9x/konGXRfk980uuj3Zx5XlrlLUqTJ0/eUJ+bcSNmgEljKJY6/PDDra7Wod5SVVVVtb7Kz/C/AZNmNAmTJjiYNBImTXAwaVyYNMHBpJEwaYKDSePCpAkOJo2ESQOVQHwVJk00Gt0mkUjc4WbLLXr9ft+0SlTuAJW3SYPtVqRJHs5PKqz4X3wUy/0eXikq802vo6BJo+2HSi+54XKSh1eJyn2j9xYqvcakGU3CpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdJAJRBfhUnTi8o0uhGyXLpI5betX+HJTLaeSCQ+oXpusvr0+lmVHe+b+1B8QjKZ/K/Xd6nKb+qbehmrbfYo7ge1bak0y8pqOcikMezWKdX5qpd5IBqNfqrA37aetk1Une3SE3qd9s/HpBlNwqQJDiaNhEkTHEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSQCUQj8dv9JEyZ2t1pZMDJxKJrVXmlFgs9owZHGbE2PvsdihbujFjj+rOSPv72wqiejZXmTNVPj9BcG89JlvXtru17YDx48evo2V+8mLFZvnbB6H3vEt1HquyS2yUzIp/mxs4t6nMwVZey2kW13K1o3lKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKAUwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBgBKgdz8uRt1L5j1em6hOgAL1DBVqtpbc90LrsWkCUj3QzMn5JZcX3j/V4oszx6ehUkTkO4FM6sqPs9MS2+wNg2TJiDdC2edafu54P6vFFmePTwLkyYgOneeVfF5ZlK7rlzDpAmIrgfmWz+l4P6vFFn/YWEzJg0AjCy5aWM26v7tmNdzvx2Tq2idMSbXfdoYTJqAKM8m5P5QYN9XknryDJMmIN2njqmq+Dwz/VG59tsxmDQB0f/ymbafC+7/SpHlmfaD7xIIgPbvWRWfZya162rTMGkCYv0T66cU3P+VIus/nDYGkwYARpbcOWM26v79mNdzv1ejVMmyjubvMWlCov07IXd2gX1fSbI8OwOTJiTdvxtTVfF5ZvpzPtcwaQLSfeaYM20/F9z/laKePMOkCYjatLMqPs9MatfVj8CkCYj1T/KGYKH9Xymy/sPvMGkAYITBpHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGkAoBTApHFh0gQHk0bCpAkOJo0LkyY4mDQSJk1wMGlcmDTBwaSRMGmgXIjH4zHpWeneWCz2QQ/DKAGTxoVJExxMGgmTJjiYNC5MmuBg0kiYNMHBpHFh0gQHk0bCpIFyIRqNnphMJnPxePxuLXfwMIwSMGlcmDTBwaSRMGmCg0njwqQJDiaNhEkTHEwaFyZNcDBpJEwaGM1EIpEtq6urd4pGo9vEYrFfuUkzX/qc1rfX9h1tu7Stv2WlWBm9/3C977uJROIE1ZmoqqrazjevEvs7VHZnfe7mHsqjOvZWXUcr/j0t67Tc2TcNQmXfo+0Hq9y3pa9LVdLWvnmlTJkyZQMzpWz0kL32cJ6ampoPaNtE6TgzsVR/slRHGWHSuDBpgoNJI2HSBAeTxoVJExxMGgmTJjiYNC5MmuBg0kiYNDCaicViF8fj8aekTuk5KafY61o+5rEu6QnpOn/LAJLJZMTK1tXVmbnzijRP75+l5bXRaPSeRCLxSm1trW1rk3b1tw1C78nU19fbZ5+jcp9TvVm99yW9vlO6SrpBylpdJpW73EwZe6/iJ6l8Tnpe8dv0viu1nGPl7e/Sun3+OfkPKoC2jZf+J70aiUQ+q3r30euH9Tlvatkh3ar6rpJu1OusfZb/DYu1Ps6rGXEwaVyYNMHBpJEwaYKDSePCpAkOJo2ESRMcTBoXJk1wMGkkTBooF+Lx+HfMgIjFYnfZCBIPF6S+vn4jlW857LDDrPx1qxppo+0TpeVmlmhZ6+EBqK5m/+zler1My7180wAU31SaY+aLlmaSdGq5UO8teHuW/s4PqMw8M4C0vNzDA4hGo19QHS9o+xtSu7RUsZX+U6uutVX+JyqX/07SMb5pRMGkcWHSBAeTRsKkCQ4mjQuTJjiYNBImTXAwaVyYNMHBpJEwaaBciA5xThpt31z6lxslf/bwKlHddquS1W2jdnb3cB+K5U0aLV+w26s8XJBIJLKnPvdZN3Ue0HsG3CK1IioTl8yA6aqtrd3bw32YSaNtz9voGC1vWV19vejzv2Imjf/dIz6iBpPGhUkTHEwaCZMmOJg0Lkya4GDSSJg0wcGkcWHSBAeTRsKkgXJhDUyayW6Q2KiXY80EEcmVKZFIRKUTVO5x6S3FpnhVfSjWbCaJyjVVVVWt7+GVovJdfnvUzz20UvS9PqXyL6rsK9Kgk4KbNC9K9vlf9fBq0edvovoW+61Pq/07QoNJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0kC5sAYmzele7n+xnrlf2rScPQRdZ0uVT3pVfSjW7CNzzrPbiTy8UlSu002a73topUQikU+r/tWZNP/17Z/38GqZPHnyhir/bzdpLvPwiIFJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0kC5MFSTJhaLfd3K+a0+H/LwO6IETBobSfOmvlO9h1eL3mdPxFpu+0LL4z08YmDSuDBpgoNJI2HSBAeTxoVJExxMGgmTJjiYNC5MmuBg0kiYNFAumNFgxks8Hn+wrq5uFw8PQmXerzJ3+QiSqzz8jlB9I23SPG+fr2Wr6l3PN60S1XWT36J1h967hYdHDEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSBAeTxoVJExxMGgmTBsqFRCKxbzwef8VH08Q8XBAbaaMy95lRouX9sVhsP99UEG3fXuXOjkajX/TQALRtRE0axe3pTma4/E9aVFNT8xnfPAiV3V9a5KbOPbYvfNOIgknjwqQJDiaNhEkTHEwaFyZNcDBpJEya4GDSuDBpgoNJI2HSQDmRSCSOkXI2QiQejy+NxWL3atmp9Xu9yAC07RvSMisvdau8vecmxW6UOqTl9pjuZDL5X72+VHVv528dgN6TcdPl/PHjx6/j4ZWiujr98d+rNWnMcFF5u53pVX1+lYf76L3dSXXl56SRtBp/yk2Y5/WeeVra92nX91ju+2aBdKhXURJg0rgwaYKDSSNh0gQHk8aFSRMcTBoJkyY4mDQuTJrgYNJImDRQrsRise1ra2v3HOqtPHabUDQa/Yje9zFban0j31TS9DNpXrXXHs6j2KbaBx/t952GdCvUSIBJ48KkCQ4mjYRJExxMGhcmTXAwaSRMmuBg0rgwaYKDSSNh0gCMblZl0owmMGlcmDTBwaSRMGmCg0njwqQJDiaNhEkTHEwaFyZNcDBpJEwagNENJk2ZCZMmOJg0EiZNcDBpXJg0wcGkkTBpgoNJ48KkCQ4mjYRJAzC6waQpM2HSBAeTRsKkCQ4mjQuTJjiYNBImTXAwaVyYNMHBpJEwaQBGN5FIZMtEInFELBY7yl57eNSBSePCpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdIAQCmASePCpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdIAQCmASePCpAkOJo2ESRMcTBoXJk1wMGkkTJrgYNK4MGmCg0kjYdIAQCmQN2nOHvN6vgNgDVOl6i86+Z+NSROS7j+NmZD7W4F9X0n6q/LsLEyakGj/VuXOK7DvK03n53MNkyYgOmecafu54P6vFFmeaT/4LoEA6P/4rIrPM5Pa9e4/Y9KExPon1h8uuP8rRT39VEwaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAe6uvr1x4/fvwGWq7nIYAgTJs2ba2qqqr1lW/reAggKFOmTNlg0qRJG/sqAAAAjCBjfVkU4vH4zslkcqkuYnK1tbUFdfjhh+cSicRF/hYof8bmcrmi5tmqqKmpebfy8OYjjzzS8u1Grb/PN0H5U+z2bNdYLDZfy5fVruW0fEt6U+1Xrq6uztqx57T+B7u48bdABeDtWVFzTW3VPsqlNuWb5ZhpeW+u2XlTr59UDn4fg7BiCXYOVW59Rrrb8+yXHgYYEsPZvwMAKGvU0fuQ1KXOX3s0Gt3Gw0VB9X3EOpZSI78AgnLsSu/4TfFQUCKRyJb6rDul1/2i+gZpc98MZYqOcc1hhx1mx/uScePGrevhd0xVVdUWumjey1cHofyeZBfRUofy7cMehjLFDGAd68ekp3Su283D7xjl2P7K3S4t4x4ahLYfawaO9LhybScPQ5mj4x6ztk059/di9al0Tt5T9f1OudRl52ct/6TPuciMZy2neTGAVaIc+rS0XLrDRpl6GAAA3i7WudRJean0iBrX93u4KOiE/3kbRaO6T/MQVDDq8F0lWcdvsoeCodyzX6LfVO5dGYlEPuuv52iJSVPm6BjH/GLj78PdWdRnXmJtntrSb3kIyhQzaXS8HzfZjx0eHjaU57+3XNPyZA9BmaNjnfS27TytrtUTfWeorp+rvZpkt9N5yD7nZ55bmDQwJJQrn1EumXF8q92e6WEAAFhT1JBmpFfVsP5XsobV9KJeP28xvV5kI2G8+NtCJ/6j7USver7hIagwdOyP8Zx6Xjn1hpbW8XtZsltDLGY5+DUvXhT0mSfayBkpP1Rbn7GXPqNbS0yaMmXy5Mkb6vguk17QMX5JsguZ17Xszb3/aXl5yM6j2rr19BmPSst0IbWnh6GMsPxRLv1Vx/hlyzWp93ak/LnTY0/ognc7f0sQbBSFPucfPtrhSA9DGaJc2ljH+GnLL2llbdslKlq020xUHyYNrBblx87SfywHPQ8tZ2z0fG9uvqLlDXZu9LcAAMBQUQO6q7REWlTskTRqoH9unUgt09KvJRtS+31dRB+ti5iPquFmSGQFoRwLOpLG8ld136Pl08qxL3gYk6bC0LGP9o6kCf2LntWvz9pbeXWWli8p9zJq1z7gm6GMGcmRNPrMr7pBk+I8WjmoaUt422YjaULOS4NJA2uEcoWRNAAAxUQN6+5qVB+VFusCY2sPFwXVuZ8UV72fMOn1RHVmp+r1xXptvzZbZ2NhdXX1Hv4WKGOUa3mTRsf8Sx4qGsqpEyyfVP/0/sO2DX0eJk0FoWPce0vAxcWeCysSieyi+m+XnlP9z2iZn8xVy/ukn0m7elEoc/qZNE8M03Efq888WJ/1qHLuNS0ZQVNh6LjX+3nuwpDmnOrHpIE1QrmSN2m0/BfGMQBAEVCDulqTRmWO1PbX/WJkgCymbc9I+3vxIaMLnj1Vhw2LfLP/yAcoT3ScV2nSTJw4cStte8BuVbJyK8p/Of6NF8+jsh9WDmalp7Ttcx4eQHV19ce1LW/SqI73ehjKFB3r1Zo0KnNOofbMZPmn996m7UM2re2CXe8zQ/plyUbUVPkmKFOGYtJom/1QYU9mKphrnqef9+IFUfu1mfLpfM/Lh7XkXFmhKA9Wa9Jo299UblCumfy919otVF68ICqDSQNrhHIFkwYAoJioQQ02kmYo6DNP9Ivvs7XKo/vKGB3joo6kUV2n++10Ng/EdK03amm31vXJY7P9c5dpebVva9Dr3b0qKCN0XIONpFkd+my7ffRJffZye7qYh6EMCT2SRnXWJJNJu5XKfsg4aerUqUV7UhmMToZi0hQD1Y9JA2uEcgWTBgCgmKhB7TNpokV+BPdQ0OdfYJ0Bff5XPQRlio711VKxTJqxqueDqu+Tytt9VqG9pUkqZyNp7pQOtJjWx2n5Hq8Lyggd216T5pLhNml0Qb2DPneR9PqRRx75Pg9DGeImzRMm5VzRTBq1S9uovv9YmyUd6mEAa9sO87Yt6JPr9DmYNLBGKFfMpLF+1m2YNAAARcAuVBOJxP1qYF8s5jBqa6RX01CP1eee6x2BGdbh9TiUKTrOp49Ex0+dBuakqSDUruyhtswuZG4r1miWo446ajPl7lZ6udLRfvq8TZVfN/tF1I88DGWK8mE95dpNfrz38/A7wkxF5dCtqrdodUL5oLz4uLdt/6yrq9vCw0VHOYhJA2uEcmV3aYly83/05wEAioQa1vHSi94xfEC6SetZdT739iJrjOqYqE7EG6rDHsf3oNZbtbxWy3u1fNU6ttFotEXrq7wfH8oH5cO7dOxvtluUlGtZHfvrpWeUB9/zIkFQ/XurY9utz7xRn49JUwHoWP/ALmZ0vF9Xjt2q5d1aXqMLj7f1C586nTb30RK7cNHSJg2+Q3XarXPNWt6nz7I5u+zx32crv3f0t0GZY22Ljvuj1qbp2N8j3aKcsEfBf9CLrBFmBKq+VyWrzx7r/dxqZI+9/Y/KD/utyjAy6HifZG2bjvlryrN/av0eLa8s5hN1VP/PDj/8cPuMX3gIYLUoD7+snHlDskfE/0vrD0m3rfgwBwAAWHPG2n3vRX583lj7ddB+dQxQN4xCcrncWLtYtryw1x4GKDrW3vhcHkXLM6uzt00bN24cbRr05YTJQwBBsXNosds2gGLQ7xzJbU8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo5wxY/4fsdJWuQhwRGcAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('./images/multi_step_vector_output.png')" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "from keras.models import Model, Sequential\n", - "from keras.layers import Conv1D, Dense, Flatten\n", - "from keras.callbacks import EarlyStopping" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "LATENT_DIM = 5\n", - "KERNEL_SIZE = 3\n", - "BATCH_SIZE = 32\n", - "EPOCHS = 10" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "model = Sequential()\n", - "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', activation='relu', dilation_rate=1, input_shape=(T, 2)))\n", - "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', activation='relu', dilation_rate=2))\n", - "model.add(Conv1D(LATENT_DIM, kernel_size=KERNEL_SIZE, padding='causal', activation='relu', dilation_rate=4))\n", - "model.add(Flatten())\n", - "model.add(Dense(HORIZON, activation='linear'))" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "model.compile(optimizer='RMSprop', loss='mse')" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "conv1d_51 (Conv1D) (None, 6, 5) 35 \n", - "_________________________________________________________________\n", - "conv1d_52 (Conv1D) (None, 6, 5) 80 \n", - "_________________________________________________________________\n", - "conv1d_53 (Conv1D) (None, 6, 5) 80 \n", - "_________________________________________________________________\n", - "flatten_8 (Flatten) (None, 30) 0 \n", - "_________________________________________________________________\n", - "dense_13 (Dense) (None, 1) 31 \n", - "=================================================================\n", - "Total params: 226\n", - "Trainable params: 226\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train on 23370 samples, validate on 1463 samples\n", - "Epoch 1/10\n", - "23370/23370 [==============================] - 4s 175us/step - loss: 0.0168 - val_loss: 0.0032\n", - "Epoch 2/10\n", - "23370/23370 [==============================] - 1s 50us/step - loss: 0.0025 - val_loss: 0.0012\n", - "Epoch 3/10\n", - "23370/23370 [==============================] - 1s 50us/step - loss: 0.0011 - val_loss: 8.3938e-04\n", - "Epoch 4/10\n", - "23370/23370 [==============================] - 1s 50us/step - loss: 9.2890e-04 - val_loss: 7.1310e-04\n", - "Epoch 5/10\n", - "23370/23370 [==============================] - 1s 50us/step - loss: 8.2510e-04 - val_loss: 6.6736e-04\n", - "Epoch 6/10\n", - "23370/23370 [==============================] - 1s 50us/step - loss: 7.4785e-04 - val_loss: 5.5442e-04\n", - "Epoch 7/10\n", - "23370/23370 [==============================] - 1s 51us/step - loss: 7.0345e-04 - val_loss: 4.1933e-04\n", - "Epoch 8/10\n", - "23370/23370 [==============================] - 1s 50us/step - loss: 6.6990e-04 - val_loss: 3.8297e-04\n", - "Epoch 9/10\n", - "23370/23370 [==============================] - 1s 51us/step - loss: 6.5410e-04 - val_loss: 5.2706e-04\n", - "Epoch 10/10\n", - "23370/23370 [==============================] - 1s 49us/step - loss: 6.5067e-04 - val_loss: 5.2468e-04\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.fit(train_inputs['X'],\n", - " train_inputs['target'],\n", - " batch_size=BATCH_SIZE,\n", - " epochs=EPOCHS,\n", - " validation_data=(valid_inputs['X'], valid_inputs['target']),\n", - " callbacks=[earlystop],\n", - " verbose=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluate the model" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [], - "source": [ - "look_back_dt = dt.datetime.strptime(test_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", - "test = energy.copy()[test_start_dt:][['load', 'temp']]\n", - "test[['load', 'temp']] = X_scaler.transform(test)\n", - "test_inputs = TimeSeriesTensor(test, 'load', HORIZON, tensor_structure)" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "predictions = model.predict(test_inputs['X'])" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.25],\n", - " [0.32],\n", - " [0.4 ],\n", - " ...,\n", - " [0.53],\n", - " [0.46],\n", - " [0.44]], dtype=float32)" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timestamphpredictionactual
02014-11-01 05:00:00t+12,788.402,714.00
12014-11-01 06:00:00t+13,014.442,970.00
22014-11-01 07:00:00t+13,264.803,189.00
32014-11-01 08:00:00t+13,382.653,356.00
42014-11-01 09:00:00t+13,495.023,436.00
\n", - "
" - ], - "text/plain": [ - " timestamp h prediction actual\n", - "0 2014-11-01 05:00:00 t+1 2,788.40 2,714.00\n", - "1 2014-11-01 06:00:00 t+1 3,014.44 2,970.00\n", - "2 2014-11-01 07:00:00 t+1 3,264.80 3,189.00\n", - "3 2014-11-01 08:00:00 t+1 3,382.65 3,356.00\n", - "4 2014-11-01 09:00:00 t+1 3,495.02 3,436.00" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eval_df = create_evaluation_df(predictions, test_inputs, HORIZON, y_scaler)\n", - "eval_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute MAPE for each forecast horizon" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "h\n", - "t+1 0.02\n", - "Name: APE, dtype: float64" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", - "eval_df.groupby('h')['APE'].mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute MAPE across all predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.019844552417510108" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mape(eval_df['prediction'], eval_df['actual'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plot actuals vs predictions at each horizon for first week of the test period. As is to be expected, predictions for one step ahead (*t+1*) are more accurate than those for 2 or 3 steps ahead" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "ename": "KeyError", - "evalue": "'t+2'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3062\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3063\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3064\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mKeyError\u001b[0m: 't+2'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m111\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m't+1'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.75\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m't+2'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m't+3'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinewidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.25\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'timestamp'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfontsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2684\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2685\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2686\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2687\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2690\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2691\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2692\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2693\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2694\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 2484\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2485\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2486\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2487\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2488\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 4113\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4114\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4115\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4116\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4117\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3063\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3064\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3065\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3066\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3067\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mKeyError\u001b[0m: 't+2'" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHVCAYAAABSeALaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8JFeZrp8jqZXz5GRN8NiTjCMOZEwyCyazBBOWC+vlLhkWMMsuYcGA2V2TvIC5Zm3CLiZjsHEC44zDOI1nPFmTk0atUeoktbruH6e6qk5Vt9RqadTVre/5/cbqU11qlVyqqvOe9wvKsiwEQRAEQRAEQRCE8qaq1AcgCIIgCIIgCIIgTB0Rd4IgCIIgCIIgCBWAiDtBEARBEARBEIQKQMSdIAiCIAiCIAhCBSDiThAEQRAEQRAEoQIQcScIgiAIgiAIglABiLgTBEEQBEEQBEGoAETcCYIgCIIgCIIgVAAi7gRBEARBEARBECqAmlIfwETMnTvXWr58eakPQxAEQRAEQRAEoSQ89thjvZZlzZtov9CLu+XLl7Nx48ZSH4YgCIIgCIIgCEJJUErtK2Q/CcsUBEEQBEEQBEGoAETcCYIgCIIgCIIgVAAi7gRBEARBEARBECoAEXeCIAiCIAiCIAgVgIg7QRAEQRAEQRCECkDEnSAIgiAIgiAIQgUg4k4QBEEQBEEQBKECEHEnCIIgCIIgCIJQAYi4EwRBEARBEARBqABE3AmCIAiCIAiCIFQAIu4EQRAEQRAEQRAqABF3giAIgiAIgiAIFYCIO0EQBEEQBEEQhApAxJ0gCIIgCIIgCEIFIOJOEARBEARBEAShAhBxJwiCEDKGhmDLFkgkSn0kgiAIgiCUEzWlPgBBEATB5fBh+MAHoL8fFi+Ga6+F5uZSH5UgCIIgCOWAOHeCIAgh4rbbtLADLfTuu6+0xyMIgiAIQvkg4k4QBCFEHD1qjnt6SnMcgiAIgiCUHyLuBEEQQsTAgDkeHCzNcQiCIAiCUH6IuBMEQQgR2ZDMLENDpTkOQRAEQRDKDxF3giAIIUKcO0EQBEEQikXEnSAIQojwO3fDw6U5DkEQBEEQyg8Rd4IgCCEhldL/vIhzJwiCIAhCoYi4EwRBCAn+kEyQnDtBEARBEApHxJ0gCEJI8IdkghZ3ljXzxyIIgiAIQvkh4k4QBCEk5HLuxsYgkZj5YxEEQRAEofwoWNwppaqVUk8opW62xyuUUg8rpXYqpX6ulKq1t9fZ4132+8s9n/EZe/t2pdQrpvuXEQRBKGdyOXcgoZmCIAiCIBTGZJy7jwBbPeOrgG9YlrUaOAG8197+XuCEZVmnAt+w90MptQ54K7AeuAT4rlKqemqHLwiCUDnkcu5AxJ0gCIIw+4jFYP9+HcEiFE5B4k4ptRR4FXCdPVbAxcCv7F1+BLzOfv1ae4z9/kvs/V8L3GhZVsqyrD3ALuD86fglBEEQKgFx7gRBEAQBNm2Cd7wD3v1u+PjHReBNhkKdu28CnwIy9ngO0G9ZVtoeHwSW2K+XAAcA7PcH7P2d7Tm+x0ApdblSaqNSauPx48cLPERBEITyJp9zJ+0QBEEQhNnCvn3w2c+6C56bNsHjj5f2mMqJCcWdUurVQI9lWY95N+fY1ZrgvfG+x9xoWT+wLOs8y7LOmzdv3kSHKAiCUBFIWKYgCIIwm+nrg09/GoaHze1Hj5bmeMqRmgL2eS7wGqXU3wD1QCvayWtXStXY7txS4LC9/0FgGXBQKVUDtAF9nu1ZvN8jCIIw65GwzMohFoOREejoKPWRCMLs5MYb4bbb4Iwz4AMfgPr6Uh+RMBGJBFxxBRw7FnxPIlgKZ0LnzrKsz1iWtdSyrOXogih3WZZ1GfAX4E32bu8GbrJf/94eY79/l2VZlr39rXY1zRXAauCRaftNBEEQyhwJy6wMNm6Ev/1beMMb4LvfLfXRCMLsY+NGuPZaHd53881wyy2lPiJhIsbG4ItfhJ07c78vi5yFM5U+d58GPq6U2oXOqfuhvf2HwBx7+8eBKwAsy9oC/AJ4BrgN+IBlWZIeKQiCYCPOXWXwgx9APK5f/+pXOsxIEISZ49ZbzfHTT5fmOITC+c534OGH878vi5yFU0hYpoNlWXcDd9uvu8lR7dKyrCTw5jzffyVw5WQPUhAEodLJZPKLOBF35cPQEOza5Y4tC44cgc7O0h2TIMwmEgl44AFzmyywhJuDB+Gmm8xt9fWQTLpjeQ4WzlScO0EQBGGaGBzUQiAX8lArH555Jnge84XbCuFlyxb4p3+CL3wBenpKfTTCZLj/fkilzG0i7sLN5s3meP58+MQnzG3i3BXOpJw7QRAE4eQwngCQh1r5sGlTcJucv/JibAw+/3mIRvU4nYYvf7m0xyQUzp//HNwm4i7cJBLm+KKLYPlyc5sschaOOHeCIAghYDxxJw+18iFXbo+Iu/LiyBFX2IHka5UT/f3w6KPB7YlEUEAI4SGbo5yloQFaW81tch8tHBF3giAIIUDEXfkzMgJbtwa3S1hmeeEvbDQ0lD9kWggX99yj85dzceLEzB6LUDh+4d3YCC0t5jZ5DhaOiDtBEIQQkK9SJugHXzo9c8ciFMeOHbnPk6w4lxd+EWBZQWdBCCd/+lP+90TchRe/uGto0AVVajzJYyMjwVxKITci7gRBEELARO7O8PDMHIdQPLny7UCcu3Ij1/kSgR5+jh4NFubwInl34cW/eNLYCEqJe1csIu4EQRBCwHjOHcjkshzIl5sl4q68yOXwyKQy/Nx11/jvi7gLL7nEHUjeXbGIuBMEQQgBE4k7mVyGG8vK7xrIhKS8yHUtyjkMP/4qmR0d5ljEXXjJFZYJ4twVi4g7QRCEEOB3d6p8d2eZXIabPXvyh86Kc1de5BJ3MqkMN93d+l+Wqiq49FJzHxF34SVXtUwQ565YRNwJgiCEAL8AWLTIHMvkMtyMVy5/vAb1QvgQ56788IdknnsurFplbhNxF15yVcsEce6KRcSdIAhCCPCLu6VLzbE81MLNeOJubEyqLZYTucSdFDQKL5YVDMl86Uuhs9PcJuIuvOQLyxTnrjhE3AmCIJQYywpOKJctM8fyUAs3EzW6lvNXPohzV14MDOhKmVkiEXje80TclRP5CqqIc1ccIu4EQRBKTCqle/hkiURg/nxzH3EOwktPj/6XJRKBri5zH8m7Kw9yLbSATCrDjP/czJunxUGugioSHh1OxLmbXkTcCYIglBj/ZLKtTR5q5YTftVu7FubONbeJuCsPhochkwlul+svvPgXvpqb9ddsI+ws6bQskoWRsTFzcVMpqKvTr8W5Kw4Rd4IgCCXGP/Fvb5eHWjnhF3dnnKEFuhcRB+VBrh53INdfmInFzHFW3IGEZpYDuSplKqVfyyJncYi4EwRBKDG5nDsRd+XDpk3m+IwzgpMSce7Kg3z9JmVSGV7yOXcg4q4cyBeSCfIcLBYRd4IgCCUml3MnK5blwdCQ7nGXRSlYv17OX7mST9zJpDK8iLgrb/K1QQC5jxaLiDtBEIQS4xd34tyVD1u2mOMVK/TkUsIyy5N8YZnSqzC8iLgrb8YTd/IcLA4Rd4IgCCWm0LBMmVyGj23bzPEZZ+ivfnEnYZnlQb7zNDpqFn0QwoNf3DU1ua/94i6feBdKh5lzZxlhmU1Nbv4daCGYTs/UkZUvIu4EQRBKTC7nLhJxK4aBruDnX+EUSo//3GX7E4q4K0/Gm/yL+xpOhoft/2zeDFu30px2V8tytUMQwoUj7nbvhvvuo/G3P3VumEqJe1cMIu4EQRBKya9+Rf83r4etW2FML0m2t+u3JN8g/Pgr9WVdAymoUp7ky7kDmVSGleHBjI6P7j0Ox47S/J9fdMIcJCwz/CQSwOAAHNgPY2M07NsG//qvzvvyHJw8Iu4EQRBKRU8PvP3tDBwahmNH4ZlnAFfcyYpl+Mkn7iTnrjwRcVd+DB8agIQb29f8zMNwzz2AiLtyIB7HWP1qIAG/+pXTcFKeg5NHxJ0gVCD9/TpHRAg5jzwCo6P0Y6u5aBR6ex1hIA+18FOocycFOcqD8cSdCPRwMnzEvDE2MwxXXw2IuCsHEgmMnING4nDkCDzxBCDOXTGIuBOECsKy4Ctfgde/Ht7+dujuLvURCeMSjQIwgMfm2bmT9ohWDPJQCz/+BrxZcVdfDzU17vaREUilZu64hOIQ5678GD5uXoTNDMMf/gA7dgRy7vr7HUNICAmJBBB3xV0D9us//AGQRc5iEHEnCBXEtm1w5536dW+vjmwQQkw0yhhVDOF5eqWStHznK4A81MqBfM6dUhKaWW5kMuPnRsr5CyfDUbOMaTN2+cxvfpNIxLyPWtb4Al6YeeJxgs4dOOJOFjknj4g7Qaggduwwx4cOleY4hAKJRhnEfHK1MET11f8OW7eKuCsD8ok7kIqZ5cZEobNy/YWT4QGzNr4j7m64AaJRaYcQchKDo5BKOmNH3D3+OBw6JM/BIhBxJwgVhF/M+fv/CCEjGjVDMoE2BnTC5Ac+QEuzOdOUh1r48Is7bwNeEXflxUTnRxyD8JFOQyrmijuF5Yb1JRJw7bWSdxdy4odMte2cP4BbbhHnrghE3AlCBeEXdyIGQk406hZTsWnHjhn6y19offJe4z15qIWLkRGzoW5NDdTWumOZlJQXEzk6cj8NH8NDFiRc16eZYZR3h+98h85W09kTcRcu4ofNOFlD3P3hD+LcFYGIO0GoIMS5KzP8zl0kop07m5b//pbT+w7koRY2/MVUGht1rl0W6XVXXvhzserrzbGI8/AxvLcXMmPOuLk6Cc3N7g5Hj9LZvdH4HhF34SJx3HywGeLuT3+itTZpvC/X4cSIuBOECiGTCYq7RALGxnLvL4QAv3O3ejXt1a4ibzmxD3qOO2MRd+HCv3jizbcDKahSbvjF3bJl5liuv/AR23bAGDe3VcF732ts67znt4Ab4i7iLlwkes1VMifnDiCZpGXLQ8b7ch1OjIg7QagQenrMELEs4t6FmL4+07lrbaX94nPcIYMw7D7JRByEC8e5GxyEvXtpivcY74tzV174xd0pp5hjuf7Cx/Cuo8a4uaMWPvxhqHKnt537nzBibkXchYv4CdOZa1w6xxi3PnCrMRZxNzEi7gShQshXGVPEXYjJFZZ51gpn2MwwDLsVO+ShFi5iMfRJefwx2LuHxpt/qSu82YhzV15M5NzJvTR8DHebCyrN8xpg5Urd7NWmkz447kZAiLgLF4nBUWPc8A/vMsYtd92E13mV5+DEiLgThArh4MHc22VCElISCUgkXHGnFFRX07ZuibNLK4O2gtAPNnmohYtYDDh2zBk3j/XDl77kjKVaZnnhF3dLlpg5lPF47ugIoXQM74sa4+ZFdvWNd77T2dZJn5EgK60QQkQiQTxhlMCh8b1vM2Lcm4/uhCF3IjM8LI3oJ0LEnSBUCPmcOxEEISWqJyVOzl0kAijaTl8IDQ2Azj2oSqd0WUYgmdRdEoRwEI+jT4pNI3G46Sbo7gYkLLPc8E/6OzoIVOqTxbJwMXzIvKial9grKqed5mzrpM9oki3OXXiwdu0miadyUX099Qva4GUvczZVk6Fp8Ij7PVawBY1gIuJOECoECcssM/ziriYCQHtnFaxbB4BCNzX3PslErIeH4WGM5rtNxPTM45prAAnLLDf84rujQ9pZhJ3ho+YDrrnLbmq3YoVju7YyiEolHbtnaEgWycJCYku3Ma5rqtHpkpdeamxvjZr7yXU4PiLuBKFCkLDMMsMWd05YZkSLu7Y2YMMGZzcRd+FFO3cpZ9yEfZ6uuw4GB8W5KzP8zl1bW9C5k+svRMRiDA96y0ErmpbZxTjq63VcLVCFRQcnIOm6dxKaGQ4S2/YZ48ZW/Rzkb/7G2N7Stw9S7r1WrsPxEXEnCBVAJgOHD+d+T8RdSIlGsfCGZdYA0N6OiLsyIXZiBEZHnLFTwntoCG64gaYmo2gfyaQTYSuEjLGx4LXV1ibOXajp7mYYT0+7+nqa22vc8apVzksdmum67BKaGQ4SO8xWFg0ddfrFwoVw/vnO9lYGjaRYuQ7HR8SdIFQA+doggIi70BKNkqCBNPZkJBKhthbq6jDEnVtURSMPtfAQO2xW4GjGc7F9+9uozJiIgzJhcFBH1GZpaYGaGnHuQk13NzE8zSUb6o3+5UFxJ3l3YSO++4gxbpzrOZ8vfKHzUhY5J4eIO0GoAPKFZILcBENLjjYI7e12mohH3DUzbFTMFLEeHmKHTaVmNN/dvRtuuUXy7sqE/mMpSLuJWO22oe4Xd3L+QsTu3aZz19Ag4q7MSOw1+xQ2LvBccOvXOy9lkXNyiLgThAogXzEVEDEQWvziribiCoElS5xqHK0M6pgxO7dLHmrhIdZjlmxzcu6yfOtb0g6hHHjgAfovvATuvx927ADLyivuZLEsRPjFXf0E4i4p4i5UxOPEe8wJSsMCT6iDR9yJczc5RNwJQgUwnriTm2BIydXAPDtUynHvWrBPoP1gk/MZHuLRhDFues5Z5g533UVr4pixScRdCLnySvqz5+XwIdi5g/Y27ZRLWG2IEeeuvNm9mziN7ri+nobmane8dq3zspVBLc4zuoCOXIfjI+JOECoAce7KkGiUQTwzx0iNOZEMiDt9IuWhFh5iJ8zqKE2veB684AXGtrYn7zHGcv5CyPbtnKDDHR8+TPsjdwDi3IUaf0GVCXPukmTD20XchYCdO0nQ4I4bGrMtXjVNTbByJeB9DurQd7kOx0fEnSBUAOPl3Im4CykBcRfJKe5asdWAOHehIzZoVjFqWrUQPvpRY1vrE/cY1Y7EuQshfhcd6LjjRvjudwPOnVx/IWFsjLE9+w1xoBobaPQYQXR06H+gWyFYGaecvoi7EBAQd77zB05opv85KItk4yPiThDKnPHaIIBMRkJLgeJOwjLDS2zYMsZNpy6C17wGurqcba3pKAy6ik4mJSFjdBQGBkznDmhjAD74QVoeuM3YLucvJBw4QCxd644jERpbarJ9y11s964TW83Z7RBE3IWAXbvMsEy/OAdH3MlzcHKIuBOEMsffBsF/cxweNkt8CyHBL+5qfOIu8FCLg5WRyWVIsMYyxBLmI7TxtKVQXQ2veIWzrY0BQxHI+QsZ9izf6Tdpo50ei9Yr/hEG3JYXMqkMCf42CP5iKlnssD5X3Om8u74+eS6WnInCMiGvuJP76PiIuBOEMscfkrl8OUQi7jidlsbJoWNsDE6cYAhPQk+kxszvmTcPFixwH2pWBhJJCbMNCcm9R43JYW2NRU2HfQIvvNDZ3sYADLgzEQnLDBm9vYBH3FVXg1K0owVdS7oPdnc7u8ukMiRMVEwli+3cNREjwqgj7lIpo76KUAp27jSdu3HCMp3nYFycu0IQcScIZY6/mMrSpQQeciIIQkZ/P1iWm+dTXQ2qKlA2nw0b3FwDgNiwTC5DQnyXGQvd1ORRen5xNzRItpCDiLuQEY0CHnHX1Axr1rjijiF9/qwMIJEQoWGS4k4RbIdw4sTJPURhHGIxOHzY59zVB527NWugqsoVd8kkjKUZHJTrcDxE3AlCmeMXd0uWiLgLPfaE0nHubKvVX5mP9evdhxpALMbQkDzUwkBst9l8t6nF8zg9/XSzT2E6DXE9qRRxFzL8zl2kBhYspH2xDvmrJkOjFXPOn2XJ/TQUBMRd/bjiDqQdQqjYvRvAde7qG0BVBcVdQwOsWkUto9Shi+EQi5PJiPM6HiLuBKHM8YdlLlki5btDjy3unJw7W9z5K/OxYQM1jFGPLgJALIZlQTw+Q8cp5CXWbfava2rzxEJXVcEFFwC2cwdOURVxXkNGNEqaamOhRSloXbfU2aWFISccDOR+GgoCbRDGd+4gKO7s27BQCnbuBHCdO1vVBcIyIVgxMy55dxMxobhTStUrpR5RSj2llNqilPqivf0+pdST9r/DSqnf2dtfpJQa8Lz3Oc9nXaKU2q6U2qWUuuLk/VqCMHuQsMwyxC/uavKLOwiWgRb3p/TE9pszw8bOenMHOzSzmWEUljMTicXMAkhCientNdsg2FVrq9evcTa1Muj01wKZVJYcywo6d/kKqixZAnV1AMwhqi++9Cgg4q6k+MVdo/4acO5AKmYWQU0B+6SAiy3LGlZKRYD7lVK3Wpb1/OwOSqlfAzd5vuc+y7Je7f0QpVQ18F/Ay4CDwKNKqd9blvXMlH8LQZil5GqDIGGZZUA0yhhVbrU32y0ITE7sh1oHJ+hhvg4Ny2To66ti8eKZPWTBJHbQTNhpnu+bldjirgqLZoYZ8iiCoSGn/ZZQaqJRs1JmJEJ7O7BunbNJnLuQ0dcHAwOuuKuqgrra3OKuqgpWrIBt25iLDsElkYCWSDYiVygFu3YBnrDMyTh3UjFzQiZ07ixNdmoYsf85GR9KqRbgYuB3E3zU+cAuy7K6LcsaAW4EXlvUUQuCAMCxY6YL0NamBYKEZYacaNRXKTNCc7Oehxi0tsIpp+gVZwB0TKZMSkpP/Kg5s2hc4Lvozj/fednGgF5hGRsDZFISKnp7JxR34tyFjG5dvdQRd/UNgKKpKc/+dmimIe5A7qOlxHbuXHGnv+YUd9LzddIUlHOnlKpWSj0J9AB3Wpb1sOft1wN/tizLe7u7yA7jvFUptd7etgQ44NnnoL1NEIQiyRWSCeLchZ6+Pl8D85pgSGaWDRvcSQlALCbhRCFg+FjMGDct8pU6nTMHVq8GPHl39mxEwmpDRD5xt3ats0k7d3GjYqZQQuxiHI64a9Ah0TmdO8gh7nQOs4i7EpIn5y5nWOZpp0F1tevcpVKQTssiyzgUJO4syxqzLOssYClwvlJqg+fttwE/84wfB7osyzoT+A6uo6dyfXSun6eUulwptVEptfH48eOFHKIgzEpyVcqE4ENOVrhCRg7nLlApM8uGDR7nDhF3YWBwkHjc8/hSiqaFOU6gHZrpFlXRsxERdyEiX1jmnDkwfz5gO3dWRpdhR5y7khMQd1oRTCTunPuoOHelJR6HI0ewyDp3yhHoOcVdXR2sXm1Wjo7HZF4zDpOqlmlZVj9wN3AJgFJqDjrc8hbPPoPZME7Lsv4IRJRSc9FO3TLPxy0FfNlCzmf8wLKs8yzLOm/evHmTOURhilgWPPwwPPqolFsvBwoVd7LSHDKi0UARh0CPuywBcTcs4q7UHDjg5ksC1NXT2JzjcWqLO2fFWSpmho/eXk7gSYDMijtwQjMlHCxkFCnu5mGbBR5xJ/OcEnBUt5EZoRYLBbW1oKqIRKAmXyWQ9et9PV9jch8dh0KqZc5TSrXbrxuAlwLb7LffDNxsWVbSs/9CpZSyX59v/4wo8CiwWim1QilVC7wV+P10/jLC1Ln6arjiCvjUp+Caa0p9NMJE+NsgSFhmmeB37mrGd+78YZmy4lxi9u0zxV19Xe6JZUDc6Wbm4tyFiBwLLU6xm4C403l3MqksMf6cuwLFXTPDRBh1Gpknk9IrrSQc021knJDM2logj2uXJU/PVyE3hTh3i4C/KKU2oQXanZZl3Wy/91bMkEyANwGblVJPAd8G3moXZUkDHwRuB7YCv7Asa8t0/BLC9JBKwa23uuPf/x5GRkp3PMLE5BN3fqEg4i5kRKO+nLtI/py7NWuYozyVGZNJokdHT+rhCROwf79bCACgvj53IYAzzoCGBjcsc2QEkikRB2EhnYYTJ0znrqbGddH94i4uzl0oOKDLNzjirm6CnLsVK0ApFHbeXSoFGV3cSDJ/SoAt7px7aK1uBZTzHpplwwZx7ibBhK0QLMvaBJyd570X5dh2DZDT87HDNP84uUMUZoqjR51iboB+7u3aZRQNE0KEZcGRI+Y2CcssE6JRBjnXHY9XUKWhgbnLm2GPu6n3QAJduFgoCfv2MUynO66rz12pLxKB886j9T7PLGRwkIGB+hw7CzPOCb1o4uTc1dSAqnKdO7uoiluCXZy7kmNZzqqmWy1T97HLK+7q6vTK54EDzKWXIyzStl1jE9EodHXNwHELLuLcnXQmlXMnVDZ+oQCwbVtwmxAO/M2Q6+txJpgi7kLOZJw7oO3UeVTjrrzETqRIpU7i8QnjE3Du6vKXYb/wQte5AxgcFHEQFuz4ZkckRPSCiRP5kNO5s2RSWUp6e2FkhAxKX4PV1VCtfYq81yBIO4QwEXDutLgb17lbvZrWGk8M7cgIg8flIZgPEXeCg4i78qK/3xy3ewq+SZ+7EJNIQCLhijuldJnnccSdWrGcTvrcDcmkFFUpJfv3+3Lu8jh3kEPcDUjOXViwLyK/uHMWxxYsgI4O17nL6IqZIs5LiO3aOdefHZLZ2JijT6gXEXfhIY+4G9e5i0RoWTXf2DR0WCY2+RBxJziIuCsv/BNEr7jzTzRjMakKFhrsCaUj7iIRQI0r7lixwqyYmUzKpKSU+Auq5AvLhKC4Gxomenwsz87CjGJfRM4ks0aLO+dcKgXr1vnCweIMDcn9tGTY+XauuJsgJDNLnl53skhWAooJywRaN5xijAd7EnId5kHEneBwOEdjigMHJKQvrPT3o5M/HtsIGzfSNnTAea+62gxxsCynirdQauzZhFMts8YXCpaL5cvNipkJce5KRjoNhw4FqmXmDSlavJiFS2rcsForw9HdsWy6l1BKolEyKM8kU1+LxiRz3TrqGKEWu7pYPEY67bS8E2aayebbZcnT604KqpQAuxWCc91FCgjLBOqedTo1uLkoo4NJmZ/mQcSd4JDLuQPYsWNmj0MojP5+tLU6NATDQ7Td8jMdNmQjeXchxVZlTvl1OxQsb587gOXLxbkLC4cOkclY5sSkqnrciUndReewmp3uhoFBNm8+uYcpFEBvr5k7WROhocEX3mcXVfG3Q5BQ9xLhF3dFO3da3MkiWQko0rlTG9azDHcRm9iwzE/zIOJOALSzk8u5A9i6dWaPRSiM/kMxpzQ3QHv/Hnj6aWcs4i6k+J27iC4GMK5zFwjLTNAXlXiUkrB/vzspAaivCwoCPxdeyAY8am5w0HupCqUiGjXFXSQSDK+1i6o4eXfSDqG0TJe4SybAsmSRrBQU0woBYP161uDJFYrFJXUoDyLuBEDnb+ULM9m+fWaPRSiMgW5zybGdfrj7bmfsf9jJZCQkRKP4RBX0AAAgAElEQVSkqfY4PxGqqiao9DZ/PnMjnioOY2N2OwRhxgk0MB8n3y6LX9wNDYlzFwZ6e81zOY64c507XTFTiqqUiMn2uMvS3g6dna64syxIpYhGJX9yRkkknMmIFnfKiV6ZUNytWsWamt3ueHSEbY/HT85xljki7gQgv2sH4tyFlYEDZkWVicSdOHchIUcbhJYWXbshL0oxZ3Gd+TH7RK2XBH+lzPGKqWQ54wxT3CUT7NxhSTuLUuMPy4xEghPMpUuhudkVd2NjkBqRxbJSUaxzB7BqFXWM0Iz9MEwmGBsLVp4WTiK2awd2WGZtLaAffhOFZVJTw9qV5k1z62Mi7nIh4k4A8ufbgS4oJnHp4aP/kHlTa2MA7rnHybvzh/mJuAsJfnFXM36Puyxzl5uzl96DUtGhJATaIIzT4y5LaytzOiwWYd9oLYt0fESiIkpNNOqKBMjt3NkVM52wTIB4TJy7UpCrgflkxN3KlYCnqIodriShmTOIR9zFaXRCMqEAcQeseFYLEUadcfTIiJy/HIi4E4DxxR1IS4Qw0t9jrmC10w8nTsCmTYA4d6Flkg3Ms8xZ1W6Mo8eknH5JyBGWOWE4EcDy5ZyBJ9EumZS8u1KTw7nLKdTXrs3ZDkGYYfr6HEEWo0mXha6pBgoUd11dAMzDLpEp4m7myencaQq5j9asP90sThWPyfw0ByLuBCAYlllnRoDJxRNC+vsyxrgdO7bEDs0UcRdSAuKupiBx13raQqMMdHwonS34NmsYG4PHH4edO0uYJ5MjLLOgieXy5WZoZkrEXcmJRgM5dzknmOLchYMDbqXEYZrtiYoO6ZvQPQdYvhwIOncSmTSD2G0QICjuCnHuWLtWiqoUgIg7AQg6d899rjmWiyd8DAyal69f3PnDMmWlOSREo26lTHBy7iZCrVxBJ33uhuTs63X31a/CJz4Bl18Ov/lNCQ7AsmDfPtPtGa/HnRe/c5dIsmWLFHMoGWNj0NfnE3c1uYW6X9zFpE9hSbBDMsEr7jSTce7cipla3EmvuxnEH5YZmZxzx7p1priLi7jLhYg7AQg6dy9+sTnetk0mIWEiOZwmlXSduxrSNGDbOPfeC5mMOHdhJRp1e9wB1ETG73GXZZY3Mj94EP78Z3f805+W4J504gTEYq4gqKrKH8rnZ/lyutjnKeagG/Du23fSjlYYj/5+sCxXqFfXgKrK69zNp8cdx+LeOaowU5wkcTeb7qMlZ5ywzIKcu9NOY63yJCunkmzbnJb5qQ8RdwLpdHDl6tnPNldRhofh0KGZPS4hP/3PHDZmtm0M4BRbPHECnnpKxF1YKdK5y9nI/PjseaI9+aQ57u9n5ifY+/cDuOKuvh5QhYm7ri4UsJ4temxPLKUlQomwE62cc2mXY895Lru6WFDrKamYHuXYfiloNOMExF29My5K3KVS0utuphmnoEpBzl1dHUtW1tGE2+M31pvw/mkIiLgT0CHQ3lWPuXP1gtjpp5v7SWW38DDwjKm0nZDMLHffLWGZYWRsDE6cKCrnjrlzmVvrOYmZMfpmUTuEp54KbpvxcBx7BuEIAts5KDQsE3BDM21xJ3l3JcK2awoSd9XVLFjTYWzq2ZvIFiYWZoqcOXeagsRdc3Ow191ISsTdTBIQd+45LMi5A9Q6X96dFFUJIOJOCOTbLV6sv65ZY26XfnfhoX+7aVm0K192/913i3MXRuxQMEfcVVeDqipM3CnFnHnmLbt3R1+enSsLywo6d1CCe5Idv+4Xd5NxDZyiKskkYIm4KxUB564GyC/UGzasMipmjg3FJZxvpvE7d/WTFHcAXV2+CIiUnMeZJBCWOblWCIAUVSkAEXdCQNwtWqS/rl1rbpeLJzwM7DEn9e2nzzd3uOcemhvMUvni3IUAexbhiDvbLShI3EGORuazQ7EfPpy7XPmM35Ps2HQnT6t2Es5dezu0t7OGbbrqqZWBkRGOHNEV3oUZxr4WnXM5nnMHsG4dC3Er/RGXvLsZxxZ3FrYo9zh3BYVGAyxfTid9KOxwpWSS/n4YHR3/24Rpwq6WmaaaNDVOzl1VlZF+Nz5+cRePifngQ8SdkFfc+cMyd+7U+XlC6enfP2CM285ZBZ2d7oaBAZq7Nxn7iHMXAuxZfLHiLtDI/NDsyPvJFZIJOlR8bCbb/dnOndtAWc9GJjOxrGPE7dMkeXelI+DcTXAuV61iAR41l0qKuJtJPA3MEzRgoRxx19CggyAKoquLajJ0YJc7ta9BWWCZAZJJsj1EEjQAynkGNjaCUuN8r5e1a1mLR83F4+zaJfNTLyLuhEClzKy4mzfP1AsjI7B374wdljAO/YfNBmftyzvghS80tjU89BeqPFd4KiU3v5Ljd+5qJuncnWrm/UR7Zkcj81whmaD/pme02qTfubMnl5MRd+APzZS8u5KQJywz77lcutQn7lIi7maSEycgHgfsxZWqaqiZ4JzlIlBURRqZzxg5i6loRVdwSCbA2rXMoc89h/EEoyMZurun71DLHRF3guncHe9h8Ttfoiu7/enOQN6dhGaGg/6eEWPctmouvOhFxjZ1j+TdhQ5b3DnVMu1Vy4KqZQJz15nht9ETlX8Lt6z8zh3McKEnf87dZMIyIVhUJSHOXcnIE5aZ91wuWybirpTkbIOghUHB+XYQFHcJEXczxlR73GVpbYUlSzyhmRbEExKa6aHyZwbCuFiWp8VBzzHYsoVFPU/qkt/vfz9rTjdLrYu4CwH9/Qwk3CRklKJ9ZWdA3HHvvTQ3meXcRNyVmGiUFLWksHNFIhFqagpftWxeu4wIbnJIIpbJLmZXLEePQk9P/vdn9IFu3yyLKqgCeZ27nTu1CynMIPZs3gmxnSjnbtEiFnrF3cgIxw7PDuc8FEy1x10Wce5Kx1R73HnJkXcnFd1dRNzNcoaH7UiH3l7YupVaRujEDj7v7mbVnBPG/uNNsoQZYs8e+ml3x/UNtHdWwYYNwby7pFkGTIqqlJhAj7saWloKzzVQK4K97qK9ld3rzh+SWWfWlJm5BadUypkBugVVJnB7/NjiroN+lnDIEXdjY1KNeMaJRhmjylhoUWqcSWZtLfPnmotlR/ck8uwsTDvTUSkTHHHn3EftqrWzTdyNjek0mzvugP/6L/joR+FNb9Jfjx6d8NuLIxCWOTVx58+7k3uoi4i7Wc7hw+hM4i2bwbJYxBG888z2vj3G/gNmHQ+hFHR3M0CbO26op60NXW7Kl3fX0mcmJIlzV2KiUV+Pu0jB+XYAdHQwJ+LtdZep+HYIfnH3qleZ4+7uGXK97Pj1NNVaENTWgqpCKbuXeSHY4g5s9y7pFsTZsmUaj1WYmN5eV6QDRCI0NIy/0LJgacQYHzs4avSIFU4iU+1xl6WzE5qbmcdxPc5kYHR0Vom7p56Ct78d3vMe+OpX4Ve/0tuiUf31uutO0g8ex7mbVFgmwNq1nMYOdxyLs28fFR/JUigi7mY5R257CjY/7XQxX4xZXaX16A5jPOhrpyaUgO5u07lraKA9O3zxi41dm4/tNsYi7krMVMWdUsztMEPB+rZVrp2eq7/dC17gFn0CvQK9a9cMHIydb+dvg9DUNIkqb7ZrAHA62+2QMH3v9VctFk4y0agbXgsQiUxYmKOtq5063JWE5NCIREPMFNMVlqlUjl53yVnV6+5b3xo/Cuuxxzg5ixYeS7DoHndZ1q6lmRjLsEV/PIZl6RB3QcTd7GbbNo5c8S29cmWzCHOG0XboGWMszl3pSe/aa0xKVEO9KxDOPdfYt2XwkDGWiUiJ8Yu7mkmKO2DOfLPmd+/OynXu/Pl2kYjuv1mSQk958u0mVamvvR1ts9s5Pxnd6w50MUBhhshkIBoNOHcTnUu1TCpmloyAuHPt8kmJO4CuLjfnDiCZ5PjxKR5fmTAwAHv2jL9Pf/9JCs0cJyyzGOcOcPPu4nHAktBMGxF3s5mrruJw0iytvnjDHGPcvOdpY1U6kZBmn6VmYIc5m2ibU+OeI48zANDcf9AYi3NXYqbq3AFzlpgxgNG9lXtS/VUy16/X8wH7ue4wIw90f6XMyfa4y+Lk3UmfrZIxMACZjHsuq6tBVU18LnO0Qzhp+UmCyXQ5d5BD3KVmjXO3wwzGor0dLrsMVqwwt5+Ue+p0FlSZPx86O11xl8lAMilF/2xE3M1mHnqII3jim5avYNFH/tbYRe3Ynl1odpDQzNLSv8dc4m9b4JnsL1zo9P4BaI4fM7o8i7grMQFxV1NwG4QsgUbmhyu3zKI/JPPMM/VXv3M3I1XSpsO5g7ziTpy7GSTQ467AwjjS6640WFYw567YgioAXV20MORWHk4mSSRmR76WX9w997nwvvfBBReADhHX8ZgnRSRNVysE0OG1a9fq8HbnQ+PeP5NZjYi72croKOzaxWEWu9uWLmXRs5ea++3eTVuLWSFMQjNLyNgY/QdNhda22PNkq66Gpe45bGbYKfUMEpZZUiwLent91TKLcO5Wz55G5n7n7qyz9NfVq808t4MHZ+Bve6o97rKMI+5mQ3GOH/9YF3P48pdL2P7Btmn84q4Q524hHqsuKeJuRhgYgFjMGQ7XdBiLmJNeYOnqQuFph5CcPe0Q/Athp50GWBZrH7oe7r0XHnkEBvp55pmc3z41prNaJsDatbrqcJZYnEOHZsd9dCJE3M1Wdu9mLJ3hGAv0uLYWampYdHorLFjg7jc6SiumVSfiLj8PPggf+Qh88Ys6bn3aOXiQ/jGPmItEaJ9fa+5zyinOy2aGIenOoMS5KyG9vZBMupVOq6uhumbS4m7uWn8j8+o8e5Y3R4+aeR+RCKxbp1/X1wfDiE66e2c7d06e1hSduwYSujiHPbEcGdFh75XMxo1w/fW6eMyf/ww//3mJDsTf0mIS4k6cuxJw0EwvGGpeCJ663sU4d+Bvh8CsCM30O3ennQb8/vesveFTOrQxHocnn2Ln/cdIp6fxB6dSxqQooRqd6w6KF3dtDNCIbbnGY6RSEuIOIu5mL1u30sN8Mtk/gcYmOjrskt6nnWbs2jZiZhqLuMvNL34Bn/0sbNoEd98Nn//8SVhB8rdBqPdUysyybJnzsoUhw7kTcVdC7HgRx7mzCwJM2rl71hJj3DtcjzWWybN3+eJ37dauNRZ6A3l3Jz3XYppz7hS2e5dwr89Kn5Tcdps5vuee0hxH0WGZS5aY4m4kxdHDlXfthQ6PuBulhu1V64y358zxf8ME2Negv5F5pRdVGRw0zDOqq2Hlghh8+MPMo9cVu1aGkaeeofvL/zt9P9xXnjPRONcIv5h0BATA2rUocN27mBZ5hw7l/5bZgoi72crWrWa+XVMji7MRmqefbuzaGjMraErOnYllwbXXwve+Z27ftEk7edNKjh53AXEnzl042b8fwM25s3NGJivumpa0U1vjTihTVoT4nsqzD/z5dtmQzCz+vLuTWlTFsqY95w5scZecHeIumYT77ze3dXeXyC3JE5Y5oQNUX8+CTtPOOLa/cnNeQ4NH3D3FmSQi7k2zs9O4pApjwQKorXXFXToNY+mKd+78rt2KFVD771c6zyajKTiw9Ys/h3/5l+lZpfZVHoo3zjXGxYo78Ii7eAywRNwh4m72snWrmW/X2Oj2jvKJu7aB/cZYnDuXdBquugpuvDH3+9dea9QzmTo5etz5C94ExJ04d+HAdu4ccVekc6cUzGkeMbb1bjqcZ+/yZHBQu99eChF3U5mDpNPwzW/C5ZfDb3/re3NoyMn5idEEqsrJ+ZmyuPP0uqvkoioPPZQ7x+6xx2b+WAJhmTUFOnfA3GUNVOPe1AejI159LpwMPFUyHuC5RqXM5zxnEn0ms1RVwSmnBNohVHrOXSDfru0Y/Md/OOOAuGMtXHmlvilOVeD54pcT9WbueFFhmaecAo2NrrhLp2FkVMQdIu5mL9u2cZSF7rixyXXufGGZrb3dxlicO00qBf/6r3D77fn3OXAA/vjHafyhfnGXKyzTI+5aGDKcASmoUkL84s527iZbLRNgbqcZClZpjcx//Wvjz5aODtiwwdxn+XJjjseJE1MLq/rlL+Gmm3QT3G9/27fK7ZktxGiyf7CeUU56xdnT666TvlnT6+6uu3Jv37hxZo8DKL6gClC1bAnz8PyhSd7dtBPI9bKdOwt4kOcYF/5FFxX5Q3L0uqt0cWc6dxan3f4do7fV2nm9OrG5SkuDrdix79ddBz/5ydR+uO8iideaE5einLuqKlizxiyqEo+JuEPE3ezEsmDbtsKdu2Omly/OnebHP9ar0V7a2+HZzza3XX/9NBZKCDh39eM6d03EAmGZUkmqROzfj4XXudMTlMD5K4BgI/PKUQXxOPzmN+a2t7zFyL0HtHF26qnmtqmEZv7pT+b40Uc9g8OuM6rFnZv8N+liDjDr2iHEYsF7ZZaNG0twT8qTc1eQCytFVU4qv/wlXHqpvuZ37bI32uJuDyvoYb6zMFZbC+eeW+QPmu3i7lgPp2/+lfH+6Ve/H7VgAZx1NtRE2M8pDGevka9+VS9EFYvfuYuYIStFOXeQt2LmbEfE3Wzk4EEYHnZz7qqroa7WFXcrV+ptNm193TDmLqWJuNOTkVtuMbctWgTXXAOf+nCSuoh7EzxxQhdbmRYKKajiEXe1jFKbGiIb9jU2hoQQlYoDB0hSTxq7hHddPZGIWSSkUOYu9TUy31c58ba/+50ZPtzSAq95Te59/UVVvvlN2LIluF9vr67M+Mtf5u5ldfy4zv/ysmePZ+CZLcRpNJyDolac7Wp9s6WR+QMPGAaBwYkTvv/XM0Ee566gc7ls2awXdw89pBc39+2b3s89dgy+/319OfT0wL/9m60nbHH3AM/VO9rX33nnme79pOjqcguIQMWLu8FBT9pbOk317u2sxHPTe/nLabzs9frW1NoKZ58NKLZhx79v2wZ/+EPxB+B37qrNkJVpE3dxaYcAIu5mJ/byttMGobEJUG4HhEhECzybNgYg7lpPEpapJ2FekVtXB9/5tsWS736Wuac08uaHP2HscOON0zBxGxyE3l7XuVMK6uqC4q611bCDWqwBGHFnVpJ3VyL27zd73NXX0dpaRL4IMKfL38h8JM+e5UUqpQWYlze9Kf+D//zzzXF/P3zsY64LNzSk814vu0xPGr/7Xb0A7eeRR4LbDMHhd+5q3RnlpHPuYNY5d/lCMrMYLulMUGwrBAj2uptl4u7uu+Ezn9ERKR/6kHFpTJmHHjLNoQMHdOu1bEj7gzxHv2EruqJDMgGWLw84d9Fo5YoCw7Xbu4flIzuozTZxr63VK9NKuQtmTU2wYL4r7gC+9rXi/wf5nbsqcyWlqEUygLVr6aRPt5UBiMeJx8WEEHE3G9m6lRS1nMBOaG1qpKoK5s3z7OMJzWxjABLucvdsv2gAdu82xytWwJyfXQNf+QpYFm8bvJa2XRvJOmbJJPzoR1P8od3dZFCenK16UCp3WJ8UVQkX6TQcPmy6rnV1ky6mkmXO6k5jHO2tjBnJzTeb/SEbG+H1r8+//3nnwcteZm4bHdU1AL74Rd0s+8YbnZQ2QFds9LXN4uGHg5+9f78n9yeQc+farVMRd53YKz4VLO4GB4N5da9+tTme8by7KeTcBcIykyl/IcCKxtubcGgIfvjD6fvsXNfhT/97BGtoiCidWmioKud8TUncdXVRT0rnpQMkU4yNVa577oi7Mf0sOg2P2vv0p2H1asDtJQrAslPcvDvQ6vu++4o7AI+4y6BIKXPFrr7e/w0FYjekd9y7ES3yZntopoi72ci2bTpuPUtjE3PnGpGYRlGVVgaNWCYRd0Fxd6rapS0Dm0YSvHvoGmOmevPNRtGvydPdzSCtWNnmrfUNNDU5RftMAu0QpKhKSTlyBDIZ17mLRKCqumhxN3e56dxF48XGtISH0dFg1dnXvnb8gjNKaRfhsrcFc0Huvjv/QoY3vy6dzl2xMZ32TBACOXdTDMucRc7dvfeaFYO7uuBv/9bc56mnclfSPClYVg5xN4nKp0uXMh9PAaNZ5Nz19AT7Sd51ly5CNFVGRuDxx4Pbd28b5WEu4CEu1BvsYkann15Efzsvdmi0cy7ta7BSz6Uj7np6IJPhdOzSmUuW6JuojRHq3tzMMwtejLF0+LWvFXcAnhWQfXQZ+QjNzcVFsABkQ85ccafdSBF3wuxj61Y3JBOgsZGFC337eJy7ZoZRHnEXj+eoZjXLMMRdMsnKn34p0PPgUv7AkujTzjiTCRZtmBSBHnc58u2ySK+7cOHvcVdkG4Qsc1eYiudYqq3s44luvx0j56W2Ft785gm+KRZDvfMdvO8Ddfxz9BPUWIWFp955p/u/6+mnc+fhgSc00+/cecIyp7OgSiW6Bv6QzIsvhqVLcdMA0ML+6aeZGQYHnQdYnEaoqtb/KFCoL1lihmWOpDh2dHY0Mr/33tzbf/CDqX/2pk15BH4qxU95hxuSaRdTec5zpvgDlyyBqirXhR0dgcyYv9d2xeC0QTii/3Yd5+497zHi3v1ViPsXrTPni7feqk/WZPGo5kc4H2rdClnr10/+4xzma6PCEXejI2BJrzsRd7ORrVvNNghNjcaDFjDEXRUWLSmzxvhsz7tzxF1mDDZvZtXQE4F9ahjjLYeuNkIip1Q4oJAG5lmWLXNeSlimy/798MQTUyv6VRR52iAUK+4WdNUbK53HM3MYGZiukqwzz9gY/O//mtte/fwBOt51qU7sv+GG4DeNjmr19z//A+k0L3v6ar5Z/5nANdHcrOcv3mqbhw/DM8/o17ny7bI416vt3FlMU0EVW9w1EaOGtC3uLFKpaaysGwKi0WAz+osv1qv0/qrCM5Z3Z68gpKkmRZ3zh6FUgaFhTU3Mb/dUh7Eseo+MzooFz3vuyb1940Z9X50Kea/DVJItrOev2DGYddMk7iIRWLJkVoTYOsVU4nEYHKCKjFtM5e/+zti3utpXML29ja3r3mR+4FVXTe4ARkaMsISHudC4IV9wweQ+zqC2Fjo6zKIqo9LrTsTdbKOvD3p63JUY+4kWcO58ve7aYofBY87P5tDMkZGsEWPp5bDhIVbhsfI8E7/VmW1GSNfevVP4wbt2BXrc5S2j73HuWhk0nLvZKszvuAPe/W74+Md1f8IZNbryOHfF9LgDqK1TzKt1T6SF4sj28j2xDz6oI1ez1FRleMvP36BjmZ98UquzD33IDRnIZOD//B+9iuxh/e1X8/133M+LXqRrQr397Vo0vutdwfycO+/UX/OV6Adb3GUyzsGNUKurndo5dzU1xVU7pb0dWltReHvdacFQSaGZ99xjXmerV2vXDnS+pJcZy7sbp5hKoaFhtcsWuK4rYCVTU+qxWA5Eo7kr0Wb5wQ+mdk/159s5zzb7gnDSEerqmT8fVq0q/mc5dHX5QmyTFencOSGZR/V9bDl7qWMEXvCCnP8jzSrEiq3Pv9zc4ec/n9xKted/aoJ6no6co3MnbaYk7gAWLPCJuxERd6U+AGGGsStlOs5dYyOoqqBzt3ChMfNsTfdByg15mq0CAXT550wGLdqOHWMhR2nCjut67Wvh6qudfU9hPxw+Apa2ig4dmkJI6/btprhrLEzctTFgOHfeghWzhZERXSkxy4MPesJUZoI8zl0xPe6yLGk0VcDhnbHiP6zEZF20LC+z7mD+Zl883zXX6J4Ig4PwT/8EP/1pzs9a8IX/y+c/m+aHP4S//3v3Nvbyl5v7/eUv+hIeb8Flzx50nwRvGF9NjRPGV1QxFdAqosLz7kZG4LbbzG0XX+y+PuccU0x1dzupcCeXqbRByDILe93dd58p3vz5btu2FV9r4+hRZ/0L0O7RP/8zkB6F477+BJ0dXHTRFHK0vCxfbobYJpIVeR537ECfvKP6l3Py7d7znpz7+1vMbK05w6y0MjYG//EfOb93bAy+9z29sPb1r9u3Ts//1Cc4m3StGwa6ZAksXpzjgyaDX9yNiLgTcTfbsLOh3TYI+okWEHdKScXMPOjGqpbT5McJb1izRjf/eec7nRllIwnmjh4mu6ybyQQr9RVELAb79/samBeWc9dOv+HczcZzd889wd/7r3+dwQPwizvb3S3WuQNY3GJWxjm8t3zbIRiux8AAZ9z9ndw73nqrjir4xjfyf9jmzaaSt7ngAvP/9+AgfMf3Y+yCcQ6HDkFqzzS3QcgSqJip4zErIe9uaAg++clgoY0Xvch93dLiC/8id2GbaSfQwFwXU5lU7qS/HUKy8sWdPyTzjW+E5z/f3HbddYHU84Lwu3br1+s2J2fVPuMsjAI6bra9feohmVlyOHeVeB537ABO9DmVJE9jh755velNOff3i7sdOxXb3/llHuZ8buUS/szFpL57nS5J7MtxuOEG3df3yBF9u77xRgxx9zAXGOEOU3btABYsYB7HiWRbO4yMMDQ0u4vHibibbeTscUcwLBOM0Ezd607EHdjNjgeHnOzvU9mlHzq/+51Oompp0fF/NsvZCwfdZaSiGr/asyQn566+Aaqq84u7xYuhSl/ebQw4yeIwO8/dTTcFt82ouLOXpZ1qmVMsqAKwuMNMzjq0v4hZVUhwxN1YGrZuZZ41zgzLP/tauBBe9Spz2+c+hz++qqYGXvxiczd/SOYLXwiLFrljy4L9m1yre4gWI+x6OsRdpTl3PT3w4Q8Hay6cf37wOePPu5uR0EzbuXPDMvVEU5y7/PT364qmXl7wAnjve00H7cABj1ubSGhVka9akQd/vl12wv+Oo/9pvrFwEfX1irPOmtzx56Wry5dzV8FhmUfcxYjT2KHzlfOsaMybB52ebjsjI/D+217LFXXf4Ot8ii/zL/xfvkf/F76he9XYk4qNG3UKtJff/hbSh/T/Y4tsMRVX3Pl7lRbFggUoYDH2QpxUzBRxN+vYupU01RzHbmrXpJ9o8+fn2Nfv3Ekjc8AuptLrWg2r2K0nl95l6H/8R+flKeyHwQGnkklR4s6OIXScu0Yd1pBX3EUiTqxDGznU5V4AACAASURBVLaas8XobAvL3Lkzd67Izp1mdcaTiu3cueJ8agVVAJbMNUvLTWcz4ZnGOQ+7d0MywTw8Vt4NNwRVQJbWVj2bvO4605YbGLDjukz8PfH8XHih7lnpZc8Wd3K6mQ1Gj7u5c8f/vHGx3XVH3Nlh7+Us7vbsgQ98IBjq2tWlnTw/ufLuTnourD17L6oNQpYc4q4SC3EAcPPN3P+qr2I9s1WHnQwMsKprlCVL9Hm95MUpHdXT3w+HDvLjDz6C9awzXWt28WJHtVuWvta953h0NNgC4YILgC1bOOeZn7AGT++FhQt59rOLzHPNRVcXnfTpokYAySRDQwXp0bJhaAiOHBh15ixVZPScJU9IJmjB7nfvUFX2gr9W83tYwSf4TwZ//xe44AKif93BlVcGr9++PvjLX/Vi5gGW6ZQge0ElEmF6hHqgHYK+l4q4E0KBZemV5Lvu0je8k8LWrRxnnpuc3NhIZ2eem2VA3IlzZ1mwa5dl5AGspDvYaXntWnjJSwDbuQPnTjM94k6L8nFztuzJYzu2mkvOTnGXy7XLMl4xjWkjHnfUi3bulBPaNyXnbqEZDnPoWHWePcONZdnOXTTqKNS52NfXP/6jdsHvvjsYQlRXB3/4A5x5praEvvAF8/3//u+AJbB+fZ4oBXQO0cqVOcTdbvf/88NcYDh3fnEyKeykJScsM13eBVV279aOnX/B5IwzdPhrLiG8bp1RhZ0TJ+zIiJOJ/TfmiDv7WpyquKtI5+6WW+DSS7nnwRo4dhR27YQnHueFP36fVnYtLfzd55YRefh+ePIJ2LmTnr0xup8eduMzBwbg7/6OoYEM7363Now+9CHXWN+0yWjD6lyHXH89CngvP0RhQXsH1Ndz6aXT+PvZDbCdxST7GVlJ7t2OHehoB1t1LWcvdauWBWNqfZxzTo6Nc+bCWWc6eardrOSf+A8Gtx/myhfeQf/e3JOLXz96iuvagTPhPOsss+1C0fjF3aiIOxF3IeLb39a9JL/0Jb3oPO3l2hMJ2Ls30OMukG+Xxd/IXHLu6O2FoaNx5/9FPUmW1PQEw8JAL2EDXdhq7thRSI9OSdw5zo8t7vI6dxAUd3ZRldl07oaHx+8tOCPizpNkOUirfprZsUxTcu6WmOOjfbVF5buUmqEhGE2Mwna9Ql9Pkkbi+v7z9a/rnRobdYW2f/s3/Xr+fB3v84IXuB/0oQ+Zy82WBR/8oHEjVSq/e3fBBfr9gLg7oJ2dBPU8xZlGzt2UQoo6OvSXrHM3qt2Dcs25u+GGYJuV5z9f113Il1taUxNcuZ+Ohtjj4hd39uxysmGZRs5dJYq7AwfgXe9ikBYex5zpv9D6iw41Hx5mPsc5H3MR5THONT9ryxb+51NPZQMY2LIFPvpRrTn8+Xbnnw8qPQo/+QkA5/EYX+JfeeUlFp/7XH4TvyjsZ6RzLlNJsKyKOpfbt2OEZJ7Odt3+YIKKNH/zN/r2aqc5snIlnHsunHpeB5x7HjTri3onq3knP+GJ0fX6xI4Gc7+397TzDOv04hg4Pe6mJSQTxLnLgYi7kHD33TplK8vGjbqa27SyY4e+cWXFXX09VFXnXckO5Nwlkk5y82wSCF66uzFCMlfSjXrpS3KrrEsvhWXLXHGXycCxY+zfX4Rwtwvh+J27QsRdC3ZWsb0qOTRUgj5vJeK228zGuF6XAPR1NnKy65DYM5phmvT5syeTSk1N3DXOb3aFO5BOZcpyxbm3Fz3Ls0/EPI6jqqv15M5rp1RV6R4WAwO6vN4rX2l+UCSiV8i8PPoo/PGPxqaXvjT3cWTzfALirkcfwxOcbbRBWLzYLetfFH5xZ1fkLFfnzh+W+JrXaDN1ohC6lSvNcVYAnDRscefk3Nnnc2rOXZJjx6yZba9yMkmn4W1vg74+HuC5ZDxTxeXs5RTMk3QuZiWcgLgDHvjlIbztlI4cgY98JFhh84IL0JU4PDez57Zu5lM/PD2QMztlGhqgrc0sqjKWrhhxNzYGt/7sBAy7lUVOY6dREyAf9fW6Xsqtt+p1tB/+UC/UXHMNnH1RPZxzthMG4RQKGx2B7ds560zLFW5DQ3C8l//l7XpxDJwFsmkppgIi7nIg4i4E9PYa1fMdrr9+CmXzc5GrDQI5KmVmaWpyZi+tDAKW02F3tubc7dqFUdpvFbuDIZlZamrgH/6BNgbdvLfjxxkdDU6ExsWyYMcOLILOXSFhmTWMaYFnO3eWNTvOn2UFQzLf9jadLJ4llQo2WZ527GIqO7FLMdr5dsuXm421J42/cWs6XZZ5d8ePo6vB2sylVy/r51vWranJv+r80pfCG95gbvOVxDzllGCVxupqvSoNsGyZU4sIgJ6hBuI08BAX6g22OL/wwvF+qwIIiLvyDsv05ym9+c3m/8d8LFtmjk+6uLNnfFMKy2xtpamlmibsv1vLIp0YLVvXNcDnPgcPPADAPbxQb1uwAObP5wXzfT1kIhHOXXJMr1TNnw8rV/HUee9j9J4Hnev0EIs5eKIp0Ovi2MERjt63E7Y+A73Hqaqy9HV4/fXmz3jrWydprU6Czk5TqI+OluUiWS7+/Gc4uMn9o6wiw4UvqA1edJOgrg6+8hV41lnVukK4pzI3QHvvLv5l9c9585vR97Qtm8HK8CDPYZSIvtm2tbFw4RQXx7wExJ0UVBFxV2IsC772tdwlWw8dgttvn8YfNplKmVls984RJ/YTfLY6d7sfO2HEHq2iW/e2y8db3gJ4QjP7ByA9Orlm5ocPw/AwcRq1c1BdDbW11NXp1bW8eG7gbQwY7RBmQ97d44+bbSdqanT0rH9SftKrZtqz1e3YisKulOkXGJOmo8OtDgaQHi3Lh9nx4+ioAJt5HJ8wH2Rc/IVU7rjDcb6z+EMzN2xwJ/eRiG/uM5JiDys8IUVaDEw5pMgWd27OXXk7d35x53fJ8+Gf4BXVKqZQYjHn4RXD7lpe6zYxnxTLllVm3t3tt8NXvwroaIPHOFeXTly7Ftat54V//Zp+gGzdqlemUymWHXiQuS8/F9ath1NOIdU8h2faLtL9EsC9dvbuxXHvRkfgiSfg0EHt3G/ezPqtv6L57pvh5pvNYxqn+MeUmTPHJ+7SFVEcZ2xMd2by3lBewe0svPw1U/7s+nr9J7J+vR3H7om7/me+wpzPXM65nXvo2nuvmVAJek5ZXe2EwU8LdkXA+fTo4jijI4BFf39lFceZDBOKO6VUvVLqEaXUU0qpLUqpL9rbb1BK7VFKPWn/O8verpRS31ZK7VJKbVJKneP5rHcrpXba/yb2hWcBv/71+L19fvSjaQwb8zt3dqXMccWdPQN1xZ127maruOu+37RGVp3dOo71CZx6Kqxb54o7LIhGjYatE5KzmIqauAG2v9edp5H5bDh/3jBn0PkDnZ1w0UXm9r/+deIKfceP68T/osJZ/eLOdu6mQ9xVjHOX9Ik7u01AUZx7bvAkX3ONMbzkErPlwWWXmbs7oZmZDIyOcjcvoge7pHBthNraaajyZou7ZobtCYndKD1uhhKXCwmzM0fBRovfRDh48CRWzDxyxHkZp9GOGdUzzEkbQ/7QzGRqZpqwn0wOH9Z9Wm2u5z2ka5vsXFbF0qX2tdHWpl2bOXNAKZQKFuB47DHgX/4FgL9iX49DQ9DXx/zOUdj0dGDmfcGR3+l0Bm/I0po10xi/l4POTjMsM10Zzt2f/gSH9qdhSC9GVzPGO/lJ/rj0SdLYCFddBes3VMHadVBVxfu4jmezEYaGUBdewBsOfsv8psVLYIGecE5bvh3olaSWFqrJ6PxJy3Lup+W44DkdFOLcpYCLLcs6EzgLuEQplV37/qRlWWfZ/7LBTa8EVtv/Lge+B6CU6gQ+D1wAnA98XinVMX2/SvnR3Q0/+IG5be1aM1Tr+HFdEG5aCIRl6qXK8bRJ1rlrYUhXrLJvxrHYNIeMlgGpFOzfYa5CrXxLAdndr3udWzEToLd3ckVVism3A0PcaecuSXbVtNKdu54eJ6rI4XWv01/POcfMAzp2LFi63ctjj2kD9iMfgY99rIiJp63kXedu+sSd4dyNlqe46z2eMcTdXHp1Jb6p8OEPm+Mf/chY0Whq0n3Or7gC/t//CxZpcMSd3fT3Zl6tx7V1oKo4++xpqPLW2AiRCAp78cXKOL0oyy28b2zMFKRKTRBV4CHbGjTL6GiwleG04blAYjRNrWfh0qVuSC1AKlV25y3ABz/opB08yZn8hjfokqZ26fqXvSy/23KuL83usceAM88k+eo38SSelZC9e7mq9328YuiXgc/wF2YBtGs3bRZPDjo7zeI4o6Nl78A6rt2gnU4DXMJtLDptgsXoSdLUpNOcv35NI9//5wNcxv+6bx4/zsu5g2bsSKeWVr3YjY6iOfvsaTsMjeTdGUwo7ixNNg4tYv8bb3rzWuDH9vc9BLQrpRYBrwDutCyrz7KsE8CdwCVTO/zyZWQErrzSbHnQ1KQT0P1Rfj/9aXBVdNKMjTl5W06Pu4ly7kCvmgFVWPoi9ay05QolrWT2buzFGnCT1RZxhMa3FFCX+bWv1b3usvT1sXf3JMoaFlMpE7QzYM9Y2um3XQityCtZ3FkWfOtbpghbuVKH3oGez/lXmfNVzbQsbfpkP2vTpvGd9pwcOMAgLRzBtorq66muDhaSmDTt7b6wzHRZPsh698WdQk0A85qTBfxxT8Ab32hac8PDupyjh/Z2eMUrnPmGgSPu7N5zSWylYhffmJZVZ6XyVswst9BM//OpoWFy83Ff2s7JC830XCAxmozKp9Mh7srtvBnEYk6ScoJ6ruLTsHyFcy0uWqTzKPPhF3fbtumPfPz1X9LpBDaLBrfTde+P+TRX8Wrs8MvaWs5jI6eyy/yQ6mrDSTwpdHaafTVH0xw/TllWHs5yxx32Oka/XtCqZox38NOphbvnoapKL46d/sW3B+Ld60npc1wT0X1o7CTcZz2r8LDtgpF2CAYF5dwppaqVUk8CPWiBli1ee6UdevkNpVT2LrkEjFJKB+1t+bbn+nmXK6U2KqU2HvcUr6gkbr012M/n4x/XocOXXWauevb3w29+M8UfuGcPjIwQZY6+0UYiEInQ0jLBRWaLOwj2upsNRTm87L7xUWO8akGssPCx886ja77H8RsbY/+T0cIdoDw97iac/yo1K9sh/OIX8OCD5rbXvc6cbBaad7d9e9DVe+KJSRyMZcH+/ezArTxLXR0rVkyD8xMIy9Q5d+VWse/4PjM0a+7SAi2f8YhE4P3vN7ddc03BcbV+586hbpqrvFVI3l2x+XZZ/Hl3J62oSsC5cy38YsIyTXGXLO9FsyNHnOvj+7yfo7WnGA76FVeMf17nzDEN90wGnnoKHupfA51znO0X8hAKHQz7Ca7mW2u+z5d+fxZfvfPZKL9C9C/SnAw6O6ljxH1GpkexrEDtl7IhnXa6SMCA/p1eya0s5NhJEXcOVVW6EI5vYvI6bkKtX2dMaqc1JDOLOHcGBYk7y7LGLMs6C1gKnK+U2gB8BlgDPBvoBD5t755rvc4aZ3uun/cDy7LOsyzrvHne0nYVhH/1/yUvgYsv1q/b24P9em+8cYpOWZ6QzHHz7UCLA/uibEMXA8muiFSyQMjF7j/vNcarnlNgeENVFXNf9zzdu8smfuhEoNlvXvzOXUMBlTKz2OLOyZlMVra427IlGOq8Zk2war4/JWvz5tyLFbfdFtw2qeqa/f0Qi7khmVVVEIlMPSQToKWFtqph9+8qkyGVyJRdaFjvETOpeN7KPE3RJss//IMZ475rV+4TmoPFi+3QXX/yW20dS5cGewwWTYVUzPQ7d5N1wXLl3Z0UPOJO59y5KyzNzZP8rEoLy7QTzTZyLr/nNUY/zje+UbstE+HXZhs32lERy13VdyGeMIlTT+VZ93yH572iiZqXvggeeQR+9jPdR+Pyy+F735viL1UAnZ0Abv6k7Z6Xa1GVO+6wU0utDAwOUkNau3ZwcsUd6Buj75wt+ML/5UVv6HTG1dXwvOedhJ8t4s5gUtUyLcvqB+4GLrEs64gdepkCrods63kOAt5b9VLg8DjbZyV+184v5t7yFvNhMzwMvwyGqBfO448DnkqZhRRTAT0ZtWeiuh0Cs7NiZn8/u7ePGptWvb6Ap52Nep0vNLO3l317CnAREgmyCXquc6eXT4sTd3qyWtYrzHkYGNB9ebzmTEuLDnWuqTH3nT/fDIu0LD2v8JJK5W6Avm3bJMKkc1bKVNMj7pRCdbSXdVGVVAqGTrjxT9WM0bF67vR8+IIFTrVaB19bhHxUVdkuRMpXzaqudnprO+TpdVduIsHv3BkumGVNGONWGc5dmYdlHjtGnAb+nU/qsZ1nt3Qp/P3fF/YRfnF3xx12Cl9rG3R0UEeKs7BXxxYt0jvYlQ4BfeG99a06PPTaax3hdVKxf4ZTVMVeYCnHoiqGa2c3tH0lt7KAHr1i5W/ieTJ461t1qNk73wnXXQef+xwf+5jWlStWwCc/OY2LY16kHYJBIdUy5yml2u3XDcBLgW12Hh1KKQW8Dthsf8vvgXfZVTMvBAYsyzoC/5+9Nw+PJa/r/V/VSae3JN2d7czZ5syZOcNsDHMYcC4DyqqCCCgIwyZXVFwQ/emDXAUvogIC6sWNRR8X7qPoFYGLIxcYFAHBDYRhNsbZzz5nSc5JutP7Wr8/vtVV9a2qTrqTTvpb3d/X88wzpzudpJNKVX3f3/f78/nwD8D3GoaRtRqpfK/13NhRqUj3GAzDf85NT4tzxM0Xv7iNb2rl1GznbkYMneypttaKZtoCoTR+4s78zGd5rO06SIkkVz23j6YPz30uV0w5ndqo1zn5pcc2/7xHHrFzdjky9uB56LEsyRfLHE1xZ5qiNbM3xf3Wt3b/G/e6d95huv/6r9L4NZt2Wzh9PdGlmcoTntDtE/ok5OMQvJ0y57mEceUAFyA/93Py489/XnTaOXlS/LdBa8bDh/E7d7HYzoq7kNbcdY1lfvSjYvEcj4tNwpe8BN7yFmGv/9d/2a/ftVl3O9xQJZcLWSbazfIyf8JPSl1hDUNcQ3uNkB89Ks82lK6fR45wc/wBpmiIXeXPf353xMZmzIvIqN1UxWqEEMamKvfd53Icc3nZtXvmM3e2MY2bl75UdHT58R8Hw2BmBt75TvjIR0Sd845g3egv47xo/mc5d5cu+acxjAO9OHd7gS8bhnEv8A1Ezd1ngL82DOM+4D5gAXi39frPAceAR4E/BX4GwDTNVeBd1tf4BvBO67mx48QJeT2xf3/wxfOlL5Udh7Nnt7ib1GrZHSNs5y69DXFn3cnHqeZu5Z/uoYhjpSb2ptm7r48LZSzGoSfLzWFP/tMjm3/eQ87A2BNcYUcyocdNzS41d6Mm7v7mb+DrX5efe+Ur4elP7/45XnH31a/Kou2OO7p/bs/RzNOnyZF2FkzxGJOTA2im0iHk4xAuXgSqjg267TEIXm65xV8g953fKb7HFVcIVXHkiIhsejh8GF/NXSwV5aabBvf2/DV34YxlBjp3d90lOh3mcsJSePhh0fr5/e8XkdkbbhBZv/e+l/3149LnX7gwwBFAbqydjwaTYqCyFcu0Rof2RyZDNuH6+2i3Wb3Q6P56xWmcu8jn3T3upqa47TZxmHolmbSmJgSRmuZpf/TfxYX1kUd6y3nuBl7nztpgCaO4k9aHuRxP599Z6jSL2elI5rCxFrOTtIRQd11AwnRPHBS9dMu81zTNJ5um+STTNJ9omuY7reefa5rmjdZzP9zpqGlFNd9kmuZV1se/6fpaHzFN84j13//euR9LbR7zGDbdFnrJpNTPBOiz3qfD/ffbSuw8lwnFmOwxlgn21XqcY5mP3e8ZgXDNVN+bYIeeL9/1Tt7Vw96GJe5KJHmEq6XsUNebqBuvuBvBmrtCwdcIkRtugDe8IeDFpmnnNq+/3t9x//3vF+vQ5WU7yRxIz+fhqVOOawcQi3PllXIp2LbwdsxshKtjpte5W+DiYMUd+N07L8eOwetf73PwDl9h+rZ8n3zU7F8EbESXWGbYxJ1vxl2sBT/2Y5u3HLzvPviVXyF23ZUs3fdPsC4uTKa5Awsy1xctYdl0ViwzmdyCqWEYzB6YJYKTAy+v1XdGlO4C+dPr1HDXIBpbmh3ujWa6edoL58WQyb4LHHcQb81diGOZTl8GE9bzzOPqCjMm4g6saGbDORHDdE8cFH3V3GkGw3F5k5KrrrL+0W6LeUwf+IAossM/C6SvTn0dXK0DL7DHKtYSd7LtOHejJBA247Hj8qly1Y39FmjAodv+G+6+QidXp/1K34sl7r7NEzExbHF36FCPsUwr7+Stucvnw9dVsRsPPyyPFJmZgXe8rcHkH/4uPOMZQgUfOCB+YVaXWPbtw/iOp/ILx/4/8Ts+exbaLU6cgL/9W5EYcv9+9u2Tv+dDD/VYd3f6tCzu4rHB1Nt1COiYGaZdyovLbf8A8+3OuPPyilf4c39e/u3fxIF3cfjOT/rE3X97Tv/n/YZ0iWWGvubu61/ueyfy4KW7xQ2uIDYRBx7NzOftk7ZMUuQHrWhM35FMC+OgJ5pZD2/d3fo5OYM+P29uqaNvN3F3+LBcXqcMI9RQxRZ3RTGIeAbriWy2Pws2jLgWs/s4Kzl3YXRht4sWd0Mg0LkzTTED4fWvFwN4b7kF8vnBiDtrmrOJW9wJenLurr5a7FJ2nLtqBdqt8Yll1mqcvCTvNF75lGyXF3fnsuuyTGWdVUSeNLmPbdK9zxpgfg9WFswSdz1Hw6xOBTHqxKiJmJnZptn0L8jCijdi+pRriiy9+nnwi78oNjYefFBs3eXzwklot0U7sTvv5Oi/fIAXnPsIPPyQ6Khy8SJ/+Zcmn/60/DVvu01u+tBqCUN8U7ziLhYfuLgL86y7i8cLkopeSFV77BTUB1NTcPvtoiXx5Zc7/3l3R37pl5yTIpdj8Td+1lkcAczP89+eu0UV0A3rPYS9W6Z0LSmXSfzD7fILXvlK0Trx//wf0eHoe79XZCFdHOS0+Ft48EEw24MXd4H1dmKzbavijoUFJxUB0GiE7th1KFyQbwgzc1uzqK+/PrjMZKC1qoPE2mCRnTuT5eXwbYAWOxOprREI9gDxZzxDLoYcRVziLk3eEnfiANq/lzFixI+2epimv1PmVVchugp97GPOkw88AK99Lddf25bq7i5csNrc9oPl3OVJi9jFrFg8JZM9piOSSTh0yHF/AMqV8XHujh3jjHskYyzG5Vf3v6UZicDBa+RBQac+9c0ur0b8sVjOnVfc9VyuEIvZCn5Um6pIi6n1dTJ/+jv+7igb8Eb+SPxtV6vw7fuof/M+Lp1xFjrRqBhTcvSo/HleY6LdFjFDyezxxjJ3wLlbZIUolnXZbFIobHNsyi6y8pi8Q7Swd1B5VQ833yxan3YaqZw8KYo03fnY06dFLhfg7W/HWFnmNj4uHhsRnv+j+wY/cstaWKbJi3ifFcsslXao5myHcMSdCQ89SLLpujnMz4s0ylOeAq9+Nfzar8E//IMQWx/8oFh4Yok7ED/8yVODH4cwyAHmHebmZOeu0QyvuLso15fOLm5N3E1O+q+V4K9xVoZoFGZmmGVdbIACNJtUKuETBfZ131qc2ZtTox7JBLGYtdZHKUpi/eS6no4bWtztMhcvyguveBwuyz0Iv/AL/hd/9rPE3vNrPje9r7TL+fO2mjzPZaKwYFbMkdqzp486g2uv9Yi78tg4d+Yjj3KKy50nEolNU17dOHSr3AP45F2r/haPHc6fh0KBKjEhECYm7BqRoJtnV3x1d040cxSwReq5c3DXt8jmj2/4ei+zFPgZPuw8sXpJuHgnTwAm3/VdIuq5kbir1eBtbxMO3+tfb/XnaLe5dKbCJZwBvtHp2GBLyrJZDHDcOytSFJZo5sppOfa4eHmf06+3wxOe4K/He9/74NOfhg+Lv4fX8td8kJ/l/T/xIG9574BGNLixxJ2BdX5axw/CtfliR5QfPwv5vDTTkz/8QwiaV7u0BG96k2hL+7rXcQCXmjt5gtP3DDib6p1xt50xCB2yWacZDkAzxOJuVW4GM7209QiyN5qZSimeCpyfxyD8TVXE2tK0Lx62uHvmM4f2nnYVy71LYak5axyCFneaHcfr2l15qIXx2td0z8i9+93c3Jbdnb6imd56u+kZu5V+T/V2HQLE3aiIg81Yu/e0WAxYxGeine7JfXPoaBZSjl160jwoWj0GYbl293MDLSasTpkG+/fT3/f3zrobsY6Za2vAscfgoQfBNOWY1POeJ06YkydFT+R6XaxEjx8XceVPfhLe9Ca+x/giT8Z1YpmmeM358/YAdG8U1j3v7qMfdebkXbggzInKiQs83HS1+p6c5Mg1k76Ze9vCivXZ4q4Zrtk+K+flhhuLV83u7hv41V+FBZdoK5fhB3/QzmMZwA1X1bj5D35ksMetQ9aJd2dZs3eaIVx1d6USwrI+JmoObHH3/d8v3LrN+L3f4+Cc6x5ompy5477NG7L0gzeWOSDnTrreNEMay6zXWS/KO72ze7Yu7m69VU7dPutZvhSuWnRpqhJKcVep2rb/DAUxl+Tmm4f7xnYLa1Frx1Gt30PYHNhBoMXdLuMTdw9+zq/WPNuIR//sTVBy/jrvuquPLLhL3J3nMnsEAvQp7q67Tq4/KZcoFgd771WVM/fJd+uDe1tbHhdz6BCwx6kqP8kh+N9dGsdut95O+qYu564yWh0zc8dX7Xly4Po53/IW0Rnl6FEhcOfmRAQnHhcdGZ/+dPihH4IPfhDj7rt483f8K5M0pa+9lHvYvi8uLATX3Z086evFwdmz8IHfbfjq7QY2366DJQ7spirN8Dh3rZZfwMxft8sdFzIZePe75ee8F9cPflD8zewEPnHnuCdhEgnlMnDqpH1DSFARdvcf/VFv8ZD5efZ86B3S+Zdba1N4/5/Yj0+eFHOyvvjF7ve/XA5+93fhXe8K6FW1wQDzLYu7zFxCFAAAIABJREFUbHY0YpkXL1JgxnkcjTKT2boaO3BAlDwfOiQmj/z0Tw/gPe4kXZqqhE3cFYvY9XZgiZynPW0Lcz5CitWxxxZ3VsdM7dxpdhzphrO2ylVf+XP5BbfdJuoRXNvE11W+Rezb37Jv/Bcv9rEzH9gpU9BTM5UO117LBG3npCmXMc3w1PZsh1MPy9Gxg1duvS7oiiuAPc4v/iSHRL4vKGvbpd6ub3F35Ajgcu4qYod8VJy73DF5NZWJVYUb+ju/Q892y5OexIGv/19e9+NyLeULV/6SSMn5I/f+7u+6C/7gDyTDxeaOf47z/3ix80RswPV2YIsDx7kTbyQMzt3aGpiuAsU0eaaOXL7BZ+wQb3hD9yLWH/oh0bp9p3CJuzlWpT+kMImESgXIOzn9JGV473s371LqIvLKV7D/oCwozvz6n8GJE6yuisqFj35UaPHbbw/+Gu95jxil96UviZi0NIPeW3Pn6vqx5Vjm3JwnlhlS5+7CBY+4m2JmpvvLe+H7vk+MqHnXu9j219pxRmQcQqEA5Jxd2xkK41Fv18EXy9TOnWaXsJ27Rh0eeIArcVl5Bw/CH/+x2Or6wAfsp6M0eWLlP+Ghh+3neopmVqtw5532wwvssZupQP/iDrzjEMyRcX824syptvT4wPVbj47t3w+RRMy+maywSJlEsHv30EPUifJfXC8eJ0U90lbFnePciSzhqBy7tQtyI4Dsbd8Dr3pV/1/IMHjNH30XL5r/GjMU+C7+hVe3Pgpf+IL9Em/d3e23b3AuVmus4po0Hx9wp0zwO3chqrnblRl3vTAxAb//+/7nUyn4vd/b2e89PW3n1bKsia48beF+hUkklMtIA9+TWPHWfjAMDr7sqVJ+73RlHn7u5/j0p+XNqL/6K/+GyrFj8I1vOI9XVkQ5n4235m7KPdOtv7dqMyoNVZaXWcd1X5uaYnaXE9JDxefchTiW6XLutLjTNXeaXaDZdKXHzjwO9TqHsZo/RCLw13/t7OT+1E/BT/yE/blP5i5YWRZ1Q/Qo7u68U2q5dj51RNqt7CuWubgI2awzDqHdhmpt9Juq1GqcXpUzO5ffvPXGCpOTVrTP1XbvmzxVHHtve7yHHuIBrqOJ5T4lk+zZ0+dxgwDnToi7kXHuLsniO3NtP7sWMpNRg1983TKf5gd4J7/GFA34zGfsj3uFtbdU9uqrXWZhTXZ8Y6nJgY9wC7Nztysz7nrlOc/xi5Ff//W+nKctYRhdB5mHqeauXGxJwyaTVLZwoYID183CVUfsx2c4QPMzd/CZj8sn2uqqR7iBb3wJwB13uB5sEMvcTkOVkai58zp3U1H13bZBMgKxzFoNGqWafX+fpEks0hSxzHGhi3OnxZ1mRzl1ylWjtrrKEsvMdGKOb3ubvMNiGMK9swp+jmLF9h5+GFot7r67h7o7a75dh/NpueCnL+fOMMazqcrx45zGVWgVi3HgyPbqb570JGB+wVYBf8OrMS9dEnmiDtUqHD/uRDIBEsn+XTsQC9Ro1FmENBrQbI6EuKvVoFJ0tvAnaDF9/TajfS96kfz4s58VmxmIPY79+wM+B3E43/EOkfIDoCBnQY5c0Rh8UwFLGFzGeQxMO0506ZInkqYgKw+vyTPuEmWGahf88R+LYVyTk/Df/zv8/M/vzvftMsg8TCKhvCr/sSUWUr1Hol0cPAjs2ysafwGnOci/8p1ceuSS77V/93fOvysVyWC3+da3rGhdZ7alhTeWuZ2GKiPRLXN52RfLHEfnzu6WGcKGKsUiUp3MNEWMpz5lG7Z0CPE2VGnoWKZmF7Dr7VpNKBTkSObP/qz/E2Ix+NM/hUiEa3iIOFXhBpw4ztqa1EMiGFe9XZEU5ZTTjnpqyj/Dd1OuvdZx7gDKpZF37poPPcZZ9jlPbGMMQoeXvQzh1FoXoge5Vog4dzTz0UfBNB1xF4vDxMTWxN3EBFx5pbzDXBmNOYW5HK4+7CJ6ahy5antf9Lu+SxYZy8tOK0y6j6F4zWuEK3vbbXDz9VVf7vWap+9AK33rfU7S4jLOi90jUwhR1aOZKw/Lq+DFpS12KRoUe/bA174m7Ni/+At5Bt5OYok7WyQ0wyfuKjlZ3CX39XtzEYhrq2FfG09zkL/nB2DZPy7m3ntFQ1sQIwyDGk6bpuipxMqKlOMsx+bsrtGwvYYq0oZno8H6uhm+RmM+525qrDRBp/30Iitik8xyoVdXJUNaaQoFpB29GQqKz5/YAazrxhR1JmjZzl2zGa65oYNAi7tdxK63y+cBk6uw1N6113a30W6+GX7+55mkxZO4Vzx3+gwUCxtHM01zw2YqS0t9zLjrcN11Y+fcnf/WWTGGwGIuY249wmNx+LCVlLjMiWb+Da8WGaJz58SV6F3voskE92NdnLdab9fhyBH52FVHQ9ytLTfsuX1g1RVeeeX2vujUlL+JhstVDRJ3e/cKcQfivHrb0TuYcW+EJFNc+4wtzs/YiIkJ+7wOWzTz4kl5O3VxvyId3XZL1HXwiTuxmgyLuDNNKK/LK+Dk/myXV2+MvXFmzcU7wRXczVFYzwda0X//9+L7//3fd/+an/88mI/LOx2llNyVdcvX9GSSyakJZ9PTNDFb7fBdW301d9GxdO4maTHPJWneZFiaqhQKSApmhoJU/jEWWOLOwIpmun4f4xbN1OJuF7HF3ZpwUOx6u2c/e+NPfOc74eBB1xwuEx56iLvubHf/nEcflYZjn09cKW1P9hXJ7DCGg8xPf1u+Sx/cv8HvvA9e8xpgZtqeefef3MKj7cPCvXvta+HjH+chrqGGFR1Kp5mfh337un/NDfGKu3JlJGKZ+YcvAE60L5usb2Ol5sIbzdyg7g5Egs+V8mLhq5/iV3gPUcSid++h6M7Nke0yDkF1cbdyRt5KXbhinKwCFyGvuWs0oFVxxN0kTaL7tzbSIp22blPxOMzMSBtrrKz4HLZ//EdRWu7uQm0YciL03Dm499/kts6luLzRsmXnzqqZlJuqhK/urn1+WURVO4ybczfnNL7awwVpJElYxd00xS0u9EKMq85XizvNrmHfgKxVte3cbSbupqfhQx+ShywXCtx9+4nudXcu1w7g3/e/AgzncA9E3JVG37k786hnDMKRWJdX9seNN8INNxiw1zkQH+NV8Pa3w8c/DrhGIMTjcOAAN920Bbe1w5EjTFMUUQWASoVKJfxRhbUH5aKIzMKAJk2/8IUiOtvh3nvFoC2EqeAWai94gSjVsmm14I47eBpf53/zo/wm/5OP/EFREn8DxRIHThvvcMT6Li7LGyWLV28tyhd6rOOXJm9FwsTxKxSCR2yohrdTZoLKlnehDMPt3nkE4soKv/AL0jqcSkW02ndz663+BoF3fFmuky5Nyc7ilsUd+DtmhrDurnhedtGnZyeky9/I4xV3LucuLHV3xSJ+527cxF06bc/0m6Yoam1b4liOW93dOJ2+QyWftxpdWvV2kzQ5wBnxwWc9a/Mv8OIXc/XLnuR0AQLWHzjD8c8/FPx6VzOVVbL8Y+t50oe/4zv6/QmAw4dJT7i2Pxp18hcq3V8/Apw6I6upg09Md3ll/7zmNYidJkuxfYnncs50dp7u4SYh7I4+GSajW49kAhw5goG/Y2bYxXnumGxvZC8bkIKanxdDzt243Lu3v1389xu/Ab/0S57P/frX7a62+znL0zMPEH/OrYN5X0FY4iCBdS5aCxOVG6qYJlxck7vLLNzQf3fFkcA6fhFMcX6GbNZdpQLUnEVlkvK24mDeaGaHufwxnn3teZ+p7k2P/MAPiBlrbv753jkxcsaiHJUzh9sSdwGDzMPiunZYX5Y3MWfmdzmaPGxc4m6JZcm5C4u4084dYi3lbaoypuMQtLjbJbz1dldwgklacN11PZ+AkT/8fW6aesB5otXizpe/B776VfmFlQr88z/bD2/nB2nOODuVe/fCM56xhR9icpLZQ/KOZ/5kyNXBRtTrnPGMQThw89biRkHceiscOjJlF3ObGHyc2wCoMcW3E7cIYRcXu87bFXcweuMQ1k7JcavMgQFmiTaIZkaj8LznCQfP56a6XgcIa28LnQN7xuqMFMdaoFkLE5XFXbEItbLTdSJOldS1Ozx2QFV8g8ydhWUYxF3gjLst58etUTEAiYTdNRPgRXyGyf/3d7z4xXR1lfbuFRuXT3mKrA1r5RZfQWyimkApIvf531aS2+fcNcJ1XTVNChfli8XMwk7FDBTFJe4u47zVRUXEosIq7sbSuQM9DsFCi7tdotPVq1NvZ3fK3CyS6Wb/fp78uhulp75WfhJ87/fC//2/4ol/+RfR8eGRRwCoEuN2flDq/vfyl7PlluzpJ8i76/mzI3zGeMcgTMW4/AnbG4PgxjDg1a9G2uX+HC/krbyXlyS+QPmmW21hl8nA5dvp8H/oEExMOB0z6zVotcLv3J2VW+Rlr9xaI4dAXvxi+fGXvtRbtuOzn5Ufe0XioLHEQQxrgWY5P9Vqt08YPivnW9IcwAUuYlwxpBl3w8Yl7rzOXRhqmstldsa5A1uhRWjzIj4Dn/gECwvd5zK/5CXiuhqJiNuiTa3GHQg7r0GU5qTj4k1ObrOHTtgHmedyFJqu+9rEBLNzY+bcTU3ZIwMWsXoVNMXm08WLw3pT/VEsmFrcgV/cjek4BC3udgmn3k5c9bck7oCn/drzpUFb93AT5VoEXvEKsYh85jPFLDyLz/MCCjP7bedgZsYfWemH2esPSI/XVxS2B7ZJ+dvHuIRTeD+RjA38Wvm858HiNXOQFA5hnSm+Hn829ZtusYUdiNl4W663A7F6ueIKX8fMUO0wB7C2Infpy1y92OWVW+C66+TOm/V68DAtN6dOifq8DpGIv/PmoLHEge3cNUIg7h68JM24W4wXGa+pyS5c4i5BRar3UfkYdhhkzR24nDuAJXE+P4N/Y5GL8JWvwPKyb948iFuc+1STTrt6jfu4kTPsp0xSGmCeSm3z2uqNZTYb4YplescgRMesmUoHy72z43yWgx40YkNFChdr9jxWgJlYY7xm3HXQzh2gxd2ucewYdr0duJqp9FJv5+LAQYMDz7kaDotFZ4sJvsF3iIWSxzFoY/DxxOvhCc7w8pe8RKRdtsrsk66QHhdyTff1ZKQ4c6ecx9i7UB94um5yEl5xWwSedCPsPwAHLxfjL1zCzjBEHcm2OXJktGbdmWZnr8Qmc90AWz8bxobRzEA+9zn58a232rHbHSOEzt3FB+S5ZYtzYRsMNkBc4i5OVYplqnwMO1QKTWkYWIqy1LWuXyTnLpGE1DQvxZpY3m7D7bdz000ijODm2c+WZ7ceOCAaVwG2s/h3vJQi0zDlxA633Vw3wLkL1abZuI9B6GCJO2/tciUkbQWKF2T1Mj03tc1di5Diq7nTzp1mh2i3rVhmzllJX8kx4Qxs4Sb49Kcb4s527bWAwX8Q3Kzh317y25x7yovsHfHJSXjpS7fyEzhM3nCNiN1YmKXKyJ40p++XM1EHD3R54TZ50Ysgc1kCrr4arrrK7va0tCSSgR/+sNB72+aqq0ZrHMLKCrmmqyYyMkHmqgELKW808/bb4ZOf7D7Z1iv+vv/7B/t+gvA6d031G6pcfEzeVVi4bAdrElXHJ+5C5tw9Lu+wJKcj26oxjcfl7rM3PBGOcrfzxCc+gWHAD/+w89TkJNx2m/9rfd/3AWbbjmZ9ipfxd7zU59xtiwDnLlSxzIAB5mNpolvizl7fWNf4sIi7wor8RmeWtrGLH2Z8zt14NlQZ4zvq7nH2rLXQslbSGXLiZvCcV2/p6916q9Ut/7K9EJ3ia/9VoN0yiHTmfR05An/2Z/ztJ56Fe47y93zPAEyEa64hzcMi2gLC/VmpMzuryADiAXL6mLyAP3j14Ort3CQS8N73wkc+Ijbabr5ZLG4OHRrwxtuRI2T4ivO4Em5xZz76GGu4auwSCbJzA96pfOYzRb1qp/hpdVVEoPfsgR/9UXjDG4QgB5Hf+eIX5c/f6Xo7CHDuxN+tysJg5WQZXDPMFg+MWQMHN15x54plhmFhWT4rX0QSme3fC375l+ETnxDXv1fclMZwjxr58pfh4kW++7sXaLfhvvuEa3f11f6v8+xnw599oIo7Jfmp6KuksUDbFncBoxBCFctcXvbFMsfZubPFXdhimZfk9crMngHMew0jS6LpnY5lanYcu5mKlSE7zHEM6LversMTn+i6Ic3Pkz/6LB548muFGnjb2+Dee7l/4Vncf7/8eUE7m30zM0M65R6+ZLJ+/+kBfGH1OPO4ZwzCjTs3h+vaa+G3fxt+67fgla+EK67YgUTFiMUyy/91gqZrfyqWmnSnWQfD1FRwJvbCBXjf+8SK8kd+RNTaffnLsqI6eFCcrDuNt1tmCEYhXDwnL0QWrhzH1aSFt+YuZLHM8nk54ZDMbv8kzGbhJ38SfuInIHPLE+TzqNUSO2GIpim/+IuiO2YQiQT8+msfJYrr7y0mi8+BO3cN0S2z6wxa1QiIZWrnDvs6Ghpxl5OHYs7sG8eDiK65s9Dibhc4fhwRtbHq7exmKn3W23WYnIRbbnE9MTPLf/zMR+HECXjPeyCR4G//Vv6cW24RgmEQpBfkm2P+/jOD+cIqUa9zak2+OB78jpB3njpyRI5lhlzcrT1wXnqcHWCjTIn3vrf7uWqa8Jd/Kepa3/IW+WMvetHu1DyEsOZuRS65E02FxpWZGbt9cZyqyPGbopBZ5WPYobIsjyNJLuyAY/Dyl8uPf/mX4a1vFUJvE25MPsav8B4xIB6kejsYTM1djLpTq9Vs0mqFqMYnoKHKWIo7K9Y0RV38rVibLI2GlJRWluK6vJswfWDnNqOVxltzp7tlanaK48eRpkVfwQm4/nrbPt4K3vnK//Efzr8feEBMRHDzyldu+Vv5SO+Rd2YvPFro8srwYh4/wRmcrqRMxThwdcgz7IcPk3bndGtVcpfC28gi94isEDJLOxQN3r9fzI286y74mZ8hMLNUq8GDD8rP7UYkEwJq7tSfc7eSl1utL9w4wEY4YcMwurqvYRB35UuytZFc3K4VFsBrX2vXItv81m/BC1/IphnIxx/n2XyFN/JH4vEOOHeA495Zxy400UxvLHNqvGOZBv6utarHoxsNqFWce3mENomDC0N8R0OkS0MV7dxpBo5opuLENg5zfMuRzA633CKbAseOiaRYuw2///vya6++Gp785G19O4krLpfbYz702BaH5inM6l0nqeCIueS04Z5zGk7icTL75ZWMd05cmFg7Ltf6ZPbtsPg+ehQ+9CFRRPuRj8ANN3R/bSIBz3nOzr6fDiFz7mrlFoWKE6eN0CZ74w51KwoLXQS66otKgNIleRchsWcHlIFVR+4bSPeP/whPfSrcc0/3zz17FoCX80lexqcgJjt3g6i5A5e4s45daJqq+BqqRMeyg777Bp+kLMWjVT8PgwaYG3tDnjTaKnNzMDHhxDJbLWi3tLjTDJZmE86cAXfniis4se2F3+ysv5zna18TndhdY+4A+OmfHmw67Nrr5C/24OnRuxOcvnNZenxwqTYSXYVnr5a7sxYu1kI7yiJ/RnaMs5fv0nZzKiWaqdxzD/z5nwfP9Hruc7c3c6QfLNcnSsOKEzUBk2azp9TarnPx/gtSQdLCVIHI7OhdQ/rCEnfuaB+oK9DdVPKyuEvu26E42OteJ+bceQekHz8uGh898kjw51nizgDexIf4zutl1XXkyDbfl3X+zXXatljnX2iaVflq7sbbuQNL3Lk6Iqtedxck7sZygDmI2bJLS464A6jXtbjTDJbTp6FVc+rtllgWc4Ce+cxtf+1bPRMQvvAF+NM/lZ979rMH1EbfxTU3xZ36BeDU2rTyF79+Of2AHNA+cHA0TpXJJ1wpLvwWZrliN4IMFeUya9LiySBzeJdrDCYm4Md+TOymvPvdzhDuiQn41V/dvfcRjcL0NAZ+907FaOb68UvS4+xMCApadpoug+hVPH5eynn5+CX371TxK+Kmd+ed/rqE9XXRuTZop8oSdwARTN7+hvO8+MUivfXiF8N3fuc231M0CjMzcrOqEHXMNM/rmjtAEnfeWKbq65tiEXuWI1iRxHEVdwB79njEXYNiMURNjgbAaKxYFeb4caDgrJ4Pc1zEubZRb9fBe3+7/36khXosBm9847a/jY/klZdxOafsx2atwUMPDf77DJPTx+VufpdfE/J6uw6j0lTl2DFyuMRcPEZ2YUiTXVIp+J//UzQ0+sxnxEnvHtS1G3hrthQWd5U12Y5KxkNqHQ+SEMcyy0X5+CUv3+Fan717RWfan/5p+fmvfhX+5E/8r3/8celh7NBlvPnN8LGPwZvf7E96bomAQeahiGVWKtSKdafrsGEwlZz0JlfHgzDHMnMtu3EIWM7dANaYoWXPHqaoM4kl0Ot1mk3J3Bx5tLjbYY4fByrOYuYKTgzMSrv8cn9Cxc3rXrdD5/fevVzHA87jes3XSyLsnD4rC4UDTwp7wZ1FgLgLTXzIzWOeGXfxREffDI+5OTG0/ODB3f/eXZwfFWN9lZynRis+Rtup3egyiF7F4yfRaFCuynn1xIHtDlPtgakp+PCH4QUvkJ//pV+y6iBcuJw7IDhGvV2yWSeWCeEZZL6yIkcyo1FmZkeg/mArhNi5K5yRd2hnEk1fbelYsWcPBuM9DkGLux3mxAmkO/Rhjot5dAPAMPzRzA4HDgxorl0Qi4tca7gK+5pNHrhvhKJVjQZn8nIN0MFbRqSbX8Csu1CKO69zl0js3CiEMNClqYqSzt267IrvVmmi0oRInEucPy81niI6RXJ2lxx0w4A//mOk7h+FgnD0Ovmrclmqd2diYmd2POfm5OtqWJw7PQbBIdC5E39Hyjt3XnE3O+ZLe+8gc6t+Uos7zcA4fhyoeZy7AYk76C7ufu7nBhQ3CWJigmsX5bqZB+9RcBW5RZqPnuCs6RJzU1MceMIOzG4aBldeKS9CqlXyl0IozL3OXSJBOj28tzN0usT6VBQHWtwFEFbn7tw5yriujbGp7c+N64dDh+B975Of++xnRebyK1/xd6Xeu1c0XBg03kHmYXHu9BgEh3jcHnqYoCI2CKyOVKo7d8VzcnOx6exOLf5CwuIioMWdZoeo1axEiHWHNjA5xEmRpxwQN93kXxw94xmeIec7wFUHak6eGVg53+TSpQ0+IUScves8bdepsTBTH50FaCpFOu2O3ZjkHgvhgXvsMY9zF9fOHeEYh+ATd8kxjYG5CWnNnfn4Wdm5m4rt/rXyjW8UNz03r3+9EHbf+Ib8/LZbY3Zhbk6OZYbVuZuKjq9zB7Z7l8RSc41wnIeFC7L6nJnfoZmvYWFB1P2O8yBzLe52kFOnrHRIVSy49nKOOLWBOnfRKDzvec7jWAze9KaBffmuTO5b4mpcradrtZFpqnL+mHwl359VfNuuTzL75K31/LHwibv2o8fI47LqEgrU3A2TLkOwlYxlFuX5DIlpfRsK6yiEyqkV6XEsGdkRY2xDIhExksRdYxTUOWFqCt761p15DyF27rxjELS4c4s7cR6q7twVVuQLxcxifEjvRBEscaedO82OcPw4YLbtFdYVnBAfGKBzB/BTPwUvexk861nw/vdv3GRlYPiaqtR54IHuLw8Ta+fkC+VCVsFhYdsgfbmcX8ydDtkshFaL9ROrmDiOz/RCnMkhNctUgjA5dyWPuEtNDOmdKMQGoxBUbt/tFXfJ1JCWFNdcA+94R/ePv/zl8O1vw/OfvzPff26OJGUnzdJsUqup7/jomjsPlrhzNlmEKFBe3K3Kmxkze1NDeieK4HPuxk/cjfNyaMcR9XZ1OkW5hzkuCj0HnFuZnhY1drvKvn1cw787j2v1kemYuXZBvlBm50crNpa5Uu78mT+n+J3Ly5kz5Jqum1c0SmZhzGsMusT6lHTuSrJaSczo21Dn+EUwidKgYR0/0xQmlKqN78pn5GFuyfQQj+X/+B/wiU/A3Xc7zz396fC//lf34vRBkc1iIAaZL7NkLybX1hSvKfXV3EXHt+YOujp3qov0Yq4FOPfA6b3jfBDRzh3audtRjh/H3ylzwK7d0OgyDkHlXeZeWbsoNxjJLo6WcEg/YY/0OLfS6PJKRQkYgzDW9XYQLueurMWdD1emOE7VPn6g9sKyfE7u0pdMD7HWJxqFz30OXvtaeNGL4FOfgn/9150XdmCLAjuaaR0/5aOZFy7oWKabeTHGI2zOXbEgz5qcPjjmN8Qu4m6cau70XXUH8XbKFGMQBjPjbujs3csBzpCiRIkU1OoUi2Je7IEDw35z22NN3owmu2e0ipMzN+wHnDq7nOoLEC++MQjx8a63gw1jfarhFSuJYQoCVXDtTiSoUHDN2FJRoHcon5cj3Ym5IdtUe/fCX/3V7n9f6/jZ4q4REnHnde50LBMIn3NXKMk+zcyhEZnLu1UyGYhEmG5baq7VgnabYnF8/Kzx+Ul3mXIZlpex78wR2hzk9ECbqQyVffswgGuxsphWAfsoRDPX1uXTIrtP5VxN/2Rukv8G86UJzGaI6goDxiBocRce58439FqLO5idFXPbsAR6uyXqtVHzGHaoXJS3wpMLIzIypl98zp0Ty1QaHcuU6dItU3XnrlCRfZqZwwtDeieKEInA/Lzj3AE0GjqWqdk+J05Y/7A6ZR7gDFGaoyPurK4tjrgTP+coNFVZLciLzezB6S6vDCexpTSxqBONa5oTlB87N8R31CePPebrlDn2sUxvt0yVa+5q8m1HizvEYqRLx1NlxV2jQXlN/gNLLmpxB4TDuWu1YGVFO3duQthQpVmoUG064s4Akgfnh/eGVGFhQYs7zeA5ftz6h3VnPoz1xKiIuz17wDAccddogNkeCecuV/GIu0Ojt5W5kJLvVo/dXejySgUJqLnTzl14nDufuBt2lE8VugwyVzYSduGCPMA8OkVyekw7n3pjmWFw7lZXod12au4mJyES0eIOl7gLQSyzeFwxvI9FAAAgAElEQVTuWDsda2BM6KW9FneaHcFx7sSNeqfGIAyNyUlYWvKNQ3jkEakXQOgwTcjV5MWmt7vkKHDDnOzU3f3NEB20U6f0AHMvgTV3pprOXV0WAInsmM9k6uCbdScEgooCHYCzZ2VxF5tSuzPkTjIzAxMTjrhrt6HdVlvcXbgA4Dh3UbGpqcWdK5bZVH+IeeH4RenxTDJEJRY7ycKCMwoBoNEYq4YqWtztEMK5M+2GKiPn3AHs3cs8qyxgXVxqdRoNOHZsuG9rO+TPlWm7Gk+ljApTc6MVywS4ab98Q7jn/hD1VioUZOcuGtXOXTwO8bgj7jCh1VJSGFQacvdZ7dxZdHHuVBToAJw9SwXXsZuKkRrX8VqGEb5B5svLNJlwBPpUFMMQo5XGlhAOMS+ckv/IZqZHoGX5IFhc1M6dZvCcOIGIKlpK4TDHxVVzlCwGq+7Odu+surswRzNzJ3LS42y8bDc6GCVuulLewrr/eCIcjmujAbWa7NxFIiN1Wm2ZbNYl7rAHKatGpSlvJCTmx7ROy0uXjqfKugbnzvmcu+Q4H8q5OVncNZqsrnZ/+dC5cIEiLiU3NcX09Eje7nrHGoUQo4aBaTt39booUVSRwhl5HMlMWi/rgUDnTos7zbZYX4dLl7DzNJM02c/jwrUbpSunt6lKLfwdM9dOyq29s0kFV8cDYN+hKPOucQi1SkjqJa2rs+3cTUwABul0908ZG7JZp+YOoNFUzrlrNqHRcm47BuZIOuNbossgetWOoY03ljkVG99YJgQ6d7lc95cPHT0GwY/l3BlY8ehGAxBOmKruXfGcXC8/nR2tubxbpkvN3SjMYu4FLe52AG+93eWcYoL26NTbddi3D3A7d0Lchblj5uppeWsnOxMGO6t/jKVFjnK380S9wT33DO/99EyxSJMJMVsRYGICw2C823d3yGSUd+6q63Xp7pqgihHT3TKBrrFMZcWddu5k5uaYxbU52GxSLCq8mNRjEPwkEiLijiXuTNO27FR10AsXZNU5M6+vpwAsLDBFg0msNVyjTrNpL1NHHi3udgCnU6ZYWY1kvR3Yzt0TeFg8tmKZJ08qXCeyCblz8hU8m253eWXIWVzkJlxqrtHg7ru7v1wZikU5kjkxQTotOsmPPV7nrtlQbkFSuSQvRBKTjdFKM2yHLrFMZcWdz7kbc3GXzRLBdM7BhuLO64ULHnGnnTsgdIPMCxflxdbM0jjb5y4WxKw/O5ppnY/jEs3US6IdYOTHIHSwxF2KMous2LFM00TtWoMNWLsgb+vMzY3ownNhwSPu6nz72yHodFoqyc1UJiZ0vV2HENTc+cRdVPU/uF2kSyxT1UWl37mLjbe4s0RBaJzX5WVnDALoWGaHLh0zVY1lFlYb0uOZvTrmDtjizo5mWuJuXDpmanG3A9jibpQ7ZYIdywRIk7edO4B8PugT1Gd1Ra6aziyOaH59cZGDnHYN3W1QrcIjjwz3bW1KgHM39p0yO4Sg5q6yJr+hxJQWdza+UQiKi4MA527ca+4gRM7r2pqn5i6qxR2ErmNmMSdfQ6f3jXu21qKLuNPOnWbLdJ1xN2riznLuwBJ3Ncf1Cqu4W1uVCySye0Y0v76wgAGOe2dd+JSvuysWtXPXjTA4d6uyDZWYGtHY81YIU81dowHLy55RCGMey/QOwFbdeS2XZXE3EdE1d2B3zPQeRyXFnWlSkPupMHNQ73YCXcSdqcVdB8Mw4oZh/KdhGPcYhnG/YRi/YT3/14ZhPGQYxrcNw/iIYRhR6/lnG4aRNwzjbuu/d7i+1gusz3nUMIy37tyPNTxqNdEtE4BqlQla7MUaGD1qDVUuu8z+5yzr0KiDKRZr6+vdPkltcutyDHNu34gOWLYufHZTlUYDTFP9ujvt3HUnk/HV3KkmDCp5OfaciGlxZxMm58cagG07d9EpMCJa3BGiURalkhzLnJjQzh34RXpDYZGez1NouTZYIhFdc9dhelqM9+jU3LXb0GrrWKaLGvBc0zRvAo4CLzAM42nAXwPXAjcCCeANrs/5F9M0j1r/vRPAMIwJ4EPA9wHXA682DOP6wf0oamA7Vq0mNJukyWMATE5KTtdIMDVli4Q01g9eFxfCsDp3qwU5hpk5MKL59WgUMhm57q7Z4L77kIa4K4cWd93xNVQRzp1K3foqOdlKTMQVenPDpotzp+Si8uxZwCXurI6nYy3ufLFaxRuqeJ27iBZ3QLgaqpw/72mKE2NmdkT7BPSLYXQdhzAObCruTEFH60at/0zTND9nfcwE/hM4sMmXugV41DTNY6Zp1oGPAT+wjfeuJLaosTpl2qLn4EFrJteIYQlWR9yJnzuM4s40Ya0ck57LXjHCA9QWFjjESefYNRqUy/Doo8N9WxtSKvnEnY5lWljd+qJYBfbWokSl1s8+5y6hxZ1NmMTBuXM0maCBtRk2FcMwxH7f2NLFuVPy+AGUSjqWGUSYGqqcPx84iF5jocXdxhiGMWEYxt3AMvAF0zS/7vpYFHgd8HnXp9xqxTjvMAzjBuu5/cBp12vOWM+NFLaosZqpZLCmmI5avV0HS9zZ832slWQYY5mVCjTqzmIzRo3EvhFWDouLGMCTuFc8roeg7i6g5k47dxZdui2qVHdXKcjF/4mk3mW2SafBMJzj12qB2VZTHJw9K9fbWTPuxnqqRdga4vhq7rRzBwTEMhVuqOJ17mK646nEwoITywQt7ryYptkyTfMowp27xTCMJ7o+/GHgq6Zp/ov1+FvAISvG+QHgduv5oMt+4LatYRg/aRjGNw3D+ObKykovb1EZHOdOXNFtV2RUxZ3VMdP+Oa2mKmF07lZXsfP1IIS5sbgwvDe00ywuAp66O1C77i4glqmdOwvrF2FHMxVcXGpxtwGRCKTTvqY4Kh0/m4sX5U6Z0TFvpgIBoxAUrtVqtaBalWvuIhEtDCBUzl3z8QvSJosxFSWVGuIbUg2fc1fXNXdBmKaZA/4ZeAGAYRi/BiwCb3a9Zr0T4zRN83NA1DCMBYRTd9D15Q4AZ7t8nz8xTfOppmk+ddFagIaFnGXU+cTdqDVT6TBCscy1sxWp4CwbWWekMw5WvaTTMVMI83vvVbjuTjt33elSs6WUc1eUR40kUiMYVd8OAR1PlRQHpZIs7iYmtLgLbIhjqnn8rDdluz6RCGBocQd+B1bhmrvi6TXp8fS0Md7uuRft3HXHMIxFwzAy1r8TwHcDDxqG8Qbg+cCrTdNsu15/mWGIPy/DMG6xvscl4BvA1YZhHDYMYwp4FfDpQf9Aw2bsnDuvuKuFN5a5dkruKTyXqIx2zsjaOLmSY8xQkIZ8Hjs2zDe2Ab46kQldJ9LBUrm2c6dgzY9P3E1rcSeRzTqLSlByViEA5bJH3EXGe8YdQCwGyaTr+JnQaql5/EolTFzizuoHoMUd9nXUdu5aCou7x+Vd9Om0nm4msbg4tjV3kz28Zi/wF1a3ywjwcdM0P2MYRhM4CfyHpeU+ZXXGfDnwRuvjFeBVVtOVpmEYPwv8AzABfMQ0zfsH/yMNF8e5Ewuscam5Gwnn7rTs12dnRnzAsiXuDOBG7uPfG9fZH7rnHjhyZEjvawPMQtHnGOgYikUqBZOTxJvWatJsQ7tFraaOgKqU5SR+YqaXW9AYEYJZhQCUSnLNnXbuBNksibJbnDeoVhX8Gy+XqZCghXVtiEwQi415Q5wOadFEzVs7qWIss3hO3pCezka7vHJMCWioMi6xzE2vOqZp3gs8OeD5wM81TfODwAe7fOxzwOf6fI+hYuwaqmxQc2ea4TK+1s7KV+9MesQ7+S049YRHuZt/r7/UfnzPPfBDPzSMN7UxlfWG9DgeN0SiSCNOtmyW+IpLHDSaVKsKibuKR9zN6sWIRCbDJE0itGkTgWaDppiqw6RKGkHHMoOZmyP+eDhitbqZShe8zp3C4q6wLP9xzczHurxyTNHdMjWDIpdD7JjXAkYhjCKWcxejLuJgVrfMZlPNGMNGrF2Q27TPzY24uHPVs97A/XbNHcDjjw/jDW1OKS+7qanpEO0e7AZdZt2pQqUiHy8t7jxkMhj46yaVi/Z5xV1EiztAiDu8myvDeztdKZc9A8z1GAQby7mTxZ2atZOFi/If18wefRJKBNTcjYtzp8XdgMnnkToYZMjBnj0Qjw/vTe0krsHss6wLcWdNTQ5bNHNtRRYO2QWVtsp3AJdzlyEndQpVcZcSoFyQa7aSKS3uJAJifSotLiue95LI6J1miS5NcVQ6hkCgczf2NXcQcP41lBQFlEryfDQ9wNwhGvXUTgKtlnr3xFaLQk7ufKbFnQevc1fXzp1mi+TzSHfiNPnRjWSCEK3WgkS4lKYtEkIn7i7JTl1mz4gvPF3OXZJyKMSd98KcmlUncqgEmYzHuWsoJQwqNfmWk0jrIh8JKxIWBnEn19xFtHMHMDcXmoY4XudOizsXmYzj3IGa8dpSiaIpu+fTmRHfkO6XLrFMc8RDWaDF3UAxzTEUdzAyTVXW8rILNLdvRN3WDi5xl6BiDTEXVz1VxV25JF+Vk7P6ZiaheEOOiqe5S2JO2z0SXcSdigtLXXMXgLfbqcLOna6524B02nMcm+rdE4tFfQw3Y36eKRpEsTauGw1aLbNTPTTSaHE3QAoFa0fA6pSZpMwkrfETdyEdh7BWkOt/sgdGvA1jKiXadwNT1ImYTTHcFuwmDqpRKssCPJXW4k7CW3OnmHNQaXjEXXbEN1D6xRJ33k59Kh1DQNfcdSNENXeSMIjokTISmQxxqhjWZifNJvW6fXtUAy3uNieRgFTK5d6Z0GyORd2dFncDxB6D4O2UOaoDzDtYHTNnsdRcCJ27eh3KVUc4RGgzcyA9xHe0CxiGNA5B+WimaVL2NORIZnRDDomAmh+lnLuGfLwS81oRSIQolqlr7gJQvObVplTyxDK1MJBIpzHwb7Io5cJq97U3xnSQuRZ3A2TsBph36OLchUncra0hCZssaxiLC90/YVTw1t3VFRZ3tRqltsvpMQxSOpYpE9AtU5XFpWlCtSk7d/E5Le4kQivudM0d4K+5UzWW6XXudM2dTBcHXal7YrEoN8WZmGB6uvvLx5YxHYegxd0AcQaYj8mMuw6+mrvwxTKDxB3z88N7Q7uFq2Nmgorazp2u89kchWvuqlWg5XR3i1EjMqtXIxJhqLlrt6Fc9p2LqRFPsfeE9/xrKNiIA/zOnY5lynQRd0odSx3L7A0t7jTbRThVpn/G3ZiIuzDHMgPF3cIYOneuWXdK3cgAikVKuFaQekHpx9stU6Gan0qhKWaAWiSoju6ImK3iXVQ2FHTurAuDLe4iEcDQsUwIdO6UOnYdymWP6xPRro+bwFl3im14anHXGwHiTtfcafoin0dcBNpiAZMhB8mkfaEYWayau1DHMs9V7eMGkJ1YZyzudmEah1AsauduMxSuuatckv+gEpMNUfepcQhDLNPa9rZHIUyIqK0+F4FslinqTiOORpNGQ7q1qIF3lEVEb5RJWOehI+5EJxWlNjy1uOuNMR1krsXdAMnnwd1jNU1eDDAf9QVMl1EIoYplnpF9+mxqTBaeLnfSK+6Uiy5o525zFK6584m7qILtWIdNMgnRqCPuzDa0W8ocQ8C+MDjOnRZ3NnNzGLjFubieKnX8AMplz5xC3RBHIgTOXbvgL1PQ98MAdCxTs11yOaSGFGnycNllw3tDu0VgzZ0ZLufucfmqnU2rttW6Q2zQUEWpXUrQNXe9EFDzo4xztyavcBNTWtz5MAy7DbuNagOUveJuQiwj9LmIEAWG4Ry/VgvMtlrHD3RDnM0IQUOVSk6+sCfibZGQ1shocafZLsK5c04427kbdVIpmJ11xJ1pQqNBPm/N/QsBa+flC2V2bgxcOwhdLFM7d5ugsnPnE3djsoHSL5mMb4CyKscQgFIJE7e4E86ddn4Q9Yezs7I4b7XUE3faudsYy7lTuaFKeU1esyTjIVls7TaLi3oUgmZ7eJ27DLnxcO4AlpaIUXcWlo0GzaZaF8ONWFuRXYTs/JicGr5YphMrVlHcaeduE2ZmSBium367Ra2ihojy7TTH1HhfyhHg3KnivgJQLlNnChNrAywyQTQKk3oqiSCdlsW5Qk2NOphFf82dFncufDV3Coq7fEN6nEhocReI17mr65o7TZ90rbkbBywHyIlmigtPWKKZq5fkC2N2z9SQ3sku43LulB+FoJ27zYlEiM3GpKeq6/UuL95dKnn5fejFZBdCEMvUmywb4D1+LfXEXbNUo4Uzc3JyytDi3E0XcafSPbGyLou7ZHJM0kb9ooeYa7aLcO6cBcxYOXeWSLDHITTC1TEzl5cvjNm9Y9KifYOGKkotKEE7dz0Sz8h/u9VCo8srd5fKulfc6Z3mQALEnVLiQNdrbYzqsVqgXJRd80RSLwUlQtBQpbwup42SKS3uAtE1d5rtUKtZ4+0scTdJU1wYtHOnPK0WrBflC2N6/xiMQQCYm7O7giYpi5uYNYtMpRsZiCiR17nTi0o/saz8S6mW1GhcUvEsRhJ6pzmY0Ik7HemTSKfVdl6BSskj7lJ6KSjhbajSUk/ceY9hclofw0Dm5mRx12xQKo5+SYD+axgQtoixxF2avKhIGBfnbmkJcIk7ywEKwziEXA7MhrPwnGWdyaW5Ib6jXWRiAubnAdcupXXsVLqRAdTzFdquS1Y0ahCNDvENKUp8ThZ3tXJrSO9EplL0ijt9+wnEK+5Uq9nyzkjTmywyqsdqgUpZds0TWhjIJJNi06Ij7tptaKvV9dTnvs7oXG0g0SipWfl3U1xVo1RhJ9Fn9IAIEnfA2Dl3YYxl5nJIccQsa1JcceSxflb7RqaouCvn5AtyKjn6u29bYWIuTQTnd9OqtzqpoqFS8S5G9IIyGN8gesXEgde5i2hxJ+FtqKKa8wpUKl5xp4WBhDWSxN7wBOXOw3LJewwnurxSMz0v16EX19QoVdhJ9N11QORyAKYtasZV3IUxlrm2xniLO+vY2Tcy69ipdCMDKOU9NQZ6QRmIkfU7Pyp0W6yUZAdRLyi7oHrNlm6osjGqHz/TpFyWI9Ha9QkgnfaJO5U2PL3352Rax1i6kVqUL1ClfCs0Y7q2ihZ3AyKfx6pXEn8xGXIwPc3YtPPzijtL5IYhlrm6il/cWVHFscA6dnYu3Tp2qhUdewvIU7qAPBjfrLuGEovLimdhpBeUXQhdzV1E19y5UT2WWatRwdV0yTB0vVYQASJdJXFXrsj3v2RmTDp8b4HoUpYozhqvXW8oseG5k+gzekDkckDNMwZhXOrtoGvNnXbuQkBIYpmloieGopsABBMQ61PhRuar85nVO82BhEDc6Zq7DQhoqKL68dPiPABvLLOlmLiryve/ZDbW5ZWaoFl3qm1eDxq9OhoQ+TzSAOgMufGJZIK/5i5Esczccl0UTFtkJwrCdR0XvLHMhpqxTG8BeWpWX74C8Tp3ijTkqHjegxZ3XegyxFyZGJGOZW6M6s5duawHmPdCQO2kSsexUpPvf4nsmIxv2goLC87aFKDRCMXadDvo1dGA8M64GzvnzhfLbABmOGKZZ+TtuOxsyx4PMBZYx86+kblq7pRZUOKPiSZndawvEJ9zp0YEpVL11Plk9E5zIJkMBjgC3eqGo4JAB3RDlc1QvebO59zpWG0gKjdUqdcpt93XT0PH3DdiYUEYLh0aDatPxuiixd2AyOfxDzAfJ+cuFoOZGUfcYUKjGYrdkbXz8so3mx3SGxkWVixzgrZYUFrOnWkqtKAEyp5YX0oXkAfjq7lTY3Hp22nW4i4Ya8aWLdBVF3c61iejuOPjc+708QsmIF5bq4m5uEOnWPRHo3UNencWFphj1XncaIhynBFGi7sB4RV3Y+fcASwtucQd0KiTz6vl/gSRW5Hb4mYXxqylsOXcgeXeueLFKtUYlMqeGgMt7oLpEusbNpW6fF7pGFEXfOJOpCDUFXcR7dy58Z1/LXWOHfidO+28BmM56LZQtzZZlBDqxaKORvfDwoLopdCh0RCN9EYYLe4GRGAsc5ycO4DFRWLUHdeg0aDZVORiuAGrl+RaruzSmIkGV/OYJGWpuYxKx65ck8VBak47P4GoWnNXl2NDiTltFwQSj8PUlCMQTFOtAco6lrkxPsdHjW61Nj7nTscyA7E2WexopiXulNjw1OKuPxYXfbFM7dxpekI7dwTMulN/kLlpQi4nxxmye8fMUXA5d15xp8SNDKDdplSTxUEyq1s/B6JgzZ1pQqXpEXfzejUSiGFANitH+xQR6IBuqLIZvlhmy9cpdqjobpm9kU4Dijp3OhrdHwGxTF1zp9mUdtua56adOyBc4xCKRWjVnflpScrE9mSG+I6GQKBzJxYjyoi7SoWyFCWKkJoZs/hsr3hjYa0W1fJwC0UaDWi3nAXuJE0mM2PUkbZfFI3WArohx2bEYsSlUIFJpdjs9urdp1z2Oa/6+AXQxblTQtwF1dzpDZbu+GKZdR3L1GxOoWDVlVniLkWJSVrj59xZs+7CNA7BO8A8Q268ZtwBJBKQSol/YrXIVCmCAlAsUiLlPNY3s+5MTBCLy5f26upwVySVClInggQV+29OE4DK7fS94kCfiz68Yz6qhUaXVw6BAHGuj18AXZw7Je6JWtz1RyZDxnC1bm+1WLuoQmecnUOLuwEg7F3TFjN2tlc7dwBKj0MIHGA+Pz+8NzQsusy6U+JGBoExFK0NuhP3DHivrQ13Ymul2JJmSSaooO2CDVB5kLk+FzclnpGj/dWiQgtJ3S2zN3zOnTiGKtwTW+slajj2sDEZIaZL0LsTiTCXlaPRueV6lxePBlrcDQAxwNyJsmXIiV2f+HjWbjniTv2aO6+4m2N1/Jw7sI9dCksE1BUTd9q564tYyuMcDNu583z/xGQDIvr20xVVxV29Ds2mI+4MAwwdy/Ti7QRbLSkk7gK6ZerjF4Dl3KkYy/RdT6faYzWadyt4G+WtLjeV7+S+HfTddQAENlMZN9cObIEQplimV9yNZSwT7J/ZjqCo5twFdAfTbkF34jPyjayWH64y8C5GklGFapBURFVxVyrRxnBcg4ioe9XiQGYyM00Ex6lu1lodbTB8dLfM3rCcOxVjmeWc7DolYu0ur9R0iF+WkbpIN6sNSsMNtOwoWtwNACHuHIEw7uLO69zpWGYI8MUyxbFTYZcS0M5dn8Rm5E6i1fxwu3H4d5pVWekqiqo1d106LWrXQMbIKnr8IHCUhRZ3AczOAi5x12oCphLHsZKXxV0yMcIW1KBYWpI7ZtbrI90xU4u7ASBm3DmLp7EcgwB2Q5UwdcsMjGVqcaedu5ATT8sFGLXCkMVdTv7+eqd5EzIZTzt9dZw7PcC8B3zjEBQ5foBZ0jV3PTE5CdPTzj0RRCRZgXui17nT4q4Hlpbkjpn10R5krsXdAPA6dxly2rkD63diqi3ulhtSo4fsRAFmZob4joaEFctUVdw118vUcdwoY0IXkG9ELCOv1qqF4TplfnGnFyMb4nPuFBmEredr9Yaq4hxoFKq0XUu/yajB5OQGnzDOZDIecddS4p5YXpev58mUts43ZWnJM8i8PtKDzLW4GwDCuRvzAeYgGshMTzs1d4iW+kqLu/PyojOTNsczY2QJc3tBolhDlfKqvDJKxVpjeZh6xdutr1Yabit2b4xIC4JN8A2iV0QcBDTj0M5dAKrGarE617rQ5+IGpNM+506F41jxbNYlUnopvym+WOZoDzLXfxEDwNtQZWydO4DFRce5A6g31K65W5EvknPzY6oYfM6dWjV3pTVPDCWuY30bEZuTM6vV0nB/X5V1WVzqBeUmqCoOApw7Le4CSKfVFOdAueARd/r4dSfAgVVhw7NclK/nWtz1gDeWOeKDzPVfxADQzp2LpSVZ3DXq5PMo2XLWNGHtknyjyy6OaT5F8Zo7b41BKqngH5RCxOdlcVcrD7cVu2+nOTmmmyi9omqsT9fc9YZXnLcUEedAxbPRk9TCoDsBtZMqHEffMZwd03VLP3hjmfWGjmVqNkY7dy4WF4lRd1rO1hs0m+o4QG6qVXnRO0mT5MKYrlQUr7kr5T01BlrcbUhsflp6XK0M9/elY0R9ovAoBF1z1wNecd5Q5PjhFwb6XNwAX82dIs5dWb6eJ2cmhvROQoQ3ltnQ3TI1mxA4525cnbsQDTIXnTKdReccqxgLY9gpE+wOoarOufNGiVK6gHxD4kuz0uNabbjiTseI+kRhcefttKiduwAUdXwAKh5hkJjWwqArAeJOheNYLsv3v2Q62uWVGhtft0wdy9RsQK0Gtappi5hJmuKibo0FGDt84k7dcQh6xp2LTAYMgxTWVM9WC8y2MuKuVPDEUKb1pWsjYouyuKvWhvv78rkFMzpGtCEBNVveRflQCJiRpsVdAAGxTCXEOQHiTrs+3QloqKLCPbFckcVdIjPV5ZUam9lZMlHXwWu3fT0XRgm9QtomuRySQEiTx8hmGds+7ZaotTtm1hUXd03PCIu5ueG9oWEyMQHZrHwja6hxIwN/h7fUjL50bURij8e5awzX6axUvAtKLe42JB6Xx0WYJtXScOsmAV1z1ysKN1SpVD3CYEa7Pl3xxmtbatwTvccwmR3T9WY/GAZzi/JGRm653uXF4UevkLaJrrfz0CWWqWLHTD3A3MP8PFPUMbAWlY0GjQY0FdjcKpXkx7qAfGOm9mSlx7VGBLM1vI6ZFc+CKKFjRJviG0RfHO44C0DX3PVKQEMcFeJ8ABWPi68jfRugaLy2UpdFSjIb7/JKjZvpPSkmcRY05fUmtdoGnxBitLjbJrpTpofAQeYKO3eumruxjmUCzM9j4GqqYrmaKtzMvLulqbQWdxthxKaIRWRVXrtYGNK7gYrHtUjM6hjRZngH0Xub0gwFHcvsjVSKuOFyBdptqiqI82aTSlO+dmoXfQMCRHqtJqoWhoZpUq57jqEWdz1h7PF2zBzdQeZa3G0TEcvUzp2NrrkLL9lbIZ0AACAASURBVNbPrmLHzFLFs9usaww2JTYlO3XVC8M7CStV+fglMjpGtBmJOVncVUut4Y+U0XPuesMwfE2DKmsK5DLLZV9DHD2WZAPSaQxcjcasGMtQI7aVCmX3MTQiOsnSK3v2+GbdjWrHTC3utklgLHOcnTtvzZ3qscymR9yNa80dKC3uyh5xkMxqcbcZ8SlZCdSWhyju6lrc9ctkdoYJHIug3WgOPyJdLuuaux6JT8sL7mpOgfxXgPOqY7UbkMkAfnE31Htisaij0VvF1zGzMbIdM7W42yaBYxC0c+dx7kyFnTsdy7SxZt054xAUuJFZlKpyjUFqTsdQNsPb06m6MsRYpqdGxOtKaQJQcRxCwCgEvbAMxht3rK4rIO58zp0W5xtiiTunVEGBe2KxqMeRbBWvuGvoWKamC3rGnYdEAlIpR9yZJjSbSoq71VVTO3duujh3StTceWoMkvN6RbkZ8YQct6pdKg7pnUCl4akRmderkU0JEHdDPxd1LLNn4p660kpegZo7rzjXzt3GpNOA37kb6nkY4Nzpc7BHAmbd6VimJpDAhirj7NwBLC46sUyAekPJWGbuYhN3EUs2UYP4GDtCqsYyWy1KLdmGSs3pWN9mxBLy5b16cTjirtmEZtMRmhHaRNN6NbIpAc0cVHDudEOV3vB2O1WiIU5QzZ0Wd90JdO7M4Yq7APdcn4M9omOZDoZhxA3D+E/DMO4xDON+wzB+w3r+sGEYXzcM4xHDMP7WMIwp6/mY9fhR6+NXuL7W26znHzIM4/k79UPtJmtrSOIuy9p4O3fgF3cN9cRdowHFnHOzNTCZnR/zltBecddURNwFuQUp3QRgM+IpOQpZWxvOgaxUkNrLJahgzEwP5b2ECkVjmdo16A1vXakqcwq9sUwt7jYgHodo1NlkMU1ot4d6T2zli9RxXGFjIsKULkHvDR3LlKgBzzVN8ybgKPACwzCeBvwW8HumaV4NrAE/br3+x4E10zSPAL9nvQ7DMK4HXgXcALwA+LBhGPLqI4QEirtxd+6Wljzirq6cuPN2ysyQI7IwxpFMUNe5KxYpkXIeT0yQSnV/uUYQS3lqflbVEXf6APaAouJOi4PeiGc93U7LCog7b0McHcvcGMOATMa5JwI0hzvIvLwqXwQSUy0MvdfZGwHO3djGMk1BJ88Ttf4zgecCn7Se/wvgB61//4D1GOvjzzMMw7Ce/5hpmjXTNI8DjwK3DOSnGCJrq21/O32rY+TYsrhInKozLLLeoF5HqWGRYoSFp5nKONfbgdLiTrsF/ROfkZ3oWn44WaJKqQ1tj7jTB3BzFKy5axRrNHE2DSLRCe0adME3yqI87DkWaHG+FRQTd96RGsmYApsGYWFx0efcrV5S4LzcAXqquTMMY8IwjLuBZeALwGNAzjTNzur4DLDf+vd+4DSA9fE8MO9+PuBzvN/vJw3D+KZhGN9cWVnp7yfaRWo1qKw7wm6SJtNzMYiOebxvcREDtcchBI5BGOdOmRAg7hToDAaYhaKu89kCsRl51V3N17u8cmeprMqKJDHRgInQhzZ2nmxWrrlrDN+5K5fkhVBqJqJdgy7E52V3etjCHNA1d1shnWYaV71ys0lxeL2pKK/Ju+TJeLvLKzU+YjGyM7IYXlsezn1xp+lJ3Jmm2TJN8yhwAOG2XRf0Muv/QZd6c4Png77fn5im+VTTNJ+6aLXWVxFvJDNDDmPvmNfbgT0OwRF3QkSpJO5WV9EDzL1YP7/TGUyMsRi2uPOKg3i0RUS3gtqUeFoWd7UhtWL37jQnphRoLBEGVItltlqUa555hdNapHcjviDXlVaqhhJD6HW3zD7JZJjBNUam2RrqWqbs6bqaTAz7jypcpPfEMVzSY/1S0101MDL0tUQyTTMH/DPwNCBjGEYnn3EAOGv9+wxwEMD6eBpYdT8f8DmhRNfbdcE7yLyuqHOnxZ1MPA7JpOPcmSY0W0PfcS5dkle0qZgCLcVDQCwtd36tFobze6useZy7qRG8k+4Eqok7r+sTmSCZ1LZdNybn005pAmA2m+5bzlAwS94h9FrcbUo6LfcQaDYoDG9kqE/c6ePXHxN7Fnw9IUax7q6XbpmLhmFkrH8ngO8GHgC+DLzcetmPAH9v/fvT1mOsj3/JNE3Tev5VVjfNw8DVwH8O6gcZBlrcdSEEzp2uuevCwoJcX9BoDN258xaQJ2M6htIL8Yx8168VhyTucnLsJRHTO8094RN3jaG3YJeFgR6AvSHptHKjLOrrVUxXiCoahcnJDT5BA5mMJ5bZGqq4c5cCASR1b6r+CGiqMoodM3tx7vYCXzYM417gG8AXTNP8DPDLwJsNw3gUUVP359br/xyYt55/M/BWANM07wc+DvwX8HngTaZphnoLd3UVPQYhCEvc2VGGurgYDfOC6GV1FV1zF8T8vHLirrQqxwlT8VBfNnaN+Jy88h5WK/ZKTj5+ibgWdz0RJA4qQ/zd6TEI/eET58NPQXiFQULXa21OOu2JZTaHK+488xITKR2N7ouAcQij6Nxtumdjmua9wJMDnj9GQLdL0zSrwCu6fK3fBH6z/7epJmKAuUcg7LlyeG9IFSxxlyYvHlvOXT4/rDfkR8cyuzA/T8Kdlm4OX9yV1+Wbma4x6I3YnLylWy23RdR2lztgVNY9zp0Wd70xNUV8ygTXr0/UTca7fsqOEjDAXEfCNiCdVitWS5C4G9IbCROZjCeWOVxxVy7Kgjw5rQvQ+2JMBpnrv4pt4I1lzrGqnTvwO3eNOmAq5dzpWGYXApy7Ye82l3LygiSV1OKgF+KzU5KQq7Unh9L6tOKtEdF1Wj3jnVXobS60q/ja6GvnbkMUHGVRKcrufUIfv83xxTKHLO48HWuTszpX2xdjMshci7ttIDouyt0yx37GHYgBxcmks9tlmtBsKlVzp7tldkHBWKbPuUtpcdALsbgBk85YlipxhnEX8y8o9fHrFW83ymp+iMNCdc1df8zOyrHaVlO450OkUvRE+hL6XNwUX0OVIYs7z/04MaPFXV/s2eNx7rS403gIjPYpPLphV1lc9HQkaigTy2y3rYiorrnz4xN3TUql4b0dgFJBXhClZvRlqxficSDq3PhrxIYj7nw1Ivr49Up81jurUCVxp527DZmcJBGVNzYqF4d7Ma14XR8d6dsca4i53T7fitc2hzTRpeKpu02mx3yucr/ohiqazRDRPkcgzLEKCwvDe0Mq4RV39eG2D3aTz4PZNu2r8zRFJmlBJjPkd6YAXWKZw5zP5KsxmNEF5L0Qi+F37i5d2vX3USnJx0/PRuudeDomPa6uD3Hgblm30e+XuKemrXpp2OLOcy7qjZbNSacxwIlmWuuGYa1nyhX5mCUzU11eqQlExzI1m7G6akriLkNOi7sOS0u+WSKqxDLX1vC7dpmM7gkNMD/PBG2mOl0cmg1ME2rDNQwkUrNaHPRCPA5MOeKuRgxWVnb9ffgWlDpG1DNeced1QXeVgAHY2rnbmHhSXmJVV4ebca+U5V26hN4o2xxr09dez7SGK+4qVTlKm8zGurxSE4jPudPiTuOi2YRCri0yfoCBSXqqKurNNIHOnVLizttMRUcyBdbvwXbvrM2LYdbdeb+3LiDvjVgMiDq7ulXisLy86+/Dv6DUx69XElnPIPrScMVdCdf9TccyN8VbX1pZG25HlXJFfj+JaX0ubko6DbgaxA3buavLgjwxp1ue9kU2SzbiWoy2WqxdHL3xSlrcbZF8Hsm1S5NnYnFu19uMK8viojwbpiHE3TDjfR28zt0cq7pTZgdL3NmNABQQdyVPDCWV1TGUXlDGufO0f0/M6hqRXoln5dxjtTTEhhy6oUrfxD0zyCqrw52F4HV99LnYA5Zzp464k49ZYk5no/siEiG7KG9q5FYaSqxNB4kWd1sksNuijmQ6LC4So04MK8/XqNNqMfRW0OBvhJMhp527DtbfsOPciRvZMI9bueqpMdAxlJ5QxrnzugUZffx6xTeIvjJccecdhaBr7jZGqW6nBET6dDOOzZmdBcNwxF2rBWZ7OOKu1aLSko9ZMqudu36Z2pOVegu0qur0hBgUWtxtkUCBoMWdg9U11I5mWsPeVYhm6gHmG+CLZYrau6HGMmse525Oi4NeCHTuhiHuPMcvkdbOa6/EF6alx0PdHAsYYq6du43xdTsdZkMcAs5F3YxjcyIRmJmRk0it1nDEQNA5qDue9s8YNFXRfxVbRAgEzwBzLe4crHl/8iBzlcSdU7syx6oWdx1mZ2Fy0hF37Ta0W8ONZXpiKEldY9ATQc6deWH3xV2pJkdg9PHrndSSXMNdqk50yrx3Hz0KoW+8GxnVQqPLK3eBdptKw1OvNavFXU9kMrK4G9asu2JRn4ODYAyaqmhxt0UC3R8t7hws5y6NNdxONeeu6XFddc2dwDBgbk4evttoDte584i71ILOgvXC5CRMxJ3fXZsIreXdHYXQbkOhLi8gZxa089or0YW004IdaDdaw5sXqmvu+sbr3A2122m16nF9InosSa+k0z5xN5S1TLGoo9GDYAxm3Wlxt0W0uNuEPXsAVyxTOedOxzK70mXW3bAoNWUxkFzUHWl7JTYtC+Pq8u6egIUCmE3HapqmyGRmeoPP0Ehks8zjEuTN5jBGFQp0zV3feBvieMeC7Cq+URYRffx6JcC5Kxa7v3ynaOaKNHCu6ZFJgyltvvaPjmVquqHF3SZ4Y5n1BmAqUbTqPXY6lulhfp4UruFyzYZv1txuYdbqlE1XjM8w9NDWPoh7uuFVc5X/v713D4/kKs993yW1bi211FJLrctIHs19xh6PPcbYTsCGcAhgY0g2JARIuGSTkBCTQLiEkGTvzXkSdoDNgZ1NCCcE8sDOCQQCCSFsjEMAOzExBtsztmc8M/bcb9JIaqlbl753r/NHlapqVbekvtSl1Xp/zzPPqErV3SUtVdV61/d976f87btNIgGgaNpM92KR7WKqIRzW7k+r+Cju5DL73FWL3ckwnfTRcj2ZpDivlTKROz/mMqkF1W21qy1Pg/ZaYOSOrAXF3QZ0dQGhkJmWCQnk8v6lFK2ehSytuWNapo1IxJaWmfMtLTO7sIICzNShQKtEWzufZpXS2dUCtJkCL41OYG7Os89fXASQNye0fUgAPYzcVUw4rEbucnnNqdkH0st5SJjXXnunQCuz+talRNz5bIhjF+cUdxVSJnLnRxZSMqb+AQXbm68/mycwckfWYmEBRh0ZoIs7vc6M6ESj6g0xm/U9creyorep0WvuOpBBF9KM3FlpoLTM5KwaMuwO+Gslvtno7IRiquK1Y2YiLpX61j4kgP5+zz5/0xMOI2KN3BXymJ/xp24ruaROJIPdXGTZiIZyO00mS8w4KO4qZGCgpG+vH2mZSVvkLthBcVcTjNyRtWDkrgKGh82aOwDIZX2vuTMuYH3sjJQnijuTEnHnn6HKypxtpbLNR0OCTUhHB5R2CEkEvRV3MxlYu8P2BZLgjLIKWlsRCan2+bGL/uRI2+vFuroZttsIu7hLZ3wUxCU1k6y5q5ixMVXcZfyZyyQX1HtBV2eTdd72iuFhRu5IKVIC8TjY524j7OIu20jiThMJxgXOtEyTwcGSyJ1f4s6ehtLd4aOV+Cakvx9K5C6GiLfi7qoqRPqCHL9qGehXJ3Cxy/6Ef5Ir6nkEQ5w+bETnUEjZTmV9FMT2mjvWTFbO2JhtLpPRzKI81laphCrugl0UdzUxNKTWMmezmJtrrt8l7841sLgIFIvSEHfdWEE7coz+2IlGbTfEXGOIO713G6CL8kBA6+9GNBqo5m5lXk3DZBpKdQwNQYnczWLIW3E3rQqRvpCPboGblIEhVRDEpv0RyPZ7QHdvoPyBxKBrpE/ZTudavFcEOiWGOK0tWto22ZjRUbQjiwD0zJFMBvk8kPW4J31qUb32Kc5rpLsbQ0HLDU1KzE0XtJKdJoHirga0Pml5ANpNuh8LmkkA75QqjZqWaXfKHBgALacsNFLNXVx9enZ3UtxVw9AQlMid5+JuVhXnfWHPPrppiIyojqfzsz5cA1IimVLvkV02J1ZSSme4U3m2ZGQ7ZNKfm2l2Ma0Y4rS1aeuapALGxiBgcf/O+NPaKbmoqg+Ku9ppH+5Xoncym/WvzYwLUNzVAOvtKqRRI3d529gxJVPFLu7yPkbu4raVStaIVEU0Cn8jd3PqZKQ3zDqtaolsUxcNY/PC++BPJoMUbC1Jejh92IiWFqC9zRwsCYHMjD+W0am4utDSRafFyhkbA2Dp25vNwI/WTnZToy5eg7UTjSIKy7Mwm8O1a/6djtPwL6MG5udBcVcJw8Nl3TJ9ykoBsDp2tjYITKdVKRO5863mLqGKu+5gc+XFu03ZyN3srGefv7igTkb6IgwVVEtwLIwOmBPzbKrgfd/JlZUSp0VGDSqjs01NRU7P+LPCWZLS18kU6Yrp6wO6utAD3SKzWATyBe/F3bLN1KiH99OaiUYxDIuay2Up7rY6djMVirs1iEYRQMEUCtkspIQvFsKrsIF5BTRSzZ09DYX261Vhr7mbQdTbyF1CFeN9Q2xAXy1iOKoW/+d8SB+iuKuZLludcGrWnweg3Yyjq4MLZRUjxJqmKl5id6wNhpgJUTMlkbusl49G16G4qwGmZVbI8DAASypDzp88dSuxGJS0zAhiFHd2BgbQDUtoIJ9HKunPRCC5pD7MukMUd9UwOIgSt8zCNe+amCcW1UdM3zDrkqsmGlUbmWdz3jcyt4s7NsCumM4OdTs955O4W1IXyjh+VVKmHYLnkTvbImuwj3WvNRONYgTT5nY2h+nptQ/fbFDc1QDTMiskGgVgKULWraX8bGQei0EZuwhirLmz09aGjlAHBExBl1nJo+BDicbKss1+vYcrldXQ0QH0DZoTgCJasDDjjdtioQAsJc1HjIBEaLRnnVeQsgwNqeLOp8id6rTIyF2l2EVUas6fPoUl9Vocv+oYHTXTMgFfInd2UyOKuzqwR+5yjNxteRi5q5BwGGhrQx/0AvJiESgUkPCnnhxSltbcMXJXHjHYGKmZ9hTe7l6Ku2oZGg0ojn2zySC8KNpaWoJyn+zBMlojtMusmkaM3LW2UNxVSGdQnZCnF/xxyyxpQh/k9K8q7GmZGR/SMtM2x9o+prnXjL3mLsuauy2PveZuAPMUd+UQAohGy5qq+EEioUUTrP0JO5CluCuHvZF53p92CIllVcyFIxR31TIUFUpq5gyinpiqJBKAtXFQHxKMktdCtDFq7lbQbW4zclcxXd3qNMs3cbesRu5Yv1wljZCWmVH/loIDTHOvmTJumTMz/hr+OQnFXQ3MzwPImuIujDjF3Vo0UK+7udVSI73mbhD6Dk44S2kQx0y7uOuLdqxxJFkLvxqZJxJQouR9SAD9/a5/btMRDiPSEje3CwXvG5mXSctkzVZldHarjoaphbQv52Gvm+5iint12MWdH4YqGXXMuvop7mpGb9VlOBFns0il/DX8cxKKuyqRco20zKEh/06qkRkeNtMyASCb9S0t01jt1sfOWA1n5K6UBhF38RW1pqBvrHuNI8laRKPwpR2CFrkz75OM3NWIEIgMqBPz+SseR39KDFWYllkpnSGbuLO5VnqF/f5NcVcljRC5y6l/S8EIV1hq5rrrIAAzNTOTBiCbJjWT4q5KUildG+gCoQMZrTaJkbvylKRl5nxLyzTFnRZNMCJ3FHelNEA7BCmBRFqtKejbRkOOammoyB3FXU0MDKqP6ti0xwKBrRBqpqtXvYelF/0RdyX1WiH2SKuK0VHfI3fJnLrYSXFXB+Ew0NdnpmYWi03VDoHirkqMQnbd1r8fCxAAxd1aNFBapiHu9GiCYVLACWcpJZG7vOc1d+k0kM2ZE5I25NA1SkOOarE3Mveq111ioQgUbOKur8/1z21GIiPqpC4243EDaoq7mukMq6lz6URmjSPdxX7/7qLTYnWUjdx5WKCVzSIprWJOoCvMMoW6mJxU2yGk04zcbVUWFgDIomEUEIZeC0GBUB49r9kgm/NZ3Ekj6mqIO0buSmmAtEwt8qOm9YkB1mxVi2+Ru2n1D6YvmAdamQpWC31j3WiFaYixslRAxkuNYK+5Y5+7iumKhpTt9LwP+e0AUjYzDntEkWxAKIRQ0LKoIotYinlY+7q8XNqOhKY49TE5qZqqUNxtXRYWoDjADWBeMwkIMMWhLPbIXdbnyF2hYNghRRDTmhBxllKKXdzlvRd38ZmsliqhExYJIBRa5xWkHJq4UxuZF695UHM3rRpH9IU8jjY1EWI4qtV2r+J1OwRG7mqmM9qrbPtVc5fK2sQdoz7VIQRCY+rzZ2k+65m7Yj6+jDzMeWZrAGhj8LU+JifVdggUd1sX9rirEnvkzm+3TPa4q4xGiNxdUQsa+joySr82UhkdHUCo17zVF9CKhSvuD2ZiTp3E9oU5djXjcyPzwlISWZgLBCLQgk4a9VVE57CaipxaKQBZ7wVeMqsqAfZIq57AtmF0wly0kpmsZ8/F5Jz6QV2BPB+H9bJjR0nkjjV3WxS7uGMbhA1ooMid1sDcHLsIYkynXYtIxCbKc1p/Rw9JXFUbbYeD/qx4NwNDw+qtfna6sMaRzpGYyyvbvQPMbqgZnxuZJxfVsezqlJxYVkhXT6tS85pClydp0QpSIpWz2egPMGOlakrq7jKezWeSMbVoMtjucTuUZsQeuUsxcrdlsYs7NjDfgGgUPViGgJ67kM1iZUVvJu4hUuppmXmbuGPkrjyRiC1SkDf7BHpEYlp9mPX1ePxH00QMbVNX6Wfn3J+ZL8bVNMy+CMVdzfjcyDy1qE4ku7qo7ColFIKSFr2AfmBqytuTyOWQktZQq0Cwl9dj1dgdMzNZz/qiJefVNPeudj4P62ZyEkOYNeen6TRiMWWKv2mhuKuShQUoDcyZlrkBQ0NogUQP9DtgPq8VIntsIZxI6IJSv2qDSKITGYq7tRgcNFtFAEAuh7lZD53BAMSv2dL6er39/GYiul1dpZ9dCMDtYhF7P0s2oK+DMpE7L8VdclkV6kG2m6yY0VEo4m4Ko8D09NovcIOSJvQt6ApSoFeNj43MU3FV3AU7WMNcN9u3I4CCuXCW1nrdeb2Q7QYUd1XCmrsqCQRKU/x8cMxcs8cd0zLLEwxisN3y1JJFzF3Lr328CyTm1OWzPnZBqJmhbe1Ai5mWNVvoL1VfDpLPAyuWrFoBiZ5hKoKasYu7XNbbtMwSccepQ6UMDwOiwxR3sxhC7rLH4i6ZLHFapI9YDYyNqXOZjHdlJskFdbEz2ElxVzfhMBAOm6mZUut11wypmbxDVwnFXQ0MD6urXbms55E7U9yxDUJFCIHIgBrZmZvOe+YMBgDxeTXtJDxAG/1asbdDcLvX3eIiFFfhXiyiZYDqvGbshirZHGJz3l2MyRX1s4IhTh0qpb0dGAybcwYJgWunPcrlW4WtLJxhbMzMQgKAbMaztEy7y2owyEwWR2hSx0zeoauE4q4Ghoe1BsarZHNuBg3KsmYDc4q7NQkOdSuOmflU3tOIayKuPrzCg6wRqRV7I3O3e90lElDqW/uQYJS8Hrq7MdBhccuTRcSmvSsMSSXVa7Grh9diNYxG1YWqqfPeNjKXK/bIXQvFXS2UbWTuzUcnE6x7dQWKO5LJQLO9zWkrKK0oaBc6xd36RKONG7njhHNtIhG17i7vbZ1PPKHenlizVTvRKDxtZF6uAT362YC+ZoTAwJAauY5Ne+cem0ypE0macVTH6DZ17K5e8Tbqko0nIWGOYXugiFYmQlTP6KitxCSDxYQ3Y5lcUhcIWDPpEPZG5qnmaIdAcVcFhhW8PmkJI67dLinu1qcB2iEYBbJZm7gbGvL2RDYTJY6ZOcy63/vaILGizj7Co1xqrpXBQSimDnMYhLzmduROTcvkQkp9DIyojqeJWMEz1+EScdfH7snVMDapjt3UNW+nXqm4GinsaqPTYk309KCn0/K7kxLLM940ukstq2MW7OH03REYuSMLC/oXurjrh76DAmF97I3MfTBUMcwH9KirIVqGh709kc1EJIIhWNRczrvIXaEALKXU6EBohIYctdLVBfR0myvMeQSwcNG98PniIgzzIoBpmU4QiA4o6e0ymzWfSS6TTKtThWCYDbCrYXRvSNm+uuBtB/jkgk3c0Ua/ZnqH1AySxaveFN2VmBqFGHp1hB07KO62OqZAsIk7Ru7Wp6Eid5q4M9INKe7WZnCwJHLnlUWwXRyEsITWQab11UM0ok7oZi+l1ziyfsrW3DEtsz78amSezyNVUCN1TMusjrHrVTOhqaWQ661IrNjNOLo6KO5qJRRVM0iWZlJrHOksJaZGvAadwZ6WmU5hZsbTy9MVKO6qIB4HUCwaHbj7sQC0tgJ9ff6eWKNjj9zlvBd3WsRJGmmZRl+TaNTbE9lMjI6qNXeZrGfijuLAeYaiamrd7FX3DDkSccnIndP41ch8ZQVJBM3t1lYEu1nvUw2ju7uVViRXi8OQC/F1XuEsJU6LtNGvmdCYGoVdjnljjpO0ZX929TI12hG2b0cPltEFXaSn08hkpOdzVKehuKuCsk6ZkQjQwl/juvgcuZNSj7rmcgC05ZgIYpoo7/Q2PWZTMT5uE3dpz8RdPA6lZiuMOMVdnQyNqpOB2Rn3liYTsZzWM0inL5AE7fnqxK9G5isrWIElJbqlFcHg2oeTUvr7gQ5LNl8SQSyf9c61IbVoc1rs3ORhCR8JjauL+Yvz3vR/TdkChKx7dYi+Poj+fkuvOwlkNn+vO6qSKrj9duBdr5vCm/G/cS++hYM4xpTMSvC55m5xUdcJetQuiCS6kGZK5kaUiLuMt5E7e+SH4q4uhibUhYzZefdqNhLX1NXsvl4JCEZ76sLe686rRub2HmlsgF01QgAjoRVl39XjHhVMokzNXTfrtWolNKGm2C4teiOUl5bV+2f3cI8nn7slaEJTFSbtVsHu3cDuQ2cBe+YhXgAAIABJREFUfMHcOXiXX6ezeSiblikBeDPZM1a3szRTqQofxV18Lg8UzbqQsEgAodA6ryAbMbRDnQzMJNxrLZGYU9PA+vq5jlg3fkXuEonStExG7qpmrD+FCzPmAsvUc8vY59FnpxbU+tquEKd+tdI9OQQBabSWSCYlCgW43loitqLerwe283noGJOTiB6x1t2lMTOzucut+MStFvvslpG7jenuRm9QtQ9ejHnXgNfscUdxVxXRKAZaLaI8n0c8VrBmS7pGYkotMOjryjH9uU6GdvUq27PJbrjlpZ+Iqe/b289IQd34VXM3O6uKu/Y2irsaGB1W69yunvOukXmJoQpT+mqmZXwM3bBEYTNZLHtgmBlLq27RA7uYyeIYTRi542ypWijuaiI4HEILzIdbeilnLV90FbtTpiHuaKayPi0tCIyPaPVuOjKd8SQVLDGtFhiEQ3R3q5eh0QAQMFfsZzEIt9TBYkKdyPYN0Tq/bvyK3NnFXRvFXS2MbVMzVaaueGdqshRX7589/bwea2ZsDCFY2shkM1hyr6sMACATTyFZMCN3raKIvonedV5BqmIrijshxIQQ4gdCiBNCiONCiHfp+78ihDiq/zsvhDiq758UQqQs3/t/Le/1PCHE00KI00KI/yXEJizCoLirCTFiN1Xxru7OECNMy6ye8XG1110m48mEMjFrS+vrpQFAvQwNQWlkPoshVxqZ53JActkcrxYU0TNI46K6Kam5y2E+5sF1MTen1ty1tbPmrgZGd6jXwNSMd2vrCwn1s8LD7qVkNz2jo6q4y2SxlHBXqMeeU1dUIx3LEC2bb/rcsKzRDmEzU8ndJQ/gvVLKAwDuAHCfEOJ6KeUvSSlvllLeDODrAP7B8pozq9+TUv6mZf9nALwdwB793yuc+TE8hOKuNqJR9YaYy7q+2rUKe9zVwfi4OqH0yDEzPqeGdVmzVT/BINDdaa7g5xFA4pzzYdjFRShtLHqxCBFhG4S66ejAQMiaEy0xP5Nzvx8TI3eOMLpbTau7Ou+dQo4vq2nR/aNcbKmZYBChDuvio8TSRXfNcWLn1JXwgaB7PUq3JE3YyHzDGZOUckpK+YT+9RKAEwC2rX5fj769DsCX13sfIcQogF4p5SNSSgngfwP4+TrO3R9mZ9VtirvK8LEdgmmoYutxR3G3MT6ZqiTmbWl9A6zZcoKhkFrnM3vG+YuwrNMpe9w5QudwH4Iw61HzqZzri2RyhjV3TjB6vVojdW0p6FbJawkLNjOO8DYOYD2EQmrUzHVxd1F1Wo30ZNc4ktTE9u2IIAaht8pCOo2FBbkaD9iUVLUcLoSYBHAYwKOW3XcCuCalfM6yb4cQ4ogQ4iEhxJ36vm0ALluOuQyLSLR9ztuFEI8JIR6btYspv2HkrjaiUW2St0o2p00CPcDulsnIXRX4JO7itr+N8BANAJxgqF91w5m9mFzjyNrRGtCzjYUr2E1VPKi7y87EUbRMFQKdAbTxcqyazu3DWm9cnWI251nqVzytRur6J+i0WA8hm0HU0mV3JzPzV9Qa9EiYNeiO0tuLwECfWYKi97rbzKmZFYs7IUQPtPTLd0sprcu9b4AatZsCcJ2U8jCA9wD4khCiF+V978smlEgpPyulvFVKeevQ0FClp+gNFHe1MTxsK0L2Li2Tbpl14IO4kxJILLJGxA2GBtVb7uxl55cmNXFnpmUycucgdlMVDxwzUzPqjbqrh1H0mhgawhimzO18HtMXPQgNpNNYKFrNNwTC27rXPJxsTG9ENaRZuuruZGZuSi1TiERc/bitSUndXbr5xZ0Qog2asPtbKeU/WPYHALwGwFdW90kpM1LKmP714wDOANgLLVI3bnnbcQBX6/0BPMc+s2008dmolOl154Uxh5Sr4k4akTumZVaBD+IulQJyGTMtsx1ZdAxypdkJoqPqxHzmmvNGAFpapk3cMXLnDHZTlWzOdffa5KyaEhakjX5ttLZipEf1zL/6THyNg52jMLeARVjEXVsAfWGacdRDz5BaL7l0zfkMCCuxWfU+PRDlAovjlDhmpjZ13V0lbpkCwOcBnJBSfsL27ZcCOCmlvGw5fkgI0ap/vROaccpZKeUUgCUhxB36e74ZwD859HN4g5SM3NXK8DDGrVm52SzOnHH/Y5eW9AyxfB6QEl1IIYgU0N2t/SPrMzFRIu7cFuX2yE8YcYgBigMnGBpXI6Czc84b1ZRNy2Tkzhl8iNwt2hrSd9NGv2bG+tX0uqnTK2sc6RyJi2rKYG972vWG281OaLRH2V6ac9fgxL6AExnhNeg4ZSJ3TS3uALwAwJsAvMTS3uAe/XuvR6mRyl0AnhJCPAngawB+U0q5+qf5DgCfA3AaWkTv/np/AE9JJoG05SLu6KBAqJRoFHvxrLmdzeHZZ9c+3CnW7HHHqF1ljIwg0mJZXc7lMHvN3Xx/1my5x9B21UhhNu58FIaGKi7idc1dLofYkvo3MjjGFOlaKW1k7r7rYfyyGi0Md3rXPL1Z6d2mZpIszbvbtDcWV9X44AR7kThOmV53mzktM7DRAVLKh1G+Xg5SyreW2fd1aCmc5Y5/DMDB6k6xgSgXtduErfp8YXgYO3AOLShqxfm5LKamtMhayMWMO7PHnXbzpbirktZW9I0GEbiSR16/XSQXskilulzrdRWPo1Qc9O9y58O2GEO7+wCLsdHMkvODWLbmjuLcGaJRNZKey7q7uhyLYQ6W7JRAGyJDbEtSK2PbBPCYue1FI/P4VTVlMNzjrhDZCvRM9AMWc5ylhLv9SGLL7QDMCPrAdT1rH0xqQxd3rShgCLMYDixgYmK/32dVM7xLVwNTMmsnHEZHoIhJnNe2CwWgWMDp0+5+LHvc1Y+YsPe6czc1k5E794juVyNoU8leJJednWAmFoql4xcOO/oZW5ZotCS9/fx5Fz9vdhYxWNwb2tv42KuD0Uk16jl1zf38yIVpNVLXH6LTYr307lAdTdw0h8vlgMWUmYYpINE/2efeB25VJifxfPwE/4KX4ct4I/5n++/hDW/w+6Rqh+KuGijuaqelBYhGsQeWjhnZLJ57bu2XOIG9DQLNVGqgxFTF3Ubm8ThKau4o7pwhOBbG9jbTsU8WJZ55yNl2MwlbjVZfdwEIbJgkQiphaAjbccHczuVw5Qrc68c0N6eKu7Y2OvXVweCOEAIwFz4SSwJJd704EJ9R/zjCfW53vW9+QjtVI73FVBvcalo4Pw/FoKofC2iJcu7pOJOTaEURLasm/hcvujamXkBxVw0Ud/UxPOx53Z29DQIjdzXgsWMmI3cuIgQODqti7umHnLVbTMypvfT6+vmYcYxoFF1Im7Uh2SykBC5fXv9lNWOP3LUxclcPLdtGMYJpc0dGK09wk4U5dYLaP8BSknrpGexUFqyW0Q1MT6/zitqJzUlj/gLopSW8CJ0nFFJ7TORycP3idBE+dauB4q4+7JG7nJeRO9bc1YzH4i4eKygrZmEkgN7edV5BquHgbtXE4dgRZ2twEvPqZLI3Qut8x4hEACHM9PZ8HpBFnDvn0ufNzqo1d23tjNzVw8gIRq297rJZXHW5IVR8QY3UhSO0yqyXri6gtdNMlcygA9lnz7vyWbHLKc2pXWegdREIBtd5BamZyUl129Wcd3ehuKuG7m7g+uuBaFRLM6S4q47hYezCGYjVsHc2i0uXtL5mbmFPy6S4qwGvI3czqvjo6ylo1xtxhIOHVbH1zOl2x7JPMhkgkzTfrBUFBCN0dnOMQACIRLADFjWXy7k3BylTc0dxVwejoxiztvfNZtyP3MXVSF1/lIst9SIEELKtN159wp3I3fwFtaAv0pOhkZ9bUNxtUX7t14Djx4Fr17SQ7R/8gd9ntLkYHkYQKdMQIJOBlHC1392a4i4ade9Dmw27uEu7bKgyq0aSWCPiLNtuGdbqGHXSyzmcPevMey8uosQpU0TYBsFRhobMyB0AZN0Td/mZecRhmuGI9jZmSNdDucjdFXfvb/ElNVIXHul09fO2Cru3qYuQD//QHcEVu6j2Qoz05dc4ktQNxR1BSwvQzkaSVbFjBwCYdXd6yM6tujul53yOkbuaGS91y5x11oNDIRFjzZabiL17cBDHzB3JFJ5+2pn3LtvjjmrAWaJRVdzl3HPMnL+iplWE+yS9ceqhuxtjXZa+oVJi+ry7ve4WVtR5Sv82pvQ5wYuer4quh552ZxErNqW6nUb63W+fsWWhuCOkBvbuBQCz7i6pTRzcqrtbXl715ZBANotOpBGEPlmhuKuc0VEM2XprxWbdc5GKz6sPr74IZ5OOsscm7lIpHHvamQlD2R53bGDuLNEorsNFczvrnmPm3LS60DLIHnd1MxK1NzJ3t6l4PK22XwiPs0eaE7zwpV1miQmA0zO9rtRPxq6pz1r2mXSRVXHX3q7NVzdxDjr/Soh32MVdKglAuha5M6J2hQJQLJqphR0dNOiohvZ2RIZVgTV3JWut8XaMfB5YXjLfWECid6hjnVeQqunvx8E+i72iLOLYT5wpfC0buaO4cxbdMdNwXcxp1+LFi+u/rBZis6oQiYxwoaVexsbVadfUlYIr91JAq4FNZc20zFYU0LONPdKcIHzoOtyEJ80d6RT+7d+c/5zYnPrHYX8WEwf5mZ8BrlzRsspOnQI++lG/z6hmKO6Id2zbBnR2muIunzfMANxYdV63xx0Lkquia2IQQZgNmfLJjFZf5TD2mq0QltAywAbYTrN3n0AbzN/z7OUMZmbqf1975K4Xi0zLdBq9XthIzdSdgN3IIJpbUOu1BrexXqteureFEYJpkpFP5VwzqLK3lQkjDjHA69ERrrsOd4mHze1sFg99z1nnYQCILajT9MgYFztdo7sbGBtrCgO3zf8TkM1DSwuwZw9CWDZXnVMpFItwzNDBipEioU9+2OOuDiYmPHHMLDcZYeTHedr27cR+nDR3JFM4dmzt4yulbI9Cjp+zDGkNlA1xp9cTOy7upERsUXVWjFzX7fCHbEFGRlTHTBd73S1MZ4CiGX0NiwTQw7RMR2hrw53jag+Sk09mHVkkW6VQKDXEGZjgNUg2huKOeMuePdp/Rt2dFg1yo+7OeE89cmfYh1PcVY9H7RDicdCQwwvK1d05IO608WPkzlVGRwFY7mdpzZDDcXEXj2OuaBm71lYMjtJGv25GR0scM69cceej4pdUG/3+zhSzVhxkcO8AbsBxc0fK2dTMeByQtvtpYHjz1oER76C4I96i19154ZhpF3eGoKS4qx6PxJ09rS+MOMWBG5SIu6Qj4u7CBSiRuxFMM3LnNLt3A7BE7vR7qOPibm5O7XHXxh53jjAyYjPEybrWhH7hsuroGA46nza4pdm5Ey/CQ+Z2OoWHHlr78GqJxaAslkUQY39lUhEUd8RbPIrc5fOW/nl62pIhKCnuqqeMuHOj113ZtD6KO+exi7tkCqdPG5djTUipp1dbIq87cI7izml27gQAbMcFza0vnQaKRVy9qhloOMbsLOZgmUi2tXFe6QSjo2oT+mzGNXEXn1bbLPSH2CPNUXbuxF2whOpSaRw/DseejRR3pFYo7oi3rBG5O3NGmdPXzYULlvfLZhFBDP2rjZsp7qrH3usu7U6vO/ZJ84g9e9CLJTOCkE5BFos4caL2t5yfVw1xOpDRaos4fs4SDALj4+hA1qxdTqecd8ycnbVF7toZuXOCkRGbuMu6UnMOAAvXVKeycC97pDnKzp0Yxgz24ZS2ndKuw3//d2fenuKO1ArFHfEWPXLXj7h2o0qmAEjk83pKl0MoaZ7ZrHnzBSjuamF8HEOwqDmXInfxOBi584LeXiAaNetFpATSmbpSM8+dA1AsGAYOkziPlraA5kBGnEVPzTREggupmZmrMSwhZGy3tAcQpnFt/YyOYhyXEYB+n8tmMT+vL2w5THxOXTHlrdRhdu0CADM1M61dh07V3cVmi6XijisspAIo7oi3RKNGj7m9eFabDGa01UUn6+6UNM9szkwDBSjuamFsTI3cZTOYm3F+FVgTd6y584Q9e3Ajnja36zRVsadk7sRZbexo4OA8+iLZdugrYknnxd38JbVea6A31wwO4f4zOIjWVmGOXT4PFAuupGYuxNR7dDjSusaRpCb0FGkjNTOVBiBx9Kj+LKuT2BU1rTbSmdT69BKyAbxVE28RorTuLuV83Z09cmekgQIUd7XQ2YlB24LhnO3B4wSsufOQMqYqzzyjOKdXxdmzUMaO9XYu4oGpytxl9foe7GdKnyO0tADDw9rixyoupWbaBUb/EBtgO0p/PxAOYxuuYhfOALIIZLKQEnj44Y1fvhGxKylle6DfpW73pOmguCPeY6+7SzrrmFksAqdPW3bksozcOcDARLdm4KATn8k5WicJAPH5otbcRyeMhBHpJQ6zZw/GcVkT0ACQTCGZrL3n5LlzUKKuO3GW4s4t9AUyN9MyY9Oqs2JkkBFYxxgZKRF3rkTuFtUpXniYUR/H0VMzjeidnprphLibt1+DzMgkFUJxR7xnjcjd6dO1Rw2sXLpkcY0rFhAuxEynx0CAkaAaCUyMammSOjKTwfy8s5+RmFMfZn19AHPBXGLPHgjArLvTr8NaUjOLRV1Y2J0yea25gx65uw4XtQUXfeymppxzzJybVaMEgyOM+jhGiWOm8+JOSiC+rPYlDI8Fnf0QYqRmvhC6mtMXWk6c0MagHmIzBWU7EmVaLakMzpqI9+iRuyHMak2O9ZthJqMJs3pR6+20qJ2x5hyNsgaoVuymKumM2W7CAaQEEvNqKDA8wFuUa+iLLEbdnWVSUi1Xr+rtJPXIXR8S6McCI3duoUcLOpDVGmKn04AsOuqYGVtQ75ORMUZ9HGNsTBV36TTOnatfDFhJJoF8zlwt7UAGnVFmQTiOLu4mcR4dyOh1d5pzcD29YKUE5hfUfZHR9trfkGwpOHMi3qNPKgX06J2luZYTq5est3OJ8XFcj2fM7UwGTzzh3NunUkA+ba5UdiCDjgE6LbqGHv0xbbw1gVCLYDdSOfXI3U6c1RZUGLlzh2AQ2LYNgLXuTptUOhUBmkuoUZ/B7bwWHWPXLgxhFt3QTWtSWkr0zIxzH7GwACWS3o8FXo9uoIu7Fkit7i5t1skp5SFVkkgAhYw5ft1YQccw7WpJZVDcEe/RxR2g1+WkUsaSZT03w1Xs4o71dg4xPo5bYFFzDos7u1MmzVRcpqcHGBnRJiQAoDfEVnpEVogh7vTxM6ISjNy5h8vtEGLLncp2ZAejPo6hp0QbY6fXnTtpqmJvK0PnYZfQo+gAsBunjesQqG8+wx53pB4o7oj39PcbNynNYUoCGW3Vud6Hm5SlbRAYuXOI8XHcjKOmqUomg7NnnbF8BuiU6Qt6M3OjJjWZQj5ffWqfcd1mtcmIYRbB8XMPfZHMjNxpGRCOiLtkEnP5PnNbCEbunEQfO+M60cfOybq7hQUoi2WM3LmEHrkDVsWd6TJLcUf8guKO+INed2dEDfSVy3pruK5eVbI80Y1ljGDa3EFxVzsTEwhh2RTLunODU9G7+XkoaURcafYAfZJpXIf6JLPaRRZjUprU0syMSevkZJ0nSNZEj9wZ/dKcjNzNzSEGizVfWxvdMp1Ej/YYkTu9ZpKRu03IxIRm1Aa9zCSXBQra791JcTeAeYo7UjEUd8QfdHG3HRfQgqIxqZyZAZaWan9be6+8vV2XoUxJKO5qR6/xMVIzsxlASsfE3XPPQVlpHsE0JyNuUyLuql9kyWSAK1cAQALLmrgzokmHDjlznqQUfewMx0x9gWxK91eph9SlOSRhOisG2lvYkcRJ9JpJpR1CKu1s5G4mq9hP97csaqnYxFkCAWD7dgCaWBd6ejugLTavrNT2ttpiJyN3pDYo7og/6BOTNuRxHS4aExOgvtQUe6+8PS22WSrFXe0Eg8DAgCnupARyWcfE3YkTUFaaD+AExZ3b2NPDaoigX7igl8ymM0Ahj1FMoQtpIBQyJj3EBfTIXQeyGMNVpdanXsfM2LlFZTsSTNNk2Gn27FEdM1NJXLxYfb3rWsSvqg2wwz05OkW7hZ6a2YGsNp+xXIu1ZiMxLZPUA8Ud8Qc9cgfoUYOUmUtZT2pmSeQu/4y6g+KuPsbHcSOeRgD6DCSVwtSUFi2oByl1cWdJy7wez1DcuY0u7nZDzx/Sr8NqrkEjlUxfojYmrDfeyMmkm1iMHCZxXnPpk1qkpt709tiFZWV7sDdb3xuSUnbvRgjL2qQdMOpdL1925u0XrqkND/tDhTWOJHXjQt3d3Bwo7kjNUNwRf7A4Zu7CGSVyV2vdgZRlIncrR9UdFHf1cf316EAWB6F3ul7WJoH1Ru+uXNHTcfW0zCCS2gooxZ276NGfcVxGG3JG7c/8fOVGOcb1qv8tGFHAG290+GSJQnc3MDYGAKYjsD6pPHWqvreeu6zmdUb6i2scSWpGfwba3U6dSs2Mz9p6htJF3z3s4s6BdgjzcwUljBvBPJ+HpGIo7og/6JNKQJ8MWlada70Zzs5qjUNX6ewExmNPqgdR3NXHTTcBsNTdOSTujMbZ+sNsP06yT5oX6LU/rShaXBerS800JqMrNnHHejv30e+j+3FS29bH7uTJ+t42Np1TthkwcIE1HDOdMlVZmFMjdf0RTvdcw4V2CLEp9RqM9OUN4xZCNoJXO/GH7m7DoMNMCTOb8BZrWCi2R+127yigJbFg7mhpASIRkDq4+WYA5cWd3qqwJgxxp6dlHoC+g+LOfdYwVal0kmlG7mxOmYzcuY8+dmYjejOtNpdb60UbMzer3oAjI21rHElqpkTcORy5s0Xew4MUBq6xTlrmuXPV11FKCcSuqS+KRFvrOkWytaC4I/6h190NYB69WDQmJpmM5jJVLSX1diOqKQCGhoBW3iDrQhd3+3ESQSS1OitZRDxe36TEHrm7HnqtJMWd+9jFnZ4iXcmKcyKhu7oVNcfbAPLYhivaNynu3EeP3IWRQBQzhkDI5+uLAMViaq3k4Fh77W9GyqMLAqUdQtGZdgjFIrBoc53ui3bU/8akPBZxF0YCkfQVQO8HW0vf0OVlIJcyxV0HMugaotMpqRyKO+If+qRSwJm6O3vkbm//rLqDKZn1MzICRKNoRRE34UltFqGPW62pmdmsRUjoNXeM3HmIXdzpxiiVXIPGMckkICWuw0UEUNB6P7HIx30stcv7cEq5h9ZTdzeXUCN1AxNsYO44wSAwPo7tuKDZ5wNAOuVIK4vFRUBazKlCWEIg0rfOK0hd9PUBAwPG5m75rNEHFqg+NVNrg2CaGEUQgxhibjSpHIo74h8Wx8ydOFu3Y6Y9crcnaLMdo7hzBntq5kp9dXenT+sBO1kECgUM4xr6EdecFvs4IXEdfTyN9LD5eQAS589vnE7EejufsdQu78dJpdannrq72LIa5RncEar9zcja7NmDDmTNaLdDjegXFqA4D7OBuQeU1N3V7phJp0xSLxR3xD/WccysVtzF43pfGJ22NuC65RPqQaOjtZwlsWM3VVnSJvZPPgkUanDbtqdkGlG7vj6tTpK4y513AsEg+rCoTSKyGWB5Gfk8cOnS+i81xB3r7fzBIu724ZThdgrUHrmTEphLq5G6yC5GYV3B7piZrK7edS3icRhZEADQjwWKO7dx0DFzZgYUd6QuOHMi/rFOr7tqH2724ycngcDJY+rO/furPEFSFj3SswPntBVh3VQlmawtWvDMaitC1tv5Q2cn8LM/C8CSmqmvlGy0yGL2uGPkzhe6u41Fq714FoA0cvrOn1cywyomuZhHJmdODdqRRc91A+u8gtSMLs7tjpn1mqosLEAJuzNy5wEWcbcHz5U4ZlZjOPbww1DE3QimKe5IVVDcEf/YudOIzGzHBYhMGihqoZ+pKU0sVIpd3O3YAYtq0LnhhjpOlhjo4k5Aj94tmw2Pa0nNpFNmA/DKVwKoTtxJWRq5UxqYE2/QBUIIy1p6nz6pLBZLU9UrYe65BWU70r4E0UanRVdYo9edI5E7S1omI3ceYEnLHMNVdGVNQ7elJa1VUyXMzwM/+hEUcfciPERxR6qC4o74R3u7FmID0IGs1rQ6WVv0zr7SuXOHBI4fV3dS3DnD3r1Ah1aTcxhHtMLvrBYiqFbcxeOakAcA5PNoRcFsyMzJiHfccw8Ai7hbXARy2XWvwelpfS6aywHZDLqxgiHMajnR+/a5f85Ew5Levh8n6zZViZ1TXYYHg6k1jiR1Y2+HkHSmHQIjdz5gidwJALvyahpLpamZ3/2u3goqq4m7SZzXUq4p7kgVUNwRf7n+euPLnThrOPUB1dXd2SehO8PzahFeV5chJEmdBAJGZOZ5eFzbp0duTpyorkfhCWtZZDqNXTiDDuguYUNDDpwsqYht24DDh01xBwCx+XWvQWOyYknJFABw4IAm8Ig32Ovu6jRVmTu/rGxHQtk1jiR1owuCMVxFG3KAnr2ysKA+vqqlbM3dAFNrXcW2eLx77lGgYArsSqLoUgL3369v6JG7u3G/dl+luCNVQHFH/OXgQePLXTijiLtKI3dSlrqL7UzZonb797PHnZPopiojmNbr7rSmSplMdT19FHGXXDFTMgHWSHrNvfdiHJcRgD4hic0hFitthrzKU0/pX+jC3mikzXo7b7G3Q7DULtcUubusRuoG+2twSSKV0dUFTEygFUUzY0GvmbQnnlQDI3c+EI0qPgK75bNKs8FKIncnTwIXLugbuRxaUMTP4rvaNsUdqQKKO+Iv64i7SiN309NqX6BQCBi49KR6EFMyncVSd7cPp5S6u2omlIq4W14xzVQAjpnX3HsvAihgEue17fl5QK7dVNkQd/o1ewj6DtbbeYslcrcHz0FYxN2lS8ottSLmpnLKdmRQrHEkcQRdnN8AXc3pqZnHjq31go2Jz+WVFIr+1iXNfIe4ywtfaHy5B88BCXNlrBJxZ0TtACCXw0/hEa0tEEBxR6qC4o74i0Xc2dMyz56tzGGqnJnOqaahAAAgAElEQVSKeIb1dq6iizugVNzZm8mvhZQbRO44Zt5y661ANGqmZhYKQCJRdpElmbSkGeljfyOe1rYZufMWi7jrQhrb088a7RCAyq/HVWKzal71YJTTBFfRxd1B6GpOF+d1Re5mVIHe1wetbyhxlzvvNL6cxHm0JExzoulp5TFZQiYDfO97+kaxABQLuBu62mttZc9XUhW8axN/2bfPcMwcwix60nNGnnoqpd0QN6Kk3m4n6JTpNpYJ/F48q832dafTSiN3SlQhn0NPdh7j0BvPt7crk1biAS0twD33qHV3c7Gy4u6ZZ1YXXiSwsoIJXEIYCe2bjNx5S08PMDJibO6TJ5RUhmpTM+diqgiIjHWscSRxBP0+Z0Tu9JrJZ58FsjWWO8ZjeWWbGZkeYYnctSOH7YvHlIWW9bKR/v3fLX5yuRzCiON2PKptDw5SnJOqoLgj/tLZaaxcCqxG78y0okpSGUrEHZ0y3ae31zADMGqtdKV2+nRlzcyVqN3KCvbjJIzH1759NOXwg1e+0maqEiublmmkZKY0AwgjJXNgABgbc/00iQ3LQojdMbMaUxUpgcvzXcq+weuCdZ8eWQf9+RfBPEYxZYxdPl991BXQBGFyyRQULSgiFGl35FTJBuzapSy07C6crDirxZ6S+TL8CwLQH6Q0FyNVQnFH/MeSmrkbpw33PaAyUxW7bfSO3phWL7RKMEinTDfQTVUiiGlubEvauGUylqLwdbCLO9bbNQAvexl2tloccVJJnDuetHozALDW22ljrtTbcYXZew4cML7ch1PAYsLYriZyd/YskFgxF1WCSGJsD2u1XMViiHMDjitup7XU3c3PQ3HKDCMOMcDQnScIoUTv9uJZIG5ei08+We5FwLVrwJEjlh25nJmSCbDejlQNxR3xn3Xq7jYyVcnltPQ+KzuWn1Z3HDhgpH4SB7GbqqxUV3enZM6usN6uIejtRfhFNyEC04c9PxNTrrFczjJ2ulMm6+185q67jC934Qxa4+b4TU+v7Xhq5/HHoTRPvhlH0TrMiaWr7NxpLIgcxDGjHQJQm7g7cwZKA/MRTDMv00ssdXc346hiqnL0aPlWQQ88oPoL7B+KYRKWFVKKO1IlnPES/1nHMXMjkXDxonqzjEaB7rM2cWfppUccxGKqshfPGpE7YONoQTpti8rqaZkGFHf+ce+9ZlNlAIjF8Mgj5uapU5b5/8oyBjGnTSAB1tv5xc/8jPFlO3LYufik0mOr0vS+x35cVFopPA+PA6Ojjp0mKUNnJzAxAcBad2e2Q6jEVMzKyZNQInf7cZLizksskbtdOIPQ4hUA2iCurJT2u5MS+M531H13Dz2u7mBaJqkSijviPxZxtwPnEFgx0xiuXQNmZ9d+aUlK5g7QTMUr9LRMwBq50x5iG00mjx9X6/K2pc6YhhwAx8xP7r3XLOQHgHgc3/payphkGimZALC8gkN4yqyVZOTOH7ZtU/vdyRNAYtHYrqTuLpcDnvrRirJaduvAOYo7L9DHbgfOoQspQ2DH48DVq9W9lSbuTGG/D6co7rzk0CGtHxO0rJbD2UeVGlgl/RLaYtnUlLnd3g685MrfqAfdeqtLJ0uaFYo74j+7d2t3NAAdyGJf9mkgZ9qEPf30Wi9cwymTZirecN11QDgMQJ9AFArGivPp0yip07KiCIRcFjdlLGKio0MrTCf+sGcPfnbnWbOZuZSYeuApPPGdGQCWsSsWgFTSrLcDeK35iSV6tx8ngbhpw15J3d3x40AmZkbfBzGHieePsIbSC3Rx14qiVntsqburpiWClPpY5yjufCMQAH7qp4zNW/CEkpr5xBPq4f/2b+r2Hbfm0fOTH6g7X/Qip8+SNDkUd8R/AgHFEOBGPK04ZlYl7uiU6R1CWExV5rU6reUlAJpj23qmKkePWjZWVnATLJXmBw5ofX2Ib/T+6mvxIjxk7kgm8a03fgnF02e1OqDkijGIRr3drl2aLT/xB4u424dTwII5oTx5cuP0vscfh5Ja/Tw8DvF8Rgw8weJ2egOOK5Ge9Z5/dqangaUlGGmZQSRxHS5S3HmNpe7uMI4ACTMr5amnzIVPKbUWCFbuGjqhiHts22Y4UxNSKRuKOyHEhBDiB0KIE0KI40KId+n7PySEuCKEOKr/u8fymg8KIU4LIU4JIV5u2f8Kfd9pIcTvu/MjkU2JJTXzEJ5SzDmUKI8Ne1rmztAssGCuWCMYBLZvd+osiR173d3yxvWS2WypU6Yi7ijG/ed978Or7phTdj0cvwFHfuq3sPL0GeAnPwEWFxHCEnZAvwif9zwfTpQYvPjFxpeTOI/2pZhRdzc/b7vmyvDYY9CVgcbz8DjH1CssKbUHcUype6wmcmek3+rqYS+e1VKmBwbqP0dSOZa6uwlcQmTpvLGdyZjX4oULwOXL5ssCAeCOBWtPBGjXNaPnpEoqidzlAbxXSnkAwB0A7hNCrDpUfFJKebP+79sAoH/v9QBuAPAKAH8hhGgVQrQC+DSAuwFcD+ANlvchWx2LuDuIY4qpyrlzSqsYg5UVYGbG3G5pASbiZcxU6JTpHhZxtw+njMgdsHYq2MmTiiEfosVpDMMykBR3/tPZiUM/+DOMj5uTijwC+LO5N2ouRnoY6CCOaZPHcBj4wAf8OVeiMTJiZEAEUMBteFSxYb///rVeqGm6UyeLyvX7PDzOWh+vsIi7AzgBYRF358+Xf/6VwxB3elqmYVLFyJ233Hab0adVADi88rCm6nRW6+7sUbtbbgG6/+O76k6mZJIa2HDWK6WcklI+oX+9BOAEgG3rvOTnAPydlDIjpTwH4DSA2/R/p6WUZ6WUWQB/px9LiCLuQljGjrzZvVyWybQESqN2ExNA2ymbdzSdMt3FYqqyF89qJg5SM2RYS9zZI7E35W1FCBR3DYHo7MC9H3khMDxs7LuECeWYQ3gKePWrNc/2W27x+hSJHUtq5t24X6m7+/73lfmlwtGjgFxJGmYqO3AOA9E2LSWMuI+lHUIPVjCZOWW0Q5By46jrKvbI3T7oN2GKO28JBpWot1Z3Zy60rNbd2cXdnXfkgP/4D3WnJSJPSKVUFdIQQkwCOAwYVmrvFEI8JYT4ayHE6t1jGwBr57HL+r619pf7nLcLIR4TQjw2u55VImkebBP6Gxd/iFXnRaB83UFZMxU6ZXrLwYOGqcpePKvVesS0HltnzpQ3VVEbuUrcFPt+6XuShuDlrwwgcPAAMDZW+s22Ntz48bcC3/gGRUCjYBF3t+HHCC+aj9xksnQyuYpWb1cmasd0MG/o6FDqqm7AcaX+sZJ+d8WiJRVer7mjuPORderujh/XUjKtbRGEAF4YfEK7UFcZHVXqMQmplIrFnRCiB8DXAbxbSrkI4DMAdgG4GcAUgP9n9dAyL5fr7C/dKeVnpZS3SilvHWJ/j63B9u1Ad7exeSj9KJAxHTPL1d2VbYNAMxVvaWsDfumXAGimKoOY06r6oaVenj+vHp7P2yYq2SxuWn7Y3A4GgclJV0+ZVE44DLzwTgHs3QtsnwSE/sgYHkbHnbdh37teQQHQSFhW+QMo4GWJv1d6nn372+VfZhd3t+Ix1tt5zW23GV/eiKeBRbOVRSXi7tIlrX8oACCfRy8Wzf6TFHfeY6m7G8E1jK6Y2Uj5PPCZz6iH33gjEH7CttDJejtSIxWJOyFEGzRh97dSyn8AACnlNSllQUpZBPBX0NIuAS0iZ83dGQdwdZ39hGh1cRYhpjlmmnV3J05oRhxW6JTZILz1rcaXe/GsFrnTi+rsqZmnT1smIAD6WxLYhivmjgMHWCPZYLzqVQAgtNWTn/4p4IV3Ageux4FD7QgE/D47ojA4qDSSvxvf1pql6Rw5Yqy9GFy7pps66OKuFQUt3Zbizlss4k6L3Jni7sQJtS9oOYyUzGIBKBaxHye1FfVAQFk4JR7xghcom4cTP1BSWR59VD38zjsBPPigupP1dqRGKnHLFAA+D+CElPITlv3Wzqb/CcDq2tI3AbxeCNEhhNgBYA+AHwP4CYA9QogdQoh2aKYr33TmxyBNgSUdL4pZRIWZkpvPq0JByjJOmd3XlIkMuru1XmzEXW6/XYvsQE8DkhKYuQag1DFTaYEA4Kaes2pIn2K84Th82JKV2daOVUXHfuUNiiU1cxIXsF+oF+EDD6iHP/44tDpZ3bXjBhxHF9I0U/Eai7gbw1WEl81Fr1Sq9Hlnx15vp5ipMPrjPZGIUvN/i3wcWEysefgLb88BP/yhupPijtRIJUvkLwDwJgAvsbU9+JgQ4mkhxFMAfgbA7wKAlPI4gK8CeAbAdwDcp0f48gDeCeABaKYsX9WPJUTDVmt1Y4v652FNzYzFlCwidHYCI7N0yvQFIYC3vAWApcZDDw/YI3clZioFmqk0OkIAr3xl6X5LgIg0EhZxBwB3L35F2f7Od9Sed48/Dq3ORzdTeR4e10x0ytVZEvc4fNjo7ykA3JD8MZAz01U2aolgiLuUlhph3IujUYdPlFSMpe7uZhwFrlwpe9iePcDIlceVbCUMDwP79rl9hqRJqcQt82EppZBSHrK2PZBSvklKeaO+/9VSyinLaz4spdwlpdwnpbzfsv/bUsq9+vc+7NYPRTYpNnF3aEldxbKaqthXMScnAXGCZiq+8aY3AUJoaZmAprxXVhRTlWKxVNwdiv1A3cExa0he8Qq1r3wgwKFqWF70IiVS85ILf412mCJhetqMoEupO/fRTMV/urqUcPhBHFPGZb1m5vm8ZmAFwGhnYYg7htj949WvNr6MYB7bY0+ofXh17rwTwEMPqTtt1zEh1cCwBmkc7OLu8rdh9dw5dsxYXC7vlGlf2mQbBO+YmABe8hL0I44h6Om009PI500hfu6cujAZCknsOG3r6UOnzIZkYEAprcQb36jNRUkD0t+v9J/swQruHFFTM++/XxME3/++nsmui4ggklo6H+vt/MGSmnkQxxRTlSefVCOuVs6ds/QOXV7GIOYQwby2bflbIB5z992KscphHAHOnC4ZyLvuQqm4YwsEUgcUd6RxGBnRZpE629MnEWo1bYFXVjT3xWIR+PGP1ZeWFXcMLXiLPTXz2jVASi3tC/YWCMChHUsQ1hqEnh7WSDYwv/zLwBe/CHz+88Cv/qrfZ0PWxZ6amf+Wsv3gg8BrXwv8yZ/oO3RxdzOOohVF1tv5hUXc7cdJdCzPG9tzc2tm9ZkpmQCwvGzW2wEUd34iBPDxjxubt+AJrbb1mulqND4OXDeWL+1Twno7UgcUd6RxEEKJ3AgAN/arT7OnngL+/M/NJqCr7N5ZpLjzm9e8BujpMVMzsxlgYR6f/awWKbCLu5t6bOHX669nGkoDI4SmvS3tuEijYhN3tzz9RUSjZrQgl7MEhSxmKrdBXzVj5M4fLOIugAJuXHkE1uwV+3NvFUPcySKwvKKKu5tucv48SeXcfjvw+tcDAG7CkxCQwNlzRpP6u+4CxNEjxjUIABga0pyjCakRijvSWNhNVVrVOrovfhH4x39UX7J7N3Bo6gGlSShCIUaBvKa7G/jFX8RL8H20Qvftnp6GlMDHPgY88oh6+KHCEXUHxTghznDnnYqZlDh1Eq8YLdMsFABWNDOVfTiFV+A7WgYFzVT84cABLYNB53DqP5TeMUeOlHuRRdwlU4AsmtkTo6OaMQfxlz/9U6CjA71Y0hY/sxng4iUA67RA4EInqQOKO9JY2MWdzVTF2ukA0NyGP/xhQPzFp9Vv/NzP8eboB295C7bhKt6P/6GtUM7NGY4qObOXMoJBYPc1m+0zxR0hztDXp7ngWLjn2+9ER3tR2dfTA9w9eQIfw+/h07gPHcgyJdNPWluV3/8teEKpuzt6tLTuLpPRyhUAlJqpMCWzMZicBN71LgDAb+Av0YEMcPEi7r3pIvafux/4+79Xj2dKJqkTijvSWNjE3b4jX0F7oFj20O5uLSIUXTkHfPvb6jfvu8+tMyTrceedwOQkXo5/wf+N/4ZAMat3SFY5eBBoPXFM3UlxR4hz/Pf/rixwDT/3MP7kln/ET/80cM89wEc+omVB/F70C3g+HtNq7QCmZPqNJTVzD55DMBUztuPxUqfo06dNozEsL2MMVxGCnuJHcdc4fPCDQCSCwziKf8Br8OXi6/DeP9uuXYw/+Yl6LM1USJ1Q3JHG4uabgY4OYzMwdQkHsk+WHNbWpkXsdu4E8JnPqMuZt9yi5bkT72lpAd78ZgDAnXgYH8UH0Hn+hBbBs3Co9VhpAQmdMglxjptuUi1OAdz6+Xfgwx9YxPvfr90iAwHAcDwyDmLkzlcs4q4VRdyce0z5tj01UzFTWaKZSsMSDgMf+hAAIIgURnCt/HGDg3T6JnVDcUcai1AI+I3fUHbd+MQXgULe2BYC+KM/0uvEUynNvs/KffcxJdNP3vEO7UEG4BYcwSfwHoROPGoWjCfiuO2Tb1TzNCcmgG3bfDhZQpqYP/kTLQd6ldlZLWS3Si5nNr1bhZE7f7GIOwC4eeYBzShFx74mZoo7SafMRuc3fgPYu3f9Y/7gD5R6WUJqgX9BpPH4wz/Uci51Xr78NbReuWhsv+tdel8YAPjKV4B50y4a/f2GMxXxiZERrYZA73p9ACfxvwr3Yf+Jf0RweQZvPvEH2JO2deT9yEcoyAlxmrEx4P3vV/d98pPARf1++swzWtHWKqOj2j/iH+Pj2j1U55bsj5QGoUePAgXdryqZBB59VP9GJgPkc2a9XXc3sGuXRydNKqKtTXs2Tk5q29Go1gfvbW8DPvpRrcfT7/6ur6dImoOA3ydASAnRKPCe9wB//McAgHFcwWeuvRaPvOffcOgFIXMxUkqtL4KV//yf1ZVq4g8vfSnwqU8Bv/VbAIBJXMBnVt4MPFbm2E98QuuKTQhxnve/H/jsZ4GpKW07nQZ+7de0SPn/+T/qsUzJ9B8htOjdN78JANiJs+jNxbCIEABN0D33HLB/P/CtbxktCoHlZYSwZEbuDh0yFthIA3HokFY4mckoJSiEOAkjd6Qxee97lYbme1aO4s1nP6Rmmfz4x2q9iBBaSiBpDN7xDuCd71z/mD/+Y65UEuIm3d3GQpnBd78LfOELWpqmFaZkNgaW1EwB4HCL2sbi6FEto/arX7XsXF7Gf8I/oh16ujtTMhsbCjviIhR3pDHp69Nyz618+tPApUvqtpW772YaSqPxyU8CL3tZ+e/9/u9rKbiEEHd561u1iMF6tLQwpb1RsNXdHZ7/V2X7iSeABx4AYqaRJjqTC3gtvm7uoLgjZMtCcUcal9/6LdVkI5MB3vc+4J//Gfibv9Hq7ayw/UHjEQho47R/v7r/t3+7xKqdEOISra3Axz9e/nu9vcDrXgc88giwb5+350XK8/znK5u3XPwnxVTsqaeAL31JfcmrCt9AL5bMHRR3hGxZhLR3xGwwbr31VvnYY+UKdciW4K/+Cnj72zc+budOrRCBLlONyYULwFveApw4oaVr/tf/yrEixGs+/WlN5HV2apkOr3qVZujQ1ub3mRE7+/cDpzRzFAngF180g5gYKntoAHl8+cERDEIP5bW0aMV4rD8npKkQQjwupdywOJqGKqSx+dVf1SYjzz67/nHveAfFQiOzfTvw4IN+nwUhW5v77mOGw2bhttsMcScAHO46iX9Nlxd3L7/+EgYftORo7ttHYUfIFoazYdLYBALAn/7p+seMj2tWwoQQQkgzYKu7u2X+e2UPEwJ4/ciD6k6mZBKypWHkjjQ+r3kN8Jd/CXz5y1qDn1AI6OnR/h8f19L9+vv9PktCCCHEGe64Q9k8/JPPArf9HtClRuRe/GJg/MIP1ddS3BGypaG4I5uDt7+9sto7QgghZLNzyy3AwYPAsWMAgBE5hdG5pzE1cbty2C//MoBfOqq+luKOkC0N0zIJIYQQQhqJlhbggx9Udt187htAJm1s3347sOu6nCEADW66yYszJIQ0KBR3hBBCCCGNxutep/Ru/fni1yEuXQSg9cB+29ugma5kMuZrRkeB4WGPT5QQ0khQ3BFCCCGENBqBAPCBDxibe/EcPjP7i/j1X1rEpz4F7NkD4ChTMgkhKhR3hBBCCCGNyJvfDGzbZmzuyzyFN176qCbsAIo7QkgJFHeEEEIIIY1IRwfwvvep+/78z4GpKeCP/gj41KfU71HcEbLlobgjhBBCCGlUfv3XgUjE3F5c1GrxPvxhIJtVj731Vm/PjRDScFDcEUIIIYQ0Kt3dwLvfre5LpUqPe+tbgZ07PTklQkjjQnFHCCGEENLIvPOdQChU/nujo8Df/i3w13/t7TkRQhoSijtCCCGEkEYmHNYEnpXWVuA97wFOngTe+EZACH/OjRDSUAT8PgFCCCGEELIB/+W/AM88A3z3u8CLXwx87GPADTf4fVaEkAaD4o4QQgghpNHp6gK+8Q1ASkbpCCFrwrRMQgghhJDNAoUdIWQdKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkCKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkCKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkCKO4IIYQQQgghpAmguCOEEEIIIYSQJoDijhBCCCGEEEKaAIo7QgghhBBCCGkChJTS73NYFyHELIALNbx0EMCcw6dDvIVjuPnhGG5uOH6bH47h5odjuLnh+G1+GmUMt0sphzY6qOHFXa0IIR6TUt7q93mQ2uEYbn44hpsbjt/mh2O4+eEYbm44fpufzTaGTMskhBBCCCGEkCaA4o4QQgghhBBCmoBmFnef9fsESN1wDDc/HMPNDcdv88Mx3PxwDDc3HL/Nz6Yaw6atuSOEEEIIIYSQrUQzR+4IIYQQQgghZMtAcUcIIYQQQgghTYBn4k4IMSGE+IEQ4oQQ4rgQ4l36/gEhxHeFEM/p//fr+/cLIR4RQmSEEO8r836tQogjQohvrfOZ3xFCxO3HCCHeKYQ4LYSQQojBdV6/QwjxqH5uXxFCtOv77xJCPCGEyAshfqHW38lmo8nG8D1CiGeEEE8JIb4nhNhe6+9ls9Bk4/ebQoinhRBHhRAPCyGur/X3splopjG0fP8X9PfYNDbT9dBMYyiEeKsQYla/Do8KIX6t1t/LZqKZxlD/3uuE9jw8LoT4Ui2/k81EM42fEOKTluvvWSFEvNbfy2aiycbwOv1nOSK0Oek9tf5eVvEycpcH8F4p5QEAdwC4T2gTst8H8D0p5R4A39O3AWAewO8A+Pga7/cuACc2+Mz/AeBNZfb/EMBLsXFz9I8C+KR+bgsA3qbvvwjgrQCa/iZoo5nG8AiAW6WUhwB8DcDHNnifZqCZxu9LUsobpZQ3Qxu7T2zwPs1CM40hhBAh/fwe3eA9mommGkMAX5FS3qz/+9wG79MsNM0YCiH2APgggBdIKW8A8O4N3qcZaJrxk1L+7ur1B+BTAP5hg/dpFppmDAH8EYCvSikPA3g9gL/Y4H02xDNxJ6WcklI+oX+9BO2XuA3AzwH4on7YFwH8vH7MjJTyJwBy9vcSQowDeCWAdR8kUsrvAVgqs/+IlPL8eq8VQggAL4E28bef23kp5VMAiuu9R7PRZGP4AyllUt//IwDj671XM9Bk47doObQbwJZwhmqmMdT5Y2jiPL3e+zQTTTiGW44mG8NfB/BpKeXC6rmu917NQJONn5U3APjyeu/VLDTZGEoAvfrXfQCurvdeleBLzZ0QYhLAYWirtcNSyilAGywA0Qre4n8C+D24K64iAOJSyry+fRnaHw5B043h2wDc7+J5NBzNMH5CiPuEEGegiYPfcfE8GpLNPoZCiMMAJqSUa6bBNDubfQx1XqunEn1NCDHh4nk0JE0whnsB7BVC/FAI8SMhxCtcPI+GownGDwAgtNKSHQC+7+J5NCRNMIYfAvArQojLAL4N4Lfr/TDPxZ0QogfA1wG827b6Xunr7wUwI6V83PGTs31UmX1bIjqwEc00hkKIXwFwK7Rw+5agWcZPSvlpKeUuAB+AltawZdjsYyiEaAHwSQDvdfnzG5bNPob6//8MYFJq6e3/CnPFfEvQJGMYALAHwIuhRX4+J4QIu3w+DUGTjN8qrwfwNSllweVzaSiaZAzfAOALUspxAPcA+Bv9GVkznoo7IUQbtEH4Wynlal7wNSHEqP79UQAbpQS8AMCrhRDnAfwdgJcIIf4/IcTtlqLSV9d4fg/or/8cgDkAYSFEQP/2OBwIlW52mmkMhRAvBfCHAF4tpczU8nmbjWYaPwt/hy2UJtYkYxgCcBDAg/o53AHgm2LrmKo0wxhCShmz3Dv/CsDzavm8zUizjCG0CMI/SSlzUspzAE5BE3tNTRON3yqvxxZJyVylicbwbQC+CgBSykcAdAJY05ilEgIbH+IMQggB4PMATkgpreYH3wTwFgAf0f//p/XeR0r5QWjFvxBCvBjA+6SUv6J/++Z6zlFK+XLbOf8AwC9AG/ANz63ZaaYxFFpK2F8CeMVWqDEAmm789kgpn9MPeyWA57AFaJYxlFImYHl4CSEe1M/hsXo+ezPQLGOo7x9dTYEC8GpsbEjQFDTTGAL4BvTIgdCc/vYCOFvPZzc6TTZ+EELsA9AP4JF6PnMz0WRjeBHA/wXtGjwATdzN1vPZkFJ68g/AC6GFIJ8CcFT/dw+0PNTvQZucfQ/AgH78CLQVpUUAcf3rXtt7vhjAt9b5zH/Xf0Ep/fUv1/f/jr6dh6acP7fG63cC+DGA0wD+HkCHvv/5+utXAMQAHPfq9+jnvyYbw38FcM3yc3zT798vx6+q8fszAMf1n+EHAG7w+/fLMaxuDG3HPAjNvdb33zHHsPIxBPCn+nX4pH4d7vf798sxrHoMBTS34WcAPA3g9X7/fjl+lY+f/r0PAfiI379XjmHN1+D10Bw3n9R/jpfV+z1l+mYAAABlSURBVPsR+hsTQgghhBBCCNnE+OKWSQghhBBCCCHEWSjuCCGEEEIIIaQJoLgjhBBCCCGEkCaA4o4QQgghhBBCmgCKO0IIIYQQQghpAijuCCGEEEIIIaQJoLgjhBBCCCGEkCbg/wewPP9CNI+RmQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_df = eval_df[(eval_df.timestamp<'2014-11-08') & (eval_df.h=='t+1')][['timestamp', 'actual']]\n", - "for t in range(1, HORIZON+1):\n", - " plot_df['t+'+str(t)] = eval_df[(eval_df.timestamp<'2014-11-08') & (eval_df.h=='t+'+str(t))]['prediction'].values\n", - "\n", - "fig = plt.figure(figsize=(15, 8))\n", - "ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", - "ax = fig.add_subplot(111)\n", - "ax.plot(plot_df['timestamp'], plot_df['t+1'], color='blue', linewidth=4.0, alpha=0.75)\n", - "ax.plot(plot_df['timestamp'], plot_df['t+2'], color='blue', linewidth=3.0, alpha=0.5)\n", - "ax.plot(plot_df['timestamp'], plot_df['t+3'], color='blue', linewidth=2.0, alpha=0.25)\n", - "plt.xlabel('timestamp', fontsize=12)\n", - "plt.ylabel('load', fontsize=12)\n", - "ax.legend(loc='best')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.5", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Quiz_one_step_RNN_multivariate.ipynb b/Quiz_RNN.ipynb similarity index 100% rename from Quiz_one_step_RNN_multivariate.ipynb rename to Quiz_RNN.ipynb diff --git a/Quiz_multi_step_RNN_encoder_decoder.ipynb b/Quiz_RNN_encoder_decoder.ipynb similarity index 100% rename from Quiz_multi_step_RNN_encoder_decoder.ipynb rename to Quiz_RNN_encoder_decoder.ipynb diff --git a/1_time_series_arima.ipynb b/ReferenceNotebook/1_time_series_arima.ipynb similarity index 99% rename from 1_time_series_arima.ipynb rename to ReferenceNotebook/1_time_series_arima.ipynb index b3891c6..39dfaff 100644 --- a/1_time_series_arima.ipynb +++ b/ReferenceNotebook/1_time_series_arima.ipynb @@ -1056,7 +1056,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.5", "language": "python", "name": "python3" }, @@ -1070,7 +1070,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.5" } }, "nbformat": 4, diff --git a/ReferenceNotebook/2_one_step_FF_univariate.ipynb b/ReferenceNotebook/2_one_step_FF_univariate.ipynb new file mode 100644 index 0000000..9689ac4 --- /dev/null +++ b/ReferenceNotebook/2_one_step_FF_univariate.ipynb @@ -0,0 +1,2125 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# One step univariate feed-forward neural network model\n", + "\n", + "In this notebook, we demonstrate how to:\n", + "- prepare time series data for training a feed-forward neural network (NN) forecasting model\n", + "- get data in the required shape for the keras API\n", + "- implement a simple feed-forward NN model in keras to predict the next step ahead (time *t+1*) in the time series\n", + "- enable early stopping to reduce the likelihood of model overfitting\n", + "- evaluate the model on a test dataset\n", + "\n", + "The data in this example is taken from the GEFCom2014 forecasting competition1. It consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. The task is to forecast future values of electricity load. In this example, we show how to forecast one time step ahead, using historical load data only.\n", + "\n", + "1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Please run this notebook after completing 0_data_setup notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "from glob import glob\n", + "from collections import UserDict\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "%matplotlib inline\n", + "\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load the data from csv into a Pandas dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:002,698.00
2012-01-01 01:00:002,558.00
2012-01-01 02:00:002,444.00
2012-01-01 03:00:002,402.00
2012-01-01 04:00:002,403.00
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('data')[['load']]\n", + "energy.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create train, validation and test sets\n", + "\n", + "We separate our dataset into train, validation and test sets. We train the model on the train set. The validation set is used to evaluate the model after each training epoch and ensure that the model is not overfitting the training data. After the model has finished training, we evaluate the model on the test set. We must ensure that the validation set and test set cover a later period in time from the training set, to ensure that the model does not gain from information from future time periods.\n", + "\n", + "We will allocate the period 1st November 2014 to 31st December 2014 to the test set. The period 1st September 2014 to 31st October is allocated to validation set. All other time periods are available for the training set." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "valid_start_dt = '2014-09-01 00:00:00'\n", + "test_start_dt = '2014-11-01 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA40AAAH4CAYAAADuJAhiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XmcHGWdP/BP5ZAjBEEQ5Vg26AqyCARk+YmAC66KHHLrj0NXUURBgfUnShRQzjUKcoT7JkBCgJCQhCF3Jvc5k0wmmUkmM5PMZI7Mfd/T3c/vj+6eqa6uqq6qrrs/79crr8x01/FMnc/3OSUhBIiIiIiIiIjUjPE6AURERERERORfDBqJiIiIiIhIE4NGIiIiIiIi0sSgkYiIiIiIiDQxaCQiIiIiIiJNDBqJiIiIiIhIE4NGIiIiIiIi0sSgkYiIiIiIiDQxaCQiIiIiIiJN47xOgBeOPvpoMWnSJK+TQURERERE5InCwsIWIcTnjSybk0HjpEmTUFBQ4HUyiIiIiIiIPCFJUrXRZdk8lYiIiIiIiDQxaCQiIiIiIiJNDBqJiIiIiIhIU072aSQiIiIiIn8aHh5GbW0tBgYGvE5KKBx88ME44YQTMH78eMvbYNBIRERERES+UVtbi4kTJ2LSpEmQJMnr5ASaEAKtra2ora3FSSedZHk7bJ5KRERERES+MTAwgKOOOooBow0kScJRRx2Vda0tg0YiIiIiIvIVBoz2seNYMmgkIiIiIiIiTQwaiYiIiIiIEjo6OvDCCy+YXu+yyy5DR0eHAynyHoNGIiIiIiKiBK2gMRqN6q736aef4ogjjnAqWZ7i6KlERERERORLDy0oQWl9l63b/PfjDsdff3Ca5vdTpkxBZWUlJk+ejPHjx+Owww7Dsccei6KiIpSWluLqq69GTU0NBgYGcPfdd+O2224DAEyaNAkFBQXo6enBpZdeigsuuADr16/H8ccfj3nz5uGQQw6x9e9wE2saiYiIiIiIEqZOnYovf/nLKCoqwuOPP47NmzfjscceQ2lpKQDgjTfeQGFhIQoKCjBt2jS0trambaO8vBy/+c1vUFJSgiOOOAIfffSR23+GrVjTSEREREREvqRXI+iWc889N2WOw2nTpmHu3LkAgJqaGpSXl+Ooo45KWeekk07C5MmTAQBf//rXUVVV5Vp6ncCgkYiIiIiISMOECRNGfl65ciWWLVuGDRs24NBDD8VFF12kOgfiQQcdNPLz2LFj0d/f70pancLmqURERERERAkTJ05Ed3e36nednZ048sgjceihh2L37t3YuHGjy6nzBmsaiYiIiIiIEo466iicf/75+NrXvoZDDjkEX/jCF0a++/73v4+XXnoJZ5xxBk455RR84xvf8DCl7pGEEF6nwXXnnHOOKCgo8DoZRERERESksGvXLpx66qleJyNU1I6pJEmFQohzjKzP5qlEREQ+9/O3tuCrDyz0OhlERJSj2DyViIjI51bsbvI6CURElMNY00hERERERESaGDQSERERERGRJgaNREREREREpIlBIxEREREREWli0EhERORTg5EoJk3J8zoZRESk47DDDgMA1NfX4/rrr1dd5qKLLkKmKf+efvpp9PX1jfx+2WWXoaOjw76EZoFBIxERkU919Ue8TgIRERl03HHHYfbs2ZbXVwaNn376KY444gg7kpY1TrlBRETkQ5FoDBVNPV4ng4jIWwunAA077N3mF08HLp2q+fW9996Lf/3Xf8Udd9wBAHjwwQchSRJWr16N9vZ2DA8P49FHH8VVV12Vsl5VVRWuuOIK7Ny5E/39/bjllltQWlqKU089Ff39/SPL3X777diyZQv6+/tx/fXX46GHHsK0adNQX1+Piy++GEcffTTy8/MxadIkFBQU4Oijj8aTTz6JN954AwBw66234n/+539QVVWFSy+9FBdccAHWr1+P448/HvPmzcMhhxxi7/ECaxqJiIh8aerC3bjx1Y1eJ4OIKOfccMMNeP/990d+/+CDD3DLLbdg7ty52Lp1K/Lz8/H73/8eQgjNbbz44os49NBDUVxcjPvuuw+FhYUj3z322GMoKChAcXExVq1aheLiYtx111047rjjkJ+fj/z8/JRtFRYW4s0338SmTZuwceNGvPrqq9i2bRsAoLy8HL/5zW9QUlKCI444Ah999JHNRyOONY1EREQ+tGFvq9dJICLynk6NoFPOOussNDU1ob6+Hs3NzTjyyCNx7LHH4ne/+x1Wr16NMWPGoK6uDo2NjfjiF7+ouo3Vq1fjrrvuAgCcccYZOOOMM0a+++CDD/DKK68gEongwIEDKC0tTfleae3atbjmmmswYcIEAMC1116LNWvW4Morr8RJJ52EyZMnAwC+/vWvo6qqyqajkIpBIxERkQ9FY9ol2ERE5Kzrr78es2fPRkNDA2644QbMmDEDzc3NKCwsxPjx4zFp0iQMDAzobkOSpLTP9u3bhyeeeAJbtmzBkUceiZ/97GcZt6NXo3nQQQeN/Dx27NiUZrB2YvNUIiIiH2LQSETknRtuuAGzZs3C7Nmzcf3116OzsxPHHHMMxo8fj/z8fFRXV+uu/61vfQszZswAAOzcuRPFxcUAgK6uLkyYMAGf/exn0djYiIULF46sM3HiRHR3d6tu6+OPP0ZfXx96e3sxd+5cXHjhhTb+tZmxppGIiMiHYjoly0RE5KzTTjsN3d3dOP7443Hsscfi5ptvxg9+8AOcc845mDx5Mr761a/qrn/77bfjlltuwRlnnIHJkyfj3HPPBQCceeaZOOuss3DaaafhS1/6Es4///yRdW677TZceumlOPbYY1P6NZ599tn42c9+NrKNW2+9FWeddZZjTVHVSHrVnWF1zjnniEzzpBAREXnp4idWYl9Lb8pnVVMv9yg1RETu2bVrF0499VSvkxEqasdUkqRCIcQ5RtZn81QiIiIfYvNUIiLyCwaNREREPsSgkYiI/IJBIxERkQ/lYvcRIiLyJwaNREREREREpIlBIxERkQ+pze9FRETkBQaNREREREREpIlBIxERERERUUJHRwdeeOEFS+s+/fTT6OvrszlF3mPQSERERETksN7BCAe4CggGjenGeZ0AIiIiSscujUThUd/Rj29OXYG/XPHv+PkFJ3mdnED5++a/Y3fbblu3+dXPfRX3nnuv5vdTpkxBZWUlJk+ejO9+97s45phj8MEHH2BwcBDXXHMNHnroIfT29uJHP/oRamtrEY1G8cADD6CxsRH19fW4+OKLcfTRRyM/P9/WdHuJQSMRERERkYNq2uI1T4t2NjBoDICpU6di586dKCoqwpIlSzB79mxs3rwZQghceeWVWL16NZqbm3HcccchLy8PANDZ2YnPfvazePLJJ5Gfn4+jjz7a47/CXq4FjZIkrQTwDQCRxEd1QohTEt/dBOBvAI4GsBTAz4UQbYnvPgfgdQDfA9AC4E9CiJmy7WquS0RERETktTFj4k0HYmyeappejaAblixZgiVLluCss84CAPT09KC8vBwXXngh7rnnHtx777244oorcOGFF3qaTqe53afxt0KIwxL/kgHjaQBeBvATAF8A0AdA3oj4eQBDie9uBvBiYh0j6xIREQUSm6cShUfydmbQGDxCCPzpT39CUVERioqKUFFRgV/84hc4+eSTUVhYiNNPPx1/+tOf8PDDD3udVEf5YSCcmwEsEEKsFkL0AHgAwLWSJE2UJGkCgOsAPCCE6BFCrAUwH/EgUXddD/4OIiIiIqI0yXlXY4wZA2HixIno7u4GAFxyySV444030NPTAwCoq6tDU1MT6uvrceihh+LHP/4x7rnnHmzdujVt3TBxu0/j3yRJmgqgDMB9QoiVAE4DsD65gBCiUpKkIQAnA4gBiAoh9si2sR3AfyZ+1lu3UL5jSZJuA3AbAJx44ok2/1lERERERBQGRx11FM4//3x87Wtfw6WXXoqbbroJ5513HgDgsMMOw7vvvouKigr84Q9/wJgxYzB+/Hi8+OKLAIDbbrsNl156KY499lgOhGPRvQBKEW9qegOABZIkTQZwGIBOxbKdACYCiOp8hwzrphBCvALgFQA455xzWM5DRERERK5is/PgmDlzZsrvd999d8rvX/7yl3HJJZekrXfnnXfizjvvdDRtXnAtaBRCbJL9Ol2SpBsBXAagB8DhisUPB9CNeE2j1nfIsC4REVFgSWDukihs2KWRgsrLPo0C8X7BJQDOTH4oSdKXABwEYE/i3zhJkr4iW+/MxDrIsC4REVFgsUaCiIj8wpWgUZKkIyRJukSSpIMlSRonSdLNAL4FYDGAGQB+IEnShYmBbx4GMEcI0S2E6AUwB8DDkiRNkCTpfABXAXgnsWnNdd34u4iIiIiIyH6C1bK2seNYulXTOB7AowCaEZ9r8U4AVwshyoQQJQB+jXgA2IR4f8Q7ZOveAeCQxHfvAbg9sQ4MrEtERBRIrGgkolx18MEHo7W1lYGjDYQQaG1txcEHH5zVdlzp0yiEaAbwHzrfzwQwU+O7NgBXW1mXiIiIiMgvrDQ7b+waQGVzD7755aPtT5BPnXDCCaitrUVzc7PXSQmFgw8+GCeccEJW23B7yg0iIiIiIjLoyufWorFrEFVTL/c6Ka4ZP348TjrpJK+TQTJeDoRDREREGiSOhENEABq7Br1OAhGDRiIiIiIiN2TTRY/9+8hLDBqJAiIaE3hj7T4MDEcNr/PLtwtw+l8XO5gqIiIickM0xqCRvMOgkSggFmyvx8OflOLpZeWG11la2ojuwYiDqSKibHT2DeO1NXtVaxDYOJUofLJpdR5h0Ege4kA4RAGRDP66BoY9TgkR2eX+eTuxYHs9Tjvuszjvy0d5nRwi8jHWNJKXWNNIFBSJmgjWPhCFx4Lt9QCA1l4OdEFE+hgykpcYNBIFRaJNC18aROFzzMTsJl2mYPn7ot341TsFXieDiMgwBo1EAZGsYZy5aT+GIjFP00JE9jjzhM8CAD4zjq/jXPLiykosLmn0OhkUMBw9lbzEtxRRQMg7z7MpG1G4MDNIRJnwKUFeYtBIFBCSrDdjJMpXB1EQRGMC17+4HivLmtQXyGYoRSLKCXxMkB8waCQKIL5AiIKho28IBdXt+NmbW0yvy6IhIpJjgwTyEoNGooBgoEgUPPIh8iuaejSXY16QiDLig4I8xKCRyAWdfcPY19Kb1TYYMxIFW0PnQNpnevc173kiAvgsIH9g0Ejkgpte24iLn1hp2/YkVjsSBY4wWU3ASgUikjP7DCGyE4NGIheU1HdlvQ3GiUQBJLtv9fojsa8SUbg9ubQs623wOUFeYtBIFBDy0VMZPxIFhFD9cQQLg4hyw7qK1rTPPiiowbb97RnXZesi8oNxXieAiAziO4Mo0DgXY7ht3NuKz4wbg7NPPNLrpFBA/HF2MQCgaurlhpbnE4S8xJpGIhfVtvfZsh0WOhIFDzN84XbDKxtx7QvrvU4GhVDylc+CJ/ISg0YiF13w93zL6zJOJAo43fweM4NERORfDBqJHGZXyaC8T4PEEJIoEETKz+nPgtEaBJV1WatARDJ8IpCXGDQSOWxxSaMt22GYSERElHuSZcYsRyIvMWgkclj3wHBW6w8MR/HG2n2I8m1BFGhmb2GOmEhEwGjrIs7TSF7i6KlEDsv2Ef/W+ipMXbgbZ594hC3pISJvxFQeBnqBIZunEhGRX7CmkchpWeb7OvriNZU9gxHZJpmZJAoCxn1EZNTt7xbiv9/YrL0AnyfkIQaNRA7LNsDT68swHI3h/S37EVOpwujsy65ZLBHZS6/mMIh5waFIDH/4cDsOdPZ7nRSiUFi4swGr9zSnf5HMB7ibHKIUDBqJHJZtTcMYnZfFy6sqce9HOzBnW13ad3+dvzO7HRORrdTu4SD3WlxZ1oQPC2vxwMd81lhl19y9REROY9BI5LBsSwbHJKoa5bUUyR9be4cAAB19Q2nr9Q1Fs9wzEWVL3tJArwApiM1YpZFnk8cJCbAfPLvW6yRQgPBeIy8xaCRyWCzLp/zIPG6q32nXU3DgRSK/CWeOb19Lr9dJCKz2vmHsaezGpCl5WKXWLJEI8nxAOJ8hFAwMGokclm3J4MjoirLt8LVBFDxhqyXY3xZvWrmXQWNWtlS1AQAW7TzgcUqIiLQxaCTyuZHmqbLP8nc3ARitxVQbtj9sGVSiMBod6Mq7G7ZrYBiTpuRhXlF632g9XzvucADASUdPcCJZOWNkDj4+sykDXiPkJQaNRA6z6xkvjwvvVww8odYSVW1OuPyyJjzySalNKSKiTIKQyatuidcYvrJ6r6X1jz7sM3YmJ+fojZCtVFjdhsLqdmcTRJ5TjqCq0uCIyHUMGomcZlOuUS0wTNZOrK9sVfs27ZNb3tyC19fusyU9ROQstzKIZoIW1fUDPQas98z0V7vuxQ247sX1ziaIPPdoHgt3yX8YNBIFWDKLsWxXY9p3ajWNROQvZgOu9t70kZKzToPFWgw+YuzBQctISev97WUzdiIGjUROsylHYLbfIl8uuSESjSHKEoJA0HsUGD2DP5++xZa0yI32qTN3HY0szqAnK+zTSJnwGiE/YNBIFBCqzVN1spqMI8Lv9bX78G/3LcQ3py73OimkIeNtaDLgqmjqsZoU7SRk2TyVspQ4/pme2TE+1HOGsgCHtdHkBwwaiRzm1bOe2Yvwe2JxGQCgsWvQ45SQW5yoVR5tnsqnhheM9ml8cEGJ84khx23b34HhaMzrZBCZxqCRKCDUShr1+kOxeSpRcKjdrmqfRZwIGi02fUsGOawEATaoDkZmjFrXAzXvb6mxvA/yl9L6Lkvr8bVOXmLQSOQwu5qVcIRCovAxM3Im4ExN4xirw/knVmDTOeBWO/qaZjgBPM7hEcsQ/Sm/5aknP2DQSOQwr4I9o6XXROScbGr81W5hR5unWkwrC7Sye96OFhxkWo7HOSwy3say7yPRGHqHoomPWdVI3mHQSOQw22oamV8gyiluNUUbisR3xCk3rMvm8Zx8tuftOGBLWihcttV0jPzs1DOhsWsAk6bkIX93kzM7oFBg0EhEROSK9NDCD4VBl01bA8BCn8Ycb546MBzFY3ml6BmMZBU1Jo/fUCSG/kSNEuUWvflX3bi9dtR2AgDe2Vjtwt4oqBg0EgUEm5sSBZ2/6+YsN0/N0UfTe5v349U1+/Dciorsahpla+v1dcvV45wLHvmkNOV3+VUgP+9OPUHGJKKBTH0tKbcxaCRymJPveauZCI6sGg7MRPqf4VvNB7ek+eapPki0hyJRkfjfnekTeLuH12BE+xqSFxg79e4eaTXgyNYpLBg0EjnMjxl7xoxEXlBpnpr47BMf9Gez+lzgAC3AmDHOHwO2NgkP5al04/rRk7z3x/AaIx0MGokCwuyjXG95xoxE/jJz036vk2C6aRoLn0bZldU2ekhL6jtt2iP5wVjFBaRVo+jULZe89xkzkh4GjUQOs6sU3s6XBfst+EtH3xBiDkylQOSGXM9oCrhTCyjfw6/eKXR8f+QeZU2j1tvAqVf36GZz/GYmXQwaiZzmw2ewEMBvZm7Fne9t8zopOa+lZxCTH16Kp5ft8Top5IE2nVET3WY27mExh3dY7hcuYz0ueUkbCTk6DLxzDVCz2bM0kf8waCQKiGxfKcrmLnnFB7Bge32WW6VstfQMAgCmrahwZOJ28g9lvnBgOIqyxu6R359dXu5yilKZn3KD12uSbc1T9Y6pDwsgyZh3FVNZKE+l8b6ETt1zIpGOxK/tVUDlCmDurx3aHwURg0Yin5u9tUbzO73XjPIdtGhnw8jP8lEPG7sGrCaNbCDPLGyv7dBZkoJOGQ8oR0z859LR2uaB4Sj2t/W5kays5eoALfI/O5tD4MaUCuSt97ekvseV5zmtearGheBUOU2yvHK0O01u3tOkj0EjkcOyffTWtPXbko7uwcjIz/IXz29nbrVl+2SN/PpgxU346FYcqTwcehP3abIG2k1snpqN0YO3u6FLc6mlpY1Yvqsx5TOj9z2z8eE11uPceFrzVErR2NuIXa27vE6G51y/TCVJ+ookSQOSJL2b+P0iSZJikiT1yP79VLb85yRJmitJUq8kSdWSJN2k2N5Nic97JUn6WJKkz7n9NxHp8Usp/Gc03krdAxHVz8kdqZcHs+FhpnwUqD0ZGjys+TddaJHjc7s9mjeaiWzvG+2bepdOX/Ffvl2AX0wv0Px++roqze/88i4h85RzmirPpNfT1iTTl3aJtVW6nxgf+u7s7+JHn/zI62R4zouyjecBbFF8Vi+EOEz2b7pi+SEAXwBwM4AXJUk6DQAS/78M4CeJ7/sAvOD0H+C02YW1WFramHlBCgSvXgXy/a7a05zyMtjdMNqPiiOpek0+cbPVNSmI1IKAIPVr1cxo5pjdDV0p5830fSw7fvImynrLUbBkuiaU51YZZDpttKZR5SLrawOGc7sbi9vnw69cDRolSboBQAeA5QaXnwDgOgAPCCF6hBBrAcxHPEgE4kHkAiHEaiFED4AHAFwrSdJE+1Pvnns+3I5fvq1dEkmUZLTk+edvpZbTXP38upGfA5RHDaVs+jPx1AWb2t3rl6BxQ2Ur9rcGo0+l19ZVtKb87uYZbO0ZxB7ZYErkT5mCRqMFDY7P06j25T9OAt691qE9U5C4FjRKknQ4gIcB/F7l62MkSWqUJGmfJElPJYJFADgZQFQIIS962w7gtMTPpyV+BwAIISoRr5U8WWX/t0mSVCBJUkFzc7MNfxGRMdmUDts1OqHedjgCorfYpzHc9Eqo1Z4No5Nse1utdOOrG/Gtx/M9TUNQuflM/d5Tq/G9p1a7tj+yJiiPds3nTvU69c8pp7hZ0/gIgNeFEMqhIHcDmAzgWADfBvB1AE8mvjsMQKdi+U4AEw1+P0II8YoQ4hwhxDmf//znLf8RTitniSHJ2FXpEBPAMxrD+TNQ8Zb8JW02s8nWasGiPF9qpzsWS//MbQ8vKDW03EiTNgfTEgbrKlrwl3k7s96O2nFu9dE8n6RN+WzPVCjk9nuZ9zIZ4UrQKEnSZADfAfCU8jshRIMQolQIERNC7APwRwDXJ77uAXC4YpXDAXQb/D5wrnyOpTlh45d+KHube1U/jzJq9FRKTaNnqSA3GDm/frgf31i3z9Byuv2gcpjyDN782ia8vaFadVmr22ULkWDx+9gBQjlPI+9pUjHOpf1cBGASgP2Jl8thAMZKkvTvQoizFcsKjOaj9gAYJ0nSV4QQyWqSMwGUJH4uSfwOAJAk6UsADkqsF0j9w1Gvk0BELuK7meT80qfRDF7CCh6cwoHhKA4eP9b9HZMhdt3WTsWeVS3x/sssACI9bjVPfQXAlxFvhjoZwEsA8gBckphy40Qp7l8ATAUwDwCEEL0A5gB4WJKkCZIknQ/gKgDvJLY7A8APJEm6MNEP8mEAc4QQga1pJJLLpjTZ6MPf5wWgoSdZHD11YDiK3iEWMvmd/JymNU9VWV53QAqf4aNDnVPHRe+akA9uRv5jtqbR7feyVvcVIjlXgkYhRF+iGWqDEKIB8WalA0KIZgBnA9gAoBfAegA7AdwlW/0OAIcAaALwHoDbhRAlie2WAPg14sFjE+J9Ge9w428ickI0JvCnOcWoaOrxOinkkpTRU03kFOZsrXMgNeS1INU0ipFBezxOiM940XRUPo0S+U/G0VN1ihqMXk7bazrw4PwSe64/3tSkwot5GiGEeFAI8ePEz08KIY4XQhwqhPgXIcSd8ppCIUSbEOJqIcQEIcSJQoiZim3NTHw+QQhxlRCize2/x06Z7tNINIapC3ejnZ3fQ2lPYzfe21yD38zY6to+M80/FInGOKS7S8y86jlvVPCpZe783veJiMxT3tdOhGQ/fHkD3lpfhcGI9dG02FeW9HgSNJJ1S0sb8dKqSpz1yFKvk0IOSL5YxoxJf6U49SivaetH31BE8/tnV1Tge0+tZuDoAjPvaykQDRgpzHK1/1NhdTsmTcnT/N7ss5oFBeGnPMdWz7heYeHYxP1oS2sFXpOkgkGjz2R6BUdkD4OeQe2MPgWTctjrbB7bZrJza8tbNL/bur8dAHCgcyCL1JAROZoHDzW9e5jZsmB6fe1e3e/N5rc/LKg1nQZeO6Q0NlHYbEshxBi3xsmkIGHQ6DOZSm6t9n8i75g5TckSwrEqNY2RqDcTuCWvSV5vRPbaWaucZhgj0UAQ7jY+E9Rp1QZpzcPcZ3BAK3n+4EDnAAY42npgKFuGSEBKCx/lrWTl3kpeHrbM9TqGI/HaRQiB2m7zBUN+xKDRZ1jRkNsiiaf9uLHpV0K5R4Pj8Jp0j6nmqTwxgXfTa5s0v2NA5l+ZmoZrnbrvPrVafXmD+1VeE7sOdBlck7ymVpBw3YsbbN3HuERhsx/meqVRb5e+jUvnXIrdbbu9TkrWGDT6TKaMIPsxBY+ZzH1a89QMz369bZvZr1rNphJfQ8EmhEBn37DXycg5ZoO/roEIHssrzWowC7fkap9G21nM5L+5rsrwsje/thFPLwvsFNahZCXo17tUku/xII3AnAu2NsYHNgxDbSODRiIf8SoPprVfIQRW7WlO/OJeenKVmfO/pKTB1LZfWFmJMx9egsYu9k31sxdWVuDVNfswc9N+V/b39oYqy+vmam3omvJmT/arDNKrW3sNr7uuohVPL+NcfF4xW+Bv5c5KXh/Z9GkcWTNH720njHTxCUEmikGjz5h5sAT/8iO/6+xnzZQVm/e1YX9rn+n1zLyn88vMZVwXJ4LMBg5o5BkzNXO9OgOd7W7owqQpeahszr7J+vT1VVlvI5casfcNRdA1YPMgdAavi1wN0sPIiQLiZIMhXib+kszXh+H+ZdDoN5map6YMhONsUojkzVbDUErmlh+9vAHfejxf9bu6jn5c+I8VqOvodzlVcTyL/jZ+bPy1rNc8dV5RPQBg0U5ztc1qjDRNzyx3rqqIE03/DL7M7d73YCSKGJsyBgrzfeQlBo0+k+n1Lf++uXsATy/bE4rSC0olRv7XP7dO93GV14zwMrPH+1tqUNPWjw8LagDYW+JcUNWGroHU2uHugWEIIXKoLshfrN42XszdZ3aXYezTOK+oDi09g1lto7a939R72eqZ3q4YfXfzvjbD68Y20CMiAAAgAElEQVRiAqfcvwgPLSixuHeyk/IacPP2V59yiy98Nb3DxpuEhxGDRp8x8w6+4tm1eHpZOYrVhm2nQHhz3T4U13bYvt1INIZlu5oML6/1ggpfltA/7M4U9A5GcP1LG/CrtwtHPqtq6cXpDy7BjE37mQUIiGSwoXd9+OW+DFuBZXP3IO6eVYRbpxdkvS0v3stzt9UZXjY5wuYMl/rOkjnZtOwxu+7tM0bfGSG7pW13c97Nptdhn0byhYHhePMlDq8cXA8tKMWVz62zfbvtJkfJ/MPsYqzY3ai7DC8zeziV4Y9E4yeopH40s7q3Jd7nbfku/XNL7li440DGZcwMZmF30Ga94tAvYWx2hhNz4er1+zX6l5ppSmrf0TNRu8nnOSV0291HN8QqOystr8ugkWyXqbmh2kudD/8wST3BVs9txOTsvm29Q/j5W+ml60LjZ3KGkZfKrgNdaU1QU7eh/lk4svXu6xmMoKNvyJZtzTFQE2Rkuh3JoQEvrG8vHE+HkeNqy99jb/PUhs4BZu5DxOq9ZuTaZJ7QX8I0VR6DxlDgE4JSDUd4TfiBmT5GRl36zBrc9OpGy+uHrUmh087723JMfnip5fXNHm4j/Zn9kgkJW5/G0VEOs9+WmW0ol1Ub4GjTvlbD2xsYjmLSlDx8kOg3rcaLPrOkTXk6rJyekes3m3RkkwBKMxwbxpLqJfFfQnBIGTT6WJPqfGrhekmTM5xossxgw7zZhdqZNq2jube5B/m79fuj7qxLnxT6zfX7AKg/IYajsbRBM8gYr2p3vLjdzMaAYXsm2BkDZ3NkXl+7N+0zMwF6c3d8IJ9py7XnZfzWP9RHdyZ3hOvOIS19w6NTb7F5Kjnq7llFhpYL2XubTHC6oD9smUK3qR0+5TlTZga//c9VuOWtLab39Wmiv5x8l8mS53UVo7UUYasdCpvkPWeoT6MN+5PXWlq/3cN1TekdBqP3TzaPTrseu8ntvLYmPQht6s5uhFjKjpPvVr63s3fPqnvw4PoHbd3mM1ufsXV7XmDQ6GP9w1FDy/HxQHJN3QOYsbHa9u3yOnOGo5kHlbPGDEUw6I2j4r+4PxzXlJH+pEbZPkhRFus+mrfLtnSQO4TGb649vnubXdqRPy2uWoyPyj/KejvyQqa6HuOjG/sVg0YfU3s2cCCccLp1egHmFdnzQLnj3a14be0+W7Ylx+vMXk1dA5g0JQ+b9pqbW00Lz49fmTsxI8OzGxo91VKCSMvI+zX7A+vXUzNpSp6p5UvqO3UH3iJrVIrz7Nt2YlPb9rdj0pQ8bKg03h92xGv/ZVt6gq5twPrYBH7pf24XBo0+k6kEOVyXHyUt29WY0hw5m8xgmw0jPQ5FYrjnw+2o79Aeep5SRaIxDEZSWweoncaVZfES3OQgOe9uMlYrvKy0EV/686ea35c39aR9ZvSFVd/Rj5dXVbIW0iUDw1H8c0mZ7jK6NY2J/5M1yRVN3ahQOf/uCcebybOBcDTrlUZ5Vbt8+bS1+PFrm7zZOZmivEbWJ4LFVXtyu9YwW08VPuV1EnxjnNcJoFQpLxqDbx1m9MJD+dA/oDNfmCYbLocPC2swu7AW+9v6ZJ/yOtNz+bS1KGvsRtXUy0c+U7s1i2o6Un43evu+tb4qi9Tp++XbBSip78L3v/ZF/OtRExzbD8W9vnYfnl1RobuMmef6d55cDQAp1x6Z926iWb/ekTd6XswMeqE2sJWSkQKgZNKS75G6jn6092ZfiFjMQbRsl+kysiNbZ2UKGd3re3gAGH9wlqkKHuaxR7Gm0ceMXqa8nMPr4idWml7HjpFT75u7E0Bqc0g+N1PVdfSjtWd0MImyxm5zG/BR5UzvYHyEUBPzkVMWkpPI63HrVNhTgxWOC+eZxGijtmQSbT4kZs6TvB/VJgem/SE7mLlArN2kIwUNdl2L+1bZtKFgyWbwODZPJUfJr82YEKhs7sHVz69Dd6JPgdrFy8x87lJ7HEVtzPk7MXVHWJw/dQW+/ugyy+uPNjEcZWRC92zZUYtCxqkd0rE6JzP5je5tLNnXjNIOy3bpTxETNLr3iA3byLhulic29eoyt61INDYyZQf5hblzqKxxtu0xEc3Nvq3ZBH5hG62cQaPP/XNJGYpqOrB6T4vXSSEXZZfhsC0ZqTWN9m02dA509qt+rtcsiMczd40ZoxM0JjN6OjdyuLIhwWL0+ZrNc3jXAZOtFkzSu7YemFeC/3hsGfqGvJmfNEzyy5rQqDrftpHrw/wFlOzOknzvjI4GbNPbJpab10TYAr9sMGj0Mfl9HonF8N7m/RhQmYYjDBOGkn2cqmn0S62G25q6BzBtebnui3fKRzus70C2Xa/fTXw5usOpWuO15S1YXNJgz8ZzmJ39yaxQm27L6OaEEBmn69L6+4QQeG/z/ngahoxN+UXabnlzC65+fp2hZZXnxOw1qDYQ1hgLLRJ0Fy392FyiQiJsTUyzwYFwfEyI0Yv17Q3VKKxu11jQxUSRK7J5RNlZiGCg61Xo/f6D7VhT3oILvnI0zj7xSNVlrBxxtXP8k9c3W9iSgjwxJi8kNk+1n9oR1WuemhTTq2nUWP3Hr8dHueSAOOpmF9bi2189Bp+b8Bnd5XTvA49uEaNB6DPLy/H0snJL+9gom/6HTwJ7JGv/lOfP6vHVujR7BiNpy9jePPXw4+3aUs4IW8DJmkYfE8BIpq9dZxoFPtzDo6493szRL+dUnnnK1RrtvkSJu14Nrvy1kDI6qoFD5vZRVct0sIbRXWMMHG/G7/ba39qHez7cjjtmFHqdFEd9vC3zfL9al1bvoHbzw+rWXospIsD5+1nviWLbvo/6sk0bCo7Tp5+OjsGOzAvmCAaNAcEsXW64871tWW/DqZKtXM3EjvYL0VlGdsiNNkdKBmp6NUpuiMYE9rXEM4QLdzZg0pQ81KRMtUJ2MxKjG7osDCwUiwnWIAMYisYLfzbubUNnv/UBPbwrPLPvuS4sNIn/z8dX2rZ/MjDlhsntyc+jct1cLfC1S213rernPUM96Bnycn5c9zFo9Bn58zu1lkdbsg8C5R6nK4i8Dmj8IHmMH/t0F/Y2q78grJwGVyZjV61VTP196/7RZu/JWoqS+szzxuUatf7kVhmqadR56o9MQm9gX//x2DKc9KdPbZmvL9hGj/kes9PjeGjVnmbUdfRbLmhQ/SzD92S/tOapigOf7XlQKyyWfDbKsh9Ud1Xjg7IPbNnWee+dh/PeOw9bG7diWbX1kdSDhEGjzyjvbSOZ0U+KD6h+/pPXN+Gq59ZmnSbKXfKXTa6/d7bXdOAqg7WISUaO2XBEfanp66tSfrerCWm2Ay7kqp8k+guapTrlht7oqUjWQFvaXZrWRLD45NI99mwwoFJqYrI4tm7fLz99YzMueWq1rdtMHWRP/Q9aWdZs6z5zndnrpq13CJHEoALXvbhhdDuItxx4cklZSouQ1Os7dfRUcwm1slJw3Jh3Ix7Z+IipdTK9e3+66Kf43crfZZOswGDQ6HPZZBTXlLdge22njamhILCz9lFe05iLTdz+8/F8bKkarYnrHlDv85PNfVqmUevx1/kllrc5QiNZuw6M1iQabdGQ6+TXQbZ0YsZRNp8MzrmqrkNnvAC/6NHpa2gH+fMg6Z4Ptzu6z1xn5G7c3aD+bqjr6Me0FRW48B/5qt+vKY9P0WZk+h5TQvAM6R6KH9O1daxQsYJBo8+43XexsrkHJfUMLEld8F8R2aluNda3z099jrsHI2joVJ8bDACeWroHlz6zBivLwjUhe5DoFTJsroqPYKnbPHUkM2h8nzEbp+IJumQmektVGyY/vNTUNCXB79GYfm2pBY1kLyvlilrN2NWeH/JlkwWOyU9q2tXnETYvPM+Q25fdjrK2Mlu32Tsc/sGiGDQGxN5m/YuxuXvQ0nb/65+rcPk0lrj4jk9K9HySDN/TyhDM3VaH5/MrLJf0Ltwx2vR89R7jzcVWl2svu7YiXgpdlRj8Rp4BGf2JJ95Jes1Tk3QHXrKwz1y/l9WO2fbESMcb97ZqrheNCbywssLzye7tHOFYq4k6B1F2jpVuAVrnY5zK80Nt2eQ1s2I3CwjVXL/gejT2NmZczujggrctvS3ts7ANQsSg0eeMPsNvfHWjo+mg4LC1RDqleaqNGw4d7aP++OIyvLOx2tJWk3OzNnVr1xyqqWzuwaQpeSipy9yKIBebHVtV12G+xF4t02CkeardZyVsmRez5EGXUPlMyyfF9fjHojL8Y1EZ5hXVoXvA+sirXvjdB0WObFcIgb8t3IWdBp4xZI3a5SkEMH5setZdPWg0v8+wPyeUAWDXkH217MXNxShvL0dLf4tt2/QbBo0+Z/Smr2jqwU/fsGFicCKZTC3a+oei2FCpXUqfK/a36bcEmLM189xpapKHfygSM7Xe8l3xkuX52+st7Y/UVdo04q2RYEVvXtClu+Kl42YyeLneOjV1ZPLU7/TKTZKj5m7d3467ZxXhj7OL7U+cgwaG058dRsuJ9KbeGYrG8PKqvbjmBXODg+WqtNFTbXjafmbcaBZedfTUrPdAALCrbZfhZa+dfy0un3O5g6nxFoPGEFllovkakRHyF5vaS+6+uTtw46sbR5o6+tmnOw5gv8E+imZ09g9jT6N+MJFt9sDOpml623ZlGpAAs2sKmrFZns9iCwOcaaW9UmMaGbMGI/ZNSeK05LMseRaUA1zJj1QyM56c+P6ATn9hP8jmWaG8RG6dXpB5fwxNrDHwKFG7Zf++aLdq6xA2LXZPTOgX4vZFwjvPMYNGn+NzgMxyKsBQe4HtaYqPRNYVgCZbd8zYikueNj50fXK480x6jYxsmGWw4eRzgM1TjbPrUI3x4s2rkva6jn4MR439Uec+tkx3yplM/e79KPmo/Ghr6uTd3QORtHktKxN/n1vN94QQppulG02b0eV6Pe7HmUs+KTbWKmS9Rsse5hWNsSN/NGPXDMPLhu39yqDRZ3qHglNaS+GX6XmXrDEJStO3fhMTtN//8U5DyxmadNvwXhXreTRARcjec7axEjCoHUutURHt2DagXoijVtOoDIz0NHUPjgwcM7L/DNv3k5RDbiCpxRp99bSm3VHSa15sxDsbq3HuY8uz2oaWlm71857psvzVO5lrHskY5dWhlvczc0up9n80l6TM+/T5PW6EsmbcyjO9vsdct48wYdDoY27en41d/m5yQ95Tux6TpXbZZpD8KK/4gOZ3e0026bN6L2dbq5Gp2SyZY7DyOSMjQeOBTuvD5P/ktU1pnzl9i9oVCDtFUhkbWC/FIzUEioU6+oy1qvjvLMcYeD6/wvQ6Rp8zd87apvp5a09qMKnc3uKSRs3vKHvDigfMx0XqfeHVD72/778weXfXu14nwTMMGn3Oyb5Mcv/35Q2u7Ifs5fSLW759tV0lpw7wey2D3a6WNdMz0qcn2+CP/Yb8wa7r3MhjvbEr8zRKWqnZrtLn0el71O9Bo1wQHldGzr+S0T+ru1898P3jR8Ea5MfPMjVLVPt6UDHg2Sur99qZJALfpdli0OgjO1Re9G5d3vt1Rkkj0jI2xDWNejdfl8EmakmRqMCkKXl4YaX52gOAgxz4hV3Bhla/JCcZTXpLT2qwMndbrcaSqcfD79eo3jx2QWAkpUEIhilOrSAxu/5vPPmG2HTLD0atzY0edAwafWRnfWrQqHx5O8no46a2vQ+TpuSpBrhkH6Pnw808j94LLThZL2/0JfqrvJBfaWo9jRZyjkteV/taejFpSh6WlWaeADkXWMnUqa0yc9N+G1JjNiHGFpvy0Y6U33/3/nZDU74E6RlgpObfSBPWTIoUfUCdZnwgHIPbMzQDvcGNUUbGz4tzaejUqIUOK6uB+lUfX6X7/ad7P41vP2TBPINGH2vtHUKriYEKAGDSlDxs3d+e8pmynXw28svi03rM2uJBpodSdPYNa/QztL7N3sEI7tWYh0y3f7z1XQaemeNt9gVltQbXrnxccuCTBQZH9gs7v1Wom7mcjGZelu1KLyAwsm6AKu1UB5hSuzcfX7wbf8hiXsarn1+H9RXuTfRt9HrYF4ApkoKkvLEbk6bkpbw7M50L+wM/e25AL1pBBFFdj/7cy1sat7iUEncxaPQRtVu+o89c0AgAH2ypSfldWXJsB5/lnXLSfR+rn9dsMm+zC2vxfsHo9RO24aLtYvUYmz2a72ysTuzQ2v70GGmaF7ZS0mz57XiYSU8si7JDI+sGqU+jGrVH3fMmWwaoqW23PqCRWXY/r0M+kKZtfvJ6fNAj+bvTCqPHVP2+5wkxwq0+jWHNOzFo9BGn3rmf7jiAfk7lETrK+QErEnMmZmP8WJ1HQjifga5I9hm2+h5x4kUX1peak6zUNPol0DSSjm6N+Va1B9EZ/Tw5KJYfTFtejp8qRi9V7dMo+1n5F1Y22TPycH0Wo+CaZXlqH0vr+OO69oOolWbrhj/UJiHeGiV/d5Pqu8X2R3wI3hkcCCc7DBp9zo5btH84ilP/ssiGLZGffedJ4xPXa1FmBITOdxTnx1dQuU0ZXkoV5EBbLeBVBlJmB3jyqyeX7sGqPc0pn8lr1kd+lH2mPLd29Tt9elm5Ldu59e3McyTOK2Izci+ovQPceFIIAK+v3Ytb3tqCJex3bojbg1+FLd/EoNHnin024IwfM8hB5ccMqPWasPAx/DeZ6dPooxdIR44NeGAH392yZvo0ZpF2I6v67tgoyJ+3qrUyyg8C+lCzM9l607RUNsX7RRoZJInSqb3/Db8fZIslmz9nmtfVj/kNLxg5DsMxvhu1MGgMIbeeDZFoDPUd7jW9IWOyaX6hVwind13xdWSM5aDcgQyslRqQT3ccwPs5PAiWlbkOl5U2OZASK6zfpWHNcKY0Tw3nn+iYT3awVjPJyvNZtVeiheapY0amvdJf9u+LysxtPITK28sxFEsdJ0QtUH9o/UNuJSlwGDT6iFttrWMxkdbH0coL89G8Xfjm1BVoMznCK8XpHXOjNcx2BxPKa1AvjXsau7G5qs3eBISc1Xyp+5Uekupvd8zYinsdGFgrKKz0aXxq2R77E2JBTADLdzWiJsOcvP958ufTPtPs0RigQCtTszQ/tQJwm5Xni9H8ytsbqmzpb+9nasfCSkGLctq1TARG+xJHVUarkqfhrfX7TKdHfY/BtaPF2LtrafXSrPcV1ucJg0Y/cSFnGInG8KU/f4pT/7JIcyqOxq4BTJqSh8UlDZrbEQJYWRYvQc+1eX38xO5Mm16+Svnd957Kvg+lF3Yd6Mp6G1LKz87fuO5PQh7OF17YmDlLQgj8YnoBLn1mje5yB41LzxYYec4E8YqR31ZztqYOoR/Q1qmWWCkUMPpI+su8Elw+ba3pNIWeyrF9dnmF6VWTQWMkQ4mW36YL8jP337fBwaAxxywuGe0srRU0liRKu2ZtTm+GpnYvhbXpktcyjXir9WBz6nkXltO8WjFAhhat41tY3Wb9BRySY0jBk7z0emSjLqvWkKismwutSf40J7UWghlH+wyGvN+jV5eKJN93xnkh+fJRo3Zc7CwIDttxZ9AYQnpzBUVkTRiyvZb5Us1OpsM/bYU9o+6ZoTyjYWxiYfQv0rq8s2meGZzjGf/jQ/a+y2l9BqddUjvnFz+xUn3ZLNLjB2Ecft/KOdE6Cnrb6hsMx0i7Tsl0HlTfBQYvx8372tL2kXF/Qb9ZbWD0frfjuRC2YDGJQSNp0r/kw3lDOMHqs6Otx/3Sfb1ygKrWPnz7iZVo6Rl0L0Eh47f3SFVLr8Y3+gmNxoRmSwVyj5mMSczh9ml+zyQV13SM/OzvlGbHzvOgt6npG6pHfo7FRE6PomrkkNtZPHH3rG2y7ca3nGmQLuVckje+shGf7jiguqzmNeTzezwbZ79zNl7b8Vr8l/CVJdnG9aBRkqSvSJI0IEnSu7LPbpIkqVqSpF5Jkj6WJOlzsu8+J0nS3MR31ZIk3aTYnua6QePGdZpt7aAd/cEoLtPL3cqEwb+ZsdXW60iehNfX7sXell4s3Knd19WPVuxuxKQpeSO/Z13Drvj9hZXG+qEAFifRFgKP5pVaWDOzizRqkDK56dWN+Mp9C+1NTAD4PTDSY3zk1+D+jXpun7HV1PLMNwJGr4W7Zm3DyfenPw+CfL+YYaQFiXKJbA5NsvwnpXlqpv0r9rdhbyvu0Lgncqn/Y/LcDceG8czWZwCEswWCXbyoaXwewJbkL5IknQbgZQA/AfAFAH0AXlAsP5T47mYALybWMbJuoPituefKsua00ul3N6b3c8yh54urtlgYmTRPo+TQKL2HZVDf/+/ISsSdsGmv8fNkJRMlRPogHXZST5GE4WgMvRpNGjft46i5QWM0I5gLGUZ/vWntZeX0rTTYz1vLJ8Xx987t7xampiUHriUtmf52te/Vrst1FS3a28iwPe0BjjK0I8vhEzevYh66hrKvHAlOVxRzXA0aJUm6AUAHgOWyj28GsEAIsVoI0QPgAQDXSpI0UZKkCQCuA/CAEKJHCLEWwHzEg0Tddd36m8JOrylimF+8bsj0SKlu1R8a3xE6JzU5OltHDgyKoUd53pwu69le25F5IdvFR9p84OOdHuybjDKTt3MiCxPUvGVAk21IS7f57gMLttsz52LQWqFYUVrfldYUN9N9UNveZyi/pPYuufm1TfrrJP43M4dslCOtjlAWlN+/7n6PUhIMrgWNkiQdDuBhAL9XfHUagO3JX4QQlYjXLJ6c+BcVQsgnutqeWCfTusr93yZJUoEkSQXNzdmVqoWdkap5+fOppJ5NVvVoPcv1ShCN0DpL2dRYK0sY1ZL+z6X+mHfOKOXxyLYEUHl0nb7+r3lhvaPb17pajI4yS8GwvSa98MHO0bCDlM/M392UcRmfNfwxzM7zoHYp9A9FschAcCiEsNTFws/qO/px2bQ1+Ov8ElPr7azrSm+eqrKc2WaR8uapZo50pvOi/Y4M1/kEwlsj6BQ3axofAfC6EEI5tOdhAJQzmnYCmJjhu0zrphBCvCKEOEcIcc7nP58+eXHYmOlnZYX8hXrXe9u0FyRNP3tzS+aFMmi0UKqsJ4wTt+u9hgeGoyOZ5IcWlOAb/zvaCEJrvfKmHvsS5wNazVMp3R9mF3udhBRWszt9Q7k98uVb66sABDcw1GPnn9Sq0qrkf97fhl8rmqGqmbWlJnT9npNzUm+tbk/5XO0+lAcjrjT3NLGL5CD6Wtd/yGJ9DMeG8XHFxwwQbeBK0ChJ0mQA3wHwlMrXPQAOV3x2OIDuDN9lWjdw7HzY/2NRmeP7IO/Z1axIS9heHnJN3QP46gOL8PrafQCAN9dVoaFrwONU+UV2J769dwh3zCgcyWSRv9S192t+F6ZbfmddJ9ZVtKCsQT1LEMbnm9NjIzQZLKictUV76q+gGiOpj1Sa6TqKCefyXsnaSTMBUTL9YzSuFTNNXYNgesl0PLDuAcyvnJ/2nVOD3iQLCsLWP3ScS/u5CMAkAPsTD7TDAIyVJOnfASwCcGZyQUmSvgTgIAB7AMQAjJMk6StCiOSkdWcCSLYNKNFZN3C8LvXcWdeJrx3/WdXvGrsG0kvZGYEa4vYjg6dFX/IZnsw4P5q3Cz885188TJG3nMggvLx6Lz7d0YDTjvssfnPxv9m+fcqOXX2WUmtT7Nmmna54dq3ldfc0BrNFQY/D8ycavXaGQzgFx5jEy9XsM1OtOahaMGHlWZwcMM/MqtGRoFH9+8UlDbhG7Qs/3uQG7O+KD+DYOahsmMjmqWa51Tz1FQBfBjA58e8lAHkALgEwA8APJEm6MDHwzcMA5gghuoUQvQDmAHhYkqQJkiSdD+AqAO8ktqu5rkt/V6BUNqe+BJW3SqnOdBov5Fewj1NOGr1KvvT5CQCAH3/jxPSlfPzc1SqMkZfI13do17yE3cur9qp8ml3Rw+6G+LPE64KwsLN63+kNhOHne9luvD4tMHiBjAnhLODJd4ZKCJj+iZD/bOyYWRmVOrmOmfs2OSq+Vk3jqrJw5fXmVsz1Ogmh4cptLYToE0I0JP8h3qx0QAjRLIQoAfBrxAPAJsT7I94hW/0OAIckvnsPwO2JdWBg3UBx+gX2X/9cpVuStbdZa6JvylUtPaN9WpLXx/ixQcsNqN9Y8k9Vhz/PkRxlnWrAnHpAjByLT4rrMXdbLYD4dD2A8xPK5zqrpeR674EgnrH/fmMzfv1O5n52lL1M10dykKGddeEbIG9k0BkDN8m1sgHM3GjuqfYs0NrtyDyPGo/1aBAfAhY51jw1kE/SzDzJ/QkhHhRC/Fj2+0whxIlCiAlCiKuEEG2y79qEEFcnvjtRCDFTsS3NdSnd3bOKNL97aVWliykhxzgc66gHWM7u0wnyNLv1gA9zDPXbmdvwu/e3p3yWS7VWSYORaMYh7b1wzMSDRn6267ykbsebv7mlZxCr9zRjUUn4p3vwg0zX9i1vZT/AW9DI74P8snjQLG+5FXOopa7ePI3zdcY7iGaoaQxrYV9FR/oAkQIC7QPtKkuTmqBVGZCNilWGYDcjgHGCJ1zvCO3w7sLWsRvIzeAmSf18pt7dc7fVuZOYEDjl/kW4a5b2iNJeBZQHjx87mobEObcy5cYqn3VT+Okbm71OQii06szJLJfN5bunsRtvrttnfQMe08rzyA/J9MTIvHKqfRrtSJBsI8rzctd721DRrN4vN1nzOdb0QDjhfFEORu0dhV4ubDWODBpz2E0ZJo2Vy5WmemHgdFOYoD0ClZduMlOs1SzltTVqffxoYDhqep2QFlhnlFd8QPO7+z+2b1obM7e6PPMSiVqv+vBbkFbT1ud1EkLhqufXGVoum0LDy55Zg4cWlFpePwjUDo9TBa2ZApKBIfVndrLgqnswYtuAPEElQcJYaWzmBQkAg0ZfcaptdTZy59ERHk6fM7WrNIjvmJTmqbL0P5q3K/69y+kJo6hT7bJckk1wpeWDglrbt2mE/P0yMKz9d1m9l1kbHWy1Oi5VOpAAACAASURBVNOwyGXzrI+EpBRJGWjJf4+oPPOc+rMzNQ/vGlAfSVceFO5rSR/LwoHHnm/1DPewUsQEBo0+4ofr9rcztzK37LCKph40G5zrygo/9qfyo+La0eG3w9aExAwn//KgH9Unl9o/e5NXzbvl1/i0FeU6S5rZ5qjn84PXJ56vOvNy+VmZpHcENlS2pn3WNxRFVWtqjbgdjwH5JtRe+7s0RsSXx7VqgbznNY2DPUCJOyOe/nzxz1nTaAKDRh/x+j4FgE8Uzaryig+grXdIdVmWzhijPK3feXIVzvvb8qy3q3X4w9qJ3SrlYUreZ3+euyPtMyK51eX2999z81KraBqdfUp+je+sixeYqLVuyaWgIHf+UvvwWZlOfkguOuWYtO+bugecT4PKifnKFw7LuJ5agKhZ8OzWyV9wN/Dhz4AG+5ry6xkjORcKhe15yqCRdD38SSl+/S6HMrebk810GDOmMlK2wUOWauFO7T55Zjy7In20uiA50OF8Zs9JVz8/Ouy//D5IPn/CkKFh4aW7PK+F8gHlMZD/qnZ83Dhkarswsl+1ANHzc9xZE/9/yJ1p4C6YdYFj2/7bpr85tm0vMGj0Eb+++9QmPt/PwQd8y+sH/sxN+zVrp/0qjCPCGqbyp88r0h6uPZf858mfN7W8366j3qHRPk3ypP3qW1/SXMdnf4IpgxFzgzX59JXra0G+PrKV/NPNHgOnWv/IAz7VAXg01pMXFqmt53Uewoqa7hp0DXXhsY2P4fTpp2NLgz+mfllUtcjrJNiKQSNlpNZBvrUnWEFBLmlysL9kJuWN3fjz3B24W2fKAa+plsi6norgCWA+wnVG8oZ2HsdMQepnxo6+4uWL/suRh2qmxUz61le0GF/YBffP3el1EigH6N0j6kGY6pJ2JSerrZlqnurjN+Vlcy7Djxb8CLPKZgEAXtvxmscpCicGjWTIlqq2tM9YSmuQf5+zthuMxHvYt/ioUEHZb4vXrbPM1DIXVrfhmWX2DMqSi4ZjAlfrTJWglbn940fFtux/1pYaW7Zjl8Jqc5N0T5njTp+pMMmh15kmZWGNvJVYTAjMLnR/hGQzrRzki9a0pVcK+KaLi8kStrqe0RGc/dbqIywYNJIhkWjqDbi7oTvl9/2tbK5K/mSoT6Pi/VJS36m+YAjtVRlyPRuPLy4zvOx1L27AU8vsH6E0VzR0DqCopkPz+0zNzKzkq8aO8b7YZWA4iicWl6XNHcpsovPUpmgwom9IffqHIEneL5mus3lFqdPPuNF3WO1eXr0n80Bev5m5Ne0zzwfTqzE+hzi5i0Ej2eLGVzd6nYQc5H3mTYvWUN9+tUgx8MvikkaPUhJ8fu2b7Qa/lW5bSU2mDO5YH5zg6eur8Fx+BV5dvdfy9dYesH7XQbJtf3qN70ce1L45JVPz1E372tI+M7MNS2myMTD1dD7Njv22bEZA4JXiV1DT7a/WEEHHoJHSqL2Dyxq7VT4d1RuCUkTKXa+u2Zf6gc8y/0Hig4oo2/j9KtA71H1DkYxztqplNDNd+j6IGUeawQ9lMQv5WY8stSs5pJBpzk6/Fa6YpazBlxTfDUWsX5dWxQzsMpK4XzIdfc0WCsnPt74NLP2LucRteAEYMtAiLaIyJkPHfuDBI4AG432WW/pb8Oy2Z/Grpb8ynk7KiEEjpTH6PJdnHgL+DnCUU01T8suaHNluLmjp0R8siJezMWojK4/xQ1SRI/QO9aur92l/mQU/NE+l4AnHMzX+VzR1D6b03ZZP+yIE8J1TU+dqNNJM1A0zNxurxctU2IT5dwLrnjG+490LgMV/ApY9aHydlPXzAAhg2zuGV4mJeIDMmkZ7MWikNLe85Y+hiklfxge7g4yWFBdWt+PTHfbM+ffSqkrbRmu8ic2pTVtfmX7sL3piJQBg/vbRKTr2Nrszt1YQmJ0Cwiy92/DEow5RLGusVjHTne1E81QhBB7LK0VZg36LFiPbIT/Qv9bCcJrUCsyAeCHxYQeNS/nM7n7jWvvNpHvAWIsw2/MWw4lj1W9uoKoRa5+O/1++xPAqygHw3LarbZen+3cKg0YiMu31tcZqMa57cT3umJHe0d6KqQt346bX7OkgX9HUo/t9GDI1dvvF9IK0z4YiMeyo7cRd741OsVLTnruDYskvm7beIZxyv7NzdC3frd3aQHkNKy/pJ5eUqV/nGa59J26Nlp4hvLpmH25+LXNhTmF1G55cGh88SS39S0vZH9mPwhbQjxs7GpSkNk81do/YfTSMxHnJAW5cPxdSItQQFpvt9jTE/2/ba096XNA33Ifvf/R9r5Nhu3GZFyEiSpXW0T9gjY8kSWJkaJOewdTS6yBODK0lm7LqA53qNRFeUf4t01ZUYECl75UX97KZfV734gbd71foBNLkD0F9QsgfbVo17p4Fx0aCRoNJ036GW/3bksfKvWPjdZ5EPv1HmLCmkWwRtlJEO4Xx0CjP902vxmsA17ow2bdWsyA7CQhfDPgRREYGZMgFXh+HTDWNANDZN5z2WaZmXc7eFrzpwqC2Pf0ZHcLXoCohvLmKjQRJyWVaM4wcbH/Pl+QGjRwZ+TICqNKYh3br20CXdtcXr5unhhWDRiIyTeul0pphgBkz6jv68eD8krT+FS+v0h+Zzy5hDPadoJxuR1mgsHxX7jQXlP/pEa+jRgX1/oveXeT5ZU347zc2x68X1SkJBOZvr884EqUii4ncCU/8a0+G0dbDUMicbV2c7VNumKhp/OFL+rX1mjWNjSVA8QcmUyZjuiRWAt66LP3jnqb4YDwzf2g9LWQJg0YfkVi1QQGh9VJJHUUuu7fi7z/YjrfWV2FLlbIpbHaaujMHtkLAk2HTw6C+cyDld7W+kEGRzbUWhGa6WcxYkbVfTi/A6j3NKXPCyV+By3c14a73tuHpZXs8SB1lQ61Qsaimw/2EOEjr9vbqvjfUj9Jo2rQWK34fmPNLo0lyTizRJaLX+ZZNlIpBI1kWgDwROUTr3EsGljEqatMFpiyL6R2MZGy4sq+lF92DnHuUrItEvX1Aphe2qI1o6U0a+4eiGScQ7+iPN51t6BothBgYNjIaLQtf/WheUX3mhXwmEo1hxqZq1fkNtWrpJRirACiuszeINnIvCwGU1HdmXM72wNfu7b15mTPbpYwYNJItugYiKfMW0ag8m6ac8BPNl4p87k6b9pXte0G5/pxtdRlbyWQ79D+l29PYjWEvq7ZcZlehh1WztmSen8yrFC7caeKZKEvk1IW7za1AvhSUM/TW+ircN3cn3t1YbXgdAWPFFi+vsnckUCPHNCoErn5eo4+gyW2Zk9jijg/NdfbWelG3J0Zv72kAYs5Oa0SpGDSSbTYrRtSkuDXl4WtCoZUf/vdjDx/5OQjN88gddR39+N5Tq/HIJ6Ujn8n7v87cZGzSaT/QK9GX1z4EYSAGr+7Rrv7UAXj0UlHf2Y+m7nhtY6YBPFoMND0nMqozcZ129qe3OvHb681Yn0aBYQMtIIzV6Fs0YHMz5b359m6PdDFoJMs6+tNH3gurnXWd+KQ4eM1rnKKV2Zx48OgsPjVt6vP1DUdjuP7F9di4t9XSvs2+rNlV2Hvticz+lqrRyZ3lNWF/nrsjbZ2qll40dQ2kfR4UY3x23andN/aPkmjMgwtGCw/kh0ntkG3c24ZzH1uuuh1lE8HeoShaetjixe/8FnBpGZ0oIjm/4eh3RrpouMlo81QjGrtsLnzZrz/wzoiK5cBzXze3bQPjK5B9GDSSZbnU1OyKZ9fitzO3ZVwuEo3hqaV70Bvy/nDlTT2qn8tbnnQPqB+DuvZ+FFS344+zi3X3wUd+uGV6p1/0xEqc+7/qwYKXjGa8gpBpUSv8cXtEVQH1Y2r16Nk5gjORWQLw7csr5lUpUeFbxpabfYttu4zEwp0H8wqDRh/x6XNG05gsMkWfFNdjnQtz+rnt46J6PLO8HI8vLgMQjqHF1TRrNAOTZ0LHZqhqUV4+3QPqNddamdhINIaLn1iJxSUNuvtR3Xfg7rZwCMNRD9Md7VYmcv72+pEmpnokC32ilcF5mM4P+ZfXk8crGRo91fFUGNA/2toE0WFgOMt5lzXWr+qqym67pIpBI1mWzcA3v525DTe/tsnG1LhjWWmj7lQM+xNNMvuG4qVcIY0ZNcnzoEcd9hnD623c24rTH1yClWVNAOIB4aYMfWTb+4axr6UX96k0bQTig9n0D0Xx6Q7zQWUoohsfkt8OYQzc5fe73yoa1R5FqjWNNj+zOvuGcdd72/CzN7aop8vE/owc0lx75gaR3wIuTWkFEqPpll9n8r62Erx5thnpnxwTImNhruOePXv059e/Czz2RXPrK//OD36SfZrIMAaNPlJY3Z55IfLUrW8X4Mml2vOGTVteDsDb+c+8JK9Zzd/drL6MymfJaz8ZKNa0Gy99VOvDVNPWh0ueXo3ff1hkeDspApKnIfcZbT3gt+DFqz6Nw4k266UHulDbrt7PWY0ya6tVKzrM+VTJYXr38r6W3tRlHU6LliYD/RDfXFeFsX4pzarMB+ozdfnxSVppBINGH3lrfZXXSSADagxkfJIZS5/lGx0nz9fN316nukzy2Ki9Dl5cWamyQuqvkZjAX+btxIHO0cCyoil1ioxkLfjWao2R2jK8i3LtvLll14EuPCwbBMXv1ALEMF0bTjWff23NXpxy/8K0z3cfUJ/KxkjN09OJAjkl5XyqYTo/5K1kpZzqcyDxkVZXDbc1GUzHGL/k+nfNH/15zm0aC6nczX4rjcsxfrl8iAKvXdZEJVenm5D/3ZlqMQwPFKJY7L3N+/H2hmr84cPRgXT+PGcnoio7tNoMiuWbznljXXyOLb8UeDvFb3/fUCR9GH21x5QdT65H83Zh0GANoPIefWJxGbZUpTdNTzZdl2vo9EeGncwx8nosrG7Ht59Y6emgcslxG5KvlpTRUxPXrdq73m/3vpxvahrlx634fY1ljD1DHtv4mA0JIiMYNJJt1leODmyzuKQBF/5jRShHWNUaAEjeR9PAVEih9PrafRmXUR6a7oFh1HdoN0c1UjuxuaoNv3u/CJFoDBUaI7vK+eS1mTNUg5OA3iNBTXeXymjGUSt/jMmb5y/zdo78/Fx+heoyyWRIkPBcfgV++FL6EP1qSf1oa625xFBgTF24C3tbelFS3+VZGpL9//QKge0c+dcNY9zo01i5Alj7lPbDMhaDoeIpyViIMqtslvG0UVYYNJJt3t5QPfLzfXN3oKatHx194ZvLUeuRW3pg9OWWfMmEdfTUoyaoD3JTVCNrDqrxp49mEOOueHYtZigmd5cf44c/UW/OqBxsYP72ejy+uAzfeXLVyIBElvn5rR9AykxX/1D2k0dvqWrzTdMwNZ4Nb2+CG0mUD0SV8nxIuH/uzpFHhS2VICF95uYaP5zG5PWoVrgiRmoffZBQExwfCCcyBLxzDbDsQeDj24EWlWbl+Vo1g4q0fWaCyjLBOt5hw6CRHJWpeeCMTdWo06ll8spLqyrxRGLaDCWtv0ie4QlChtELz+dX4DtPror/kjhe1a3pAd787fUZt6V2bSWbtbVkO1cbT5+tlIN83T6jMOtt/vClDbjqubVZb8cso02eF+60MGqvy6Kx9JYgbmeCPywcrS002i9LD2/dcPGyNWWyVdFogDj6XfLHAZVm337meEG+fH7E7e8Bz52TvkzJnPTPoirNkMeMsy9dZAsGjWS77oFh1REt1dw3dyfOn7rC4RSZN3XhbjyXX4EalRorrUyV/ONk/7owZmAkSTL0IlfLXBtpvgpAd4RaPco+KFoypp81jbaavqEq5Xe1OVqtFLTUd2ae+89uejGV/LvktDt+tq6i1eskpJD3S1a7R408d3jr+t/a8paUgczU+OHdqXctJfMBQ5Fg9Wl0nsUzt/4Ze5NBjtAN4yVJegcGrgAhxH/bliIKvE179efXC5IbX92Itfd+O+UzI4/EMFc0CiEMNR1SOwbygHtwOLv+rmpzYZU1dqftx9q2yU7KQYrUro2oEBgToiMfsFZrI7xItt7olKa3lWVayHm3vl0AANj2wHdR3tSDpu4BXHHGcSnL6I2y7Ta9UZSzma86FPauBErmAoVvAX8xOm2cylntbkDa3av2EOisMZc+slWmul95r/WjAfwUwAIA1QBOBPADANOdSRqFQX3HAI6ZeLDXyTDlgy2jD6VatfkCDQVM8YWqFHM40ai6jn7bmyZ3Jwb7UGtOZIbhkV3JEGUtohAirSY6GhMYP9bNVGWWTQAib3aZK5aUNKBwvzPzDRttFhzUYD0XdfYP40cvxwc9uviUYzDhoPQsqR1Nlq36+6LdAPSvqaeXpbaK2ba/AycfM9HJZGXl8xMPsrcv+NtXjf4cM9H01ciNWr0u/bNnzjS+D7KdbvNUIcRDyX8ATgZwuRDiZiHEn4UQPwZwOYBT3EgoBYf8UXD18yo3vY+V1nfhjx8V6y6jlXmRxxkrdjdh14EufPep1XYmzxeMBlRGavuqW50JqjNlMNVqKVPWZ87TVsqBJNSObiQg1fO8NLTd9k4hXl611/R6qiNQstwm9OQDZJ3218Wq02vcMWOrm0lKoXwkyd8ryaT/x0mfczFF2TtMJTC3lZEHpObNrfi8+IOsk0P2MtOn8RsANio+2wTgPPuSQ+StQRs7tV/6zBrbtuUnWgHV7obUodHlSxWozLtmRlO3ub5r2WbsWdNoLyMz70RDME+N1XlB/cSLQbx6bJyLb0ddp23bImcpL7WXV1WO/OynO0ljFAMAwLdPOSbtm1ydp9lcY2LlMbL2zu3mu9pVZoLGbQD+V5KkQwAg8f9jAIqcSBiRF7TmYJTTeh/k+qPruhfWa353vcq8a0DmGr+kH2msryXbV3aun0u7KUfplJB+H0VURvL0o1lb9uP2d+Ojv27d346yBvV5RINqe62xoGvW5v0ZlzFaY682LyOF3yfFqaNky1skDEX88zxQu4zf3lCtPSiew+nxrSr3C8pfPeKzru8zl5kJGn8G4HwAnZIkNQLoBHABAA6CQyOiMYGB4WANQS2XVdCYIyVekiShVaXz/7CBwU6UbnxV2XhBXZXKtBx6tToj82Qa2jo5zch5aDYxTYqXzYcfWlA6Mp3GtS+sxyVPh68Jup7ugQiqWnpH+nvZ4V8+d6ht26LgeHZFRcrvrYlR15u7B1FS36W2SprOvmHX5muVP3bmFdXjK/ctVF0uZ2sa370W9r51M28rkhvZLt8wHDQKIaqEEN8E8G8ArgTwb0KIbwohqpxKHAXP3bO24c73tnmdDMuUE9+OU5kINwxN0LLR2W99nic7j5xeLeWWfW2JZTTWzfCiGTLSnpIMM5KH+sOH+n2J5fza/TFX8orvGahlBIwfjwu/crShbTF/GC7KUZVnJQahq21PLyTUcvajS/Efjy2zNV1Kb2+oUv08EhOqwW2uPAeyojxIOVLoHnSm52kUQuwHsBlArSRJYyRJ4lyPNOKT4gNeJyEryqBRrcQw15unGi5FVSzX1OXenHr5Zc3xfWqUQPcN6deG+6lpVBgorxm1Wnn5vIb1GUbVdaqm8cH5Jbj5tdHab2b+3HHUhM94nQTyETM1dcrA0wnJQbq2qowMrNasPmdrGgFgd56BhQzmlhpLMy6Sw0faE4YDPkmSjpMkaa4kSa0AIgCGZf+IMqpp68Omvf6aTFpprIE7QushlesFZcpAS/kuf3N9lXuJyZIbGZFcopaHenxxmebyz+dXaH4HAG199s2NtnFvK258ZSMi0RjeWl/luwnvg6zR4ABWp5+Q3i8p15+nucwPDT3UCqb+Mq8k7TO1ADGnXx9zf2V9XeVNP8wpy/zGTC3hywCGAPwXgB4AZwOYD+DXDqSLQujCf+Tj/75irA+bV5R9GtWe/do1jczlyDndjNfJ7ed0SbEDzI6Omak/U56NLRp+934RNuxtzWo+uKufX+fJqKNe6ewfNnT3nfe3FYa216XS5J23YO7yw/PX6O2stpwf0q/FP9NJKdLRsIM3fQCYCRq/CeDnQogiAEIIsR3ALwD83pGUUaiozb/kR+PGpN4SQgCRtGJPgXc3VmPSlLzUQX8YM9ritrcLDC3nZJDOmkZnqR1f+SdFNR2upSXZJD2bc15U04G+4WjONJXqH47amr/79bvG5uLLlcHGcl1Q8guAxhQ1Pn4Q+CJpavdxdbDm9M5VZoLGKOLNUgGgQ5KkzwPoBXC87ami0HlmebnXSTBE7VlWrJj3SwjgucSob22yUUSZnbHHktJGQ8s5mX9kzOhvRkY5NioZNL68ujLDkvr8XLtgNzcKVdROsX9qSchJ//vpLq+TkGZJSYPq5+rNU/17nfo5beR/ZoLGTQAuS/y8GMD7AOYAMFYtQDlt0MA0HL97vwiLNR7MVuxu6LJl+g9lRkVgNKPJB7A2tUNj5+Eqb+qxb2MKPK8eSBzy19bsVf16X0sv/rFoN4QQUBnU2LLkvfzuxtQRQdt7hzB/e73aKqrOfnipfYnyuZgQDODIMS099vVZtkp5fd/2TqHqcmrlJ35uqRKQ6XDJp8wEjT8BsCrx8/8AyAewE8BNdieKctPcbXX4lcaD2azO/mF8/+k1uOjxlRmXHYrEsE1lVLQk5fNf/jIRAli+qxEzN+3nwA0KTr83HX0x+/edH1r1nfERUx/NU69luO3tArywshLVrX22NlNUm1YHAD7aWmtqOxEfZxTtFo05P/HQ6j0tKb+X1HeZmsuTgkurUKi8sRsfFZq7L52m1jzVz08CfxSISuoHiZko3xtndEEhRIfs534AjziSIqKEgeEornxuLR656mv4P186ytS6yZrNBgPTPDzySSne2ViNZf/vW/jM2LFp3ytfCgJAsuujEMAvpscr2w8Zn75uGBmfccMPLycKioFh/SLwaOJ6isRiWfd5nFdUh/6hKG4490TNpq5awaRuGqO5cc27ER/P3VaX9hlHts0Nyqmvkr771GoAwHVfPyHtu7qOfhx/xCG2pcHoJa4+LZd/nwO+qAVtKQOOOdXrVJAFZqbcGC9J0kOSJO2TJGlAkqS9id85wRJlZKVmoKKpB3sae/DgAv25eoajMfQr5t0zs793NlYDANr71GePSa9pBDp648t2DeTejDNGAvGg6w7QQAw5Y+Q+lDDbRG1Dt8o9evesIkyZswOAdgZ1TIagUS1j6Me+WE4QQvi7OoUCTVmQ0zUwjG/873LddWYXeFMDqXYb+CEu0+KbtB3YbstmBEeTcJWZ5qn/APAdAL8CcCbiU218G8DfHUgXhcwnxcb7BiUZjftuenUjTv3LopTPrPR5GiOpT+Og1qcxGVTM3DzaDypXWlZs3tdmaDllnlot805kVPJyMnOfbd3fjtMfXKLbVzrT9B6a6VHJfK0pb7a0raCZePB4r5NAIaYMGrft78hYWGmk2eWTS8rwQUFNVmlTUtutP5qAqvNzLSgibH7ud2aCxh8CuFIIsUQIUSaEWALgGgA/ciZpFBb5/5+9+w6Pozr3B/59V9WqlixLbrJsSbZly91y7xUXTDOYGrDpmF5DMyWUQAgp5IbkQgiEFC4pEC6QSwgJEEhIgUsg4YaQkJgkv0BiCL1jn98fuyPNzs7szsxO3+/nefxY2il7Vjtn5tT3PPsvRxPbX3/nQ0cBbH69I3c+ot3oiu9/pH8f82Pyz2kc+LlE6oy2GSvgxkAjRHY9+Id/4S8vpxd61uezUU35h6M9nRnG6maudKHRCrtMCl+lMq9x9aQ218dedNfvPEwJJZGb0Sx2ct51P/kTzvnu0/bOZ3cahslrkRgCauGVt8MPMgQAePUvua99+E7w6SBHnFQarZ6gtsrKIvINEXlRRN4QkedE5OjM62NERInIW7p/23XHVYnIVzPHvSQiZxjOu1JEnhWRd0TkQRHpcPCZKABbb/m1o/2nfeJ+bLjuEcvtf3+18I3Fbm/Etfc/1/9zVbl5dsjXahjlhwNR3Px5p3lE3K03m99DKi3yrKaY3FnoFmI25y7KPQxeSlnEsbDj1sde8DQtVHq+9UuTBsgI5b0IJcVfuziNo9Q4qTR+B8DdIrKHiEwUkbUAvp953Y5PAhijlGoAsBeAy0Vklm77YKVUXeafPsjOJQDGAegAsBzAOZn3hoi0IL3sx3YAzUgv/3G7g89EEfX8zrdNX//Fn1/BoqsfxB0FIhvaXfj9xdcHWjRrKstsDTXR//pt3TwKLjyd7bl/5lYAIj00hkK34tqHC+7zwa6BgDkvvZ6/R0J/uXl97Zn1WJRSIxLzMgXF2FD83SfSQ0z1S+KElfXM8kGpNB7h0c+EnQJOrQ6Yk0rjOQAeAPBFAE8A+ALSy26cbedgpdQzSiltwLLK/OuycejhAC5TSr2qlPo9gBsBbMls2w/AM0qp7yil3kO6gjlNRHpsfSKKnT+89CYAFI6eaFF/u+fpf+CfuqEvZbr9rAJiGO//v9phPqePVUYi/534zf/t//mdD+wPY//yw+brP1px0wZUQnVGFtbIF2ZTU37+fHbUXAXgH6+9i1Nue1L3mvkV+e4Hu/DNX75gq5Hj9Xc/xK8zz3e7i8qYnbZkGo/eyB1tQcmWd8kNEVlheOmhzD/BwDNjEYCf2HkzEbke6QrfIABPAvgBgJbM5hdERAH4EYCzlVIvi0gTgBEA9GGWngKwT+bnXv02pdTbIvJ85vVnDe99LIBjAWD06NF2kks+ecthZEr9zV5rwSs4Z1F3z3793Q9RW1mGj3YrnPStJ9HZUoufnLUs5zwpEXxko9Xwg48slgZgrTFLU02FZURaIresRiEUcvV9z+KEZdntlM/9802UpcS0kHfBnc7n3pVMYRElNASPAvXZB57Lec1Y4Xvyr6/hI8PyNlbX49X3PYtbfr4DbfXVed/37fc/wrRL7wcAPHvZWtuNRv6vWBphrzwfdgpiRykV61FphdZpvMni9f5AdpmfO+28mVJqm4icDGA+IZveDQAAIABJREFUgGUA3gfwMoDZAH4DYAjSPZnfBLAHgLrMoa/rTvM6gPrMz3UAjOHq9Nv1730DgBsAoK+vr4Rzefj+ZTLJ3Wye4mOZ1sVX3xmYuJ2vTPb6ux+icVBuVL9pl96PfWeMxCf3m5J5r3f7t9nJvHbLgfG9DfijVIKCUHQVugI/+YPfY8OU4VnD3Irx0e78a00SUX6vmATNM5tuYqysWT1uXn4rPcDN2Ftp9KP/+6fNFBrSUcqPuR3WsScomfIOT1VKjbX415n5N1YpZavCqDvnLqXUowBGAThBKfWWUupxpdRHSql/AjgJwBoRaQCgTYpq0J2iAcCbmZ/fMmwzbqcIMuslfOgPuaHqb3wkPZzsn28MhGHWWhzN6nqv63q1jA8UfdAKfc+h/jxWN3+78xPi3HrkB2NLMJEbO990H4Z9x8vZvZIvvv5u1u8Pmtx3ilFK7SQl3cNCvtntMhNZXY/a47vQcjj6UQIf7tptP3qqyX7MGcGJ29867vdNJ3MavVYO8zmN/b2YSqlXAbyI9LqQmmkAnsn8/Ix+m4jUZs75DCiy7NatylMDl6d2Q9d6r+y0PFrRh8o3DjU1m/fAgA/umPW6lNLwPfLGoV/5Rd7t+fLn13+RHanzLzvfxsU+LvngtsAbRyX0USlAdhtpjbtp8Q5271ZZ8yLv/e2LAIA//is3MNvjO/5tOsrgyw/bH3ZpWu5g3gjMXysKDZgkLwVSaRSRVhE5SETqRKRMRPYAcDCAn4jIXBGZICIpERkC4DoADymltCGptwK4UESaMgFujgFwS2bbnQAmi8gmEakGcBGAp5VSWfMZKVrMehrN7rG6OiN+/2J6Ae6r/if91f7zzdwhrk5aBi+/5//wwUe7bQ1Lsz08lR2NWT406Wl820HgEiIA/eszWnGy7thLb7yHr/m45EMpDcm2nNtNVATTefAmz9bvPpEdQV0brbT9rt+hZ/t9thpw9v/yYzjltifx11feQYVu+Z4XX7O/TiTblMP1s5r8a/WSt4LqaVQATgDwdwCvAvg0gNOUUnchPR/yPqSHlP4O6XmOB+uOvRjA8wBeAPAwgGuUUvcBgFJqJ4BNAK7InHcugIMC+DxUBLPK1fsmEdP0lUtj6+OrBQqKpkNGdK995dG/ZIXuB9Ithmb3f7OWz4qy3A/BOiOR9woVylZ9pvAyHZpSqtQRxdHDz+UOI33HJHjeA7/PnYP4xAv/xjczazg6yekrP/MQynTljTue/H/4r1+ZrAVpwux94j4EkfwT95FrgfTrZip3Sy223QbgtjzHvg/gyMw/s+0PAOASGzFi1tN4+6//lvOafq/t3/8d/uOQmf2/mxX+nGZFixU2cpiVM/s6mvHYn/NPrCei4hWq6L3mIEJvKQ0f9RebyCg4ZnOPzWIIbPrSYwPbHZzfbFTMrb+wNyLBfEqLgzcnipEw5zRSiTKrNJrNddM/FJ76++vY9/qf9//+vsnQqEItOMbWv4LLduQ5L1sSieLnQw8amwjY+Zb74EREQXCar91OL2EFkUoJK40UONMePhs37Jf1BRXTipz5z5pCnQxvv7/L9AFgNjyVDwqi+Lnhp1xXzAvbv+9fMCEiOwoVGR7908tFna+YZzyLB2Ql7h0OrDRS8Ezu9n82WbDbbJ6jZvSQWtPXH35uZ3/QHKOfF3iIHGIRpdFs6TU3lVIi8oc+WM5Pn9tpGeDqb/9+N+c1DrQkip9CPYNHfPVXltu+8YsX8JXMkl5W7Eb6thvtlSgJWGmkwJktl2HGGKhGBFg3eRgA4G6TQqEg/aBY9/lHTIeUGlsejbuk50blHnfmd57Kec3s/Hx4EIXjIt0yGod/9Vc45bYnbR/LXEsUP3aml1hF+L3w+7/D5ff+Pu+xxfQIxT3YCZEVVhopcMbKoBWzhr58zwn9HMhv/TI38tnkkY223tcO9ioSRYfWYPPOB7lRFokoef7xWu6oAaPL7/0/2+cbUleV9bvZCCMz5tFTicxxeCqRQyd9639t7WdsrRPkn2egr09e+6PncrbbDXxjh2lLYrzvBUSxpRXwLryTc+2ISsE7Ntb8/c3fXkNLXaWt8xmX0bLbW8gGZColrDRS4J7862u+nNdppdCsxcfuqBK76zkSkf+0vPfXf7/T/xqHiBGVtqf//rrrY+1WBrnkBjkS82uDlUaKLGPeEpG8w1NPus1eD6YXzB4oMb8XEMWWUsC/3nwvK8LyQyZruxFRMrybJ1CeG8bndzGNwCwLBGf+u4WHKZN3ysNOAJEVs4W4893HC7Uq2gmp/e+3P7CRMvOD2bpIFI7dSmHOFT/Oeu3N9zm/kYjcsd/TmPvaU3/zZzQVUdjY00iRldPTGMB7HniD+bIbRmYPFA5PJQqH13nvzzvf8vR8RBQvdoe3O10PkrwVt1IXA+EQ+cWQt0QKr82UT1NtRXHp0Yl7xidKErPc+Dfd/MZ8zEY0rPv8I0WmiIjixFhH5BOeKBcrjRRZxt6DXbtVUUNAP9yVfbDZWo92mYXjft9iTSgi8pdZz//4tnqbx+YezLxMVFoe+P0/s37fxbCoRDlYaaTIMt6zi72HH/f1J7J+v+nRv7g+F4eiEkWH2VCy8pS9YQnMy0T0pYeez/qd9wXyQ5mUhZ2EorDSSJFVaAjomHPvxSN/dB8hkY8EomQwC4Jldyj7LnYqEpERCwixoAKJduGNEbUjUJZipZEoNF988E+ujy1mHTc2QhJF2/M737a1H9dzJCKjXbwvEOVgpZEia0Z7k6/nL+aRwKErRNF23+9etLUf8zIRGfG+QF6TYiI5RgQrjRHB1u5cU0Y1FtxHQhqawG+LKNrszoHexcxMlFgvv2Vz7WWD9z7kuHUiI1YaKbLu+91LBfd57M+vuD5/MfX0P/2L67gRRdmHNicrssGOiIioMFYaI4Llllx/tbnOmlscfkKUXC++/p6t/T5iVyOFZOTgQWEngYjINlYaI4LFluCx0kiUXDvffN/WfsWMViAqRgKmOBGFiqW4YLHSSCVrN6csEJWUzpbasJNAREQUS6w0RgTn1QSPPY1EpeWt9z8KOwlE/djTSERxwkojlaxddsMrElEi/MvmkFWiIIQV/ZuIyA1WGiOC1ZfgsQBJRERhUXzyE1GMsNJIREREFDC3PY0bpgz3OCVE8RSnZpckjCxgpTEiOL3OHg4pJSKiJHA7p/GEZV3eJoSIyAZWGiOCw1Tsuf///hl2EoiIiIiISgorjUREREREFCtx6m6RBIRLZqUxIjg8lYiIqHTEvwhJRKWElUYiIiKigCWh54GISgcrjUREREQBY5WRiOKElUYiIiKigLGjkYjihJXGiOCcRiIiotLB4alEFCesNEYEl9wgIiIqXYvHtYSdBCLyiSRgQDorjUREREQBSxnKkF8/am44CSEisoGVxojg8FQiIiIiIooiVhqJiIiIiChW4jTgMwlzmFlpjAh2NBIREZWOJMxxIgoTy87BYqUxIhTHpxIREZWMBHQ8EFEJYaWRiCjGjl3SGXYSiMiFJAxXIwoTc1CwWGmMCPYzEpEb56+fGHYSiMgFFniJKE5YaSQiIoqw569cjyv3nRJ2MoiIqISx0hgRnNJIRERmylKCQ+aODjsZ5LEUS2BEJSMJga94yyIiIiIK2Pi2esfH3LltgQ8pISIqjJXGqGBPIxERUcm4fJ/Jjo+ZMbrJh5QQERXGSmNEKNYaiYiISkZ1eZmr43ZzPgsRhYCVRiIiIqKYMNYZW+qqwkkIEZUUVhojgg2HREREpWHTzFGuj60sZ9GNiILHOw8RERFRQA6YNQrXbp4GcRlMceLwBm8TRERkAyuNEcGORiIiouTz4nk/SVdxtFP5rCxjcY+SJ/6LWMRLYHcREfmGiLwoIm+IyHMicrRu20oReVZE3hGRB0WkQ7etSkS+mjnuJRE5w3Bey2OJiOKis6U27CQQUYDEbVej8TyenIUoftjhEqwgm54+CWCMUqoBwF4ALheRWSLSAuAOANsBNAN4HMDtuuMuATAOQAeA5QDOEZG1AGDj2NhQnNRIVNIq2BNARD5RUDh/fU/YySAqWZVllWEnoWiBlVKUUs8opd7Xfs386wKwH4BnlFLfUUq9h3QlcZqIaHe3wwFcppR6VSn1ewA3AtiS2Vbo2NhglZGIiCh+lowfGnYSPDdtVGPYSSAqKE697J9f/vmwk1C0QJu2ReR6EXkHwLMAXgTwAwC9AJ7S9lFKvQ3geQC9ItIEYIR+e+bn3szPlsf6+DFCN5bD2IgSx6ORakQUoIv2nISbjugLNQ2jmgYV3EcgjqK0p1LZN6Tm2vj3khCFaVS9+4jJURFopVEptQ1APYDFSA8rfR9AHYDXDbu+ntmvTve7cRsKHJtFRI4VkcdF5PGdO3cW8zF84eRmzrIlEVFydA1lQ2BcjW+rD31o+Y2HF660Kofjmdrqq7N+Z7mDiAK/0ymldimlHgUwCsAJAN4CYIwf3QDgzcw2GLZr21DgWOP73qCU6lNK9Q0dGu+hJBzKSkRERAAwpK7K1n5ORjMcs2Ssy9QQUVKF2TxWjvScxmcATNNeFJFa7XWl1KtID2OdpjtuWuYY5DvW15T7wGkrIBERJd+whurCO1Gs6EcWHdjXHsr7FlKWYmAuIsoWyF1BRFpF5CARqRORMhHZA8DBAH4C4E4Ak0Vkk4hUA7gIwNNKqWczh98K4EIRacoEuDkGwC2ZbYWOjQ/WGYnIpRYbPQ1lKQ4wi6O7TloYdhLIR2wwJqK4CKopSSE9FPXvAF4F8GkApyml7lJK7QSwCcAVmW1zARykO/ZipIPbvADgYQDXKKXuAwAbxxIRxUIxa7Y9fuEq3HVi/spFz7Ccqd4UEV6t10fhu2PbgkDeh1VNIgpaeRBvkqncLc2z/QEApstkZJbpODLzz9GxccIHAFFpK7baMK19sCfpoGhhdTLa4jKKs9iloNmuQUQxud2RHu/dpa29uXB4dYofvwtlxRYaiShXa3320HA72TisIam8BRBRMVhpjAgnBTre+EsbC//kBnsKootfTXx1t0Zj2HfvCGMg+WxO8v+mmfFfT46IvMdKI1FAhnBxZMqDlbrSxXageHIb2VY8aCZQmdbDU1eOAwDsOXWEZ+957eZphXciopLDSmNEMIIa2cXKRTK5KUietWa87X3ZQx1TzO+J4+Xzfo/eYZ6fk4jIDCuNEeGkQMcyBFHyuGkMGNZof34rGxuii19NPBnz1KqJba7Pddk+k4tMTQFFX2S8Sil6eFUGK5DoqeQttifGEwvtlI+by8PJMexpJPKWPk/9+cr1EAF+87fXXJ2rosh1VJm/ichv7GmMCN7vSwFrjeQtJw0Ru1mqJPJNKiVFrbfp9tB8xx00u31gPzi7B/BpFT0tdcHERajCB4G8D8UPK40xxJt5afMiiAJFkM1So9vgG4NrKlwdR0TmXNcRPWi/sVP/u3hjb//PTtOae3o2OoUvmGf/CHklkPeh+GGlMSIUewGIyCG7BcFP7jcF1x08w9/EkC/YSBRdcftmiilmpArcbKrKWZxMCpZGvXf7nreHnQRPMJfHUdyeVOSZOWOaw04C+cTPbH3wnNFora/Gjqs2+PguRGQ1RPXzB00POCXZnDY+GPeuLFAp5JJS/mNchPhqqmoKOwmeYKUxIoppAZzQFo3Fhcl/bY3uhiZS9Nm9BegLDuyFIoqHvaeP9PR82hIb2v3AbLSSsZJh3Of0VfaW7NkwdTi+duQc54mkHK31VWEnoSDF54rnipnvHCWsNEbUF/IMJTNeegm5FonIBmb35OE9PJ6iUBDUGo4KNTyL5O6z7wx7Fdlz1/aga2idm+SRQV119BctYKWRrLDSGFEjBttbfy0lwOmr7S/wTfGmlGIBM6Hsfq36giqvheTjdxx/3a3WFa6gwhkIckczKJPxDdPbB+cey2vQM3b+lO3N5uW/oL6GUpnT2NnYGXYSYif6TR4lwu2D44kLV3ubEPINH7yUj5vhqV6qLE/hg492+3NyohJ28opu39/Dzv3DTjljc1974Z3ItYZB0Y9izZ5GssKexphjRSQ+GCCXvMA8H0+ce548bvOi/lHg+hwOnyciktOzaPccURiGmxTXHeQ+inVwXwO/bzLHSmNEmA0TsWK8gfN+TlZu+NissJNAdtkswRUb/GbrwjFFHU9EaV48e902JmpzDGsqy2yd56I9J9l6L7PPZOdj7mKrqC1DbQTCCTvAGb9KssJKY2RZ51qu6RhPYVTuRzbZmxtL4dpz6nBPhqc+cs7ygseftNz/oXLkTNiFRHJGm3MW5vf26c3TcMvW2WhvrrG1/+bZ7QWXzQDMKwx2nl0VZbnntvN+lMvq7x3U9cbhqd5Lyj2eOToi3NYDk3Ihkn1Ov/HZY5KxPhCl6b9/46iDQZleB4oXJyNNyF9dQ2sL7uNlu62xgnDWGnuB7eqqyrFsQmvefVIieHL7avzq/JUAgCMXjs3abvdjtNUXXurpko29Ns9GFL77Nt0XdhJiiZXGiDBZYcn2saw4Uj63HTPP9npcFJ6g5hdxflL0pPidRIY+G87rbDbfJ7OT26Gc+tFCxnw/v6vFxhlMzmlSiqgoEzTVVqK1IV3pMzYq2Rm1NGVkI1Kpwp9qcE1ugBde1e7w7+a/kXXerptaKlhpjCy7JUh/U0HxV16W4jChBNEXVO30ily4YaKPqSEvsCIfHcV+E047IbX9i70GFo/Lrmz+6Yp1vK4Shl9nfCUlL3LJjYjgPEUiskP/6Okd0Wi537jWOpy6ahw2TBlu78S8BYWmoiwZBQqyR1+A7O+1LPKcszqye0XLTeYYGjHLkxnOaSQr7H6ILOtMm5QWC3KOD/nk8npe28fX9mDPqSN4v4iBpeOHhp0EytDnl0JTP8y2Oh+eqgzvG9xd3m00Vbt468ll529idc/mn5PCxkpjRDh5TOgfOCIMokDWtEJPvmukzMZ8FYqOYue/WY5q4GUQmm3LuvH0JWvCTgbZlFvRGzBisLuI1UFlv/1mpudypdcNLVx20N8uVk1sc/RejLfgznFLOk1fD6qkxxKl95KSF1hpjAgno1MH11T6lxCKND9uO5v7RvlwVnJCRGzfA4qt5Fu+DUsKoZgzthmDKsvQUJ0bSATgmmlBG95YOFJoS2atvQNM7p1D66swrrXO9vsNzGksvG+tB9GRP73/NDxz6R6495RFFumxvuBmjB7s6L128+J1ZXNfu+nrQVU7ODzVneG1NqeCxBgrjZFlfbPda9qI/p8FLFTEhVe34WK/7pa6gUaHMUNqGLkxApRStvPxFw6e4WtammvZKEWl6wJd4CirClR9dTn+dMU6nLC0y3R7VYX9otXu/l7Lwvseb/F+TqRSgtqqcpSXpRyXHZzGXugaar/yXCqS0uNEuUbXjw47Cb5jpTEy7N+MD52bfWGyzlg6djuoXNjB+W7xY3cxb6e0AvKwhsI9LZQ8I10Oq0ya6vKB3rx8BfzyspTr+6f+Fj4QCKfwuby+XZs9SrR0mL2X8dkzvT1/z+MtW2fjko2TXKYumcwaIm46os/WsX4/r7UecvY0OjexeSKGDBoSdjJ8x0pjZA1kWuMwEn1UtPSwNlYb48CLb6myLOVoDqv2jNFfIrsNh/Pq8c7E4Q1hJ6GgQrcLtiP4Y1QTK2VRYGf4aSFe9hY5GZ7qNbO/hZPni7L4WdNUW4lF4xjkSc/v4EPF4L2/OKUQX4SVxojIvZEMvDCoIv88huRfpslQbOX+5BXduHhjb9E9jbceOaf/Zz4j7PvqlsKtwZ8/aLrr8zMfJ1d5SjB8MHtwo6DQPc9OPvSycFjouaAfLu51T1N9dUXO+o75GFPK54dz5T4Hnmuodr+SXhz7HyRKT84IJcUvrDQmQLEZnWuEBaOY72nNpDacuWYCmmorcdqq8UWlY/LIgbX9GDnVvjljCw896XY5h8erwqCda8yqwNs/TI6XhOdqq4ooyOm+rxEe9JJZ4feeK4i/SX2mkF9t0Thcp7t2gvyOzO4lxtcK3W54SeUqL0th7+kjCu/oUlOJzUmP0lBa9jRSYP7+6rtZv+tvzvkKlF5kF7/mSFG2dVOGuT52YfdAa/D+s7yLdnrD4fbmUpD/9D0OQywe/J/cb4oHb5R/MwM1BMvJX/sHpy72Lx0l8rUXaqAJ+s9w/vqJ+PjaHqy2WM4iSt9LKRSKg1BZll30NlbGw441wG/ZnVLIH6w0RsSjf3rZ9bHFXqgz2puKOp7suWRjr+tjvX6G3H7sPNx2zDyMbamN5ZCUMNj5Cor5nqx6GvT26B2W9z2KuRfwMghWS11Vzmtm6+DpK/Fcbql4UYsBUF9dgROWdSFlMepDABw0uz3zc3CViShVVinN7+8kjt95lIanttebL5UCJKdCyUpjRNm9vEQc7Gzh9NXjijsB2VJeFp3sNrdzCOZ3JT/SV5xcf+hMHDK3yJDdtoan5hfHgkMc2KmrdA6tzT0uIYUNckdE0DjIfA3PIOivv5xr2PBCa312Q0jYPWZxEZU/00Ak34wyNlI5sW36NsttSRnBE51SbIkzXk5OGkOLXVeN89qSKyoPIypsxOBBOG1VugHHz+/N6t6i9cDwkilNSSnUFFLo0RpEFd3J813fLhzko3pXJsx2WWqgmGhMtjES94/OWOpzqpLJ7HqwmqJQiBeXyHvIvPf0Qzw4W3ytH7ve0f4VKevGnaQ0oLDSmADlZSns4+PEaoq/qA3JiiM793ynD4YDLOen5pvHbL3Nk285IQ+3xAgo6xq/9vtO82/+ZFxYrUOYCjiP9DfoBPi2WmNyU42uIFzgOWLsEU2fgc8eIzvf45re3BgIQQ1PfQO1WPDedcD6T/v7hhF39ZKr0dPcE3YyIoWVxgiqry7PKeQf2Gc+VrpUWodLndtveXxrvafpKEUjBw/C905Y4Pl5j140FouM4e4LBqnJz4u2Ad5RvBeHRpsVPa1Zv/cMi/6ao37QX/+rJ5kHp/FzdE7OpSLhLIUwZWQjtu85CZ/ZPLCMUF0m0qu2Hu2gysLzsEcOZqC9QuxWBv0u7+nP/w+0AGXhDYuOitH19qaMlMo0AlYaI+hHpy/Nufyu3n9qKGmh6MtqCdaZNqrRMrgC2XfBhomY1dHk2QN7SG0ldly1ARfuOclyn3yFiHzbqsoL39LNHm7zOptL5JEXJbm9R3PHNufuFlAWPnF5dzBvFLJCFTA7+aDYnkYnlc7xrfXoyVTSulwu6eOGiOCoRWOzpr9sWTAWF26YiCPmdwAARjUNKnCOdMVy2YShvqY17mLQplSyLlt4WdhJiBRWGiNomIO1uDiSjIrHJ1Y+66cM9+Q8o20sbdNSV4V9Z4zEjS6XQmmqrURNgdZ/swLKzNEDEZR5TwnPyolteOqiNdkvBpQ9gx5yGWdu2+Iu2ZhuKBpanxs518q1m6dh08yR+J9TF2OlxbIcXspXgaksT+HoxZ1ZjZF9HU0Fj6NsUR0hxltArpoKb3rKo/qdO8VKY0RlrdMYXjIoBop9VvNhHx2plOCzB063nEtl56E+rzN/VNxBJkt7sLDgP7vZrLGmAp/ZPM3XtDjVZRLVNa68GEZWV1Xu6rgjFozB1Zum4IzV420fU1tVDhHpHxLqtUL3CzOdLenrwaxn/JSVjMZO8VAqQ0q9xEpjRFnNgcmZaB5CYY9Bd0Lg4otmVFxvRaViVSgZhbY31Vbi+ycuxINnLcN+M0cCSDccaLccr3qcGgdV4Ffnr/TkXKWmUj/MOKDrLt/bXLrX5GASEQAvGsku3dvd30NEcODs0bbWZA3KCUu7HB/TN6YZj5yzHJtNYi3oK8RJiRgZBrd/umKmpLhtDIkrL+eaFzpXUvICK40xcs3+U/HfJy3Mei2MLu9xbQyuEgfXHTyj/2f2JoZPe2bYmXcIAA+4DF9v56ue3j4YY1tq+3sMvDarowm/uWg1WhvsD7WPsjDXyRtSa38oo5Xu1uLmwrU2FJ+GqPDiVhjm9eA1t5WM9uYaiEhkGtMorZivY9ty5w0IVFpYaYwoswfbAX3t6BiSXcgL+oZdXcFLxm97O+zJtaoQjmpi1LqwmM1Zaq6txGmrxuHrR8+1dQ6rgn5cWizjks4o2zBleGAjBvJ9XYUanQoFRIkSJ39NtxVMrxrpvnv8fG9O5CNtrUZmd/v8/FsVc9+tLItOD7hdYV12Ttdw5JxG8lW5rqCQN5Ji5v+gOpKScuFH2XaTqJr5/urFDrGYZjF/jty5/tCZ+P6JC023nbZqfFEREIPIf14M2SlLWAlSxHljTjEKfQVrLJaCsFLo2/jyYbMcna9UuM0KxkXvjY29ed8z8/+sjib0jTGJpmvD/pbrv3pvd+aPxNkQ/ho52F7DTKl9DUEOorpl7S39P1++6HIcOfnIAN89GlhpjKg5ugnm+QqKdluVhjVU46dnL+///fZj57lPHPmqttLZvAInN82TTMLqHzS7HT85091QSMq1fspw0wd80A9zJ/U2/b7FPIS1XrFUAp8sofSmmXyHz162Fl/yuJK3ZHxL3u0JawPwnb7h5bqDZ1gGtjI/Nv1/MX/yTx8QXCCl/vTmuUj0lehvHzc/a+oE2bvnWq0Z6qVSy+d2A+H8YL8f4N5978WstoH7bkWqAqfPOt2vpEVWAh/tySAi/QVPOz2NhTQOqsDoIQPDFee6iJhG8ZXv1igi6Axw/S8a4LSAWFZmv6/RSS+Jft/lE1qtdyygI3OPKdfVGp1Eikwyr4YsVleUOR6yaqcwmO/KstvLEQf6dQf9oo8gutc0p9MNctfvDJLTy/TijZMwZWQjJuWJ7lqvC7AyZ2yz479JKQojDkEcYx8EkU3a69sxumG0rX2ry8zn8SdllB4rjTGnPVisMvs1+0/N2s/0HAm5mEtVuY0CpFbILC/jd21kNxiM20LchDyBo7SWTjt1gPrqcl+j2928dTZWT2oz7Y22q746HSBkrIMAOxzWlivosltMETp1AAAgAElEQVShZ0BtVXlihrGbrYHq9dzBYtZ21b77sJ7LTvPjjNFNuPvkRXkjwl6575QiU5VsvAX675ol1+S85mn01EzO/eH+PzTdnpQ5/qw0Rph2QeeLblboQuwd0Vj4fUyKKB1DGEQlSvJ9zduWFS7kH7lwLI5aNBbHLun0MFXxMs4isIxfBfTL9u4FMPDdmeXV3bvT/9tZ5mLJ+KFZ57PipqdCJN3DeOPhfUWFbJ82qhE3HdGHC/ecOHBu12eLlji2wmvYMDjALBKsfu5gq0kQq1CE9JV5MR/5iPkdWb831uRGm/2mzYBgSWT8E5vfWtzdcLYuHJvzWrHRk5NgZN3InNf8WKexudrdPOS4YKUxwnZ7MLdByxRetXIkpLEk0sz+xvPzDCeuqSrDjqs24PMHTbfcZ1BlGbbvOQk1DudLJsn5GyYW3imPYgveZkf3jkwP6Vox0f2Q0GLYqQg5Wdg9JYKVE9tQVW4/Ct8hc+0N+0magaHJ4d9URZCc2n2RaqvKMWO01quqMKujCUD2EEs/hd04MXVU8T3Kl+49GTuu2pB3n4Xd+efRJlt2Ztvt4ZduvJ+umtiGO7ct8Oz8caUvA58/93wA5j2NVy660tF5b1xzIwBg3vD8cULY00i+G6jw2dnX4nUbFU+nhZZdxtBw5Lsw5xwmZU2yRSEVUvKVB3qGNeDZy9Ziz6nhzPEpNBTu1xescrRe5MxMAduJTyRo4XivJaOYES12nnf6Pb593Hz890kL8ZOzljl6n1UT2xwFwNH0P/cdHwns4zLC723HDBR4J42wnptIxbn/9CU5r+051Xwos/G5IZLdM2bWiLF+yrCc1xZ1D+mfNkBpB/ccDMC8p3Fj10ZH55o3fB7u3fdenDHrjLz7NVQmI1+x0hgRZhXDKLVE6yMHTh1VeMgrUVzkm9cwpohh2v0VsgLZN99cIDN2WyxtNTYVWGNtaH2V5ft9+bCZOa+ZBbgo1MRUzHDYoHiRwuOXhjc03FYgnAL7rCgiQFKUOGnwVyo9H3zqqMGma6/m85Uj+iyX3rHDTcfEZw+cjuevdLZ+HADMHZvsIXVR0WBSefvCwTNMGxbrq3MrhYU6JIstK/oxXDMq/CxHj24YjbKU9XN8ZmvuszKuWGmMCLObgfaSWZlqjs31mwoVCgHzhciN6dGCrQiAZQkpPCSNnXlxpczNCKB7Tlnc/3MS/7zF9Gqsnew+2EcpcrJWnxu/umAlHv34ctNt+h4vJ8ON9U5e4T5AUpTYudbtNvj4oohyu4g4jqxL4RKRrIbL+05LP3POWD0hZ183zzAnwyLznr93P+dvTonDSmOEqTxjS2/eOhsP2hguY2eIa1lKMHtM/mFlWm/IiYaCw8/PXVEwDVTYmR4sS7B2cu7QlGIMazAPHZ1U56zNfUhXlw/cIt1OO7HTcOMlJ8kckVlKYWSBNQg7XVY0yB03Uf1a66sxqsm8Z/y0VcXfX+LQI+yVgT9/9mc+cXkXrvV5DcQwoqcmsUEsTtqbB/Kttk7zoMrcniv9fcH0DmE6Yq3I3sMh3cCenwPa4x+46OY9bsalCy7t/72txt3al1t6t3iUovgJpNIoIlUicpOIvCAib4rIkyKyLrNtjIgoEXlL92+74divisgbIvKSiJxhOPdKEXlWRN4RkQdFpMP4/nGVb3hqbVV5Vlh7q6FPboe4Glsry1KCHVdtyInUOSJB63eF6WTdul5Oad9xRVkKgxwOdczH6XCsqKssN7/d9Y5MD7fef+aonG3FTF7PmZMS8DBzO+93wKxRuGXrbGzua8+733ePzw6ksLC79NZ5jfPALd2ymaafQ6R05k/aydNWPY1n79GDTbNy7xN+YEUueay+08kjGwvuA2TnXbuXR77rfaJubc1ZHU3m97iTnwD6ttp8twgToG9YH/YbN9Bj+tnln3V8mt8e8Vuc2XemlymLlaB6GssB/A3AUgCNALYD+LaIjNHtM1gpVZf5d5nu9UsAjAPQAWA5gHNEZC0AiEgLgDsy52sG8DiA2339JAHKNzzVqHdEI2742CxcsnGS6TkKh+nP/t24Ox9gxTHrxTLab8ZInLuuBxVl7rNlGHMS9puZG8o6qrYuHJPz2qf3n4bvnTAfrQV6VqM23+O8dT1Fn0NEsGxCa8GCtH5B9B1XbcA3j84fKS7rPVynLtm0hjmv761mi6zrGxDM3q6YBo2jFuWG+I8yW59UW7bG15TkfevAn7lDaitx/vri7ynkzojGwiN7TteNGND3/PcMs14L2O519I2j5nq6bmFQHhtkr+PC7B6X9OUx/BBIpVEp9bZS6hKl1A6l1G6l1D0A/gJglo3DDwdwmVLqVaXU7wHcCGBLZtt+AJ5RSn1HKfUe0hXMaSISuzufWcbWwjDb7e1Y0zsMWwxr9CibDz/jrYKVxOB846j0sI/PHDgdxy/tQllK8i6xEbR818LM0YNjPZeysiyFQZVlmNURr4fHjqs24LilXabbovbcj1hyIuOMzJD0KSOtA4vZvfffoQup/70T8ofXt+ppLBVOopGHESZfGxExuKaywJ7eERE8sX01jl1ifk/xy1X7TQn0/eJu8+x2PHHhKgDZnQnlZQMxJ9waVFkW62d5lCVluQ0gpDmNItIGYDyAZ3QvvyAifxeRmzM9iBCRJgAjADyl2+8pAL2Zn3v125RSbwN4Xrc91v7zsFlYNbENgx0ueXCXLmKbFnzh0Ln5R+2eYhgeeUGRa9qRPZVlKSwal7sUhNt7jJcVBqvhnFnv593bhcJJL2lFqsjbZUDPDS3oyTAbLddB8HINsrD48dA/aM5o3HPyIpy9R+4oBO073G+GvetzlG6agNlcKHvRU5NTsCmWdsmGMY1z9pgmXLxxEq7cN1kVqsv3mYzjDQ1dB80ZbauHjQZoz+XF44bmbDPLw/mXW8uW5LUzq8qSNd0mLIFXGkWkAsA3AXxNKfUsgJcBzEZ6+OksAPWZ7QCgLU73uu4Ur2f20bbrtxm369/3WBF5XEQe37lzpxcfxXdzO4fgK0f0OQ5AME0XKa+5thI7rtqAzbPTc5YO7Gs3DeW8dHz2DWhFT/YE4Sgs+1FK3JazvVxD06wV2BgQZU7CQ7Xrr/pUSrDBYk0tM14M9TnaxdC/U1aOww9PW5I1XyVMSVnW1Yu6r3GY+uSRjSg3GY7eMaQWO67agOU9wUSqLqW7u53Kcf8onxD+MiKCrQvHJmZ9XM1h8zpwrgdD6pOu0PVZX12BB85YimsOmNr/2rjWdJHX9EgHjUFlKclaXi1JugYH24ueVIFWGkUkBeDrAD4AcBIAKKXeUko9rpT6SCn1z8zra0SkAcBbmUP1pZ8GAG9mfn7LsM24vZ9S6galVJ9Sqm/o0NwWmqQ5d10PvnRo7towV+8/Fb+9ZI8QUkSmLO7nTubP6ff8zvHzi0uPzpC63JY5LbKb5uw1hedqRpnjzhUHFQdteNmQuvT/boqfF+45MEfZ7vFlKcGEPHNcgtarWyw8rssBnFpEoCo9YyCxqLAqqJ6zdoLpepxRNLzIHquPr+3BFw9Jf9aw5hUS2dHdWoeq8oERBcsmJL9MW4wxDWNCff8kdboEVmmU9FPpJgBtADYppT602LV/OoFS6lUALwLQx7iehoFhrc/ot4lILYAuZA97LUnHL+3Cuinu1lHTF/I0fHj6xKISou/VMOsZfki33Ir+q5kxOv/SKV4z6yWJMmNvkdPeIyeV+b2mjcA1+0/FCcvi18J532mLC86Ns2uP3oGlYOIYaAEAjlgwJuwkFKXQ7Vss9tm2rDs263Feu7m4pTBOWNbVP5Lg0r17MXF4A7pb6wocRcX6MDMUQT9CKinOWlP8UjeF9I5oyPscy5f343k39t9X9/gq7t7n7rCTEUlBlvi+BGAigI1KqXe1F0VkrohMEJGUiAwBcB2Ah5RS2rDTWwFcKCJNmQA3xwC4JbPtTgCTRWSTiFQDuAjA05lhr+TSbcfaj4yo1zHEfI0wck5/M7/7pEU52wfXhDN0yazxIMntCcU0lqRSggP62j3rXQtyzlnPsAbM6shugLhz2wL8+MylWa8dMne0rfM9uX01HjhjaeEdyXem0VOTnIlNrJ+Sf03b2WOa8T+nLu5fn5j8c966HlSUCZpDeqb56aQV9kcoFKrAmfVW/fC0JVnlNdPnc568XSrr7+Z7dn5iwSdyXps9bDbGNI7xMUXxFdQ6jR0AjgMwHcBLuvUYDwXQCeA+pIeU/g7A+wAO1h1+MdLBbV4A8DCAa5RS9wGAUmongE0ArgDwKoC5AA4K4jMl0Y/PXIp7Tl6Ehmp3N29G3vLHmJZwb+xJ/laNl6wWydaKm46y9syC66snuVtIOCpmjG5C11B3PS9NtZXobq1jsBW/FPiz6v/uVt9BKX01nz1wethJoIz9Zo7CH69Ybxm464L18QnKV8zaxto8Wqs2xs2zc9cHnTCsHg3VFa6WgxrbUou6ytxRTKVm3nB3nSROJOm5F9SSGy8opUQpVa1bi7FOKfVNpdRtSqmxSqlapdRwpdThSqmXdMe+r5Q6UinVoJRqU0p9xnDuB5RSPUqpQUqpZUqpHUF8Jq9FYdRW19C6rEVm9fJd8hftOSnPVnLFwfXgx6VTXWF+a4jCdeol4+cxi2Sbb3872ptr8NRFa4pezy6Kjx2naUpCJFU3jL3NiyIUpXBt77CcQo2xl1nj5ZzpMCzois5SRpRtu0k54oEzlmBBdzy+szFDavDD05a4Pn4gYm/uXfW5y9ehZ1jhwGZO1mAVAHvPGOEghfGVb06hH+svXzD3As/PGRXxmpCUYHEuSiU9gqavLO5lwweHF4Z8z6nD8cvzV2W9VqpDj71qIWysqSj6XFFsrHR633I7isFMvgWt/VBM4eLgOQPDeJ+9bC1u2Tq76PQUGmJpl9l1tf+s3F4NIP+aknGgLUGVpMAUSVFj0uvV3RqdgF6F3H96ccPvtSjTZldmoeWvjBXNu09ahPFthUeFLOhy0ngV31Jq0JXGJGOlMSLCaIH/3gnz8aPT3bWMbZo5UKhQeW525M4VRazR9dBZy/Dzc1e4Pr6lrgqNgyoGws6LYGVPvIdWWnFaEeMDJpv+trXcRgS/O7ctwBaToDJnrnYeMCJOnZb6tRirK8o8CSB1/aGz+uc2lxdYQzTvWm2i7eP+Dh7F7+IX563MeS2KDS8ULzUm66ACQEVZcRfXmEzDbJVuHu0xi8di5ODCS2As72nF7DFN2LY8HZ15yqhGzMwExbO85hOcF3qaubSLX1hpjIgwHrqzOpoxrs1eS15zbWXW758+YCr+8sn12Ts5vAmNY2Q6S3VV7ucajGmpxQgbDxor2kOmPDOkLugenSgz5tPPZCI2Vpan8F8uA0jZFcVn/Dl7TMDH5nXg2cvW4qtbCveedQ6tsx08p5A4VeD9mtNy/SEzsXT8UAwOaE2/OFW6zObIacnXf45jl3QGkyBKBMs6mJg3u+iHrObrHLjh8D7cvHV21vqcF2yYhJ/ZaABuqK7Ad45fgPF5ynOf2jTVcpuZ3ABu8cn85ZJdfsp3/w0ioneSRjaw0hgRUQxFf9k+kzGqaRAu32cyPrM5O3CAiPRnRLcFiTgVQErJcUvSS0QMrqnErUfOwZcOm5V3/zh9j17nM2245aLuFszr9HfuTRQn0zfVVuKyfSajuqLMdvrMvoK+Mc6HuCfpQezWgu4WfO3IOUg5iNDbZIhSafZ3dJpNonBpOrke9J9vRgKXekiSsItG00ZlD8l2eh+eMKweD521DCev6MawButpJ821lVg+odVVGs0Y/24NgwwVqQLH65f1ypyx2CQ50+J8DejylHlje95KY4waH6OAlcaI2B3B6/Zj8zrw6MdX4LB5HWgy9DTqub2ph/0wIHP6Fvol44dmtXya3WBL6Xu0+qgRKDPHhtk1NL9rCCYNLxzoQS/oikp1eTyXX7j3lEVZf6svGxuBtOGpun0cD9uOyT3A7HPFJOmUUcwoHDecXB9W+WZMSy3OXDMh0IY/7T6rvWNc8qhbW3q3YGvvVgBAbYWDiPM+/F2S3KDJSmNETE9Aa2dys0n0JP0BEFXGv3uQX0NS8pdxqLvmeycscHSeoHteT1jWFej7eaV3xEBPSV1VOYbUZS8LYB5x0VzcC0P7zhgJgL0LZN/o5ngGgTt2SSdGDh6EVZmlnuxe8XEtW5w+6/T+fD1n+Bxsn7cdn1ryKQDBB8IxnjPu9009VhojYr+ZI8NOgmscnupevj/B/acvwR3bnBWk/Zakm58XVH+woADeLCF/+tb66qzea80giwATVozDLP0W54Xejfl2w5ThA9tMLl6n13Nc7uWzOtLDoCsKBA6i6KgNuGfRaOLwBjxyzvJQ0+BGd2s9fnbuCrRkGomMlUGrRjdbz7T2/OsZhyElqYG0Q7B5wmaMbRzb/7sVNiA5wztnRERxvpJdblumdkVxTK5PrG5a+dYNG99W3x8BzSisv1zcb7DHLi22tyj782vr2R29mME0nBhusZC3E5/Yu9eDlJQW7S70xUNn5mxzex+XIo4NSyolWDfZmyVLyF9jWxwMNfRJu663Ma4lNeOzu9IigrO2vEdOIJzduwZ+Pup+T9PmNa08bSeGQSDxROJ60ZhgpZGK1tVai6H1VTh33URHxzlbIyiZrj80f5AZK/XV/rS+umm7mDoq+mu3/eTM9BpadsKX56M9X/afNQo/PnMphtRVYcdVG3wPggOwl9eo3sM1H5Pmt5eswUV7TspdX1V3CX3uwOlZL2XNabRaEDyBcwLjVuEtRd26SOtRDBoYB8Y/239+LF32+PZx83Glbomvm7fOwWmrxuUG7elclv5/5cXuEtC9CjjqR+6OzeM/6qb1D0M1Voz753XmKdiMqh+FlaNzl+chc6w0UtFqKsvx6wtWYWG3s4LzhGH12HHVBly9yf2ahHHz7GVr8YfL1/b/7nRInqaiLIVDPVq6QHPPyYvw2LnOb56HzevwNB1+8GpoYU1mqNSeU4eja2iwS8ZsivEQdqMw1qUNy1e39AX+nvXVFThy0Vg8fHbhYXVaeaq6omygkpnQ4akUT/r7hZNIwVG1z/QRgb/nzI6BUUtPbl/d33s6Z2xz1jJIY1tqcdqq8bkVrWGTgUteBxaf4S4Bk/YB2ufkvj50IjBihrtzAli611ewbuw6ALmVxjJJP/fzBcYpT5Xjc8s/5/r9Sw0rjeSZlMuSg921IpOguqIMVeVleOSc5XgwJ6S1M1qlZeTg4of6AcDkkY2ma5sBwLLMwu19HblLI8R5aLUZs8XnNZft3YvTV43HknGFF7L3ynOXr8OfrliHBd3J6ZmfPMJ57/Rh87xtJAnK9HbzIeZBMkZS1L+mZ5a/C4l77k/Y7SuR2psGesz15YycnvSYmBvAyBSjkYMHoSEzQsltWc0T0w/N/n38GqDdxRrHUw8Ctr8MVAyUWdaOSTfILxu1LH3qpvE4beZpuGbJNW5T64nhtcML7xQTrDSSZ6oryjBON4xkUIHeHa3IUkKdDv3am2uKnquxZcEYfPu4+VjR0+ZRqqwtGT8Uf7piHaa1R38oqp8G11Ti1FXjAm3trixPodxi/klcXbmf89EFfR3N/QV8/X2GCtPusfoGnl270//rC5BmlUs9s9ejcPv+n1MXmyxGnm1ofZXp66X4/Imb6w6agU8fMA1AdPJ+X0f4jUFO9d8Hwnyc9O6b/fvKi5FzF2m00UBYVg6UZU9RmDRkEn57xG/R3dQNIH2/O2rKURhaE1wjr9E1S67BeXPOC+39vZaskgiFrnfEwFprPzh1sc2j+NR2I5USzBnrvGfALWPF5aw14y33DTqypZc4Z8Z/TocLn7++BxunDQzpuvvkRV4nyTdR6MjSrmh9B8OM0ellnvYyGSrndPRA2Flm4vCG/qBUemfvMQH3nLwID561DD86fUnWNvYwRs/NW2abvt5YU4H9Z43C146cg68cMTDcO5QeMwF+dPoS3HKkyVBLB3569vLAo6Nreb2qPISif/84eMPycqkyoMEw9aLbME3mkG8De1/vX9p8tHbsWtRUxLNH3Ey4sYwp0Qr1pFnd7qsrUnjvw93eJ4g8deSisWEnoWhmhV1WGaPn2CXxXCMRiNYcLH1KuobWYcdVG7J3cHHxR+XTlaUEXUNr8fzOt/tfO3F5t+X+WvTIyjAK0GRqeU9r3u1Lx2f3GGnX3ujmGvz13+/4lKpcXkypGT2kBqMDHl77ib0n45y1PagqD3H5oHaThoH5JwJDuoA3XwTuPTN3+/g90v/ftW3gtVR0G6aTHLSOd0sKjdnw1IXdQxwv8h01G6bmjl+P+1IVSWXWUN0xJPwQ76Wq1WIIoVGceonM1qQMmtPec8vhqQXWdguS1ZIBdl20sRcnLe/GigIVFYqugSBO/hVlndxrwu5xL6QsJSHej3R/SGPPYqoM6NkA46zrvKYe6FXCPJfk8h4rjRS6SbohrVftNxW9LoJkRMklG7l+XJxtzRMIh7zzyDnL8ZAhGNSvLliFA/vabR3fUleFRd0tuLXIYWKF6IfMXeVwLubKiFRIdmVKs4V61dwWdYIuIg2tr8JzV6wrKh3NtZU4a48JBedCUji0RenN/OK8lRjdXINty9I9ycMas5dSCipoljEKanKrCg7V6/4ua65I/z9GN6VAq12vvsxwoMrdR+/4Rwd+7phfVBLJHVYaKTTao7qmshwjMlE7ozSUy63m2sqc15I4XCFOn0nfWvzIOfmXIUjCNRgH7c01GGMyhP2yfSbbOr4sJfjG0XOxZLzzIAc/tbEUBZAe+aAfMnfQnNH47IHTcvazCvoVlR7RoXVVOG5pJ7559Ny8+2k9hk7T3Tk02N55yzlZLLUnxuMXrrLcNqyxGj89Zzk2zRqFLxw8A9s3ZK8Rffk+/i3jpc8aWkTr/WeNAgDs2j1wAX5i7xJuPNbfQOZtSy/V0aRfmivzd5qyv/XxymSK0rDSWZ4tqlhppNDon+8fZW62ZVEpZRWhLCXY0zBEdd3kYSGlxlu7Q5hqahUcQc9JQAFtfSqKpsryFFZPasMBmYKYmWIbLOzOJTJ7H7MG8LtPXlhUevwmIjhv3UR0t9qbi2V1G7b6q19/yCx3CSMq0sZpI7J60L/m08iDRZkKon4klNbIorUz6odMR2FYeqDqdGWc3bvS/4+aDaRMqhlW43ibM3PX2yYDk/b2Nn0B2p2p8B44IbpDaN1ipZEi4cbD+7DXtBG25zRFnfGWaNajEkf6wnZQ9fu5nQMRYk9ZOQ4X7TkpZx+n6/4NFDLi30iRRDce3odrDsjt0Qua2TXeWp+9lmlVeSqnMjYwPC5e15fbjrrGgKMl11Sme3Zb6nJHdVD8OV1WY1STdw2BVqMGvnH0XHzrmLn4z8MHGki0jkWtcamxpiLvsNpEO+6nAz9XZ6YcteY+q9P64zlnv9y1PD0Ete9IYMV2r1MYGG1OYyrUtU38kbxPFGOLx8V/8W4nhQ797WJa+2Bcd/CM/qGBwxq8WbA+NAkdJjV7TOElPrys+GuLEWtOXzXONGproQqsscfIrOJJ0ac1UPs1grhnWOGeuEWG+3S3SQF38bj0kNm4DZzQhtd5vZTBou6WgsPCNfqlVazcdER69MEPTlmMe3TLryT0tltS7ty2AN853tl8tbKUeFZ+6mrNbuCt1kUaXdDVgobqgQaS3VpPo64kPa8zuGWwImPzrUB9W/p/ABg6ATj8v4F1nzLff2Dh2Nxtw6akXzfrofTRj/b/Ee7Y6w5PztU9OD3XdkpL8obTstIYIbdsnYM/mkzujxMnwzDzPeAPmevNRHb9upFOaAXBmaOz1xQqtIyINjdTP7chacoLlNi9+u4A4Gfnruj/uboi5Xj9OEoWLf/5FbzEbvRDfbTGLx4y0/V5omZuZt3XrqHmPT1m2e/w+WMKnre7tS5nWLhZBf32Y+fhyn0Lz2nVztXaUI3JI+MdOI2yzRjdhME10elBPmxeh+U2bcjqZpvBuxKr3KSRv3MpUGHR+F+TqVinorPq37DaYRjXNM6Tc80dPhc/2PcH2Ni10ZPzRQkrjRFSlhJUFBlGPGxrJw/Hby9Zg99ctDrspBTlgvUTcejc0dgwNbvVu1AgiXtPWQzAXmt5qTD2FuZjXG6lXteqm28eW6EqhOUcLdZBI+1X56/Ew2cv6//99uPm4dYj53jSeHDO2gk5rxlDpVu9zx0nDMxh1IaeD9EFwBqUGT45OGbzmg6b14HHzlvhqCLmdq25KpNhgLM6mlBt8vp+M0bmvEaUzxU2Gh/syBdxuGNILXZctQEzRjd58l7xZbhPFmo1O+x7wIZrgVoXvcNH/hA45UnnxwWsvSGZDQnxrqFQJNVXV9hqKayw2VugzV8JUnNtJa7Ydwoqy/Kn8YenLcn6XStjmq3VWKp+ef4q7D3dXiV6Vof1w1dfoL/+0NzeHTNDM0NlWTeMp9aG6qx1M1vrq11FSzWz9/TcioixrGN13UwyGcHwwBlL+39eMq4FF+05CRfvFa8IiiKC4YblC/xy7OJObDEsb2M2LPbCDROxl837B5HG6yHWZNCmH3qZuXFqEU9TBcpsjaOA2Ue7e9/R84DmTnfHUtFYaSRfrZ9iPVzV7qLKd25bmDeSYj5uh4mZPW+mjcptfZ8wrB5X7jtw8zTrDdswpbQrkIMqy1BbldvbaHfeqjIEG0j/XNgpK8dZfv8xHT1IHrKzIL2TcmeTrqdRRHDkorGoM7nu40xEPLuf1VSW4RJDpVokN28fvbjTdn7VvtOtC8cUnT6KN7Osa2e6SrFDywfmXSe80nrcw7mvaVFTExgAhtL4zZKvzFrzNa02Kw0ThtXjmCXuWpaMQSuszLER4OW7J5gv67Bb/5QxeU5cd/AMW2mIC+3T6h+K3zpmruk+Ttx90qKs31dPasv6Xb8WnP78Vo0PR+kD5jhcQoCIzJ22apytBp9RTc57LG23xs0AABf8SURBVI3Dged3Dkn/4PCGYmeeJSWb2SVTW1m4EWdCm71laaxo8Qz8mncdSVrPYtcKoGEUsOgMb857zIPAUQ94cy7yBCuNlAiX7TMZ15qE6J803F4gnNuOnVdwn4qylOmDqFB5JmkPj92GtamAdFQ5p4zzxyaPzP6uRg5OFzprq8pxw8dm4VaL9be+fJj5GnHpdbLMv51ZmTkoqya2mW6n5LAazmrWo6C9pAW0SnxvgQvj2urxi/NX5t3nwg0TcfdJi3BgngAhVRWFix/a3HDjvcLKaavGAwDaGkp02QPK6xP7FB4uftKKbtxuozxgpWd4utI5YnAww7wjoTozraSmGTjjGWD4VG/OO3Im0F54nWYKDiuNFGmFopVqDp7djjmZyH8jBw/CM5fugY+v7bEVkGZ4Y3VOxa7NoiVdP6TtzNXpAkqNLnBDKZQxtT+B8W82sDad9TGaP1+5Pms9q5GDB/X3MqztzR3SvKZ3GIZYrH9VlhKUWwSQqsqESzcOG540ogF/vnI9ltscIk3xdcH6ifjp2faWe+jM3G/GZyJ7lkB29tzYllocvbgTTbWVGNeWjsJqdl/s70XMQ7vF6O8f2/Msl7PPjJHYcdUG1NjoUaJk6e/hy1xsZnm30UZgqrqqcsy1cW1aOWl5N75/4kJMbx9ceOc4kxQgZUDnMmCUecMtJQ8rjRSI+qpyfO8E+2svab1ZGzMBZQrNMxCR/gWmN04bgdqqcpywrAtlKSlYkTvKsO5ffVV5nkrjwM+TM3Mc9ymxyH6f2jQVbQ1VOUPJTls1HvM6m01DlBvnj6VSgpu3mLcgzrWxzpV+SLBWsDxodm6vxtePmoNTV44zXQQ8lacH+IEzltoOtkPRZyfC59aFY/CFQ2bg7pMW4dC51mH2KT/9bWGP3mEoTwkOnpNuUPrcgdMBpBdQ1+4fWk+wWWORlkf1jYdrHSzrRKXjwMz9f/ww8+ViAKCtvvCwarvTZqyUl6WSX2EE0hn94n8Dh98VdkooQKw0UiDmdg7BrA77i94OrP1qXbAfXJPdathQXYGnL1mDc/bIDqXvdGK7PqCFHWUpQX3CAl7ks3l2O355/qqc11vqqvBfx87P6kHUmK1bWczDOWsaaZ5rpHNoHU5fPd7xEg3drXVYX+IBjOLMzrwk433h4o29qCovw5RRjf2NHKUwcsBrF+l6Atuba/CnK9djfOb7WNObOxz8YENjT3lZCtMyhe7JI9INc51D61AbQhRtio+9p6d7mVszFcNdhgw+d2yzZUOhttbquet6/E0kUcyVTkmXYkX1z5uzLrUNa6jGa+98CGBgKEpDtfN10fJVKIyVHat1NBmN05w2ZPictT34zhN/t3WMSf0yh9n3sDuuK6pT0TqH1uLPO98GACwdPxSf2TwNsy53H0BBq7TkW9ibzC2bYD3kO18W1c9bvOvEhXjng4+yhpk2DqrA2x/s8iSNlHy7DQ+S+jzrBW+YOhwretaiWjfP9tSV4zB3rP2GbqJSwJ5GCoTTFvvFmSFLi8al5xaYBUIwWwTaa8Y5b8Maixu6Umq0IDXaeol2aFEXJwyz7i1aPakNZ+8xAb+9ZE3/awxaUrpW6CoqN2+ZjSF1VTnzobUhytpyDO3N1oEq2hqqseOqDXkrQGYu2nMS7txmHmWZzGlle2P+5bxEKsbS8dl591P75wbKA4CuTFTuQZVlWQ3Ip68ejwXdLhafJ0owVhopEE47gWaPacZfPrneckjreet6sOfUgeGDTuoLPz5zKarKBy79fMFN9QuLaxZnlvHQH2a25lurg4pS0uw2BCVwYo/eYbhj2wLTOYqaspTgxOXdqNf1LJ+ztgeHz2fPUKnThqBpgZq0S/D4pV3p7VqgDBEsn2AeWdWtIxeNxYxMZN6k+/xB0/HAGUscHWN2O9B6d5odTgsgymf0kJqsZ7vV9XXvKYsDShFR/LHSSL4qpu8n37DR45Z22Z6n9o2j5ua89ovzBkLGe9E/pfV6VqQGstSvLliFHVdt8ODs8TMxs9RJZbm9W8yFGyZm/T5zdJPjeYjNtZX4xN6THR1DyfW5A6dj3eRh/RFRteHL+qtK6+Wa1VEaFT0v7T19JLpbna1pZ9Z4uKKnFZdsnIQLDPcA63NwGDrZY+dKCWLEElFScPwH+WpgodviztNqEvVMX3jIV8FYNC57iInAebCb7PdN/68fTnX7cfPx4LP/wiAGawAA3HB4H/7w0pu2/x7rGHSGPDZ5ZCO+pFvDcyC41sA+2h3k5BXdwSWshJmt8Soi2LJwrMUR+mPT/ydt3VsiorhgTyP5akFXC8YMqcGpK8cXdZ7m2kr0jshe/N2rBmetwmk11OraA6ZlTYif35WeZ9nePBDGv7u1Dscs6fQmQQnQOKiiPwiO5patXKSXwqPdLvSNPdowajfzYZ+4cBWeumhN4R2pX//8RRcVv4+KGPJOpU0bmq538opu/OHytSGkhii+2NNIvmqsqcBDNhfWLmSQYRiJWXAcO4y9ktrcyPKUeRvKplmjsGnWqP7fT1jahX1mjMTIwdaBNCiX06AiRF5aPakNV/3Ps9h7+sC6qrttRGm2MsRkaRnKr76qHPM6m00L8YV8/qDp+PwDf+TfnWzTGpZPWzUuZ9uZaybkvEZE+bHSSLFhrCLWVTlfXgNAzkLvWiFEW9ep0PCnVEpYYSxCDYfwkk+0ReTNdA2ty5ljPDDU3M9UlYYzV48vGJAslRL817HzXZ1/YXcLFjKaJbmgvy4H11T0L9VFRM6w0kihcNPSbHTg7Hacf+dvHR3zl0+ut5z/+NGudAmynCVI39yxbQFGNLLCTd7SGpQ6W3KjHeezprcNj/35layh5uTOyStze3OIokB04a8eOmsZ3nr/oxBTQxRfrDRSoH5wymK89u4HWNBVfIuxk4AI/3XsPNRVlecNmDO4Jt1zuXS8t2H4acBMw3IET1y4KqSUUJIMBNxy1uCzZcEY7D9rVNbSLUSULNk9jZUYXMPlXYjcYKWRAjXJEMymWGetGY/P//iPBfeb1zmk4D5tDdV45JzlGN6YG6mV/MH5SeSFU1eOw5vvfYSD5liv7WlGRFhhJEo4jh0i8gYrjRQ7tx87r//nk1aMw0krvBsWxWFqRPHTVFuJazdPCzsZRBRBTtf8JSJzXHKDYsdNuHYiIiIqHftMHwGAa3sSeYWVRiIiIiJKlE8fMA1PX8K1VIm8wuGpFBuqf001b843q6MJB+jWXyQiIqJkKC9LoaGMfSNEXmGlkWIjEyDRs/kJ3zthgSfnISIiIiJKMjbBUGwM9DRyfgIRERERUVBYaaTYOHReBwBgNCOcEhEREREFhsNTKTY297Vjc5+zddiIiIiIiKg47GkkIiIiIiIiS6w0EhERERERkSVWGomIiIiIiMhSIJVGEakSkZtE5AUReVNEnhSRdbrtK0XkWRF5R0QeFJEOw7FfFZE3ROQlETnDcG7LY4mIiIiIiKg4QfU0lgP4G4ClABoBbAfwbREZIyItAO7IvNYM4HEAt+uOvQTAOAAdAJYDOEdE1gKAjWOJiIiIiIioCIFET1VKvY105U9zj4j8BcAsAEMAPKOU+g4AiMglAF4WkR6l1LMADgewVSn1KoBXReRGAFsA3AdgvwLHEhERERERURFCmdMoIm0AxgN4BkAvgKe0bZkK5vMAekWkCcAI/fbMz72Zny2PNXnPY0XkcRF5fOfOnd5+ICIiIiIiooQKvNIoIhUAvgnga5newDoArxt2ex1AfWYbDNu1bShwbBal1A1KqT6lVN/QoUOL+xBEREREREQlItBKo4ikAHwdwAcATsq8/BaABsOuDQDezGyDYbu2rdCxREREREREVKTAKo0iIgBuAtAGYJNS6sPMpmcATNPtVwugC+m5iq8CeFG/PfPzM4WO9eljEFHEHbekEzdvmR12MoiIiIgSI8iexi8BmAhgo1LqXd3rdwKYLCKbRKQawEUAntYFsrkVwIUi0iQiPQCOAXCLzWOJqMSct34ilve0hp0MIiIiosQIap3GDgDHAZgO4CUReSvz71Cl1E4AmwBcAeBVAHMBHKQ7/GKkg9u8AOBhANcope4DABvHEhERERERURFEKRV2GgLX19enHn/88bCTQUREREREFAoReUIp1Wdn31CW3CAiIiIiIqJ4YKWRiIiIiIiILLHSSERERERERJZYaSQiIiIiIiJLrDQSERERERGRJVYaiYiIiIiIyBIrjURERERERGSJlUYiIiIiIiKyxEojERERERERWWKlkYiIiIiIiCyx0khERERERESWWGkkIiIiIiIiS6w0EhERERERkSVWGomIiIiIiMgSK41ERERERERkiZVGIiIiIiIisiRKqbDTEDgReRPAH4o8TSOA1z1Ijl4LgJc9PifgfVr9+Ox+nDcu6YzTOf06bymfMw75ntdSPM7p13njck4/zutXOv3I93H47HE5p1/njcs5/ThvXNLp1zmj+qyfoJSqt7WnUqrk/gF43INz3BDFdAWRVj8+eymnM07njFNaY3TOyOd7XkvxOGec0hqXz+9jOj3P93H47HE5Z5zSGpfPH5d0+njOSD7rnaSLw1PduzvsBDjgdVr9+uylms44ndOv85byOf3iZVp5LcXjnH6dNy7n9OO8pZrn/ThfnM7p13njck4/zhuXdPp1Tr8EltZSHZ76uFKqL+x0GEU1XUTkH+Z7otLDfE9UWqKa552kq1R7Gm8IOwEWopouIvIP8z1R6WG+JyotUc3zttNVkj2NREREREREZE+p9jQSRZqI3CIil4edDiIKBvM8Uelhvqc4YaWRKEAi8pCIHB12OogoGMzzRKWH+Z6SiJVGIiIiIiIissRKY4DY8kQaEdkiIo8aXlMi0h1Wmsg/zPvEPF9amOcJYL4vJaWQ51lpJCIiIiIiIkusNIZARJpE5B4R2Skir2Z+HqXb/pCIXCYiPxORN0XkfhFpCTPNRFQ85n2i0sI8T1RakpznWWkMRwrAzQA6AIwG8C6A/zDscwiArQBaAVQCOCvIBBKRL5j3iUoL8zxRaUlsni8POwGlSCn1CoDvab+LyBUAHjTsdrNS6rnM9m8D2Cu4FFIA3gZQo/0iIsNCTAsFhHm/pDHPlyDm+ZLHfF9ikpzn2dMYAhGpEZH/FJEXROQNAD8FMFhEynS7vaT7+R0AdYEmkvz2FIBeEZkuItUALgk5PRQA5v2SxjxfgpjnSx7zfYlJcp5npTEcZwKYAGCuUqoBwJLM6xJekihAKtPC9AkADwD4I4BH8x9CCcG8X5qY50sX83zpYr4vTYnN8xyeGo56pMc4vyYizQAuDjk9FJwGAK8AgFLqCgBX6LZ9Q/tBKbUl2GRRQJj3Sw/zfGljni9NzPelK7F5nj2NwVMAPgdgEICXAfwCwH2hpogCISK9ACYCeDLstFAomPdLDPN8yWOeL0HM9yUt0XlelFJhp6FkiMj/AviEUur7YaeFgiUiVwM4DMDVSqnrwk4PBYt5v/Qwz5c25vnSxHxfukohz7PSGJBMy9PjAHqUUi+EnR4iCgbzPlFpYZ4nKi2lkuc5PDUAmZan+wF8PMkXExFlY94nKi3M80SlpZTyPHsaiYiIiIiIyBJ7GomIiIiIiMgSK41ERERERERkiZVGH4hIlYjcJCIviMibIvKkiKzTbV8pIs+KyDsi8qCIdOi2bRaRn2e2PWQ473gRuUtEdorIv0XkhyIyIcCPRkQWfMz3LSLyMxF5RUReE5HHRGRhgB+NiCz4le8N73GEiCgROdrnj0NEBfiZ5zP5/G0ReSvz7ysBfSxbWGn0RzmAvwFYCqARwHYA3xaRMSLSAuCOzGvNSEdbul137L+RXuPlKpPzDgbw3wAmAGgD8CsAd/n0GYjIGb/y/VsAjgQwFEATgKsB3C0i5T59DiKyz698DwAQkSYA5wF4xpfUE5FTvuZ5ANOUUnWZf5FqKGIgnICIyNMALgUwBMAWpdSCzOu1SC8AOkMp9axu/6MBHKaUWpbnnM0AXgHQopR6xcfkE5ELXud7EUkB2IB041GbUupf/n4CInLKy3wvIl8G8DSAzQC+oZSKVM8DEXmX50VEARinlPpTUGl3gj2NARCRNgDjkW4p7AXwlLZNKfU2gOczrzu1BMBLrDASRY/X+T7zUHoP6QrjV1hhJIoeL/O9iMwB0Afgy96nlIi84EMZ/6ci8pKI3CEiYzxMatFYafSZiFQA+CaAr2VaGeoAvG7Y7XUA9Q7POwrAFwGc4UU6icg7fuR7pdRUAA0ADgHwqEdJJSKPeJnvRaQMwPUATlZK7fY6rURUPB+e9UsBjAHQA+AfAO6J0lSUyCQkiTJDyb4O4AMAJ2Vefgvpgp9eA4A3HZx3KNILiV6vlLrNg6QSkUf8yvcAoJR6D8BtIvJ7EfmNUuqpggcRke98yPfbADytlHrMs0QSkWf8eNYrpX6a+fEDETkVwBsAJgL4bdEJ9gB7Gn0iIgLgJqQD1mxSSn2Y2fQMgGm6/WoBdMHmJPfMpPj7Afy3UuoKTxNNREXxK9+bqADQWURSicgjPuX7lQD2zQxTewnAAgDXish/eJp4InIswGe9AiBFJNVTrDT650tItw5sVEq9q3v9TgCTRWSTiFQDuAjp1sRngfSQlMzr5QBSIlKd6f6GiDQA+CGAnymlzg3ywxCRLX7k+3kiskhEKkVkkIh8HOkH1S+D/GBEZMnzfA9gS+ac0zP/Hkc60MYFQXwgIsrLj2d9r4hMz+xTB+BaAP8PwO8D/Fx5sdLog8yaLMchfaN/SbfeyqFKqZ0ANgG4AsCrAOYCOEh3+McAvIv0Bbk48/ONmW37ApgNYKvunG+JyOhAPhgRWfIx31chPX/5FaQfIOsBbFBK/cP/T0VE+fiV75VSrymlXtL+IT0E7g2llHG+FBEFyMdnfRvSy3O8AeD/t3c3oVJXYRzHvz8qW3TVygi5lkWS2ctGohcXkVBEidEikcwuLVN3gbiQIqIo3EeRES7KIiUINIKMyE0GUqtejFDM6qYQaVcjQuVpMefScLl/Mr2oNd8PDMxwzjznYXY/zjMz++h9t3Fp3y3mOedfbkiSJEmSOnnTKEmSJEnqZGiUJEmSJHUyNEqSJEmSOhkaJUmSJEmdDI2SJEmSpE6GRkmSJElSJ0OjJElAkrnt/7YuONe9SJJ0PjE0SpIGVpL9Se4FqKoDVTVUVSfP4vmLk/x4ts6TJOl0GBolSZIkSZ0MjZKkgZTkDWAusK2Npa5LUkkubOufJHk+yadtfVuSWUk2JxlLsjvJtX31FiTZkeTXJN8mWd63tiTJ10mOJvkpydoklwAfAMOt/rEkw0luT7IryZEkPyd5Kcm0vlqVZE2S71q955LMa+8ZS7JlfP/4TWaS9Ul+aTerK8/OJyxJ+r8wNEqSBlJVjQAHgAeragjYMsm2R4ARYA4wD9gFbAIuB74BngFoAXAH8BZwJbACeDnJza3O68ATVTUduAX4uKp+Bx4ARttY7FBVjQIngSeBK4BFwD3Amgl93Q/cCtwJrAM2AiuBq1v9FX17Z7dac4DHgY1JbvhXH5YkaaAZGiVJ6rapqvZW1W/0bgX3VtVHVXUC2AosbPuWAvuralNVnaiqL4B3gWVt/ThwU5IZVXW4rU+qqj6vqs9anf3Aq8DdE7ZtqKqxqvoK+BL4sKr29fW5cML+p6vqz6raCbwPLEeSpFNkaJQkqduhvud/TPJ6qD2/BrijjZQeSXKE3s3f7Lb+MLAE+D7JziSLug5MMj/J9iQHk4wBL9C7KTydvgAOt1vNcd8Dw13nS5I0kaFRkjTIaorq/ADsrKpL+x5DVbUaoKp2V9VD9EZX3+PvUdjJzn8F2ANcX1UzgPVAzqC3y9r47Li5wOgZ1JMkDRhDoyRpkB0CrpuCOtuB+UlGklzUHrcluTHJtCQrk8ysquPAGL3vLY6fPyvJzL5a09ueY0kWAKunoL9nWx930Rul3ToFNSVJA8LQKEkaZC8CT7Vx0mX/tLlLVR0F7qP3wzmjwEFgA3Bx2zIC7G/jpquAx9r79gBvA/vaWOswsBZ4FDgKvAa8c7p9NQeBw62vzcCqdq4kSackVVM1mSNJks4nSRYDb1bVVee6F0nSf5c3jZIkSZKkToZGSZIkSVInx1MlSZIkSZ28aZQkSZIkdTI0SpIkSZI6GRolSZIkSZ0MjZIkSZKkToZGSZIkSVKnvwD6Kj/J379GDgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "energy[energy.index < valid_start_dt][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[(energy.index >=valid_start_dt) & (energy.index < test_start_dt)][['load']] \\\n", + " .rename(columns={'load':'validation'}), how='outer') \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'validation', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data preparation - training set\n", + "\n", + "For this example, we will set *T=6*. This means that the input for each sample is a vector of the prevous 6 hours of the energy load. The choice of *T=6* was arbitrary but should be selected through experimentation.\n", + "\n", + "*HORIZON=1* specifies that we have a forecasting horizon of 1 (*t+1*)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAADUCAYAAACrkCQQAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABrKSURBVHhe7d3djxxVesfx/Ik2LA7LS4IgwYQNYdEi3hYJ0IogBBdAhIwUEZIILWBQLHFD4hU3kYKQpQiBN76IJS58gSGSr+wbX1X0tPpAbfN7putUnXqeMz3fj/SVGc/Y5zA13f10dc34zwYAAAAAq2PwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAAACAAgzcAAAAQgMEbAAAACMDgDQAAAARg8AYAAAACMHgDAAAAARi8AQAAgAAM3gAAAEAABm8AAAAgwPzB+38+pqlFUuuTXxS1NvllUXshHYBj7V+//I4m1hKDd0SR1PrkF0WtTX5Z1F5Il0XthfwyqH2QXxI1YJKuJQbviCKp9ckvilqb/LKovZAui9oL+WVQ+yC/JGrAJF1LDN4RRVLrk18UtTb5ZVF7IV0WtRfyy6D2QX5J1IBJupYYvCOKpNYnvyhqbfLLovZCuixqL+SXQe2D/JKoAZN0LTF4RxRJrU9+UdTa5JdF7YV0WdReyC+D2gf5JVEDJulaYvCOKJJan/yiqLXJL4vaC+myqL2QXwa1D/JLogZM0rXE4B1RJLU++UVRa5NfFrUX0mVReyG/DGof5JdEDZika4nBO6JIan3yi6LWJr8sai+ky6L2Qn4Z1D7IL4kaMEnXEoN3RJHU+uQXRa1NflnUXkiXRe2F/DKofZBfEjVgkq4lBu+IIqn1yS+KWpv8sqi9kC6L2gv5ZVD7IL8kasAkXUsM3hFFUuuTXxS1NvllUXshXRa1F/LLoPZBfknUgEm6lhi8I4qk1ie/KGpt8sui9kK6LGov5JdB7YP8kqgBk3QtMXhHFEmtT35R1Nrkl0XthXRZ1F7IL4PaB/klUQMm6Vpi8I4oklqf/KKotckvi9oL6bKovZBfBrUP8kuiBkzStcTgHVEktT75RVFrk18WtRfSZVF7Ib8Mah/kl0QNmKRricE7okhqffKLotYmvyxqL6TLovZCfhnUPsgviRowSdcSg3dEkdT65BdFrU1+WdReSJdF7YX8Mqh9kF8SNWCSriUG74giqfXJL4pam/yyqL2QLovaC/llUPsgvyRqwCRdSwzeEUVS65NfFLU2+WVReyFdFrUX8sug9kF+SdSASbqWGLwjiqTWJ78oam3yy6L2Qrosai/kl0Htg/ySqAGTdC0xeEcUSa1PflHU2uSXRe2FdFnUXsgvg9oH+SVRAybpWmLwjiiSWp/8oqi1yS+L2gvpsqi9kF8GtQ/yS6IGTNK1xOAdUSS1PvlFUWuTXxa1F9JlUXshvwxqH+SXRA2YpGuJwTuiSGp98oui1ia/LGovpMui9kJ+GdQ+yC+JGjBJ1xKDd0SR1PrkF0WtTX5Z1F5Il0XthfwyqH2QXxI1YJKupRM7eL/w5N8Mp06dmpR9rPo7JhdJrX9g/e1f/8XmuDz0l/fI91cVRa19jPrvC28O//C73wxPPfZXf3LbsGPw6m//bvjPD16Tf252WdRejlH/91//PLz/xm83x+mXf37Xj8fJ/tvux/7t3Evyz80qi9rLMc9uX3bc7L7N/lt9zOwyqH2QXxI1YB5aL//Tp8Mvztwt31dTSyd28B4/KO3rH199Wv4dk4uk1j+gbMgrx2XxEyIrilr7mGQD9/j24GUfp/78rLKovRyDbOCeepxsKLePV39PVVnUXo5Z9vn/9/f+fnN/Zk9ex8dHffyiMqh9kF8SNWAeUk+/+s6Ptyv1/ppa6mrwtjsjG3LtgaH5GbRR9nfbgbDhW72/eZHU+guzMzE25Nqv6v1R2dm6ciOymuwnilq7QeVMtJ0pU+9vkd0ebTiwz/fu2TgbHsorEM2OiZVF7WVhEcfIjkM5BjbM2dvj4dr2MH6V71g9ad2l9tKotY+V3YeNj8NudltTf25RGdQ+OihqxqguiRowa3r+jX8ZHv71M8NvfveGfH9W71z842Zf49uW+riaWupq8B4/eKj3t6qcGbIHKPX+5kVS6y/I7qjKMcm8o7IHxLKPpvuJotZuUPlaXuUBe9u+z7N9jZThu9mT2SxqLwuLOEY2TNhA97//8Y58f2n8itG+j91bFrWXRq19rMZnt+02Y+vZ7asM4/a2+nOLyqD20UFRM0Z1SdSAWVP5XPY0eNuTAbu0xPZ1/0OP/LhH9bE1tdTV4G0PHvYJWvMByipDQtPrHY8qklp/QfagUL5w1fsjsgGhXBpUHhib7SeKWrtBdluxz8Xiy6EWNn5AO1ZPiHapvSws4hjtvhLhNX4ivfjViSxqL41a81jZ/ZgN2PZ5333SU+7f7HY0/v0mZVD76KCoGaO6JGrArKncl2QP3naG2y4r+eX9D2z2Y4O3vW3Xd5c9qj9XU0tdDd4RD1B2h1cOxPil2FWLpNZfUPYd1fhsqp2tswct++9mLwVHUWs3qHwtNxl2F9Z0L1nUXhbW0zGyylnXxfezWdReGpVxrMaPSbsDeZMyqH10UMSMMaskasCsqXzdZg/etn7Zy6+efml488IXm99n8J5Q+QSteadXrhNuNrhNKZJaf0HZd1Rl6C6Df3mpvNlLslHU2guz24l9Liz1/ujKXhi8f6q3Y2QxeOuyjlV5tWi17znKoPbRQeX4rjljzCqJGjBrKp/PFoP3a7//w2ZQtrPX6v1HZWe3xwN3icFbtPvNcl72QKH+/JzK4BY6SEZS61c0Pvuyr1XOzowqx8qG7/LqRBkaml0mFEWtPaPxNbpHZR+n/vxaja/Bn3rZw5FlUXuprNdjVCrrL74NZVF7mVkPx6pcPtfkG15VGdQ+EsqYMWaVRA2YRzUeZPdlH6v+Dq8HH31i1p87KgZv0dQ7vZZ3SOVauibDwdQiqfUrmnpHtdrZmW3la2M8dI+vT2029EdRa8+oPPHYV7OfLjIxeyJr6zZ7AMui9lJZr8fIGl+Lv/g2lEXtZWY9HKvVX1XMoPaRUMaMMaskasA8KgbvNrq51KTcQNa8AZSzcuHPbiOp9WdWhvC1h+zdyteCrTt+glReCm66nyhq7YWVoSFjgBtnx6g8oW32zWFZ1F4W1MsxKu1eurWoLGovDco6VramtdrlDxnUPpKLmDFml0QNmDWVr90Wl5oweE+hvngWVB4Q1rzTK2fldrOhwW6MzS5f2C2SWn9mq78EKhoP+7uvSpTj12RoKEVRay9ofPY/9NWbnWxYKEO3PbCpj5lVFrWXmfVyjErjs39N9pNF7WVhWcfK1irrllf2mpdB7SO5iBljdknUgFlT+dpl8K7TzeBdPjlrftNDueEdlZ31aH7HG0mtP7Pob6w8aui2VtlPFLX2gsrZf0u9f81sbXvwKsej+TGxsqi9zCzzGO02HrqbnWDIovaysKxjZbcjW9Mem9T7m5RB7SO5cnzXnDFml0QNmDWVzymDd50uBu+oOz3vBme/P35gssGv6TcORlLrz6x8PiLuqPYN3VY5s9p0P1HU2gta5ey/6KhvtrUnqfaqyCrfZJtF7WVmUcfoqOzYjJ8gNX1VL4vay8KyjlV53Gn6atFuGdQ+EouaMWaXRA2YNZXPKYN3nS4G73Knt+qz/gnZwFeGu6Z3wJHU+jMa31Gt9hLotilDt/3+KvuJotZeUBmmmv1YRadybHazoduGhdWelGVRe5lZ1DHysuvty/3ZsX8lb0ztZWFZxyrkuvIMah+J9TJjuCVRA2ZN9jm1GLzrdDF42zXE9onZd6c3Hr6Oask1yeUGajU7kxdJrT+jmpdAy4P7UdnHqD87Zei2ysc1v+OMotZeUPmc7/tmxnIc9zXlgd+e8NigbR9rx6H82aZnUUtZ1F5mlnGMrN2z3Ha/usqT5yxqLwvLuj2Vj2/+pGhcBrWPxKbOGGklUQNmTeXrd+rgXT5+bjacq7/Xi8H7iMqz/n0P4FPv9Gx4Vn9+SuOX1pudzYuk1p/R1JdApz4ZUq8glDX2Dd3W1P1UF0WtPbPx1+i+J4flAWdfc77Wx7fHZj/NpJRF7WVGWcfI7vvKEGn3q6u9ImFlUXtZUNaxso8pH6/e36wMah+JTZ0x0kqiBsyaytcvg3ed9ME77Fl/RWU/zR60Iqn1Z1TOaE49y1ZbzdBtrbafKGrtmdmQWz536v2RleNoD2zq/bPLovYyo+hjZLeh8asQNoCvcpZ7XBa1lwVl3Z7Kq6vqpETTMqh9JNXjjPGzkqgBs6byeeVSkzrpg3e507PU+zMq+zmpg/f4jmqNM2bjMz1LW7y/KGrtmdnLpfb/vvoD9oTGx3Lf2cKqsqi9zCjyGNlZvHKW24bvsOEii9rLgrJuT7aerbv65Q8Z1D6S6nHG+FlJ1IBZU/m8MnjXSR+8w571T2yVoTOSWr+y8TCl3r+0csxbpP7+qqKotWdWHrDt86jeH9n4a6XZ7cXKovYyo6hjVF5xSPl6yKL2sqCs21N5smSDoXp/szKofSRVHm96mTFkSdSAWVO572HwrpM+ePc0RFirPDuOpNavrLc7qlX3E0WtPbPy9dl00J3ZePDmjPdPRRyj2su1mpdF7WVBEcdqNzteZd2mtxtVBrWPpHqbMWRJ1IBZU/kaZvCukz54hz3rn1i5kS75ySg/K5Jav7LevgN81f1EUWvPaPyAvfo1vBMqP22m+fWxWdReKos4RuXyiLSh28qi9jKzrNvTarcbVQa1j6R6mzFkSdSAWdMvzty9+dwyeNdJHbzXvpa4tnJn2Hw/kdT6lZVv0urlDMGq35EeRa09o56uV7Tbbzk2x/anzexSe6ls7WM0fpUh9X4zi9rLzLJuT+WJU9MTPF4Z1D4S6m3GcEuiBsyayrDM4F0ndfCOeACZehZj/KPRmp9ZjaTWr6x8HnoYvMd3nKuc2Yui1p5RuezGUu9f2tSfGmPHpTxBszNKU29nk8ui9lLZ2seoXGISMrQdVRa1l5mtfay8Qk9uZFD7SKibJ6n7SqIGzJrKsPzwr5+R76+JwXsK9cVT2XioKndA9nt2ZrPV2U17cLLLR+zv2x3c7G37/XLWzmp+5s6KpNavrDwo2OeuDFR2ZijkQWKn8R2nev/ioqi1ZzQ+Q1ceSOwaUTs2S5+YlM+13R7syae9PR6o7b/t9+x95eXb1S51yKL2Utmax8gqf/cqrwDVlEXtZWZrHyuv3TVXLYPaR0IRM0aTkqgBs6anX/3pZ+Dbf5fff+ncR8ObF774k4/d12u//8NmUH7n4h/l++fE4O1UrqnerdUdUhkQ9mUfZ3fC6u9YXCS1fmV2B6U+R+WOK7Kyl1W+sdKKotaekT1oeF/T6uNrsgeiqbcXy47Jat8YlkXtpbI1j5HdL6q/d2rq75xdFrWXma15rLzGx9DWVx/TtAxqH0mtPWM0KYkaMGuyIfn+hx6Rn9+WZ67nxuDtZHc85ZvnLDvb2nLAs2HaztCpG5+tZWe4V3/mG0mtP6PxWU07A2qfp5AHiZ3K10bzy39KUdTaM7MzceVVCcu+tls9abRjbLcHO967txn7erDfs9vnmmcDN2VRe5nRWsfIe1I8JduD+jtnl0XtZUFr3p5U5bJGW1O9v3kZ1D6SWnvGaFISNWDWZsP3r55+6cdvtLRf7dKT2jPea8TgfZKLpNYnvyhqbfLLovZCuixqL+SXQe2D/JKoAZN0LTF4RxRJrU9+UdTa5JdF7YV0WdReyC+D2gf5JVEDJulaYvCOKJJan/yiqLXJL4vaC+myqL2QXwa1D/JLogZM0rXE4B1RJLU++UVRa5NfFrUX0mVReyG/DGof5JdEDZika4nBO6JIan3yi6LWJr8sai+ky6L2Qn4Z1D7IL4kaMEnXEoN3RJHU+uQXRa1NflnUXkiXRe2F/DKofZBfEjVgkq4lBu+IIqn1yS+KWpv8sqi9kC6L2gv5ZVD7IL8kasAkXUsM3hFFUuuTXxS1NvllUXshXRa1F/LLoPZBfknUgEm6lhi8I4qk1ie/KGpt8sui9kK6LGov5JdB7YP8kqgBk3QtMXhHFEmtT35R1Nrkl0XthXRZ1F7IL4PaB/klUQMm6Vpi8I4oklqf/KKotckvi9oL6bKovZBfBrUP8kuiBkzStcTgHVEktT75RVFrk18WtRfSZVF7Ib8Mah/kl0QNmKRricE7okhqffKLotYmvyxqL6TLovZCfhnUPsgviRowSdcSg3dEkdT65BdFrU1+WdReSJdF7YX8Mqh9kF8SNWCSriUG74giqfXJL4pam/yyqL2QLovaC/llUPsgvyRqwCRdSwzeEUVS65NfFLU2+WVReyFdFrUX8sug9kF+SdSASbqWGLwjiqTWJ78oam3yy6L2Qrosai/kl0Htg/ySqAGTdC0xeEcUSa1PflHU2uSXRe2FdFnUXsgvg9oH+SVRAybpWmLwjiiSWp/8oqi1yS+L2gvpsqi9kF8GtQ/yS6IGTNK1xOAdUSS1PvlFUWuTXxa1F9JlUXshvwxqH+SXRA2YpGuJwTuiSGp98oui1ia/LGovpMui9kJ+GdQ+yC+JGjBJ1xKDd0SR1PrkF0WtTX5Z1F5Il0XthfwyqH2QXxI1YJKuJQbviCKp9ckvilqb/LKovZAui9oL+WVQ+yC/JGrAJF1LDN4RRVLrk18UtTb5ZVF7IV0WtRfyy6D2QX5J1IBJupbmD94AAAAAJmPwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAAACAAgzcAAAAQgMEbAAAACMDgDQAAAARg8AYAAAACMHgDAAAAARi8AQAAgAAM3gAAAEAABm8AAAAgAIM3AAAAEIDBGwAAAAjA4A0AAAAEYPAGAAAAAjB4AwAAAAEYvAEAAIAADN4AAABAAAZvAAAAIACDNwAAABCAwRsAAAAIwOANAAAABGDwBgAAAALMHrw//vjj7X8BAAAA2Gf24H3mzJnh9u3b27cAAABQw+Yom6dwcswevO+7777h5s2b27cAAABQw+Yom6dwcswevB988MHhxo0b27cAAABQw+Yom6dwcswevB955JHh+++/374FAACAGtevX9/MUzg5Zg/ejz322HDt2rXtWwAAAKhhc5TNUzg5Zg/eTz755HD16tXtWwAAAKhhc5TNUzg5Zg/ezz777HDlypXtWwAAAKhhc5TNUzg5Zg/eL7/88nDp0qXtWwAAAKhhc5TNUzg5Zg/eb7/99nDx4sXtWwAAAKhhc5TNUzg5Zg/e77///nD+/PntWwAAAKhhc5TNUzg5Zg/en3322XDu3LntWwAAAKhhc5TNUzg5Zg/eX3311fDiiy9u3wIAAEANm6NsnsLJMXvw/u6774azZ89u3wIAAEANm6NsnsLJMXvwNnffffdw69at7VsAAACYwuYnm6NwsiwavJ977rnhm2++2b4FAACAKWx+sjkKJ8uiwfu9994bPvzww+1bAAAAmOKjjz7azFE4WRYN3pcvXx6eeuqp7VsAAACYwuYnrho4eRYN3ubxxx8fLly4sH0LAAAAR7G5yeYnnDyLB+8vvvhieOCBB4bTp08TEaVn90d2vzTG/RQR9ZS6n8LJsHjwBoCeqDNJvDIHAOgBgzeAg2PXTtr3oBi+FwUA0AsGbwAHx37aUvlpAfar/fQAAACyMXgDODjjn4/LvzcAAOgFgzeAgzP+F+H4F3YBAL1g8AZwkM6ePTt8/fXXm18BAOgBgzeAg/TCCy8Mn3zyyeZXAAB6wOAN4CCdO3dueP311ze/AgDQAwZvAAfp/PnzwzPPPLP5FQCAHjB4AzhIFy9eHB599NHNrwAA9IDBG8BBunTp0uafZbZfAQDoAYM3gIN05cqV4Z577tn8CgBADxi8ARykq1evbn6Gt/0KAEAPGLwBHKRr164Nd9111+ZXAAB6wOAN4CBdv359uPPOOze/AgDQAwZvAAfpxo0bwx133LH5FQCAHjB4AzhIN2/eHE6fPr35FQCAHjB4AzhIt2/fHk6dOrX5FQCAHjB4AzhYNngDANALBm8AAAAgAIM3AAAAEIDBGwAAAAjA4A0AAAAEYPAGAAAAAjB4AwAAAAEYvAEAAIAADN4AAABAAAZvAAAAIACDNwAAABCAwRsAAAAIwOANAAAABGDwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAAACAAgzcAAAAQgMEbQLhvv/12+Pzzz2dlfzbDDz/8MHz66afDW2+9Nbzyyiub3n333eHLL7/cfgQAAEdj8AYQzgboU6dOzcoG30i3bt3aDNj33nuv3I9lHwMAwD4M3gDC2VlrG2ZVZZhV77NsaI9iA7Wd2bb9PPHEE5sz3rZ3+33LznbbEwEGbwDAFAzeALpSzizbpR3ZytD9/PPPM1wDABZj8AbQlV4G73I5jJ3pZugGALTA4A2gK70M3g8//PBmH5cvX97+DgAAyzB4A+hKD4O3Xbtte7BLTQAAaIXBG0BXehi87RsmbQ/8qEAAQEsM3gC60sPgXS4zyb7cBQBwWBi8AXRlzuBt12Hb2ena1D/GY99IaevbPsrbH3zwweabLO33LPspJ/ajDfmmSwBADQZvAF2ZM3iXH/tXmw3Qu2wYt/eVn2ZiH2Nv277s98rZ8PJ7fPMlAGAqBm8AXZkzeNvwW/5J+ZrsrPcu+7tsfRu4baC3/dg/nDM+u23DeRn27f1ckgIAmILBG0BX5gzeLdkwbuuXoVpdjlKUs+HR/4w9AOB4YvAG0JWeBm+7tvsotsfysVzvDQDYh8EbQFd6Gryn7IF/aAcAMBWDN4CuZA/e5RpvG6inKJeb2DXjAAAchcEbQFfmDN7lmyBrU/8ypV0yYuvb+6co32TJ4A0A2IfBG0BXbOCtHbztWmw781yb/SxupeYf0LG/xz5W/YQUAADGGLwBdGXO4N2aDeS2B/sxgkexs+Pl7HnmfgEAxwODN4Cu9DB4l39Ex/ZyFDvTbh+nLlkBAGAXgzeArvQweJty7bZdSqLY2fBytvuon/UNAEDB4A2gK70M3nYZif0T8bYX+9XObtt13PZNlOW6btsr13YDAKZi8AbQlV4Gb2PDt/2rlLaf3Wz45kw3AKAGgzeArtiwW+qF7cXOdNvlJRYDNwBgDgZvAAAAIACDNwAAABCAwRsAAAAIwOANAAAABGDwBgAAAAIweAMAAAABGLwBAACAAAzeAAAAQAAGbwAAACAAgzcAAAAQgMEbAAAACMDgDQAAAARg8AYAAAACMHgDAAAAARi8AQAAgNUNw/8DOEofgioOKPkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image('./images/one_step_forecast.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "T = 6\n", + "HORIZON = 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our data preparation for the training set will involve the following steps:\n", + "\n", + "1. Filter the original dataset to include only that time period reserved for the training set\n", + "2. Scale the time series such that the values fall within the interval (0, 1)\n", + "3. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example\n", + "4. Discard any samples with missing values\n", + "5. Transform this Pandas dataframe into a numpy array of shape (samples, features) for input into Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Filter the original dataset to include only that time period reserved for the training set" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create training set containing only the model features" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "train = energy.copy()[energy.index < valid_start_dt][['load']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Scale the time series such that the values fall within the interval (0, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Scale data to be in range (0, 1). This transformation should be calibrated on the training set only. This is to prevent information from the validation or test sets leaking into the training data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2012-01-01 00:00:000.22
2012-01-01 01:00:000.18
2012-01-01 02:00:000.14
2012-01-01 03:00:000.13
2012-01-01 04:00:000.13
2012-01-01 05:00:000.15
2012-01-01 06:00:000.18
2012-01-01 07:00:000.23
2012-01-01 08:00:000.29
2012-01-01 09:00:000.35
\n", + "
" + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 0.22\n", + "2012-01-01 01:00:00 0.18\n", + "2012-01-01 02:00:00 0.14\n", + "2012-01-01 03:00:00 0.13\n", + "2012-01-01 04:00:00 0.13\n", + "2012-01-01 05:00:00 0.15\n", + "2012-01-01 06:00:00 0.18\n", + "2012-01-01 07:00:00 0.23\n", + "2012-01-01 08:00:00 0.29\n", + "2012-01-01 09:00:00 0.35" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original vs scaled data:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD/CAYAAADi+OGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHV9JREFUeJzt3X2UFfWd5/H3R+CA0BBF1Iy60NFD0g4EBNromoj4lGTc9ZHMBDURcJSMbiYnx8kxmRwVRscxObImu0k0wSg+MjEqMFGzzoaNDzG70bQaiCiaZZXIBA0Q0tA8+ZDv/lF1neu1+3Y13Lq3bvfndc49uVW/+lV9uyT97d9D/UoRgZmZWW/2aXQAZmbWHJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDLJLWFI6qr4vC3pW2XlJ0taI2mHpEckjSsrGyrpVklbJb0m6bK84jQzs2wG53XiiGgpfZc0AngduDfdHgMsBS4CHgCuAe4Bjk2rLADGA+OA9wOPSHo+Ih6uds0xY8ZEa2trTX8OM7P+7umnn94UEQf2dlxuCaPCp4DfAz9Lt88BVkdEKYEsADZJaouINcAFwNyI2AJskXQzMAeomjBaW1vp6OjI5ycwM+unJK3Lcly9xjBmA3fEvy9cNQFYWSqMiO3AWmCCpP2BQ8rL0+8TujuxpHmSOiR1bNy4MZfgzcysDglD0ljgBOD2st0tQGfFoZ3AyLSMivJS2XtExKKIaI+I9gMP7LVFZWZme6geLYwLgCci4uWyfV3AqIrjRgHb0jIqyktlZmbWIPUYw7gA+FrFvtUk3VTAO4PiR5CMa2yRtAGYDPwkPWRyWsfMmtSbb77J+vXr2bVrV6NDGbCGDRvGYYcdxpAhQ/aofq4JQ9JxwKGks6PKLAOulzQTeAi4CliVDngD3AFcIakDOBi4GJibZ6xmlq/169czcuRIWltbkdTocAaciGDz5s2sX7+eD3zgA3t0jry7pGYDSyPiXd1JEbERmAlcC2wBjgFmlR0yn2QQfB3wGHB9b1NqzazYdu3axQEHHOBk0SCSOOCAA/aqhZdrCyMiPlelbAXQ1kPZbuDC9GNm/YSTRWPt7f330iBmZpZJvR7cMzN7l9avPFTT873ytf9Uk/OcdtppLFmyhP3226/HY6666iqmT5/OKaec0ufzP/rooyxcuJAHH3ww0/49MWPGDBYuXEh7e/ten6ucE4ZZFeW/1Gr1C8mKKSKICH784x/3euzVV19dh4iKx11SZjYg3HDDDUycOJGJEyfyzW9+E4BXXnmFI488kksvvZSpU6fy6quv0trayqZNmwC45ppraGtr49RTT+Xcc89l4cKFAMyZM4f77rsPSJYkmj9/PlOnTuXDH/4wa9Ykkz2feuopjjvuOKZMmcJxxx3Hiy++mDnWP/zhD5x11llMmjSJY489llWrVlU9586dO5k1axaTJk3i05/+NDt37qzNTavgFoaZ9XtPP/00ixcv5sknnyQiOOaYYzjhhBPYf//9efHFF1m8eDE33njju+p0dHRw//338+yzz/LWW28xdepUpk2b1u35x4wZwzPPPMONN97IwoUL+f73v09bWxuPP/44gwcPZsWKFXz1q1/l/vvvzxTv/PnzmTJlCsuXL+enP/0pF1xwAb/61a96POdNN93E8OHDWbVqFatWrWLq1Kl7fc+644RhZv3eE088wdlnn82IESMAOOecc/jZz37GGWecwbhx4zj22GO7rXPmmWey7777AnD66af3eP5zzjkHgGnTprF06VIAOjs7mT17Nr/5zW+QxJtvvtmneEvJ5aSTTmLz5s10dnaydevWbs/5+OOP84UvfAGASZMmMWnSpMzX6gt3SZlZv/fv656+VymJ9KVOpaFDhwIwaNAg3nrrLQCuvPJKTjzxRJ577jkeeOCBPj3/0N21JVU9Zz2mLDthmFm/N336dJYvX86OHTvYvn07y5Yt4/jjj69a52Mf+9g7v5S7urp46KG+zerq7Ozk0EMPBeC2227rc7x33303kMyeGjNmDKNGjerxnOXHP/fcc++MedSau6TMrCHqOets6tSpzJkzh4985CMAXHTRRUyZMoVXXnmlxzpHH300Z5xxBpMnT2bcuHG0t7fzvve9L/M1L7/8cmbPns0NN9zASSed1Kd4FyxYwNy5c5k0aRLDhw/n9ttvr3rOSy655J3jjzrqqHd+zlpTX5pdRdfe3h5+gZLVkqfV1s4LL7zAkUce2egw+qSrq4uWlhZ27NjB9OnTWbRoUW4DyvXS3X8HSU9HRK8PbbiFYbYHnEgGhnnz5vH888+za9cuZs+e3fTJYm85YZiZ9WDJkiWNDqFQPOhtZnXTn7rAm9He3n8nDDOri2HDhrF582YnjQYpvQ9j2LBhe3wOd0mZWV0cdthhrF+/no0bNzY6lAGr9Ma9PeWEYWZ1MWTIkD1+05sVgxOGWUa1Xo7brNk4YZhVcGIw654Hvc3MLBMnDDMzy8QJw8zMMsk9YUiaJekFSdslrZV0fLr/ZElrJO2Q9IikcWV1hkq6VdJWSa9JuizvOM3MrLpcE4akU4GvA3OBkcB04P9JGgMsBa4ERgMdwD1lVRcA44FxwInA5ZI+mWesZmZWXd6zpP4BuDoifpFu/xuApHnA6oi4N91eAGyS1BYRa4ALgLkRsQXYIulmYA7wcM7xmvWZFyK0gSK3FoakQUA7cKCk/ytpvaRvS9oXmACsLB0bEduBtcAESfsDh5SXp98n9HCdeZI6JHX4CVIzs/zk2SV1MDAE+BRwPHAUMAW4AmgBOiuO7yTptmop264se4+IWBQR7RHRfuCBB9YuejMze5c8E8bO9H+/FREbImITcANwGtAFjKo4fhSwLS2jorxUZmZmDZJbwkjHH9YD3S1NuRqYXNqQNAI4gmRcYwuwobw8/b46r1jNzKx3eU+rXQz8raSD0rGJLwIPAsuAiZJmShoGXAWsSge8Ae4ArpC0v6Q24GLgtpxjNTOzKvJOGNcAvwReAl4AngWujYiNwEzgWmALcAwwq6zefJJB8HXAY8D1EeEZUmZmDZTrtNqIeBO4NP1Ulq0A2nqotxu4MP2YmVkBeGkQMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzyyTvFyiZNYXylyCZWfecMMxqyG/fs/7MXVJmZpaJE4aZmWXiLikbUNxlZLbn3MIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0w8S8qszjxTy5pVri0MSY9K2iWpK/28WFZ2nqR1krZLWi5pdFnZaEnL0rJ1ks7LM04zM+tdPbqkPh8RLennQwCSJgDfAz4LHAzsAG4sq/Md4I207HzgprSOmZk1SKO6pM4HHoiIxwEkXQm8IGkk8CdgJjAxIrqAJyT9iCS5fKVB8ZqZDXj1aGFcJ2mTpJ9LmpHumwCsLB0QEWtJWhQfTD9vR8RLZedYmdYxM7MGybuF8WXgeZJkMAt4QNJRQAvQWXFsJzASeLtK2XtImgfMAxg7dmzNArf+L+8lzT24bf1NrgkjIp4s27xd0rnAaUAXMKri8FHANpIuqZ7KurvGImARQHt7e9QgbLOa8/s2rD+o93MYAQhYDUwu7ZR0ODAUeCn9DJY0vqze5LSOmZk1SG4JQ9J+kj4haZikwZLOB6YD/wrcDZwu6XhJI4CrgaURsS0itgNLgasljZD0UeBM4M68YjUzs97l2SU1BPhHoI1kXGINcFZEvAgg6W9IEscBwApgblndS4Fbgd8Dm4FLIsItDDOzBsotYUTERuDoKuVLgCU9lP0BOCun0MzMbA94LSkzM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLxO/0tn7PK8Wa1YZbGGZmlolbGGYN5JcsWTNxC8PMzDJxwjAzs0ycMMzMLJNMCUPSxLwDMTOzYsvawviupKckXSppv1wjMjOzQso0SyoiPiZpPHAh0CHpKWBxRPwk1+jM+qDZZxw1e/zW/2Uew4iI3wBXAF8GTgD+u6Q1ks7JKzgzMyuOrGMYkyR9A3gBOAk4PSKOTL9/I8f4zMysILI+uPdt4GbgqxGxs7QzIn4n6YpcIjMbwNw9ZUWUNWGcBuyMiLcBJO0DDIuIHRFxZ2+V0/GPXwP3RcRn0n3nAdcBY4CfABdGxB/SstHALcDHgU3A30fEkj79ZDagef0os9rLOoaxAti3bHt4ui+r7wC/LG1ImgB8D/gscDCwA7ix4vg30rLzgZvSOmZWpvUrD73zMctb1oQxLCK6Shvp9+FZKkqaBfwR+F9lu88HHoiIx9NzXQmcI2mkpBHATODKiOiKiCeAH5EkFzMza5CsCWO7pKmlDUnTgJ1Vji8dNwq4Gvi7iqIJwMrSRkSsJWlRfDD9vB0RL5UdvzKtY2ZmDZJ1DOOLwL2Sfpdu/xnw6Qz1rgFuiYhXJZXvbwE6K47tBEYCb1cpew9J84B5AGPHjs0Qkllz8QC4FUXWB/d+KakN+BAgYE1EvFmtjqSjgFOAKd0UdwGjKvaNArYBf6pS1l1si4BFAO3t7VH9JzFrbh6rsEbqy/swjgZa0zpTJBERd1Q5fkZ6/G/T1kULMEjSnwMPA5NLB0o6HBgKvESSMAZLGp8+LEh67Oo+xGpmZjWWKWFIuhM4AvgVSZcRQADVEsYi4Adl218iSSCXAAcB/0fS8cAzJOMcSyNiW3q9pcDVki4CjgLOBI7L9iOZmVkesrYw2oE/j4jMXT4RsYNkuiwAkrqAXRGxEdgo6W+Au4EDSKbozi2rfilwK/B7YDNwSUS4hWFm1kBZE8ZzwPuBDXt6oYhYULG9BOj2Ybz0Ab6z9vRaZmZWe1kTxhjg+XSV2t2lnRFxRi5RmVXhWUNmjZE1YSzIMwgzMyu+rNNqH5M0DhgfESskDQcG5RuamZkVSdblzS8G7iNZ/wngUGB5XkGZmVnxZF0a5L8AHwW2wjsvUzoor6DMzKx4so5h7I6IN0rLe0gaTPIchjWZZhkwrnyiucixmg0UWVsYj0n6KrCvpFOBe4EH8gvLzMyKJmsL4yvAX5O8BOlzwI+B7+cVlNVHs7Q2zKwYss6S+hPJK1pvzjccMzMrqqxrSb1MN2MWEXF4zSMy60ZPq7R69Vaz+unLWlIlw4C/BEbXPhwzMyuqrF1Smyt2fVPSE8BVtQ/Jaq3If4V7HMWseWTtkppatrkPSYuj2zfgmZlZ/5S1S+q/ln1/C3gF+KuaR2NmZoWVtUvqxLwDMSty15mZZe+SuqxaeUTcUJtwzMysqPoyS+po4Efp9unA48CreQRlZmbF05cXKE0te+f2AuDeiLgor8CseDyjyWxgy7qW1FjgjbLtN4DWmkdjZmaFlbWFcSfwlKRlJE98nw3ckVtUZmZWOFlnSV0r6X8Ax6e75kbEs/mFZc3K3VZm/VfWLimA4cDWiPhvwHpJH+itgqS7JG2QtFXSS5IuKis7WdIaSTskPZK+ArZUNlTSrWm913qbpWVmZvnLOq12PslMqQ8Bi4EhwF0kb+Gr5jrgryNit6Q24FFJzwLrgKXARSTv1bgGuAc4Nq23ABgPjAPeDzwi6fmIeDj7jzaw+ZkGM6u1rGMYZwNTgGcAIuJ3knpdGiQiVpdvpp8jgGnA6oi4F96ZdbVJUltErAEuIOn22gJskXQzMAdwwiggJ6fi6alr0F2GtjeyJow3IiIkBYCkEVkvIOlGkl/2+wLPkrx86VpgZemYiNguaS0wQdLrwCHl5en3s3o4/zxgHsDYsWOzhmUZORmYWUnWhPFDSd8D9pN0MXAhGV+mFBGXSvpb4D8CM4DdQAuwseLQTpIFDVvKtivLujv/ImARQHt7u98zbgOWk7vlLessqYXpu7y3koxjXBURP8l6kYh4G3hC0meAS4AuYFTFYaOAbWlZaXtXRZmZmTVIrwlD0iDgXyPiFCBzkqhyvSOA1cDssmuMKO2PiC2SNgCTy643Oa1jOcm7b9t952bNr9dptWnrYIek9/XlxJIOkjRLUoukQZI+AZwL/BRYBkyUNFPSMJIXMa1KB7wheSjwCkn7p7OrLgZu68v1zcystrKOYewCfi3pJ8D20s6I+EKVOkHS/fRdksS0DvhiRPwLgKSZwLdJpuc+CcwqqzsfuCmtsxP4+kCcUttf/yp3X3t9+X5brWRNGA+ln8wiYiNwQpXyFUBbD2W7SQbWL+zLNc3MLD9VE4aksRHx24i4vV4BWe+apeXhv2zN+pfexjCWl75Iuj/nWMzMrMB665JS2ffD8wzEEkX4q7wIMZhZ8fTWwogevpuZ2QDTWwtjsqStJC2NfdPvpNsREZUP31kf+a95M2sWVRNGRAyqVyBmZlZsWafVWhNwa8XM8tSXFyiZmdkA5hZGk3OrwszqxQmjAfxL3syakbukzMwsE7cwmoRbJWbWaE4YZvYuzbJWmdWfE4btEbd4mp//G1pfeQzDzMwyccIwM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0ycMMzMLJPcEoakoZJukbRO0jZJz0r6i7LykyWtkbRD0iOSxlXUvVXSVkmvSbosrzjNzCybPFsYg4FXgROA9wFXAj+U1CppDLA03Tca6ADuKau7ABgPjANOBC6X9MkcYzUzs17k9qR3RGwn+cVf8qCkl4FpwAHA6oi4F0DSAmCTpLaIWANcAMyNiC3AFkk3A3OAh/OK18yq85IhVrelQSQdDHwQWA1cAqwslUXEdklrgQmSXgcOKS9Pv5/Vw3nnAfMAxo4dm0/wZgOUlw+xcnVJGJKGAHcDt0fEGkktwMaKwzqBkUBL2XZl2XtExCJgEUB7e3vUMu5a8v/xzKzZ5T5LStI+wJ3AG8Dn091dwKiKQ0cB29IyKspLZWZm1iC5JgxJAm4BDgZmRsSbadFqYHLZcSOAI0jGNbYAG8rL0++r84zVzMyqy7uFcRNwJHB6ROws278MmChppqRhwFXAqnTAG+AO4ApJ+0tqAy4Gbss5VjMzqyLP5zDGAZ8DjgJek9SVfs6PiI3ATOBaYAtwDDCrrPp8YC2wDngMuD4iPEPKzKyB8pxWuw5QlfIVQFsPZbuBC9OPmZkVgJcGMTOzTJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCyTui0+aGb9R09ro3kV2/7NLQwzM8vECcPMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTPwcRo78Hm8z60/cwjAzs0ycMMzMLBMnDDMzy8RjGGaWi/IxPK8x1T84YZhZzXiiR/+Wa5eUpM9L6pC0W9JtFWUnS1ojaYekRySNKysbKulWSVslvSbpsjzjNDOz3uU9hvE74B+BW8t3ShoDLAWuBEYDHcA9ZYcsAMYD44ATgcslfTLnWM3MrIpcE0ZELI2I5cDmiqJzgNURcW9E7CJJEJMltaXlFwDXRMSWiHgBuBmYk2esZmZWXaPGMCYAK0sbEbFd0lpggqTXgUPKy9PvZ9U3RDOrFQ+A9w+NmlbbAnRW7OsERqZlVJSXyt5D0rx0nKRj48aNNQ/UzMwSjWphdAGjKvaNAralZaXtXRVl7xERi4BFAO3t7VHzSM2sptzaaF6NamGsBiaXNiSNAI4gGdfYAmwoL0+/r65rhGZm9i65tjAkDU6vMQgYJGkY8BawDLhe0kzgIeAqYFVErEmr3gFcIakDOBi4GJibZ6y14nnoZtZf5d0ldQUwv2z7M8A/RMSCNFl8G7gLeBKYVXbcfOAmYB2wE/h6RDycc6xm1kDuqiq+XBNGRCwgmTLbXdkKoK2Hst3AhenHzMwKwEuDmFnDuAu3uXi1WjMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLxLOkzKxw/ExGMbmFYWZmmbiFYWaFluVZDbdC6sMtDDMzy8QtjBrw06pmNhC4hWFmZpk4YZiZWSbukjKzfqenbmIPju8dtzDMzCwTtzDMrOl54kl9OGGY2YDhrqq94y4pMzPLxC0MMxvwvHZVNk4Ye8h9pmb9k7uteuaEYWaWQU+tkIHUOilswpA0GrgF+DiwCfj7iFjS2KjMzPLvYShqEipswgC+A7wBHAwcBTwkaWVErG5sWGZm3evvrZBCJgxJI4CZwMSI6AKekPQj4LPAVxoanJlZHRVpTEURUfeL9kbSFOB/R8S+Zfu+BJwQEaf3VK+9vT06Ojr26JoexDazZrW3yUPS0xHR3ttxhWxhAC1AZ8W+TmBk5YGS5gHz0s0uSS/u5bXHkIyZNCPH3hiOvf6aNW7IIXZ9fa9PMS7LQUVNGF3AqIp9o4BtlQdGxCJgUa0uLKkjS6YtIsfeGI69/po1bmju2Iv6pPdLwGBJ48v2TQY84G1m1iCFTBgRsR1YClwtaYSkjwJnAnc2NjIzs4GrkAkjdSmwL/B74J+BS+o0pbZm3VsN4Ngbw7HXX7PGDU0ceyFnSZmZWfEUuYVhZmYF4oRhZmaZ9NuEIWmopFskrZO0TdKzkv6irPxkSWsk7ZD0iKRxFXVvlbRV0muSLqs4d491845dUqukkNRV9rmyKLGn17hL0oY0hpckXZTl+kWOvRnue3qd8ZJ2SbqrbN956b+l7ZKWp+u0lcpGS1qWlq2TdF7F+Xqsm3fskmZI+lPFPZ9dpNglPZrGXIrvxbKyprjvfRIR/fIDjAAWAK0kifE/kzzH0Ury4Ewn8JfAMOB64Bdlda8DfgbsDxwJvAZ8Mi2rWrcOsbcCAQzuoW5DY0+vMwEYmn5vS2OYVvT73kvshb/v6bX+ZxrHXWU/zzZgOskDsUuAH5Qd/8/APWnZx9I4J2SpW4fYZwDrqxzf8NiBR4GLevh31BT3vU8/b6MDqOsPC6tI1qiaR7L0SGn/CGAn0JZu/xvw8bLya0r/wXqrW4fYe/vFVajYgQ8BG4C/arb7XhF74e87MAv4IckfG6Vfuv8ELCk75giSRT1HpnG8AXywrPxO4Gu91c3hXncX+wx6SBhFiZ2eE0ZT3Pe+fvptl1QlSQcDHyR5+G8CsLJUFslzH2uBCZL2Bw4pL0+/T0i/91i3TrGXrJO0XtJiSWPS4woTu6QbJe0A1pD80v1xtes3QewlhbzvkkYBVwN/V1FUee21pL+s0s/bEfFSxrjL69ZMldgBDpL0uqSXJX1DycKkFCX21HWSNkn6uaQZGa5fpNj7ZEAkDElDgLuB2yNiDdXXqmop264so5e6NddN7JuAo0nWfpmWXvfusthK8XQXW91ij4hL0/MeT/IQ5u5erl/02It+368BbomIVyv293bPq8VVr3veU+xrSF5t8GfASST3/YaMsdUr9i8DhwOHkjxf8YCkI3q5flFi77N+nzAk7UPS3HsD+Hy6u9paVV1l25VlvdWtqe5ij4iuiOiIiLci4vV0/8fTv9IKE3sa69sR8QRwGHBJL9cvdOxFvu+SjgJOAb7RTXFv97xaXLnf82qxR8RrEfF8RPwpIl4GLgc+lTG2uvx7iYgnI2JbROyOiNuBnwOn9XL9QsS+J/p1wpAkkrf2HQzMjIg306LVJGtTlY4bQdJPuDoitpB0Q0wuO1X5OlY91q1T7JVKT16qKLF3Y3DZdQp937tRir1Ske77DJIxlt9Keg34EjBT0jPdXPtwYCjJem29rdlWrW6tVIu9UgBKvxch9u6UYiz6fd8zjR5EyfMDfBf4BdBSsf9AkibeTJJZK1/n3bN1vgY8RjLjpY3kl8Ens9StQ+zHkAzG7gMcQDLT4pGixA4cRDKA2QIMAj4BbCdZC6zQ972X2At734HhwPvLPguB+9LrTgC2knSvjQDu4t2zdX5AMmNnBPBR3jtbp8e6dYh9BjCW5BfwfwAeARYXKPb90n8jw0j+sDg//ffyoaLf9z3+mRsdQG4/WNLXHMAukiZe6XN+Wn4KSR/pTpKZDq1ldYcCt6b/0V4HLqs4d491844dOBd4Of2HuQG4A3h/gWI/kOQX5x/TGH4NXJzl+kWOvej3veJaC0hnGqXb5wG/TWP/F2B0WdloYHla9lvgvIpz9Vg379iBy0hmn+0AXgW+RdlMoUbHnv57+SVJV9EfSf7AO7UZ73vWj9eSMjOzTPr1GIaZmdWOE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZeKEYWZmmThhmJlZJk4YZmaWyf8H3GUpH9cqthwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD/CAYAAADi+OGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHPlJREFUeJzt3XuYFfWd5/H3RyA0dxWUSAxgXAgKpJU0MTFriHFGnWg2GuLGxBswSpTFTNaNuT1eiMbJbXfcaAwRHsVIdMOQATdGx4lEJuqaSWjMIrQCiSskBFREbGmkufndP6raOR76Ug2nzjnd/Xk9Tz2eqt+vzvn+uuV8+3epKkUEZmZmHTms0gGYmVnX4IRhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlkluCUNSU9G2X9LtBeVnSFor6Q1JyyWNKijrK+luSa9LelHSNXnFaWZm2fTO640jYmDLa0kDgJeAxen+MGAJcDnwIHAzsAj4YHrKHGAMMAp4J7Bc0rMR8Uh7nzls2LAYPXp0SdthZtbdrVy58pWIOKqjerkljCKfBl4Gnkj3PwU0RERLApkDvCJpXESsBS4FpkfEdmC7pPnANKDdhDF69Gjq6+vzaYGZWTclaWOWeuWaw7gMuDf+/cZV44FVLYURsRN4Hhgv6QhgRGF5+np8a28saaakekn1W7duzSV4MzMrQ8KQNBKYAvy44PBAoLGoaiMwKC2jqLyl7AARMS8i6iKi7qijOuxRmZnZQSpHD+NS4MmIeKHgWBMwuKjeYGBHWkZReUuZmZlVSDnmMC4Fvl10rIFkmAp4a1L8eJJ5je2StgC1wKNpldr0HDPrRvbu3cumTZtobm6udCg9Qk1NDcceeyx9+vQ5qPNzTRiSTgXeRbo6qsBS4HuSpgIPATcAz6QT3gD3AtdJqgeGA1cA0/OM1czKb9OmTQwaNIjRo0cjqdLhdGsRwbZt29i0aRPHHXfcQb1H3kNSlwFLIuJtw0kRsRWYCtwCbAdOAS4sqHIjyST4RuDXwPc6WlJrZl1Pc3MzQ4cOdbIoA0kMHTr0kHpzufYwIuLz7ZQtA8a1UbYbmJFuZtaNOVmUz6H+rH1rEDMzy6RcF+6ZmXVo9FcfKun7bfj2OSV9v1Y/Y8MGzj33XNasWZP5nGnTpnHuuefy6U9/OtPxcsSUhROGWTsKv8DK8eVjVs08JGVmPdbOnTs555xzqK2tZcKECSxatAiAFStWcOqpp1JbW8sHPvABduzYwYYNGzjttNOYNGkSkyZN4qmnnjrg/fbv38+1117L5MmTed/73sedd94JJCuUZs+ezYknnsg555zDyy+/3GFsv/rVrzj55JOZOHEiM2bMYPfu3QDcdNNNTJ48mQkTJjBz5kxabqCxcuVKamtr+dCHPsQdd9xRqh/R2zhhmFmP9cgjjzBixAhWrVrFmjVrOPvss9mzZw+f+cxn+P73v8+qVatYtmwZ/fr14+ijj+bRRx/l6aefZtGiRXzhC1844P3uuusuhgwZwooVK1ixYgXz58/nhRdeYOnSpaxbt47Vq1czf/78VpNNoebmZqZNm8aiRYtYvXo1+/btY+7cuQDMnj2bFStWsGbNGnbt2sUvfvELAKZPn85tt93Gb37zm9L/oFJOGGbWY02cOJFly5bxla98hSeeeIIhQ4awbt06jjnmGCZPngzA4MGD6d27N3v37uWKK65g4sSJXHDBBTz77LMHvN8vf/lL7r33Xk466SROOeUUtm3bxh/+8Acef/xxPvvZz9KrVy9GjBjBxz72sXbjWrduHccddxxjx44F4LLLLuPxxx8HYPny5ZxyyilMnDiRxx57jIaGBhobG3nttdeYMmUKAJdcckkpf0xv8RyGmfVYY8eOZeXKlTz88MN87Wtf48wzz+S8885rdfnprbfeyvDhw1m1ahVvvvkmNTU1B9SJCG6//XbOOuustx1/+OGHO7Wk9d/v0/p2zc3NzJo1i/r6et797nczZ84cmpubiYiyLE92D8PMeqzNmzfTv39/Lr74Yr70pS/x9NNPM27cODZv3syKFSsA2LFjB/v27aOxsZFjjjmGww47jIULF7J///4D3u+ss85i7ty57N27F4D169ezc+dOPvKRj/DTn/6U/fv3s2XLFpYvX95uXOPGjWPDhg388Y9/BGDhwoVMmTLlrYvuhg0bRlNTEz/72c8AOPzwwxkyZAhPPvkkAPfdd19pfkBF3MMws6pR7pVoq1ev5tprr+Wwww6jT58+zJ07l3e84x0sWrSIq6++ml27dtGvXz+WLVvGrFmzmDp1KosXL+b0009nwIABB7zf5ZdfzoYNG5g0aRIRwVFHHcUDDzzA+eefz2OPPcbEiRMZO3bsW0NHbampqWHBggVccMEF7Nu3j8mTJ3PllVfSt2/ft4bFRo8e/dawGcCCBQuYMWMG/fv3P6CHUypqq+vTFdXV1YUfoGSl5GW1+Xruuec44YQTKh1Gj9Laz1zSyoio6+hc9zDMDoITifVEnsMwM7NMnDDMrKK607B4tTvUn7UThplVTE1NDdu2bXPSKIOW52G0thw4K89hmFnFHHvssWzatImtW7dWOpQeoeWJewfLCcPMKqZPnz4H/fQ3Kz8nDLOMSn3rbbOuxgnDrIgTg1nrPOltZmaZOGGYmVkmThhmZpZJ7glD0oWSnpO0U9Lzkk5Lj58haa2kNyQtlzSq4Jy+ku6W9LqkFyVdk3ecZmbWvlwThqS/Br4DTAcGAR8B/p+kYcAS4HrgSKAeWFRw6hxgDDAKOB34sqSz84zVzMzal/cqqW8AN0XEv6X7fwGQNBNoiIjF6f4c4BVJ4yJiLXApMD0itgPbJc0HpgGP5ByvWaf5RoTWU+TWw5DUC6gDjpL0R0mbJP1AUj9gPLCqpW5E7ASeB8ZLOgIYUVievh7fxufMlFQvqd5Xi5qZ5SfPIanhQB/g08BpwEnAycB1wECgsah+I8mw1cCC/eKyA0TEvIioi4i6o446qnTRm5nZ2+SZMHal/709IrZExCvAPwAfB5qAwUX1BwM70jKKylvKzMysQnJLGOn8wyagtdtQNgC1LTuSBgDHk8xrbAe2FJanrxvyitXMzDqW97LaBcDVko5O5ya+CPwCWApMkDRVUg1wA/BMOuENcC9wnaQjJI0DrgDuyTlWMzNrR94J42ZgBbAeeA74PXBLRGwFpgK3ANuBU4ALC867kWQSfCPwa+B7EeEVUmZmFZTrstqI2AvMSrfismXAuDbO2w3MSDczM6sCvjWImZll4oRhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZZL3A5TMuoTChyCZWeucMMxKyE/fs+7MQ1JmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZeJltdajeNmr2cFzD8PMzDJxD8OszNzLsa4q1x6GpH+V1CypKd3WFZR9TtJGSTslPSDpyIKyIyUtTcs2SvpcnnGamVnHyjEkNTsiBqbbewEkjQfuBC4BhgNvAD8sOOcOYE9adhEwNz3HzMwqpFJDUhcBD0bE4wCSrgeekzQIeBOYCkyIiCbgSUk/J0kuX61QvGZmPV45ehjfkvSKpP8j6aPpsfHAqpYKEfE8SY9ibLrtj4j1Be+xKj3HzMwqJO8exleAZ0mSwYXAg5JOAgYCjUV1G4FBwP52yg4gaSYwE2DkyJElC9y6v7xvae7Jbetuck0YEfHbgt0fS/os8HGgCRhcVH0wsINkSKqtstY+Yx4wD6Curi5KELZZyfl5G9YdlPs6jAAENAC1LQclvQfoC6xPt96SxhScV5ueY2ZmFZJbwpB0uKSzJNVI6i3pIuAjwL8A9wGfkHSapAHATcCSiNgRETuBJcBNkgZI+jDwSWBhXrGamVnH8hyS6gN8ExhHMi+xFjgvItYBSLqSJHEMBZYB0wvOnQXcDbwMbAOuigj3MMzMKii3hBERW4HJ7ZTfD9zfRtmrwHk5hWZmZgfB95IyM7NMnDDMzCwTJwwzM8vECcPMzDJxwjAzs0z8PAzr9nyVtVlpuIdhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFmZpl4lZRZBfkhS9aVuIdhZmaZOGGYmVkmThhmZpZJpoQhaULegZiZWXXL2sP4kaTfSZol6fBcIzIzs6qUaZVURPxHSWOAGUC9pN8BCyLi0VyjM+uErr7iqKvHb91f5jmMiPgDcB3wFWAKcJuktZI+lVdwZmZWPbLOYbxP0q3Ac8DHgE9ExAnp61tzjM/MzKpE1gv3fgDMB74eEbtaDkbEZknX5RKZWQ/m4SmrRlkTxseBXRGxH0DSYUBNRLwREQs7Ojmd/1gN/CwiLk6PfQ74FjAMeBSYERGvpmVHAncBZwKvAF+LiPs71TLr0fwMDLPSyzqHsQzoV7DfPz2W1R3AipYdSeOBO4FLgOHAG8APi+rvScsuAuam55hZgdFffeitzSxvWRNGTUQ0teykr/tnOVHShcBrwK8KDl8EPBgRj6fvdT3wKUmDJA0ApgLXR0RTRDwJ/JwkuZiZWYVkTRg7JU1q2ZH0fmBXO/Vb6g0GbgL+W1HReGBVy05EPE/SoxibbvsjYn1B/VXpOWZmViFZ5zC+CCyWtDndPwb4TIbzbgbuiog/Syo8PhBoLKrbCAwC9rdTdgBJM4GZACNHjswQklnX4glwqxZZL9xbIWkc8F5AwNqI2NveOZJOAv4KOLmV4iZgcNGxwcAO4M12ylqLbR4wD6Curi7ab4lZ1+a5CqukzjwPYzIwOj3nZElExL3t1P9oWv9Pae9iINBL0onAI0BtS0VJ7wH6AutJEkZvSWPSiwVJ6zZ0IlYzMyuxTAlD0kLgeOD/kgwZAQTQXsKYB/y0YP9LJAnkKuBo4DeSTgOeJpnnWBIRO9LPWwLcJOly4CTgk8Cp2ZpkZmZ5yNrDqANOjIjMQz4R8QbJclkAJDUBzRGxFdgq6UrgPmAoyRLd6QWnzwLuBl4GtgFXRYR7GGZmFZQ1YawB3glsOdgPiog5Rfv3A61ejJdewHfewX6WmZmVXtaEMQx4Nr1L7e6WgxHxn3KJyqwdXjVkVhlZE8acPIMwM7Pql3VZ7a8ljQLGRMQySf2BXvmGZmZm1STrKqkrSC6OO5JktdS7gB8BZ+QXmuXBwzlmdrCy3hrkvwAfBl6Htx6mdHReQZmZWfXJOoexOyL2tNzeQ1JvkuswzHJRfEWze0NmlZe1h/FrSV8H+kn6a2Ax8GB+YZmZWbXJmjC+CmwleQjS54GHSZ7vbWZmPUTWVVJvkjyidX6+4ZiZWbXKukrqBVqZs4iI95Q8IiubrrRiqq27tPrurWbl05l7SbWoAS4gWWJrZmY9RNYhqW1Fh/6npCeBG0ofkpVaNf8V3pV6OWY9XdYhqUkFu4eR9DhafQKemZl1T1mHpP5Hwet9wAbgP5c8GjMzq1pZh6ROzzsQs2oeOjOz7ENS17RXHhH/UJpwzMysWnVmldRk4Ofp/ieAx4E/5xGUmZlVn848QGlSwTO35wCLI+LyvAKz6uMVTWY9W9Zbg4wE9hTs7wFGlzwaMzOrWll7GAuB30laSnLF9/nAvblFZWZmVSfrKqlbJP0zcFp6aHpE/D6/sKyr8rCVWfeVdUgKoD/wekR8H9gk6biOTpD0E0lbJL0uab2kywvKzpC0VtIbkpanj4BtKesr6e70vBc7WqVlZmb5y7qs9kaSlVLvBRYAfYCfkDyFrz3fAv42InZLGgf8q6TfAxuBJcDlJM/VuBlYBHwwPW8OMAYYBbwTWC7p2Yh4JHvTejZf02BmpZZ1DuN84GTgaYCI2Cypw1uDRERD4W66HQ+8H2iIiMXw1qqrVySNi4i1wKUkw17bge2S5gPTACeMKuTkVH3aGhr0kKEdiqwJY09EhKQAkDQg6wdI+iHJl30/4PckD1+6BVjVUicidkp6Hhgv6SVgRGF5+vq8Nt5/JjATYOTIkVnDsoycDMysRdaE8Y+S7gQOl3QFMIOMD1OKiFmSrgY+BHwU2A0MJHmCX6FGkhsaDizYLy5r7f3nAfMA6urq/Jxx67Gc3C1vWVdJ/ff0Wd6vk8xj3BARj2b9kIjYDzwp6WLgKqAJGFxUbTCwIy1r2W8uKjMzswrpMGFI6gX8S0T8FZA5SbTzeccDDcBlBZ8xoOV4RGyXtAWoLfi82vQcy0neY9seOzfr+jpcVpv2Dt6QNKQzbyzpaEkXShooqZeks4DPAo8BS4EJkqZKqiF5ENMz6YQ3JBcFXifpiHR11RXAPZ35fDMzK62scxjNwGpJjwI7Ww5GxBfaOSdIhp9+RJKYNgJfjIj/DSBpKvADkuW5vwUuLDj3RmBues4u4Ds9cUltd/2r3GPt5eWft5VK1oTxULplFhFbgSntlC8DxrVRtptkYn1GZz7TzMzy027CkDQyIv4UET8uV0DWsa7S8/BftmbdS0dzGA+0vJD0TznHYmZmVayjISkVvH5PnoFYohr+Kq+GGMys+nTUw4g2XpuZWQ/TUQ+jVtLrJD2Nfulr0v2IiOKL76yT/Ne8mXUV7SaMiOhVrkDMzKy6ZV1Wa12AeytmlqfOPEDJzMx6MPcwujj3KsysXJwwKsBf8mbWFXlIyszMMnEPo4twr8TMKs0Jw8zepqvcq8zKzwnDDop7PF2ff4fWWZ7DMDOzTJwwzMwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTJwwzM8skt4Qhqa+kuyRtlLRD0u8l/U1B+RmS1kp6Q9JySaOKzr1b0uuSXpR0TV5xmplZNnn2MHoDfwamAEOA64F/lDRa0jBgSXrsSKAeWFRw7hxgDDAKOB34sqSzc4zVzMw6kNuV3hGxk+SLv8UvJL0AvB8YCjRExGIASXOAVySNi4i1wKXA9IjYDmyXNB+YBjySV7xm1j7fMsTKdmsQScOBsUADcBWwqqUsInZKeh4YL+klYERhefr6vDbedyYwE2DkyJH5BG/WQ/n2IVaoLAlDUh/gPuDHEbFW0kBga1G1RmAQMLBgv7jsABExD5gHUFdXF6WMu5T8D8/MurrcV0lJOgxYCOwBZqeHm4DBRVUHAzvSMorKW8rMzKxCck0YkgTcBQwHpkbE3rSoAagtqDcAOJ5kXmM7sKWwPH3dkGesZmbWvrx7GHOBE4BPRMSuguNLgQmSpkqqAW4AnkknvAHuBa6TdISkccAVwD05x2pmZu3I8zqMUcDngZOAFyU1pdtFEbEVmArcAmwHTgEuLDj9RuB5YCPwa+B7EeEVUmZmFZTnstqNgNopXwaMa6NsNzAj3czMrAr41iBmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZVK2mw+aWffR1r3RfBfb7s09DDMzy8QJw8zMMnHCMDOzTJwwzMwsEycMMzPLxAnDzMwyccIwM7NMfB1GjvwcbzPrTtzDMDOzTJwwzMwsEycMMzPLxHMYZpaLwjk832Oqe3DCMLOS8UKP7i3XISlJsyXVS9ot6Z6isjMkrZX0hqTlkkYVlPWVdLek1yW9KOmaPOM0M7OO5T2HsRn4JnB34UFJw4AlwPXAkUA9sKigyhxgDDAKOB34sqSzc47VzMzakWvCiIglEfEAsK2o6FNAQ0QsjohmkgRRK2lcWn4pcHNEbI+I54D5wLQ8YzUzs/ZVag5jPLCqZScidkp6Hhgv6SVgRGF5+vq88oZoZqXiCfDuoVLLagcCjUXHGoFBaRlF5S1lB5A0M50nqd+6dWvJAzUzs0SlehhNwOCiY4OBHWlZy35zUdkBImIeMA+grq4uSh6pmZWUextdV6V6GA1AbcuOpAHA8STzGtuBLYXl6euGskZoZmZvk2sPQ1Lv9DN6Ab0k1QD7gKXA9yRNBR4CbgCeiYi16an3AtdJqgeGA1cA0/OMtVS8Dt3Muqu8h6SuA24s2L8Y+EZEzEmTxQ+AnwC/BS4sqHcjMBfYCOwCvhMRj+Qcq5lVkIeqql+uCSMi5pAsmW2tbBkwro2y3cCMdDMzsyrgW4OYWcV4CLdr8d1qzcwsEycMMzPLxAnDzMwyccIwM7NMnDDMzCwTr5Iys6rjazKqk3sYZmaWiXsYZlbVslyr4V5IebiHYWZmmbiHUQK+WtXMegL3MMzMLBMnDDMzy8RDUmbW7bQ1TOzJ8UPjHoaZmWXiHoaZdXleeFIeThhm1mN4qOrQeEjKzMwycQ/DzHo837sqGyeMg+QxU7PuycNWbXPCMDPLoK1eSE/qnVRtwpB0JHAXcCbwCvC1iLi/slGZmeU/wlCtSahqEwZwB7AHGA6cBDwkaVVENFQ2LDOz1nX3XkhVJgxJA4CpwISIaAKelPRz4BLgqxUNzsysjKppTkURUfYP7Yikk4GnIqJfwbEvAVMi4hNtnVdXVxf19fUH9ZmexDazrupQk4eklRFR11G9quxhAAOBxqJjjcCg4oqSZgIz090mSesO8jOHkcyV9CRuc8/gNndz+s4ht3dUlkrVmjCagMFFxwYDO4orRsQ8YN6hfqCk+iwZtjtxm3sGt7n7K1d7q/VK7/VAb0ljCo7VAp7wNjOrkKpMGBGxE1gC3CRpgKQPA58EFlY2MjOznqsqE0ZqFtAPeBn4X8BVOS+pPeRhrS7Ibe4Z3OburyztrcpVUmZmVn2quYdhZmZVxAnDzMwy6TEJQ9KRkpZK2ilpo6TPtVFPkr4jaVu6fVeSyh1vKXSizddKWiNph6QXJF1b7lhLJWubC+q/Q9JaSZvKFWOpdabNkiZJelxSk6SXJP1dOWMtlU78v91X0o/Str4q6UFJ7yp3vIdK0mxJ9ZJ2S7qng7r/VdKLkhol3S2pb6ni6DEJg7ffm+oiYK6k8a3UmwmcR7KM933AucDnyxVkiWVts4BLgSOAs4HZki4sW5SllbXNLa4lWVjRlWVqs6RhwCPAncBQ4D8AvyxjnKWU9ff8d8CHSP4tjwBeA24vV5AltBn4JnB3e5UknUVy+6QzgNHAe4BvlCyKiOj2GzCA5H+usQXHFgLfbqXuU8DMgv2/Bf6t0m3Is82tnHsbcHul25B3m4HjgOeAvwE2VTr+vNsM/D2wsNIxl7nNc4HvFuyfA6yrdBsOoe3fBO5pp/x+4O8L9s8AXizV5/eUHsZYYH9ErC84tgpo7S+S8WlZR/WqXWfa/JZ0+O00uuZFkp1t8+3A14FdeQeWo860+YPAq5KekvRyOjwzsixRllZn2nwX8GFJIyT1J+mN/HMZYqyU1r6/hksaWoo37ykJI/O9qVqp2wgM7ILzGJ1pc6E5JP9fLMghprx15h5k5wO9I2JpOQLLUWd+z8cCl5EM04wEXiC5xqmr6Uyb1wN/Av4CvA6cANyUa3SV1dr3F3T87z6TnpIwMt+bqpW6g4GmSPt3XUhn2gwkE2skcxnnRMTuHGPLS6Y2p7fP/y5wdZniylNnfs+7gKURsSIimknGtk+VNCTnGEutM22eC9SQzNkMILmDRHfuYbT2/QXt/LvvjJ6SMDpzb6qGtKyjetWuU/fjkjSDdLIsIrrqiqGsbR5DMiH4hKQXSb5EjklXlowuQ5yl1Jnf8zNA4R8+La+7Wu+5M22uJRnzfzX9I+h24APpAoDuqLXvr5ciYltJ3r3SkzhlnCz6KUn3ewDwYZKu2vhW6l1JMhH6LpJVFQ3AlZWOP+c2XwS8CJxQ6ZjL0WaSuzS/s2D7FMkqlHcCvSrdhhx/zx8DtpM8wbIPcCvwRKXjz7nNC4B/Aoakbf468JdKx38Q7e1N0lP6FskEfw3JkGpxvbPTf8snkqx6fIwMC10yx1HpH0QZf+BHAg8AO0nGND+XHj+NZMippZ5IhiteTbfvkt5CpattnWjzC8Beku5sy/ajSsefZ5uLzvkoXXSVVGfbDFxFMp6/HXgQeHel48+zzSRDUfeRLJ1+DXgS+ECl4z+I9s4h6REWbnNI5qKagJEFda8BXiKZs1kA9C1VHL6XlJmZZdJT5jDMzOwQOWGYmVkmThhmZpaJE4aZmWXihGFmZpk4YZiZWSZOGGZmlokThpmZZeKEYWZmmfx/lnFWYoQp0CcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "energy[energy.index < valid_start_dt][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Shift the values of the time series to create a Pandas dataframe containing all the data for a single training example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we create the target (*y_t+1*) variable. If we use the convention that the dataframe is indexed on time *t*, we need to shift the *load* variable forward one hour in time. Using the freq parameter we can tell Pandas that the frequency of the time series is hourly. This ensures the shift does not jump over any missing periods in the time series." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
loady_t+1
2012-01-01 00:00:000.220.18
2012-01-01 01:00:000.180.14
2012-01-01 02:00:000.140.13
2012-01-01 03:00:000.130.13
2012-01-01 04:00:000.130.15
2012-01-01 05:00:000.150.18
2012-01-01 06:00:000.180.23
2012-01-01 07:00:000.230.29
2012-01-01 08:00:000.290.35
2012-01-01 09:00:000.350.37
\n", + "
" + ], + "text/plain": [ + " load y_t+1\n", + "2012-01-01 00:00:00 0.22 0.18\n", + "2012-01-01 01:00:00 0.18 0.14\n", + "2012-01-01 02:00:00 0.14 0.13\n", + "2012-01-01 03:00:00 0.13 0.13\n", + "2012-01-01 04:00:00 0.13 0.15\n", + "2012-01-01 05:00:00 0.15 0.18\n", + "2012-01-01 06:00:00 0.18 0.23\n", + "2012-01-01 07:00:00 0.23 0.29\n", + "2012-01-01 08:00:00 0.29 0.35\n", + "2012-01-01 09:00:00 0.35 0.37" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_shifted = train.copy()\n", + "train_shifted['y_t+1'] = train_shifted['load'].shift(-1, freq='H')\n", + "train_shifted.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also need to shift the load variable back 6 times to create the input sequence:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "for t in range(1, T+1):\n", + " train_shifted[str(T-t)] = train_shifted['load'].shift(T-t, freq='H')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load_originaly_t+1load_t-5load_t-4load_t-3load_t-2load_t-1load_t
2012-01-01 00:00:000.220.18nannannannannan0.22
2012-01-01 01:00:000.180.14nannannannan0.220.18
2012-01-01 02:00:000.140.13nannannan0.220.180.14
2012-01-01 03:00:000.130.13nannan0.220.180.140.13
2012-01-01 04:00:000.130.15nan0.220.180.140.130.13
2012-01-01 05:00:000.150.180.220.180.140.130.130.15
2012-01-01 06:00:000.180.230.180.140.130.130.150.18
2012-01-01 07:00:000.230.290.140.130.130.150.180.23
2012-01-01 08:00:000.290.350.130.130.150.180.230.29
2012-01-01 09:00:000.350.370.130.150.180.230.290.35
\n", + "
" + ], + "text/plain": [ + " load_original y_t+1 load_t-5 load_t-4 load_t-3 \\\n", + "2012-01-01 00:00:00 0.22 0.18 nan nan nan \n", + "2012-01-01 01:00:00 0.18 0.14 nan nan nan \n", + "2012-01-01 02:00:00 0.14 0.13 nan nan nan \n", + "2012-01-01 03:00:00 0.13 0.13 nan nan 0.22 \n", + "2012-01-01 04:00:00 0.13 0.15 nan 0.22 0.18 \n", + "2012-01-01 05:00:00 0.15 0.18 0.22 0.18 0.14 \n", + "2012-01-01 06:00:00 0.18 0.23 0.18 0.14 0.13 \n", + "2012-01-01 07:00:00 0.23 0.29 0.14 0.13 0.13 \n", + "2012-01-01 08:00:00 0.29 0.35 0.13 0.13 0.15 \n", + "2012-01-01 09:00:00 0.35 0.37 0.13 0.15 0.18 \n", + "\n", + " load_t-2 load_t-1 load_t \n", + "2012-01-01 00:00:00 nan nan 0.22 \n", + "2012-01-01 01:00:00 nan 0.22 0.18 \n", + "2012-01-01 02:00:00 0.22 0.18 0.14 \n", + "2012-01-01 03:00:00 0.18 0.14 0.13 \n", + "2012-01-01 04:00:00 0.14 0.13 0.13 \n", + "2012-01-01 05:00:00 0.13 0.13 0.15 \n", + "2012-01-01 06:00:00 0.13 0.15 0.18 \n", + "2012-01-01 07:00:00 0.15 0.18 0.23 \n", + "2012-01-01 08:00:00 0.18 0.23 0.29 \n", + "2012-01-01 09:00:00 0.23 0.29 0.35 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_col = 'y_t+1'\n", + "X_cols = ['load_t-5',\n", + " 'load_t-4',\n", + " 'load_t-3',\n", + " 'load_t-2',\n", + " 'load_t-1',\n", + " 'load_t']\n", + "train_shifted.columns = ['load_original']+[y_col]+X_cols\n", + "train_shifted.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Discard any samples with missing values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice how we have missing values for the input sequences for the first 5 samples. We will discard these:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load_originaly_t+1load_t-5load_t-4load_t-3load_t-2load_t-1load_t
2012-01-01 05:00:000.150.180.220.180.140.130.130.15
2012-01-01 06:00:000.180.230.180.140.130.130.150.18
2012-01-01 07:00:000.230.290.140.130.130.150.180.23
2012-01-01 08:00:000.290.350.130.130.150.180.230.29
2012-01-01 09:00:000.350.370.130.150.180.230.290.35
\n", + "
" + ], + "text/plain": [ + " load_original y_t+1 load_t-5 load_t-4 load_t-3 \\\n", + "2012-01-01 05:00:00 0.15 0.18 0.22 0.18 0.14 \n", + "2012-01-01 06:00:00 0.18 0.23 0.18 0.14 0.13 \n", + "2012-01-01 07:00:00 0.23 0.29 0.14 0.13 0.13 \n", + "2012-01-01 08:00:00 0.29 0.35 0.13 0.13 0.15 \n", + "2012-01-01 09:00:00 0.35 0.37 0.13 0.15 0.18 \n", + "\n", + " load_t-2 load_t-1 load_t \n", + "2012-01-01 05:00:00 0.13 0.13 0.15 \n", + "2012-01-01 06:00:00 0.13 0.15 0.18 \n", + "2012-01-01 07:00:00 0.15 0.18 0.23 \n", + "2012-01-01 08:00:00 0.18 0.23 0.29 \n", + "2012-01-01 09:00:00 0.23 0.29 0.35 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_shifted = train_shifted.dropna(how='any')\n", + "train_shifted.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Transform into a numpy arrays of shapes (samples, features) and (samples,1) for input into Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now convert the target and input features into numpy arrays. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "y_train = train_shifted[[y_col]].as_matrix()\n", + "X_train = train_shifted[X_cols].as_matrix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now have a vector for target variable of shape:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(23370, 1)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The target varaible for the first 3 samples looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.18],\n", + " [0.23],\n", + " [0.29]])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train[:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The tensor for the input features now has the shape:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(23370, 6)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And the first 3 samples looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.22, 0.18, 0.14, 0.13, 0.13, 0.15],\n", + " [0.18, 0.14, 0.13, 0.13, 0.15, 0.18],\n", + " [0.14, 0.13, 0.13, 0.15, 0.18, 0.23]])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train[:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can sense check this against the first 3 records of the original dataframe:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load_originaly_t+1load_t-5load_t-4load_t-3load_t-2load_t-1load_t
2012-01-01 05:00:000.150.180.220.180.140.130.130.15
2012-01-01 06:00:000.180.230.180.140.130.130.150.18
2012-01-01 07:00:000.230.290.140.130.130.150.180.23
\n", + "
" + ], + "text/plain": [ + " load_original y_t+1 load_t-5 load_t-4 load_t-3 \\\n", + "2012-01-01 05:00:00 0.15 0.18 0.22 0.18 0.14 \n", + "2012-01-01 06:00:00 0.18 0.23 0.18 0.14 0.13 \n", + "2012-01-01 07:00:00 0.23 0.29 0.14 0.13 0.13 \n", + "\n", + " load_t-2 load_t-1 load_t \n", + "2012-01-01 05:00:00 0.13 0.13 0.15 \n", + "2012-01-01 06:00:00 0.13 0.15 0.18 \n", + "2012-01-01 07:00:00 0.15 0.18 0.23 " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_shifted.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data preparation - validation set" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we follow a similar process for the validation set. We keep *T* hours from the training set in order to construct initial features." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-08-31 19:00:003,969.00
2014-08-31 20:00:003,869.00
2014-08-31 21:00:003,643.00
2014-08-31 22:00:003,365.00
2014-08-31 23:00:003,097.00
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-08-31 19:00:00 3,969.00\n", + "2014-08-31 20:00:00 3,869.00\n", + "2014-08-31 21:00:00 3,643.00\n", + "2014-08-31 22:00:00 3,365.00\n", + "2014-08-31 23:00:00 3,097.00" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "look_back_dt = dt.datetime.strptime(valid_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", + "valid = energy.copy()[(energy.index >=look_back_dt) & (energy.index < test_start_dt)][['load']]\n", + "valid.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Scale the series using the transformer fitted on the training set:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-08-31 19:00:000.61
2014-08-31 20:00:000.58
2014-08-31 21:00:000.51
2014-08-31 22:00:000.43
2014-08-31 23:00:000.34
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-08-31 19:00:00 0.61\n", + "2014-08-31 20:00:00 0.58\n", + "2014-08-31 21:00:00 0.51\n", + "2014-08-31 22:00:00 0.43\n", + "2014-08-31 23:00:00 0.34" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "valid['load'] = scaler.transform(valid)\n", + "valid.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Prepare validation inputs in the same way as the training set:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "valid_shifted = valid.copy()\n", + "valid_shifted['y+1'] = valid_shifted['load'].shift(-1, freq='H')\n", + "for t in range(1, T+1):\n", + " valid_shifted['load_t-'+str(T-t)] = valid_shifted['load'].shift(T-t, freq='H')\n", + "valid_shifted = valid_shifted.dropna(how='any')\n", + "y_valid = valid_shifted['y+1'].as_matrix()\n", + "X_valid = valid_shifted[['load_t-'+str(T-t) for t in range(1, T+1)]].as_matrix()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1463,)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_valid.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1463, 6)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_valid.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Implement Feedforward Neural Network" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We implement feed-forward neural network with the 6 inputs, 5 neurons in hidden layer and one neuron in output layer:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB3MAAARgCAYAAADzdXxDAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7P0/yy3Nlhh4zkcsvxwhxDVkiH5n6JpWI28oTwLVba81VKNmQCBLXNqRI5DRIDmNQKAvIOh25LSs9mp63bfWfePEicydmTv/RcTvB4tznr33s3fmioj1ROY6f/4ffwMAAAAAAADA62jmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAAAAAADAC2nmAgAAAAAAALyQZi4AAABN//O/+9+F+CEAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaemDsAAAC4l2YuAAAATa1mnpg7AAAAuJdmLgAAAE2tZp6YOwAAALiXZi4AAABNrWaeeDb+7t//5W/+7M/+rPncHQEAAMC9NHMBAABoajXzxDPxl3/9hz81cjVzAQAA5qGZCwAAQFOrmSfuj//X/+ef/qmJq5kLAAAwF81cAAAAmlrNPHFvlH8bVzMXAABgPpq5AAAANLWaeXdG/I3UaGbGr63nR47W38Yto/U9dwQAAAD30swFAACgqdXMuyPqRuZMzdxWE7f1t3Nb33tHAAAAcC/NXAAAAJpazbw7YsZmbquJGxGN3Hi+frz+/rsCAACAe2nmAgAA0NRq5t0RszRz//Kv/7D4f+LG4/F8vrZ+vnyfOwMAAIB7aeYCAADQ1Grm3RGzNHOX/jZu63zr19TP3xUAAADcSzMXAACAplYz746YsZkbfxN37TzLfES0XnNHAAAAcC/NXAAAAJpazbw7YqZm7qcmbkaZj4jWa+4IAAAA7qWZCwAAQFOrmXdHzNLM3RNlPiJar7kjAAAAuJdmLgAAAE2tZt4d8YZmbnxmxl/+9R+ar7kzynxEtF5zRwAAAHAvzVwAAACaWs28s6NuUh6J+KeKW+/9TZTv/0QzuY7yeCJar7kjAAAAuJdmLgAAAE2tZt7ZUTcpj4Rm7n0BAADAvTRzAQAAaGo1886Oukl5JDRz7wsAAADupZkLAABAU6uZd3bk/0tbRjRny8ZlfN16XRmt9/4mys+/4v33Rnk8Ea3X3BEAAADcSzMXAACAplYz746I5mnZuHyimfr059dRHk9E6zV3BAAAAPfSzAUAAKCp1cy7IzRzf47yeCJar7kjAAAAuJdmLgAAAE2tZt4doZn7c5THE9F6zR0BAADAvTRzAQAAaGo18+4IzdyfozyeiNZr7ggAAADupZkLAABAU6uZd0do5v4c5fFEtF5zRwAAAHAvzVwAAACaWs28O0Iz9+cojyei9Zo7AgAAgHtp5gIAANDUaubdEZq5P0d5PBGt19wRAAAA3EszFwAAgKZWM++O0Mz9OcrjiWi95o4AAADgXpq5AAAANLWaeXfE2c3c+v3uiNZxfBNXv//WAAAA4F6auQAAADS1mnl3hGbuz3H1+28NAAAA7qWZCwAAQFOrmXdHaOb+HFe//9YAAADgXpq5AAAANLWaeXfE2c3cv/zrP+yO8vP/7t//pfmatWgdxzdRHk9E6zV3BAAAAPfSzAUAAKCp1cy7I85u5h6Jpz+/jvJ4IlqvuSMAAAC4l2YuAAAATa1m3h2hmftzlMcT0XrNHQEAAMC9NHMBAABoajXz7gjN3J+jPJ6I1mvuCAAAAO6lmQsAAEBTq5l3R2jm/hzl8US0XnNHAAAAcC/NXAAAAJpazbw7QjP35yiPJ6L1mjsCAACAe2nmAgAA0NRq5t0Rmrk/R3k8Ea3X3BEAAADcSzMXAACAplYz747QzP05yuOJaL3mjgAAAOBemrkAAAA0tZp5d4Rm7s9RHk9E6zV3BAAAAPfSzAUAAKCp1cy7IzRzf47yeCJar7kjAAAAuJdmLgAAAE2tZt4d8Zd//YcfGpeauZq5AAAAs9LMBQAAoKnVzLsj6mbuE83L8rM1c38LAAAA7qWZCwAAQFOrmXdX1M3LaPC2XndVlJ+tmftbAAAAcC/NXAAAAJpazby7om5e/t2//0vzdRF3N3qfiDofrdfcEQAAANxLMxcAAICmVjPvrmj9U8sR8bdky4gm71qjd5So89B6zR0BAADAvTRzAQAAaGo18+6MaNLWTcxWaObeFwAAANxLMxcAAICmVjPv7tjS0NXMvS8AAAC4l2YuAAAATa1m3hMR/+Ry/JPKdUMzmrjxeOt7xDUBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAGhqNfPE3AEAAMC9NHMBAABoajXzxNwBAADAvTRzAQAAaGo188TcAQAAwL00cwEAAAAAAABeSDMXAACAR/3H//gf/xj/4l/8i799ZD5x7jOfPwAAAG2auQAAADwiGrj/6B/9o7/5sz/7sz/GzM3MMg/xe41dAAAAgmYuAAAAt6kbuGXEc7OKc2/lRGMXAABgbpq5AAAAXCoalWtN3IzZfcqPxi4AAMB8NHMBAAC4xJYGboYm5edmbhkauwAAAHPQzAUAAOA0exq4ZWhMLv9Ty59CYxcAAGBcmrkAAAAdyn+6+FPcJT7rSBM342p35+Oob3IYobELAAAwFs1cAACADn3b9Ksj3u+IM47jjuZjfMbRc7xTL/msjzO+Xos4pk/RQ7MdAADgbpq5AAAAHYrGV9lM+zaONtLOOI5o5F3tzs/6xrf5vPP8oknbOoajAQAAwM80cwEAADp1VjPt2wbgtw3Iq8X53fl53zo6rnc3qs/8AwVvb7IDAAA8RTMXAACgU2/7W7FHm5BXqz8vjvPNjuTxqWZo3Sg/GgAAALRp5gIAAHTsm7+de0VTc+/xXN2EXGo2RiP8rfY26Z9q5KZv5mDE08cPAADwZpq5AAAAHfvmb+deZU9z7+qm6lIz94pG9pm25vANjdBv5qBGLgAAwDrNXAAAgM4d+ZuRVzfRWp/Ziqu1PjPjzX87d+uYvqUpvdQ0/xSauQAAAOs0cwEAADq3t5F2dQMtG5GfGpJXH8eWvLzVp7/tGudW5vkNPo13HVePPwAAwAg0cwEAADq1pVlZx9UNtLrBuHaMVx9L6zPreHNDcak5Wh5zne+n1ce6FnHMb84/AADAG2jmAgAAdKZukGZTrHxsKa6Ux1A3FpeO7Upb8xHx1n9uORu1ZcR51fJ1dd6fcOT/z22dEwAAAL/SzAUAAOhE3aCM5l3ZiGw1/8q4smlWHlurOdo69iuVn/Up3tAEbakbo2vjl2P/hnOpx7oVrdetnR8AAMCsNHMBAABeLBp6dZM2vm41TOvmXxlXNsrKplzruFL5uruOZ2usHfeTcuy35OtNDd16zpZRn0s9XlfODQAAgN5o5gIAALzQniZuqXx9xpXNsbIRt6Uhmq+/snlaNwe3xBsaoC1xXHvGL+fM0+cT41vnOGNJPW57zhsAAGBUmrkAAAAvcrSJm1qNzKuUn7Wn8XZlIzeU574nRmkevqWh25qLn3Icz9ffN8q4AAAAHKGZCwAA8ALfNnFL5Xtc1TgtG25varbVjcC9cXWj+S5vaejWc3qr1jhq6gIAADPSzAUAAHjQmU3clI2wq5pfZaPtbQ22PK6j8XTz80w5r548p5jHmdsjc6Wca/keb5tzAAAAV9LMBQAAeMAVTdzSVQ2vsrn2tqZaeWzfxFlj8AZvaOjmuHyjHtu3zT0AAICraOYCAADcqNXE7aUx9e3fsrxandctEd9TRpzXSM3cUJ7rU878Qwrl+GnqAgAAo9PMBQAAuEHPTdzw9kZu5jcbshnxeEbmP34/kzjfHLsnG7pnirHNc4p445wEAAA4g2YuAADAhcomYs+NpxGaZrM2c8OIDd2gqQsAAIxOMxcAAOACozRxQ55H703AmZu5YeSGrqYuAAAwKs1cAACAE9VN3Ph9z83DPJcRmn/Z8Ju50TdqQzfEuJZrb/axBgAAxqCZCwAAcILRmrghz2eUpp9m7q9GbuiGHOeM+FpTFwAA6JVmLgAAwBdGbOKGsiE2ijwnjb3xG7qhnMPGHQAA6JVmLgAAwAGjNnFD2QQb5ZxCNjBHbV7uNUNDN2jqAgAAPdPMBQAA2KFuDI3UxA2jNnKDZu7PZmnoBk1dAACgR5q5AAAAG4zexA0jN3KDZm7bTA3doKkLAAD0RDMXAABgxQxN3FCe56jNLc3cZTM2dOu1Peq8BwAA+qaZCwAA0FA3ekZt4obyXEdvaOV58rPZGroh5nu91kdfAwAAQF80cwEAAP5WNLOiiVU2dkZu4oaZGrkhz5W2GRu6odXQ1dQFAADeQDMXAACY3oxN3FA27mZpXOX5smzWhm5oNXUBAACepJkLAABMa9YmbpixkRvynFk3c0M3aOoCAABvoZkLAABMZ+Ymbpi1kRty3GcZ62/M3tANmroAAMDTNHMBAIBpzN7ETTM3pjRz99HQ/ZWmLgAA8BTNXAAAYHiauL/JPMzamMvz18zdTkP3V5EHTV0AAOBumrkAAMCwWk3cmZsvszdyg2buMRq6v4kaoqkLAADcRTMXAAAYjibuzzRyf5VNOM23/TR0f9Rq6JpXAADA2TRzAQCAYWjitpVNp9llLsyLY8qGrhz+qlxfmZfIEwAAwBk0cwEAgO5p4i4rG00aTJq5Z9DQbSvXmtwAAABn0cwFAAC6VTdx4/calr8pm0vy8qtsRPpngr+jobtMUxcAADiTZi4AANAdTdzPNHLbNHPPo6G7TlMXAAA4g2YuAADQDU3cbcomkgbSjzRzz6Wh+5mmLgAA8A3NXAAA4PWi+aGJu03ZONI0+plm7vk0dD+LvJRrU64AAICtNHMBAIDXqpsfmrjrynxpFC3LHHEeDd1tWjVNvgAAgDWauQAAwOu0Gh6auOs007bLPHEuc3C7usbF13IGAAC0aOYCAACvUTc4NHG30UTbJ3PF+czFfeqaJ2cAAEBNMxcAAHhUNH80cY/TPNsv88U1zMn9NHUBAIAlmrkAAMAjouETTduygaGJu5/mz34578y162joHqOpCwAA1DRzAQCAW2ninifzGL+ynWbuPTR0j9PUBQAAkmYuAABwC03cc2nkHqeZex8N3eMiX5q6AACAZi4AAHApTdzzaeR+RzP3Xhq636kbujF/5REAAOahmQsAAFxCE/caZWNHLo/JHGqI3UdD93vl2s88yiUAAIxPMxcAADiVJu51ymaOfB6XedQIu5eG7jnKOiCXAAAwPs1cAADgFK0mribDecoGjkbudzKX5uf9NHTPU9YE+QQAgHFp5gIAAF/RxL1e2bSR2+9lQzHmLffT0D1XWR/kFAAAxqOZCwAAHKKJe4+yUSO/59DMfZ6G7vnKWiGvAAAwDs1cAABgl7qJG7/XNLhG2ZyR4/No5r6Dhu75Io9l3ZBbAADon2YuAACwSauJG49xjbIhoxlzLs3c99DQvUbksqzX8gsAAP3SzAUAAFZp4t5Pg+tamrnvYr5fJ/KZuc38yjEAAPRFMxcAAGjSxH2GxtY9Mse8g3l/rVZTFwAA6INmLgAA8IO4ya+J+wwNrftknnkP8/96mroAANAfzVwAAOCP6pv8mrj3yyZ6/Mq1cp7zLhq699DUBQCAfmjmAgDA5DRx30Ej916Zb3P9fTR076OpCwAA76eZCwAAk9LEfQ+N3Ptp5r6bhu59Ir+augAA8F6auQAAMJFokGjivks5HtxHM/f9NHTvFTnOdSHvAADwHpq5AAAwgWiK1DfpNXGfVzZyjcW9NHP7oKF7v7IuZd7lHgAAnqOZCwAAA9PEfS+N3Gdp5vZDQ/cZraYuAABwP81cAAAYkCbuu2nkPi/HQIOqDxq6zynrlfwDAMD9NHMBAGAgmrjvVzZGNEWek+NgDPqhofussnYZAwAAuI9mLgAADEATtw9lM0Qj5Fk5FsahLxq6zyvrmHEAAIDraeYCAEDHWk3cuLGuifs+ZQNE8+N52RSM9UNfNHSfF2NQ1jRjAQAA19HMBQCADi01cXknzaf30cztmzX1DpH7iBwL4wEAAOfTzAUAgI5o4vZH0+mdNHP7Z229R6uha0wAAOAcmrkAANABTdw+aTa9l2buGKyxd4kxyPHIMYkxAgAAjtPMBQCAF6ubuPF7DYt+lA0N3ifHh75p6L5Pq6kLAAAco5kLAAAv1Gri+ttNfcnxi195p1xf9E9D9500dQEA4HuauQAA8CKauGPQyO1DrjPGoKH7Xpq6AABwnGYuAAC8gCbuODRy+5HrjXFo6L6bpi4AAOynmQsAAA+qb2xr4vatHE/eLxvv1txYNHTfLcak/tlnnAAAYJlmLgAAPKC+ka2J279yTI1lHzRzx6Wh+36thq6xAgCAn2nmAgDAjeqb15q4YyjH1Xj2QzN3bBq6fah/LsbXxgsAAH6jmQsAADeob1Zr4o6jHFtj2hfN3PFp6Paj/jlpvAAA4FeauQAAcJFoImSzKEMTdyxl80HjoT85fsZubBq6fSnrqjEDAADNXAAAOJ0m7hzKhoNmQ59yDI3f+DR0+1PWWOMGAMDMNHMBAOAkmrjzKJsMGgz9ynE0hnOwbvtUjpuxAwBgRpq5AADwJU3cufgbfuPIsYz1yhw0dPsUY1WOnfEDAGAmmrkAAHCQJu58NHLHopk7p7IpaB33pW7oxto1hgAAjE4zFwAAdtLEnZNG7ng0c+elodu3uqkbXxtHAABGpZkLAAAbtZq4bh7Pw5iPRzN3bmVD0LruUzmGxhEAgFFp5gIAwAeauOT4a/qNpfzb1sxJQ3cMmroAAIxMMxcAABZo4hI0cseWa5t5aeiOQ1MXAIARaeYCAEBFE5ekkTu+XOPMTUN3LJq6AACMRDMXAAD+Vt3Ejd/HY8ypbAaYB+PKMQYN3bHEGJZjalwBAOiVZi4AANPTxKVWNgDMhbHl2jfOhHLta/yNoW7oGlsAAHqjmQsAwLQ0cWnRyJ2LZi41Dd0x1U3d+Nr4AgDQA81cAACmo4nLEk2c+Wjm0qIWjKscW+MLAEAPNHMBAJhGfQNXE5eS5s2cNHNZoiaMrd4TGGMAAN5KMxcAgOHVN2w1calp2swrm7nGnRa1YXzlGBtnAADeSDMXAIBh1TdoNXFp0ayZW46/sWeJGjGHcpyNNQAAb6KZCwDAcOobspq4LIl54cb93LJeGH/WlD9XzJVxxdiWY228AQB4A81cAACGEE25/OdSMzRxWaORS8jGTdQLWFM2+dSMscX41nsKYw4AwFM0cwEA6JomLkdo5JJyLmjmsoWG7lzK8c4xN+4AANxNMxcAgC5p4vKNnDsaeGjmspeG7nxaTV0AALiLZi4AAF3RxOVbGrmUNHM5QkN3Tpq6AAA8QTMXAIAuaOJyBo1capq5HKWhOy9NXQAA7qSZCwDAq2nicpby5juUzAuO0tCdm6YuAAB30MwFAOCVWk1cN0k5qrzh7g8CUMu5AUeU9cXPqfnEmJdzwDwAAOBsmrkAALyKJi5nK2+ya+TSkvMDjirrjJ9Zc4pxL+eBuQAAwFk0cwEAeAVNXK5Q3ljXyGWJOcIZynrj59e8ynmQc8F8AADgG5q5AAA8ShOXq5Q31M0p1mQN0szlW+oOqZwLOR/UGAAAjtDMBQDgEXUTN37vJidn0VBhD81czqT+UCrngzkBAMARmrkAANxKE5eraaSwl2YuZ1OHqJVzwrwAAGAPzVwAAG6hicsdYk65Uc5emrlcQUOXFk1dAAD20swFAOBSmrjcRSOXo7K5Yt5wtrJxZ36R4udVOTfMDwAA1mjmAgBwifompSYuV9LI5RtZr8wdrlD+PDTHKMV8KOeHOQIAQItmLgAAp6pvSmricgc3wflG1i3zh6uUPxvNM2rl/Mg5Yp4AAJA0cwEAOEV9I1ITl7vkP+Mdv8IR+Te7zSGuVP6c1Kijpd5Lxdf2UgAAaOYCAPAVTVyepJHLGTRzuYuGLlu0mroAAMxLMxcAgN2i8ZFNtAxNXO6mkctZNHO5k4YuW2nqAgAQNHMBANhME5e3KG9ww7c0c7mbhi57aOoCAMxNMxcAgI80cXmT8qa2OchZck7BXTR02UtTFwBgTpq5AAAs0sTlbTRyuUrOK7iThi57xTwp5425AwAwPs1cAAB+oonLG5U3r81FzpZzC+5W1jZNObaqG7qxTzN/AADGpJkLAMCfaOLyVpodXC3nFzxBjeOocu7k/DGHAADGopkLAECzietGIG9R3qg2L7lK1kB/eIWnqHV8o5w/5hAAwFg0cwEAJqaJy9tpbnAXzVzeQM3jW+UcMo8AAMagmQsAMCFNXHoQ89T85C6aubxF2YxT+ziqnEfmEgBA3zRzAQAmoolLLzRyuZtmLm9SNuLUQL5RziXzCQCgT5q5AAATqJu48XsNC95KI5cnZMPDnOMtyiaceck3Yv6U88mcAgDoi2YuAMDANHHpkRvNPCEbHeYdb1I24MxNvlXOJ/MKAKAfmrkAAAPSxKVXOW/jV7hTNjk0NnibsgFnfnKGck7lvDK3AADeSzMXAGAgmrj0TCOXJ0WtNP94Kw1drtBq6gIA8D6auQAAA6hvxmni0huNXJ6mmcvbaehyFU1dAIB308wFAOiYJi4jKOex+ctTNHPpQVkvNdw4W72vNMcAAN5BMxcAoEP1zTZNXHpVzmVzmCdp5tKLsm5qtnGFep9pngEAPEszFwCgI/XNNU1celbOZ/OYp2nm0pOyfmq0cYWYV/W+01wDAHiGZi4AwMtFgyGaC+XNNE1ceqcRwRvlnIQeqKPcIeZWvQ813wAA7qWZCwDwUpq4jEoDgrfKeQm9UE+5SznXcr6ZcwAA99DMBQB4GU1cRqbxwJvl3ISeqKvcqZxv5hwAwD00cwEAXkITl9FpOPB2WYPVXXqjvnK3cs6ZdwAA19LMBQB4mCYuM4j57IYvb6eZS880dHmCpi4AwPU0cwEAHqKJyyw0cumFZi6909DlKZq6AADX0cwFALhZq4nrhhej0silJ5q5jKBsqqm73CnmWzn/zEEAgHNo5gIA3EQTlxnlnI9f4e1yvqrN9K5sqJnP3C3mnD0vAMB5NHMBAC6micusNHLpTTbA1GhGkPPZnOYp5RzMeWguAgDsp5kLAHARTVxmppFLj7LxoFYzipzT5jVPKuehuQgAsJ9mLgDAyeombvze/7/ITMqbttCTnLsaDYykrMnmNk8q56L5CACwnWYuAMBJNHHhxxu15j+9iTmb9RtGoqHLm2jqAgDso5kLAPAlTVz4lUYuvdPMZWQauryNpi4AwDaauQAAB2niwm80chmBZi6j09DlbaLuauoCAKzTzAUA2Km+4aSJy+w0BxiFZi4zULN5o5iL5dw0PwEAfqOZCwCwUX2DSRMXNAUYT85nGJnazVvV++342hwFAGanmQsA8EF9U0kTF35Vrg03WhlFzmkYnRrOm9X77/ja/hsAmJVmLgDAgvomkiYu/Cb/Odq8wQqjyHkNMyj3Omo5b1Tvx81TAGBGmrkAAIVoUEXTtrxppIkLP9LIZWQ5t9V9ZqGhSw80dQGAmWnmAgD83zRxYRuNXEaXPwvUf2aioUsvNHUBgBlp5gIAU9PEhX3cPGV0mrnMSkOXnmjqAgAz0cwFAKakiQv75ZqJX2FUmrnMTEOXnsQc1dQFAGagmQsATEUTF47RyGUWmrnMTkOX3tQN3ajj5i4AMBLNXABgCpq4cFyunfgVRpdNAY0AZlY2x6wFelHO25y75i8AMALNXABgaK0mrps6sF15YxRmkHPezwpmV9Z/64GelHPX/AUARqCZCwAMSRMXvlfeDPW32JlFzns/M0BDl76V89ccBgB6ppkLAAxFExfOUd4A1chlJjHfY977Z8XhV+XPA3sqelTOYfMYAOiRZi4AMARNXDhPedNTI5fZaObCz8qfC/ZX9Kqcx+YyANATzVwAoGt1Ezd+r/kEx7lhz+w0c6HNzwdGEHO3nMvmMwDQA81cAKBLmrhwPjfqQTMX1vg5wSjKuZw135wGAN5KMxcA6IomLlzDDXr4Ta4F4Gd+XjCScj7nnDavAYC30cwFALoQN1U0ceEa+TcR8yYmzC7XA9BWNsD83GAE5Zw2rwGAt9HMBQBerb6xookL59LIhZ/lmgCWlXs0ezNGoakLALyRZi4A8EqauHA9jVxoy3UBrNPQZVSaugDAm2jmAgCvookL93GDEtryn/X38wc+09BlZJq6AMAbaOYCAI+LG3+auHCvbFbFr8CPNHNhHw1dRhbzW1MXAHiSZi4A8Ji42Zc3zDM0ceF6GrmwTjMX9tPQZXR1QzdCUxcAuINmLgBwO01ceI5GLnymmQvHaOgyg7qpG19r6gIAV9LMBQBuo4kLz3KTHbbJteLmPOznZw2zKOe6nxkAwJU0cwGAy2niwvPcXIftcr24MQ/H+JnDTMr57mcHAHAFzVwA4DKauPAObqrDPrlm3JCH4/zsYTblnPczBAA4k2YuAHA6TVx4j/LGopuKsE38vMqfXcBxGrrMSFMXADibZi4AcJpWE9fNC3hOeTPRWoTtNHPhPOXPIg1dZhHzvpz7EfZiAMBRmrkAwNc0ceF9yhuI1iPso5kL5yp/JmnoMpOY+66TAIBvaeYCAIdp4sI7lTfNrUnYTzMXzlf+bNLQZTbl/I+Ir+3RAICtNHMBgN3qJm783s0IeIdsQuWNQmA/zVy4RtnQ0tBlRuUaiLBXAwC20MwFADZrNXHdiIP30MiF8+RaAs6loQuaugDAPpq5AMBHmrjwfhq5cK5cT8D5NHThV5q6AMAWmrkAwCJNXOhHrlU3AeEc+bMPuIaGLvxGUxcAWKOZCwD8pL6ZoIkL75aN3PgVOEeuKz//4DoauvCbWAOaugBAi2YuAPAnmrjQH41cuIZmLtxDQxd+FGtCUxcAKGnmAgCauNCpcu0C59LMhfuUP8+sOfhVq6EbAQDMRzMXACZW3yDQxIV+uPEN19LMhXv5uQZt9TVbfG2NAMBcNHMBYDJx4Z83qDM0caEvbnjD9TRz4X5+vsGyVlMXAJiDZi4ATEITF8bgRjfcI9eam+VwLz/nYF25RvycAoA5aOYCwOA0cWEc5c07N+7gWrnerDW4X/nzzp4V2sp14ucVAIxNMxcABqWJC2Mpb9i5WQfXyzVnvcEzyp979q/QFmujXCt+bgHAmDRzAWAwmrgwnvImnRt0cI/4uZk/Q4FnaOjCNrFWyvUSYc8IAOPQzAWAQWjiwpiyoeSmHNxLMxfeQUMXtms1dO0fAaB/mrkA0LlWEzcu2N3sgv5p5MJzNHPhPcoGlT0ufFaumQjXhwDQN81cAOhUXIy3mrjAGDRy4VmaufAuGrqwX6upCwD0RzMXADqjiQtzsL7hebkOgXfQ0IVjNHUBoG+auQDQCU1cmEeudX8jEJ6VP2+B99DQheM0dQGgT5q5APBydRM3fu+iG8alkQvvkT97gXfR0IXvaOoCQF80cwHgpVpNXDerYGwaufAu+TMYeB8NXfhOrCFNXQDog2YuALyMJi7MqbyZBrxD/jz2cxjeSUMXvlc3dONnn6YuALyLZi4AvIQmLszLzWh4J81ceD8/Q+EcdVM3vtbUBYB30MwFgIfVF82auDAXN6HhvTRzoQ9+lsJ56utTDV0AeJ5mLgA8RBMXcPMZ3k0zF/rhZyqcS1MXAN5DMxcAbqaJC4SyFrg5Bu+U69QahT6UP1vtr+Ec5bryMxEAnqGZCwA3qS+CNXFhXmU9cEMM3ivXqnUK/Sh/xtprw3nKteVnIwDcSzMXAC4UN5Dyn2jM0MSFuZU3wtwEg3fL9WqtQl/Kn7X23XCeWFvl+vIzEgDuoZkLABfQxAVaoga48QX9yDUbP8OBvmjownXqhm6EvS0AXEczFwBOpIkLLNHIhf5o5kLfNHThWnVTN762zwWA82nmAsAJNHGBNRq50CfNXOifhi5cr9XUBQDOo5kLAF/QxAW2cGML+qSZC2PQ0IV7aOoCwDU0cwHgAE1cYKusFZpB0J9s5kYAfdPQhfto6gLAuTRzAWCHVhPXhSmwRCMX+pc/74H+aejCvTR1AeAcmrkAsIEmLrCXRi6MIX/uA2PQ0IV7xZrT1AWA72jmAsAKTVzgiPKGFdA3axnGU+7vNXThHrE/dm0NAMdo5gJAgyYucFTZyHWDGPqX+wHrGcaioQvPKPfKEfG1a20AWKeZCwCFuokbv3dzB9hKIxfGo5kL49LQhee0mroAQJtmLgD83zRxgW+VN6TcjIJxaObC2DR04VmaugDwmWYuAFPTxAXOoJEL49LMhfFp6MLzNHUBYJlmLgBT0sQFzqKRC2PLNW59w9g0dOEdyr21n78A8CvNXACmUl8YauIC3yhrihtNMKZc59Y4jE9DF94hfuaW+2w/hwGYnWYuAFOoLwQ1cYFvRQ1xcwnGl3sI6xzmoKEL7xE/e8s16ecxALPSzAVgaHkDNkMTFziDRi7MI/cSsYcA5qChC+9SX9fH1/bgAMxEMxeAIdUXe5q4wFk0cmEuueY1c2EuGrrwPq2mLgDMQDMXgGHETZbypkuEJi5wNjePYC6auTAvDV14J01dAGajmQtA9zRxgbtkrdHUgXlo5sLcyusM1xfwLpq6AMxCMxeAbmniAnfKeqOhA3PRzAXKaw7XGvA+mroAjE4zF4DuaOICdytvEAHzsf4BDV14t1iXmroAjEozF4BuaOICTyhvCqk3MKesAcDcNHTh/WLvrqkLwGg0cwF4PU1c4CkauUDIOgCgoQt9aDV0NXUB6JVmLgCv1WriuvgC7qKRC6Tcj6gFQNDQhX60mrrWLQC90cwF4HU0cYGnlTd91B9AMxeoaehCX1pNXQDohWYuAK+hiQu8gUYuUNPMBVo0dKE/mroA9EgzF4DHaeICb6GRC7Ro5gJLNHShT5q6APREMxeAx9RN3Pi9GyDAUzRygSWaucCarBHxK9AXTV0AeqCZC8DtNHGBt4ka5AYOsCRv9KoPwBINXehX/HzPn/WuCQB4I81cAG6jiQu8kUYu8Ene4FUjgDUautC3uqEba9nPfgDeQDMXgMtp4gJvlrXJjRpgiWYusJWGLvSvburG1/YAADxJMxeAy9QXQJq4wNu44QpskX+DX60AtrC/gDG0mroA8ATNXABOp4kL9MCNVmArzVxgL/sMGIemLgBP08wF4DSauEAv3GAF9tDMBY6w34CxaOoC8BTNXAC+pokL9KSsWQBbaOYCR2nowng0dQG4m2YuAIfETc28MZGhiQu8XXnjRb0C9sjaAbCXhi6MJ64rNHUBuItmLgC7aOICvdLIBb6R9QPgCA1dGFPd0I01rqkLwNk0cwHYRBMX6JlGLvCtrCEAR2nowrjqpm58rakLwFk0cwFYpYkL9K68seKGCnBU1hGAb2jowthaTV0A+JZmLgBNmrjACDRygbPkvsheCPiWhi6MT1MXgDNp5gLwA01cYBQaucCZNHOBM2nowhw0dQE4g2YuAH/UauK6yAB6FTVNLQPOpJkLnE1DF+ahqQvANzRzASaniQuMRiMXuIJmLnAFDV2YR1ybaOoCcIRmLsCkNHGBEWnkAlfJm69qC3A2DV2YS+4pyrC/AGCNZi7AZDRxgZGpa8BV8sar+gJcQUMX5pN7i/Iaxj4DgBbNXIBJ1E3c+L1/JhAYiZugwJU0c4Gr2cvAnFpNXQAoaeYCDE4TF5iBm5/A1WL/pM4AV7OngXlp6gKwRDMXYFCauMAs3PQE7qCZC9zF3gbmpqkLQE0zF2AwmrjATMobHQBX0swF7qShC2jqApA0cwEGUW/yNXGB0ZV1T70DrqaZC9xNQxeIax5NXQA0cwE6p4kLzEgjF7hbNnMjAO6ioQuEuP7JepChqQswD81cgE5p4gKz0sgFnpK1B+BOGrpAqu8FxdeaugDj08wF6IwmLjCzsga6aQHcLesPwN00dIFSfW/ItRHA2DRzAToQzdq8eM/QxAVmo5ELPC1rEMATNHSBmqYuwBw0cwFeTBMX4FcaucAb5L7MXgx4ioYu0KKpCzA2zVyAF9LEBfhN1D43JYA30MwF3kBDF1iiqQswJs1cgBfRxAX4kUYu8CaaucBbaOgCS2KfoqkLMBbNXIAX0MQF+JlGLvA2mrnAm2joAmviGkpTF2AMmrkAD9LEBVjmhgPwNrlvU5eAt9DQBT5pNXTtZQD6opkL8IBWE9dGGuA3bkwCb5Q3Q+3bgDexbwK2yH1MRnztLxMA9EEzF+BGmrgAn7khCbyVZi7wVvZPwFatpi4A76aZC3ADTVyAbdyIBN4sb36qUcAb2UcBe2jqAvRDMxfgQpq4ANuVNxP8c1/AG0VtihqlUQK8lYYusJemLsD7aeYCXKBu4sbvNSYAlmnkAj3QzAV6oKEL7BV7HE1dgPfSzAU4kSYuwH4auUAvNHOBXmjoAkfEtZmmLsD7aOYCnEATF+CY8kaBmwTA22nmAj3R0AWOajV0Xa8BPEczF+ALsZHVxAU4prxB4MYA0IusWwA90NAFvlFes0XE167dAO6nmQtwQL2Z1cQF2Keso24GAD3J2gXQCw1d4Fv1fTDXcAD30swF2EETF+B7GrlAz7J+AfREQxc4g6YuwDM0cwE20MQFOEf+f5Mu/IFeZQ2zFwR6o6ELnEVTF+BemrkAC+IGnSYuwHk0coERZDPEnhDokYYucCZNXYB7aOYCVOLGXF7gZmjiAnxHIxcYhWYu0DsNXeBMcX2nqQtwLc1cgL+liQtwHTcNgVFkPbNHBHpmbwacrW7oRn3R1AU4h2YuMD1NXIBruVkIjCRrmr0i0Lvy+hfgLK2/paupC/AdzVxgWpq4ANfLOusmITCKvEHppiTQu7j2La+FAc7UauoCcIxmLjCl8qI1QhMX4HzlxTvAKDRzgZFo6AJXq5u6AOynmQsM4//4P/+vP8V/+M//9W/+9X/6Lz/E//zv/vcf4u/9g7/4Y/yTf/lv//h1vi6+NyPeC2BWe2pqHX/5P/z1ny7W/9W/+ffqKtCFLXUv9o4ZZd0rX5s1T90DnpZ1ba22RT3LfdtSbVPXgDVbas0//Mf/7I9R1piMfJ1aA9CmmQt0KTeI5abw6ig3lTaUwGjqi+5WHdwacYG+dEOwjLKuAtztzLq3NdQ94ErfXCe3/pDKlijrmutkmMM3teZoqDXA7DRzgS6UG8XWpu6pyI0kQG+uuvje2shtRXmBDnC2u286bgl1D/iG62TgDmoNwPM0c4HXeutmcSnyZhzAW91VU+OfsF/657P2hItz4Fs97SUj1D3gE9fJwB3UGoB30cwFXqe3m26tsIkE3mKEmhqhwQFspe4BI3KdDNxBrQF4J81c4BVGuenWCjfigLtFTY26M3JdBSipe8CIXCcDd1BrAN5PMxd41MgbxjpsIIGrzVRTI9RUQN0DRuQ6GbiDWgPQD81c4BGz3XirwwYSOJOa+l//mANgHuqeugcjUttcJ8Md1Bq1BuiPZi5wq9k3jGVEHmwggW+oqT+GmgrjU/d+DHUPxqC2/Rauk+E6as1vodYAvdHMBW5hw7gcNo/AEVE7WjVFqKswKnVvOdQ96JPr5OVQ1+A8as1yqDVALzRzgcu58bYtbCCBLdTU7aGuwhjUve2h7kE/1LZtoa7Bd9SabaHWAG+nmQtcxp/8OxY2kECLmnos1FTol7p3LNQ9eDe17ViobbCPWnMs1BrgrTRzgUvE5qe1KRLbwuYRKKmp34e6Cn1R974PdQ/eR237LtQ12Eat+S7UGuCNNHOBU/mTf+dF5DHyCcxNTT0vXJRDH9S980Ldg3dwnXxeuE6GZWrNeaHWAG+jmQucxp/8uybchIM5xYVjqyaI70NdhXdS964LdQ+e4zr5mlDX4EdqzTWh1gBvoZkLnMKm8dqweYS5qKnXh7oK76LuXR/qHtxPbbs21DX4lVpzbag1wBto5gJf80+43BORZ2B8aup94aIc3kHduy/UPbiP2nZPuE5mdmrNPaHWAE/TzAUO80/hPRP+zw4Ylwvx+8NFOTxL3bs/1D24luvkZ8J1MrNRa54JtQZ4imYucIhN47Nh8whjiTWtofFsqKtwL3Xv+VD34HyxrlrrTdwT6hqzUGueDbUGeIJmLrCb/4vjHeGfyYMxuBB/T7goh3uoe+8JdQ/O4zr5HeE6mdGpNe8ItQa4m2YusItN47vC5hH6pqHxvtDYgGupe+8LdQ++5zr5XeE6mVGpNe8KtQa4k2YusJlN4zvD5hH6pKHx3tDYgGuoe+8NdQ+Oc538znCdzGjUmneGWgPcRTMX2MSm8d3hBhz0RUPj/aGuwrnUvfeHugf7uU5+d6hrjEKteXeoNcAdNHOBj9x86yNsHqEPamo/oa7COdS9fkLdg+3Utj5CXaN3ak0fodYAV9PMBVbZNPYVNo/wfv/6P/2X5voV74sYK+B76l4/oe7BNq6T+wrXyfRKrekr1BrgSpq5wCo33/oKN+Dg3dTU/kJdhe+oe/2FugefqW19hbpGr9SavkKtAa6kmQss8n9y9Bk2j/BOamq/EWMH7Kfu9RvqHixT2/oM18n0Rq3pM9Qa4CqauUCTTWPf4QYcvIua2n+oq7CPutd/qHvwM7Wt71DX6IVa03eoNcAVNHOBn9g0jhH+rw54B//P0TihrsI26t44oe7Bb1wnjxHqGm+n1owRag1wNs1c4CetTYjoM2we4XmttSn6DP9kFmzTWj+iz1D34DetNSL6DNfJvFlrzoo+Q60BzqSZC/zAnwAcK9yAg2epqeOFugrr1L3xQt0DtW20UNd4K7VmrFBrgDNp5gJ/YtM4ZsS4AvdTU8cNdRXa1L1xQ91jZmrbmKGu8TZqzZih1gBn0cwF/qS16RBjhH/aBe7XWotinAB+1lorYpyAWbXWgxgjXCfzJq05KsYItQY4g2Yu8Ef+BODY4Z92gXupqeOHugo/UvfGD3WPGaltY4e6xluoNWOHWgOcQTMXsGmcJGKcgeupqfOEP2ENv1L35gl1j5mobXOE62SeptbMEWoN8C3NXKC5yRBjBnC91toTY4Y/YQ2/aq0PMWaoe8yktQbEmAFPas1JMWYAfEMzFybnTwDOFf4kIFxLTZ0v1FVmp+7NF+oeM1Db5gp1jaeoNXOFWgN8QzMXJtfaXIixwz+PB9dprTkxfqirzKy1JsT4oe4xuta8F2OHusYTWnNRjB1qDXCUZi5MzJ8AnDP883hwDTV13lBXmZW6N2+oe4xMbZsz1DXuptbMGWoNcJRmLkystakQc4Q/CQjna601MU+oq8yotRbEPKHuMarWfBdzhLrGnVpzUMwRag1whGYuTMqfAJw7/ElAOJeaKtRVZqPuCXWPEaltc4e6xl3UmrlDrQGO0MyFSbU2E2Ku8CcB4TytNSbmC3WVmbTWgJgv1D1G05rnYq5Q17hDa+6JuUKtAfbSzIUJ+ROAIsKfBIRzqKkiI+YCzEDdExnqHiNR20SE62SuptaICLUG2EszFybU2kSIOQP4XmttiXkDZtCa+2LegFG05reYM+BKrTkn5gyAPTRzYTL+BKAowz/rAt9RU0Ud6iqjU/dEHeoeI1DbRBnqGldRa0QZag2wh2YuTKa1eRDzhn/WBb4Ta6i1tsS8oa4yOnVP1KHuMYLW3BbzhrrGVVrzTcwbag2wh2YuTMSfABSt8CcB4ZhYO601JYS6yqjUPbEU6h49c50sWqGucTa1RrRCrQG20syFidg4ilb4k4BwjJoqlkJdZVTqnlgKdY+eqW2iFeoaZ1NrRCvUGmArzVyYSGvTIEQEsF9rLQmRASNqzXUhMqBXrfksRAScqTXHhIgA2EIzFybhTwCKtfDPusA+aqr4FOoqo1H3xKdQ9+iR2ibWQl3jLGqNWAu1BthCMxcmYeMo1sI/6wL7qKniU6irjEbdE59C3aNHaptYC3WNs6g1Yi3UGmALzVyYRGuzIEQZwHatNSREHTCS1hwXog7oTWseC1EGnKE1t4QoA+ATzVyYQPxzHa2NghBl+GddYBs1VWwNdZVRqHtia6h79ERtE1tCXeNbao3YEmoN8IlmLkzAP+citkTME+AzNVVsDXWVUah7Ymuoe/REbRNbQl3jW2qN2BJqDfCJZi5MIP7vhdZGQYgy/B8dsI2aKraGusoo1D2xNdQ9eqK2iS2hrvEttUZsCbUG+EQzFybQ2iQI0Qrgs9baEWIpYAStuS3EUkAvWvNXiFbAN1pzSohWAKzRzIXB+b85xJ7wf3TAOjVV7A11ld6pe2JvqHv0QG0Te0Jd4yi1RuwJtQZYo5kLg/N/c4g9YeMI69RUsTfUVXqn7om9oe7RA7VN7Al1jaPUGrEn1BpgjWYuDM7GUewJ/0cHrFNTxd5QV+mduif2hrpHD9Q2sSfUNY5Sa8SeUGuANZq5MLjYCLQ2CEK0wsYR1qmpYm+oq/RO3RN7Q92jB2qb2BPqGkepNWJPqDXAGs1cGFxrcyDEWgDLWmtGiE8BPWvNaSE+Bbxda94KsRZwRGsuCbEWAEs0c2Fg8X8ttDYGQqyF/6MD2tRUcTTUVXql7omjoe7xZmqbOBLqGnupNeJIqDXAEs1cGJiNozgSNo7QpqaKo6Gu0it1TxwNdY83U9vEkVDX2EutEUdCrQGWaObCwP7Df/6vzY2BEGsR8wb4mZoqjoa6Sq/UPXE01D3eTG0TR0JdYy+1RhwJtQZYopkLA7NxFEfCxhHa1FRxNNRVeqXuiaOh7vFmaps4Euoae6k14kioNcASzVwY2L/+T/+luTEQYi1i3gA/U1PF0VBX6ZW6J46GusebqW3iSKhr7KXWiCOh1gBLNHNhYDaO4kjYOEKbmiqOhrpKr9Q9cTTUPd5MbRNHQl1jL7VGHAm1BliimQsDs3EUR8LGEdrUVHE01FV6pe6Jo6Hu8WZqmzgS6hp7qTXiSKg1wBLNXBhYa1MgxJYAftZaK0JsDehRay4LsTXgrVrzVYgtAXu05pAQWwKgRTMXBtbaEAixJYCftdaKEFsDetSay0JsDXir1nwVYkvAHq05JMSWAGjRzIWBtTYEQmwJ4GettSLE1oAeteayEFsD3qo1X4XYErBHaw4JsSUAWjRzYWCtDYEQWwL4WWutCLE1oEetuSzE1oC3as1XIbYE7NGaQ0JsCYAWzVwYWGtDIMSWAH7WWitCbA3oUWsuC7E14K1a81WILQF7tOaQEFsCoEUzFwbW2hAIsSWAn7XWihBbA3rUmstCbA14q9Z8FWJLwB6tOSTElgBo0cyFgbU2BEJsCeBnrbUixNaAHrXmshBbA96qNV+F2BKwR2sOCbElAFo0c2FgrQ2BEFsC+FlrrQixNaBHrbksxNaAt2rNVyG2BOzRmkNCbAmAFs1cGFhrQyDElgB+1lorQmwN6FFrLguxNeCtWvNViC0Be7TmkBBbAqBFMxcG9q//039pbgqEWIuYN8DP1FRxNNRVeqXuiaOh7vFmaps4Euoae6k14kioNcASzVwYmI2jOBI2jtCmpoqjoa7SK3VPHA11jzdT28SRUNfYS60RR0KtAZZo5sLAbBzFkbBxhDY1VRwNdZVeqXviaKh7vJnaJo6EusZeao04EmoNsEQzFwb2H/7zf21uDIRYi5g3wM/UVHE01FV6pe6Jo6Hu8WZqmzgS6hp7qTXiSKg1wBLNXBiYjaM4EjaO0KamiqOhrtIrdU8cDXWPN1PbxJFQ19hLrRFHQq0BlmjmwsD+j//z/2puDIRYi5g3wM/UVHE01FV6pe6Jo6Hu8WZqmzgS6hp7qTXiSKg1wBLNXBiYjaM4EjaO0KamiqOhrtIrdU8cDXWPN1PbxJFQ19hLrRFHQq0BlmjmwuBaGwMh1gJY1lozQnwK6FlrTgvxKeDtWvNWiLWAI1pzSYi1AFiimQuD+9f/6b80NwdCtCLmC7BMTRV7Q12ld+qe2BvqHj1Q28SeUNc4Sq0Re0KtAdZo5sLgbBzFnvgP//m//u3MAVrUVLE31FV6p+6JvaHu0QO1TewJdY2j1BqxJ9QaYI1mLgzO/9Eh9oSNI6xTU8XeUFfpnbon9oa6Rw/UNrEn1DWOUmvEnlBrgDWauTA4G0exJ2K+AMvUVLE31FV6p+6JvaHu0QO1TewJdY2j1BqxJ9QaYI1mLkygtUEQohXAZ621I8RSwAhac1uIpYBetOavEK2Ab7TmlBCtAFijmQsT8H90iC0R8wT4TE0VW0NdZRTqntga6h49UdvEllDX+JZaI7aEWgN8opkLE4j/c6G1URCiDP83B2yjpoqtoa4yCnVPbA11j56obWJLqGt8S60RW0KtAT7RzIUJ+D86xJY48//m+I//8T/+MWBEaqrYGv7PI0ah7omtoe7RE7VNbAl1jW+pNWJLqDXAJ5q5MInWRkGIMo7Kxu0/+kf/6I/xZ3/2Z3+Mf/Ev/sXfvgLG01pDQtQBI2nNcSHqiP1f7gWPRO4ny/AHBLlSax4LUQacoTW3hCgD4BPNXJiE/6NDrMWef84lbqjFjbq4uda6CZehmcvI1FTxKfwzWYxG3ROfIuvepz3inrCf5Gpqm1gL+znOotaItVBrgC00c2ES/lkXsRZLG8elv3W7JfwtCkampopP4YKc0ah74lNk3Ys9YGtveCQ0c7ma2ibWwn6Os6g1Yi3UGmALzVyYSGvDIEREyMbtlr91uyVgdK21JEQGjKg114XIKMV+srU/3BMaudylNZ+FiIAzteaYEBEAW2jmwkT8sy6iFfknAM+46Zbh5hszUFPFUviT1YxK3RNL0ap73/7hQPtJ7qK2iVbYz3E2tUa0Qq0BttLMhYn4Z11EK8qN41kNXTffmIGaKpYi5gaMSN0TS7FU9442dO0luZPaJlqhwcLZ1BrRCrUG2EozFybjTwKKOmpn/D9nMAs1VdQRcwJGpu6JOtbq3tF9pWYud1PbRB1wBbVG1AGwlWYuTMafBBRlrP0JwG/+aTyYhZoq6vAnqxmduifq+FT39v7LL7EHhbupbaIM+zmuotaIMtQaYA/NXJhQawMh5oxPvvlnl+NGXHy/v1nB6FprS8wbMIPW3BfzxhZ7/5Bg7B/jb/XCnVrzW8wZcKXWnBNzBsAemrkwIf+si4jY+icAj/xtiqXH3ZhjRLGWWmtMzBf+ZDWzUPdExp6619of1lHvI/2hQO7kOllE2M9x1Nb7HWqNiFBrgL00c2FC/lkXEbHHnoZuiouY+D7NXUanpooMmIW6JzL2iD1fa09YRqr3nvE1XE1tExFwRP0zLu93tH5+qTUiAmAvzVyYlD8JOHcc+ROA9U21pViSFzKau4xITRX+ZDWzUffE2fvJeK5Wv771GjiT2jZ32M/xjfLnVSviZ1hE3PNQa+YOtQY4QjMXJuVPAs4dR336GxV7brDlhcxSc7e80IG3U1MFzEbdE0ct7f3WxJ6wfG18DVdQ2+YO+MbSz7el+Hv/4C/+5h/+43/2x2jNRzFuAByhmQsT8ycB54xv/wTgWkP3mxtr2bzV3KVXauq84U9WMyt1b974pu619pJb95DxuiPfB3uobXOG/Rzf+vSH37dENnf/yb/8t815KvoPtQY4SjMXJuZPHc8ZZ2k1Xc+Uzdv6MzLyec1d3kJNnTfWRI2KiHoVdbOsndA7dW/e+FZ9w3uveo8YX8NZ1LY5A751RjM3I/7Wbmueiv4D4CjNXJhc/Imw1uZCjBln/wnA+kbaleKz6s8rI5+HJ6mp80WMeTZsI7Jh2/oDL2WoV4xC3ZsvztpP5r7um3qY76G2cja1ba44q65B+TPpaPhnl8cNtQb4hmYu0NxgiDHjCmfciDsiPq++gVdGPg9380/zjRvxz51FxA2W+NPyEa36syXUJ0ai7s0VZ4o/+HKGek+oxnKG1vwXYwac5dMf6PwUGrljB8A3NHMBf+p4krjyTwA+3TiNvw2Xx9C6IIp4+hiZh3+ab8yIGyut2nI0YCTq3jzx5r9RkvvBstba+/EN18lzhL8px5nW7kl8Co3csUOtAb6lmQv8kb9RMXbMtmnU3OVpauqYcVZDV+1hROre+NHLfrK1B1R3OUptGzs0V/hW+d+slD939sb/9L/8r805KsYItQY4g2Yu8Ef+RsXYMbtPzd248Mrn4SyttSj6jzMaumoNo2qtGTFO9Ka191N/2ct18tgBe31q3u5t6sbr4z3VmrED4AyaucCfxJ8Ua206RN/hTwD+LJu7axdgeQMQjlJTx41/+j/+82bt2BowKnVv3Oh5P5l7urIO2+Oxh9o2ZrhO5pO4b7CleRs/U+J1aem1dcTrSmrNmKHWAGfRzAV+4J+RGitsGrfZ2twtL9BgCzV1vMi6WjcGtoYGAqNT98aLUfaTUX/r2q0ms5XaNla4TqZla/M2X7cknmt9bxlLP3/UmrFCrQHOpJkL/MA/7TJWcExcfMXFleYuZ3BBPlaU6qbA1ojvW7qBAyNQ98aK0WQNrusyrHGdPFZAyKbst83bWry29V4Zaz9z1JqxAuBMmrnAT2wexwh/AvA8edNPc5cj1NRxIsayFmu/VRe2RtYXGIm6N0606t4oWns79Zg1atsY4Tp5XtmUjdq/dm2fr/tG670jtvycUWvGCLUGOJtmLtAUm47WZkT0ETaN18rmy9oFYDyvuUtSU/uPtboa671VC+rImzdZQ1rP52ugd+pe/zHLfnKpHkOL2tZ3zFLX+NWdzdta6/P2fIZa03eoNcAVNHOBRf6JvD7DpvF+2YBZukDM58++QKQvLsj7jS11NdZ4a/2XEa+pZX2oXxv1pPV66Im612/MuJ9s1WJ1mBbXyX2G6+TxZVM29tFL1+bxeL7uSvH+9Wfupdb0GWoNcBXNXGCVzWNfEePF85aaMxn5/NUXkLyPmtpf7Kmra+s+4pOl2qGxS8/Uvf5i9v1kqw6rwdTUtr5i9ro2qmzKvqF5W4vPy8//hlrTV6g1wJU0c4FV/q+OvuKb/9esvBDiXEsNmox8njm4IO8njlyML631vWs860L9PlGj1Qt6o+71E25C/qZVg9XfMeTP2G+aO66T+4pvrpN5j/KeRURdoyPi8Xzdk/I4vz0OtaavUGuAK2nmAh/ZPPYRWzeNeWETNzBaF0HxNdfKG0hl3svI5xmTmtpPHL0Yb63vb9Z01oT6PfN9n75ZBZ+oe/3E0bo3srr+Zk2mX+V4RsT1T47rnp+palsfoa71K+9d1Pcsyojn8nVvEsfTOla1ZtxQa4CraeYCm9g8vjta/ydHXtDEhUJcNKxdAJURr+deeUHXGo+IfJ5xqKnvj28vxus1fZa1ehGPv+1GFn3LvcQZ80rde3+4Cbmurr1Zj+nP1uuiLY0Xte3d4f+u7EvuOZbWaN7XOGtvcqU4vtY51FHWGbWm31BrgDto5gKbxeaktWkRz0aMS17M5MVN6yJha/CsGMe8kGuNT0Q+T99ckL83zmpo5DqOunyFtVoRjy/dDIKtYg615ldG7jsicj6WkfuTDHXvvXFW3ZtBzO1yHeR8px+fatunKGtevJfr5HeG5sr75f4g1tTSWovI1/Vm6by2RFln1Jp3h1oD3EUzF9gsNpA2j++KGI8Yl9bm/2jwLnHRlhdwrfEqL/J4txzLvCkRv9fYeF+c3dC4a33m/GrVibuOgTF9cyOyFf/ff/7/a6498Vz8xX/33/+pTvR4s/wpdc1Va/tSjt23ocnyvojxKK+T1LZ3iHGIWNpb5HVSvq539c+JbyLyEtSad0XekwO4g2YusEluqoPN4zsixiGddZFgE/p+cVEb4xTrsTWG8Xg8byyfU96kWBqniKSh+0z8k3/5b3+Kf/vv/rc/rZ+MHMcylsbyLbJO1McZkecFWy3NpSORc0/de0/EWETNqMcqap16sU29RuStD62f50ci1k9ynfyOyOtkte15MQYRS+stHo/I142mNQePROSopNa8I2IccozVFOAOmrnAR7EpyU1kchPu2Wj9zbFynI7GiBdQo4sxi7Ffu0CO543t+SKnEXkTopX/pagv9tTU++If/uN/1hyTo1GP5dtkjVg69rcfP8+LOdSaP3tD3XtX/Ov/9F9+2E9u+TmWNcOeoi1y08oX73RGbWutBbXt2aivk9W2e0UOI5byntdN+boZbJmDaxHf36LWPBtZa8qf/X7mA1fTzAVWlRuTiHLDbfP4TNQXqKV6vPYG/Ys1GvNg7QI6np/l4vlMmddvL8gjlsTN9da6F+fG3/sHf9EclyMR86InS/UhHu/tXLjPt3VvbW6pe/dH5LwW+4LW2K1F7inUjh9FPso8yc87HZnzZaztpV0nPxOt62S17VqR34ilfUI8HpGvm9FSbrbEpzmo1jwTZa3xMx+4k2YusKjelCxtTNyEuydaN95ajlywRuRFFmOJMY11u3aBHc8b+8++uRAv49MFnn826544q6Hbs6XaEI9/mqfM5ejeIiLm2Cfq3n2xtp9sjd/eUD9+E3moc8N73HHN5Dr5nvh0ndwax72htv0q5n7E0nVRPJ5rZOs6GV39s2Br7Jlvas090ao1rfFVK4CraOYCTUsbzqUbcm7CXRuR3z3iwqk1flsjxt8GdEw5tmsX4PG8i++2pbztiS3U1OvjX/2bf98cnz0xUp1cqgtZM+Bo/dtK3bs+Pu0nY623xnBv2EP8qM6rmvqcmJvf7OXie/dS266NLdfJZ9W2GddurJk476V1E49HxOvU/t98W2uOzDW15tpYqjVL4+xnPXAFzVzgJ2sXO7FRWWLzeE1suUBtiQuI1hguxdK4x+M2ouPK8V27CIlwcf6rveuqjj1rSU29LvKfxvp2PEeV674+33ycObXmxKfY+7ND3bsuWv/8aEtrHPeEGrGsXkNydb2oQRGtfW48trT/bcXadfAnats1sec6uTWme2KW9RrrJc51aW3kusm1xa/OrDXfzDW15ppYqzWtMczwcx44m2Yu8IPYgLY2IWWsiRtF/omXcyLyuPXG25It4xkRFxcpvmfpAi4ei+fiNYwpxjeiHvuMfH7mObCWn09xhIvy82LrP421JeL7ZpBrvnX+s+RgZrknqMd/S3wzP9S986JV99bsueFch5qwTb2m5O1cUbdiHi9dy8Tz5T62fk0r4vu+5Tr5vDhynay2teXP+aX8xOO5bvjRnloTv9avacUZc02tOS+21JrWOJbhZzxwJs1c4E+2bjBzQ7rGTbjvYu1P/h3RusAoY22DGc9FLH2fzenY1sY/YtY58GlNteKbPKmp38daXV2b40sxo1zvdS5iPcxYB0YWe726zsXXW2vfGfNB3fs+juwnt14P1BFzg33qeqqOHteqWRnx+Nr166e6dvbcVtu+iyN1Lahtv4o8RK1ZWy8Ra2tmZt/Umtb3lHH2zwC15rvYUmu21hU/34GzaOYCf9LadLRi68be5nF/HPlTxlstXXREbB3T2IRGtN4jn2Nsa3MgYqZ50Dr/tTiDuro/ttbVtRq5FDPXvKVaEHmcOS+9a92kLG9Obrlpdfb4q3v749v95JF6yHF1LVVDP4ta1KpXEfFYWbc+Watrn8YiPyteV0Ye3xJ1bX+ccZ3cmi+foncxD2NOLp17zuGt62U2uZZb+dubu9Z7ZMQYXUGt2R97ak2MW2s8W3HVGANz0cwF/mhtY1lHvHYPG8htEXlKedEQEZu+vADL2HrBUFsa5yPy2FrvGY/Fc0ePk37k/KznQEY+P6K1867jzByoqdujrKtbLNXIOurXjTzPt8jzL3MS4WdBH2J86jm9NnZr6+SqdaDubY+9da8lxr01vkthjZ+jrqNXradeZa1q1aB4LJ4/Ohfr94vYkv+1elhHHntEvHfEP/0f//nf/JN/+W//FK01Lc6pa2GG2hbHHHNraW7mHOzx3O6ylsPM3ZH8xffU7xexpdbUsoZk5DEtHZd91LbYW2si960xXYp4PcA3NHOBxY3+UsTrj8gN5D/8x//sp03T6FFepEdEDiL+3j/4i7/5+//P//ff/MV/9983c92Ko/lP9XiftaHMC4nyvcvPsHEdX1w8rs2DiFHmwto5tuIKLsqX4+hNv6WbLGWU87eeB1FfR5jf34jzX1of8fjSTSbuF2NR7wni609jtLROvt2fbKHuLcfRureknhtLcce4z6auoTP/XGnVqYwt9Wqr+jO25nypHh6NGa+T1+KKf7VqtNoWczDm69o6iThrrYwqa00rj2flr1Uvjtb31nG2Is8pIj4r/gBJ3osq70+11t9McbTWbB2HMmb+mQ58TzMXJhcbidYG41McFTeaonkZ7zHLxWqcZ52/b+KMzV857ldsJuM9l+ZWPsf48ubC0lzIi8qe5kNe6Oc5xLF/uoi7+vw0N36LM276tW60lNEaz3hsy+tmEzlo5Sbzc8aNMfar61hEfL1nPFp1707q3m9xRbMjfKqFZeydP3zWqp/x9ehiHrVqVEQ8dtVcK+f73jy3jvVI/Df/7T/843purfPZ4qq6Fsqx/hQxtm8Txx9zdGneXblORhM5auXxyhyWn/fN+8f3lsf8bcRfMmitxdHj21rTmj9bYoaf58A1NHNhYvUNgj3xzcaz3vDM0NQ9s6F7lhz/q8VcWbrgjMfiuSsulHifnAtLtSfnQ8Qblccdx5rzNn4tz6OOO8RF6MzNjbNv+i3N0Yg18X11rYvH1Lhfc7OUVzm6XuS3nptZc4+o694T46fuXdfsSPWcKSPnTvmao/OJZZHTiFbuR5H1qTXf4rF4/uoakzXtSG7ze7+JOM+krl1b10JrrmXEHMg5mY9dPf/W5LEsHXM+9+Qx9iJyVI9tmccc+yvlZ5/xOa3zOBqt9ThynFVrWrncGqP9LAfuoZkLk4qNQ2tDsTW+2XwuffboTd38G8nfxNkbvqsvVlriHJbmQD7HHGL+xXgvXYjmRfUb5kQcQx5X63jiXMpjX3vt1Wa6CXjlTb9yzPeOZ7yu/v58jN/WfpkfebpG5LqusfH1GT//yzF7WtS91n9lkTHSHvOuZkdY+tkWc6hUrmfr9xpZG8tx6DnXrdqUcVaN2uubz2ydx55oibo2y57uzroW6rWU8YbalmtjbX3EsTyxRnq0ls94LJ6/M5dnfl68T31OR+Jf/Zt/r9YccEb+e/45DjxDMxcmtHTxsidi43vU2qYnb8C1Nl69RrlhbF1E7ImzNv5vEXNxaT7mc8wj5neM+dI6icfj+TvXQXxWeTxrczKeK4834kmjXpRHTY1zu+OmXz0Xj2jNi7V5NJtc93WOMk9ydUxduyLi6zPrZ9bkq8UxZ+SciM/OKM9xKVq1pKe4s+7VWvlszaMYl3zeur1OroFyPHrId67h1prNtdyaV73YWota8em8Y+2PvKd7oq6FrWNxdW3LdbE0h+Lx+Nye18fdMqdL+Rwpl61z3BPlnFZr9ol51Mrp1hhtLgL30MyFScWmITZuS5vcTxHfd9SWTc9f/g9/3dyE9RJrm8WjOY8Y2dqcjMdcxM7nU526el7Ee5efteVzymON73+DUS7Mn7rhl2P67XiW8+ltc+Qtcs3Xecpcyde6yF9dL7fWrjdpncc30dMfEqyP9clGR6rX5No6LF8bY8h1siZuHZsnZE1vreesTb3VpyVxHvU5bom9Yxb7uagLZZ3oLd5Q10I9L9fGolxr39a2/BnXWhf5/vF5o6yNO2QtaeU0cz1qPsu5uTfW5rxa89mR3I88F4F7aOYCfxQbkb2bkaNi89J6v1b80//xn3eziczN4qcN457zL2Ntsz2itTmZzzGXHPfWhXpEPB7Pn3GBVH7GnrmW6/ut87O3xm788/R/8d/9938a+7PGd48c07PkeeT8yvkSwY8iJ631Ll8/ijla5ym+vnutnKk17kci3uepupf/5HPruVbE6+OY4w80vqHRUcp8bll39Xy0Vq+V9TDz/XTOc/xbazge67kuLWnV4C3x7Tj11Gwpr5PfUhNi3PaMRfn6iK1zOefH0hyJx+Pzt74fv4p8Rd5aeY3H4vkZchrnWJ//ltizDnutNVeLHLZyW0fOR4AzaOYCP8kNcWtjXMY3G5LW+61FbJSeuhm3Fkc3i0c23ZGDPZvukeS5ywulHPulWpXP76lV9do8Uufyc98ua+obLs6z4RHHknU1fKqVMfblOB8ZryfFcbfOh59FXlprPcd/RjHf65zE172tgyXleR2Nem7cVfeipsXnx//X23q+jKx7//bf/W+Lx/20I7UpXv/W8xlRme87854/e1v1OR4bqSaV4pwiv63z3hJnj03WtlaNeSpyP1deJ0ferjj/o47UtnLMW9+b62FpbuRnjrgurraW23hsxpzmmtoT36y/N9Wa2GvFH4Rr1Zo7LK3xiPI5ax04k2Yu8JPceOSmIzZ7EbkZOWNTsrbxWYr4ntx4xkYtN5JX35DLyJttZ20UWzndGt9swHsX8y7OvzWHco7YMM8pxn5tXeXzS/Oj/N6YS7PNo6dqanxmjk/LkZ8XEVkP1sb8Lcq5l7GUD37NV2te5HiPLOZyfe6j1qs4p/I898aWuXB23cu/XZvR+meTs+7Ve8k43vJ73zSXj86v8pxGX5tvUc+jK3If8yHes1WHsx6NWJNCnNdaDS4fX4ozxiNzHBHvl+MREf+iSXzOnf/CVda2T9fJcbxn5uFbOW57xbHnefz+97//U+7zsTLi8Xj90c+aXeStldvM+Yx5XcrJljhz3cVaP3sf9Snic/6n/+V//VOde3L869zW8zHHaMY5ClxHMxf4SW5GlsQGMCI2J0cd3XxGrG1Ayw1lbiq3bCzzdRnxvXkxunZB+q04l9Y51lHmvPX4zDIHZV7kh7A2NyLy+T/84Q8/rC1z5jdLNTWiVUvLKF8bUdbVUlzgZu5bP1fK58+IN4u516rzbgIsy3Vc5izzFjGKmAP13IivR58b9TnviaOO1L1o4sbfwq2PIZoprbrX0prHrZrYm/K8RjifXizVxaOyBrXWZDw2ci1q1d+l8269roy1MYj3yojXRcT7ZbTebylan7NU21o1rYyyBkbE92Zd21LbSnFcn47z7XI+/O53v/vhXDLiuTivem6wTa6B1pyfPbetvMTXS/mqI15ztTiW+JdG/tW/+fd/3AP9N//tP/zjf5sTEcfQqjEZW2pNXUOenAuZ06VjiMfzNQBn0cwFfpCbo6svrLZsNj/Ftxu3PIb4NSLOuYx4/zs2h/FZ9bnVUYpjan1PHvPMcuzq3GR+IpjX2vzIiD9dzz7f1sr43noc6vf7NG5bo5ca0Jqr+RjLWnmLyJ/xPYrjrvdM8fUsP+9b9WFL3DnerTmXsec4lt4nxrt39TjOMn/foDWvtszLGKOIuv5ExGMz1KHW+X8673iufH0Za3lf+74j8Ul83p76dJaj8/EpkaeInPP1sZfxyy+//PG17LeW41xzs+Y2c7OUl9RaW3V8I8cgIj4rIsesdXyt+GatL+WhzMEb9XKcQD80c4Ef5Cbwm43WFvk5R+OMzVC8R+u916LcsMY5lPHNMa3lI55bEs/Vm9o8ttnFeLTyU+bIpnpurblRRswRa2ld5vCbPC3V4vo9W6/ZE72OZRz3KOdyp8hRK3c9/IyMNVHXp/h61p9ZrXH8FHdYql1l7BmztZ9J8dwIyrF8+zocTWsd1WMQ8zUea83FeCyeG70Oxfktnf/Wc1/6/k9a33ckPq2tnAufXneFpXN84lhaYoxzDiwdazxer4XytW85l7dbWmsR8fjW9TaqVn7W8hKPl6+t40g+s1acFUetHcfb5RjOPp+B82jmAj+4a1P0abO5FLEZOtNbNqih3qzvec/IZ+tc4jEbx19FLpbGO59jDrEmyvWW62RtjkSYJ7+pa/g3efmU87T2uk9x9s+OJ7TO/5u8zyTy1MpfzIs35bCuTXmMfo7v+8McV49pa5yWYs/YfXrPeH4E5Vp80/qbRV0L418kiX8utjX/sv7MUINa6zrPf686xxFbxGfV33ckltTn+MT6a82zjCeOJ3KSeVk6tpwHEWvKcX/iXN6uzHWZ34jM/6ccj24tP1ty0/reiKN5je9rvd+ROLImlvJRxttlDuM8AM6gmQv8SblZu9qRjWF8zxU+bRC3xhkXbfWxHHnP+J6I8n3ifc84vlG0cpSRzzGmctxjXSzVlXh8bZ7kmppxrrRq5jd5WMpxRvnerc/eElf9/HhCzrvy/PIxPmvlLyLX9N1zJWtNfTxPHMsbRQ7q3KxF5O1KrbFaiz1a39+KEeZFmcerx4wfxfyJaP1/n9nUnaX2xHm29hXf5iC+t3y/Pe+1t8bUsbSeWuf5xNqrj6GOq48pxiLHvZWTiBz/PeOWyvF7Ir9vEzmMPLRy/U2eRxM5qHOU+dkjXl++R8S387Cc00fjyDFs/dwe9HSswPtp5gJ/khumbzd8W+Wm5lPERvZKrU3v3jgzZ+VG/tv3bW2C4zEXTb+JXERO6guoiHhMvsZRrof4/R45T8r3KCPnyt737clarfxmjSzltIzM69oxLMXIY9LK3cjne7bIVSuHmccra3+8d/1zJ76+8jN7Uucna2yZr1Zc5Ujtidij9f1LMcI8qXNq7l8nchtR15yIuqmbdXFkrVycXX/z/Y+8Z2uctkRr3Nbq5hPj3DqOOs48rnLuL+U1x/6s8S9zHu89m7V8Z65p16EzclS+51lrqXWce2KPpbwsRQ/yfMx94AyaucCf5Cbjrgu7chO2FHFMdygvuo7EmWKTd/b7xvnV5xi5vWuse9LKVUY+R1/qi8IzxjDeM96nfN8ycn2NMF+2XFR/c3EaOWq9Zx1xDOHTsZQxQv63aOVwlnM/S+RraS7G49/M8VJrPcXXZ73/COpxKHOztv6vmPOt8doTW8XntL5/LUaZM2V+rxjDWeXcbc3feCyeL+dQve7i65HGI/NRnmNE5uJs8Z5H8xffWx/nligtnW8ZV5z3mj3nFcd+RHxGnvvS+eeYX3n+9ble+VlvkDkvzzkix2H089+jlaszcxTvE+95Zv3O9zwSe44jXtt6j6WIvPUg89fL8QLvppkL/Eluiu5Sb2LLKJ87a2P7ydrxrMUVNzrinK9439DaJMdjV31ezzIvdb7krB/l+MUav6qe5JpdqiPxeDx/Vz07S5m/tfjmvPbU3njtH/7wh+ZzrZhtjcb51mPW47x7WiuP3+QzXl/P86wJ/KbOU/y+Fq8p81jG2ZbmwNZoHf+StfNai71z8a3KXFsXx7VqTUQ8FrFlvtTzPr7ueUxaOdmaiye1xnEtyjGqx3Ap7s7B1uPKiBx8EueQY7yUsxzvJ8a8POee11GtzHuZ64h4LM71iXy/VeQiclLnK+fm2a6Ya+Vc3hNbLM2lTxHf04s8ZoBvaeYCf5Sbszs3REsbttx8lhvGOy4G4jPK49gavYr8tjblmX9+tHQRFhGPxXN3zFO2K8fq7nm9Nl8i3j5n4riWjr0V39jzORm//PJL8/GluHv8nxbnG1HnYLY8nCHXcpnLrTltraP4+q3r/klljj/lqDUea+NwVOtz9kScx1bffNYV5/6EMgejnNPVYp206kxEPBZ5PFpv6jkZX/cyLms5OZqPu9X5X4scl6XzXoq7c7HnnDLifEpxzHmeS+ea43z3+S0pz7uXNdSylve35fwtMmetXPWoNfZrsWW+H6kLGXE8vcjcWSPAtzRzgT/KTdSdFxj1xq21sc1Nz10btfy8rXFnvq7U2kTHY6Oc3xUyP3Xe5O55UUfK8XjDRVPOiaUaE4/H82851tYxrsU39tbdLZHrrzyXfGw2rfGcNRffivXZymfmNPMar6vndXz9hvX9NnWuts7NI99zxNJ4b4k9x/XN50RcmYM7lXmIMeZnuWbKNVDmLJ4/s9bUc/PNc62uJxGZk160zuFTxPccqSF3O3KMEfEH+CInS3nJMX7zOJfn/uY1VFubj5l3fpTrsc7bCPnas4a3zPOlubU1eltLccxxzgDf0MwF/ig3RHduMMvN4NpGbMtrzpKbrK3R0wZyizifclxGPc+zLeUtcyd/9ynH4c0XSzkvli5i8/k7a3J81tGL6m+03u/bKJVzIiK+nlGdh5lzcYZYL62clhHr6c413Jsyf3tzFa/N773Dp7FuxZ71deT96xhprpU/i/bkcVQxtks/n++qM/Ucfcu4tHITX8fx9bQm6vPIca3PrY6/+qu/+viapbjb0eOsI3PT0/iGON7yPN54/JnX1ljFY5l7ftbK2yj5WpoTa7HFt3uf3vYHedwA39DMBf7oiY1Fbgo/bXDj+Ty+OzbDRzaVvW0kt2jlIR4b8VzPFHM0ctS64InH4rk75vFsIqdlznubp7m2li6U8/mr5k68d+tzt8Y3Wu/3TcS51HqfH2fKuVTnbOacfKOeW3XI7c/OWo/xHnfm9tNY17Hn2Pa8bxnxfXFcEaOJ/OV5zraGckxb8yIey3F/QjkuEU+MTZx7fG6dnyfz8o21nMb5lM+dGXdrHcOeiL+hO4Jy3j6xfmoxxyLq9RSRa6rHdXWXVu56rUUtZX3K8yrPtRV753VdA7fGG9bPHjlPrCfgG5q5wJ82T2/eDOXGJ369Q37eUkSu6k1nb5vJrVrnOvL5nm0pf5lDefxeeVGZF5m9W5s3Efn8Gef6qd59im/rcus9t8bvfve7H77+tJ7KnI4yV77RmmOfcsivYu7UayfnVOSwta7i8dnzW+al1zXYGttW7Dm3re+Z0Wvu9ipr1OhrJ2tKay7keL9pzMuxibhjfDJH5efG1/HZPa6H+nzi9y11rs+Ipc+6Uus4tkYcb49jvKQc0zvWTi3nXjn/MkbL9RXqtZt567UWtdTnWM7TeK489zqO2lvrnlg738i8RV4BjtLMBf60aXr7ZujOTdvaBrXefNWbzt42lXvU55rnO/I5nylzVedQHo8r8znyhdHa3In4Zv5EvVt770/xbd5b7/kp4jPjuMvv33ocdX0/mreRtMZfXn4WcyfmWZmnci62RB7r74mIx2fK8UjrLsezNa5lrM2LWuv76/g010YVc6XMwUhaNaU81x7GuxyfiLPXduQg3rPOU+/roTyfLedSn3/kpM79noj3u0OcV0R9/FtiS156Vo7f2eumZWkc4rHRc32WVg5HzF05N5fOr85DxrdzeU9du2PdnCnymMcOcJRmLtDNhqLc/NyxYV7aSC5tGsvXx+a2t83lHnFurfyMfM5nizkc+WpdCOX8uWOe9ypyU+ZutrkX5xtRzpsy8vk91t5vLWIcjirr+qeIz2mtiTzuveulPN+9uRpV5KGeB/H17LWorjcRS/NxTSu/Efn4iOrcHcnbm5TjV39dxx6t74+IfOVnxO9nVc+jXudQHHd9LhnxWESv51avhW9rWitPPecnxfGX57Q1T/X3pfj+1nz6FPE9V4jjbI3d1hhhjPco183ZY7I2FvHYbLk+qpXD+DrGbrT8xfmU57lWn+rXfnr9HuW6WIse859zabS5A9xHMxcml5uw2FT0IDc/dx1vfl7Gpw1qvfE8a0P7Zq3Ndjw2w7mfKXNW51I+f1bmKdbo7BdDcf5r8ydizxxae59WfFOP82fQp/h07FvPrVaf69H3GU3koZWb2fIT51vvA86qOa0c5/uPkuf6/Eao1Xku9Ri1xnKrug7mHCjzlfNwhBx+o8xzPQZvFWMW45djWEY8Fs+PNK71WtgzTku5yjz1LM/tm3PK72/ltM77pzhr/cQ51OdWRjwe8fvf/775fES+Jn8/mzp/34xNvlf5fhnxWI4Xn7XmdeZwNPW5bj3Puu6cJd8v3n+ttvU4FnHMceyRY4AjNHNhcrk5+uai4W65ebvjmHOzlbFVvensKb9HxTnW5z3LuZ9tKZeZz5lzWl5omlttUbfW5lDElnm09v1lfHqfNXWNzcibCHdd8Jbn+s35jKg1D0bOUcy5ss5E5Hy8SuSzlef43B5zXefw6vV7lxyjpTEpx3DPOZd1bmmeZT5HyeU3yjy/dX206kjG2jiPpByniLWxauVrpDzVuTh6XvF98f1r6s9aiqNrJ46hNV4Z8XiOXXme9XHV4xu/z8dnVeZoz/h8Go8yz6xbyuXIeazX5t7akPna+31L8njK94vc18cZ0eOYxDHn8QMcoZkLk8vNV08boXIDdMdxH92gxrGVm874fU95/kZrsx2P7c0hv82jpQvLWeZVnGOZA3Npu5xDEeX8ych5VOd06fV11N+3R/0ZcSz1fM7nrp7n9bF8c14jas2HkXJU15iI1ny8WuS0letcp29XHvsT+btKeV6fxGvj3M8Uedz6+TMox+MN6yLGp1VDIuKxkdbCXuVYReR4reVrlFzV53jGXP2UmzrfS7H1WOLz4rWtsYqIx3PM1o4t32PtdfkZa+8zunL8lsYoc9gak3I82K6Vz9HzWJ/z0fON74nvP0seT+tYyvVx5mfeLfM+8vwCrqOZC5PrdSOUG7nYCF0tNllLF1Nb1JvOb96rN3Gu9fnPloOzLeU08zpibsvzHf3C+g5Z08oL+DLi8fL5nFf16zLiuaPyfdfGNY8jfr1Dea7fnNuoIidljjJPPeZqaS2szcc7tXKdxxePv6kWxrGUeexxPqx5w3llft807k+KPOS4PJGXnPPlvM+Ix+J5Y/WrpVqWkfkaRc6NJ84vP/NTzpdqWRxnPNea1xHxeJ7PnnPa8tr8zPh1ZuW4ZS4y35mjMo6MBz+v0zqfI6trw7fne1a+8riW6lPK1/Uq8hXHn+sbYA/NXJjY1s3SW+Xm+47jP2ODmvnO6DXvR8X51hdM8dhseThT5q/M6Wi5LeeMuXKNqG+R23p9ZsTj8Xy+rn7+6nHJC96Iu5TnGed/xs+AET0xH84Q41nP97ePc+S1le+IePzJYy+Pa8T1kucXvz4p8po55jflWr56jFq1I2PEuX+WtbzF/6U6krIeRtxZN/Kz6xpRH1NEztX4NZ5fm9c5t6+e3/H++Zmzy1wsRY4J+0Xe6vk+Sz7rc7+zPn1S1qnRlesbYC/NXJhYbpjetInbo9wE9bL5ri+We839N2Ksys36zLk4U+a1vjiNiMfiuV7WSSjXd0RPx967Ovd1/O53v/thnt0xNvl5d86D+KzZ6/VWvdT0ekwj4us759UZIretnEfE43edzwxrpMzzG7zpWN6kHKcz52HM8VbdiIjHeqwfd2rlLr6OBm45ZhG914/6XJ+YG2u5jMfK4/vll1/+9Psy4jVPHHvKY5x1XbXWTEbsv2fNy7eW8vrkXL9bWXPfeN55bL3/LNhq9loHHKeZCxPLDVPPG4jclMZmqCflZjpilk1rLc67vrCKx2bNx5kyj2Vue8lxedy9re0RZP5zjuR8qddqRtwQjOev/FkS7x2f9cR8yHxEZE5oy7mS+cqcPZm3mDv1MeVxjXADJfNbn9/V51jWg/j9CLlsKXP5Bpn3UfP9jXIdfDNekdvIcznHM3Kuy/+yzN9S7koxTuW4Rbxlre1RnkPrPO+Qx1DnL44lHmuNSUQ8/tQxt+Rxxq8ziLxHtMYnxyb+8EM+1uP6eFIrt/H1W+b7HeJcy/N/4xzK+hVjM4scl5nOGTiHZi5MqtzU9S436D1e3OTGNWPWC7SYj3UuMh8zXWxdJfLYym/mOOINYqzLC+63HNdsMv9Lay/nTDlWZeTzZ6/d/LwnakKcT32OLIsxauXszrzV9SQivn5i/tyllfeMs/Ifn1G/76gylzFv3iLz/6ZjepNyfu5Z7/G6ul4ceZ+ZtXK4NXdZn8rv7aG2xLm94ZjL3MUxxddr8/nNc7rM6ajiHHMcyrGJyLGpx6cc4x7WxpMid6018OZ5f4WcZz2cfx7jTHM7xiLPG2APzVyYVF4QjLBhKjdCPW7QcywyZtrEtsT5ty6+Zs/LWWKNtHJc5vmJdVSu4zdfbI4uxj/GYM96i9cuzal8r4hvxzTeI94vPucpeQx5XnxW5uyO3MU8q+fijDUlzreV+4h4fO8Y1HkdPadxbnmubzvPtx7Xm5RztTXXI3cRda2IiMdGn99nWcvhkfxlbSrfa2+tukN93k/Ol/jcMl91xLE9eXxHZG57OuZPcs7kudVjtOVcy7XR25jeIXN8JLej6aGOpjzWNx/jVXK+WsvAHpq5MKncOIyyacpNYJxXr/IcMmbc0JZiU1vnJPNiw3ueyGcrz5nriKuVn9/zGu5dOQ7fyHmT71VHPn9kHed7PFkD6nOLr/msNSfOyl3Mh9zXZMTXxuZXSz9PI+LxT3mqv3eGn8Fv3ifnsfl5ua6ct/H7rBOZvzLisXh+hrl9hsxlK4dnqGtOxFvWYn1sdx9X5Dg+szWPI+LxM8fiCXHseS49a62TM8aofM+3rIsntdbDN/ntWT3n3p6Hsp7OKMYmxwlgK81cmNSIm6bcuPZ+UVNuauOcXKT9mpMyL3JzjVaeM/K5M9UXnMbzWVeNQ86dfP868vkt3lTny3N6w/H0Isc7c5f5O5LDuoZExNdvvnH1BpHrOm8R9TjU+Y3fzyBykOf8Rm7+bVf+X5N1qBX7LNXbK/NYrsWMskbd6al6GJ8b51znvo6Y66OIc87z6kkcdz1PMnKdRJyhXBtPrYkntfKcOZ5VXS97yEWO4YxzOMQY5XgBbKWZCxPKjV5snkZSboZ638jXm/FZN7gtdW4yPzNfvF0h8hl5rS+UI+Kxb3NejuPsF99vUI7H1eKzys+rI59viXkSr3nLz6/6PMzjfVrzYGnsS5HnujapI8dEvutcZj7L38+U2zzvLXPxKTk+5vyPIh+t+pDx53/+53K2Uyufd9eEoz8rzlKe/9Xnnvmuc15+fh5D5uXNteqoPP8759kRa+OV43TVOZTrYsQ50JL5buV5VnVOepkL5fydWY7dzHMY2EczFyaUG6cRN/15brEpGkG5yR11zI6KXNT5iXGXo2u08p2Rz23V4wXn6J4cj5w/eQx15PPpbRe9vd5EeZPW+Nd5rPMcEV+7+XGeyPkvv/zyQ44j4vFZ5nXOxbefbx5nrIHZZW2o60PmJ57/wx/+8MPzs8zno5bqbeTtyZqb876MK8cyzvXqz1qbvxFLeS9zMaLMfZz/2+SYZf7LiMfrsbpSOQ/emKsztPIdX7fWxWzq8e8pH3nccQ4zy7k96voFzqeZCxPKDcOom988v5E2huVG3YXLz8r8lHkaaQ68Sea2zvmnvNcX4+bxO+RYLo3bnWJO5BzKeVJH/rOZb7voLY/ZBfkxrbGP8f7d7373w2ORX/XjfGXuI+etf6I2x2hE5fm/Xcz/Xo71CvV+ooy1+lCO8ajz+Kj8+Vvn9Y31thzHjDPHs55fZ+Yg37vOc/lZcS6fPi9fP/I8znN8WoxFPScycizPmh9HxGeXx/TksZyplfOnc/0WdW56qwNZw0euX1uV6xdgC81cmNDom4VyQzTSZj83vRk2vz+LnNR5kqtrxRqL/NYX2xHxWDyXrykfH2lt9qwclzfKuVMeZxnxtwjz+Teoj/Mtx9WbGPdWIzEajGrH+SKnazcFc42VYxGRNX4UeV69nFOO2QxrIs6xnqcZ8VjE1jyUc3mk+XtUK6+Zz605fUpdl+Lrb8e0fs9vc5D5rXOcEY/HZ+75nDzG+N6RZc6emIdr4xaPxfNPHNeacu5+uw6eknkv853n87Z8P6XMT87F3uTxG9Nf5ZjKB7CFZi5MJjf5vW7wt8rzjI3RaPLcMkYfy6PqPGWu5OtameM69xkjrsme5cVjL+siLnLjWOP/PaznVkScT87BJ5VroJfcvkGMb87JjPpv5UbI6XnKfMfvP91IyvVVjkd+b8/jkufU0znEWGXuR5T1oJyjGTlXP83XJeUcHjV/ayJvkYM6t5nX3pTjGRFf713LOd/K9zgi36fObUY8Hu/9TZ7zvY4eYy8iR5mzO6yNXTz2zZjdJeZEHnNP8yNz32PO71KObUSv6z/Po9fjv0LO/fgV4BPNXJjMTJun3BSNeK71BY/N8LLITc77MuTseq2/WZeR48JzynXRm6iB5Vwq62EZ8Xg8/8TNoDK/Eeb7si038ep8RsjpceUaOprL+J7WuOS660V5Dr3J436ixl2hVQsy6prwrXoNjJLDNa38np3XJ9X1KGvUmjone/OR31/ntXy/OIazcpzn+Om8RpF5vGqO1uOfkWN61edeKedIxJvnyVrue8z7Veo89Zyfcm7ymxjPHFuATzRzYTIzbZ5yUxQx6gVBuSGOmOXC/qg6X5kzeTtfmeu86IzHyovR8vl4btR1+laZ/17nf86lct6szbOIJ+ZafF5+fq+5vkprrOLrtfGJ7ylzGpGP8Vnktsz5p3xv1RqXfP94/M41t1cea49zKMfyzfldE8ddz8mMeOys+bmmnLc9zoFP1vLb67z5pK5F8XVrbFuv+yTz2cppRDwe73NFbsvjnUXm+ax8xvvkGGYuM+KxfL53cQ7lub3pnFr5z9zzo7pG9Z6jPI8ttXY2Z9c6YFyauTCR2BjkBmoWuQGOzdHI6o2+DfK6yE+dM3k7R32BvpTTpTHI73Ehc63M/dL49CB/pq3V93hNnGM5J8uIx++Yb5nvjJ7z/q26RkTE10fGoM5rxMy5/aTO11XzPj6nNTYR8fjV622PPM61OvJmkcvejj+OOfJe14E8j3j+7jlSztf4/Qgih3WOM7+zKMc1Ir6OqHOzlJd4LF9b57L83nzPq+VnjjJHt4i8Zp6PWhvDeCzHeUTlOT85b3IMytxHZP75UZ2vEdZ8nEOeDz/L8Y5fAdZo5sJEcgM10wVgyI3R6OddbpBnHOej6rxl7uRvv7jwzBzuuTjPfJdjkGEszleOU+83ULK+751r+X11xOPx/BV5ifcsP3e2eV2ff+b7jFxHLsv3jZgtv2vq3Mfv7xLj0BqfiHj8irW2VXx2HsuTx/GtHs4h52BdAyLOqgPfKudpr/Uj81zmN+ItOX7KUg2q8xK/zxy28pjf80TtynOIz59N5n5PznMc83vLiMfvHr8nPVnbWuMwW/73KsdrpFzlOd09B3sR45xjDrBGMxcmkhvp2TZQuTGKmOHCobwAmHG8j4o81bmTv+3K3H1zERJrNN4r61UZ8Zjx+F6O1Qi5zHM5Oufi+yNa8y0inz/zZ0cec0R87sg/l3I9lzmNODunKcer/qyIWZX5eHq+Lc2HiHj87mPLdd/7/MjziF/fIsYyIo+tjHgs4sm5uCSOqTzWNx5jSyvXb83xU+qxjfj973//p9zV+cuIx5+oT7U8nt7r1RE5NmtjEM/lWGauMnJ8nx7DJ5U/e6+eQ5Hn8vMyZh+DT+r5O9Jaz/kw0jldIcffOgHWaObCRHJjOKPygmIW5TnHxtDmebsydxnxmBz+7OoLz8x7ORblZ7nY2afM5Qhi/PN8zpgLa/MtIp//9rPqz4ivR1LXhYj4+q71Gp9T53i2n4P1GLzt3FtjVB7r1cdbfnbvIpdxHjHeT8oxrdd+Hls8H9GDN6+dFLlcyzW/qvP0yy+//M3f+Tt/54eclfHGuZr16q1z8WoxFjk2pXh8lJpzh5xHmZ+zRa7rschxYF2Zt9FyVs471uU8iF8BlmjmwiRyEzXzxmDGzVG5eY6Ir9ku8lXnUB5/U+Ym1tXVF55L4xGRz7GuzNcosrZfcU45rzJvdeTzR5Xv/c37vMUbb+S1xm+EXK8pz/np/G8Rx9cap4h4/IrxKt9/BLnu7h7rXPP1uo/oYe6tKefkm+ZJ5nykXF8l/uZtmadP8cZ6UM7DmWUO/vCHPwxbc+5Q149v53y8X7xHPR7GYptyfUe8sQZ9K89xxHM7W6yZXD8ASzRzYRI2Ub9tjiJmu7jI8c+wmd6vzmHmcdZcnnkj4IilmwcR8dis47ImcpL5GcmdF76Rw8xjK/L5Per32/v9T4v81+sw1+CbftbWeY7oLdef1GPR4/mt1fZ4/IxzivfoNT9L7qqD8Tn1PMuIxyLi+VHkXIl4cr6s5XykfH8r52f87ds///M//ylfZc7KvJXjHPGm2vDGY7pbjFVrPEesOXf5trZFzuuaZCy2q/M3au7KecY2OS+sJWCJZi5MIjdRs28KZt9Q1hduNon7Rd7KPJb5nEF98fmWObQ0LhHxuLk+9g3Bpy581+ZdRD6/Rfk+W7/nSXUtiOjhZlSOSXnc+VjPyrHoYRy2inGp51nE0TGL78n3GEmM91XnFe+9NA7xWDw3ynxrKedMnO+dIq913uPrkfO9R+Qhc1TnKSMau/m6T8qxjoivn5THc/e8e1o5ruV4RERTd/Sac5dyvm+d661xia+Nx3Zl3iNGzl2e49b5xW/7+dnqPrCdZi5MIjdS2CDVFxA218dF7nI+lfkcNafl3InzfuvFZ45BOS4ZI4/PmszHqOceczHO78m6HseQ86ucc2Xk80vq71177VPiPOu69+Z6sKY1Vm/M+Zoe5sxZ4tzquZfnvPW8y+8ZTebmjLWY67yV71zvPa75b5S5uHL+ZO7LnEdk3meW8y5y0cpRGfFPLB8V41u+11P14unPv9PauObcj8Z8fD37OjhTOdcjzy05Nvm6fO0M8/JMdR6X8j2KnFvmyT4xT2aYH8BxmrkwARupH+UGKWLmi8GcFxnmx3Exj+p8jpbT8uKzp/PKsSmPPyMem2Hel3NzZHmOb6nrOffK/JeR8681B9+23uJc6jU00vppjdHbz60ek/j9W+b+HWJ86jkZEY8vjV2O89vH9qgY/zi/yMsRrXWe7zfb/FqScyji7HnUyv/seY9zz7zUucmIBl82+SLOzFk53hF31o787Ds/826tOZ/RGsd8bfzKeSLPZe4z763xaY0Ln5W1ZJYc5vmaL/vJHbBGMxcmMMPF4F7lhnpm9UWaOfK9yGF94RuP9ZrbmCPlufR+UZFjUZ5TRjw+4kVTzsde5+BWeZ7x6xvF3Fqbf3Hc+XwoXxfPPTE34zMzr08fyx1a41OOyVvUxzjqeGzVGreIcuzK50eW57hlTsRrWms8IuvR7HOrpZxLOb+OauV/5tyvzcmMeC5fV45FPn6F8nMivh33T8rPG8na+MZjn8YwnsvXc77WuETE47PWpG/V8/3q2vEWWcNmOd+z5ZyJXwFqmrkwgdw88iObpN+UNw0ibLy/FxdvdV4zt71cDJfHP+I6ifNrjVFEPte78vxG19tNvqwR+bOojng8/pnI8rG75mR98ykivu6ldn0rx6Y+/6drQj0u8Xt+FGNUj10ZT4/h1XJ+LK3VnEPlPMqIx+L5pe/lN+Uc27sOI7/x/fUYZP5nkvOtNR8zJ5mXMjf199y1ruvactXn3n1eV4qxas33iNbYfpLvs+d7+KxeUxG/+93v5PkLZT5zrs+grJMcE3Ml5w1ATTMXBmcjsCxzEzHCxfIZys23vJyndRMjvn5rfmNtlMc7wzyIc26NU8Sbx+qTPIcZxjDk+MV49mZtDpbxV3/1V3/7Heeq131EfN1jLs8UY1LmJOKJ9VQeh3HZJnLWGr/I3xNjeIeYF3mOqbW28zXm0nF1Xj/lsTUO8XXMxVnGIM6zlYcyHxH5ulr9vfnaO7Xqypn1JN87zq1XOU7lWGV8O2Yj5Oct6vWUEU3c/P2Zc3sWV9aHHpg758g83v0zDng/zVwYXG4mbabaYnNko/Sj2S9ArhRzrM5v5vgt869cE9/ecOlZjElrrCLeNF5r8vjj11nk/B3hJl+cS4xd60ZbRNxsO2MuxvfXnzHz2l/SGos71lY9PjOt5zNE/jJ38Qch8vcZkdvRcpr/f2j5/4jW52t9nyfymfmt51LkOR6ra0d8PcMYxDlG1Odf5iFz8SkfZZ4j6lzfLT7/imN6y/nttTTO5RifId4n35tjWmNVj1GZ5zPHb2R1XmfMW1kT+U7OJWsPqGnmwuBsAj7LHMWv/OaKGxT8JvJZ5zjm4JN5Lo/HevhNa6wy8rm3iZqfxzibUX/u5Vwr/8ZEGVk/tp53vDZzVb6H/cK6HIcyb/nY2crPMTbH5BwvxyfHK3Nb5jge7zHPccxx/Hm+9XnF8+bPdcr5lHOoHosch5HlPGvNw8zB3vlYv1/8/k1a9SS+PiLf5+j332ltrOOxOIetY7xXfuZV7z+itbFay2P5PT3My6fk2s2YdW6aK+eJORS5jDUIUNLMhcHlhop1Np7LyouT2EzK0fnqC8CIeOyuC8H6At8YL4tcRX7KfGW8aX3knJpxLPPcR774zXNci3hNRFlH6rUeEV/fVWtG0xqHeOxbMR5nv+eMyvFZEq9pjWNEPP7mtdFaz3Vwn/r/OM8YucbGea3Nw3g8z/9IDsq1+fY8tmpJfL1V+b1vlWPdGu9vxnmv+Iz8TNblmLXGaqtybu6Z0zOo8zvznMx5Yo6cJ+fVHXUV6IdmLgzMhmq7vCi0WWrLuZRhTl0j8lrnOi4Kr8x3+Xl7L+5pj1lGPP5EPsvjmVFZz0dXr9+luRhR/41e6/08rbzHY0fEuOR7GKPv7B2LeN3SGorHnx6L+PyIco5kxGPlfMnXmD/XWxqTEfMf57N2vuU8/Obc43vL9z1aT5/QqiNbjv+t5/ppvL8Z56PK+cHPlsbsm/Eq5/Tb5uhTypw8tRbewpq8Rq7jmecW8DPNXBhYbjBtuLfJzVL8Slt50WJuXavOdeb7zJznnM/35js5PuWYlfm9K8flZ84q5/YMOSjnXJx3XvDH3xIr13gdd87JWWROj+S59X0cl/k8msdYR/WYZMTjd91Yi8+Jddxay7neW8cSj+VrOF+Oy9KYlM/1vJZzfrXONSIez3OO+Fb9WfnePYpxr/O2NBey1sTrn5ZjWR97Ht9bxiSPr9f5cYXWuJ05XjlP831nVee55xp/lpwbcnGumGuzrzfgZ5q5MLDcYLrI2S5zZiO6rryYi9+bY9eJ/Jb5LvN+VH0RavzOFzmNMSrznBGPfTN+a3KuXPX+vYj8Z65nUK/p1t/CjeZuzo9WxHOzz5uz5Pov87u07uuxi9/HYxxX5v4MrfHMiMdb4/qNek6UsWd+5PdwntbYLI1JOWfOniNXybm+Nv/yfLfOw63KfEWc/f5Pqc8rop4PS4/fZW3crxrvb8Xx5PHNbGnsctzOFu9Zftbb5sXVynO/Kse9KWsc58vcmmtA0syFQcUPe5uq/cq82TCtKzfuEU/dgJhJnfPM+57cl+/hIvQ+OU7l2GXE42eNQ/mes8sbLrPM8TjPPf+U8tqcjMjn+U4rx5nX+jn1+Bx1ns8UY9Qa0/y8I58Z7xlR3iTOiMeO/qyerQZeZW1sPuW2nCtXzMdvxfHHcbXOLyIez/O8ah7V+Y3fj6icCxnxWD5+9/zIvJe5z8gxf7s83hnV6+bucSvn891z9wmR1zLXM5zzVnJyrVznPdRk4B6auTCo3GDbVO2XG6b4lc9yrmWYc9eLHNd535L78qLfOD1nafxyXI6OTb7n0e8fTd54GbmWxzkuzaWMLfMh32ftvfJ5jonclTW4DPuN8+QcvmOu5rppjWs8vnYM8b3xfa3vjcfi+YhvxPfn+7FfjlFrbPbIcTj6/WeKz16as3l8dx5jeRxP5+Yukf8y5xl3iPy2xv7ucT9LnssM8ybEebbW71NjV87ltZ93PavXTI/r5Eo5B0Yd/zeI+ZZzDyBo5sKgctNpY3VMbtjlb5v6Qkfe7pMXUWXEY+UY5EVAhovQ94ixiLEq109GPLZ1LZXzgN9kTkab83XNjYivy/Ms58TWeZRyXpbvUUbOzb3vy4/Niwy5PEc5X58Qn782vq11m1Gv37Pk+1/x3iNaGqMzxqd837vWexzz0ryMiMfPOLe94pjK47grH29S5+CKPMS4rs3p+Ly7x/5Mcex5LiNrjeET67alnMejjUO9RnteK1fJ3Jxdu/iROQiUNHNhUPkDn2Py4tCmaZ/6osfG/j6R6zr/EeXF/+g3O0awNI4R8fhSPSpfw29y/o8y92P8yzWd57Y0L+q5dHR+xPvH99bvlxHHkM/TVo/dUj7l8Lg35TCO4ZdffvlhbMuIubC2ds+Scy5+Zdne2npUueavmKdZq+tzyYjHrzivreo8P3ksT8u5UP/3CPH4N3Mjc1zmOSPzPVLO89xGnEc5lq0xfJM4nvIYex+LOu/xe36WNeybesU2OR97X1vAOTRzYUC5sbLx/I48Hpe5y7DJv1ed/4iYx8ahLzFerbGMyOfydfk4PypvMPWqvqkUsXc9l3Nkz/ctiWOK96mPKyOP74zPGkGZ/8hNfTOmfD5D7vbJHEZ+n5TrdWltlBHHfPU4Zw18Oi9v1Kqtmat6jZ6pXO/fjn8cZ7zH0nyLx68+n63K837LMT0pc5FzoMxPPp7PfbI0lyNGz3We9yjn2BrL+DrmwtvPsTzurXP3bcp1OPra+UaZJ64X8zDnJIBmLgwoN1e9bqLfJC9K5HK/cpMvh/cqc1//if8IY9GfuIiLcStvlNRhXNsyZ73dkInjrcc7vj56HmVdiDgzH5/mZzwez/c2Bt+K8y3z8GmNxvP1OOVjLCvz/MQci89cm/vlMbXGOOLKcc5jeyI3b9Qar3qcrlbOgfjsreIY43vr4y/f6+5z+aTO91XzvCc5/q1clHMjX1O/LnJa5zXjjXPgSnGeed49a41nj+NYzt/W/H6rOv89HfsT5Ol+mXMAzVwYUP6gn+Ui7kp5gSifx5UXdRE2/dcq813e2KjHISIeMx59yrGrxzTHVb36TdbxXm70xfFedUOvfu+r1n98Trx3fR4Z8fjo87Q89yPjV6/vzBk/y1zflZ8Yy3otleO0dbzjeOtxzvc481zyM+J9Z9Uarz1jdYX6mFpjHq+Jx+tjz3j6HNbU5/fW47xbuebXlK+L+P3vf//HaM2FzO2s+c089Hb+9RrJsYyx73ksy7kbv3+7cgxyLbFsaw3jXDlPzU9AMxcGZHN1rtywxgaK48qNf16ocp76hsBSfuPxciw+vZ73KsexNab5uLF9/42+ev1GXFkny/kSn3N1XnIe1udYHkM8P8INijK3EfH1N+r3O+M9R1Lm50q5RltzONfQN/M3zqM11rk2vhHHle83mxy3OqffjNXZynHPZl19zBn53JuOv6Wey9/O4ZHsyUmMc+tf2InoYR7cJddLL/Osh7r0rbIGvPXc4pjKMVCntpGvZ+R8jfUEzE0zFwaTG2ebq3P1dpH4Vjk/M+TzHGVe91ww1+MREY8Zlz7k+JXjFWPfGteImBuzjm3m5G0XwDFe+fOlHKeta/gb9Ty5c27EZ0XU514eS8QdeThLPZZnj2MrX73l6AplLs5Wj2kZZ49vKed/6zOPnmeexwzzpTVumbu3nX8e61rDLqKXcatzH7/nN7mu1/LSmr8R9RzJOsGvOYucvHm+LY1rPNbL+j6iPOe3zNdWnRp5DM6UNUzteUbOWWBumrkwGBusa+RFYoTN/vdynmaYr8edcZEc31ePyTfvx/XK8VoTryvnSBnx3Cz1rKzhbxDHU4/LUzeTyrn01JqPz/00VyPeOl/j2MrjvfI4Mxfl5+Vjs8k8nHXuMW6ttRkRjz2xRnNsW8cTj289nnhdft+I4vwiH/XYPTFma+JY4pjq46zjl19++dvv6Ec5T9+W97fI/ESuUuQp50U+n5FzpcxlXQ/K95pZ5uNt8641trOtj3LOPj1f6/Uz0zh8K3KVeeMZWUvMW5ibZi4MxgbrOrn5j00U56gv7mxMt4tclTcHzspdjEN90yEei+A9yrHZKsexHNvyfUYf45zXT51nvWYj4us31L16Xjw9F3I+lsdURj7/dO7qMY3f36mVo3hsBuW5fyPHsF6bEbk+37BGQ877+jgj4vFPx5mvfcv5nCHHr8xFfL0lH3fI42vNr9axxq/l8284h0/qY47z4We5dnO8l+ZFPBbPfxr7fL+M2fOeuYxfn5bjW45PHtuncR1VOV+fmKv1mLxhnvQmx3D2WvOkmMfmL6CZCwPJH+4RXCMvAmxiz1Ne3MntNmXOrroxEO9Zj02E8Xlejss3Y7E0vhExp0Yc56cugONz82dHmeMr1u23yjnxpjkQx7I0XyPy+TuVx/P0eLZyc3c+7vbNebbWZMZb12Ytzrs17hHxeOsc8px7OL81cfxxjvUYvmHs4vPjOOpjK49xaXxK5djG798oz7U8t6fz/1bleLbim9zV7/3W+XK1yF/m8in1msjjsS5+Vc7VO8ep/lzjsV+ZQ55lHADNXBhIbrJmvYi7Q14oRrgQOFd5kWAeLytvEtyVo/ic+uZEPGaMnpFjcGYNao1xRjw3Sr3Lc7zjfFo5ja/fnss47vKY37jO45jq4ywjn79CjF85rm/KTysvV+biKXmOW88rxqwet4x4rId1uSaOvR73jHg8zy1+jcfifHvUGsOnxy6PqT6u8vjKMdijHNOtc/0u9Xx7cgzeKnKS86PMVUTOmTPzVo/J2+bMHTLXd87HtTG+8zh6ETkp83RljuqxmXFNnEUO3+OJOge8i2YuDCR/sNtkXSsvliPfnMtF17I7L36XxGfm/C8jHnNBcY/M/5VrI967Nc75uVd+9tVyHV1Vv+P9yxqWn9Xj+uilFmddWpqzEWfN2/Iz3j6udT7ieM/IwdPK81qTa7Gcxxk5dj2uy09yPdTnHFE+3su55ziW5xGRY3i3PJ7WMeVxRZ7POrZyzOL3T6vH4w3H9CaRnzpHGX/+53/+p+evVM6ZiJnGKPMev16tNc7x9dXjO4qra1s5NsblOzlWd6wrPou5bDxgbpq5MJDcsHK9vECY6QL5TuUFnjz/mI+3bNzjmHIdlMdmTVynnAd3iQvG8nPL6HW88/jPvLET79VaD73fPCrHvpfzyTn7ad7umbvxnuV77Pnep7Xy0NPx19bOobUOM0ZYj3vlWmjl43e/+92r50FrLJ8YwzyOtXkVebzyuOK9y8+8OwepzMETY/FWa3OkfOzu9Vav/Tev97OUa+UK8f6Rx3qsrYdjyjl61vws58CZ7zszuXyfHBNgTpq5MIjcDMfFBNcrLxRcvF2nvMiLmO0iIubWkzeCtohjrMcpj9XaOFeZ26fEZ9c3scrj6mHM8/i//Xm5NPfjfUea+3Eu5fk9Of+OyHFqjVVEjFc+X4vvLed7z2Mb51eeS0Q81tP55BjGeYQ49nqMMuKxnsfrbJGHyN8vv/zyU67i8YinrY3lHeMYn5HH0DqOPJan1k15THeOV3xWmYM3zJWnrc3ViJwfmbsnczbb+OW4nLlGW+NdjjPHlfPzm7lZj5HxOUeOz+h1ozdX1DmgH5q5MAgbrftlzmMzxXUyzxmzzPHyvHu5II1jrscrjn2WMbtSmde3aI13Rj73RrGW8jiPqG8YRfSyRr9RjvVbx3aLGKc4/noMM7Jm1c/3fM6lOI+I+tzefn7luo2GZGv8ch2Ovha/lbl7S2M3xqsezxzLK+Vcic+qP788jsjHW+ZUHEse29XjVI/LHWPyVuVcyXyUeWnlphyrNyiPJ+Lq+fOUGIc4vxiTb0WO6jFvjTXfyTHL2Jvfem4bn3O8rYbxmzPrHNAfzVwYhM3rM/ICb9QL4jepL9RGznl5rr2eZz1eeS5q1DFlDt8oxrU15hFRJ9923Fm798zHeG1+X3luM83peozfOh/3yLlbj21G/D+Hv//974cc59aafeOYRu5jHOpjjZhtDZ4h8pW5C0vzPx6/aj7EMbQ+88rxjPfNz219dvn5Vx3DGcp1e9X4lJ9x5Zi82dpc2TJP8rVXjdFR5di+8fi+FWOS53ZEjnuZo1nXwN3KvG+Zl/VYxe85T+Z2tBoxgm/rHNA3zVwYhB/mzyg3Ui7y7lHehIiLjJEuMOqL0hHOLc6hHLMRx+1qmb+echbHWs7lMuK5p+tl1u44xjX1mnzTOTwp52TmYhTleS1F1q+Rxr913k+Oa+R2ae3FYxEzr79vRe4yn7UY96Wad8acaI3rVeMZ75mf1zqn8rOv+PwrlWs2zuEsma987yfrwBPq8y8j58oWOT5njs2Zcj2X5zfSWOcY7lnXrbHfM+aco5yXa3OyfJ1xOl+ZX97pSJ0DxqCZCwPIzdbahpfrZP5jQ8U9yguMUeZ+eU6jXpTW4xYRj40wflcpc9arHONy3DOeHP88htZai8fyIjnDzaIf1WP61DieoR7v8ud5ztF6PpSvjedHmBt5ruX55WNXi/zF5yzlOSL+hjTnyDyvzdvWfIjYOyfq9ZURj525buK98rOW5lF+5pmf+6TyPPeMSS3zVudpBvW5lzk4mod8j2/G5A65lsvzfvsxbxFjFucS47emNfbxdeRglvn/RuWcrOdjPWYjzNc3kt/321rngPFo5sIAcsNrs/WcvKiwmbpXzv2MXtfAbBelcY712M1y7nvl3BglN3Hh2Rr7iDjXO8+zVbeXbuy5qbesHM8e52l5/FvGOl4fUc+TjHy+9zlT5qU8tzPlemvlMscij+Psz55d5DbzvEXkvzUn4vuXxibHt379WWsj3ic/o/6c+vPO+sw3KsflyDqpx/XIe/SknDfleUecMV8ynz3lMY51pHkQ45fn0dIa/xx73qGcjzE2oRwz43WdzH3PNWAGn+ocMC7NXBiAH+LPKzdTLizuV17wxe97GYNy3sw6d8qxy4jHXED+mJtRxTnWN9Qy4rkr10S5/upjiK/Nwe3KudrLDbY4xnLcj453fF/E2jyO6LW+x7G3zumIyEGd94x4rJ475Wdzvszt3rmZczq/PyPGL/729NL4frsGyvnT+ozyc779rN6U47F1fWYuy9yNam3enDlneq9ZrbW9dT69TY51jms938vzO2PsOd/amHGNyHnmmfer6xwwB81c6FxuuOIHOc8qL365X283H8rjjfU7+yY88lGPYcTbx/FKs+VgaQ5kDs7OQ6y5P//zP//hc6zF4yJv5U23N8/b8jjPHvO1eRyRz/c2z+KYy7zluXw6j3i+9b0Rmful98jXxfdzvhyTb/Ib3xuRY1XG7373u6/mec6NOM7W/In4NIdmUo5D5GVNmc/M4Why7uR5lnHVOef7916zWuu6t3OK8Y3j/uWXX36aB6PO+dG01vBf/dVf/e2zXCHXfe81bBZZ52KdAPPQzIXO2XC9S15w2FA9J9dExtvWRn1hau3+rB7DzNNMucoczDo/Yp205kFErJ9v8tK6ORRN3Xic75Xj9rb5mzc97jy++IwyJ3Xk871onU99DrnG6nUWEY9tWWv5GeX7cq5cDzEmR+Q4l+MbDdzy64h4TYzjp3GP51vvWUbOn0/vNas6f3We4usynyOtr5wXrfkTj+XcuUrWrPicUcQ55Xll9DBn1ubBlXOA89TzLpq4+fse5mCPypzTh6hnxgzmo5kLncsLFRcm71BuqIzJcyL35UX8Wy76yvlhjnwW41ZfzEeMfhGvjvwsxrx1Yy4invuUp3i+/v68qefn6Pnqdfv0mq3HP8f+CZGLOj9l5PM9WDuPjMj13nyX78u19ta/eF2MT7meIuoxznlcviYjHo/XZtTvVUa+b/nefFbmPvNd5rker17lebXm0N1zJz838j2a1lp+43nW8zzjD3/4w9++grerxzB+n8p5WD7OOTK3I9awkeV6uetnHfA8zVzoXG66eI/yQoNn1Tcfnrw4cQH6nXosI+KxJ8f0KnmuI57bGXLc6/mQOSvz1rqxF1+XF7zx+3ycc5XjVI7Lneq58tRxLInjqY+xjHz+bWLdtNZXRr3O9sj3eON5jybH71P9a411fB1j9Gmccw6X39uKeL+InFt8Zynnvec252I9HyNy/twtcx2/jqw1p54+55wP9XHFY9HEzd/zfuX8WlrL8Vi+JuKJ9T6izL210p9cE8YO5qGZCx3LTdfTF1H8LDZTNlXvUV4c3r1m6psM1ut3In/1eI6U1/Lc+CzWV2s+ROz5/3DzNW4Kna8en7vWal17e/h5nPN5aU5H5PNPyJyWec2Ix37/+9//McrH9x5vnnsP4zWCGNMcq1rOx3q84+t47pN4Tc6Z8vuXIj5ry/uyTeSy/Geve15TS/MoHts6H6+SNStiFuU5Z8Rjd2rNidZcyOeenCOsq8dyy1za+3rWyWW/Yv3k+AFz0MyFjuWFlE3X+5SbKheP75DrJeOOdVN+5tM3m0ZUj2lEPHbH2F6lPA/2ifXV+v8aMyKnS2swbwrFr1yjXK9Xz+/ysyJ6rb1x3HEu9flkxHzN568Sx1DeNC0/O2Ipt61j/nSc8V752l7HrEc5vpnz1pivjXWK51vfW75Hvk/G0ty+el6PrB6DX3755YfcxvNvl/OjNZfKOfQGeVwzztfW+r0yDzHmrc/MOdGSc+gt84UflWt8bRxbyrkw4/o7S+ZRDvulzsFcNHOhY7l55Z3KCwwbq/coxyXiqguX8nNcHF0r8luPa495z3OICzK2i/pa3gzKHMbfEGzNi4icMyneI5/jOvV4nP2zsZ4L5RiPIM4vzqme7xnxeD2394rPqPNYv/+ecYvX1++zdHz5md8cP/vFeEbe418zqMc9vl4a77W5kt+b37/0Himeb82ViHjcnNimzmGZt3Kc3pjPnEut+bR1Ht0t8x3HN7N63kWcOcdybpTvn3Pik3hNvp73yHHJODpfyrl35pybRZk/+qXOwVw0c6FT5QaY98oLTxur9ykvXmJ8zroAjLWZ4x7hwvJe5biWY9DDOJTHy2eRp3KtRcTXsQZr8VhrbkTk/Mj3an0/57mqRpbjuzQPRpPzul4HZR7i+U+5yDFpvU/m8tt8xnGUYxRRHlv5HPfJsS/HJce8lvOgNU/y+86YL/G9MR9an5PziB/V45LjUCvX2RvyWB93GUvn8CZ5rObkr8r5lXk5mpulOnBkXuT3vn0+zeD/397fvVyTdW970L8YPwiGRkgIdgiK2MEvMEGJ+MErBLqTjbwbCUE0r5K9JijJjhIQ3VGE4I7Zd0NwU0EQfr7n08/5PKPHPWqtqrXqY445jwNOrvuqqlU15xjnGDVrVd9355o/o86j7zr0jZFwLj6tUxgDed41AADzw8tcgKZ40crCa3y8sCJX4xEf/s7IUTwfD5PPolzk/Erf5vgqPNZRxzcK+Usg6ZNaU5zzeSz9U83U7vXE+lQuPiV7YuUaUixeeVvbtV/H5bjFY6SrakDXj7mX4u/6M1zLVu6l33///a9H/XHcq2OjV67yi5AnqjHYS6sT68f5eEU8/u74vfJU9FMHHEc8+CPRY47R3jhV/vjWFz6ffsJzZF+cXevRN9Tle2I+oD/2f5d7KAB8Di9zAZrimzUL1fHRgsoLZRZXY5IfLj+pKx4gx0X5iPlxjkbJk8bhcUGNemfOoX4/o6faC/Hc1kg+mZEc96Oxjp44yw8zoXgoprl2svT/1NRxd8cv51866gHYz6s+Kul3/ccsW37R9nj8E2z5WdtX845zFmOwl/hZ5/QqdG57J443XvvK61+BYu05wDYxTtKrOrVP4vFneVPn8PngfnJur8xD9NyW1+APiNNcuMbocwDzw8tcgKZ48QU9YHHVg/wAuOcLBH9BYJ3xpQNcg3ITc2w9/RDr/sDD9J95la+r6kwvtfL1LF2XHF1DzPOeGOe+S15qFCf1F/eYd9JxiuVV9VURcx9FTs/BHsjx1Tb9LVzFecsf2i7pHHd6Yi9bY9f2mf2Tc+ocfUI8z5kx8xir/Hwz3lHwXGb22ZkoTtEDrtHsZUm/XxFXX6e797oRc39X7cdrXuGlGXCMiM88qLZcZwAwN7zMBWiIF1/cqHvBQ0UPXF978hWPpR57odz5i52Y61f5voLoIfiDrS/37vgCyA/CzkflE0nbtO+OMa1CrAWpqsXsjbt80Ykco6gcL8V4y+OS918Z43wtqRoDHKPygf5jlV9//XUz3z/99NNffuq4bnVVeUeazT95jmfMLZ7zm/Nt9R5tk7p5agvHS3OCY2T/Rl3tEXuTvN1D7gdn9KojRK+R8x9xbGbpy/AHrjnyCjA3vMwFaIgXp3cviuE7tKhi4dyH/IVDrLenH1DhPJTLnGvn9I46jddbnVxXkn6/u19uPQgrR5VXJO+D74kxjjHNsSfefyCfVrUjaduRGlJMc5yjvP+smvS19DNTjaM6Dv7Olg/8kjYr+0M/vb0z8knlH82rq4dybs/OUYzX3hhpTFuec6ztrZnwHLt66Sm2vCL99ttvl8dT19e1zq4d+JGYZ/35qT7gnFsz9qNPcL+nh82Ha48+BzA3vMwFaAgL0r6wwOqFasw5k/zFlH/XPupwHpTfmG/n+KqHXR6m6y/3HPOnass1rnFsoWOcvyxtXzmnZ5Bjq/+Pp//8Ki+r4LrJteP4aP8Z9WMv52tY33g9nvcV1fU/veas2A85Tln2zCtv+Dxn+GcE7NEqFl18FHP7Ln/fEOOk61TYa3FM8TPaP4t3KhyjLt4ZAXum8kquzavj6nHM7NEnUVzvzOdeos9Wr90YC5gP16B6HQDMCy9zARrCAqw3zt/qDxOdiA8+Fovkeam+YJK07awvgOIXHiui+W99uTcCR7/wkzfyfDynM32zEopZfIkrrRxHzb3ymHRX7cjLVW+0vH8P8TN7qK595HqzoXy/+n98S/LFUW84xvrcbFQe8lxH9JHyFsd5xxhzn9E187aoo/7qTPQOvGbLM1t+yXV5ldc9Jv2E88j53srzk0SPXeWvDhCD+XEtrnJvBlgRXuYCNMMLURZgfdHCygtpFlk9yA+pFnU4P8qx+64lL3ybe59zNQ9VtTTilz7u0xrbUSrPWN4Hr9nquSN65So0z1dxGCEWr7wubfndn9EcjlJdc+s6s6F86/95u/efTf4Efdbnm5nKR5a2P1lburby6PHcXeu6lv7Z2xiTOJa7xzMKjsEKveZTsnftmb1+yTV5dqw1Dp8bzuHqnJ1JHOvI47wKz181CfPiHkyeAeaFl7kAzfAibMUF6EywmO6Dc+V86QsuL5KpxbWIXoj5P/qlZjzPCmx9uTd67XisR/Mb0Wcr30jaPnoMniDGSz6pYjhr3FwruV4kx+IbP16J85RzFaV98SXRt3OprjWTNxzTrb+Bq5e62ne2J+y/Ub12Nopx5SVJ2++MQx7HXde216reI6luV/FDhfOi+MCfkS9e3bM+IdeBfj+L1frbVeS8d6kNjdtjXs0HnvOZ9QTjYY93qUkAOA4vcwGa4UUY9McPQCyoxyU+pOY8XflFA4yNcp3zL6/s9cAqnslf9DhOXb44uaJH61w5Jo6L9q30pVIm+6WKu7a92t+Rqk4sbe/qCY1bOYo5i9I/oe3931Jd44zz3o29sOUHSS9wf//9979+4ho0Dl1L41gNezLHXdL2q+rRuY/XuppXftM27Y+xWNEPxjG4Iy9dyJ61R86skVyLZ8Rf4/NY4TNyXzgz53cRvbtCXTtnK8wV+I9WAGaHl7kAjfDDhwT9iflkoTUWysfeh7z8QMtD0lrE/FvatuUDHy+vzEquH8+3W5+LPfoK7JMYJ+uVh2Yk+uWdV3LMusVJc6tqRNK2jrWyh605W9r3re/9+Xjeb895JY7Jq7hI+tu3msOdvvC1Z/TiXjT37CfrLF/lutCfr4x5vl687ta1tS0ee+X4RsQeOCPf3Xnlnyt9kevwm1xEP8Mxcv6710T01cz1HecJa+A61U8AmA9e5gI0wguxmRebq+GcstAah/jAs/fLifgZiRpdD+U8+6Dywtb27lRf8O2tn5HxnK6eh85f+Ueyt2ZE885z3UuM1+jxcX3kGpFcJ1d7bAQ8Z+XLnq9iImm7j/uE6A/raZ+88oGU/1+49sYTeIwr+HIP9mvMj6Xtn3grn+8Kf2rc9l28lqRtuubeHMfxXjHWEYlzXpnKQ0/0p5gP6VMf0t+OE/P/RO6vYoW+5jnOOj/4EdWnaxUA5oOXuQCN8CKahdhckNdxiA+qn+TDD0vfnAP6k31gL8xY66N8wXcVTz0MR7/k2Gpf9/hm33zqmVxrI9VWnmPUp/PtjHO1lSPFQ/texUz7j8bN143aGsPZ2ANbc9LfuNU/Nx23fTrPs9H1PR74M/ZqzJul7e/8ZV/4M/rzmfn2+eM18rU+vV6c97t5zsBKc83II5p39tHZfv2E6EPpaH40fs8FXuNYfRrrDkQ/zeaJODdYC/fup/s1AJwPL3MBGsFCbE7iQxKLrWfID6rf5iE+OOnP5HVNlPvoheiJ7mgOI37BdwWe31Nz2/KR5H2dyHM5Y/zRi0/FQ/6Qcl1I2jZrfewh5nwvipU+V8VT0nbt3xtTHRvHIXnbWTj/r8b866+//sNvv/32wzH6fTR/eGyr+nYPr3xa+Uu/e/+ZObf34vWvuI6Ic8jzmwnPU/FbicpLZ3voLKIXpSN+9GegJvtgVA+cRZ7vLL1ttvnAfuxn/QSAueBlLkATVn2gXAXy+xyO/dnxj+eVeIham+iF6IlOvuj0Bd+ZeM4j9GfFOvcWa3Q/Zf+cHc8Yl7t86TnFeeUx3DGO0XFMvvGn/V3FWtJ27X8Xb+2PXpF87qO8yr8Ux+Rj8/53430Sj1c/YR/Kd86zpJf48fdP/BbZ8pSkbdKV3tK54zVH9vGneG7f5qoDyl/l3at9dAYatxTHvSdnnuuM3v2WT+I5C3Hu3eftuayUP/g7vk+r1wHAXPAyF6AJLMbmxw+V5PgetMCNX1pcFXfX7tXXgXGJHtCfsye8fVRyrUj6fZUvwPwwLI2GfJNzI2mb9o2So+z5q8aVvXpFXeVrRK1UF3tx7s/Ohc4nbeXC+1/lQ/urz23h3L/Kf7zmlle0rYNPNEaPGY4jL+if0o65l/Ri95XPtlA+9LlXnrrbV3Esn8xpVDSX2eZUIb9kP3XpTxnlynmzXuVPc/R84Q+yH1aNTfRR5x7gOXSsZzgHPAAwJ7zMBWgCN+L58UMleb6eGOs7vrTQ+Wd5MITjbOU9eiIeM4I/smetrl/yfYu/3Bp57vZOzpn0lK8Ur/jF4F1jiHH49pqaQ56HpW2r1sQeYh6uRteK18vy/ipX1ed8rHOc90vaXp2z8ktXn3geHcf+NNlX1YtdHSNt8cqDo3gqzvPVXLoQ5zMrM/WojGsqzm3Ll95Pf/uz72fxwjfkeHTD49/yPqyB+zw9DmAueJkL0AQvJmFuvPDu+NDQhScfzuK1JR6w5sc5f5Vr7cveeMofM3/B9w2av2PRAY238pRkv11NvP4THsrzPzJn10GuBclzuXs+HXHM7vBbRtfMHojyfqN86v9l+/PPP5fHS8q9PlPl3p6pPtPZKxq75wH7yF7Isdvypre/8pI0op/ifPTnzswyj0zlK/1uz82G5hV9KeWcOh4zzn8v2Rez+f4bFBvHpZNPou9hbexh1TgAzAMvcwEa4AUZi+s18AMV+T6XkR5W40MWuZ6XmOe9ZG9I2na1R3J9SPq9yxcXd+D4dIyJ/JPz6xxr35lzGqnXCl1/z1iqGrC0nVo4huOu2I2AxhO98Ikq/1S+mckvmofnBe+JXtjjA3lK/xGBP5Olc+iYDn6K9aVxd8Rz6Dr+itl71DuU0+hNSb8L97eZ8n2EXLOreOIosX7snZHpNFa4HvuB+gaYB17mAjTAC20WZGvgB0sWXecx4sOqxtTt4RCO8U3v1mf8+agzfaI62LoGvedHHKvuX/ppHlXeJe/7lNjTRum1Is9Xv2tsUhyzpW0jjb8biptjOUoMY76rnGe5FrJ3JL182/LNjJ7xXGec21lUPeYVR7yoY96dbyTinDqNW3Qdd8b+8nwk+2jVOtbcpRiT+PtKcdFccxzgNdErI8crjhNA+F6wau8HmBFe5gI0gAXZenghrsUXfMfoXyrFh65RxwjHOfNhOntE0rZPvbL1JR8Pee9xvGaJlX0UvWAd8ViXLwbf/Q04zYM6+B73lyd94FxqLLnfWc7577///je/V8dJOrb6f57qn2We3TOan2MAf8Yesx/sqYp8bFT+3JYfddyTdbWXOPYO4xUec5fxVlQee+XJFYnejFohRtkfeOMYHfra6OOD+1GNu94BYA54mQswONx818UPWyzGPyM/sI7+sBofEDVu8t4b5/LMPOpc0SdHr5FrQtLvo9fGSMzcl+UDzSt7xD7RvuyV7KkR/ZTHGPXTTz/95UUenEfsUXeiPDvXW/m2P995VPs1jziXV9J5dezMeK7vYrcS2R85NvZa5Uf7dE88X3lR20fNSRyz/jwycazdeOWxUb0xAlVNje7Tb8jznXmuV6KacgxHqzHnmNxCxp7lngAwB7zMBRgcFmXrEh8WWHgdw3UjdfoyI45bou57ckff1rnzl3falq8p7+fj9PuVY5uZ2Jdnx36K3rG0PftqlD6rcVS+l7RN0gvcuJ96OI+7YhrzXOVa0nYfd5TKQ/pbuPH3SrN6ybGgVn70RoyJ9un3ypPf+NHo3FI+t6Tt35z7CuJYNf9RiTHsQvahYzyaB0anqqdOPnhH9snIddiJGNMR/BJ9DJCxX7k/AMwBL3MBBocb79p4Yc6D135Ge7j6hPhA1nkeq+K83dG3dY3sF6n6fzrqd+4l37PifVkeq3wm6QXX0z3KdZA9L9n3Vb7inHQcfIfjeYUfnEPlqcqz9CrXe/D5t85r9Octv1nad0UcnkJz9rxWJfvDvvD2uC8fcwXyl2suS9uvuu5RctxGGZdxDDXG0cmxtK702QpUMZW69/DYH/DI+cT4Pu0Vj6W7Z+EaVPvuAwDQH17mAgyOF4iwLn7AZHH+Gi9SrRkeWPNDIg/h4/Pkw7Suuer/0/FOVn4gjj1J/0Sx/2wpJnf1Kl1D1/M9Mo9j7xjinKQnancGYhzPQPl7lWPJed6b6y18nerce9Bxmv/W39z1f/Dw7TifxjHqPo9PyH2i+g+mJG074p2zsAfzeCRtl54mjm+E8ZgRx5RRfrPfnvDZrCiOjmn0qTWyNyqyX7qNvxPRL0/FOY4BYAt7hPsGQH94mQswMF6YsQBfGz9gsvjaJj7E6OF1JuLcJPrBuMRc3Un+0kaqXipofPSQc3BMV4ln9ljsQ/pz9H6U952BxlB5XdI26Zt8xDmcNeaV+DZ2Mb9VjiXn+Js8G18rn1/j//b81bmjzrrO3XhO+rkKOZdb/xGLNEo+NY7Yz6K0/dMaPYM4rifHYTyeEcaS2eojI3ltJhxrxzZ6VdLvI/okE8eNV+4hx/xufO0O/oTnyD0OAPrCy1yAgfHCkIUZxIcE+Dv5i46ZayV6YPa5duXu3GT/S/mLG42lOgb/fIdjqp+zE3tP9ldGx8bjo7zvCLqWPpM9LHksr8ZzlDz2o+NdFcftSLycuyq31tk51nkqP/k6V5A9VUnX13FXjeEsND6PeQX0t29jnqLO9uZVaHxbHtR26W7ieJ64vonjGAnl7M4eBX/gmOtnJPpE0u9P+nYL+SOPE+4j1+1d9Wp/km94h3tE7nEA0A9e5gIMjBeDAGLrIXNV4kOrYnLXQ9OTaI5+aJN4cBuHmJerkQ/iFwbSuxrI3rG0bYXaORvFzDGcleyzo/3GnstelbRty3u+7tbnqs+cTayVo/NejRirVyhvzq2Pj3LOfdyZVNfV71sevAJdK8ZK2vpnmX3sXWM7guM44tjOQPOq/ncFkv3ZFY1dvsq1INlzd6GxxOs/Edc496fZyk13z3UierJC+Ym5ubtmttC4o2/wzLNEn9zhjzuvBf2xX+gRAL3hZS7AoLx7oID1iJ5YfQEWH5T00Loacf4SD3DPc3UuVPNnfcmnMWYP6Vz46BjOx4z9OHrtU59lKt9Z+htw1YstXfus6x8lj5X6qNmKj3ImRS9FxdxekV+dU2PK13/KT8bjimOS9x2PuN3S8dKT4zYag8aksc6A5iNVsdc/qawXuyPE/Qqq+pDstzuI17/rmkLX0jWf9nHlPf0+q+dGx7l4FX97x7qzXjLVWOB5Yl6uzImvQ95hL3t6HACMDy9zAQaFxRlU2BfSiuQvPVavj+gH4vEczsMV8b/6i77sIUnbeMh7j2LkfMyC5xS9cAV6eZt9benFlvaP4EGNgXvONu4f7kk5XlHaHo+7imoMvu5obPVfK++zvP+pOXkcXbEHt7wq/f777389eg3kpyoe9tqV6Pzxendw9/UynfrUSij+zsU7om8l/X6Xn7J/8M54RH/s8dNR4vkB9nKkxwHAuPAyF2BQvEC/66EA+mBvrLYIyw9FPLT+geJiT9Az7ueqh+mcV+lK3+t6cS6+Hn56jXPUvR9p/NFvV3jN14jXsfQCt/qnTXWsPPh0fGNtXBGbjuhlV8xVlnOtWF0dL3urGkOHXMlfefyx9+rP0YNZ3n8XHmunOrBHKp/ob+D6z9q/OvJSFacrfabzxutcia919XUyVZ/S753qaHaUC+dmL9G7kn6/Mqf5evhnXKKfzs6Vz3l3H4P+2DsA0Bde5gIMCjdZ2CI+GKzyABe//OChpab6MgGux948I96q5xG+6MtekrQNT/2IY6U8dSXn+0y/VZ6WtG3L2/Za/ozkfU+Qx/TUOJ5CudrKpxRzWuX1CqrxbPmqA/Z3nI+3RarjoqrPnIniq+so1iNT+cPjluJ/QNLZN1ey5bUrPGZfSVflI87lLiof4rdxca6O5ifXyRX1EX109vnhOs7O2xN9DObh0x4HAOPAy1yAAfECTTdagIpVFvH5wZVF53uiNxS7Mx4aoeasOsw+d+6e9rvmF+do4am/oxw5Lt36U/ad/vwtOmc+bzy/vHMkTlselLzvbuJ4nrj+XbzKZZSPu4utMWnbneO4msr3ld80Z22vjre8/0x87pFirrG88oc9kmN1dmxmxT6KsZMU1zNjGPN3dm6uOm+m8qHjNFLNwI8oP87XJ+QaOcNr8ZwaFx7qR8zht5446zywJt/2OAB4Hl7mAgyIF3ss0OAV/pJg1oVYfOjhwfUYMXYSveQavomv/Jzz5HON6PWtsX4y99lwL+4Ui5jPb/urPqtzOA5RPvcZntY5NO6t62jfGdfZQ4yf1Cn3W7yKr6Ttzqe33TlvXTePzeOZmew16VXcncfqc5Ji5v3f4Fzo55PYFx5Pnqv22yM+Nu+H42x5TDH91lsinvuM8wmfU2O8iuwxXw+f9UG5cu6+IdfHJz6OY/n0HDAO0ROf5tLnwAvwDfYhAPSEl7kAA+KbKw9+8Ir4gDfbgj5+EcLDyuf4gY9Yno9jezSmqtvOX/RpvtlX0sreci9WHkcn++/TvFU+lrTtLj9veVHyvquJ17/jemeiHGnMVR6lmMuYT8/5jvm+8tkdHhsJxduxt7ztFc5z/qylWO45T0bn9efvZssXHk/ljTj/Ff1zJVv+src+JZ7zm/OYM88V2fKjroPPeuJ8npG/6GP7Yg/RU/SseYh+OJpXHevPAnzDmT0OAO6Hl7kAA8IiDfYSF/UzLMbifGaZ0wjEB0e+XDqHox7VcfGLGan7lzP5CypJ26TV6PBQHPP1yRdIlYd9rqf7in2XxyZ531Xk6155rW9QfjS2KoeSttsXW7mMc72Symse2+o4jzk2e33nz+f45nPtOZ/PcXVedH6pGrO2SVtjyJ/bGyf4DHsn5ijG/qhX4rmUx0/xefTzLCpPvvIi9EE5/NZzmVwXW17cexz05pP7kr2BJ+BbruhxAHAfvMwFGAwWaXAUPwx0X4zZ+ywsryHGV6LHfM7ePl190efPzfRln+bjmOR5rsLID8XZh3vz4s9VHtY27R/RxxqT5rg1bu27YtzxeiN4/1UcJG2XjsTCn71ifhpHNdajY1wJ5SHH62hu9vhE+6sc+Po65mx0vXeeqMZk8mf9GbgP+cMeydryVEXOpT57hDiGb8ljsfDXfDi3Z5Nrwn7O3sJT8xO98K6vndnHAAR+AugLL3MBBsMLtXcLOoCIF2MdffPtlzRwjPgwSLyPE+O3RfVl3ypfymR/Sdq2gs8835HyfPSLwcq7/mxXD9t/eU7S2d6M17k7XrqWrl/lz+P5Zkye25nxEpXn7o5dd6q8a9snMdzjI59b8vYz0Pl0/ura2rZ3Phpf/Kx+h2dRDnJeYn725DZ+/khOP/lMxt70uaQjnoR+ON9X5XirHiR8tQ57+9qeYwCOcHWPA4Dr4GUuwGB4oQZwBC3C7J1OC7I4br4UuQ/Fee/DI/yZVzFTXPmy7w8Un+gxa2avOff6+TSxt76Ku46rfCtpmz43k3+3fCl537fsjf236Do6d5U7SdulM/IXY3YGrzw3k9/uxh6OMfW2T/Hnt3z2008//eXn77///tdPHGPLC9JRP+Rz6c8wHspT9qn1zq/xc6+OMz7+Ey9sefOoL6EnyvGn3tmLrvHzzz//yV97fA1zEfta5TfvxxtwJnf0OAC4Bl7mAgyEb6gSwFH8hUOXBdm7Bxe4npgDiYfE1zhe0a/q2649S78Ty7+TfSZp22wxGuEenv2oP2tbxMdk38bj82dmRHOUB7fioH3fxCH6/gyvvxqvpO3O39n4Gt/OQ2PL479qzKsT/Wed4UOd45UPvX8rp9pe+UDStk/9oGvG8+CpHihPMXdR9lIm5/oV8Vx7qfyJp9bE+b8i99nHv/32299+l454Fvojj8X8R8/hCbgKewsAesHLXICB8KKehRp8SofFfv6SBL8/j3sPOXlNjE/2scSXfa9R3LLXpJn8Zk884YMc2ziGyq8Wvv2DLX9K3neUfL4j51BOdPyrvN2RO89B1/qEynt3jR1+9KB0xIfvqM4fpf16SfHLL7/84APJPvjUC/pcPN+Zc4N7US63/KTtMbc575V/fK49nvC1q15VnRvWwH440wM6V/RZ9Kf+bN9W+2F+Yv6jH/ABXMEVPQ4AroeXuQAD4ZspizX4FC3E/AAw4qIsPqDwBclYKDdbXy7A372rL6VjnCS8fJzYCyxt6+4792B54i50zehJ+zFvj/t9DNTYizl20ic+jefa+qzyoX1VzqQn8qZr+fpHr6vj81zw3XPYtzEf3vYtzrNyW10nS/+s6Kf/LLPJ/sJbc2Ev5R4iRd9Gr3mbiNtfkX0k4SUw8oE9cQbRa698Zo/7WCn6G+Ym514CuIKzexwA3AMvcwEGgsUanIEfFEdblMUHWB5Ix4UvD34k/9Nn0qsvYWA/8lf1pUVn37nX3eGPGDv9zber/vbbyihmivNWXLVvT1yzz/0fhlTnlbzvyZx5bHvrUWPN89Hve2ME12M/Vzn6FJ1T59nqP/n/CRml6x69dh4/3pof5bzyVt5uL+XfI66BfD79jpcgY3984w35LXqt8mWFjvv0s9CbmHf1JoAr8PpNAoA+8DIXYBC8YGOxBmfgLyhGeODTIjF+YcIXJT3ID5ErfnmQvetY4OFrkMdyvLWtm/dcO5rLVVTezMKr12BPVjF/5VfnbOvFlvbps6PkLM7xFRqvjs1+xH/jE3Nsbfm3Qvm1r/N5nP/sAZ2/uq7l/RX5WvozrIf8UXnO8r7sj8qr+j17FCBiz2z1pVdUPesTv7kv+jyfjgf6kPMt0avgCtyj8BdAH3iZCzAIXrCxMIcz0GJshIV/fBDhC5N+5AfJVfqT5hm/fLHw7z0oztl7Uhf/Xdl/db7qb4pL8ix99l7kycqrkvKkF7dVL4nS32YcMWce31bdacx5bvpdx+PBXihnOZdbeXTet3x91M+6jlSdS/L+eD39GY+ByN6IkheFPRv34SHYi3xizxwh97Uz/OZ+GM+r32E+Yn5j/yLfcDaf9jgAeA5e5gIMghdoPFjCWfhh76mFGQ8e82AvzZxP9d7oWQkPP4/invOibaPnw2M+Y5z2pr6YjnGQtF37WTs8j/4foHp5+9NPP/2QJ0n7fv3117/lKveckTytsVRj0pi1LdekfQi9UW6de0u/V/+veCv2IG/7FPsrjyFK19N+gIx8seVTCe/Ap9hXe+5zOib68ArP6ZySr3HVdeAZnNuY05hvcg1ncsb6DQDuhZe5AAPADRSuwg+Tdy76o5+lPQ++0IP8IDlDbjWH/OWfftd2z5eH5ueJ+Yga1Ycak8YnL31C5UtLLwv14hCexTnaytOrv5Ur37qvRF9725PE8ZjKj/p9xNqD71FeP/kXAOyRM3yhc1T/AUuUrhdrCdYm9q4t2TMAR3Bv089XRA/q2KvvkZXn8Xdv5BnnMhPzTZ7hTNzjru5ZAHAOvMwFGAAvzFiUwdnEB4I7FmfxIePdAy/0JOZY6ti3VAsatx9crPjFS6wdGIut3I3mRY9xT+/VMVKeV1bHepsF52crR/ZglW9tl6rPaXs+55N59hi2/jamtu3xNPTinb+jtvypc2i/zvENsVai3/Szqpd4rPY/WT9wP/Zu9kLcVnnGfgF4x7velj14t690PV/7qTHAOTiXW/mLud7yI8BR3vU4ABgLXuYCDMC7RRvAN9hfVy7Onn6IhfuJD5Ndcr71hZ+2Zzw/vDwuylv2oXNW5fRuNAaNZ6v32o/Zk5L+Rlr8W2lbPoXreJUf5+QTr+l4fa46r/42r//8RO9xPcVxSPhvTl55POdc3rA/LG8zOt77PsHjied/hY7XMdX4JW3X/jgPmIfsF0n/ckXMt/If/aB/6j5ui/vwCrzCXsseiR7Un5/0UOVtbYMexPy9Ivc+cgzfIk/t8R4AjAEvcwEGgBsnXI0X/Fcs9uODx9MPsXAvynXM/6gPk/mh951X45ygB8pZzJtz/LQnPRZ7rfKiZU/meWz5FM5DMXZuXuVHuTk7H5V3o3Tdq9Gc8gtcXxv/zYV9XuV6b76zX/U5bRM+9xHf5DHtHUdGn9E44rmiPM5Pzg1jkL2SZR9m4md8jH5K8fPxGHwCEXtIP0X2jn01ApWvRxof1BzNVcwz+YVvcY/j3gcwPrzMBXgY3Sx10/SDAcAV2GdnL9DiQwQeXpfoA2mEB0r5PI/LY3tXA/FY6Meneb8C/+1a/W2hPCb1TMnj0k8/SHs/XINi7XjHmEdp+92+0fUq/0redybZc5Je6t45Z7iW6PWYZ+lbj1de9f9rV+feQz7HmR7XuaRq7tK384f7qDys37XdHnrnHR9XHavf4/4obccjIA/YE9GL9uGIZE/b5zAezpX8dISYY3IL3+Aed9SDAHA/vMwFeBgvwFh8wdV8+pBQocVefJDFvyDssSd9kb0p6fe9X7ScWSfwLMpl9qTyerUv7cHsQ19f+7Mf4zh9DJyHY76VF8ddeRgl9h7v2WN9dV79xwfQn1de1zbt/8Q7W8iL1bV+//33vx7xI9mH+vPVaJxbY5W8/8zYwOdkj1ja5hwpX96+h3i8/lxhH/i4KG3HH+uS/wWLLl7IfrbHYRxibo4S83vHvRTmRP3MPgKAseFlLsDD+CGVB0O4A/vtmwe4/MCAdyEif9hn33rtCPJhvO6n/rx73HAPsW/FHJ+V58p/lv9WbuXF/Dl8dw6Kq2O7lRf3hyovI5E9UmmPl6vz6He9cPPvo8cCtnnlE3v9auzDeO3Km3Gcd42twmPbipv3Uxf3Unl5yycxV3vRsfG8r9A14/FR9gfMT/ak1nUdyV7Gw2PgvHyTC3k05rbqlwDvcJ/DPwBjw8tcgIfxggvgDuJC/5NFWnyQ5eEPXuEH0yv9Ig9HT0r6/dNrecx4e16UW+c56mjO5b3Kf5K2Se6x+untkTiOeDwcJ+ZDclyjHOOucY5+0d8Oqnwsabv97JjkY6LfvN+fgR7Yy1v5jTm+G103j0nyP8FsjeY5104cY5T3PxXXmXnl5a14O1c65ij5entyqmO2/GFvwHzEnPt/nSF1JvsY/z5HzMUZxL5GTuEo9uMn91UAuA9e5gI8iG+WLLTgTj5ZpH3ypQeAsN/suTP6Xfajz/2NL+M4YQ1izi1t2/KofZe9J9l/Wx70cT4mnuOMmliNGMcqH9K7nHQke1a/a376uRUHy/GIxPPB+Lzy/Gh+9xjzC1ypy/+XWfWRay7K++Fz7OkYV3v5HTEPnxLze+Q8Gl/8bJS2fzMmGIPsTefU2zr0sHdkD+Pd+7Gfzox7zCv5hCOor9k7ADAuvMwFeBAvtFhkwd0ceXCIDwR7v2ABiEQP7fVdRf5iRTrLk9+ODfqinGeP2guV56wj3vP5/U8uH/386ihOzsW7fKwQ0+hX/Vk4PjEmWTrWx4u4Hcbkle/t+RHxePP/YzIq+3F0PN5qLlK3+TyFPKs4ZU8f8bPzcEa8fa5Pz7c1H5/vjDHCvcRcZl/qz94+C7EGJHx7DzHuZxPPTS7hCO5/e+/HAHA/vMwFeJCrFm8A7/CD6LuFWnyY5UEAviU+WO71lPwZfSjlL1a+JY4L1qb6W2SWfPep9+L/l1Sin75GMXbt5/q3nIsze0Encj+Ncmx0zNZxjiteHA97v8qZczs6r3pe5cmOPtSYq7lY3g9/UPn6Ez/HmJ9FPKfG9A06V56nhB/GJ/rAOavw/tnYO384h6vjHPPZZe0Az+P717f3QgC4Dl7mAjyEFlNeXAE8gRf41UIt+lNi8Q9nEh8u9efKX9qWvwy76kE0jgXWw17Lfqt01COVj/XCGP6M4vQuD9ru41an8lWMUYW2y79bn9vqxXA9ivurnHbLTZ6HXuxWaF7xOOlojx0F11c1J8v7V0Nzzp7Q7596OsbzTDSeOMYzaq6au7SqF0ZFuY55eudPH3uGR0ZE3nQsJLx6Po7xHbGN3iaX8A7fC+UbABgTXuYCPMSdCziALby4jz60N1nEwZVEn0UP5i9UJP1+1RcmHkesAZgf+yx7rfJb9qqkbe88kz/nv6mm86+O4lvVepTzEHOxMoqDPJVjpt/z3yh/58342fg5a4+/4Tvs/yoH2tbR+7nn/frrr3+bzysqX2tb59p3veaYWJqv98+I/Z3n/G1OHc93nvqGOO4z86Nz5Zj4GrP6oAP2lLXHozpGx17pwxHIscGn5+GYftsT9xJzSR7hHb5X3eVPADgGL3MBHsI3SBZT8CR+GJX0ouGqLzAAtogPl1Hy4tUPEPHaMDfykhR7nKVte/wmv1R+zb0yX0d/Nt5+tbdH41X8JW2XfBz8nSpu+l2+i7HKx2VfGns47tefvT3L++B7qlxa9n9H8rziXLxtD5UPZ/Gf4qF5vMr/DHOtPB798C0+59Vx0vmvvJZz7WtY9gFcT9W3juDPrUD2Kh79Dsfz7jjGPJJDeIV749G+CAD3wMtcgIfwQgrgaeLC3ou2s750AXhF9aWfdNc/Q/vUwzTcg/yl3FYec5/7tNflvinla1W9VL9738w4tlXsPX/HJ8cItr3rmL0iejMfH/dtsXVtSdu0j5ztQ3GStmKZ89ORV34TnvvRecbzWto2C4rHVp1J2t6l1jTGPI8rxm9P3OUDX+/qa+rc8VqWYwjnE+OtOH/iU3u+Q42eRfYp/jxOjOETZO8DVKiv4RGAceFlLsADeBHFzRFGIC7qf/75579uBbgOec5fglj6/eg/FfoN0fcwD/5SOftL0razv3STj6KX4rW28DEzfQGouTj2MQ6Wc+LjoKaKoeN2BB0fz+Femn/fw5bHfZ4j51oBxV4xqWphphrY8ljGx2nun1B5b0bPvfKNpO3aP5J3NJY8Xnv8bKIP7sT+vXJuEc0zzjVeW9vhO7Jnv4mpvaHzrUb2KN7czwgxi31NurqvQU/cK/EHwHjwMhfgAbwAZuELT5IfaC0WbHAFld/0e+W3O74kuPLccB/yz1Yv07Ytj51J9muU9mWPeaz62ZVXcffcHPur49+drTg6ft8Qvelr6Oen2M8+Z1Tl9VVwDq/K40hkv+6Zn4/9Jg6V92b2nGKluVWekrRd++/2Vs7/XWPxtZ7Kd5zzXWPQdSRf13oq992JOdSfz4ifz7dqLrI/76qNrjhe8t8IxPyRO8i4Z47iVwD4O7zMBXgAL5p4CIOniIt3P9DGbQBnIW/5YSB77hXyY/zcmQ+Z9vqZ54T7cL/KvpLsrXf+OoPsbftJP+2xKO/X57ytC45pFXNJ2++M/QxU8XQMzyR78ax/xl7j1LkrT2ib9s3shSp/nvsVeRyB7CX3tHc4Tvp5BnkcR8bSFc1Pqjwnabv2X+W7yu/6/Q6fO99n+edTPA5Jf74TXS9eP0rbZ+w3Z6HY5HidhWti9fhnb54Z45kYMT4xd+QNIu6dT997AeBHeJkL8ABeMAE8QfwyJi/avY9FG3yDFv/x4dCSr45+4ZHPc8aDps+1+pcvnVCu5J/Yv6xPfPUtcRyvri+/5jFrm/5Je/15VA9qXI55HLul7Z73qHMYka2YOpZXka95Rh/N6JxSvE683hXXvBN7fSt/mt+stZDnrT8fQZ//5HPvqPzW3Wd7cU1VfnQcpG88+crvd3rd1x0htxrD0+Nxbj2OKG2/Mzcjk/17hW91Pp8bfuzJT9XIiDg2I8Yk5o2cQcQ9lPsKwFjwMhfgZkZeyMHc+IHTqhZl8RgWbXAUeSZ+cSKd9eVJfNDUOT/tofTgHsgzlZ+c/7N8dRRdM45lr4/0uehha5T/T7nHV8VbijF/Iu7dUcxybO/ycPRd9uBe/x5F583Xite86rpn47zl3Emr1EOc+zee9XmuiFflN/0+e24iVQyivH9PTHRM9vw3uf8Gz0k/RyHGWXF5EufV44nS9pVqIJJjcmUc7rhGJxSHHH/9vjIxHqOivMWc4WcQXgs8fa8DgD/Dy1yAm/FibvVFLdxLfIh494VMhwcOGAv5yYv9vT77hOhN6WgfxdtjI78oR9lLkv10tqf2kj3+jb+rOWrbUT9/w6tYS9ruOT4V8+5kz8TY3hlTXzf6S3+utl/BK69pm/aN5LGtvHm8I431SjTPOPdvfeLzKYZXoTFKedzfjr0jVSyicly2fP+k5+P4RyPHK8byKTSmrZznfM9KzsuV/cb4endcqxP2nHMhreDBCnukw/xj/ayaL/g76qnyAv0NYCx4mQtwM14cAdzBp182+DMs3GCL7K3oMe27El0jX3MPR4+H67GPKi9p29Ve2kP221lj+vXXX/90XuuKGtL5dN4qzpJzoONGiHlnFL8c56e8bO9WPS/6+s7x6brx2lHedyf2fM6ZpG1P5e4pcizOmr/O4XPeQeWxu701Eq6tHJNKo3je4xk5bzGmI41T+dvKt7aPHNNPifO908Pubbom/Ij95txIM/pvizj3LsQxr5QrqLEXRlgXAMAf8DIX4Ea82JcArib67egCLH6WhRtE5If4Ra/01Bd/+WHz1Rg6PkzPSuUhSdue8lJFHqf+fCY6v88tf+aY6PdPv0TRuatzxnNLo8S6O9krMc5PxXhPz8vj/tRvn6LrxXFGed8VvKoP5+ypvD1JzsXZMXC874xt5a+rfNUFxb/yfpRi9GScnDeNc3Six0b0lvIdxxil7SOO+QjZz0/M54ne1g17zXl6Kld303WuMVcr5Am2cX/rcD8GWAVe5gLciBdFLIjgauIC/NOFVzwHQPXln35/+ouL6FNpq7++2w/XIY9U/pG0TTkZ7Quw6Ksrfe6Y+Pz6mT0tvYuRP1fFWNL2K+exKopnjvkocfZ45It3RM/tOf4KXnlY27Tvm7g6V1vnHyFnT+HYOB5XeUDXcbzvRnOSPEfP86q5jkjOs6Tff//99zI+UXfHKl63AzF2T/h7L/KAxpp9IN2d4zOI89Cfn+rjHsfIuR8F+8x5k7r5bi+eZ9f5xTzh7XV5cu0GADW8zAW4ES/0Z12wwvPkL2q+9ZrPxeJtTba++Buxh8UHTimO0ftGHPes2DvZP5K2ab80Gmf30Hfoeo5JRte2dy0dp236nH5W8fVx0ogx7k72SIz5KPG2b/RzL9lrRz57Bbp+HlMc257xvcoV9fFjfO6Iia/1ZOwrX+3xU0cUZ80t18GrXPszVZz8We+/Al/3qvNfheIW4/Skx/eiGGdvSFfm9wxyrJ8eq8ejWMI+7LGR8ng2nleHXrCFxh57xGw5gn3M4GWAmeBlLsCN+CYIcAXxgejVlzRH8TlZvK9DfnA721NXofHFOtCf4+9wLZVvJG3r4J+reug7HLNX1/vtt9/+NrZKXWLcmcrfI8b8256Xe+gIaBxxXFHeJ5SLKk+Stuk4auQPcjwdw6txbkbIQ47BnXG4mqoOPu1X+oziUsXL5/X+b4nX6EqcwxkxuQuNNXvGcxhlHtnXn3r6CjyuUcbThVgvVqe62cLzmmEuIuZpljnBfuhvAGPBy1yAm/ACSDdCgLO5coGtRZvPzQJubpTf+CWJNNIXJXuJ9WDx4Hk+8kXlGUnbFPMO3tEY49jv9oqvH9cH2qZxVLHNcqzhfCp/63dpVG97nN94Qp+Ncx7JX0drQ8ePmqsnyJ6+28u6lq87CvJT5fmRfL+XnF/p7BzrXK9qUNs/jZ/P0TH2EY2/81w05iq/2v7UfGJMpTv71h48PsUNjpPzKz3ltW+Jc5mJOK+uuYHPGHHtBrAyvMwFuAkvflj4wJnkL22u8pevwQJuPrKHnOfRviT5hDwv+u/32C85tpJ908k7cR4e/xN4DL/88svf/hzlmMfxeV0RpW34/Hvs8xjbJ/2xF3tCYz2D6LGRfFXlpxL18GdiPp/0s3M3Wj3ZL46R1MFDT/crXUcx2qpJbdf+d+Nx7HX8DHg+0ugeeoXGHudiOa9Xk/09qj80To8RPqfyWrf66TruPcT8zNKrYR/O+11rCwDYhpe5ADfBzQ/OJi+mr/aWrzXjg8mK5C9H7vLRnXheP//889/+jH+PU3lF0raunon9U7rbF45pFVfpSGw19jwfCa8fo/K5flccO3hcY/S4zxxv9tYTsdA1papeYq1s1YLkfSui2ORYPInzqJ+jUvloNP9UNeFaeBLXYh5bHKP253F6/2hx/oZce0/n5luUGynOSXJOzyZeawRvv8Oe757nEah8doXHziaOe1Zm62uwD/obwDjwMhfgBuKCB+AMvJiS7nqwiT5mEdcX+SX6R+rwBclR/DDt+ogP13E7/Ii8IGWfSNqm2HX1S57XXd73dauYSvFv5H5D9rmkbfi9RnlRbHJe7vLFmXgOV+Q6180dftrKjeT8vMrRu89r36vPz4DmF+fvuD2NxuAxjY584rFad/h/i5xTaXQ/a2xSHnccv/c9GdsriXOfZY7Oq+dl2Y/fkH3eJWbubRo7nEPlsZH90GGMZzFjX4Nt6G8A48DLXIAb8CKURQ58ixdR1t1f3HjRziKuF/lLEefwbv/cieeZ5+h+7BjQl//AHsk+cZy0v7tfYu6lK+fzKp6Stms8cQw+9oxx6dx5vhJ+/wPnJ8ZGv2v7GfG/m5jrK4nXUbzOxnnJufH1vsnNVk1I3jcTea6jzc857lJv9kiO6V1xdW3E639bE0/huFV1Lnl/x7m9QnOKc5wJ5yzmUVKOj+Yy+qKbxzVWjx3OJfvLnhsJj3G0cV1JzMtK814V53q2+zNAN3iZC3ADKy7s4HziYlkPt0/hMeDn8dFCO39Z1u2LkU9413NjLb06bnYqf1gz+STPU38+G1/jVTzls1cx1T4feybZ75K2reZ7xVdzzjnS76/y0oGY16vJfvr2mq6deE5J267Kjcac52F5X1dyPPXnEdE4Rx7fKyrvXOGZV7VxRV08RZ5flmtyhjlH71zhmRFwvmIO45y38uieEI/tiGt2phodiewt++1p4rhWI859hFzAddDfAMaAl7kAN7Dqwg7OQYul+GXO04vk+LDNQm5M5JH8BeBsX/5tceRhOh4rzf4AqvznfmJp24weiTk+c36OYxVLX0vXPno9f/6KPGg82fPSCr7PeTrTC0/jnN6dx+ilI9dW3KucSNp2d250LY1/azza18UrcQ53x/EoGpvH2pVYA9aRWthCscl+HD2fn+IYan5G26rYWt7flTi3WfNqXuVS2zX37PfuMdHYPQ+4juwre+0pPJ4nx/Ak9r00e19bGfobwBjwMhfgYrjhwTeMujD2Awu+Hgd5Q/mwX0bzzF147kcepu1nf26mmNkX2RuS/TGjRzxvz/XbL1dexVHS9jO84/Pr55VEz1va9m2cRiHn39K2mfwe8/gE2Udb/nlVP87JKHlxHeRxSt43Gnm8I46xwn7oXpP2Rc7BkTy4RuI5JNfHrHier2JVxTfqaKxHIea74/iP8i6P0ixe93zgerKn7LM7iWNYndX62oo4vzOvTQBGh5e5ABfjxR2LGThKfDDQwng0vFjH289SfQGo31dcYLtmPqmXWG9SZ19XnrBW8EbunZ/M1zF8FUdd5+xY6ny+xh1oDtn7Ulf/O29xLp96oAOj5Ct6yGOpcmF1yYnmEucW5X1PkmPczesaq8c9A5Vf3vmkqpNuefwUx+pVfCoc0xizKO/vQJxHlzGfwe+///4PP//885/yFuPQPRau6RXqeBRiLd3to3hNWLevrQL9DeB5eJkLcDHc7OAo+YudURfBGqfHiL/vRfGOD0qWtq2cixiHT8lxHbX+Isq5FPuGpW3SCr7QHOPc9+Yuxq+KoaTtd9WXx3B3zrL3JW0bvQacuzx2bbs7hnfifI2Sn99+++2HHFjKRfd8aOyK9ZbXtO/O+Tn/VtfYdh//Fjk/kmtVc93y0Wxx2CLG5xsUL52rirfl/aMSxz7yOM8izlee14vduC1K2zvGRL7U+DU/uJfspas95Ot19OmVxDwQm7mgvwE8Dy9zAS7GixiAPcSFb4cvdTxeFnP3ID8o1vZIF5/cgb14xgOj4hlr8Yxzno29kP0g2RMr+SLG4V1NODZb8fM5lPcnYqhregxPoHlH/1uj1YFzGMeo35/I2d3E/DyJYl3lwdIL3lnzsVUnkvddQY73Vde5C89FP2dkyyPWKj0r4/mf7V/F0vUX42wp3t4/EnG8s9bCnt7l/PmYqBHz9gqPe8X6HoHso6u8Q563iTmYta+tCr4HeBZe5gJciBcwnR484DnePeCOiseNz68jfwEi6XcW0H8QHxbPJJ5XetrjlQ+sVf2wJ0eKi2P3Kn767Cgx9DifHk+Or6RtVZzvwHnMY9K2UXJ3B573E3l4VUvOQ/TNCrlxTcRYWN73Ldn7s8RVc/B8ZsT1UP2TsvqPHc7wRjdcK3fk3PH3NbM0Bu9/mlzjM9S3ifPSn/fMzbmLn7VGydkrPO6Z8tgR+SR75yx87tG9+CQz97WVob8BPAsvcwEuhAUe7CEvcrv5ReP32FnQnUf2haTf6Sc/4jhdFRv3cuuuHMgDlQ8kbZNWrbkclxiLGLd4TJSP92dGQ+PyOEdAns91IN1ZCzmXzuFqOA93eqOKv8ewlYfsl7u88jSKhea6FS/tO+rb2WPpWM1Uz1XNuFZyPqXZcvqKJ+f8qj4l1+iT+dC1PZ4nx3EGineM7zfz0WervGn7iHHy3DVmeB55JPvmG+L54D0xXiPWKxyD/gbwLLzMBbgQFnjwjriw1WJIC6OOeB4s6L5HHshfVnT2xtXc9TCt68S8XPUg6vxnD0j2wepeiDmX9P9bexU3qWPsPPbRxpxrQdK2s2vCOY3XkZzLFdG8HYcrY6Bzv4r/kRzEej3bIx1wbcQYxni8iknOwaze9xz1szPKjfIZc/Yqb5UvXvlhBjznUea5lTNL27X/7rpznKRRYnUExSvGdKsGPmUrZ9o+Urw8rrv9A9vE2rJnPuHbz69IjD1x649zCQD3w8tcgIvQop0bHLwiPoTOsKD1fFicf0b+4kM6+8uPGXGs7vJdfBA967pV7i088HdynH766ae3cescO89NP0dEsc31IH1bEznPkvO5Oo7LFf3Occ+xj/H/NAdX9M2OaN45FjEmMS7xuNn9r7l5rh1x7XgOR3NW+SL7YQbiHEdFOdM4qz4oabv231GPMV66bhfiuKWrY7WVL22XnsTjusMvcIzs0yNeiZ+FY8TYdepr8CP0N4Dn4GUuwEV4oXJkYQhroAWPF7EzLYDivFjU7UNxyl9A6Hf6xj6e7LO+tnVkDMp7lXtJ2yRq6O8oFvp/C+ZYRTlmM8VNc/H8Rkf+z37Wtr11oblu1cNMOf2G2HPOYivu0hWxj3PY641ZUWwVg634W6vEyXHoVO9V/XxTN/ZEPt8sHvCcOs1HY5W26tT5ucq3Om+83lXXOQONLcZJf74b5yvGzGPR9rtx/p6IBewj+2WPT44cCz/Sqa/BNvQ3gOfgZS7ARfhhhkUeROIDw4wLH8+PRd1r8hcejhkPM/uJD4JPEetZetXvnfOcd8m5J/9/4FgoLr/88ssP8VopZvZLl3lqnLkuJG2r5qBtuSacW/gzMZaforhWMZe07Y7YH+mbK6H/YOXnn3/+U2xijGaPk3ynucqDI1PVj35Xfs6snVwnUmcPeD6j5/cdmoeUPWB5/9l9NF5P5x8Njcnj01ivvo/swbnwuOL47oyhrztCTGCb7JUtj/i4Oz00K6P3NXiP8wcA98LLXICL4MYGkfzlz8wLVs+TRfmPZB9I+p0H/OOM9DDtsVgeU5Vvi7z/HcXBsdqKl/5JZf+/cVdC89X8FZduqA5yPvW7XlpV23U8NVHjHuPecoRYXzHmjrv3300czyfzmgnn11KN5G2Wts8aL89xxD5Q1ZDr50oqH3TMf+exv8L1WPVXz1c6wyc6TzzvCOS6GGVcGefB47Q09qvH7PjoJ4xP9kn0h/zu7XAOMd5X1yKcj/vb1WshAPgzvMwFuAAvSli0g4gLf3li9sVOnC8Lu+e+AJyZ+OA3Eq/+KWDlnLz/gWJQ1cWWVn+4dxy6ekfj3qoN/c1rauI1n/Q711dVY+5DI8Q9zm3F/ug8xRhkdIzitJVL7Zslbp7jKPPJ+Xky5rpmrBfJ20bH4+4w1m9xTmKeorz/U//Ec+vPTxJrQ3/u0oecA489zuGb3Gyh8/n80Ifskegb/YTziLEmtr2gvwE8Ay9zAS6AhR6YuDhdaZHjea+8sNPiVvN3/h2PLl92jIzjOUKPdZ5zri29xFo955p/VQ+W46dj4j+r7G2r47jpZzeqvOd/Slb7WS9t4zi9i9G7Ghu1ljSuONZVvBBzdSQ/io8UY2Z5X1fsBcXjSapaGqmGqvyPmvc41hVxTcZcRXn/EWLPfMKX8fqeQ1de5Ufbz4qt+8koPQT2seUPOJ8Y55Hut/Ae6gLgfniZC3ABvqGxCFkX5T5+EaQF6mp4/qvNXfONuZd4KDkPP+wppk+R6zvKuY4PpdJKdaD5v4uR4ySJleP1DsXIcemAxqv85fw75ybnXNK2eMzqOEZVPShOUlVnsca6EP1QzXcW4jy/nas+m88Xz/vNuZ/C47/bu69qadQ6qnI/Ws5HHddTuC5jzqK8fw/Rr3fEN9dIt3vMO17lRtu/mavjpp/Qj8oXd9Tcitzd1+B7nLOZ7gcAo8PLXIAL8AIE1iQu+Gd70D2C5u04zB4DzS8+fKye+ytxfO98wFMeqxxL2raVa22L/WDWh9JX8ZFijHKc8ue2Yrk6jtHIscm53JtP1UWsE2vWetlLjIlxjHOcJcd6ZI+8I/tgJg/k+thTG0fQuRSvLW9oXwdvePz6eQc5L752h1gZ5baqHelJPKa7ctkN12zOXdS7PMbPvjruW/IYO9XHJzjucc6Wth+dv47356Ef9oJ6WfaFfodziTEmvuPj/sa9HuA+eJkLcDJefLDwWJP4hRAe+PPDz4xo8Rpz7rnO/iXHU9zZX53bnN+Y47159rit7r3Bc69iIzlu72KU47I3niui2Di2I7HlA+f/KNkTkrZ1r5lP8Pz1T7VXMZY+jfPoRB/MkPs4n7ty5rrxdaO8b0Tu6HVn961R0NhzzjWnp3LtMYzqtdFw/nIOLecyxzMen/d9S64V/Xk1qrqyqnxs4Th27jGrEvMtnHdvj/vgHGJ8ie34OFcAcA+8zAU4GS88WHSsRX7Y5UHt7zgus9TE1kO95kneryPG/CpyHUedkd/smy41oXm/i43jsydG+Vz6M7zHMdsT46up/GAPnIFqo+qzXWrmGxRDvcDNc5cU4zPjPDJd+2Uk18lTc9B1czzjmEaLrWN2ts9zPqRZ66nK95159vVH81Yn5EvFr8qlJO96fzxG288gn3PGOjmKc+K4RDkPW+izOu6s/MA9ON9Vbp3z7AM4hxhb6mZslB/lifsEwD3wMhfgZLzggHXIC00WMX/GD69S59ho7F6oku/7cczPfEhW7qq8Stp2RX41/ni9ER/6X8VFirE5Gh/65ec4dorbE2x54uo8Rs9Y2jZi7XyKa+lVfK+M8cjE/HfJec7l1TVyBI1DcdzymvY9PVZd3+P5lpyLONdRcnIlsX6sq+soXhPO41XtSr/88ss//Pzzz3/7/dM855q52i9dcT4cpyhtz3HT8d4PPYj5fYXz7WOlnH/4jFg3kn6H8XCezli3AcB7eJkLcCLcxNaDh9197H0YGhHVdf7iRL/zMHEfZ/pHedP5ck4l5/WO3MY5SU/2D8+5iomk7d/GJp//yfl2xvH7NA+fUHnDfrgTeSbXjdTVS45rjq2lv517d4xHJeb9Ce8dIXt0dH9qfHnMcexPjF/59Rg+xfUV5zO6d66kyvNV+Y3nh+uQlxXjrXuIdNTz8Vwr18snbOUi1pn3E9cexBzuQcf5M0c/C6+JsSWm46Ge5vwAwPXwMhfgRLzIYIExP3HBIvFQ9h4/wOrn6Cif8aHB0jZyfT8x/p+gnMl31Zcs2vZkTrPP7rh/2N9VPCTHSsedEZt4nafj3R3H8mqfKEcxb6PlL9eNpG131M83bMVV0vb4zyvDn8mxGy3XeXz6czdcQ55D1N315Vge6Tc6VmOMeZD0+5HzzE6V47Ny63N39H93tvxvabv2V7WgbfHYs/ywKlt5+PXXX//yk/oYH/cy6SjxsxY19T0xrsRzPNzzWG8BXA8vcwFOxDcwFhdzExeSPIztJ35RMOoiT+PKD9/6nUXpc7jejvRV5avKpfM5Wk5jT5HOvodorjpnFQ8pxuTMuOhc8Tpnz2tFYkyvQOfPPhmtXiLyVK4faRSvKW5VTKVYd8b7qJVtYr5HiVMc08j1cgTNQfPa8q72XTlPndvXeoeOzeOcJQ9XEn1rfVtTZ50Hvqeq3Sjt139ApH+eOW6jbs5lq49qO3UyLjFPn6LPxpx/ez4Ycw0If3Bk3QYA38HLXIAT8cIC5iR/WcQC8jhxAT4SfBE4Jn4o2OMXHSt/VV+YOJej5zPWh/Rpj3kVC0nbr/S3zhuvfeW1VsSxPSumOV9d85brR9K2T+voUxzPVzGt4urx3z3ejuRcPxUz5XGEcdyB5pbjHud9xdx9/q0+5FqLY+nWt0agyu0nOfU5jn4OriP3KP3N0OreJGm7ckf9XIfiG/+/xpa2UzfjoFw4L2fg8+Wcw2fkvkbPGoOYFwC4Fl7mApyEF2l6EIL5iIsTvij6Dn+J8HStKIceS8wtD1fj4L66lRPnMOfRuexap5733nlovz5TxcHnuCsecezSVu7gc5RH5/UbdJ7smbt8ciXyXPahdKUXHcscT2lPTON4YT8xblfmN5NrZ4a6OYJiHWMf5X1n4BjH2ObYS6vF/yoUw5xXxXZPPuPnYDxifvS3cWMN/fTTT3/7c5Q+I1Fb56J4Kr56qRvzYu2tObgG50c6myrf5PpzYh8jjmPgnHDfALgWXuYCnIQXZywk5iMuvLVAge+ID0lPLPR0zbj4d15ZdI5FrDujHFX5k7RtpjzG+Uvx3qI56vcqDtITsch5mSkXI+I4H41xzpM1a75yHUnaFuvpU17F8mg8/dkzxrUaOcdXxzBfb8a6OYLmr5hs1YL2fRojfc7n0Z/zNY7WGewn+1x6VVt7joFnyTnN9aP9Vd4t76fmvscxNVuxdw+F+3Aerox7zrV+J8+fEWNJDJ8nrtsA4Dp4mQtwEl5E8IAzD8pl/OKIBeJ5xIX3XeR8SvmLDBgH50h/g0B+ybmTnL+ZcxhrZUuKw5NezmOkpq7H9aCfe1BO/BnrSc/cjTxa1ZK27UWxquIoaZvO9Uk8Pa4jY4Efifm9IpY59/oz/IhiH3MR5X17Uczz3xr8ptbgOIp17nk5/vrduYExyf3LeXyF9ju3lbwfjuNcVH1sK+7ufXAdMe53kPPs3MMxYhyJ37OopzkXAHAdvMwFOAFuWvMRF4V6eKoetuA7/CCrn1dRfXlBPsdHL3CVq+r/K7VC/jQ/9aDsXUtxGSEOub70Z7gHxd5x3yLnxzkawTtPEu/vlrZVXwA5hjmOkuP4TSzjWOB7cm7P8nnM/+r1cwTXVcyJ5X0Vrrt4vF7qEvfnqHKZt23lE54l5kh19fvvv//td2lvXeV8Z3k/vEcxV8yUj1dsxVyf03Z64rk4vnf7OOfYeYf9xBi+qyu4Fq/f6E8A18HLXIAT8OKBRdcceAFCTq/FD7JXxFnnjnmU9DuLynGpcua8zZ47zU01UM0/xsAvua0n+5OuHcdHbd2P/RJjrz9L2Uvk6Efk4ehjK///BKPOjqPP+2Qtz0b2/zexzf4gT5+jvCh+VW1pm+rul19++WHfr7/++rc/wxjkupCUQxgL1VzMUe5f3/ZJfabyguX9UOM47V1TvIq3tp+5NlkRx/ZJz+b86vcnx9ONM9d/8Dm+97AuALgOXuYCnIAXXiwYepMXgDwUXY8Xe2fFO+dQ0u/kcjyUkypfK+TN834191fz9z3HuvPek3PGfe85lAvlwF7JftLvys+Wj+APFB+9SMr/nKt05d+Cdx3r/HA+sU8ezWGup6s8sDLKT8xRlOpONWmcC3IwFrFGLOUUnuVI/4o1+E3udP5XNS15P/zBN33tVay1nV55nBi/p8m5db5hHzF+xO1+1H8cfwC4Bl7mApwAN6v+xEXfq4deOB8/zOrnJyhXPgc5HBvnKufLOYt/83QmXs1b8r4jnlXPiue742E1Xu/oeOF8FP9V/ynyb3lVk1VMz66vuOYgV9cR47w3j/Ez1NI1uP5ibrakfHhtoM/AODhHyktVa3vqDc6lysM74mfOyplqXOfK47HsmbOu1xHFyLH4hldx1nbuYe9x/EbzY86rfh9tjKMSY0fM7sdrPPoPwDXwMhfgS7xQ4AuGvnixwWLvOT6Jf/VloH5n0TgWVZ6cq5wv7+teh55zNW9J2zXHM7zqe5B1Rew0zquvAfupasr/P8kzPDUrjltVl9qWYyef52O17Qz/+7zU0j0ozjGHFbmuyM355BhLufb0Z8U+H2dpX65VuB/XlPJknLuYL+2nlq4n11bMyx5i3vTZs2vsXV3bJ6t5xfM/K95VDVorxncPMV6jknNKHvcR43a0J8J3uNcTd4Br4GUuwJd4kcCiqh964PECTzr7wRX2E3PxLg+qtfxlgH4nf2OgPEg5R86T8lflKj5wdcPzreYsvZr3WcT4Sfr9W3Ie9ecr5wDbKO7KafZY/J3c/Ej2sKVte/3s2OdzfFrT8VxwHzmH+l1kj+z1Bewjx/donJWnnDvL++B+Yg4qqpyRq2uIsf62f8VavTJfGqPOX/UGSdu1f/Ze7Pnr59k4xjm2krZfmd9OOAcd4pHzSQ7fozqIMZu9p4xCjDsAnA8vcwG+xAtAFga9iIvhKx6g4DivHmhVX94f80bdjYHzk3MU8/QuVz6+w4Ppq/lK2q553O3PMx/yzzwXfI69FnPhmjLeT47+iFcVM8dNMfqmLvX5Kh9HYu/Pka9nUNxj7vxncnIue3rXEfQ5naP6Z9Al5Y783YNraE+8dUxVZ9/0YfiDXGNn+d/5PfOc79BcKq9Y2j6jb9zXNL8rcXxzXCVtvyvPoxFj0omcy1Xzd4QreiW8xjGfrW8DjAAvcwG+xIsC6IEWEyzmxiXnJedL0u8sCp+nyo3zczRHfigdtR4912q+krZr7KP40vG0jsQ151V/hnt5VVuVx7Rt5Vw5Xq9iVsXtG3S+XGfSuz7gzxypSTif+P9nl/SCEL7HdZFr0XX4LT6fzrV1LUnb3tUifIZ7mHQEfS5+VvI2OE6M5Vn1FYnnfyJHr+pbmqnGPcc757IVW21/It9PEefdEY075w+2ifEiVtfjHqOfAHAuvMwF+AIvCFgM9CAu4LSo4Eue8VBOnKMs5Y+cPYdiL1UP/9r2aX5iXY6C51nNVfpmvndytOfF46XR5zcb9l3MwZ68CX9ulZxVsbL2xuwsVDe5djQGbYvEY+A5om/0/5r2n3O+YD/f9K4j+Br6manq0PI++J4Y00+p8kR+9qGauituMU9Vzd2JxiLlPhPHp/133vvP4lVfu4OtuDrms6K5eZ7d8Vxi7qAmxoo4XYvvV0/1NoCZ4WUuwBd4McBCYHziwo0FxZjc9WUg7Mc5yXmJufk2Pz73k3301Twlbdf4Onox9j6pirPn/+oYuIYce0vbjvhNx/pzM6L5vYrV0XhdRa43yb0j/g73E3MQ8xBzNoqPOqA4KXa5Jq+MoXOoa7xC44p5jfI+OI5j+i7+e6lyRG5q5P1Ya1fWWSRf945r7sF1HMcW5f2jjPcVGqPGfFZdfcNWTB3PWXDMpZlQjnLe4EdinO7qpavifkKMAc6Fl7kAX+BFAIyLFg7xoYRF7XjkHEn+2zLk636qfFhnP/DEh6m70Pg9x1fz1NjOnOvTxFhLrq24/ez8wjb2YMzJt/H3eWbJoeYhf1Z16liNOleNO9ecxw33Io9ED1V1pt9jntwf4UdyPKUqplfha++9no571Ue0766xd8dxO7s+dD4p5sbbYHv9didxDCPmRWPKcYry/lFr/Whfu4OtmHp7Zzyv7vPYIudt1nl+S1wXEKNrcIz1EwDOg5e5AB+ixbZv/jAmcSGrBQRf1oyDchEX0M6RcqZ9sb7I27U43jkfkrZdWTu+zpUPUHF+1Rwlbbf3Zkbzi31R/59I//nKHMAf2IeOuXVWjfnc+tmVV7V6VpzuppqL6o2au57Y76R3/onHk58/U/WvJ2rSOdK1P0Gfz76wvA9+xDG7Mj7yUpWbVXOSa+5Tz59FzM3oOdH4Ki9Z3j8KzvPTOd5iK54a70hx3EOcx+zknHXL1R3EGBGf89F9TLEdtbcBdIWXuQAf4hs/N/0x8UMRORqLI18GusZY/J2P85BzEfNR5eRMruqhHvvW/KS75jgq8SWu9Ntvv/11D1yB/Rhjbg+eic7n83eiio+kbVfE6W7ifNz3olijnE/21JEY5xytnJ+qNu3jpzizz2keOd+W98Gfa+IuqryslI84/5Hug3lcXdC4K09Z3v8UZ/a1q9mK5dP3hr14vB3GehY5XyvNfQ8xPsTmfLyOHOU+BjADvMwF+BDflLjhj0X+4olFwxjkvEj6/V1+qLPzqHJg7cnF2fja315Xn/fc3s3v7jmOhuaf4xJ/p87Ow56M8ZXsxavwNUf2usb2Kj7y4cjjP4Lm4nlFvD1K26jB74m+0p8/9VLM0Wp5qerzm1iejcd25nh0LuU5z9tz175R5n83jsMTdVDlZOZcaF5xvk/E/B0aY8xHx1worlKcR5T338kVfe1qtuLonjkaHqvGtxpVrkbM0VPE2KzojytxbyOuAOfBy1yAD/HNHsYhL8JmfdDvQv5Cwnk58uAQvzAgn8dQvKocSNr2ZI24Vj95iIzzquYmeW5PzW80HK8cH6EcxH2f5AT+To51jvfV6Dq+5kg4Ljk2MT53xegu3OekrbnpmHicRR0eJ8fxjBhecc5RcY3G+ep3zXm02tR4PL6r0Lxz/i3vWwHH4MpY76HKx2x5iPPzfXFkYr/onAfF2V7yfLK8/0ru6GtXshVDzUfbR/Czx3R1LkemytPK8Yi4Bq3Re3AXuvc2gBHhZS7AB3gBxA1pHGZ5oJwBLdhiPlwrny6Iqbf9OPY5/jEHn+bhLOID5B485q15SaPMbURivKWt/rj3OPgR+zPGT7Iv78ZjeboetuIiPRWbO/Hc99ZSrkF/llp8TfbZFd6KuZktH1WddqhPj/WOcboOY4ws75uVOM9RqHLROQfycNe5xFx0zkFE+dBc4tyi1B+9/0yiD7rzKn7a/sT9xeM5O29dqXJEbP4gxoWYnIPXmU/UPsCM8DIX4AN8g+fm/jz5AZgFwnMo9ld9IejzUnM/UsXdOiv+Z+KxbeVS4/Wc3s1rtLmNhGMYY7YH398sam6bHGPJ3nwS53Bvzs/CNZlj4rGMEJu7iHV0FH0216FELf5IjNPV/rrzWlfzqk67zMvjv3u8up68sBU/7evsjYg9r58jEmvSGnWsFbkOO9VfJOahU/z38qrmJdf9GXP3NWbpIcKxyXGTtP2Oucbrw5+p8qPfVyfGhHh8j3ubfgLA9/AyF+ADfGOfaaHdkbjIYmHwDKoBL85iLs6uDZ3P51+97jT/Ku6Stl0R/7NwzWqMJs6nmpOP93HwntgbpaNxy5/nIfbv2KsxPvpdMRrFnxqHx3b1mHR+zb2q3ZXr1jH4tnZyLfqc3563O/JU9Nxd8XjqumeRxy+5TruhMXv8T+J6jDG1tL1jbEWc0+hUOfC2UanG2xnXo9S1p+xFc1O+ci+N89f+T2LgOD7d167Cscsxkz6N2R6cq+51diWKTc7N6vGK8cA73zF7bwO4G17mAnyAb+rwDFoMxAcoFlf3k3Mg6ferHsKEF9QrLgId7xzzGPcrY38WHvNvv/22OR+p05xGwj5xHL/tjfEh9ozzdUVx1dyzX+3TEfFYr8iZfZbjMXpM7sJ1c2bsdS6fN+qK/I5M7nFP+S3mYvQc5JhZM9Sq5zLKPLbqVPK+LsRxd6KK/0hzqHrYTMS5dfPOpyinmmvVZyVt1/69fcqfmx3HLcbK0vaz/BOvAe9x7HM+VkU+jbHYW8fwI8QQ4Dx4mQtwEC9uVl7UPElcXOrhiMXAvSj++WH1zjz42ivUn2KaY2118r7GKf3888+bc/F8usxpRK7sjav2Xc1T8/XcPX/FY/QYaHwe7xlUsfD5pVU88Y5YK1cRr2FpmzQzed5Pz3e08WS2+tdMter56edoKM7yRM6BxzuaXyL29ohx3UuuT+npmOcxzXrfjPN8OuZP8Kr2Jdf/Vv79uVn9UeGY5VhJ2v6Nj+J5YD9VPlaOYaxnvPQZjiHxA/geXuYCHMQLG25C9+PYS1oMwD3oASsuYB3/Jx4ydU2PYbaHXM2nirWkbU/F/Civ5pHn0mE+o5NjfdW9KfbfK6/zNIqn5pb9a892wnP4ZNz6TPZWjIVi1C0ed+AY3VEfuoYUc3PXte8k+1B/HomYg6dj/6pmZ6xXzclzHJ2tepW0faT8xHF1R3PINXF3vHNdzhDXd2iOK833FZq/VPVmSdu13550X9P2FdH8t+LlWO5Fx/pz8BmOYc7DisRY4KnjrN7bAM6El7kAB/ENHO5jxYfgEchxl/S7tj+JF9IzLAQd4xznGOun4/0Oj7Gag+fx008//eXP+ueV4TxizO2Xq4kPstIs/bjy8F0xvQqN3fPYg2OQ4xBj0TkeV+PaeKImcl16HN3rM3rRHhyRHP+74+7ajWMYOV5n4nl3mqtrM+bL8r6n8LieHMMVOK53xzpec5WaNHnu8Af2Xe7ZVozbSn7ZYitWjuMrfCxx/J7oS+td/GckxmHF+X+LY0dNAnwHL3MBDqCbjm4+PJDcR1wwrfYQ/ASKr2KeH5pGi73H13ERrTjm+FodPK7xvZuD5yHFGoZzUFxjzO+ug5zXjnUotnzcoQ734jltzWcrBtJMcbiaUfqcxhHHYnWrUfmu4/hj7K8es2Kka+T6Xa1u7RXNuyNbefSc7vR+9O/MxHlaZ8dZeY05vTOPI0Ec3qOYVJ60vH+lvr6F4lD1Sscoot+9D87Dcc3xX4kYA/kR9uP6pZ8BfAcvcwEOwKLwXnj4u4/8sC3p91EXWhqXxzn6YlDjq+IradvIcRavxp/nUM3Dx1HD35Pz8LR34sNspxxXfn46llfheeqn0Byr+fuYWeNwNY7hSDWgseQ8a9vIdZq92dGPim+M+dnjr+p35brVvB2HGXCNxvxa2n5lnuN1VqCK8xlz797DriDGehV/fYri8+uvv/4tXlnaTwz/iFO+Fzo+cTtcg+Ic466Yr+TLvBajJvfhNZtiBwCfw8tcgAP4hs3N+lry4oiH4OvIsZb0e4eY+yFixMWg45pjG+M7aow9tmrsHv/eOThH9MzvcSytkWI68tjMlqft5VnR3OJc49y9bU8twzb2v2I5IsptrlFptDrNY+zsSY091tsZsdY5cg27flfHcZktFsp5rgvL+87C1xm1j11JFedP4ludA/5OjA+xeY9jpRe72VtR2rd6PB2DHBv1s9VjczU57s7FKsT547V9OF6sXwE+h5e5AAfwjQeuIy6I+JLqGhTTGGdL27rF21/gjbB4Vuw8nqyRvaxxvRu7x39kDjrW54DPybnRn0dENRjHOUJNisrb9vPMeN557qvM/y7ivbRDTHOdStr2ZL3mGh2ld5xB9IfmeJQcG5+H+v0zisenMe6C5ljVr+f9bd34XDPV3yfEmt0bk1yn1Og2Mb4z1+sZ2FPZS4ph5VPL+1cl1mKUtq8cl6vJnlzJh3HueOw9W70NAPbDy1yAnfgmzYPHNeQHYRZC55NjbD93Xkhp7J7L3fPQ9aqYSto2amw1JtVXNe489m/G755JLX+OY2iN6KdMHvMT+VecKn+PWpNnsTXvX3755W8/4Vwc7259Tl7Jtep53FUj2a+z1ucnPbGq5VnjcxaO0yoxko+qGpaO1rHPs8ebq1DFtopPPo4afY9iRMze4zip92+hY+TByq+W969CnncVG8V0pZjcSY63czA7cd6vahb29TYAeA0vcwF24hv0CouRu+Gh7loUTy2WYoz1+yxxdm3esSB0LHM8Y0xHi6vGoxhVY/a4zx57fKCB4ygPMV8d7zvRA3fNIcdNsrdnxDWb5+x5x7n7mFlj8QSz9DnNI3tIv19Zs0/0h6eJc67mW9Wy80DdvsexW8FLGc05+ivK+7aIn4MfUXxyXWrb77///qftr2IMNdF7xK/G8dl7D9BximWMbZTvKbPG2/Ou5ud5b8UEziXH2vGfGdVfnDNrt22IEcB38DIXYCfccK4hLvS0mIZzkE/zlw8zP6x4rlfMr4qlpe2j9QSNR3F4Nearx+1rzf7QdgW5J47mryPEuVzlh6367B67LTzfV3Ou5u1c6Bg4B8d9lj4n3+Sa9fzOqiX71+e2Z1chx9exzfW8WlzOQPFy7FZGcZCvsqccG+2LeF/eDn9G8ZFiPKWff/6ZWv2CGFM8+COu40/7mvtB5V2f1/u7E+f4jq2YOB7U9HnkODv2M+O69XzhRxwjag3gM3iZC7AD3WR8Q4ZzUExZ6JxPjquk32dfKMUa/Xau+nwVR0nbRounxqL6qcb7xJg1Fl8X9pM9N1NPtCfOnFtVo3f6/E6quR6ds47xZ+B77OmZ6jSieeW6lde+mW8836y1upfffvvtT7F1TBSjlePyLe6TxPDvVLVsOV76Ce+RrxyzrG964+pEfxLHP+O121k1qvMpxls+1nbt75gH++jo2D3fHAufi/vJOeQYH81TN+J8Z5/rJ5zd2wBWg5e5ADvwzZgb8TnExY1u4CySv0cxzA9mq8U2+uooipM+n2MoOY6jxPLVWD3eJ3PvcdAv9xNz+WTurubb3q/jY6y+OdfIaC6v5vrpfH0+avM7oo9XIM7X0ra9HtRx+bOrslXXq8flLBxb/YQfkceqepa8D2pi3erPquUqlsTwM/J9Yu/9ZQXsvStiYh9Hf0dpu/aPno9Yi9+g88RzRXWIQwdyfPX7rMS5zjzPT3FsqCuA4/AyF2AHvhFzE/4eFjXnoYVPfvjyFwyr4njo5zscvxzD0eKocahWqnF6rKOMl155DOUs5nKFuNkjR+bsWo2fG6lGz+BVnXuu385Xn/f54HOcl9X6nOab6/dVHOS36OfZanYvOQ4xHvx/N8/FPU6C1/z6669/iZP+mWDHzJIn8eIf5J5XxUXbquOqY+E19MMfcUz082rUQxX3mIco94bR7uUe35mecSzi/ON1RotBN3Jsz8zdSMR1ieoH3/wd9xliAnAcXuYC7MA3YPgc3aTjg8GsC7Y7yLGUWBz+gWLgmOR46PcqdpK2jRJDjUH1UY1ztLFG4kMZvCb7cMR8Xs27h/gcI0m/67hZYuU55nl6rlfM09dazW9nYd9mv65Grl/HxHHJ+1eM11YPq2ovxuuq2l8Fetx7ot+MtuW6tbR9tXjm+t1bl1UMtQ32E2NI7P7womIhD96N4i/FWojSdu1/sj/YL1d6RfPzdbK0/cprz06O66yxjDWEX/7gyd4G0B1e5gK8wQsMbjKfExdpiuOTC/7OKG5xIUg8a6Lf/PCV4yY5dk/H79UYPc4OefZ4NRfYJvpz9XjZ+46F/j+S2pZroYP/91LNz3O8Y546v68Hx4hehT9QTHJPi1rNZ6/q+11t5zjqdzgOPe497zz2qq69b2by3D+5L1fxmz1uZxLjR9zG+Y9UlAupus9J3n/nOH3tu66p62iOcd6W5w/HyTGdMY5xjvjkDxwPADgGL3MB3uCbLjfcz4iLfWJ4HD0w5Acm/f70w9zIKDY//fTTn2I2Uuyc05zXOMZuOY4PJ1DjvMc8wx/oJa7jEuMjX3WqgwqNP+c+zlG6e46+fvfY3o3jxlqmpvrnWhWrFeJV1fintR3vp3jtMxw/+BH7S/7cgzysz2R/+xwzeTTX8Rlz0zkc83jemeJ2FTFun/bTWdDcHYeRsJer/iB5/1W5s0f08wle9UfPHY7hnMY4zkScH/7gX1MB+BRe5gK8gRvMZ/ihwyJ+x1C88oOBfieOP6KYVPGyfvnll0fj5rFtjc/7OufWc+GhpCY/mHbO9VkoBorLVl1IXf30quZd6096wOPST9iHa5iY/Ujub4pR3iZ1rect3MPyPF3j35DPO1vsrsY97sk+Oyrfekqfq3zvc3aNeZzTGTWcqeLmbfAa17NjtiLyo2MwMpXPo7z/jPqK1xkFjSn61fK8YT8xv47hLMS5yS8r4962ehwAjsLLXIA3+EYL+8kLlK4P9k+g2OWHAGL4I4pHFSvHS/vi3/a7E41NY6jGJnl8s+TU9a6f8GfsBeeeGP0YE0m/a7ukGHWMWTUvy/MbBY3FY4P3uMdJI+XxabLnK5/H2Fna1qWuK/K8patqPMavc8zuRrlwXuDv2E9neUnniR6N8r7RyfV8x5irmHWI1ZPEmK0aK/v0invNVShXld8t7/+EeI4R0bjyWsHjHXXMI6JY5fjNQL73dKrrs3EMAGA/vMwFeIEXDyy49vHEA/EM5LhJ+n3lRV2F45RjFeOVY+Zj9fMqXo3L11YtzJhPzcnzhD/j+4c9MGP+96K5Kx65Rl7FJcZPGu1+onFLVd1r2+g597hHHuMoOFajefBJcn2+85GOz5+RusRU89NYc73fUec5bl1i9jSOFz3uD6KPrmCrRiRtG9G3cax31HIm17ZEfW8T47VinORPzV1e7YryVvne8v53xHN0QOOteuPe+cKP/XKWuMV5reoF1wbrNYD98DIX4AW+ua56Yz2CHzAsbsbvUYzywv6JLxNGpoqR47Q3Vv7MWbWjub8AAFl7SURBVHXsMVXjkrRd11ohj/TIH8meXTk2Vf3q9yO1YY9ZT8ZT467mJHleR+b2JBqnxw3bRP/BOf0t17TP82Rtb1HVu2v9br6N+2o4XvoJ9/8tNte0rxul7U/eK/O47orJFlWsvA3+TIzTarXtdZs0A5pP5f2orTqI+7uxNeetucLfsWdy3LoT57SiB9zbWK8B7IeXuQAv8E0VXhMXINyEX1MtQiVt077VUQwkfwkXpW2fxEnH+xyfxNjjqcYkfTqu7kQfwx9Ej+jPq3lCuF4chzPikXumfr+LV/XvOXXNs+fRdfx34Bjd6bkRcR04Ht/Us1FMc21LI8Q6z1c6Y87fEuM1wnhGRrFxnFbHvnkqFlu1LnnfHeS6HrGGqjjdFZ8u5Dyu1Ac97xnnrDm5Hzi3UZq79jkGM9TF1nw9V6ip4tY9XnE+yv9qeO4AsA9e5gJsoAUlN5XX5IcpFp3b5FhJ+n3Gh7GjODY5PjFG38bJ59bPd7waj88hr6+eO8eDuv/z/WLVmLhuYhz0+5l1Eh90paviXM3FOntOT+J4ak7wI47PivUcuaPu8jV8nTtjf0cPO4M8zjtj1A3HaZae/SkjeUW50DhyrUnadtUYdd54rdE9kccrjZC/kYgxWiU28q3mq1qZHfeKqhYcA++fga25XtkXu1PFrHOsXN/W6PepM/GaYKU5A3wDL3MBNvDCgMVTTVw46ebLjbdGcfHihHj9nSoujs1V8fE1ck17LNV4JG3XZ1bPWYT++AfZx1d5d1Ty/O+Kw9n3H33+1Vyuns9TaE6eJ/yZ6LFVyTVxRx0o7jH21pX3mqr2O9R8jNOV8emMY6R8ropjMKpHNC6PMUvbv63DXN+jxmGLKj7eBmv2Qc93Nap7dZT2zVIbnsfWHOHPVPHqHKfO96xPUX1rvpo7ALyHl7kAG/gmyoLpR+Jiifj8SPWw4cX3t19KdEXz3noIuys2Or+v+csvv5RjkVbP1R4cq5XrX3OPvlnJL1Ut6/c7Y5Djf9SLnkPVBzyXFXLq+a9cyxX2wqpxifV1d22bXOOStp2RE9d/PLd+17k71X2O0RmxmQnl0rFZkeiPDmi82dOW9x0hnuupPnYWVWw+icmM5DzPju9dnf38CTHPQvPXtnwvtzre0ys0hzj32eZ3JlWs9HtH4jy6zuEoni8AvIeXuQAbcDP5ES0W44J5lYXFXnJ8JP2+6iLb8cgxiXG5Oja+xtY4PBZ5+eqxzIIfLlatf/sp+mcF8rzj/J+sHfvReuXLrTlIT8/jKTRnzx/+YOUeZz9YI8RAY3BOvh1b1QNmqP0YnxFyNhLO94r9vbMnlK+q7iXl9NWccp3PVhNVXGab41GU8xiPmevdc5XHV8K53fK6e0as/Sj3jc7e0Pilan7d53YmVZz0ezfiHDqO/yiuXXwM8B5e5gIU+Ma52iL5FXExobhwk/07ikV+cFg1RlUsHI87YqLzewzVOKJ+++23v34K9hL7wIqs2Aermh5t7hpLzI3+7O3V+CVtWyWH73B8iMW6PS7Xyai1ofzEcUra5pqv2OoB+sxMno/e9fzgj/wrHvLAStgPs8xb86nqWIq1HI/Rn2eq8UyueWn1uo/5nzkWnuPM/o7Y60dyqmOlrb6h7drfNYaeXzW3zvM6kyr/2taJmOPZ72mam+cJAK/hZS5AgW+a3W72VxEXQcTkD7TYyItD/b5afBSHKhaOh3TlojNevxqDx+Hj/Bnv8zbYh+O2os+jv2aff56v5VoaFeUljzkq9wL4A8XD8Vkde2WlHpfrpkN9aIxVvce86Zjcx0bvYWcQ47KSj1/heMye+8jMHtCcos8rreT9Kh7etiIxFrPGwPe2VXqa8/nNfF0TeV1geX/HmGrMGvvWvFa691VUsdG2TkTfdhv7XuRTzxEAXsPLXIAC30RWX/jEGyrx+APFYMUvByOOQfUw5FhcFQ+fe+v6e8fgRb2OhX3EB6GViPO2t2bFteX5dpmzx53Hbulv4c+ctzNwrFaO02r3hVzvXeetvG3VvqX9K3l7pfvWHuyPVeLg/Ovn7Pz+++//8PPPP//N71HK+woxiMTat1aLgYhxmHH+6mWamzw+O87l2XnU+STfH7K8v9t9Q+PVuF/NaVWquHSKRxz/rHlcbb0G8Cm8zAUo8E1yZeJiYYUHhXdoQZEX+/p9lYVGNf874qDz+trvrn90DD7frIvhs3G8V4mXfTf7vPM8LdfVqGyN22PXC9wV8ncWjpV+rkhc84zs+7OItaE/d5+zxv/LL7/8bU5Ryu0KOc3kHrlyD1QsFIMV+lvsZbMT5yopz9oWfR+1Ui/IsfH8V8J1L81wn8t4bjN7Ovr4anStqm4s7+8Ub411a06ez4pUMekSizj2GfPnvr3Ceg3gG3iZC5DwDXLGm+MedAPly58/yLGQZnwYrNAcq/k7BlfFIV63urav7+O+QZ/3Ob891+ys1hej967y+tNoTrnGRp6rxlWN2ePeGru9a618T3uFYucYrYh9Nbs/ZqqHV/0g/8cc3r5i/cecKwar4hhU94mZ8Dxn9nqu/S1fKwbR/1HeNztVDFaZu4lemWnentfMuXwyb64TjyHL+7ugvqnxxnroOpez0JyrWIxOHPfW/a8rqz+PAuyFl7kACd8cV1zQxJunFgazf+GxRf6SYJV4eN557nH+Z8fA59y67pXXFq53XQNq4gPD7Mhjnqs0233AtRbnqN81zyvq61s83jxmj1v79447+liaLbdn4DiP6IUrWaHHuZY8T9dPR/JcXs1H23LtS6P2vKug//29v+nnrDjPK8zR89xbx1u9wOeZvSaq+a8wbxPnPsuclVPncUZizkZA44ljyvL+Lmis8k73eZyB5tstBq5/a++9sAP25UxzAjgbXuYCJHxDXI24iJn1oeAdikFe1Or3mRcSmlu1kL9q7jqfr/nuumdfewuPY/RF+1O4N8wcH3sye3AGNI9Ovc25yOM9Y8z2skXN/xnF1nFeidn9kH0/Yt2/Q2P+to/p8zkW+vysea+I819p3sL9TZqVmXOr/MX6/3aO+nzuJ/HcHfvkXjS/as6zE+c9y3zt4Rn9OnquNK7oqSzv74DGWfXDTnM4A8212/zjmGfJlddr8iQA1PAyFyCw4o3j7IfjbuT5O/8zPhQJzauas+d99txfXc/yNc+87hF0XY/lqTGMSnxAmJU4x5k8oHnkutPvmu9oc6zG6vG6P5xJzvlq971XOCaz1ME77IUZPZDrquMcq95wRk/IPUDSthl9kMlzX2HOxl6asb85rzPmM/aAM+o/o5jlurC8b0aqOc86VxPnLC91x7Uxw1wizlMXP6onaazRX1nePzoaY+y53cZ/Bppnp7nH8c6QI9WT5wMANbzMBQj4RjjDTXAP8cZ/xcPxyGiueaE6aww812ph7jmfNW+fq7qWr3f2Nc/AtaCxwd9x3mbsidmnM+Rec1Ku4rw8t5HqzfWfx+mxag53jDffA2f0+VGcE/2cnZj/mci1pT+PVP/v0Fjv6mO6TvSBtUIviPNeYb5C/tF8Z+tvMZcz4XxZd/jU/Sde15JvZqwVzSnP2dtmRDmO95fO85yxp8W674r7SK4ry71kdO9tzaHD2M8gz33kecexzpAb92jVEgD8CC9zAQK+acxwA3zHLA8xR9Fc49wl/T7bQkHzyfO8Yr46z7tr+XpnXfMqPIeV6uEVisOs8fDc7NHRvfmOqgZHm5fHmMcZx/rEeKMXpNXrXzlwLGZnxpx39rN7RBz/nX0sx07Stpn8kclzfqIH38ms/c1zmsWruRfc2QcyimnuS5b2zVYzuSd4njMS59p5jvbnLF50XmbynXKj+Wz1Em3X/pHn7PFtjX1m8rwdi9GQz+I4O/cEz0X+AoAf4WUuQMA3vpnRjTEuJGdffIk8Z0m/d17gZDSXap6e61nzfXWdfK0zrncnGq/n0W3sVzBjLDSX6N3O/S/PxXL9jcDWGEcbp6ge1FfFORspP2fjfM+S51xro9XXK6o+8eT45YncD6RZe0KO/6zzNJ5rl/p4h72qec1Arr2R8qSx5fFZ3jcL1Txnmp+J8+w6P/e0GXpAzMfMqK9prvHeG6Xt2j/qfUpji7nK456VPGfHYTSir7rmQ973HADgR3iZC/BXfHOeYSG8RVyAaJ6zfJGxheYXFzOzzdvzy3OM8/x2rj5HdQ1f56xrjcAKfWAPjkPXB4CKWfpfVY+jzMd9II/PYxw97hpb9In+PPJ4r0Jzds5mJOZ4Bjr2No0x9wn9rrmMRIytpW2jjfMMOvroE2brb9GXnck9YfT8aLxVf5Bm6hGey6zzE3F+HfuCe5rUHc9jJn/twf0k9sAobdd+HTcaGlesoTzmGcnzHXGecYxd8+B6GNH3AE/Dy1yAv+IbXteb3Tvi4nDWOYqth2ttm2EhoDm8Wuh/O0d9/t01fJ1vrzUqnvvMdfKKWD8zkP3cMa9bNelafBKP7dX4nh7jUfI9ZMVe4Hx2y90eZsmrcuO5dJmP+0Uct/vEyCi2uS9Is/WGPMfZ5mc8v+79zfnqnqfouw79oEJzyL3N89G+7l7T+GOe4txmQPOLc+uWL3uvs8/sr1k89Q2ut6qnSKP2FY3Jeeww3m/Jc9XvIxHHN9rY9iC/aOzyDwD8GV7mAvwV3+hmW2T4Jjjr/IzmlRe8+r37fDX+am6e37dzfHX+fI1vrtMJzdPzX2XOEc+946I/E339ba08gcaba3OEeXhceWyjjO8sRn9IvxLl0PmcCee0cy5zXxi95vJ4PWbloGOvyH1B0rbOnsrEOc40L2M/dp5bzFFXcm+YxWuaR8xPlPd1pppb9zmZOLdOc1Itacyqp67M5qUzUUykvJayRlxTeczVeEcb67fkeer3UYhj69Yf3NckAPgzvMwF+KfMeqPofPPei3KXF7b6vfMC0XPK84pz+3R++px8UZ3b5//2GjPg2lEsVmKWecu70deaVxc09qo+XZdP8WpcT4/tSnK/7OSlb/GcZ8mt+1vnOcU5jD6PqmfM1CuUi5wPaZYekec2y7yEPKg5yY9d6Z6X2Btm6gsZzavqE5K2d66ral6d52PivLrMxz1N6ohjPoN/7kBxkvIay/L+Ufqqx7M11ln6f56jfh8BxTd6ZZRx7cHjnsUjAGfBy1yAf4pvvJ1ubK/ofMPeQ56fpN87z7OaU5zbpwsYfU5xeXVun//Ta8yKYzZb/bzCvug651xH9nYH8tifHr+uW43J45JHusT2DDTfGIMV+oJzr58z4Pl0zF2uxVFz8qpnzNwvcn+QtG2GPhHnNsN8jH3a0ZfOyah94BWKt/00m6f2oPlu9Ujt6+pHe9Lytq7E+XSZR9eeFmMNn+F6cxyzvH8Eb2gMW2MdZYzfkuen30cgjmuUMb3Dfa3jegfgSniZC/BP8U2iy03tFVoA+Satec2wIDKai3PVfY4aczUfz+nTeekz8nF13m/PvRqKkeO2Qry8wO/aBz3+TjnTGKtafapGPZ5XY+oQ1yvJPutaL3tQrj3P7sS8dSPW41O94R3uHR7nyGO9Evks9wipe5/Ic+o+H2G/6mc3OuYh94gV+0NG+cu1ZXlfN6r5dJyHkD/jPEb3q8fbrae5L3T1yYi4f0T/Rnn/08izW+McZYzfkOc2wnzimDrEt2tfA7gaXuYC/FN8Q+tOvDnPdMPTTdwL/Ti/0R+qMp5Hnkucz9E56XjlvTqnz+tzw3FcU4rhzMTe0Q3XVfT86OQxe9xP1Gk1lqfHNDqxXiT9Piv2RncfdMzV6D7b6h30jT/I+ZO0rZMHMzHfnech5FHPpRP2Vaf4e8wW/eFHFJMcJ0vbO+VbVHPpNgfTqe95nF2IPoHrUJyrmrS8/0lm64GRPK+n5xLHo/42Ou7BrB0A/g4vc2F5fDPrcCPbQje2mb5gEXlOzlG3m3g1j2/mo+OV31fn7BinkXGsZ6irLbrO0f3b3h/Z91u94O5x61qvxjJ6HEci+k+asUfIC/ZGV5ynLvnJ9TlaTVb9g76xjXyXe4XUtV/EuXTPu33cZQ4x9h3IvUJ/hn0o1zF2MYba18mz0beSt3UizmHksXfraR1iOiOuQcc/y/ufQv7V9ase+PTYvkHjznN5CsU4jmXknmEf6CcA/AEvc2F5fFOdYVGgG1yXxfsWGn9euHWal8ZZzcHzODoXHascV+f79JxwDMXW8Z4xzrGHdEF5iDUxcv/OY5Xurllda6uPeCx3jmc28n14ZD9+gufW0SPd+lv20igx1zhe9Q/YR8yvpW3deoZynufQEc9DPu5Ap3hHr9MnvsM9wvGM8r7RUf7zHOSLDmM3cfyjjrtTT3M8O3lgRlyb0d9Z3v8UurY8Pdq4PkVjzvN4ihjXUWPZba0GcAe8zIXl8Q2s40Nmh5vvXhT/vEjT7x3y4rHn8cc57J2HjlMuq3P5fD4n3EdcdM+G59Wlh8RcjFoLGlOuYf2usd81Xo8hj8NjoYecS/Sl1KWe9mAP6Wc3uuQj94xRxrvVy+gf36H85p4hdesbcQ7dxm48/tFxrEfvw6P2sllQfGPdRWl7h3hX4+/ikzj2Ue+FHt/IKG4dxrki7jFVnUryvfc/ga4b7zHWk2P6BI83z+EJ4jhGjaFzPmLPBXgCXubC8vjG1QndxOIiputNLc9D0u8d5lON/ZM56Dgtml6dq0tMZsc50s9Z8OJ91IV7JNfcaGPW+PIYpTvrt7q+x3DnOFbGNWV1qK13yDeeTyc69LdcsyPUqa6vmOVeQg+5hirW2jaybyMaZx57Jxz70b3dIb7Rx/SLe5Afcv9w/LVv5Bzk3iF16R8x5qON2WPrkPsu+V4Z+Uh5cs6y3GueyKWuWfW/p8bzCR5rHv/dxDGMGDvnWT8BgJe5sDi+aY14w9oi3mh1M+v4oKwx54XX6HPR2Kpxe+x7x69jlMPqPEfPBfeinDhPM+Qnzmd0Yr2MVh8aS65n/a46v3qcOn91/TvHAD+imMd79Qx5sMe6zCPGf1TiGCX9/iRVL9Hv9JB7yH3DetoXe4lj7zJmobhrzPL6qDi2o8bVMeyY/5lQ3O2VLO8bkWrcI4/XxDGPNNbRe1qMG/TDa5W8XrS0XfvvrglfM4/nibF8QjX+u8cdrz/a+r/DWg3gTniZC0vjG9bdN8pPiYumLmOOaMx54TfaQiHyarHqcb8bu/br2OocPo/PBePjniF1x3MZuZeoLhzvkcaqcVW94Y5aftVTfP2rxwD7iP1CGrnW3iFP2WMdGDnmrmGP8emY5vF4TPSR59i6v4zeQ7r2PI93RM/HmI5G1cvoG2OgPOR6tLR91NqsxjzqWEUc70jj9JhGrMcR4wWf416T1yyW1y53elHXk7bGMjLV2O8ec8zlSPHyuFhnAPAyFxbHN6nR0Q3LY+12A9NY8+JOv486B483j3nvuF993ufQomjU+cN7nFv97Ep8SBgR11GsmxFqJo8rju3K8VXXzdeHcXn6ofws7MHR/eZ4jxjnWMdP1m7VU+gl46F85P4hadvIuYpjHrEOM64F/RyNUeOYfUnvGBvlK/d8Sdu0b7T8ZX9Jo9WAiWMdpYc416PmdcReC+fgdUvVb5x77b/Lm7pWrNE8jlGpxn3neOO1R4mTPUX/AOBlLiyMFhC+QY1MvJF2unEpvr7hxvGP9lCh8VRj9XjfjdmfrT7vcyiHo80bPke5dH675tXjH2VxHok9b4QYb9W4fr9qbDqvrxuv6eteeW24Bvk65nPE2nuHPGcPjkrsHyPViGNnPZX/qq/QT3qQe4hzN2ovibU4usdcnxrnSDiGI40r95DRYgbvka9ifUZ53yhUYx1tjCLXxdP9btSeFnMIa+B6jfURpe3af0fNeCxbYxiRasx3jTVed4T4jNrXAJ6Al7mwLL45jXBjqsgPBaOOM6Ixx5t+HPsdC7S9eJzVolLbtH9rvNquY6rP+vOjzRfOJ/q8Gx67vDoSrq1YS0+Sx+MxXVXbOu+nfQn6EHuHpN874XGP6kXXzyhxVZxiTV/ZQ7bIY/A4FCN6Sk9yH5FGzGf23sj9zuMcKYajxS367oleBuejHFb9RNL2UbxXjdP3sZGIY3x6bB7HKHXq2IyWM7gX5V+Ka4Mo77/at75Ovr77ymj3t2qs2nY18bqKzdPYN6PlB+BueJkLy+IbwR03waPo5hRvmqPfrDQ+x3PUcXuMeZzvxvrqc/7siAs+uB57Qj87Ye+O1Pvyg8JT9eR691iuHtOr/vJkHOB6ouelEdciFfbqiOONMR2BnOO767nqZ/SVuZDHss+U49HqM45xtLEZj1HxGwGPZ4R45V4yag7he5TbfN+Q3FdGuH+4NqJG8mQc35Pjch5H6GkxJgAReSP6I8v7r+w9r8Zw9bWPUo1T265E84/XezIeI/U1gCfhZS4si29GoxFv0KPfpHQj9w01jnmEBY/GUI3PY9wapz9Tfc6fHW1RB89hX3Txg/vL1Yv+veQafWpceRySfr8ir9W1fL2rrgljEu/30ih1+Qr50+MdjVHimGv8zvFU/UW/awz0lrnJ/UTStqfrweTxjTIuM1Jvi7F6mthPWKOshfuH8x/lfU+i6+f7nbaN4NEYN43xCdzTnrp+xHl62jMwPvJIrJ8s77+KV9fX9lHugdUYr4yLiNe8+lpbjNTXAJ6El7mwJL4RjXQT0I3JC90nb5Dv0DjjjTyO9+nFjccW42hpWzVGx736zKvPAQj5wl4Z3SOxbkcgjkd1dnf8XPsew1Vj0bleXYv+ArEWJP0+MvbySL51DJ+OXazzs3vJK6oec+f1YRxUA7mnSKP0lTi2UcZkRultI8RHMfA4nh4LPI/8EGs3e+NJf/j6I41J5Bp6oq+M0NNibgCOUtV31JW1/q7vPVlXphrfVfEQ8XpXXucVvv4I8Qd4Cl7mwpL4JvTUDSgTb4qjfvmmMY34RaHHlccWx+cx+s9bx/szyoc/A/AOe0k/R8bjfLrvqbZizd09HveAOAb9fmbNv+ozvtaZ14M5yGuBp2t1C3nXYxyBGLeniGOQ7sid+0y8ruQeA5B9KWnbHf58xRP1socReptj89QYcl+hn0CFfBp9Ev2ifU95JvcW6en+EuN091h8bf18ilHyAHMgH1V1bnn/2ainbV33qmseoRrbVWOK13pi3u5rrE1gZXiZC0vim88IN4AnF/h7UIziGCX9/mTsqjF5XHFs+uljq+P9GcX9yflAf+ynEWtYxEX3k8Q6jLV6Ne4DvvYVY9i6xtnXgbmJtSqN2lM8vhF8/WSsct3fUetVr6HHwCtUG7m3SE/3lzimp8diPJ6n6unJeGSP0FNgD/JN9o7lfXdTjeeJcZg4njvHoRrWNbVGeALP+8nYw7zI3/JWrK8s7z8TX/eu6x0hj+uq8bi3WHeuF57uawAjwMtcWBLfdJ5EN6H4ZdydN8B35LFJ+v2phYnGU40pjsvH+LjqWB/v4wDOQn6yx0b0lsf2VA3ruh7DneNwP4jXdg/4Fp2jOr+vcdZ1YE2eqpm92Pf6+SSO0xPxiTm6ut5f9Rr6DBwh9xZJ256oIZHH87SfXWdPjMOxuDsXub/ozwCfIC/lmra0/W5v+5pPj0PEcdx5/Sd7mucLcAfuP7HWolQL3n8Wvma8h1pnX+sIuu4dY4nzvnOuvuYTfQ1gBHiZC8vhG9udN5uMxyDpBjjKTUjjyAuRp8bnseTxxDH9/vvvL4+Lxz4xB1gLe1A/R+LJnuf6zPV4JfmaZ15bn1ccX53/6vnBOthv9pj+PIq/NA6P6ylibO5Ec4894Mremq8lndHLAOTbWEPWlX7e4s6aeod7m8ZzJzEXdxKvS2+Bs5G/8j3MXtO+u/ym60SvxzHcifuLr3/H/D1vXe9OfN27YwxgXPf2YpZ7wJke1bl03nyts6+zF13z6nHEa9w1R8f4rnsIwGjwMheWwzebu240mXhzf2oMGd0E86JDv999c6zG4bFIvLyF0bEPR6ptj+lu3Gutq2vSvSFe0/3gG3zequeccX6Ad+RaGqW/uCaeqoG745F7zFX1r3NqTrnn0G/gKnKPkbTt7l4TxyG/P4XHcGe9+Zp3xTz3s7tzDevhnmLPRXnfHVRjuOva5s7aU637WncRYwwwClvra0vbtf+smty61pnX2Iuud+UY4vnvmJv7muILsCK8zIXl8E3mbuJCWtLvT6Lr58WFfr9zXLpWNQ6P5ddff/3LC1z9uTrGx/k8AE8jH9qbI3jSC+s7FtUm17T+fBX5WvGa38T/1Xm/PTfAp8QHZenOuq5QHbgu7ubu3nZH7Ku+Q7+BO5Gvs9elu+pM3FFr73Ad3tXbPOe7rhf7DD0GnkCeq3qNpO131L2uEWvB176rHuL8r56v53nX3O6aF8A3uA/lPmBp+1k9Yes62n5nnehaV10/nltzvRpf666+BjASvMyFpVCjv+vmErn7xvYKxSAvJPT7XTdBXz+PQfrll1/+8vJWP6v9ksd613gBjmLv6ueTxL5zF7nXXVWn7iO+1rfXc0/J5/R5r5wLwBFUY9Gn+v1JPJY76yP2mauvm/uC/nwmOn/Oqa9Dz4EniXVmadtdPSde/65rGtWer30Hd80zzuuO6wHsRV7M90FJ27Tvyvuhzi/F63rb1cTrXnk91/7Za5gKz+mOawGciepE/q16kT2t/d/2I53DdRLl7XeQr3/WtRWbGL8r5+PrXHl/ABgVXubCUvimdeVNJXLnzewdeSySfr/j5ldd29KLW17ewmzYz0/WvGvojjHkGr/imlUf0e+61if9wefL5/R5tf+T8wLcgXwfPftUr/E4VDN34Zq9es6xN7gnnIX7j89/xTUAzkB1lvuNdEfPyde945rG9Xl1TXqOV84t9xt6DYyMaiHXvuV9V1Fd98rriXhN1eYVqN59javxda6OG8DVyMNSvH9Gabv2f3M/9TW2zn01+dpnXTOe96p5uK9d1TcBRoaXubAUvhHffWPUdZ94aNY1Pec7x6LzV9eW9OL2p59++svPvE/y+K4eI8CVyL/29BNedv/p3ut0Lp3/rD6mz1R96ZtzAjxJrD/pjprP+Np31E+c71VoHr6GdGZMqx5E74Eu5H4jadvVfSde9+prGfcB1edVxHldRbyGRK+BTsiv2cOWtl/VD6prXnUtkdcGV1zL57+yBzhuV8YK4Cnkaymv4y3v/7TG/Pl8Xl1P268kX/eM68VzXjV+n5+1DawGL3NhKdzsrybeuK78EmCL/EDgcVx5k/M183UlvbzN2yyPixswzIb7gDx+N66vqxbOQjXr65x9LfeTeH79rmsc6RXuLVVf0jbpyPkARiSuOaQr677C9XXHda+cY+4VZ/WHqgfRe6Azqr/cd6Qre0C+3pXXEqpPX+sqrpxL1c8AuqNayfdT+1v7zr6v6pxSvJa3XUG81tnXcE+7qhfEsQOsgHtB1ZMk7/+kL/mz+ZzudVeRr/ntteL5rug9jv3ZvR9gdHiZC8vgG8mVN7/84HzltSp0vbyY0O9X3dzyfN9Jx3o83HBhBVwfd/aCO3pdrHvX9LfoHGf0sK3zxHOdMV6A0XDtW1f2gIjqyde8Es/vinnl2J3RI3SOb/sZwOjk2pG07Yo6zTV1xTUivtYVNeu46RpnE3NCz4FZcZ+x16O87yxUQ/laqq0zr2Hidc4+v897Be6XV8QEoAPyfqzfLO8/ek/eOq970JVrFEu/f4rGF8915nh97ivWUgAjw8tcWAbfkL65Eb0i3vDufHDWdbx4vvr6Omd1vS3pOI/livEAjI5873q4owZiH7qCeH7pjH5a9ZSjPcznyOf55FwA3cnrkTPq9B2uvatq7arelvvPt7HK55OcA/oQzIw8HuvU+ramKuJ1VF9X1ZbO62uczRXxObufAXRB3q/6j+vgzFqornN2rcVrnNl/3B/O7plxvADwB6qLql9Y3n+EV+fU9itr29f4lKvWJz7n2XMHGBle5sIyXNnkn3hw1jzidSX9fvb8fJ18rUo+Tp+5Is4AHfEiWLVxNa7Fs/tQ7jeu80/J5/vkvFvnOHoegBlx37GuXpuo3lx7V3D2PHL/+LZnVP2IPgSrojrN9aBtZ/Yh95x4/ivw+c+sZY317DGf2c8AuqPayj3ItaF9Z9RHdY2zzi1yjzvjvD6nxn0mHuOZPQ1gNlQfkusly/v38up82n5WLxL5OkfGGYnn+fQcGffhM+cLMDq8zIUliIvhM9F54yL+6huIzp9vpJK2nXntPK8t6RhJx189d4DOuJ7OWrRWxN5wJrnnfFPrVW9xD3mH+0z+vM+x9zwAK5Hr98oe5GucXYeew1ljPysmr/oRvQjg9XPLWcTzn3le4xo/69xxvGegGPt8Z44TYBZUE7Hucr18WzPV+c84r4nnPuOcPtdZ6xSP76z5AqyA10exvrO8fw9b6y2f5+x6j+c+SjzHJ5/PeB2k9RrAKvAyF5bAN4wzbhYm3oSu/uJO585fGJ55TZ1H+uWXX/50jSxd09c969oAK6B6cR1dVTs+/1l9TuOMfUd//oR8nni+d7HwZ199/t05AFZHNRLXLPrzFXXjOtXPs4jj/hb3E5/PPeQo+TzfnAtgFVTLVd2csWaJfUI645xGde2xnsFZYzyrnwGshOou9wvL+76hOve35xTxvN+ez33jrH7hcdF/AD5H9aParnqI5f3v8Lm+Occ78vmPnlNj9GfPWL/4XACrwMtcWAIvWs+4cYn48HzWOSt0U4vXks642QmdQy9vX73A1T5f74xrAqyMF72qqbPxuc/qRz6fx/tJ/eszn/Sv6nNHPg8ANbGupbP6hVFt+txncdZYv+1pW32JngRwDNVL7kWStn1bS/G83/aMiGv/rPHpfN+Q43fmXAFWwb1o696ufZ/WfK5R6ds6jef85lyak87xbR8SHtO3cwOAP+P+FOs+yj3qXe35PNU59nz+HfncR88X++83Y/F5Pu3ZAN3gZS4sgW8Q3+LFr3XFzULnjDc1yTfrb/n99995eQvwIK7tM+rZxEX0t+T+c3ScVf+S3Fcq3G+2PvfqswBwnNgzpDP7kev4jJr1OL8Zn8bxzVyr3kRPAjgH1WNVX9/UvPuG9c25jMeon9/w7ZhyP/p2PADwd1SXuX9Y3neU6pyfnkvkNc2na5FvPy/ivADgWlSrqrm4BojS9ne95dU53n32Ff5sPt9e4mc/HYN7I+siWAVe5sL0+ObwbWOPN5krbhK6AeUbq37/ZpGtl7e//fbbP/z0009/Oq+l7XqBq2t8cx0A2IcXmtJZNefe9Oni1+Qed2R8OvZI/9L26jPxc1ufBYDvUb3H+vu2fxjVrev4G2I/+qQX5P7ivrKH/NlPzgEAx4g1b2nbpzUXz/dtf9MYfK5P8Xg+HUucD70I4FpUb7HmorzvKNX5PjmPiGuUT87hz3/TR76dAwB8jmpXtVc9r0jarv2vanzr89r+SV37c/lce4if++Tawp8HWAFe5sL0+Mbw6U1BN8BvF8yvyOeX9Psni2t9Zs/LW73kBYBncE9SnX+LzyV9ivqGzyHt7XFV75K2+pePf/WZ6nMAcB2xh0hnrHFc49/Us8/xyXg+nZN7VPysexMA3IPqNdew6vDbXvBtLbs3fHKOOI6j5L70SRwA4HNUg6q7WIeWe9ORvhD7gfVJXcfzHP28xqvPafyf4Gt/+nkAOJdXfcq1qv1bvWrrs9ouHcGfyed5R/zMJ73F4z/SjwG6wstcmB7fED5p6vmGctaNQefJN0v9vucmF9F59JlX/3SyXuDy8hZgLFz/R2s+4zr/9DyxD+3tcVv9q/psdey7zwDA/cT1jvRNb/K5VOOfEMdyhNxv9lxfn9H1cp+iPwE8T+5LkrZJe8l94chnIzqPPr+nr2Q+vXacPz0JYAzcg1ybUd63Bx2X1x7adqTO4zj2Xtf4c5/0lU+vCQD3oNqUco+xtF37q/r3Z/NnvH0v1XnefV7jiWM+0p90rD6jzwPMDi9zYXp8IzhKvPGcdUPINyefe+9NSsdpXO9e3vqfTgaAMfFiU/q0Vt2j3i2KK2J/23MOjTH3Lin3L/351bFH+h0A3MvRvrCFatzn+KTeP7l+7Dl7+kzVp+hPAGOiXpD7k3SkR8TPH/lcxJ8/gq+r/rKX2EOlT8cLANei2oy9JdftntqtzrH3syJ+9sg6xmugI71J+Hp7xwcAz+Oe4rrP8v7cP7x96/g9VOd499l4/N7rCH8GYHZ4mQtT45vAkRtA/oLvyGe3yOeU9Pu7xbb26/pbN12L/+8tQD/cn1Tfn+D6P1L3Ojb2k3d9KB9ffcbH5OPisa+uAQBj4d5kfbIOcj84+llfe+/n1FuOjFX7c69ynwKA8XGPiNK2PT0jf3bPZyLuHUf6xZFr6byxP9GbAPqgWlWd5zWGa1n73tVz7lHS3j4Vr7u33+hYfW4vcXwA0BfVslT1K8n7Y8/ytnys+9s7qs+/+lw8ds/5hefD2glmh5e5MDW+Aext/vGGoRvBNzcBfTbfHN+dU/s0hvy5St+ODwCex7W+t0eZo71NxP4mbfWPrd6lz/sz1THxWHoTQH9iz3AP2It6gD+3l3i9d+Qe9KrvVP3q1fEAMD7qF7FnWHv6VPzcnuPN0b7m6xwd09FxAcB4qIZzXcf6flXj1edeHW/i5/Yc77XR3vWQz7/n3ADQB9V07B9Z3u9esXW8eoq2v6L63NZn4rHvziuOrtMAusLLXJgaN/49eDG790axhW4g8VySfq8Wydqma+XjK+mYrfMAQE+84JT21nZc1O5B5409Rn/O6Jh8nI/1vmq/j/FxADAXsd9IR9ZH7hd7e8Pea+QxbZ2/6ln0KoD5yD1B0rZXvSR/5tWxER//ro/E878i9yn9GQDmwv3IdR7lfRXV514dL+Lxr44T7j17+k48LwDMjfuMaz7L+18dq77iYyqqz1THa50Uj3m3/vJxADPDy1yYltj0X5Efot/dHLbQjSeeR9Lv8Xz6c3Xclvz5T8cEAOPjhazqfQ/uD9ViN+Nzx34S0e+5H+l3fe73338v9/sYehPAOsReIu3pP+oP7hfv8PlfnTf3o+rYqmfpdx1LvwKYG9W5e0nUq74Sj391nHF/edfXjl5b56NHAcyP6ly1n9cq7gPaV/WC2C+srf6Se8sWuo6Pe4eP27omAMyL6r7qQZb3bx13Rm+LPbPab3wcayqYGV7mwrT4pvCq0ccbh5r+0Yav4+NNJZ/H+/Mxr/TJOACgN+4Rr/qVcM/S8a/IvSmeV/v0e+5L+l0vcPUz7/N+fZb+BLAucd2kP7/rBz721XHxnBX6bOxJ7kWRfMzWcQCwBrGvWNomZfKxr/qG9ukY9ZctfL6tY3K/qsYEAGvgvuR+EOV9kerYfIzIfWarr/mYV33P16yuAwDroV5Q9SJL+9Rbto7R9txzqmO1LRKPyfuMzqv9W2swgBngZS5MixemVZPPi9utG8EW+fOSfn/1IkT66aefftjm418toAFgbrzolF71Ah/zqmfF/hN7y7u+FbfH/fQmAIjEB2lpTz/Szy1enefVtbZ6mo6hbwGAUD/IfUSKvUTkfpL3R3zcVp95dY44Fp2HXgUARv0h9ogo7zP6c14DaVvuKfF88fNGx2ufzrWFP0+/AoCM+oJ6S+w1WeovuV9ZuW/l8+hzsXfF/XG7cU+TAGaFl7kwLVsNPDZ3ae+i1DepfBPSC9pffvnlT9vivp9//vmH7TqHzrf32gAwP3FhWuH91aJV5N6m47StWjyrZ1V9y8fSmwDgHbFnSVVvin2pYquvuXf5s7Ev5X15PwBARe5ZkrbF/hOPUV+p8DHVfu+L5xSxF1b7AQAi6hnqE3m9I2mb9vkYKe73NhP3x+0i9qYKfzZ/DgCgYqsvWfoOquprkj6jz4v8eZ8z79O5/Bnj8+ftALPAy1yYEjd3NfFIbvp70A0g32yqv2Er6cZUvbyVqpsMAEDEveZV78rkHqU/V3/bdus/PNFxOgf9CQCOkvuPH7Ij3p97TOxrcV9eq7k/5Z4W9wMA7EU9JvYZy/0r7/N2o57jfZH4OZN7Fz0LAD5B/SX3Jsv7qv3a5s97m/pQxD0q96b4GQCAT1BfUS+Ja6Gore/P9Rmr2i7iOb1NeJ2Wex3ALPAyF6bEDd8NPT9Ix0a/hT5TvfiI0v7ffvtt8wWJlBfFAABbeOEpxd7h/pV7l3udVS2Gt/55d3oTAJxF7kWxV7mvqe9Ecl+L/c/btc3HWfQvADiL3LskbbPitoj7UuxF+dj4+bgdAOAb1Etyf4l9Jq+bvD2vs9y/vF2fi/g4ehcAnIX6zVaf2lJ1vLZZcZuv4W0AM8LLXJgSN27fKPy7bgBetFbob7Nt/ZdBkj6vl7e//vprefPx+V9dAwDgFbFnVb8L9ZjYg7b+tQBLx7o/AQBcRexXkh+q3a/cg+JxuZ/pP5B79a8IAACcjXpS7l/uO/F39zT1Iu8X/qz7VPycjwEAOBv1G/Wf3Kskfa+Vt+vY+H2Xfnc/k4x7WtwGAHA2r3pYpaqnxW36XXibzg8wG7zMhSmJjTw39Ygftrf+Bq6263P+J0vzjUPSNm4QAHAm7jX66T7mHhb72iv5s/QnALiT3KP0u7epLwnvc6+z8npM++lhAHAn1Tor9irtF/5dPcp/jsfRvwDgbuKaa690vHuXe1bcBwBwF+pBsSftVbX+8p8BZoOXuTAdXrzm/+JQqKGrmb+6Mehz//gf/+O/HZv3+/Ne6AIAnI0Xn5J7jX5u/YcnlnsT/QkAnsbrsSz9Cyf6+e5fQqGPAcCTqIdt9THJPazqaX72BAB4inc9LEr/8px+av3lz9DHAOBp3MfUm2LPOiKA2eBlLkxHbPJ68SG9a/w6RgvYrZuEtvGCBADuxA/S0j//z//zf+pJUe5PAAAjEnvZK9HLAGBU9n6RSB8DgBFRXzr6QgQAYDTUx472MtZlMBu8zIWpUJOumreV/1bbq5e9PIwDwNP8i//iv/hDb3LPoj8BQBdevdClnwFAF9SrtvqZtgMAdMAvRKpeJtHPAKAD73qZpO/PAGaCl7kz8X/7D5bXf/of/lt/atr/6i//0l+2Sd7/y7/8L/zDT/+lf/ZPx/lYH5/P21YAnak8vZjc0/4L//n/3D/84//pf3uu/vSJADpTeXox/fqv/yt/6Wlaiy3fzySArlR+Xkz/vX/63Kh+9i/8l/85+pkF0JXKz4von/yb/9pf5O/F9OfquOUE0JnK0wtI/cvrM+mf+2f/i+VxSwqmgZe5M1EV62LyIlRfFuZ9fikSpZe3+sy0D+AAnak8vaD4gjAIoDOVpxcUPS0IoCuVnxEC6ErlZ7S2ADpTeXpB8dwZBNPAy9yZqIp1MenlrF7Sbv3XhPFv3y7R1AE6U3karS2AzlSeRmsLoCuVnxEC6ErlZ7S2ADpTeRqtLZgGXubORFWsi0kvaPlnYYIAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gn2k//Q//Lf+4Z/8m//aX/Sv/vIv/UX+Xao+M6QAulL5GX2lV31N+6rPDCeArlR+RpfKfa7aN4QAOlN5Gq0tmAZe5s5EVaxol/SA/M/8M//Maaqu8YgAOlN5Gl0qfWE4bD+TADpTeRrtktZpkr70yz1qS34JUp1vGAF0pfIzOqzp+hpAVyo/o0sUv3vjZS7ARVSeRmsLpoGXuTNRFSvaJV7mAgxI5Wl0qYbuZxJAZypPo5c6+qKjEi8+AC6g8jParW9727B9DaArlZ/R6VLvir2Ml7kAF1F5Gq0tmAZe5s5EVaxol3iZCzAglafRZcoP18P1MwmgM5Wn0Utt9SVLXwJa1f4orfWqazwqgK5Ufka79K5fte5rAF2p/IxOVdXTtK06dggBdKbyNFpbMA28zJ2JqlgflB4uh/zirFB+mRsfoj9RdY1HBNCZytMPqks/+1SxB0ZVxz4mgM5Unn5QHdZp1d/geDfurRfAQ63PLICuVH5+WB162lZvcm+rPiO16WsAXan8PKBG73GVXv2HeUOuzSyAzlSeXlAd1oa3CaaBl7kzURXrA/ID6fCLs6C8wJym2QN0pvL0zVIvcD+TqmNm0KuH7Or4xwTQmcrTN8s9zX1NtV8dN4rcmzTeo2uzqq8Nty4F6Erl5weU12kjP8NpbLEfSUd78PB9DaArlZ8HUe5z1TEjKo+70nDrsiiAzlSeXkSd1oa3CqaBl7kzURXrzcoPqUMvzoLyg3F1TEsBdKby9M2KfWGq3pCU5xlVHf+YADpTefpm5fXO0RcJd0vrym8ewKsXH0M90AN0pfLzA8o1PvIXdvE5+Ztn5KH7GkBXKj8Polzv1TEjSf2oeomrbbEPelt1jiEE0JnK04so95+R14a3CqaBl7kzURXrzWq1OAvKD8XVMS0F0JnK0zcr9oWpekNQ9aVgVPWZxwTQmcrTNyvXu36vjptJcb7SUGtTgK5Ufn5AuaeN/IWdn5PP6Lv5i8ph+hpAVyo/D6JY61J1zAhSj8u9yXLfa/V9IUBnKk8votyHRl4b3iqYBl7mzkRVrDer1eIsKH8RUB3TUgCdqTx9s2JfmKo3/FW59+XfpepzjwmgM5Wnb1ZV89VxMyk/0A+1NgXoSuXnB5R72shf2GlsZ/Xc/MwtVcfdLoCuVH4eREPWelJea1naHvtyq+8LATpTeXoR5X408trwVsE08DJ3JqpivVmtFmdBudlXx7QUQGcqT9+s2Bem6g1/VZybv2CM26T8mUcF0JnK0zdrxZe5w770kAC6Uvn5AXV6mXu24ryHmTtAVyo/D6Jc69UxTyt/n6bfq57U6vtCgM5Unl5EuR+ttDZ8KZgGXubORFWsN6vV4iwoNvsuY94lgM5Unr5ZsZ9J1TFdtfUFaNwm5c89KoDOVJ6+WbzMHayvAXSl8vMDWvll7pBfVgJ0pfLzIIp1LlXHPC33I/181Yvymmzo794AOlN5ehENuT4aQTANvMydiapYb1arxVlQbPZdxrxLAJ2pPH2zYj+TqmM66tULnbhdip97XACdqTx9s1Z8mSvFOUvVMY8IoCuVnx8QL3MHmztAVyo/D6JY51J1zNPa239afV8I0JnK04toyPXRCIJp4GXuTFTFerNaLc6CYrPvMuZdAuhM5embFfuZVB3TUXmBG/fF7Xnf4wLoTOXpm7Xiy9y8NpWq4x4RQFcqPz8gXuYONneArlR+HkSxzqXqmC5q9X0hQGcqTy+iIddHIwimgZe5M1EV64VSQ8zKD9RqotVxUdW571Yec3VMSwF0pvL0Rap6kxR7g1QdE1WdezS9e5kT90lx3+MC6Ezl6QtV9aij67TqvN2keeQ5V8c9IoCuVH6+WLk/SdWapjrOqs7bVUN+WQnQlcrPNyv3KyvWuWv9lapzjyKNL85l6O/eADpTeXpC5f4n5fXRSmvDl4Jp4GXuTFTFeqFyg/xEoyze4pjyi43WAuhM5emLlL8M/FTVuUdS9aVnPibul/L+RwXQmcrTFyrX8ieaYU20p+89JoCuVH6+WLGOP9UMPc3iZS7AiVR+vll5vfKpRn45obHFsfIyF+AiKk9PptxPPtVMa8OXgmngZe5MVMV6oXiZ20AAnak8fZHOeniuzj2S9ox3zzGPCaAzlacvVK7lTzTDmiivV6tjHhNAVyo/X6xYx59qpue8PLfqmNsF0JXKzzfrrOdRXuaeJIDOVJ6eTLzMPSiYBl7mzkRVrBeKl7kNBNCZytMX6ayH5+rcoyjPcavXxWOk6pjHBNCZytMXKtfyJ+q+Jtrb9x4TQFcqP1+sWMufqntPs3JvG+aFCEBXKj/frFzXn4qXuScJoDOVpycTL3MPCqaBl7kzURXrhVLjzKoeLKvjoqpz3ymNIY55qkYO0JnK0xcq96bcG6TqmKjqvCMo9+ZXfS4eJ1XHPCaAzlSevlBVj8r/IZ56QXVcVHXuDtLY41yl6rhHBdCVys8XK/cmaaWeFnVkXXerALpS+fkBVT0r1rpUHRNVnXcUaXxxLrzMBbiIytMTKvc/adW14VvBNPAydyaqYr1ZaoKxaQ69OPur8phjQ8+qPj+0ADpTefpmxd4gVcd00JF5HDn2dgF0pvL0zRr2BcDJ0potznPYuQJ0pfLzA8o9reXz2kHlOUvVcY8IoCuVnwfRsPX+gfL6jJe5ABdReXoR5Ze5K6wNdwmmgZe5M1EV681qtTj7q6ov/N5JD9EtvgAF6Ezl6ZuVa786ZnRV/2VidZwVj5WqYx4TQGcqT9+s/BKgxVrmgLSmyz1v6HkCdKXy8wPKPW2FL+yOrutuFUBXKj8PoljvUnVMF7X6vhCgM5WnF1FeJ62wNtwlmAZe5s5EVaw3q9Xi7K/KYz6qob8IBehM5embleu9OmZk5S859/SreLxUHfOYADpTefpmfdITRpHWa1Eau1W9wJW0XcdW5xtCAF2p/PyAck8but5PUJ6vVB33mAC6Uvl5EA1d8welHh3nwstcgIuoPL2IeJm7IZgGXubORFWsN6vV4uyvqh6KP5HOU53/UQF0pvL0zcp1Xh0zqnJv29uP42ek6pjHBNCZytM3K/eFIdcuG8oP5q+kY1s8uAN0pfLzA8o9beYv7PJcpeF6OEBXKj8Polz31TFdxMtcgJuoPL2I8jMjL3P/KpgGXubORFWsN6vjy1yNWQ/Cln7Pivvj/LK0v7rGYwLoTOXpm5VrvDpmRKlvfTr2Tz93iwA6U3n6ZuV1zHDrlhfa+zJXx3nNVp1nKAF0pfLzA8o9Teuf6rjuyvOUhuxxAF2p/DyIcu1Xx3RRfkblZS7ARVSeXkS8zN0QTAMvc2eiKtab1Wpx9oX8JWGcqzXUgzVAZypP36xc39UxIyovYI/0pfg5qTrmMQF0pvL0zcprl6HWLG+U+9peDT1HgK5Ufn5AuafN+IVdnqM0bF8D6Erl50GU6786pot4mQtwE5WnFxEvczcE08DL3JmoivVmrfIy16oerqVhbhYAnak8fbNybVfHjKbcl45+4Rc/K1XHPCaAzlSevlnf9ocRpTWXpLnk+UUNOVeArlR+fkC55mf7wq76j1iG7tsAXan8PIhyD6iO6aJW3xcCdKby9CLiZe6GYBp4mTsTVbHerLMWZ//3/+jf/od/8tu/9pX+s//43y7PfbaqLw6HWZQCdKby9M3KtV0d807/7//zv1/2qCP63/8v/1F57qzcjz7pRfHzUnXMYwLoTOXpm5V7xKcvBf5P/8G/UfaqI/p//R//5+W5z1C1NvtmvpcJoCuVnx9QrvVPv7D73/0v/lHZp47o//N/+ffLc3+i/ExtDdfDsgC6Uvl5EOU+UB3zTv+///R/XfatI/qP/r3/SXnuI+JlLsBNVJ5eRLzM3RBMAy9zZ6Iq1pt11uLsf/Pv/I/+dJ5P9L/9d//H5bmvUPWl4RA3DIDOVJ6+Wbmuq2Pe6f/5f/j3fjjPUf0P/zv/1fLcUVUfqo57pzPOcZkAOlN5+mblPvHpi4Hf/vV/5U/n+UT/2X/8j8tzn6mqL34650sE0JXKzw8o1/inz1//g//mv/yn83yis/4Dlapv6Zm6xZeRAF2p/DyIcj+ojnmn/+//9X/1w3mO6r/1X/sXy3Mf0VnfF94igM5Unl5EvMzdEEwDL3NnoirWm3XW4qzby1wpX3+IGwZAZypP36xc19Ux73THy9zce6VPe1A+T3XMYwLoTOXpm5VfEnz6YrPLy1ypejEyzEM9QFcqPz+g2V7m5i8gpaFfdmQBdKXy8yDKPaE65p14mfuBADpTeXoR8TJ3QzANvMydiapYb9ZZizP9k6L/lX/+p6/0n/yT/1l57quUbxhDLEwBOlN5+mbFmpaqY95J/8xy1aOO6N/47/83ynNbeZyfvqCR8rmqYx4TQGcqT9+ss17m/jv/6L9b9qoj+n/8J/9uee4rNOQaTQLoSuXnB3TWy9x/9K/+18s+dUTf/DPL+Rna+mY994gAulL5eRDlvlAd8076Z5arvnVE+o9eqnMfES9zAW6i8vQiys99vMz9q2AaeJk7E1Wx3qxWi7OTNeTcATpTefpmxZqWqmOeVl6sfvvFXzyXVB3zmAA6U3n6Zp31Mrebqhcl1XG3C6ArlZ8f0Fkvc59UnoOktV3LLx8BulL5eRDl/lAd00Wtvi8E6Ezl6UWUvx9ruZ66QjANvMydiapYb1arxdkFinOXqmNuFUBnKk/frOFqOil/Aegv/75RPJ9UHWNVY7pUAJ2pPH2zVn2ZK8V5S4/0sCyArlR+fkDdX+ZWL3Jb92WArlR+HkS5R1THdJF6dJwLL3MBLqLy9CLiZe6GYBp4mTsTVbHerFaLswsU5y5Vx9wqgM5Unr5Zw9V0Ul6o3qlH+jtAZypP36yVX+bmfjnE3AG6Uvn5AeWe1ukLu2oN174nA3Sl8vMgyn2iOqaLeJkLcBOVpxdRXl/xMvevgmngZe5MVMV6s3iZ+/e5S9UxtwqgM5Wnb9ZwNZ1UfRF4lx7p7wCdqTx9s1Z+mTvk3AG6Uvn5AeW67vKFXbV+m+LLRoCuVH4eRLlXVMd0ES9zAW6i8vQiymssXub+VTANvMydiapYbxYvc/8+d6k65lYBdKby9M0arqaTqi8D79Ij/R2gM5WnbxYvcwebO0BXKj8/oI4vc/OYtZ6a5otGgK5Ufh5EsV9I1TFdxMtcgJuoPL2I8ndkvMz9q2AaeJk7E1Wx3qyVX+YOOXeAzlSevlmxpqXqmCelvnO28pyrY6xqTJcKoDOVp2/WkC80b9KQcwfoSuXnB5Tr+pG1yQHl8UrVcW0F0JXKz4Nopp6hHh3nwstcgIuoPL2IeJm7IZgGXubORFWsN6vV4uxk8SUhwMlUnr5Zsaal6pjZNPScATpTefpmDblWuUlDPtgDdKXy8wPKPW30L+ziWDuM97AAulL5eRDlvlEd00Wtvi8E6Ezl6UXEy9wNwTTwMncmqmK9Wa0WZycr3zB4mQvwJZWnb1asaak6ZjYNPWeAzlSevlkrv8yN85aqY24XQFcqPz+gTi9zl+i/AF2p/DyIYt+QqmO6iJe5ADdReXoR8TJ3QzANvMydiapYb9aqL3Pzw7lUHXe7ADpTefpmDVnXF2voOQN0pvL0zVriZUKhPO9h1qcAXan8/IA69bQ4Tqk6pr0AulL5eRDlFxPVMV3Ey1yAm6g8vYjy2pCXuX8VTAMvc2eiKtabterL3DhnaZgvEgA6U3n6ZuWH5xUWgnG+UnXMYwLoTOXpm8U67Q+xTgP4ksrPD6jLy9w8zml7L0BXKj8PopmeR1utQwE6U3l6EXVZG94umAZe5s5EVawPKDZNqTpmJuXF9VBzBuhM5embNdPD817F+UrVMY8JoDOVp29Wpy/Rznrwzn18qAd6gK5Ufn5AXXraMl8sAnSl8vMgmul5lJe5ADdReXoRteozdwqmgZe5M1EV6wPqtNjUWD99mNa88lwlviQEOInK0zcr1/gKC8E4X6k65jEBdKby9APKNT7qOk1j05rq7HXaUPMF6Erl5wekeh66xv+q3It4mQswGJWfB5H6RewfnZ9Hc88eei4Anak8vYiqtWF13HKCaeBl7kxUxfqAqi/Oth5Yn37YjmPVGPeMR8dUc/Q5qs88JoDOVJ6+WdVCcNR+dpbyfKtjHhNAZypPP6C8htn6Ik097cm+Fseovrt3jcU6DeAGKj8/pA49LY9RvcjjOVPVtW8VQFcqPw8i1XbsH+4hW8cO0Qs2lOey1a+HEEBnKk8vpA5rw9sF08DL3JmoivUB5QVabJ7+Ms6N9enFW27wlscZpWO3jpd0THWNRwXQmcrTD+hdn4i9ofp8N+V5Vsc8JoDOVJ5+QEfWaU+ubfL4rDjOKI95S0M+qAN0pfLzQ3rX0/Tz6Z72rj+dpcf7HEBXKj8PpK0eEtdAPmbI9c5flfu1xlwdN4QAOlN5eiGpL8ZeE3vOKGvD2wXTwMvcmaiK9SFtNc6spxdvbt7fSOcYdsEM0JnK0w9o60vCStXnu2noOQF0pvL0Q9q7Tnvy4bYazydinQZwAZWfH9TeZ7qnetoZz5x79HivA+hK5eeBdOR5dNg1zz9Vnod6Y3XcEALoTOXpxTT62vB2wTTwMncmqmJ9UHu+KHx68aYx7hlnJY195IXyXwTQmcrTD2nvA3T12W4aek4Anak8/aD2rH+efrjV9T99CcI6DeBCKj8/rJF72qd97Kge73kAXan8PJhU33v63Mhrn/xM/fT3gS8F0JnK0wtq5LXh7YJp4GXuTFTFOoDUGCUt1KJGW2Tmccbmnsc98gL5TwLoTOXph9Wln30j97ghex1AZypPD6AufS2P89U6rfr8kALoSuXnQVT1M217sjd4TXW1qmvfKoCuVH4eVHk9ZA3TB94o9qyhxwvQmcrTC2vEteHtgmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuTNRFStaWwCdqTyN1hZAZypPo7UF0JXKzwgBdKXyM1pbAJ2pPI3WFkwDL3NnoipWtLYAOlN5Gq0tgM5UnkZrC6ArlZ8RAuhK5We0tgA6U3karS2YBl7mzkRVrGhtAXSm8jRaWwCdqTyN1hZAVyo/IwTQlcrPaG0BdKbyNFpbMA28zJ2JqljR2gLoTOVptLYAOlN5Gq0tgK5UfkYIoCuVn9HaAuhM5Wm0tmAaeJk7E1WxorUF0JnK02htAXSm8jRaWwBdqfyMEEBXKj+jtQXQmcrTaG3BNPAydyaqYkVrC6AzlafR2gLoTOVptLYAulL5GSGArlR+RmsLoDOVp9HagmngZe5MVMWK1hZAZypPo7UF0JnK02htAXSl8jNCAF2p/IzWFkBnKk+jtQXTwMvcmaiKFa0tgM5UnkZrC6AzlafR2gLoSuVnhAC6UvkZrS2AzlSeRmsLpoGXuQAAAAAAAAAAAAAAAAAAA8LLXAAAAAAAAAAAAAAAAACAAeFlLgAAAAAAAAAAAAAAAADAgPAyFwAAAAAAAAAAAAAAAABgQHiZCwAAAAAAAAAAAAAAAAAwILzMBQAAAAAAAAAAAAAAAAAYEF7mAgAAAAAAAAAAAAAAAAAMCC9zAQAAAAAAAAAAAAAAAAAGhJe5AAAAAAAAAAAAAAAAAAADwstcAAAAAAAAAAAAAAAAAIAB4WUuAAAAAAAAAAAAAAAAAMCA8DIXAAAAAAAAAAAAAAAAAGBAeJkLAAAAAAAAAAAAAAAAADAgvMwFAAAAAAAAAAAAAAAAABgQXuYCAAAAAAAAAAAAAAAAAAwIL3MBAAAAAAAAAAAAAAAAAAaEl7kAAAAAAAAAAAAAAAAAAAPCy1wAAAAAAAAAAAAAAAAAgAHhZS4AAAAAAAAAAAAAAAAAwIDwMhcAAAAAAAAAAAAAAAAAYEB4mQsAAAAAAAAAAAAAAAAAMCC8zAUAAAAAAAAAAAAAAAAAGBBe5gIAAAAAAAAAAAAAAAAADAgvcwEAAAAAAAAAAAAAAAAABoSXuQAAAAAAAAAAAAAAAAAAA8LLXAAAAAAAAAAAAAAAAACAAeFlLgAAAAAAAAAAAAAAAADAgPAyFwAAAAAAAAAAAAAAAABgQHiZCwAAAAAAAAAAAAAAAAAwILzMBQAAAAAAAAAAAAAAAAAYEF7mAgAAAAAAAAAAAAAAAAAMCC9zAQAAAAAAAAAAAAAAAAAGhJe5AAAAAAAAAAAAAAAAAAADwstcAAAAAAAAAAAAAAAAAIAB4WUuAAAAAAAAAAAAAAAAAMCA8DIXAAAAAAAAAAAAAAAAAGBAeJkLAAAAAAAAAAAAAAAAADAgvMwFAAAAAAAAAAAAAAAAABgQXuYCAAAAAAAAAAAAAAAAAAwIL3MBAAAAAAAAAAAAAAAAAAaEl7kAAAAAAAAAAAAAAAAAAAPCy1wAAAAAAAAAAAAAAAAAgAHhZS4AAAAAAAAAAAAAAAAAwIDwMhcAAAAAAAAAAAAAAAAAYEB4mQsAAAAAAAAAAAAAAAAAMCC8zAUAAAAAAAAAAAAAAAAAGBBe5gIAAAAAAAAAAAAAAAAADAgvcwEAAAAAAAAAAAAAAAAABoSXuQAAAAAAAAAAAAAAAAAAA8LLXAAAAAAAAAAAAAAAAACAAeFlLgAAAAAAAAAAAAAAAADAgPAyFwAAAAAAAAAAAAAAAABgQHiZCwAAAAAAAAAAAAAAAAAwILzMBQAAAAAAAAAAAAAAAAAYEF7mAgAAAAAAAAAAAAAAAAAMCC9zAQAAAAAAAAAAAAAAAAAGhJe5AAAAAAAAAAAAAAAAAAADwstcAAAAAAAAAAAAAAAAAIAB4WUuAAAAAAAAAAAAAAAAAMCA8DIXAAAAAAAAAAAAAAAAAGBAeJkLAAAAAAAAAAAAAAAAADAc//AP/39JDkdsad0yFgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image('./images/ff_one_step_univariate.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras import regularizers\n", + "from keras.models import Model, Sequential\n", + "from keras.layers import Dense\n", + "from keras.callbacks import EarlyStopping, ModelCheckpoint" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "LATENT_DIM = 5 # number of units in the dense layer\n", + "BATCH_SIZE = 32 # number of samples per mini-batch\n", + "EPOCHS = 50 # maximum number of times the training algorithm will cycle through all samples" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /anaconda/envs/py35/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n" + ] + } + ], + "source": [ + "model = Sequential()\n", + "model.add(Dense(LATENT_DIM, activation=\"relu\", input_shape=(T,)))\n", + "model.add(Dense(HORIZON))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Use RMSprop optimizer and mean squared error as the loss function. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer='RMSprop', loss='mse')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_1 (Dense) (None, 5) 35 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 6 \n", + "=================================================================\n", + "Total params: 41\n", + "Trainable params: 41\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Early stopping trick" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAFvCAYAAABaYRrTAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAHA9SURBVHhe7d0HeBTV/j5wf//rLeq1996we/Vasfd2rQiiiCLSewdBmqCAgnSlihQpSickEHonEELvPYRQ0xPS2/vPezirIWw2ISRhsvt+nmceyJnJ7OxsxHlzzvme8yAiIiIiIiIlSsFLRERERESkhCl4iYiIiIiIlDAFLxERERERkRKm4CUiIiIiIlLCFLxERERERERKmIKXiIiIiIhICVPwEhERERERKWEKXiIiIiIiIiVMwUtERERERKSEKXiJiIiIiIiUMAUvERERERGREqbgJSIiIiIiUsIUvEREREREREqYgpeIiIiIiEgJU/ASEREREREpYQpeIiIiIiIiJeycBa/MzEzExcUhMjIS0dHRSEpKsnvyl5GRgbS0NGRnZ9sWICUlBbGxsUhISPiznX+mp6efdixfIyYmBidOnDilPTdeV3x8PKKiosy18Rp5noK4XpNbbnwtvmZycrJtERERERERX3NOgldwcDC+//57VKtWDZUqVUKFChXQokULTJ482QQpdxi6fvvtN3z77bc4fPiwCTrz58/HV199hU8++QR169bFsWPHzLEMOYMHD8YPP/xgQhnDkJ+fH5o3b26ObdmyJRITE82xua1evRq9evVC9erV8eGHH6JixYrmGrt27YrZs2ebEJUfhrTu3btj+PDh5muGyVGjRqF+/fr4+OOP8eOPP+Yb9kRERERExLuVavBiIOrfv78JW9yaNm1qwlHbtm3x5ZdfmjYGq4iICPsdf2F46tChgwlEe/bswdSpU83xtWrVQpMmTVC7dm0cOHDAHMtQ1ahRI3z66acmpDEM8dg6deqY1+Q+BjIXhqQhQ4bgo48+Msc1aNDAXAc3/t3V/vXXXyM8PNx+16nYzmMY6thL1qlTJ/N1vXr10KxZM3Tp0sX0pomIiIiIiO8pteCVlZVlAlDlypXRunVrbNy40e456ciRI6bHiL1D7HXKG1IYvL755huzn71XDGqTJk0yIYc4NNA1nI/BiwGLxzCgsdcqMDDwz14uBjvX8EEOK2zXrp05L3vd1q9fj9TUVLOP+LqbN29Gq1atzLUzWOUObS6HDh0yvWkMkaNHjzaBKyQk5M9zsTeO90BERERERHxPqQWvrVu3mmDSuHFjE7LcYaBhsGEI2rZtm209yRW8GH5q1qxphiXmhwGLvUzs8WIvF4ckusOhf2PGjDHn7Nixo9tA5cJeMfa48diRI0fa1r8wePH1atSoYXrJduzYYfeIiIiIiIivK5XgxflZHGrHIXtLliyxre4FBASY43766SfbchKDF+dacR/DlKdiFQxenM/FY9u0aZPvED/2Qn3++ef47LPPsGHDBtuaP84B47wvzgFjD1tuDF5Vq1Y1rzlo0CDbKiIiIiIiUkrBa+fOnaaniL1BBVUI5DwtzuPisL/cXMGL5/n1119tq3u5g9eMGTNs6+nmzZtnzvfdd98VqvAFAySHSfL6VqxYYVtPcvV4MZhxuKKIiIiIiIhLqQQvzq9iIOFcKg4h5DC8/LY1a9aYYxnS8s61YvDiMMSCes1yBy8OccxP3759zTFjx461LQVjbxbD2u+//25bTmLwqlKlitk8DVkUERERERHfUyrBa+LEiabCH8vGM1R52tibxGMZYI4ePWrPcDJ4cbgi97HYhSeu4MXXy68KIbmGPy5YsMC2FIwFPRj+hg4daltOcgUvlrVnz1hR8b3lnd8mIiIiIiJlW6kEr/Hjx5teIlfFPxanKGjj97DioIuruAbDGXvGPHEV12AQYjn5/LA8PIPXqlWrbEvBWFGRRULcBS+2M/AVNXjxPbLIR7du3VQBUURERETEi5RK8Jo2bZoJXmdTdMIVvNjjtWvXLtvqHoMXy8mzaIZrUWV3OLeLwcvf39+2FIyLIrPHi3/m5gpenop5FGTdunXmPvE8W7Zssa0iIiIiIlLWlUrwWrx4sempYjn2ooaSkghev/zyiwlew4YNsy0F69mzp3kvc+bMsS0nuYIXi28U5T2yh4sLNruGXHJh6cIU/BAREREREecrleDFSoWs+McgxMWLi6IkghfLwzN4sYKiayFmTzj0sXbt2uZ7Dh48aFtPOtvgxUqIDFycl8aNPV+eCoOIiIiIiEjZUSrBiz03nTt3NmEi79yo/OSd41QSwYtBqmHDhuac06dPt63546LNDF0cMpm3N+psghffm6u3yxW8XL1eRe0hFBERERER5yiV4EVr1641wYuLDHOR5PyG0R05csQU18hbjbAkghdxyCBDTrVq1cyQyPxwHxdOrlWr1mm9XXQ2wSskJMS8L1fwYmVH/p1tmzZtskeJiIiIiEhZVWrBi1iK3RUwevfubcJYaGgotm/fbhYk5sLIDEvsVWJ7bgxe7DXj9xYmeDVp0sSEvIKCF3FNLoYmBp5+/fph+fLlpnLi/v37zTX+9NNP5nVZVGPu3Ln2u07F4MX9LVu2PKPgxQDKOWaNGjVC48aNTSVGDsvk39kbV9Bi0SIiIiIi4nylGrw4fJDl2NlrxADGjYHH9XdunTp1MuXdGbRycw3HYzDZvXu3bXWPwYsBiD1Ux48ft62esaIg53oxfDFA8U++FgMXN/ZksWcqPyxb//nnn5tFos80eEVGRpq5b1FRUX+Wk+ffXW0iIiIiIlK2lWrwcomOjjaLFo8YMcL09nBtr8DAQFNMIr/1qxhQGLgYkBisPOE6WlyEmAUrUlNTbWvBkpKSEBQUZErF87q4cT2xjRs3Ii0tzR7lXnJysnm9gtYYKwhL3LM3UEREREREvMc5CV6SP/bq/fjjj/YrERERERHxBgpeDlPmgld2NpLcFBsREREREZG/KHg5TFkLXmnR0ZhfvjzW1auHVM1HExERERFxS8HLYcpij9ehGTMw69ZbMfeRRxAZFGR3iIiIiIiIi4KXw5TVOV6JYWFY/v77mHrZZdj900/Izsiwe0RERERERMHLYcpycY2s1FRs//57TLnoIqypUcMMQxQREREREQUvxynLwcvl2IIFmF2uHBY98QRiN2+2rSIiIiIivkvBy2G8IXjRif37sfzNN+F/xx2IWrXKtoqIiIiI+CYFL4fxluBF6QkJWFGpEvyuvBIRS5bYVhERERER36Pg5TDeFLwoPS4OQR99hJk336xhhyIiIl4kOzsbWVlZ5s+SUhqvIVJaFLwcxtuCFzF8zX38ccx74gmkxcTYVhERESmrMjIyMHToUAwYMADRJVhMa86cOea5aLN+eSteQMHLYbwxeFH89u3wu/56BNeogez0dNsqIiIiZVFaWhqqV6+Ojz76CIcOHbKtJ6Xn/H9+zJgx+P777xEWFmZbi6Zfv374+OOPMXfuXNtS+uLj4/HTTz+ZkBmjXyDLWVDwchhvDV50JCAAk84/HwfGjbMtIiIiUhYxeNWpUweffvopDh8+bFtP2rlzJypWrIhPPvkEY8eOta1Fw8BTqVIlzJ8/37aUvsWLF5v3wpC5RHPW5SwoeDmMNwav6OBgBFevjohlyxBSrx5m33svMhIS7F4REREpazwFrxMnTqBHjx5o0aLFWQ8RLOngxWGSy3KeT3bt2mVbTscevXbt2qFDhw44ePCgbRU5cwpeDuONwSspLAxL3ngDM6+6CoEPPIDJF16oEvMiIiJlmKfgRRxuGBcXZ78qupIOXuPHj0flypUxffp02+JeSkqKCZQiZ0PBy2G8dqhhVhZCx4xBwC23YPL//R/2Dh1qd4iIiEhZU1DwKi4lHbyGDx9uhhD6+/vbFpGSo+DlMN48x4sSw8Kwrn59+F9xBdbm/IOdcvSo3SMiIiJlhbcErxEjRpjgFRAQYFtESo6Cl8N4e/ByCZ86FXPKlcPcu+7C4VmzbKuIiIgUBoe+RUREFHo4H9fCYkU+fk9mZqZt/UtCQoKZ57RmzRps2LABR48eNd+Tn4KCF18rKirKlJ0vyLFjx7Bp0yasXr0a27ZtQ2Jiot1zZsGL18w5ZcHBwea9xMbG2j2nSk1NNfeB1zhw4EATvP744w8z34vXHBkZecqwQt4v7uPxhVlPjFUQd+zYYd7P2rVrsW/fPrf3PK/k5GRzXUlJSbblpNDQUHOeLVu2mOsrbnxPfA1+9tz4d0+fPfH+8Fr5c+jC6+b75pa7nfeDx/JnxoVt/Kx3795thqXmh1Ux+bOxYsUK8/55noLw/bj7+Tt+/Lj5+Thw4MA5WxdOwcthfCV4UfKhQwj+/HPMuPZaxKxfb1tFRESkIEeOHEG9evXQuHHjQj2Mbt26FfXr10fHjh3/fLDnAy9DVq9evVCzZk0TQD788ENUqFDBlIrv1q2beQh3x1PwYsho3769ub7w8HDbero9e/aYZ54vv/zSVEHkxpBVt25dzJgxw7zGzz//7DF4MXjOmjULbdu2xec5zxS8fp6H87Zq1aqFCRMmnDY3KygoyLwm3yNL1fP9VqlSBV988YXZuO/XX3+1R8M8wPO9sMAGA2p+GDj4flz3ktfhOjc/Jz8/P4/zxGbPnm3e+5QpU8zXDBydOnUy38/3xfvAc7PEPsPq2eLnxCqNbdq0QdWqVc1rcPvss8/w9ddfeyw4wmqVvFZ+P88zc+ZM8/PA+857unLlSnskTBl+7mPo4c8cP5MaNWqYe8T7zQCWG+8RP9NmzZr9eV28lzyenw2XKdi+fbs9+nR8ja+++goNGzY0Idq1HABfi+do2rRpof6bKQkKXg7jS8GLsnL+UV3w7LNY/OqryPLwGw8RERH5C3skGG74oMuH3oIwSLjKu7t+28+HYz7M88GWD9+jRo0y4eC3335DkyZNzLn5oO8ufBUUvBhU+LCcX3BjJUEGJT4I81j2PE2aNAmDBw9Go0aNTDvnXzF48Tz5BS8+M/FBn+GElRQnTpxoCmXwfGzje2B77h4nBoAuXbqYZy6+B75/vmbXrl1NO7fcc77YU8Jr4LF8iHeH981Vcp4P9gxHDFAjR47EN998Y+4zr6Vz58759lrxeJ6DBT8YaFyBbdiwYZg6dSoGDRpkwgPPw8+H11VU7PUbMmSIuS5+ht27dzf3n+uvsXoj2xly+Dm5w8+J18oFrnm/eX9atmxprpHvd/ny5fbIk8+2vGYGXt4PHssQ6zqWAdOFgZL3iMfzc+Vnwp9d3hsGONfPBvcxqLrDn03+3PJ9MdzzHHxNXgcDGN8rf3FxLih4OYyvBS9ib9fUSy7Bzj59bIuIiIgUZMGCBeYBlQ+vfJDOD8MCeyfYk7F//37bChMu2FPEIJJ7aBixJ+mHH34w5++T8//nvEOzCgpe7G3g93JYV15c56tatWrm4ZkP4nl7gTjUkL0iDB58+Gcwche8+Dp87wwmfGDPHa6IvSKunpXcPTB8L+wV4TA0fi/3s4eNX3PjvtznYu8I3wt7DN0Fr3nz5pmgwvs7bdo0M2Qw9/3i+djj2KpVK3MePvjnvd/EcMVrYfDj++b8s9zDLomfH8MHz8NAUtQhc7y/PAd7thhOcg/J4/VywWp+tuwVzP0z4zJ06FBzrQzHvMecI+d6T/x+bi7sOWXw4fvh+RjmXD+v/DlyvTbfK3+ZwPMymLHHLfd5+F5dPxvsCeP1M8zl5frZZEhlQOTnxp8F1+vwtfP+rJQWBS+HKWvBKz0jExHRCcjKOruxstt79MD0K69E3JYttkVEREQ8YSBgoGJA2bt3r209HefH8GGWv/l34UMse0w8DX3jAzcfbvmwzDlOuZ1N8GLw4PXwAdpTcOCDOgMNh+u5C158kC5oXa3ff//dBDz2gLl7rcIU1/AUvHgP+YDPYFFQgQ5eK+8ZX89dTxKDF8/D98wes/zmWfF7eQ5eT1F6vThvisGXPzvu5ue5MJTyfbNnKi8GL14nz5N7WKY7DF48lj9HDKb5YW8l3xd7+ThHyxN+rjyWPX/8WcyNX7MXla/Jnq9169bZPeeegpfDlLXgtXrDXtz76tdYuXaPbSkaDjlc+PzzWPTyy8jO9dsNERERyR+HTvHhmMUh3GHY4FA7PqTmHv5VGAw2XASZwSXvnJqiBq+NGzea8/HBOG9vTl4Me3xYz6/HqzDYm8cww7lt7nqZfvnlF3NvPJWT9xS8xo0bZ/bx/Ll7Z/LDYXkMBAzBeYOVK3ix58xTIGLREAYOnoeFO84Uh+zxe9nL5wmDIo9jQMvbo+oKXhwu6ulaicHLFRTzKwbDz5o/Txy+uHjxYtuaP/7suO4Bi5jk5gpefE0+V+fuzTvXFLwcpqwFr6TkNDz2Xhd81nyYx99aFUZUcDCmXnYZduX8gyAiIiIFY6U3BhN3v/knPjyzR6ZBgwZntKAxwxMLSXAoH8/v7uG2KMGLQ9MYvBhYCsIHZg67YxgpSvBiEOIQP14j74+7YYJnE7wYnDgfivs4J6swOCSS18Ohcnk/D9dQQxbU8DQUju+LQY+vy2B5JjgMksMYGXDy9mLmxWvge+bPT95iHq6hhpyPVRBX8GLgyw/fB49hQY28VR3zwx5T/iyNHj36lGdQ/mwyLDKUFWb+Y2lS8HKYsjjHa2rgWvz9rlpYv/X04QRnakfPnph26aWIzTXRUkRERNzjQ6arV8rdkCoWfeADOosmeMKCD/x+FixgkQ3O7+JDMM/LB9jcc6SoKMGL38OeHrYXpleDOESQr19Q8GIIYiEP9uqxV4lzexjaeI2uYOoueJ5N8GLFPNeQNk9DPXNjmOTwN14TQ2FuruDFohcFYWU/fjYcRnom2HPJ98Lwxe/lHKn8Nt5L3jeGtLw9ngxePA9/VgriCl6eQpDr5zT3cNiC8GeC94Dnz93bmDt4sWqnkyh4OUxZDF4nElPxdMVuqNxwEDIyPa/7UJCMxEQsev55LHnzTTP8UERERDzjAzsfWtmblBsfRlmtkOHI3ZA0BiSuecXeExZI4FwqBgI+zPLBnHNtONSvuIIXe9AYEtmDxSGHhVHQOl48J+cGMSDwWnj9fB/sUeLDt6sKXkkELwY93h8ODeQaYoXFIhu8Tt773FyfI6tKFqR3795FCl6rVq0y95Ovzz8L2nhv+Hnl7fF0BS8GpoK4gpenoa78xQCP4XkLi/eP18aCHOzJc3H9bDIw5ldV81xR8HKYshi8aGLAGvy9XC3MX37qWgxFEbNunalyuKNvX9siIiIi+WGxBD78sycld7hg9UA+mObXi8CHXT6A8xj2oPDBnz0drHLnChg9e/Y0xxRH8OLcJIY5tvPaCsPTOl4sLMGqfDwf1+ziQzvXf2IvB4dYsneJ64hxqBwDWHEHL4ZZFpdgaOUxhcU1pnhP84aZMwlefFYsSvBi+GEw5WfH8vGTJ0/2uLGMO3sQ837GruDFcvIFcQUvLs6cH1a35DEcNlhYXFSa95E/A+6CF382Dx06ZFudQcHLYcpq8GJ1wyc+6Iq3qp9ecrYotvN/AJddpiqHIiIiBchdQCN3QHKVSl+6dKlt+Qsr4/GhlQFp9+7dbgsQMEDxobm4gheLW7B3jUHK00O4C4cP9u3b123w4j4u/Mz3x6p7+VXBYzhiAYiSCF5cC6p27domuOady5Yf3meGRN5Td0MNSzp4Mazwevn5nA1X8AoMDLQt+XMFr7w9fLkx5PF8/AVAYXE5Bd6D77777rShhgpeUihlNXjRzPkbcNH99bAwKP/VxAsrM+cf5wXPPIPFr72mhZVFREQKwGDEh1vXgyt7lxgU+ACad8FeV1ArqIIcH2Y5RK+4ghdft3///uZ1uU5UQRhSXL1DeYMXiz0wQLDHicMN87N+/XoT3NjT5il4FaWcPO8Bh05yn6dQkRuHJLL8P+9B3rBYGsGLnxVfn9/Ln5GiKu7gxSGQPB8XYeZ9LQwWaOH74GeYm4KXFFpZDl6ZWVl484veptcrNe3sw1J0SAimXX45duX8Iy0iIiL5Y6hgMOCcIw7B44MsH3bdrbHEtbtc84y4SG1++NDKh2EGnOIIXsT1l9jOtbwKGiHD4YIMKO6CFwMVh8y1bt3atrjHoXJ8vaZNm7oNXq51vDyVVs8veBGLeHBfYXtqOGyPr8deGnfl5HmukgxevOcsmsLPlAs/F1VxBy8GUg6XZSgszLpbLCfPMO3uvApeUmhlOXjR/OVb8c+762Dxqh225exwyCGrHMZtO/u5YyIiIt6KD9SsMMcHUQ7B4two/t1dUQ2W62ZPEvd7KkfORXzZW8StuIIXv2bhC57T02vzHHwe4nHuFlDmMD22s0x+fhhAWSSE58gveDGY8T54qs7nKXhxfh1fgyGooF4vlm/nfeH73+bmuaY0ghctWrTIvGcGsIJ6vfhzlXsYn0txBy+G0LFjx5rjWKI/77pheXEuH4/lufmzkpuClxRaWQ9eGRlZeLrid/ik8WDbcnYyEhKw8LnnsOSNN5BZyHUdREREfNGOHTvMwyiHETIMcD5Vfjgvig/uLBvPB9Xc+PX48eP/rGxYXEMNXfiAzX3Nmzd32+PGYMgKjQworqGOeYMXe+1YNIPvl0EzLz5w8wGec7t4nvyGGnKuG8/Rrl2703qgXDwFL3KFNxY34fncYUDjmle853mrT7qUVvBiIQq+X74Wf1byq8jIHsc+ffq47YEq7uBF/Hz4c8Nj+XPJ4JwXgyBfk71jnLvHQjB5KXhJoZX14EW/z1yNyx5qiDUb99uWsxOzdq2pcqiFlUVERPLH4OB6oGYvj6f5WyyzzWp8PI4L9nKNJVbZY2n2tm3bmodfzsNiAQsOS8v7gM+HWxaJ4FBAd8GLIYXndlfOm3Ob+LzD12B44nA9vhaLgLDSIodB8ntZqpz7eFzeYXF8AOfwQB7HB2z28PH72ZvDOT8ccsleLr4nTwtIc/6b6z4wZCxcuBDTpk07pdgGgxf3szy9u+DFIJO7d5ChgQsqczgkX58V+3g9fB8MOu7OQQxwDFOFqezHz4X33lOJdk/Y48bPzxUouXYYAyw/Zy5MzPPzvnH/Jjdrq/J4XivXfSsIh1XyPHmrOLrDZQYYmng87zfncbEQC+8lf0a4NhvvMcM0f775c5BX7p9NBS/xyBuCV1JyGh5/rwtqtR3p9j+IotiW8w/VVA05FBER8YjBgQ/5LLHNoW2ecKgfj2Mg4OYKDuyJcj0kM9DwIZbV8HJzrRHGHgoWusiNwYvn5YMze03cYVjh8D4+HPMhO/c1MHhxjhrxGAYjdz1JvAaGJL5fnoPfy3Owh4zBgT0m7M1hrxnXesov8PC1uBCy6xwMFLnnxjGc8b0wkOZXyIPvmcPfGPZc9zH3xmtgUGRlx/zw+9nLyABWEPY48diQkBDbcubYG8n1wHjPXJ8Br5V/MmwzQG7ZssXtsxx7Lfn6hVkImwVV+BkWdjFj9g66irC4rin3dXE+Ha8rP66fTYbtM1lfrTQoeDmMNwQvGjFxKa57ojkOHvH8j35hZZw4gflPPYVl77+vKociIiL5YCVABg53vTvucFgfy8mzh4ZrMrHHIXe4YFhhj0/eOTd8GGewYyhxV4qevVqRkZGnzb/JjedgjwRDHnu3eA0cLslhhC78u7vXz437GSJ5/ez12rt375+vyz95jbweT78M5nvhOdiDxHuQ+xp4Dr4XHlPQL5R5vzh8kj1H7EXkn3xP+YW+3PhZ8LNj4YiC8DNi4C1oLlRB+N4Yjhk+eb18//x5YKl8T58dr5HX6ilIurh+htgTVVi8zwxNDGvs7eTwQoZMrsvm7uctt9w/m57ew7mg4OUw3hK8IqITcO3jzTBsQsG/CSms44sXY9I//oFDHioPiYiIOFYBD+0i4t0UvBzGW4IXf9vQ5JtxeOL9rkhL9/ybiTMRXKMGAh980PSAiYiIlAXp8fHY2qWLKRYlIr5LwcthvCV40dLgnbjhyeZYsnqnbTl7ifv2YeZNN2FDy5a2RURExJmi1qzB6urVsfCZZzD9oosQcNdddo+I+CIFL4fxpuBF/327M9r/WPAk0TMRPnWqGXJ4cOJE2yIiIuIcXAplc/v2mJwTthbkhK6dPXtiS87Xe4cOtUeIiC9S8HIYbwteX30/EU9+8C2SUwo/obIwNrZpg+lXXYXjixbZFhERkXMvPSd0BX38MaZfeSX2DhmCDK1BKSKWgpfDeFvwWrhyO/5+Vy3sCT19Ebyzwf+Rrcz5H9uMyy83RTdEREScIKRuXQRcfz2i85RfFxFR8HIYbwteh47G4JZnWuHnMaevKn+2OFk5qHJl+N1wAyLteh8iIiLnyuGZMzHl4otxaPp02yIi8hcFL4fxtuCVkZGFCnUH4p0a/WxL8eKQjiVvvIFZN9+MmPXrbauIiEjp4kiMeY89hpUVK9oWEZFTKXg5jLcFL/pp9Hzc+mwrhIZH2pbilXL8OJa++SZm3nILotessa0iIiKlh/O5plx0EeI2b7YtIiKnUvByGG8MXsci481iygNHzbctxS81MhKLXnnF9HxpzpeIiJSm+O3bMeOaa7C5Y0ezjqWIiDsKXg7jjcGLmn87Afe/1h4pqem2pfilx8ZiTY0amHrRRdj6zTdmDpiIiEhJOrF7N+befz8WPv+8FvcXEY8UvBzGW4PX2s2huPQ/DeG/cINtKRlZ6enY/dNPmHrZZZj/1FOICgqye0RERIpX4oEDmPvf/2LBY48hMTTUtoqIuKfg5TDeGrwyMjPxbs3+eL/OAGRmZtnWkhO7ebMpujH5wguxtWtX9X6JiEixSj58GAvKl8ese+7Bif37bauISP4UvBzGW4MXTZ4dgqsfa4KN28NsS8nKTE7G3sGDMfXyyxFUpYrpDRMRETlbiXv3Yt7jjyPwvvsQv22bbRUR8UzBy2G8OXilpmXgrpfaokPvqbaldESuXIkpF16IPTkhTERE5GxEBwdjzv33Y95DDyFh1y7bKiJSMAUvh/Hm4EU/DJmF255rjeSUNNtSOrZ99x2mX3kl4nfutC0iIiIFy0xJQdyWLdjevTvmly+PgGuuwcIXXtCcLhE5YwpeDuPtwSto3V5c90QzLA8p3d8SZiQkYP6TT2L5Bx+YRS5FREQ84TIluwcOxJJXX8Wkv/8dM2+8ESF16yJswgSkx8XZo0RECk/By2G8PXjFxifhobc6ouuAGbal9HB9r6mXXoqAW2/FrLvvxq6+fZEWHW33ioiInJwfzOq4fjfcgFm3347Vn3+Oo4GBJoiJiJwNBS+H8fbgRR81+Bnv1epvKh2WtvXNm2PKeedheYUKmHHttZj7yCOIWrXK7hUREV92IjQUS995B1P+/W9s6dwZJ/bts3tERM6egpfD+ELwGjh6Pu5/vT2ORZZ+iXeW/w0oVw7rmjbFib17sfStt0wv2J4hQ5CdVfJl7kVExJn4S7jZd9yBeU88geiQENsqIlJ8FLwcxheCV8jmUPzz7jrYvCPctpSu8MmTsdPe46yUFGz55htM+de/sKldO2Sfg144ERE5tw77+8P/2msRVLEi0qKibKuISPFS8HIYXwheMXGJpsDG+BnOGeIXNn48Jv7tb9gzaJBtERERX8DQNflf/8Lq6tWRkZhoW0VEip+Cl8P4QvDKzMzCh/UGokabEbbFGTZ36IAZ112HlGPHbIuIiHgzrvM47YorsKZWLVNUQ0SkJCl4OYwvBC/iel53vdy21Nfz8iQ1IsLM/1rfooVtERERb5URH4/ABx7AiooVNcxcREqFgpfD+Erw2rAtDDeUb44ps501gXnvoEGm2Ebshg22RUREvNHOnj3hd/31SNi927aIiJQsBS+H8ZXgRf/7si/er90fGRnO+U0jF1de9PLLmF++PFI1wVpExCslHzpk1uliyXgRkdKi4OUwvhS85i7bgn/eXRuLgrbbFmdI2LMHsx94AEtfegmJ+/fbVhER8QbZ2dlY26AB/G6+GWkxMbZVRKTkKXg5jC8Fr/SMTFSq/zOe+6g7UlLTbaszxO/ciUVPPWXmfB2ePl3j/0VEvEBmSgo2f/21GVJ+eOZM2yoiUjoUvBzGl4IXbdkZjsseaohhExbbFudIjY5GSN26mHHhhVjx1ls4Mncuf1Vq94qIiNPlrlIbs24dluf8Wz7r2msR9vvvtlVEpPQoeDmMrwUv+ur7SbjxqRaIiE6wLQ6SE7SOL1yIpa++Cr8rrsDC55/HnsGDkXz4sHrBREQc7MSePVhQvjzWN21qfokWkBO4Fr/0EqJzApiIyLmg4OUwvhi8jkbE4ZZnWqH5txNsi/Nk5YSsY3PmYE3Nmgi4/XZMu+QSrKxUCXuHDDGTtEVExFm4MP6k887D3IcfNoGLvzTLSnPOEiYi4nsUvBzGF4MX/TpxGS5/uCFWb9hnW5wrKTwc4VOmIKhyZQRcfTUWPvecWQNMREScI/jLL7HolVfMv8+ZSUm2VUTk3FHwchhfDV7p6Zl4qcoPZsvKKjvzqBJ27TLrwGxo1cq2iIjIucalQfyuuw47+/SxLSIi556Cl8P4avCiVev34pIHG2DExGW2pWwIHTsWUy+4AMeXLLEtIiJyLh0OCMD0q65C9KpVtkVE5NxT8HIYXw5e1OK7Cbj12VY4cjzOtjgf5wxwvtfcRx9F8pEjyEp3Vml8ERFfkpGcjOXvv4+5jz+OzJy/i4g4hYKXw/h68IqISsDNz7REj0EBtqVs4KLLfjfcAP+bb0bAnXdiS6dOZi6YiIiUnojly7Houecw6/rrcXDiRNsqIuIMCl4O4+vBi7oOmIG7X26HtPQM21I27B0+HJP+7/+w7N13MeueexBYrhwOjBtn94qISElJi47G5nbtMPPSS7Hygw8Qu3Gj3SMi4hwKXg6j4AUsDd6F655ohiWrd9qWsoFDWhY8+yyCa9ZEelwc1jVqhMkXXIC1DRuar0VEpPgdmT0b8+6/H4F33IH9I0ciOyvL7hERcRYFL4dR8AKSUtLwwBsd8E2/6bal7IjfsQORK1far4CDU6aYIYgsaXxi717bKiIiZyvl+HFsaNoUMy+/HGuqVcOJ/fvtHhERZ1LwchgFr5OqtRiON6r1Rmpa2S9UwZLzLLwReNddiA4Jsa0iIlJURwICMOfOOxF4660a0i0iZYaCl8MoeJ00adYaXP5wI4SGR9qWso3VDle8/z6mXXmleWAQEZEzl5GQgC0dO8LviisQ/NlnSDxwwO4REXE+BS+HUfA6KexwFP79QH34zV9vW8q+jBMnEFS1KqZfcomZkyAiIoXH0QOLXn4Z0y+7DPtHj7atIiJlh4KXwyh4nZSUnIrnP+6Btj9Mti3eITM11RTfmHLRRTji729bRUTEk8jlyzHzllsw7/HHEb1unW0VESlbFLwcRsHrpOzsbFRv9Qsq1B1oW7wHqx+urlYNUy+7DBFLl9pWERFx5/DMmZhx9dVYWbkyUo8ft60iImWPgpfDKHj9pWPvaXjorU72K+/C8LXyo48w48orEb1mjW0VEZHcDk2fbkYIbGjZUmXiRaTMU/ByGAWvvwybsBjlXvwKMXGJtsW7ZMTHY9n//oeAO+5A/JYttlVEROj4okWYdtllWN+sGbIyytaC+iIi7ih4OYyC11/mLttqgtfG7Qdti/dJi4rCopdewpx770VSWJhtFRHxbbEbNmDGNdcg6OOPka3QJSJeQsHLYRS8/rJ9z2Hc8UIbBCzcaFu8U/KhQ1jw5JOYX748knL+LiLiy9Lj4rDg6aex4JlnTPl4ERFvoeDlMApef0lMSsVtz7U2Qw69HdeimXXPPVj0yitIj421rSIivmdL586YfvHFiN20ybaIiHgHBS+HUfA61X/f7ozOfafbr7xb/LZtCChXDsvfegupERG2VUTEdxxfsgRTL7kEewYNsi0iIt5DwcthFLxOVbnhIFNWPjvbNni5mHXrEHDjjVj8+utIjYqyrSIi3i8zMRHznngCy955B1np6bZVRMR7KHg5jILXqdjbxYWUk1PSbIv3Y3n5mTffjGVvvIHUyEjbKiLi3bb36IGpl16KhJ07bYuIiHdR8HIYBa9TjZ0ehJufaem1JeXzE5UTvvxvvBFL3nzTVD4UEfFWXJ8rdMwYs17Xrr59bauIiPdR8HIYBa9TrVy7B+ffWROHj/lewYnokBDMvOkmLHntNQ07FBGvFL12LVZ+8AFmXHwxNrRqpSGGIuLVFLwcRsHrVCwp/+8H6mPjdt9c4yoqOBgzb7wRS1lwQ8MORcRLZJw4gR3dusH/mmuw8JlnELF0qd0jIuK9FLwcRsHrVGGHo3Hrs60xY9462+J7WHCDww4Xv/Ya0qKjbauISNnEtQsXv/oqZuWErj0DByIzzXfm8IqIb1PwchgFr1NFxybisXe7oN+vc22Lb4pavRp+N9yAlR9/jMyUFNsqIlK2ZCYlYfl778H/jjtMj76IiC9R8HIYBa9Tpaam4/XPf0TrHn/YFt8VuWwZplxwATa2bGlbRETKlp29e2PapZeannwREV+j4OUwCl6nq9psKCo3/Nl+5dv2jxqFyTnh68Bvv9kWEZGyIeXoUbNUxpYuXWyLiIhvUfByGAWv0zXqPBYvfNzDfiUbW7fGjCuuQNzmzbZFRMT5NrVti1l33625qiLisxS8HEbB63RdB/jhife7Ij0j07b4NlYDW/zyy5j36KNIOXbMtoqIONfRwEBM/uc/sX/0aNsiIuJ7FLwcRsHrdMMnLMHD/+uEiOh42yLJ4eGY8/DDWPj880g6dMi2iog4B9fkSouJwe6BAzH98sux6rPPkJmaaveKiPgeBS+HUfA63ezFm3H3y+2wbfdh2yJ0Ys8ezL7vPsy55x4cnDhRDzQics4xbB2dOxebv/4aS956C9Mvuwz+112HDS1bIiNevzwTEd+m4OUwCl6n27H3CG56qgUWr9ppW8Ql5cgRBH/+OfyvvRaB//kPNjRvjug1a5AeG2uPEBEpHaxUuOx//8PMq6/G7HvvRUi9ejg4YYL5JZGIiCh4OY6C1+lSUtNxzWNNMXbaStsiecWsX49NHTpg4VNPYdL552Peww9jc7t2ODZvHrK0OKmIlKD0+Hhs6dwZUy+6CIueecb0eGVlak6uiEheCl4Oo+Dl3nMfdUerbr/bryQ/fACK3bABm3NC2JyHHsLM669HwJ13mp6wyOXLkRoZaY8UETl70WvXYvELL8DvyiuxM+f/XekJCXaPiIjkpeDlMApe7rXMCV1PffgdMjOzbIsUJDszE8cXLsTm9u0x58EHMfH//T/TE7a+ZUskhYXZo0REzlzCjh1mPS4GroXlyyN2/Xq7R0RE8qPg5TAKXu75zd+AC+6ti0NHY2yLnAn+Fppzv9jzNatcOfjdeCMOjB+v4UAiUjhZWWYO17bvvsPchx7C9CuuQGDOvyX8xU56XJw9SEREPFHwchgFL/f2HDiGm59uiVGTl9sWKaqUo0exrmFDTP7Xv7Dq00/V+yUi+crKyMDhmTOx9K23TO8Wf2mzoVkzHPLzQ1J4uD1KREQKQ8HLYRS83OMQw3dq9sN7tftruGExORwQgMD77oPfDTcgpFYt7BsxAkkHD9q9IuLLsrOzcdjfH0tffRXTL74Yy959F4emTdMcLhGRs6Dg5TAKXvn75Y+luO6JZti574htkbPF3q/VX36JKeedhxk5m/8tt2BTmzY4sXevPUJEfE3U6tVYUbGiKQu/8oMPELF0KbKz9AsvEZGzpeDlMApe+YuKPYEr/tsI/UfOsy1SXA5OmYK5DzyA5TkPWZy/MfXii7G+SRPEb9tmjxARb2fKwnfsaMrCB5x3HtbWq2f3iIhIcVDwchgFL8+adZ2A+15rj7T0DNsixYW9X1np6abk/N6hQzHr7rvhd9112N6jBzKTkuxRIuKtduT8v8cvJ3BNZ+/3Nddg75Ahdo+IiBQHBS+HUfDyLGRzKK58pBH85qt0cUnjXA6Grmn//jeWvPEGEvfvt3tExJvEbtyI9c2bY+YNN2DWLbdg41dfIW7rVrtXRESKi4KXwyh4ecbCGpUbDsLLn/6AlNR02yolKTokBHMfewz+t96K8OnTTa+YiJRtGYmJOL54MVZVrgy/a65B4IMPYmffvkg5dsweISIixU3By2EUvArGXq/zy9XE9LnrbIuUtNSICKypVQuT/vY3LHvnHRwNDER2hoZ7ipQ1rFy6o2dPLHzuObOkxPI33sDBiRM1nFhEpBQoeDmMglfBsrKzUaXJEDz+XhckJqXaVilpLC99dM4cLH7tNcy86irMe+QR7B44EHGbNpl9IuJM8du3I+yPPxBUuTKmXnIJAu++G8E1ayJmzRr1YIuIlCIFL4dR8Cqc9VsP4PKHG+HHYbNti5QWhqyooCBsbN0aftdfj4Cbb8ail17Cjh9+QMLOnchMSbFHikhpY9n3jPh4RK5YYSoU8r9NDhOectFFWP7uuzgwfrzW6xMROUcUvBxGwavwegwKwKX/aYgde7Wu17mSceIEDs2YgeDq1c1izBP/9jfMf/JJbOnUCUcCA5GZmGiPFJGSknz0qPnvjVUJV3z4IWZccw2mX3IJ5j/+OIK/+AIHxo41w4VFROTcUvByGAWvwos/kYLH3u2CivV/MkU35NxKPnzYzP1a37SpKUU/89prMf/ppxG1apU9QkSKS1ZaGiKWLcPqzz7D7HLlTO+z/803Y1WVKtg3YgRi1q1DWnS0PVpERJxAwcthFLzOzPwV23DhfXUxNXCtbRFH4HDEnMC1/P33zWKs+375xe4QkbOVsGuX+W9r0vnnY8krr5hiGdFr1qjgjYiIwyl4OYyC15n7svUvePDNDoiNV1Uup+F8r+3dusHv8sux5osvkBgaaveIyJnKzsxE6OjRmHH11Zj7yCM4Mns2MpOT7V4REXE6BS+HUfA6c7v2H8VVjzTGj8NVaMOp+IAYWK4cZt18Mza3b4+YkBBTBEBECofrbq1r2NDMo1yb86eGEYqIlD0KXg6j4FU0rbv/gbteboujEXG2RZwmJSLC9H4FPvAA/K6+GrPvuw8bW7Uy88JO7NmjstYi+Ug5ehQr3nsPM6+5BgcnT7atIiJS1ih4OYyCV9EcPByNK/7bGANGzbct4lTpMTGmAtvmDh0w97//NfNUAm6/3ZS9Dq5WzbRzC65RAysqVMCyt99G8JdfYv+oUeYBVMSXcO5W4H/+gzn33YeYtZrLKiJSlil4OYyCV9Gx16vcS18hJVU9J2VFVmoqkkJDETZ+PNbWr49lb76JBc88Y7Ylr7+OFZUqIaROHSx57TUTzqZceKEpXX980SINVRTvlp2NvUOHYuqll2LZO+9o7S0RES+g4OUwCl5Ft2HbQVz9aBNMn7vOtkhZlJmUZLa8Enbvxv6RI7Hw2Wcx44orsPCFFxA+dSoy3BwrUhaxRHxSWBh2//QTFj7/vAldW7t0UQENEREvoeDlMApeRZeVlY13avTDRw1/RkZmpm0Vb5OdnY3jixdjZeXKmH7xxVhUvrxZIJYVFEXKotiNG7GzXz8sfe01TPrHPxBw661mPa5j8zV0WkTEmyh4OYyC19lhb9fVjzXBjr1HbIt4s5j16xFSvTr8WV77sccQ9vvvSE9IsHtFnIlDbNmDu3vAACx49lnMvOEGzLjuOgR9/DHCp01D4oED9kgREfEmCl4Oo+B1dhKTU3HHC23Q55c5tkV8AYsOrK5WDZP/+U8sfvpphI0bpyqJ4jjx27djZ+/eWPrGG5iU87Pqd+21WP3ZZwgdMwapERH2KBER8VYKXg6j4HX22v4wCQ++0QHpGRpu6GtiN2xAcM6DrP9VV2HhU0/h8MyZmh8j5wzDf/y2bdg7eDAWPfcc/K65xgwjXFmpkikLn3z4sD1SRER8gYKXwyh4nb2gdXvx7/vrodcwLajsqyKXL0dwlSqYeP75WPzii9j3yy9Ij9Mab1I6uC7djp49sfj11zH90ksx/YorTM9W2IQJSA4Pt0eJiIivUfByGAWvs8fiCz8MmYV/3VsP7X+cghOJKrrgi1huPmrVKlOkYNZtt2H6VVeZdcIOTZ+OxNBQe5RI8YjdtAl7hwzBIlYjvOQSzLrjDtOzxbCVGhVl/l0SERHfpuDlMApexYMVDodNWIzLH26E1z7rhd2hx+we8UXxO3ZgD0t0P/OMWQtsdrlyWP7hhzgwbhxSIyPtUSKFl52ZiaTwcOweOBBL3ngDftddh2mXX45Vn36K8EmTFO5FROQ0Cl4Oo+BVvDZsC8Pj73XBrc+2RsCijbZVfBUfljkMbFf//lj61lvwu/pqTLnkEqyuWtX0TOhhWQrCn5+9w4Zh2dtvY8oFF2DW7bcjqHJlHPjtN6RFR9ujRERETqfg5TAKXsUvOjYRddqNwiUPNsDykN22VXxedjbitmwxizIv4VycK6/ErDvvxPIKFXDwjz+Qevy4hoeJkRYTgyMBAWbo4Ow77jDDVhm2wqdMQeL+/fYoERERzxS8HEbBq2Qkp6ThxU++N8MOU9MybKvIX5LCwsywsRXvv48Zl1+OGbYgAnsyUo5oXThfxCItG9u0MUNTp/z731jx7rvYN2yYCeUiIiJnSsHLYRS8Ss6ioO244N46mDI7xLaInM41HDF01Cgsfvll+N90E2befDNWVKyIQ1OnIungQXukeCPO+QvNCdsLn30WATmf/ZyHHsLOnH+TuQZXVoZ+aSMiIkWn4OUwCl4lq2qzoXjk7c5a40sK7cTevaYnbPm772Ly3/+OmTfcgFVVq2Jnnz5mmOKR2bPNFrliBU7s24eE3bs116cMyjhxArv69cO8Bx7A1Isvxprq1XF0zhwzJFVERKQ4KHg5jIJXydq+5zBufKoFBoyab1tECoeL4TKE7Rk0CIteeglzHnwQs++9F/533omAcuXgf9ttmHnTTfDL2WZcd52ZBzQjZ5ud8yDP4xe9+CKCPv0Uaxs2REj9+tjesyd2//yzOR/nDx1ftAgRS5aYRaDjNm9G3NatZs2npEOHkHLsmFkIOis11fTIeZPM7CzsTjyCTXGh2JZwEEmZqXZPKckJVodnzcLchx+Gf06o3tS6tQnQIiIixU3By2EUvEpel/4zcNUjjREarjLiUnRckJnDDrl+E7eolStx2N8fR3Ie4sN+/x17hw4129auXbG+eXNsaNECQZ98gqVvv41l775rHvQZ2ALuuAOT/vEPTDrvPPyRs7Ek+fSrrzblyWffdx9m338/5uQcy+C26OWXTeny1VWqYF2TJua10hMS7BWVPTsTDuHTkD64cV4tXBpQFVcFfoFXgjpjxtFge0TJSjl6FGtq1sSUnPvPexq/bZvdIyIiUvwUvBxGwavkxSUk4aH/dULlhoM05FBKV3a2mSfEXiv2YGUkJpotPTbWDE9MOX7cLPocsXy56QHjUMa9w4dj94AB2NiqFdbnhLc1tWtj6ZtvYn758vC79lpMv+IKrKlVC0cDA81wubIi8Ph63L6gHs4LrITz/D/EeTPtNrsS/hXwMTrv+B1ZJTjM79i8eZiTE2xn3XorDowdqyGFIiJS4hS8HEbBq3QsDNqOix+sj74j5toWkbKFww6jQ0KwZ/Bg0xs2/bLLMPexxxCWEyKcPhwxNOk47lrQMCdkVcR5MyqcvuUEsP/nXxF/HFpuv6N4ZGdlIWHnToTkhFe/Sy9F0AcfaFihiIiUGgUvh1HwKj0MXX8vVwszF2ywLSJlE9cbi9m4ESH16mHahRci6OOPzbwwJ+KcruZbR57s6XIXulzbrIp4eHFzxKSdfS8eh4UenDIFQR99hMkXXICFTzxhysJ723w5ERFxNgUvh1HwKj2ZmVmo1fZXXPVoE6xcu8e2ipRtx+bPx6xy5UwZ9KjVq22rc0SmJeC+hY1PDi90F7hc28wP8W//KlgWVbR5Vxy+GblypSlmMvuuu0yhk+XvvGMKmaTl7BMRESltCl4Oo+BVuuJPJOO9Wv1x23NtsPeAFkUV78B1yJb973+YesklZgHguC1b7J5z71B6LP4961Oc5+cmbOXdZlXE5OOr7HeeisMGk8LDTeXH2I0bcXzJElP+naX/Q+rWxbyHH8bEv/0NC556Cpvbt0dMiNbvExGRc0vBy2EUvEpfdGwi3viiN/7zZkfsDnXm8CyRM8U5YHuGDMGsu+4yZdLnPfYYNrdrh0PTppkgxsBSmGIcDDjZLAiSa2OBEBYDSY2IQIqbjYsQs+Ljid27zbpmri0xJxBu2xaMi2d8nBO8Cujxyglm/+dfET171MXG+vWx5M03TUVIVnn0v+UWBNx5J/xvv938Oeuee/78M/Dee7H4tdew44cfELNuHTLKcNVHERHxLgpeDqPgdW4cj4rHc5W7477XOmDt5lDbKlL2pUVF4eCkSab8/PwnnzSLA0/+179MUFn4/POmxP26Ro1ML9GaOnVO2YJr1MDy9983gSf3tuydd0whD5a5d7fNfeQRE4q4lhlL47s2v5xt7K3X4/Z+L+O8gHwKa7g2/w9x0aQPMPjzN7G6YkUzf21tgwbY1q0bdvTqZUr1832FT51qqkByWGX8jh3ITEqy71xERMRZFLwcRsHr3DkaEYe3qvfBlY80xuTZGpYk3oel69lLFbN+PULHjsXmDh2w4qOPsOi557Dg2WdP2RbmbFw3LPjLL08LZSE52/YePUyZ+539+p2+9emDA+PGmflmR+fN+3NjCffIpUvQafUw/N+sSp6HG86uiBeXt0d8YpyKYIiIiFdQ8HIYBa9zKyExBQ06/oaL7q+PHoMDtM6XSAmIzUjEfxe3wHlzPnIfugI+xD/8K2NB5Gb7HSIiImWfgpfDKHg5w5Bxi3Dlo83wYb2fcOhYjG0VkeKyMnonHl/a+uRcLy6czCqH3GZXwnXzamLYAa2xJyIi3kXBy2EUvJxj+ZrduOeVdihf4TtERGuCvkhxO5Yaixvn1MSlgZ/hhpw/b5lbG7U2/ox1sVrUWEREvI+Cl8MoeDnLrn1HcUP5Fvik8WAkp6TZVhEpLnfMq4/++2YiKzvbbCIiIt5KwcthFLycZ+6yLbjwvrpo/+MU2yIixSEL2bh9Xj0M2OdvW0RERLyXgpfDKHg5E+d8/b87amBKoKodihQXBq+b59ZGv70zbYuIiIj3UvByGAUvZ8rOzkbzbyfg6kebYEXIHtsqImeD/10tjNyM/UlauFxERLyfgpfDKHg5V0pqOqo0GYLrnmiO2Ys32VYRERERkYIpeDmMgpezJSan4svWI/CPu2qjzy9zkJmVZfeIiIiIiORPwcthFLycLy09A90H+eNf99RBnXajzKLLIlI0KVnpSM/WQuUiIuL9FLwcRsGr7PCbvx7Xl2+Jlz/tib0HjttWETkTVdf2xc/7Z9uvREREvJeCl8MoeJUtG7aF4ZF3vsFtz7XGghXbbKuIFNajS1qi447x9isRERHvpeDlMApeZc/RiDhUavAz/nl3HVN2XkQK7/nl7fHVtjH2KxEREe+l4OUwCl5lEysedug9FZc+1BiNOo9DVMwJu0dEPHl71XdosHGo/UpERMR7KXg5jIJX2TZ1zlpc92QLPPZuF2zaEW5bRSQ/b6/+DvU3DrFfiYiIeC8FL4dR8Cr7tu85jFeq9sTlDzfE2GlBtlVE3Fkftw/bE/RLChER8X4KXg6j4OUdWGK+VbffceF9ddGs63icSFLJeRERERFfpuDlMApe3mXSrDW46enWeLFKT9MTJiIiIiK+ScHLYRS8vM/OfUfNWl83Pd0KE/xW2VYRoeTMNCRlptqvREREvJeCl8MoeHmnxORUtOkxEf+6pw7qdxiNyJgEu0fEt7Xb9huab/nVfiUiIuK9FLwcRsHLu81csBG3P98Gj7/fBVt3HbKtIr6r2rr+qBj8g/1KRETEeyl4OYyCl/cLDY/Ekx98i3IvtsWu/Udtq4hvqr5uACqv6WW/EhER8V4KXg6j4OUbjhyPQ/kK3+KZSt0RHZtoW0V8j4KXiIj4CgUvh1Hw8h3s7brxqVao3XakbRHxPQpeIiLiKxS8HEbBy7cELNxo1voaMGq+bRHxLTtOHMK2hIP2KxEREe+l4OUwCl6+p9ew2bjovvpYvGqHbRERERERb6Pg5TAKXr4nMzML1VoMx+3PtzaFN0RERETE+yh4OYyCl29igY3H3u2CV6r2RGKSFpMV38HFk+MzkuxXIiIi3kvBy2EUvHzXtt2Hce3jTVGj9QikZ2TaVhHv9sOeafhsbT9kZWfbFhEREe+k4OUwCl6+bc7SLbjo/vr4dqCfbRHxbi22jMSLyzsiCwpeIiLi3RS8HEbBS/qPnIfz76yFwWMX2RYR79Vxx3g8vawdMnOil4iIiDdT8HIYBS/JysrGdwNn4oL76mPQbwttq4h3+mH3VDy4qCnSszS8VkREvJuCl8MoeAllZ2fjm37T8fe7aqHrAD8TxkS8Ua890/DfxS0UvERExOspeDmMgpfkxuGGlz7UGFWbDkVEdIJtFfEeh5KjsDEuFNma4yUiIl5OwcthFLwkLxbcuKF8czz5wbfYtf+obRURERGRskTBy2EUvMSdbbsP4ZG3O+O259pgafBO2yoiIiIiZYWCl8MoeEl+jkfG4/06A3HlI42wYOU22ypStiVnpiEiNV5DDUVExOspeDmMgpd4kpiciqrNhuGG8i2xeUe4bRUpuyYeWoEnlrRGala6bREREfFOCl4Oo+AlBUlITMErVXvh1c96IjVND6tSto04MB/XBFZHSmaabREREfFOCl4Oo+AlhbEiZDcuebA+JvoH2xaRsunXAwtw/ZwaCl4iIuL1FLwcRsFLCuuTxoPxdMXvkJKqXi8pu0aEzsd1c75U8BIREa+n4OUwCl5SWGs27sc/766NBStUaEPKrtFhi3DrvDoKXiIi4vUUvBxGwUsKKzUtA5Ua/IyH3uqEY5HxtlWkbIlMizcLKGdlq6qhiIh4NwUvh1HwkjNx4FAU7n31axO+VoTssa0iIiIi4jQKXg6j4CVnat/BCPyveh+cf2ctfNl6BEI277d7RERERMQpFLwcRsFLiiIpOQ0T/FbhkXe+wXVPtkCttiMRfiTG7hVxrpSsdIQnR2kBZRER8XoKXg6j4CVnIy09E+NmBOUEsC647fmvMGPeertHxJnmHd9gimskq7iGiIh4OQUvh1HwkuIQE5eIpl3H4+IHGqD38EBkZak3QZzJ72gw/p9fRSRnKXiJiIh3U/ByGAUvKS7Z2dnoOXQW/u/2Gvh2oJ9tFXGWwGPrcUHAJ4hKT7AtIiIi3knBy2EUvKS4jZm6Ehc/UB9d+s9Qz5c4zsKIzbjIvwrCkiNti4iIiHdS8HIYBS8pCaMmL8cF99bF0PGLbYuIMyyJ3IprA7/EweQo2yIiIuKdFLwcRsFLSspX30/E9U82w54Dx2yLyLl3IjMFW+LDkJaVYVtERES8k4KXwyh4SUlZtyUU1z3eDHe/3A6tuv2BzTvDkZyiggYiIiIipUHBy2EUvKQk7T1wHN8PnoWnK3bHP+6qjZc/7YVZizbZvSIiIiJSUhS8HEbBS0pD/IlkrFy7Bx81HGRKzv88ZoHdI1K6UrPSEZYcgdTMdNsiIiLinRS8HEbBS0oTS86z2iFLzrfu/gdOJKbYPSKlY13sPjy4qCk2xR+wLSIiIt5JwcthFLzkXGDVw2seb4ZnP+qO4I37bKtIyVsVvRNXzq6GkJg9tkVERMQ7KXg5jIKXnCvrt4bhhU9+wOUPN0H9DmNM8Y2srCy7V6RkrI7ZhWsCq2Nt7F7bIiIi4p0UvBxGwUvOpdS0DAz6bSGe+KArLrq/Ht78og/GTQ/C0Yg4e4RI8WKP11WBX6jHS0REvJ6Cl8MoeIkTJCSmYNaijajSZAiufKQxHnijI2q3HYklq3eafSLFJSR2D+6cXx8b4vbbFhEREe+k4OUwCl7iNOFHotFnxBy8UrUXLryvHu559Wu06TERc5dt0TpgctaSM9OwO/EIUrJU1VBERLybgpfDKHiJU6WkpmP91gP47qeZuDcnfF33RDPc80o7NO0yHgtWbsPhY7FIS8+wR4uIiIhIbgpeDqPgJWVBdjaweNUOtOz2O56u2A1/u7Mmrn28Gd6u0RfNv52AwWMXYfbizThwKMqUrBcRERHxdQpeDqPgJWUN53ztPXAcY6cHoXqrX/DkB9/inle+RrkXv8Jtz7XGTU+1wFvV+5iesbHTV5qFm3l8XEKyPYP4Mi6gvD/pOJIyU22LiIiId1LwchgFL/EGMXGJ2LTjIKYGrsXA0fNRr/0YvPlFb9xQvrlZrJl/PvXhdyaosXds3ZYDyMxU6XpftOPEITyyuCUWRW62LSIiIt5JwcthFLzEW3H+FwNZ+NFoBCzciK4D/PD65z/i/tc74Ponm+Pax5uiUoOfMWTcIixfswuHj8XY7xRvtjXhIG6aWwuBx9fZFhEREe+k4OUwCl7ia1iUY8nqHSZwfdxosAlgl/6nIR54owPerz3AVFTcuuuwKe4h3ofB69Z5dTDn+HrbIiIi4p0UvBxGwUt8HUvUb9oRjr4j5uLdmv1w32vt8a976uLx9781BT3Eu2yJD1OPl4iI+AQFL4dR8BI5VdjhKNz54lc47876qNNuFCKjE+we8Qac4/Xw4uZYGLHJtoiIiHgnBS+HUfASOd2aTfvxWfNhuPKRJrj+yRaonRPAJgYE43hkvD1Cyqq07AyEqqqhiIj4AAUvh1HwEnEvKysbu/YfRf+R8/DEB9+aghy3PNMKFeoOxLgZq7D/YITmgYmIlIKUlBT7t5JTGq8hUtoUvBxGwUukcDZuP2jmgb1XawAue6iRKcjx2uc/ouV3v+MP/2CEhkfaI0VEpDhkZGRgxowZ+Oabb7BixQrbWrzS09MxadIk8xrBwcG2VcQ7KHg5jIKXyJlJz8g0lRG5ZlittiPx8P86mzlh7BEr92JbVGkyBD8MmYU5S7dgx94jiI1Pst8pTpCRlYm9iUcRlaa5eyJOFxUVhRo1auCTTz5B165dkZVV/OsvHj16FJ9//rl5jR9++AHZ2dl2j0jZp+DlMApeImePAWvK7BD0HDoLnzUbhv+82RH/uKs2bijfAuUrfIvKDQfh+8EBZpHnjJzgJudOZFo8XljeAUND59gWEXFh6NiwYQOmTp2K1NRzPw+SPV5//PEHWrdujWXLltnW4sUer7Fjx5rXWLVqlW0V8Q4KXg6j4CVS/JKS0xAVcwKBSzabhZvfq9UfD73VCZc/3AgPvN4BnfpMx/I1u3MeKor/t7fi2fHUODy0uDn67/O3LSLikpiYaHp+2AN04sQJ23puMQyWdAgsjdcQORcUvBxGwUukdEREJ2BR0HZ83WsK7nmlHa78b2M8W6kbho5fjIgoDXsrLQxe/13cAgP2BdgWEXFh2KpYsSK+/PJLE8JEpGxT8HIYBS+R0sfhhsvW7ELd9qNxxwttcdUjjVH369H4bepKbNgWViLzGOQkBq//LGqGfnvV4yWSV3JyMipVqmSCl6r8iZR9Cl4Oo+Alcm4dOBSFEX8sxXMfdcd1TzTDbc+1wWPvdUG7npMRsjkUcQnJ9kgpDpzj9cqKTvjlwHzbIuLbOMyOvVsxMTE4fPiwCV7Vq1fHkSNHEBsba7b4+HhkZv41P5XD8nh87uF5/HrLli3YtGlTvr1lPNeOHTuwZMkSLF26FKGhoebcniQlJSE6OtrMxcqLQZH70tLSbMvJ6+A1LF68GOvWrcPx48dPuXZ3CvMauffxa86FW7RokfkzIiLijH5hxnOFh4ebKopz587F2rVrTZEPF4Zevo/iCL+8NwcPHjTz1+bNm2fuDa/fE94vfla5P0f+fc+ePeae8v268Py8Vt5DF36mO3fuNPeG+9zh9x06dAjr16839yAoKMicvzBDXF33J/fnzkIsmzdvNlvua/F1Cl4Oo+Al4hyRMSfgN389Gnb6zVRL/H931DB/ft1rMpaH7LZHydnIQjYOp0QjPl3/YxYhPsSymh97ubhVqFABH3744Z9fc2vcuDH27dtnvwPw9/dH7dq1TbihadOmoVq1avjoo4/w8ccfY9asWabdZevWrRg4cKAJdDyG4Y4b/96oUaM/z+POmDFjUKtWLaxevdq2/GXChAlmn6vU/MyZM1G3bt1Tzs8/+dr5BQD65ZdfzHkYFPIaPXq02cdwxJA6ffp083Xu1+B7Hjx4sAkrBWHY+P7778195ve6Np5j6NChJniwhD7v7+zZs+13FQ3fD5/z+Hm67gX//OKLL8ACKvkF0r1796JOnTr46aefzNchISFo0aLFn9fZo0ePP4Mm7wuvlZ8FMVTXq1fvz2OHDx9u2nNjKGOVytz3wHU/mzZtCj8/P4/hiT9vvL6VK1ea65g8eTI+++wzc57KlStjwYIF9khR8HIYBS8RZ4qOTUTwxv1o3X0i7n31a1MhkQU6ev8yB1t3HUJqWoY9UkSk6Bi8+IDdqlUr89DLh3Q+ADdr1sw8bLds2RIdOnTAgQMH7HfAVBrkQ3VgYCACAgLMA+9XX32FUaNGoXv37qesubV9+3Z8+umnZu4YX2PkyJGYM2eOCTB8gGc7H5Z5LncYmqpUqeI2nDGocB/Px8qEvCZe6++//27CH98XgyOv7+uvvza9V+7wOYjncVfVcMCAAX++/ogRI8y1durUyaz9xffO63OFzs6dO5/SC5MXwyNDiStgDBkyxJyD4bJ9+/bmXvCe/Pzzz+Z8EydOtN95ZhhGGN5YKIWf53fffWeCEe/ToEGDTHDka/Xp08ftPeFnxvfJz3LXrl3m8+N183t5P3i9rtDGz5r3neGVAY3vrUmTJiZw9e7d23zOLrw3rpDE6+JnxXvKz4qfX5cuXcy5+N67deuGuLg4+52n4uvzOPY4MoTxWtu1a2d+/vhe3YV0X6Xg5TAKXiLOl5qWjtmLN6Nhp7G46emWuPC+embx5u4/+2PzznB7lIjI2eHQQT44c+0sTwGCgYAPx3zYZo8Veyhyy92TsmbNGhO4+IDOHqO8GBD4mvXr1z9lCJsLwxMDBHtS8ho2bJh56Gbo4zW7C2/sXWHvCF8jv3DHgMDXcPfAzmDlerCvWbMmFi5caPf8hUMs+foMMwwD7rAXiWGBxzA45B1GyHvGEMZjGEx4HENKUXC4Ha+ZPYzuyvBz6CE/Ex6Tt3eSOByU94tBks+JvD+5hwDyc3R9lux14s8Cj2nbtq0JUrl/dnIPwWQg5rG8V/ktD8BeOoZS3of+/fu7HcL522+/mev79ddf0aBBg9N6BvPryfNFCl4Oo+AlUrawTL3f/A2o3GgQ7nnla1zx38Z49N0u6DVsNoLW7cGho/kPp5Gch4DsLOw6cRhHUnSfRPLiwzUfaNlL5KmqIYMXj2NAYIjwhEP8PM3j4pAy9qoxBHDOU14FBS9eB7e84S83Do3kA39+vV4FBS+en0GIPUb54dA9vgf22uQtTc8g0LdvX7OfocFdAHXheVyvV5Tgxdfu2LGjea38QiC5eiLZO5X382HwYo8U97N3z9OwPwYv189Cr1693AYl2r17t7kmnpPB0BMGQ/YiMnxxKGNe/Jnja1atWhXjx4+3reKOgpfDKHiJlF3HIuPNnLAmXcbj1mdb45IH6+P+19vjjWq9c9rGYeDo+Zi3fCsOHo42a4tl6LeASMpIxetBXdBtV9F+kyzizQobvDjUkEGGYYVFIs4W50fxXO7mNBWmx6t58+b5DiMkXiPXJuNwOXe9aoXp8WKvmrviGy779+83QYA9gHnnkzHkcB/nnx07dsy2usf3wTl1vL9FCV4sWsLA8s0333js+eE+PgPy82avZG4MXgx+BYVNcgUvbu5CkguHVfI+8vMsDM6t4/Hs9cr7PhheeX8Y4lg8RfKn4OUwCl4i3iE5JR3BG/fhpzEL8GXrEXj505545J3OOYGsFS5+oAGufKQxnqvcw+zrNSwQsxZtQvgRz5WtvFFSZirKL/sKHbaPsy0i4nImwYsPxQXNaSoMBg0OWeSDNOf55FVQ8GLI4EO9JwxC7NnheRiQ8iooePE1ODfNEwY6BjsGLBbQyI29cYW5Thf2HBUleLEnjXOw+Nlw2GJB2HPE9513CKZrqCF/DsLCwmyrewxefD2GRVYWdIc9apwzyPfEcxfGtm3bzD3jMNG8P4sMXnxNzgPTsELPFLwcRsFLxDtlZmbheFQ8tu0+jMWrdmDc9FXo2GcqPmk8BPe91t6sHcaiHW9V74Mh4xZj/8EIpKTm/9tcb8Hg9fSytui4XcNTRPI6k+DFB3bOsSmsjIwME4A4h4dBhIUxGNw4n4dhha/rLtwUFLy4j/PEPOF8Kg4zZA+Ouwf/goKXu3CSF+8Xh0xyiF7uCpDkGhJZ0HW6sLenKMGL75O9f7wGhlmWaWePlbuN+1jIgwEm73BR3iO+Ps/lqZePGLwYkDjEMr8QxLDL3inOOStsDynL6/N4vpe8gY7Bi5+Ju6Aup1LwchgFLxHfw9+K7g2LwM9jFqBSg0FmmOL55WrhhY+/xzf9pmNKYAh27vtrTRlvwuD1+JJW+Hqb/octkteZBi/+WRgsPsGS9fwenp8P9dxYhpyV7dgbxXZWpcurMMGL61N5wvDAeU8MXhz2l1dhgld+xSBcGHo4HJFBgYU0cmOlPbZzrarCYKAoSvDiZ8YeIr4W3yvvaUEbg1fe4X+u4MX3UxBX8OrZs6dtOZ2rB43BtKB121zYk8qhmXwvnPOVmyt45a6YKO4peDmMgpeIhB2OMkMP67QbhbtfbodbnmmFO1/8Cg++0dEMTRw3PcgEMW9YzDklKx2fru2DAfv8bYuIuJxJcQ0+sHsqaEH8JQ97itjb4Xo45xA4FlfgwzR7MlgMgg/QfNAvao8Xe288KY7gxblTnngKXm3atDFrVrlbJ8wd1xymMw1eLILBOWa81wzFLIHPAhv5bdzPjSXjc3MFL661VRDXUEOWwM8Phw3y3rOSYmGDF3tIOXST9zNvL5lrqCF77sQzBS+HUfASkbz2HjiOybND0KnPNLxXqz+ue6IZzi9XE4+/3xVd+k83+0XE+5xp8HJXijw3rv3F4WKsULdu3TrbejrX+bw1eHHOFl97/vz5tsUzFhspSvDi++TwTX6GmzZtsq1nzhW8uI5XQVzBi0NH88P7wXvIcvwcQlgYLELCn0Pez+joU+cju4JXQT2douDlOApeIuJJekYmjhyPxbLgnfjq+0m455V2uOaxpqjcaDDmLN2Cg0eikZauxZxFvMGZBq+CCji4SqwzSHjiKmBR1KGGTg9erqBQ2NLnLOHO44tSXIOLHPMzdFchsrBcwYvFKwriCl6eCoew8AjX2+J1cV21wti6dau57yzakbdipYJX4Sl4OYyCl4iciZi4JDP08P3aA3DR/fVQ7qW2eP3zH1H369EYMGoeuJZY/InknAcA+w0iUmbkDl78e34KG7y4dhXPx3W08sOA17p1a/Og763Bi9fO+8VAxeM8OXz4sFlgmPftTIMXucIuC2dwuF5RFHfw4tpeHGbKcD18+HDb6hmLg7jOm3fdMwWvwlPwchgFLxEpioyMTDPk8NeJy9Cw01g8X7kHHnyzI258qgUue6ghHn3nGzToOAbDJizGipDdjqqYGBS9E5vjD9ivRMSFc4QYutyVRM+tsMGLwYgP8J5Ksc+cOdOEDG7eGrw4l409N3yPy5cvt63ucd0qHsdrLUrwYgVBDu/kOQpTzCMuLs7+7S/FHbxo/fr15j1xvh+LrXjCqpBckJlb3vlnpOBVeApeDqPgJSLF5WhEHFat34vfZ65Gp77T8L8v+5j5YZc/3AhPffgtvh8cYI45155Z3g411g+0X4mICwMKy67zoT1v4YLcvQ6FDV4MK3yAZ3W6vOtnsfT4ggULTGVDV2Dx1jle5AqYnOfEsJK3F4c9jAyeXOiZPYBFDV48L4MJ7zt7zhj08pZ55zEJCQmYMGGC28BUEsGL1+Cau1a/fn0TCt2Vn9+4caNZYoDHsbpj3vtECl6Fp+DlMApeIlJS+D9M9nQtWb0TtduOxF0vtzO9YQ07/Qa/+etx6GiMPbJ0vbKyExpsyn8iuIgvYxVCBgT2NnA9KQYwPlTnDk6smMdhYwwTnnAY4TfffGMektkLwwdphi0GN677xHAxbtw4s74VH7TdrQvG4FOlShVTfS8vFnTgvoKq2zF4tW/f3rwvVtjLi89BPM+qVatsy1+4IDH3uQt+uTF4uQLTnj17bOtfWB6d86+4nxuHYbLYBq99xIgRZs0s3ifef84F4/2YNGmS/e4zw0qR/fr1M+dgEGSAYsjivednx9dm4OXrubvnDKfcxzL4BVmxYoX5WShoHh8x7PG1eW7eA1ZN5HvlfWCI4mfNa+bnxJ85vg93uO4YX7OgwC0KXo6j4CUipYWFOH75YymertgN1z7ezASx92v3x4g/lmFfWOkt4PxmUFd8vq6f/UpEcmMhA86vYSVCPrTzIZhrQ+VeFJhBiT03helx4DA7lhpnTw7P5woDPCerInIeEsMHe2cYDvJiKKlVq5bpWcmLD+Dcx9LonvA1OOeJwyh3795tW//CQMTzrF271rb8hfeC+woatseQwCDBgBkaGmpbT8XrYC8h753rXvD+8k+WWncFP74m2zzNjSsIP8dp06aZkux8DdfG1+VQUgZRvid3RVQYHPl59OnTx7bkb82aNeb9uBsm6g4DKj/vZs2amZ5EBjC+V/7Jrxle2bvIsJwfBlK+ZkFhWBS8HEfBS0TOhR17j6Dfr3NRoe5PuLF8S5x/Zy28UrUXBo9dhONRhVvnpajeWNkFHwR/b78SEXfCwsLMgznDAEt758ZhcUeOHDmt2pwnLCMeHBxsejc4nCx38Q4+/PN87BHJi+s+cZ+7ohSufZybVhCWJOc1uHug5zyngl7D3b7c2MPv6TVy4/vknCf2bnEoIINO7iF1fDZjGGEP1dniZ8TS8gzJDCpcQ+348eOm4EV+GBD5nmNiCh6VwMDJYwu7PpcL3y+HZLLHjEGMwzy5/EBhFOXnz1cpeDmMgpeInEtZWdmmJ2z24s2o3moEbnqqJW59tjXa9ZyCjdvDEBGdUOw9YY03DUfrraPtVyIizsHQ06JFC9M75a6whMiZUPByGAUvEXGS0PBIdB/kj4f+1xn/d3sNPPhmB1OuvnqrX9Ch91SMmLgUi4K248ChKGR6+I2tiEhZxPlVnF/HoXSF6XES8UTBy2EUvETEieISkrB+axgGjp6P5t9OwFvV++LRd7vg/tfb444X2uCG8s3NQs6PvdcFb1TrjXrtR6NjTjD7+bcF8F+40RT02LAtDLv2HzVFPBISU5CRqaAmIs7F4X/du3c3xSdYXMLTcECRwlDwchgFLxEpKzgF4vCxWIRsDsXMBRvMGmLf/TQTTbuMQ6X6P+GVqj1x10ttTeXE88vVwtWPNsFtz7U2Ye25j3rg9Wo/onLDQWjSYRy+7TMTQ8cvxvgZq7By3R5s2RVuwllqWgbSMzJPmW8hInI2OOeL87U4pym/f1s4P4xVGllkgkVA8pbfFykKBS+HUfASEW/AhxkGpqTkNMSfSEZUzAms3RKKecu34pffl6D7z/6m56xSg59xTcVGuPi92njiva6455V2uP35Nrj28ab49wP1TVh78I0OeLtGX1RtNhTtek4264+NmxGEqYFrsXjVDqzesA879x1F2OEo81oKaSLiCQtQsGohe7JYXdHPz88ULmEVRRYbYdl+Vh/kflaTZMEJkeKg4OUwCl4i4mtqbhuIN4O7IjomEfsPRmDzznAErduD2Ys3YfLsEPQaOhttekxEtRbD8epnvcxwRpa/v+yhRrj+yea45ZlWuPvldiagPfbuN3i+cg+8/GlPfNZ8GJp0GYdew2ab3jSeb1nwLhPQWKkxJi7R9KqdyNnS0k/2rImI9+OQQVYUbNOmzZ9l3Vm1kBvDFr/mWmEcZsjFi0WKi4KXwyh4iYivqb5uAN5Z3c1+VTD2aGVkZpqwtPfAcTN3jAtA/z5zNXrmhLROfafhi5a/4JPGg00hkGc/6o7/vNkRd774lelBu/C+ujjv9pq4KufvnJ9232vtzXFvVe+DGm1GoMk349Co01i07v4H+o+ciwGj5pm5bRP8VmHGvPWYNmedqfq4bssBrN0cipBN+02PW1TsCVP1kVum5q+JOB4DGCsVsrT75MmTzRplXGuLwxDDw8PtUSLFR8HLYRS8RMTXMHi9veo7+1XxYjjj8MNjkfGmQuP2PYdNYFoRshsLVmzDiInLTG8YC4FwbhqrNb722Y8miL34yQ+49dlWpleN28nS+q1MDxs3BjnXxrlsDHD3vvq12R7MCXoPvdXpz409dVWbDcOnTYeajaGQQy055PK7gX7oMcjfBEcGu+lz15lhlEuDd2J36LE/N/bUHY2Iw5Hjceb9JCal2ncpIiJlgYKXwyh4iYivqRrSF68HdbFfORdDD4dCHjgUia27DmHesq0mvC1cuR3T5qzFkHGLMGzCErOxyAiHR7q2ul+PNoVEPm402Gyu3rgn3u+K8hW+M8Mnb3q6pRlCyflt1z3RDP+8uzbOu51bLbNddF+9nAB4cj+D3wuffI85S7fYqxMREadT8HIYBS8R8TVdd/6B5lt+tV95Lw6RzL1xIeq4hGTTIxcbn2QqRIYficnZok3J/X1hEdi+54jppeO2MGg7Js1agymBIRg3PQgV6g40AW3ZGi3qKiJSFih4OYyCl4iIFAaLgVRpMgQ3P90Su/Yfs60iIuJUCl4Oo+AlIiKFxZ6yV6v2MotZH4uMs60iIuJECl4Oo+AlIiJn4uCRaLP2GeeQZaiaooiIYyl4OYyCl4j4mnVx+zAvYiMysxUaimrF2t24+MH66NJ/BrK1frSIiCMpeDmMgpeI+Jomm3/Bk0vaICUzzbZIUfw6cRkuvK8e1m4+YFtERMRJFLwcRsFLRHxNqy2j8OLyDgpeZyk1LR0vVfkBler/bFtERMRJFLwcRsFLRHxN150T8dTStojPSLYtUlQsN88S81t2HbItIiLiFApeDqPgJSK+psfuKfjPomaISkuwLVJUJ5JScf/rHVCjzQjbIiIiTqHg5TAKXiLia8aHL0XtDYMQn64er+IwfkaQmevFhZZFRMQ5FLwcRsFLRETORmZmFpp1HY/LHm5k/ly5bg+SkjV/TkTkXFPwchgFLxEROVsZGZkYMGo+Hnm3C656pAmueawpmn/7O/YeOG6PKF0xcUlYsnonxkxdgX6/zsWU2SFmmz53nWnfvDMch47GICU13X6HiIj3UfByGAUvEREpLvEnkrF8zW4MHrvQzP269dlWmLlgg91bspJT0rBt92G0/WES/vt2ZxMAr3q0Mcq9+BX+dU8ds11wb92c9sa4/fnW+M+bHfFMpW5444veqPXVr+g1bLYJZxu2hSE6NhGJSalIzwmUIiJllYKXwyh4iYiv2Z4QjqlHViEpM9W2SEmIjU9Cg46/4fxytcxCyyw/X1RZWdmIijmBg4ejsH7rASwK2o7pc9dj6PjF6DEoAPU7jMGj73bBP+6qZf7s3Hc6tu85jLT0DGRkZuW8dobZEhJTctqPYN6yrRg5aRm6DvDDl61H4N2a/VG+wrco91JbXP5wI5x/Z82cv3+F1z77EXW/Ho1Rk5dj4/aDyMwqvkW309IzMWfpFrT/cYoZojlw9HyM+GMp/Oavx9LgnSYAHj4Wi8Rk/ZyKSNEoeDmMgpeI+JohoXNw+7x6CE+Jsi1SUjj/a8TEZbjsoYb4pPFgHDgUieNR8TlbQs7fo7AvLALBG/ebXrFJAWvQe3ggvh8cgEadxqJai+F484s+Jkg99l4XPPBGB9NLdecLX+GOF9rglmda4drHm+GRdzqb49r1nIz5K7aZ3qqiiIlLRGh4pAk8i4J25Fz3UrTu/gfeqdkP1z/ZHLc919r0pLXs9jtWrt1jhjOeKfag8T3zPfK6r3uiuTnnK1V74u6X25nX4ftiAGTwe/DNDmY/78HbX/Y1IbD7z/74wz/YDJnkuY5GxCEiOsH00PG9H4vk/Y03f3IIqIj4LgUvh1HwEhFf82vYAty/sAnCkxW8SsvS4F24/fk2uCYnKN30VAvcUL4FzrvtS5x3ey1c+UhjMyeMwePxnID1TMVuqFB3ICo1+DkngP2G5t9OQO9fAjHot4WYGrgW85dvNUMKGSxKCwMN54fxWhgCz7utOu59rT069ZlWqHlsO/cdxfDfl5ietX/eXQc354QrhksGuLw492zr7kOYu2wLJvitxk+jF5gAWK/9aHNfnq74nRk+yZ453r+rH21iwtqzlbqbe8h11W4o3xzX5oQ63icR8V0KXg6j4CUivkbB69xg78zEgDUYP2MVZi3aZApcbNkVbnqZwg5HmSDF4YkcDsiesuxs+40Ow2vksEMOZ2SYZNBhLxiHQPI9rd0cioVB282wQQ61ZK8VgxGP/bDeTyY8cghhUfC+cB4de7n2H4w0rzd/+TYT0MZND8r5cxV+n7nabGzjtYqI71LwchgFLxHxNcNC5+KOefVwMDnStogUDeed/TBkFv7zVifTg/f3crX+7MVj2Hq1ai906D0Fk2etwZHjRQtbIiJFpeDlMApeIuJrAo+vR60NPyMitfSGqol3Yy/UwSPRpucu/GiMmXPF4YkqVy8i55KCl8MoeImIiIiIeB8FL4dR8BIRERER8T4KXg6j4CUiIiIi4n0UvBxGwUtEfM3+xGMYc3AxYtOLtt6TiIhIWaDg5TAKXiLia6YeDsLVs7/AjoRDtkVERMT7KHg5jIKXiPgavyPBuG1eXew6ocVlRUTEeyl4OYyCl4j4miVRW3H9nJrYHH/AtoiIiHgfBS+HUfASEV+zImoH/u1fBeti99kWERER76Pg5TAKXiLiazi3q2pIH+xLPGZbREScKTo6GpGRkfYrkTOj4OUwCl4iIiIizrRw4UI0adIEU6ZMQVxcnG0VKRwFL4dh8Ordu7f9SkREREScYtmyZfjwww9RsWJF1KtXD1OnTjW9YCKFoeDlMJ07d0a3bt0QERFhurK1adOmTZs2bdq0OWPz9/c3watChQp/BrBGjRqZABYbG4vs7Gz7RCdyOgUvh5k7d675j7hSpUrmT23atGnTpk2bNm3O2FyhK/fGZ7bKlSujYcOG2LNnj32iEzmdgpcDhYaGYv/+/dq0adOmTZs2bdoctE2ePPmU8MUwVqVKFXz//ffYtGkTEhMT7dOcyOkUvERERERECmHFihV/9nIxdDFwbdy40e4V8UzBS0RERESkEBYsWGB6uLp3744tW7YgIyPD7hEpmIKXiIiIiEghcDoIhxSKFIWCl4iIiIiISAlT8BIRERERESlhCl4iIiIiIiIlTMFLREREREQ8YmGRAQMGYNu2bbZFzpSCl4iIiIiIeNS/f3+zUPScOXNsi5wpBS8REREREfHop59+MuuXzZs3z7bImVLwEhERERERjxS8zp6Cl4iIiIiIeKTgdfYUvERERERExCMFr7On4CUiIiIiIh4peJ09BS8REREREQ/S09MRGRmJLVu2mO3YsWNIS0uze93j9yQkJJx2XFxcHPbt24eNGzfiwIEDOHHihN1TePyegwcPmnNs2rTJXE9SUpLdW3jZ2dnmevbs2WPOtX37dkRFRSE1NdUe8Rd3wYvHHTlyxFzD/v37ERsba84p7il4iYiIiIjkY926dejWrRsqVqxoggf//PDDD9GpUyesWLHCHnW6uXPnon79+pg6dar5+tChQxg8eDA+/fRTcx7XuRo0aIDZs2cXKrCEhoZi+PDhqFev3p/Xw43X07RpUwQGBiIzM9Me7dnOnTtNifjPPvvslOtxvbewsDB75El5g9eqVavw9ddfn3IdPNfQoUNNmJPTKXiJiIiIiOSRlZVlQtPHH39sQkW7du3wyy+/YOTIkejYsaMJHB999BFmzJhhjs1rypQpZt2r3377Dbt27UKdOnVQtWpV/PDDDxg/frwJUK1btzbn4LkYbBITE+13n27p0qX48ssvzfG1a9fGzz//jAkTJmDIkCFo06aNCXQ8z48//ojo6Gj7XadjMOM1f/755+Z9tWrVCqNGjTLXNGjQIPM+ed0MVrm5gtf8+fPN93/yySdo3Lixef0xY8aga9eu5v3x+jp37mx6v+RUCl4iIiIiInmwF4pBo1GjRli7dq1t/cuyZctQrVo1VKlSBbt377atf2FoYxDq27evOQcDDYcW5sXzMFAx7EyePNm2nmr9+vXmdXg9w4YNM0MY89qxY4cJUQyKPXr0MEMd3fHz8zPXxaA2c+ZMtz1tISEhZghhbgxe7A1jqPriiy/MtWZkZNi9J3HIIXvj+F5mzZplW8VFwUtEREREJBcGpFq1aplwwjld+Zk2bZoJGQxXeQMMgxeDCoNQ+/btPfYALVy40IQqhpbjx4/b1pMYspo3b272jxs3zuOQxKNHj5peKF5TUFCQbf0L53KxV4r716xZY1sLhz1sDGzc2DuWH/aG8VpbtGhhW8RFwUtEREREJBcO4WM44dBCT0GHc5mqV69ueqxYlCI3V48Xe6o2bNhgW91LTk7+c9hh3p6iJUuWmHYGqsIU4pg+fboJPi1btjxlvhf/3q9fP/O+OLfrTDF48TrYexcTE2NbTxcREWFeg0MZPQ2d9EUKXiIiIiIiFgMKe2sYmrZu3Wpb3ePcrg4dOpj5TixWkRuDFwMQe6sKg0P3GFh69ep1StjjnC0GnokTJ9oWz+Lj4//s1WL1RBdWPmRI5PDI3O2FxeDFc/bu3du2uMdKh3wd9hayoIj8RcFLRERERMRiYQr2UnGIIOdAcRhgfhsLTXBeFYcUrly50p7hJFfwKiiouLB4Bs/Ttm3bP+dncQ4VQyCDV2GHBjI4ssIhz8VzunDIJM/D8xWlJ4pzvPj97A30hNfMsMlj84ZRX6fgJSIiIiJicR4UQxeDC4NTYTb2BOUdIsjgxfDBKoiFwcIUPJ6hxbX2F4cysiQ9e9/cFeZwh71l3bt3N9/D8vIuDIq8TlYfLIq85eTzw+DnGjbJgh/yFwUvERERERGLiwgzNHCOEsPUnDlzCty4ZhcXNM7NFbxGjx5tWzxj+XaGPQYjV7VAFtqoW7euCVGHDx82bQVh8Pr+++9PC17svWPw6tmzp205M2cSvNgLqOB1OgUvERERERGLAYqhgYsBn01xCFfwGjFihG3xLCAgwBzPBYhdWEyjYcOGpt1TdcXcXMGnQoUKp6zFxbL1DF5cHNlTwZD8KHidPQUvERERERGLYYu9XWcbHFxzvL799lvbkj8GIQY0FungwssuruIdvBauK1YYLG7BdbZ4rtzFLfheeB5WR2QBjjOl4HX2FLxERERERCyGoC5dupjg8Pvvv9vWM+cKXhwqWFDPGUvRc90wzi1bt26dbT2Ja2axp+qbb74xoaYg7OXi67KcfO6eLRYN4Xwxvsby5ctta+EpeJ09BS8RERERkVwYfljZkAsaHzlyxLbmLyUlxf7tLwxenGfFraBKgK5wxYqGec/FwNSgQQMTehYsWGBb3WPAc4WevD1kDGFc44v72rRpY9YOOxMKXmdPwUtEREREJBeWc2dlQPYOcahfWFiY3XMqLhY8ePBgt4HIFbzq1Klj1rRiEOLQwbxYAIP7eWxISIhtPRXL1nM/F2pmdUJ352GQ4rUwwLVv395tL1tSUtKfFQd79Ohh1vZyh+uX5S3moeB19hS8RERERETyYJENFrZgkKlRowaGDx9uAhbDEQthcEFhLhTMgJFf8GJQ4fcNGjTIBKfOnTvD39/f9Kix2EX//v3NMTzHtGnT7HeejkGLvWact8XzcCjkjBkzEBwcjCVLlmDs2LFo0qSJuVYGq/DwcPudp+PaWlzLi8dy6CEXbubwxLVr15pQNWDAAPMaq1evtt9x0sCBA811soKjJwxeHObIc7BCpPxFwUtERERExA0Wp+jTpw+qVq36Z0BiyXeGCgaXr776ysyXYk9SXgxePH7MmDGmN2rUqFGmZ4vn4Tlc52KxC57DXS9WXhs3bjShxnUtvA7Xn9WqVcOvv/5q5osVJCYmxvRgMcjx+13X5DovS9rnHWI5bNgw8xqLFi2yLe4xeLGXkAU+du3aZVuFFLxERERERDxgDxKH+/n5+ZnerqCgIOzbt+/P9bbccQUvBi6Xo0ePmt4xnoc9Vuxlcjc/zBMOg2Rpea7LxfNwW7lyZZEqFbJXj+uQuc61dOlS7N+/3+49VWxsrLkPBRUK4Vwyrj/G0OpaCFpOUvASERERESlm7oKX+DYFLxERERGRYqbgJXkpeImIiIiIFDMFL8lLwUtEREREpJgpeEleCl4iIiIiIsVMwUvyUvASERERESlmU6ZMMSXnR44caVvE1yl4iYiIiIgUMy5U/Mcff2DTpk22RXydgpeIiIiIiEgJU/ASEREREREpYQpeIiIiIiIiJUzBS0REREREpIQpeImIiIiIiJQwBS8REREREZESpuAlIiIiIiJSwhS8RERERERESpiCl4iIiIiISAlT8BIRERERESlhCl4iIiIiIiIlTMFLRERERESkhCl4iYiIiIiIlCjg/wMHClG9K7RngAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image('./images/early_stopping.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Specify the early stopping criteria. We **monitor** the validation loss (in this case the mean squared error) on the validation set after each training epoch. If the validation loss has not improved by **min_delta** after **patience** epochs, we stop the training." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "best_val = ModelCheckpoint('model_{epoch:02d}.h5', save_best_only=True, mode='min', period=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /anaconda/envs/py35/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Train on 23370 samples, validate on 1463 samples\n", + "Epoch 1/50\n", + "23370/23370 [==============================] - 18s 763us/step - loss: 0.0148 - val_loss: 0.0031\n", + "Epoch 2/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0030 - val_loss: 0.0025\n", + "Epoch 3/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0023 - val_loss: 0.0017\n", + "Epoch 4/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0020 - val_loss: 0.0016\n", + "Epoch 5/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0018 - val_loss: 0.0014\n", + "Epoch 6/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0017 - val_loss: 0.0013\n", + "Epoch 7/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0016 - val_loss: 0.0014\n", + "Epoch 8/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0015 - val_loss: 0.0012\n", + "Epoch 9/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0014 - val_loss: 0.0011\n", + "Epoch 10/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0013 - val_loss: 0.0010\n", + "Epoch 11/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0013 - val_loss: 0.0011\n", + "Epoch 12/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0012 - val_loss: 9.7521e-04\n", + "Epoch 13/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0012 - val_loss: 0.0012\n", + "Epoch 14/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0011 - val_loss: 8.4618e-04\n", + "Epoch 15/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 0.0011 - val_loss: 7.9154e-04\n", + "Epoch 16/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 0.0010 - val_loss: 0.0011\n", + "Epoch 17/50\n", + "23370/23370 [==============================] - 1s 52us/step - loss: 0.0010 - val_loss: 7.3906e-04\n", + "Epoch 18/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 9.7352e-04 - val_loss: 7.6310e-04\n", + "Epoch 19/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 9.3998e-04 - val_loss: 7.2419e-04\n", + "Epoch 20/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 9.0475e-04 - val_loss: 8.7259e-04\n", + "Epoch 21/50\n", + "23370/23370 [==============================] - 1s 52us/step - loss: 8.7435e-04 - val_loss: 0.0012\n", + "Epoch 22/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 8.5570e-04 - val_loss: 6.1370e-04\n", + "Epoch 23/50\n", + "23370/23370 [==============================] - 1s 52us/step - loss: 8.3050e-04 - val_loss: 6.7139e-04\n", + "Epoch 24/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 8.0766e-04 - val_loss: 6.0097e-04\n", + "Epoch 25/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 7.8751e-04 - val_loss: 5.9429e-04\n", + "Epoch 26/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 7.6967e-04 - val_loss: 5.6846e-04\n", + "Epoch 27/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 7.5260e-04 - val_loss: 7.3220e-04\n", + "Epoch 28/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 7.4245e-04 - val_loss: 5.3642e-04\n", + "Epoch 29/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 7.2500e-04 - val_loss: 5.3738e-04\n", + "Epoch 30/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 7.1388e-04 - val_loss: 5.2011e-04\n", + "Epoch 31/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 7.0160e-04 - val_loss: 5.1937e-04\n", + "Epoch 32/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.9288e-04 - val_loss: 5.7761e-04\n", + "Epoch 33/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.8045e-04 - val_loss: 5.1441e-04\n", + "Epoch 34/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.7527e-04 - val_loss: 5.3415e-04\n", + "Epoch 35/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.6796e-04 - val_loss: 7.6080e-04\n", + "Epoch 36/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.6083e-04 - val_loss: 5.2191e-04\n", + "Epoch 37/50\n", + "23370/23370 [==============================] - 1s 52us/step - loss: 6.5505e-04 - val_loss: 4.8295e-04\n", + "Epoch 38/50\n", + "23370/23370 [==============================] - 1s 54us/step - loss: 6.4862e-04 - val_loss: 6.1764e-04\n", + "Epoch 39/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.3967e-04 - val_loss: 4.9077e-04\n", + "Epoch 40/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.3830e-04 - val_loss: 4.6722e-04\n", + "Epoch 41/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.3614e-04 - val_loss: 4.9257e-04\n", + "Epoch 42/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.3261e-04 - val_loss: 5.3336e-04\n", + "Epoch 43/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.2496e-04 - val_loss: 6.1233e-04\n", + "Epoch 44/50\n", + "23370/23370 [==============================] - 1s 52us/step - loss: 6.2531e-04 - val_loss: 5.9952e-04\n", + "Epoch 45/50\n", + "23370/23370 [==============================] - 1s 53us/step - loss: 6.1947e-04 - val_loss: 4.8225e-04\n" + ] + } + ], + "source": [ + "history = model.fit(X_train,\n", + " y_train,\n", + " batch_size=BATCH_SIZE,\n", + " epochs=EPOCHS,\n", + " validation_data=(X_valid, y_valid),\n", + " callbacks=[earlystop, best_val],\n", + " verbose=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load the model with the smallest mape" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "best_epoch = np.argmin(np.array(history.history['val_loss']))+1\n", + "model.load_weights(\"model_{:02d}.h5\".format(best_epoch))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "plot training and validation losses" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAJWCAYAAAA+z3HMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl4VNX9x/HPmZlkQmYg7FsSIOzIKoQdWS3iglhXWnGtolKX+qtW2mqr1rZqrdrWrbhRLUUUXECtWlllURZFUUCQPexrIIQQktzfHzdBhKxk7r2Tyfv1PD4Jc2/u/Ya2Tz+ec77nGMuyBAAAgKrN53UBAAAAqDxCHQAAQAwg1AEAAMQAQh0AAEAMINQBAADEAEIdAABADCDUAQAAxABCHQAAQAwg1AEAAMSAgNcFuK1+/fpWixYtvC4DAACgTMuWLdtjWVaD8txb7UJdixYttHTpUq/LAAAAKJMxZlN572X6FQAAIAYQ6gAAAGIAoQ4AACAGVLs1dQAAIHKOHTumjIwM5eTkeF1KlZaQkKCUlBTFxcWd9jMIdQAA4LRlZGSoZs2aatGihYwxXpdTJVmWpb179yojI0NpaWmn/RymXwEAwGnLyclRvXr1CHSVYIxRvXr1Kj3aSagDAACVQqCrvEj8HRLqAAAAYgChDgAAIAYQ6gAAQJV14MABPfPMMxX+ufPOO08HDhyo8M9de+21mjp1aoV/zg2EOgAAUGWVFOry8/NL/bn3339ftWvXdqosT7ClCQAAiIgHZnyjldsORvSZZzStpd+P7Fji9fHjx2vdunXq1q2b4uLiFA6H1aRJEy1fvlwrV67URRddpC1btignJ0d33HGHxo4dK+n7s+CzsrJ07rnnasCAAVq4cKGSk5P1zjvvqEaNGmXWNnPmTN11113Ky8tTz5499eyzzyoYDGr8+PGaPn26AoGAhg8frscee0xvvPGGHnjgAfn9fiUlJWnevHkR+zsqQqgDAABV1sMPP6yvv/5ay5cv15w5c3T++efr66+/Pr7f20svvaS6devqyJEj6tmzpy655BLVq1fvB89Yu3atJk+erOeff16XX365pk2bpjFjxpT63pycHF177bWaOXOm2rZtq6uvvlrPPvusrr76ar311ltavXq1jDHHp3gffPBBffjhh0pOTj6tad/yINQBAICIKG1EzS29evX6wQa+f//73/XWW29JkrZs2aK1a9eeEurS0tLUrVs3SVKPHj20cePGMt/z7bffKi0tTW3btpUkXXPNNXr66ad16623KiEhQTfccIPOP/98XXDBBZKk/v3769prr9Xll1+uiy++OBK/6ilYUwcAAGJGKBQ6/v2cOXP08ccfa9GiRfryyy915plnFrvBbzAYPP693+9XXl5eme+xLKvYzwOBgBYvXqxLLrlEb7/9tkaMGCFJeu655/TQQw9py5Yt6tatm/bu3VvRX61MjNQBAIAqq2bNmjp06FCx1zIzM1WnTh0lJiZq9erV+vTTTyP23vbt22vjxo367rvv1Lp1a7366qsaNGiQsrKylJ2drfPOO099+vRR69atJUnr1q1T79691bt3b82YMUNbtmw5ZcSwsgh1AACgyqpXr5769++vTp06qUaNGmrUqNHxayNGjNBzzz2nLl26qF27durTp0/E3puQkKCXX35Zl1122fFGiZtvvln79u3TqFGjlJOTI8uy9MQTT0iS7r77bq1du1aWZWnYsGHq2rVrxGopYkoaPoxV6enp1tKlS70uAwCAmLBq1Sp16NDB6zJiQnF/l8aYZZZlpZfn51lTBwAAEAOYfgUAADjJz3/+cy1YsOAHn91xxx267rrrPKqobIQ6AACAkzz99NNel1BhTL8CAADEAEJdhO3NOqqzH5+rd5Zv9boUAABQjRDqIiwu4NN3u7K06+BRr0sBAADVCKEuwkLx9jLFrKNl70YNAAAQKYS6CPP7jGrE+XWYUAcAQNQJh8MlXtu4caM6derkYjWRRahzQCgY0OFcQh0AAHAPW5o4IBz0K+tovtdlAADgrv+Ol3asiOwzG3eWzn24xMv33HOPmjdvrnHjxkmS7r//fhljNG/ePO3fv1/Hjh3TQw89pFGjRlXotTk5Obrlllu0dOlSBQIBPf744xoyZIi++eYbXXfddcrNzVVBQYGmTZumpk2b6vLLL1dGRoby8/N133336YorrqjUr306CHUOCAUDymb6FQAAx40ePVq/+MUvjoe6119/XR988IHuvPNO1apVS3v27FGfPn104YUXyhhT7ucW7VO3YsUKrV69WsOHD9eaNWv03HPP6Y477tCVV16p3Nxc5efn6/3331fTpk313nvvSZIyMzMj/4uWA6HOAaH4AI0SAIDqp5QRNaeceeaZ2rVrl7Zt26bdu3erTp06atKkie68807NmzdPPp9PW7du1c6dO9W4ceNyP3f+/Pm67bbbJEnt27dX8+bNtWbNGvXt21d//OMflZGRoYsvvlht2rRR586dddddd+mee+7RBRdcoLPOOsupX7dUrKlzQCjoZ00dAAAuufTSSzV16lRNmTJFo0eP1qRJk7R7924tW7ZMy5cvV6NGjZSTk1OhZ1qWVeznP/3pTzV9+nTVqFFD55xzjmbNmqW2bdtq2bJl6ty5s37961/rwQcfjMSvVWGM1DkgFAxo495sr8sAAKBaGD16tG688Ubt2bNHc+fO1euvv66GDRsqLi5Os2fP1qZNmyr8zIEDB2rSpEkaOnSo1qxZo82bN6tdu3Zav369WrZsqdtvv13r16/XV199pfbt26tu3boaM2aMwuGwJk6cGPlfshwIdQ4IB5l+BQDALR07dtShQ4eUnJysJk2a6Morr9TIkSOVnp6ubt26qX379hV+5rhx43TzzTerc+fOCgQCmjhxooLBoKZMmaJ///vfiouLU+PGjfW73/1OS5Ys0d133y2fz6e4uDg9++yzDvyWZTMlDS/GqvT0dGvp0qWOvuMP767U5MWbtfLBEY6+BwAAr61atUodOnTwuoyYUNzfpTFmmWVZ6eX5edbUOSAUDCg7N18FBdUrMAMAAO8w/eqAcNAvSTqcm6eaCXEeVwMAAE60YsUKXXXVVT/4LBgM6rPPPvOoosgg1DkgFLT/Wg8fzSfUAQBinmVZFdoDzmudO3fW8uXLvS7jByKxHI7pVweEC0MdzRIAgFiXkJCgvXv3RiSUVFeWZWnv3r1KSEio1HMYqXNAKL5opI5QBwCIbSkpKcrIyNDu3bu9LqVKS0hIUEpKSqWeQahzwPfTr4Q6AEBsi4uLU1pamtdlQEy/OoLpVwAA4DZCnQNCJ3S/AgAAuIFQ54DvR+ryPa4EAABUF4Q6B7CmDgAAuI1Q54DEeL+MkbIJdQAAwCWEOgcYYxSKDzD9CgAAXEOoc0hivJ/pVwAA4BpCnUPCwYCy6H4FAAAuIdQ5JBQMMFIHAABcQ6hzSCjI9CsAAHAPoc4h4SCNEgAAwD2EOocw/QoAANxEqHMIoQ4AALiJUOcQe/qVUAcAANxBqHNIKD6go3kFyssv8LoUAABQDRDqHBIK+iVJh2mWAAAALiDUOSQcDEgSGxADAABXEOocEioMdTRLAAAANxDqHHJ8pI5QBwAAXECoc0jRSF02a+oAAIALCHUOKWqUYKQOAAC4gVDnkDBr6gAAgIsIdQ5JjC8MdXS/AgAAFxDqHEKjBAAAcBOhziEJcT75DNOvAADAHYQ6hxhjFAoGOFECAAC4glDnoHAwwPQrAABwBaHOQfZIHaEOAAA4j1DnoBAjdQAAwCWEOgeFg35G6gAAgCsIdQ4KxdMoAQAA3EGocxCNEgAAwC2EOgeFggFOlAAAAK6o0qHOGNPXGLPIGDPXGDPZGBPndU0novsVAAC4pUqHOkmbJA21LGuQpPWSRnlczw+Eg34dy7d0NI91dQAAwFlVOtRZlrXNsqwjhX/Mk1TgZT0nCxWe/5pNswQAAHCYa6HOGHOrMWapMeaoMWbiSdfqGmPeMsYcNsZsMsb8tILPTpN0rqR3I1hypRWFOpolAACA0wIuvmubpIcknSOpxknXnpaUK6mRpG6S3jPGfGlZ1jfGmMaSphbzvEsty9phjKkl6V+SrrIsK9e58isuXBjqaJYAAABOcy3UWZb1piQZY9IlpRR9bowJSbpEUifLsrIkzTfGTJd0laTxlmXtkDSguGcaYwKSJku637Ksbx3+FSqsaKSOZgkAAOC0aFhT11ZSvmVZa0747EtJHcvxsz+R1FvS74wxc4wxVxR3kzFmbOHU79Ldu3dXvuJyCsX7JUlZrKkDAAAOc3P6tSRhSZknfZYpqWZZP2hZ1quSXi3HfRMkTZCk9PR06zRqPC2M1AEAALdEw0hdlqRaJ31WS9IhD2qJqDCNEgAAwCXREOrWSAoYY9qc8FlXSd94VE/EMFIHAADc4uaWJgFjTIIkvyS/MSbBGBOwLOuwpDclPWiMCRlj+sveRLjMadVoFwraa+oIdQAAwGlujtTdK+mIpPGSxhR+f2/htXGytznZJbub9RbLsqr8SF0w4Fec39AoAQAAHOfmlib3S7q/hGv7JF3kVi1u4vxXAADghmhYUxfTQvGEOgAA4DxCncPCwQDdrwAAwHGEOoeFgn6OCQMAAI4j1DksFAzQKAEAABxHqHNYOBhQNtOvAADAYYQ6h9H9CgAA3ECocxiNEgAAwA2EOofZjRL5sizL61IAAEAMqzahzhgz0hgzITMz09X3hoIB5RdYOppX4Op7AQBA9VJtQp1lWTMsyxqblJTk6ntD8fahHUzBAgAAJ1WbUOeVUNAOdTRLAAAAJxHqHBYO+iUxUgcAAJxFqHPY9yN1bEAMAACcQ6hzGNOvAADADYQ6h4WDNEoAAADnEeocxkgdAABwA6HOYWG2NAEAAC4g1DksVNj9SqMEAABwEqHOYQG/T8GAT4dzGakDAADOIdS5IBwMMP0KAAAcRahzQSgYUDahDgAAOIhQ54JQMKAs1tQBAAAHEepcEA762dIEAAA4ilDnglAwQKMEAABwFKHOBSEaJQAAgMOqTagzxow0xkzIzMx0/d3h+ADTrwAAwFHVJtRZljXDsqyxSUlJrr87Mehn82EAAOCoahPqvBQuXFNnWZbXpQAAgBhFqHNBKBiQZUnZuYzWAQAAZxDqXBAKBiSJdXUAAMAxhDoXhIN+SaIDFgAAOIZQ54JQfNFIHdOvAADAGYQ6F4QLp18ZqQMAAE4h1LmANXUAAMBphDoXHA91HBUGAAAcQqhzQTjImjoAAOAsQp0LQoXdr0y/AgAApxDqXFDU/UqjBAAAcAqhzgU+n1FivJ+ROgAA4BhCnUtChee/AgAAOIFQ55JwMKAsGiUAAIBDCHUuCQWZfgUAAM4h1LkkMT5AowQAAHAMoc4l4WCAkToAAOCYahPqjDEjjTETMjMzPXl/iFAHAAAcVG1CnWVZMyzLGpuUlOTJ+8NBP40SAADAMdUm1HktFM9IHQAAcA6hziWhYEBHjuUrv8DyuhQAABCDCHUuCQfto8LYgBgAADiBUOeSUFGoYwoWAAA4gFDnklDQL4lQBwAAnEGoc8nx6Vc6YAEAgAMIdS5h+hUAADiJUOeSopE6jgoDAABOINS5JET3KwAAcBChziVFjRKcKgEAAJxAqHNJmDV1AADAQYQ6l9SI88tnCHUAAMAZhDqXGGMUig/QKAEAABxBqHNRYtDPSB0AAHAEoc5FoWCAzYcBAIAjCHUuCgeZfgUAAM4g1LkoFB9g+hUAADiCUOeiECN1AADAIYQ6F4WDfk6UAAAAjiDUuYhGCQAA4JRqE+qMMSONMRMyMzM9qyEcZE0dAABwRrUJdZZlzbAsa2xSUpJnNYSCAR3NK1BefoFnNQAAgNhUbUJdNAgdP/+VKVgAABBZhDoXhYN+SVIWzRIAACDCCHUu+n6kjlAHAAAii1DnoqJQx151AAAg0gh1LgozUgcAABxCqHNRKJ5QBwAAnEGoc1H4+PQr3a8AACCyCHUuSizsfmWkDgAARBqhzkVhGiUAAIBDCHUuCgZ88vsMI3UAACDiCHUuMsYoFO8n1AEAgIgj1LksHAzQKAEAACKOUOeyUDDASB0AAIg4Qp3LQsGADnP2KwAAiDBCncvCjNQBAAAHEOpcFgr6dZg1dQAAIMIIdS4LBQPsUwcAACKOUOeyMGvqAACAAwh1LqP7FQAAOIFQ57JwMKBj+ZaO5rGuDgAARA6hzmWheL8k0SwBAAAiilDnslAwIElMwQIAgIgi1LksXBjq6IAFAACRRKhzGSN1AADACdUm1BljRhpjJmRmZnpaRyhor6ljpA4AAERStQl1lmXNsCxrbFJSkqd1fD9SR6MEAACInGoT6qJFKJ7pVwAAEHmEOpfRKAEAAJxAqHMZjRIAAMAJhDqXxQd8ivf7dDiXNXUAACByCHUeCAX9jNQBAICIItR5IBQMEOoAAEBEEeo8EA4GaJQAAAARRajzQCgY0OFcQh0AAIgcQp0HQsGAsth8GAAARBChzgNhGiUAAECEEeo8EIqnUQIAAEQWoc4DIRolAABAhBHqPBAu3NLEsiyvSwEAADGCUOeBUDCgAkvKOVbgdSkAACBGEOo8EAr6JYkpWAAAEDGEOg+E4gOSRLMEAACIGEKdB0JBO9QxUgcAACKFUOeBcJCROgAAEFmEOg8UranjqDAAABAphDoPfD9Sx1FhAAAgMgh1Hggx/QoAACKMUOcBGiUAAECkEeo8EIovXFPH9CsAAIgQQp0HAn6fEuJ8NEoAAICIIdR5JBwMMP0KAAAihlDnkVAwQKMEAACIGEKdR0LxhDoAABA5hDqPMP0KAAAiiVDnkVDQT/crAACIGEKdR1hTBwAAIqnahDpjzEhjzITMzEyvS5HE9CsAAIisahPqLMuaYVnW2KSkJK9LkSQl0igBAAAiqNqEumgTDvp1ODdfBQWW16UAAIAYQKjzSNH5r9nHaJYAAACVR6jzyPFQxxQsAACIAEKdR8KFoY5mCQAAEAmEOo8UjdSxVx0AAIgEQp1HQkG/JEbqAABAZBDqPBI+PlJHqAMAAJVHqPPI8enXXEIdAACoPEKdR2iUAAAAkUSo80iI6VcAABBBhDqPJMYVNUrQ/QoAACqPUOcRn88oFO9npA4AAEQEoc5DoWCAUAcAACKCUOehcDBAowQAAIgIQp2HGKkDAACRQqjzUGK8n2PCAABARBDqPMT0KwAAiBRCnYdCwQAnSgAAgIgg1HnIXlPH9CsAAKg8Qp2HwkH2qQMAAJFBqPNQKBjQkWP5yi+wvC4FAABUcYQ6D4WLzn9lXR0AAKgkQp2HQkWhjilYAABQSYQ6DxHqAABApBDqPBQO+iVJWXTAAgCASiLUeSgUz0gdAACIDEKdh4qmXzlVAgAAVBahzkNh1tQBAIAIIdR5iEYJAAAQKYQ6D4WPT7/SKAEAACqHUOehhDiffIaROgAAUHmEOg8ZYxQKBmiUAAAAlUao81goPsBIHQAAqDRCXaRl7Zb+O17a9kW5bg8F/crOZU0dAAConIDXBcScQFBa9rJUcExqemaZt4eZfgUAABHASF2kJdSS2p0nff2mlJdb5u2hINOvAACg8gh1Tug6WjqyT/ru4zJvpVECAABEAqHOCa2GSon1pa+mlHlrOBjQ4VxCHQAAqBxCnRP8cVKnS6Rv/ysdOVDqraGgX1k5hDoAAFA51SbUGWNGGmMmZGZmuvPCrldI+Uelle+Uelta/bD2Zx/Tln3Z7tQFAABiUrUJdZZlzbAsa2xSUpI7L2zaXarXWvrq9VJvG9q+oSRp9re73KgKAADEqGoT6lxnjNRltLRpvnRgc4m3pdUPqWX9kGauItQBAIDTR6hzUpfL7K/lGK1btG4vW5sAAIDTRqhzUp0WUrO+dhesZZV429AODZWbX6AF3+1xrzYAABBTCHVO63KFtGeNtH15ibf0bFFXNYMBzVrNFCwAADg9hDqndbxI8seXOgUb5/dpYLsGmrV6lwoKSh7RAwAAKAmhzmk16khtz5FWTJXyS14zN6x9Q+06dFTfbDvoYnEAACBWEOrc0GW0dHiXtH52ibcMbtdQxkgzV+90sTAAABArCHVuaPMjKaF2qceG1Q3Fq3uzOqyrAwAAp4VQ54ZAUOp0sbTqXenooRJvG9q+ob7KyNSugzkuFgcAAGJBuUOdMWaIMSat8Psmxph/GWNeMsY0dq68GNJltJR3RFo1o8RbhnXgdAkAAHB6KjJS94yk/MLv/yopTpIlaUKki4pJqb3sfetKmYJt16imkmvX4HQJAABQYYEK3JtsWdZmY0xA0jmSmkvKlbTNkcpijTH2nnVzH5UObpNqNS3mFqMh7Rvozc+3KudYvhLi/B4UCgAAqqKKjNQdNMY0kjRI0krLsrIKP4+LfFkxqssVkixpxRsl3jKsfSNl5+brsw373KsLAABUeRUJdf+QtETSJElPF37WX9LqSBcVs+q1kpLTS92IuG+rekqI82nWKrY2AQAA5VfuUGdZ1iOSzpbU37Ks1wo/3irpBicKi1ldR0s7v5Z2fF3s5YQ4vwa0rq+Zq3fJKuW8WAAAgBNVaEsTy7LWWJa1TrK7YSU1tixrhSOVxaqOF0u+QKkNE0PbN1LG/iP6bldWifcAAACcqCJbmsw1xvQv/P4eSa9JmmyM+Y1TxcWkUD2p9Y/sdXUF+cXeMrS9vbXJTDYiBgAA5VSRkbpOkj4t/P5GSYMl9ZF0c4Rrin1dr5AObZc2zCv2cuOkBHVsWkuz2NoEAACUU0VCnU+SZYxpJclYlrXKsqwtkuo4U1oMa3uuFKxVasPEsPYNtXTTPh3IznWxMAAAUFVVJNTNl/SUpMckvSVJhQFvjwN1xba4BOmMUdKq6VJudrG3DO3QSAWWNHfNbpeLAwAAVVFFQt21kg5I+krS/YWftZf0t8iWVE10HS3lZkmr3yv2cpfkJNUPx3O6BAAAKJdynyhhWdZeSb856bPiEwnK1qyflJRqd8F2ueyUyz6f0ZB2DfXhNzuUl1+ggL9CjcoAAKCaqUj3a5wx5gFjzHpjTE7h1weMMfFOFhizfD6p82XSullSVvGjccM6NNTBnDwt27Tf5eIAAEBVU5Hhn0dlbz58s6SuhV+HSnrEgbqqhy5XSFa+9PW0Yi8PaNNAcX6jWWxtAgAAylCRUHeZpAsty/rIsqxvLcv6SNKPJV3uTGnVQMP2UpOu0pevFXs5HAyod1o99qsDAABlqkioMxX8HOXR4UJp+3Ipe1+xl4e2b6jvdmVp097DLhcGAACqkoqEujckzTDGnGOM6WCMGSHp7cLPcbpSe9lfM5YWe3lYB/t0CaZgAQBAaSoS6n4l6WNJT0taJukfkmZLutuBuqqPpt0l45MylhR7uXm9kFo1CBHqAABAqUrd0sQYM/Skj+YU/mMkWYWfDZA0K9KFVRvBsNSoo5SxuMRbhnVopJcXbFDW0TyFg+XehQYAAFQjZSWEF0v4vCjQFYW7lhGrqDpK6WUfGVaQL/n8p1we2r6hJsxbr/lrd2tEpyYeFAgAAKJdqdOvlmWllfBPy8J/0izLItBVVkpPKfeQtPvbYi/3aF5HtRICnC4BAABKxDEF0eB4s0TxU7Bxfp8GtWuo2d/uUkGBVew9AACgeiPURYO6LaXEetKW4pslJGlY+4bak5Wrr7ZmulgYAACoKgh10cAYewq2lGaJQW0byGekWat2ulgYAACoKgh10SIlXdqzRjpS/DmvdULx6tG8DqdLAACAYhHqokVK0bq6ZSXeMrR9I32z7aB2ZOa4VBQAAKgqCHXRIrlH4SbEpe1XZ58u8cHX292qCgAAVBGEumgRDEsNO0pbSg51bRqG1b1ZbT01e50O5RxzsTgAABDtCHXRJCVd2rpMKigo9rIxRr8f2VF7so7qqVnfuVwcAACIZoS6aJLaSzp6UNpT/CbEktQ1tbYu65GilxZs0PrdWS4WBwAAohmhLpoUNUuUMgUrSXePaKdgwK+H3lvlQlEAAKAqINRFk3qtpBp1Sm2WkKSGNRN029DWmrV6l2Z/yxYnAACAUBddjm9CvLTMW6/rn6a0+iH94d2Vys0rfg0eAACoPgh10Sall7R7tXTkQKm3xQd8uu+CDlq/+7BeWbTRldIAAED0ItRFm9Se9tetZY/WDWnXUIPaNtDfPl6r3YeOOlwYAACIZoS6aJPcQ5KRtiwp81ZjjO674AwdOZavv35UcscsAACIfYS6aBOsKTU8Q8ooO9RJUuuGYV3br4WmLN2iFRmZDhcHAACiFaEuGqUWNkuUsAnxyW4/u43qJsbrgRnfyLIsh4sDAADRiFAXjVJ6SUczpT1rynV7rYQ43X1OOy3dtF/Tv9zmcHEAACAaEeqiUWrhJsTlnIKVpMvSU9UpuZb+/P5qZefmOVQYAACIVoS6aFS3lZRQu8xNiE/k9xndP7KjdhzM0bNz1jlYHAAAiEaEumjk89mbEJejA/ZE6S3q6sKuTfXPeeu1ZV+2Q8UBAIBoRKiLVqmFmxDnVKyj9dfntZffGP3pfc6FBQCgOiHURauUnpIsaeuyCv1Yk6QaGje4lf779Q4tXLfHmdoAAEDUIdRFqwpsQnyyGwe2VEqdGnpg+krl5XMuLAAA1QGhLlol1JIadqhQs8TxH43z67fnddC3Ow9p8uLNDhQHAACiTbUJdcaYkcaYCZmZVejUhZSe9rYm5dyE+EQjOjVW35b19JcPv9W63VkOFAcAAKJJtQl1lmXNsCxrbFJSktellF9KT7tRYu93Ff5RY4wevqSz4vw+Xf3iYu08mONAgQAAIFpUm1BXJR3fhLjiU7CS1LxeSC9f11P7s3N1zUuLlXnkWASLAwAA0YRQF83qtZESkqQtpxfqJKlLSm3986oeWrc7Sze+slQ5x/IjWCAAAIgWhLpoVrQJcQWOCyvOWW0a6LHLumrxhn36xWvLlV9gRahAAAAQLQh10S6lp7RrlZRzsFKPGdUtWfee30EffLNDv5/+tSyLYAcAQCwh1EW709yEuDg3nNVSNw1sqX9/uln/mFXx5gsAABC9CHXRLiVdkqn0FGyRe0a018VnJuvx/61hDzsAAGJIwOsCUIaEJKlB+4iFOp/P6JEqvVx3AAAgAElEQVRLu2hfdq5++9YK1QvFa3jHxhF5NgAA8A4jdVVBSrod6iK0Di7O79MzV3ZX55Taum3yF1q6cV9EngsAALxDqKsKUntJR/af1ibEJUmMD+jla3squXYNXT9xidbsPBSxZwMAAPcR6qqClMJNiCuxX11x6obi9a/reykhzq9rXlqsbQeORPT5AADAPYS6qqB+WymYFLF1dSdKrZuof13fS1k5ebr6pcU6kJ0b8XcAAADnEeqqAp9PSunhSKiTpA5Naun5a9K1eV+2rnzhM+07TLADAKCqIdRVFSm9pF0rpaPOrH3r07KeJlzVQ9/tytJPJnyqXYdyHHkPAABwBqGuqkjtKVkFEdmEuCSD2zXUy9f21OZ92Rr9z0+1PZM1dgAAVBWEuqoiOd3+6tAUbJF+revr1Z/10q5DR3X5Pxdpy75sR98HAAAig1BXVdSoLdVvJ21xNtRJUnqLupp0Q28dPJKny/+5SBv2HHb8nQAAoHIIdVVJas+IbkJcmq6ptTX5xj46mlegy/+5SGvZxw4AgKhGqKtKUnpJR/ZJe9e58rozmtbSlLF9ZCRdMeFTfbMt05X3AgCAiiPUVSWphZsQr/3ItVe2aVRTU27qq4SATz+Z8KmWbzng2rsBAED5EeqqkvrtpJSe0oe/keb+RSoocOW1afVDmnJTXyUlxmnMC59pCWfFAgAQdQh1VYnPJ109Xep8mTT7IemNqx3bt+5kqXUT9cZN/dSwZlBXv7hYC77b48p7AQBA+RDqqpr4ROniCdLwP0qr35Ne+JFra+waJyVoyk191axuoq6buESzV+9y5b0AAKBshLqqyBip363SmDelrB3S80Ok7z525dUNagY1eWwftWkY1o2vLNUbS7e48l4AAFA6Ql1V1mqINHaOlJQqTbpMmv+kK9ud1A3F6z839lHvlnV199Sv9JcPV6ugwPn3AgCAkhHqqro6LaSffSSdMUr6+PfS1OulXOc3C06qEaeJ1/XSFempenr2Ot322hfKOZbv+HsBAEDxAl4XgAiID0mXviw16Sp9/IC0Z400epId+BwU5/fp4Us6q2WDkP7839XaduCInr86XfXDQUffCwAATsVIXawwRhpwp3TlVClzizRhsLR+jguvNbppUCs9N6a7Vm0/qIueXsDpEwAAeIBQF2vanC3dOFsKN5Je/bH06XOuvHZEpyaaMravjuYV6OJnFuqTtbtdeS8AALAR6mJRvVbSDR9LbUdIH9wjbf7Mldd2Ta2tt3/eX8l1aujal5do8uLNrrwXAAAQ6mJXsKZ08fNSzSZ2sHPp9Ink2jX0xs19NaB1ff36zRX60/ur6IwFAMAFhLpYFgxLZz8gbftC+nKya6+tmRCnF69J11V9mmvCvPW6ZdIyHcmlMxYAACcR6mJd58vs82I/vl/KOejaawN+nx4c1VH3XXCGPlq5U1dMWKRdB3Ncez8AANUNoS7W+XzSiEekw7ukT/7q6quNMfrZgDQ9f1W6vtuVpfP+Pp8zYwEAcAihrjpI6SF1/an06TPSvvWuv/7sMxrp7Z/3V+3EOI158TM98b81ymedHQAAEUWoqy7O/r3kj5c+us+T17dtVFPTb+2vH5+ZrL/NXKsxL3ymXYeYjgUAIFIIddVFzcbSWb+UVr8rrZvtSQmJ8QE9fnk3/eXSLvpiy36d9zemYwEAiBRCXXXSZ5x9dNgHv5by8zwr47L0VE2/dcDx6djHmY4FAKDSCHXVSVyCNPyP0u5V0rKXPS2laDr2ku4p+nvRdCzdsQAAnDZCXXXT/nwpbZA06yEpe5+npSTGB/TYZV312GVdtXzLAZ339080fy3TsQAAnA5CXXVjjDTiz9LRg9KcP3tdjSTp0h4pmn5rf9VJjNdVLzEdCwDA6SDUVUeNOkrp10tLXpR2rvS6GklSm0Y19c6t/XVp4XTslS98qq0HjnhdFgAAVQahrroa8lv7fNgPxktWdIyKJcYH9JfC6dgVGZka8cQ8vbF0i6woqQ8AgGhGqKuuEutKQ34jbZgrffu+19X8wKU9UvTfOwaqQ9NaunvqV7rxlWXsaQcAQBkIddVZ+vVSg/bSh7+R8o56Xc0PNKuXqNdu7KN7z++geWt365wn5un9Fdu9LgsAgKhFqKvO/HF208T+jfYRYlHG5zO64ayWev/2AUqtm6hxkz7X7ZO/0IHsXK9LAwAg6hDqqrtWQ6V250nzHpMO7fC6mmK1blhTb97ST7/8UVu9v2K7hj8xT7NX7/K6LAAAogqhDtLwh+zp15l/cO4dlWx2CPh9um1YG739c3vrk+smLtH4aV8p66h3J2MAABBNCHWQ6rWS+o6Tlv9bylga+efv3yQ93Vua9cdKP6pTcpKm39ZfNw9qpdeXbtGIJ+dp0bq9ESgSAICqjVAH21l3STWbSv+5QtqxInLPPbBZ+tcF0p5vpQVPSge2VPqRwYBf489trzdu7quAz+gnz3+q+6d/o+xcRu0AANUXoQ62hFrSNTOkQFCaeL6UsazyzzywxX5WTqZ0xST7s3mPVv65hXo0r6v37zhL1/RtrokLN2rEk59o4TqOGQMAVE+EOnyvfmvpuv9KNepIr4ySNi08/WcVBbojmdJVb0sdLrC3UPlikrR3XcRKTowP6IFRnTRlbB/5jPTT5z/Tb99awVo7AEC1Q6jDD9Vpbge7Wk2kVy+W1s2q+DMyM+wp1yMHpKvfkpK725+f9Ut7JHDOw5GtWVLvlvX03zsG6oYBafrP4s0654l5mrtmd8TfAwBAtCLU4VS1mkrXvm83UPznCunb/5b/ZzO3ShMvkLL3SVe9JSX3+P5auKHU+yZpxRuOnDlbI96vey84Q9Nu6aeEOJ+ueWmxfjX1S2UeORbxdwEAEG0IdSheuIG9xq5RJ2nKGOnraWX/zMFt9pRr9l470KX0OPWefrfbZ87OrnwnbEm6N6uj924/S+MGt9K0z7fqR4/P1ccrdzr2PgAAogGhDiVLrCtd/Y6U0kuadoO0/D8l31sU6A7vkca8KaWkl/zMvrdKq9+Vtn7uTN2SEuL8+tWI9np7XH/VDcXrhleW6o7XvtD+w5xGAQCITYQ6lC6hljRmqpQ2SHr7FmnJC6fec3C7PeWatVu66k0ptWfpz+xzi1SjrjTrIWdqPkHnlCRNv3WAfnF2G7331Xb96Im5en/FdlmV3AwZAIBoQ6hD2eJD0k9ek9qeK733S2nhP76/dmiH3RSRtVMaM01K7VX28xJqSQPulNbNrFyHbTnFB3z6xdltNeO2AWqclKBxkz7XNS8v0Xe7Djn+bgAA3EKoQ/nEJUhXvCp1/LH00b3S3EftQDfxAnukbsw0qVnv8j+v5w1SuLF9NJlLo2YdmtTS2+P6674LztAXm/drxJOf6MEZK2mkAADEBFPdpqHS09OtpUsdOAqruijIl6bfJi2fZO9nl5drB7rmfSv+rMXPS+/fZa/Baz0s8rWWYm/WUT320Rq9tmSz6iTG667h7XRFz1T5fcbVOgAAKI0xZpllWSUsVP8hRupQMT6/dOFTUq+bpIICe73d6QQ6Sep+jZTUTJrl3mhdkXrhoP58cWfNuHWAWjcI6zdvrdDIf8zX4g37XK0DAIBIYaQOpy8/T/IHKveML/4tvfNz+xixDhdEpq4KsixL763Yrj+9t0rbMnN0QZcm+vV5HZRcu4Yn9QAAUKQiI3WEOngrP096po/kj5Nunm+PBHrkSG6+npu7Ts/NXSdjpJsHtdJNA1upRrx3NQEAqjemX1F1+APSkF9Lu1ZKX7/paSk14v2680dtNeuuwRrWoZGe/Hitzn58rqZ/uU0FBdXrX34AAFUPoQ7eO+PH9skVc/5kj9x5LLl2DT390+6aMraPkmrE6fbJX2jU0wu08Ls9XpcGAECJCHXwns8nDfmttG+99GUpp1a4rHfLeppx2wA9fnlX7Tucq5++8JmueWmxVm476HVpAACcgjV1iA6WJb0wTMraJd22TAoEva7oB3KO5evVRZv01OzvdDDnmH7cLVn/N7ytUuokel0aACCGsaYOVY8x0tD7pMwt0rKJXldzioQ4v24c2FLz7h6isQNb6t0V2zX0sbn643srdSCb82QBAN5jpA7Rw7Kkf42Udn8r3bHcPp4sSm07cERP/G+Npn6eoXAwoHGDW+u6/i2UEEenLAAgchipQ9VkjDT0XunwLmnxBK+rKVXT2jX0l8u66oM7BqpXi7p65IPVGvLYHL2+dIvy8gu8Lg8AUA0R6hBdmvWRWv9Imv+klJnhdTVlate4pl68tqdeG9tHDWsl6FdTv9LZj8/VG0u36BjhDgDgIkIdos/wP0hWgfTKKOnQTq+rKZc+Levp7XH9NOGqHgoFA7p76lca9te5mrJks3LzCHcAAOexpg7RafOn0qs/luq0kK59T0qs63VF5WZZlmat3qW/zVyrrzIylVy7hsYNaaXLeqQqPsC/RwEAyo9jwkpBqKtC1s+RJl0uNewgXTNdSkjyuqIKsSxLc9bs1t8+XqvlWw6oaVKCbhncSpf3TFUwQEMFAKBsNEogNrQcLF3xb2nnN9Kky6SjWV5XVCHGGA1p11BvjeunV67vpSa1a+i+d77RoEfnaOKCDco5lu91idXL/o3SV697XQUAOIZQh+jWdrh06YtSxhJp8mjp2BGvK6owY4wGtm2gqTf31aQbeqtZ3UTdP2OlBj46WxMXbKChwi1z/yK9eaOUm+11JQDgCEIdot8Zo6SLnpM2zpdev1rKq5qb/Rpj1L91fb1+c19NvrGP0uqHdP+MlRr+xDx9+M0OVbelEK6yLGn9bPv7zC3e1gIADiHUoWroeoV0wRPS2o+kaddL+XleV1QpfVvV02tdl+ujfivl9xnd9OoyjZ7wqb7KOOB1abFpz1rp4Fb7+wOEOgCxiVCHqiP9OmnEw9KqGdLbt0gFVXhN2sFtMv/7ndquflYf3N5fD13USd/tytKFTy3QnVOWa9uBqjfNHNXWzfr++wObvKsDABwU8LoAoEL63CLlHpZm/UGKS5BG/t0+iaKqWfiUlJ8rZe9VYM8qjenTWaO6NdUzc9bpxfkb9P6K7brhrDTdMri1wkH+Z1pp62fb2+NkbpUObPa6GgBwBCN1qHoG3iWddZf0+SvSB+Pt9VJVyeE90tKX7O5eSVo/V5JUMyFO94xor1m/HKRzOzXW07PXafBfZmvSZ5s4eqwy8o/Z6zFbDZOSUgh1AGIWoQ5V09B7pT7jpM+ek2Y+6HU1FfPpM1JejnTuX6R6raUN835wOaVOop4cfabe+Xl/tawf1m/f+lrn/f0Tzf52F80UpyNjiZSbJbUaItVuRqgDELMIdaiajJHO+ZPU41pp/uP2WbFVwZED0uLnpTMulBq0ldIGSpsW2KNJJ+maWltTbuqj58b0UG5ega57eYkufnahPvpmhwoKCHfltm6WZHxSi7PsUEf3K4AYRahD1WWMdP4TUseLpY/vl9b+z+uKyrbkeenoQemsX9p/ThtkjyJt/bzY240xGtGpsT66c5AeuqiT9mblauyryzT8yXmauiyDc2XLY91sKbmHVKO2HeqydlbJ/Q4BoCyEOlRtPp806mmpUSdp2s+kfesj+/z8Y5HbPiX3sLToGanNcKlJV/uztIH21w1zS/3R+IBPY/o016xfDtLff3Km4vw+3fXGlxr8l9l6af4GZedW7S1eHHNkv7Ttc6nVUPvPtZvZXzMzvKsJABxCqEPVF58oXfGqJCO9NsYOT5GQuVV6upf0yoWRCXbLJkpH9tlNHkUS60qNO5+yrq4kAb9PF3ZtqvdvH6CJ1/VUSt1EPfjuSvV7eJae/HiN9h8+zY2ZD26reg0n5bHhE8kqkFoOsf9cFOrY1gRADCLUITbUTbOPE9u1Upp+W+UDyqEd0r9G2mFn0wLpk79W7nnHcqQFf7fXdTXr/cNraYOkLZ9V6PgqY4wGt2uo12/qq2m39FV687p68uO16vfwLD04Y2XF9rnb8530RCdp9bvl/5mqYt0sKb6mlFJ4FvbxUMe6OgCxh1CH2NH6bGnYfdLX06RFT5/+cw7vkV4ZZQe7q6dLnS+X5j4iZSw9/WcunyRl7bC3YzlZy8H2nnVbPj2tR/doXlcvXJOuj+4cqHM7N9a/Fm3UwEdn6/+mLNeyTfvL7phdN1Oy8u1tP2LN+tlSiwGSP87+c80mki9AByyAmESoQ2wZ8H9Sh5HS/353fP+3CsneZwe6/ZukK1+3R9XOf0yqlWwfBn80q+LPzD8mLXhSSk63R+VO1qyvHTTKOQVbkraNaurxy7tp7t2DNaZPc320cqcueXahzv3bJ3p10UYdyjm1w1bS9+8toVmjytq3Qdq/8fv1dJLk89v/WRLqAMQgQh1iizHSRc/a+79Nva5i02xHDkiv/tg+J/Qnk+0RHklKSJIu/qcdEj4YX/GaVky1Q8TAu4o//SIYtgPf6YTQYqTUSdT9F3bUZ78Zpj9f3Fl+n9F973yj3n+aqfHTvtKKjMzvby4o+H6EbvuXxW6tUmWtn21/bTXkh5+zVx2AGEWoQ+wJ1pRGT7IDypQx5du+4ughadKl0s5v7KaLk4NA837SgDulL161z54tr4ICex+9Rp2ktiNKvq/lIGn7cjtYRkgoGNBPejXTu7cN0Ds/76+RXZrq7eVbNfKp+Rr5j/l6bfFmHclYLuUckNqcI+UftX//WLFullQrxQ74J6rdnL3qAMQkQh1iU/020o//aQel935ZeuNE7mFp0uX29ONlL0ttzyn+vsG/lpp0sxsxDm4vXx2rpkt71khn/V/pZ9SmDbK7NB1Y12aMUdfU2nrk0i767Ddn64ELO+poXr7Gv7lCT734siRp0xk32jdvi5Ep2IJ8e1q51eBT/95rN5MObZfyjnpSGgA4pUqHOmNMI2PMQmPMXGPMLGNME69rQhRpf5406B67SWHJC8Xfc+yINPkndpPCJc/b6/FKEoiXLnnBDgNv32KPwpXGsqR5j9kjRWdcVPq9KelSoEal19WVJalGnK7p10If/mKgpt7cV+fVXKsNVmMNmnJUh3y1tGPVgtg4imzbF1JO5g/X0xWpnWp/Za86ADGmSoc6SXskDbAsa5CkVyT9zON6EG0GjbenFj8YL21a9MNreUelKVfZQeqiZ6VOl5T9vPptpHP+aK/X+uy50u9d+5G0c4U9bevzl35vICg171vmJsSRYoxRemotdTz2jZp2Ha57RnTQV1Yr7V/7mS74x3zN+HKb8vKr8GkV62ZLMlLa4FOvsVcdgBhVpUOdZVn5lmUV/T9PTUkxtCAIEeHzSRdPsP+P/I1rvp82zT8mvXGd9N3/pJF/k7qOLv8ze1wntT3XPpqspDVoRaN0SalSlyvK99y0QdLu1fZWKm7Y/qV09KCCbQbplsGt1HvA2Wrn2yrraJZum/yFhv51rl5dtFE5x/LdqSeS1s+WmnSRQvVOvXY81NEsASC2uBbqjDG3GmOWGmOOGmMmnnStrjHmLWPMYWPMJmPMTyvw3G7GmM8k3SopRhYEIaJq1JaumGRvR/L61fYmv9NukL59TzrvManHNRV7njHShf+QEmpJ0260NxY+2cZPpIzFUv87vt8jrSwtC7c72fBJxeo5XRsLp3pbnCVJCqT2lE8FmnFpTT03prvqhOJ13zvfqP/Ds/TUrLXKzK4inbFHD9mbObccUvz1mk0l42cDYgAxx82Rum2SHpL0UjHXnpaUK6mRpCslPWuM6ShJxpjGxpj5xfzTWJIsy1puWVZvSfdJ+rUrvwmqnkZnSBc9bQetp3pKK9+Whv9R6nXj6T0v3EAa9Yy06xtp5oOnXp/3mBRuJJ15Vfmf2biLvX3KhjmnV1NFbfhEatBeqtnI/nPT7pIk//YvNKJTE709rp8m39hHnZKT9NhHa9Tv4Zl66N2V2p5ZgdMqvLBxgVSQV/x6OknyB9irDkBMCrj1Isuy3pQkY0y6pJSiz40xIUmXSOpkWVaWpPnGmOmSrpI03rKsHZIGFPdMY0zQsqyiFrZMSeU/ZwnVT8cf2wvoF/xNGnqf1O/Wyj2v7XCp543Sp09Lbc7+PkRkLLXXxv3oD1JcQvmf5/Pbo2br59nTt6V1y1ZWXq60+VOp2wmD4uEGUlIzaesySfa6u76t6qlvq3patf2g/jl3nV5euFETF27UBV2a6JIeKerXqr78PgfrPB3rZ9tNJ836lHwPe9UBiEGuhbpStJWUb1nWmhM++1JSMVvvn6K7MeYRSfmSciRdX9xNxpixksZKUrNmzSpXLaq2sx+Qul8j1WsVmecN/4PdaPH2OOmWhVJiXXuUrkYdKb3Y/zqWruVg+wzW/Rvt82ydsu1z6dhhKe2sH36e3P14qDtRhya19OToM/XL4e304vwNmvZ5ht5evk0NawY1qltTXXRmss5oUkvGySBaXutm2/sKBoIl31O7mbR+jmslAYAboqFRIix7lO1EmbIbH0plWdYiy7IGWpY1xLKscy3LKnbzMMuyJliWlW5ZVnqDBg0iUDKqLGMiF+gkKa6GvRXK4T3SjNulHSukNf+Vet9inxRRUWkD7a9Od8EWrdtrcXKo62GPYB3eU+yPpda1T6tY8tuz9cyV3dU1tbYmLtyo8/8+X+c8OU/PzlmnbQc8nJ7N3Crt+fbUzaNPdnyvulx36gIAF0TDSF2WpFonfVZL0iEPagEqrklXaei90se/tztK42tKvcee3rPqt5XCje0jw3pcG9Eyf2DjPKlRZ3tk8UTJ9ro6bf3cnl4uQUKcX+d1bqLzOjfR/sO5enfFdr39xVY98sFqPfrhavVOq6uLz0zRiM6NVSuhnI0ikXD8aLAS1tMVqZ0qyZIOZkh1WzpeFgC4IRpG6tZIChhj2pzwWVexPQmqkn632aNeBzZLPX9mT7+eDmPsLtgN88re3Ph0HcuRtiw+depVsk/MML5ip2BLUicUr6v6NNe0W/pp7t2D9YthbbXz4FH9atpXSn/oY/180uda8N0edzY1XjfbblBpeEbp97GtCYAY5NpInTEmUPg+vyS/MSZBUp5lWYeNMW9KetAYc4OkbpJGSernVm1Apfn89n54C5+ytzGpjLRB0ldTpN2rpEYdI1PfiTKWSHk5p069SvaUcYP2p31cWPN6Id1xdhvdPqy1vszI1FufZ2j6l9v03ortateopq7r30IXnZmshLgyNmM+HQUF9jq51sPKbjIh1AGIQW6O1N0r6Yik8ZLGFH5/b+G1cZJqSNolabKkWyzLYqQOVUutptKIP506pVlRRevq1ju0rm7jJ/ZoXPMS/r2paWGzRCVG1owx6pZaWw+M6qRFvx6mRy/tIp/PaPybK9T3zzP16AerI781ys4VUvaekvenO1GtZPvvgL3qAMQQ10KdZVn3W5ZlTvrn/sJr+yzLusiyrJBlWc0sy/qPW3UBUad2qr3Oy6lmiQ2f2OsAa9Qu/npydyl7b8SO0UqI8+vy9FS9f/sAvTa2j3q2qKtn567TWY/M1m2Tv9Dnm/dH5D320WCyO4jL4o9jrzoAMScaGiUAnCxtkLRiqpSfZ2+WGym52fb0a59bSr4nuYf9devnUp0WEXu1MUZ9WtZTn5b1tGVftv61cKOmLNmiGV9uU9fU2rq+fwud26mJ4gOn+e+a62fba+lqNSnf/UmphDoAMSUaGiUAnCxtoJR7yN4sOZK2fCoVHPt+irc4jTpK/mCFmiUqKrVuou694Awt+s0wPXBhRx08ckx3vLZcZz06S0/P/k6ZRyp4JNmxI9KmReWbei3CBsQAYgyhDohGx/ermxPZ5274RPIFSj9twR8nNekS+UBZjHAwoGv6tdDM/xukl6/tqbaNauovH36r/g/P0p//u0q7DhVzrm5xNi2U8o+WvT/diWo3kw5tk/KryJm2AFAGQh0QjUL17X3kIt0ssfETuxEiWMbe3k2726EuPy+y7y+Bz2c0pH1Dvfqz3nrv9gEa3K6Bnp+3XgMema17316hLfvKOAFw/WzJH19y80dxajeTrALp4NbKFQ8AUYJQB0SrloPs/eSORahL9Oghe51ccfvTnSy5h3Qs2z6dwWUdmybpqZ9216xfDtYl3ZP1+pIMDX5sjn7x2hf6dkcJe5KvmyOl9pbiQ+V/Ue1U+ytTsABiBKEOiFZpA+0pxS2fReZ5mxZJVn7x+9Od7MRmCY+0qB/Sny/uonm/GqLr+7fQRyt36pwn5+mGfy35Ycds1i57O5OKTL1K7FUHIOYQ6oBo1byfvf4tUlOwG+fZU5Spvcu+t25LKZjkaLNEeTVOStBvzz9DC+4Zql+c3UZLN+3Xxc8s1OgJizRvzW5Zx7cyqWCoq5UiyRDqAMQMQh0QrYI17RGzDfMi87wNn0gpPaX4xLLv9fmk5DOjItQVqROK1y/ObqsF9wzVved30MY92br6pcX6+N3XdDQuSdn1Knj6RiDe3jCaDYgBxIhqE+qMMSONMRMyMzO9LgUov7SB9pFdOZX87+2RA9KOr8o39VokuYe0a2Xk1vRFSCgY0A1ntdTcXw3Wo5d01pl5y/W/nA7q8/AcPfTuSm3ae7j8D2OvOgAxpNqEOsuyZliWNTYpKcnrUoDySxtkd2huXFC552xaaD+nPE0SRZp2lwrypB0rKvduhwQDfl3ePFv1rX3qdNYoDWrXUBMXbtTgx+bo+olLNOfbXSooKOOoM/aqAxBDqk2oA6qk1F5SoEbljwzbME8KJNjTr+V1vFkieqZgT7HeXk/XotcF+sdPztSC8UN1+9A2WrE1U9e+vETDHp+rl+Zv0MGcEvaiq93M3tLEpa1bAMBJhDogmgWC9kbBlV1Xt/ETu0EiECz/z9RqItVs6mkHbJnWzZLqtjreydqoVoLu/JG97u5vo7upbiheD767Un3+NFP3vr1Cq7YflGWdMHpXu5ndEXxom0e/AABEDme/AtEubaA08wF7645ww4r//OG90s6vpb0hE/wAACAASURBVKH3Vvxnk7tH70hdbrY9Ld3tp6dcig/4NKpbskZ1S9bXWzP1r4Ub9frSDP37081qVCuo/q3/v737jq+yvP8//rpysndCBpkQ9pSRCIoCKhYVBbd1ttpaW21r/drWX6e1rdWOb6d1ts761TpqRcCNMhyAgMgKO5CwkjASErKT+/fHdQIhQMg4Jyfn5P18PPI4J/c5576vcAt5e43PlcTZg5I4N7QvCWCHYJtLnIiI+Cn11In0dAOm2sfO9tbt+Mg+9m9jv9eTyRgPB7ZC9cFTv7e7rXkZ6g/DyMvbfNuojDj+cPUYlvx4Gr+9YjSn909kwcZS7n75Cy5/wa58fX3Bp3ywoZjKWg3Dioj/Uk+dSE+XNtbWjCtYCKOv6vjnCxZBSJQNaB2V7v7M7s9h4Hkd/7y3OA4seQz6jm731mCJUaFcOyGbaydk09TksH7PIT7dtBsWQuHWDfxpw3KCgwzjsxNsT97gPozNSsAVZLz8w4iIeIZCnUhPF+SC/md3vghxwWLodya4Qjr+2fRx9nHXip4V6goWQmk+XPoImI6HrqAgw6iMOEZlxMHKNO7ICSXvtIl8tGUfH23Zx1/mb+LP70NKTBiXj8vgytxMhqSeYr9cEREfU6gT8QcDpsLGebBvCyQNav/nKort/q0nmHfWLhHx0Gcw7Pq8c5/3liWPQWQSjLqy6+eKzyb4UBGTBiUxaVAS9wBlVXUs3ryP2at28eRHBTy+aBujM+K4cnwGs8ZmkBgV2vXrioh4mObUifiDIRfa0ib/uhz2rm3/57Yvto8dqU/XWsZ42LXcDnn2BAe2waa3Ie8WCAnv+vlOUIA4PjKUmWPS+edXT2fJT6Zx7yUjaHIc7puznokPvM9tzy3n7bV7qWto6vr1RUQ8RKFOxB8k9INb3oSmenhyOuTPbd/nChbZ+Xh9x3T+2hm5UFkMh3pI2Y9l/7BD0nlf98z5TlGrLik6jK+dncO8Oyfz9l2TuXlSf1YWlvGt51cw8YH3+cXstazeWXZsqRQRER9QqBPxFxnj4RsfQvJQeOkGWPS/p+49277YLiRwdWGmRXMR4t09oF5dbQV8/rxd8Rqb5plzxmfbnTMq9pzyrcP6xvLTi0ew5Mfn8fTNpzNpUBIvflbErL9/zPQ/L+Kh+ZvZvq8D25SJiHiQ5tSJ+JPYNNtj98Z34YNfQ+kGmPUQhEQc/97yXXao8vRbu3bN1FEQFGwXSwyf2bVzddWqF6D2EEy83XPnbK5PV14E8Vnt+kiwK4hzh6Vw7rAUyqvqmbtmN69/vos/vreJP763idMy45h5WjqXjEkjLe4E90ZExAsU6kT8TUgEXPEPSBkO838F+7fCtS8c33N1ZD5dJ+rTHXO9cBvsfF2EuKkJlj5utzrLzPXceZtDXVlhu8ujtBQXGcINE/txw8R+7C6rZt7qPbzxxW5+82Y+v3kznwn9E5k5Np0Zo/rSJ7oDO3qIiHSQhl9F/JExMPn7NsyVboR/nHv8dl4FiyAiEVJGdv16Gbmwe5UNVr6y5X1bCHnitzx73rhM+9hqsURnpMdH8I0pA5jz3bP58AfncPeXhnCgqo6fv76WCQ/M56Ynl/LK8iLKq0+yF62ISBco1In4s2EXw9ffhaAQePoiWPPq0dcKFkP/syDIA3/NM8bbYc/9W7p+rs5a+ijEpMGISz173pAIiE6Fsh0ePW1OUhR3ThvMe/8zhbe+N5lvThnA9v2H+eGrqzn9/vf5+jOf8dJnheyvrPXodUWk99Lwq4i/6zsKbvsQXroR/vN1O89u7A1QXgiTvuuZazQvlti1ApKHeOacHVG6EbZ+YPev7UwR5VOJz4ayIs+fFzDGMDwtluFpsfzwgqGsKipjzhd7eGfdXuZvKCHIrCGvXyLTR6YyfURfsvtEeqUdIhL4ek2oM8bMBGYOGtSBwq0i/iIqCb7yBsy7Gxb9AVa/bI93dT5ds6QhEBptV8COvc4z5+yIpY+BKwxyb/HO+eOy7FZoXmaMYVx2AuOyE/j5JcNZv+cQ764r5p11e7l/Xj73z8tnWN8Ypo/sy/QRqYxMj8V0YscMEemdTG+rrZSXl+csX77c180Q8Q7HsQHonZ/YHRd+sKlT22id0NMXQ0M1fOMDz5yvvaoPwp9GwMgr4LKHvXON934Bnz4MPyu2NfB8oHB/Fe+u38u764tZvv0ATQ5kxEfwpRGpTB+RSl7/REKDNWNGpLcxxqxwHCevPe/tNT11Ir2CMXDG7ZA+3tZe82QvT8Z4Gxgb6iC4G7fJWvkvqK+CMzy8QKKl+Gxb2LliL8RleO86bcjuE8mtkwdw6+QB7K+sZX5+Ce+u38sLywp55pPtRIcFM2lgH84ZmsLUoclkxKtUiogcS6FOJBBlT/T8OTPGQ2MdFK+1z7tDY4PdQaLf2dB3tPeuE9/PPpYX+SzUtdQnOoxrTs/imtOzOFzbwEdb9rFwUykLN5by7vpiAAanRHPO0GSmDknh9JwEwoJ908MoIj2HQp2ItE/LxRLdFeo2vmkXfFz4gHev01x0uKwQss/w7rU6KCosmAtG9uWCkX1xHIctJZUs3FTKgo2lPPvJDv6xuIDIUBeTBvZh6pBkzhmaQlaiFluI9EYKdSLSPnFZEJXcLQsKjlj6GMRlw9AZ3r1OXHOo82xZE08zxjA4NYbBqTHcOnkAh2sb+HTrfhvyNpXwfn4JsI4BSVFMGZLM1CHJTByQSGSo/qkX6Q30N11E2scYO1evvTtL1FfD+jdg01s2lI2+umNz/Pashh0fw5d+7f3FC6GRNrB6oABxd4oKC+b8EamcPyIVx3HYtu8wCzaWsmhTKf/+zM7FC3UFcXpOAlMGJzNlSDLD+sZoRa0v7V4FqSO9U5pHej2FOhFpv4xc2Pwu1FZAWMyJ31O8HlY+C1+8CDXlEBoD6/4La16BS/58dAeHU1n6OIREwvibPNf+tsRn+12oa8kYw8DkaAYmR/P1s3OoqW/ks+0HWLSplIWbSnnwrQ08+NYGUmPDmOwOeJMHJZEQ1Y2LXnq7AwXwxDkw4w8w4Ru+bo0EIIU6EWm/jFzAsb0NOZOPHq+rssFtxTOwcxm4QmH4TBj/Veh3Fnz2T5j/S3h4Ipx/H+R9ve2dLg7vsyFw3I0QkeDdn6lZfLbtHQwQ4SEuJg9OZvLgZH56Mewpr2bxpn0s3FzKe+uLeXXFToyBUelxjEiLZXBqNENSYxiSGkNqbJh687yhcAng2EeFOvEChToRab/0cfZx1wob6vastr1yq1+224j1GQzTfwNjroOoPkc/d8a3YOiFMOd78OYPYO1rMOtvkDT4xNdZ/jQ01np+n9e2xGXBhnl2f1tPbK3Ww6TFRRxZUdvY5PDFzjIWbSpl6bYDvJ9fzEvLj+6oERMe7A540QxOiTnyPDlGYa9LipbYx/ZOYRDpIIU6EWm/qD6Q0N+GuPWz7Q4TrjAYeRnk3gzZZ5583lxCf7jpdVj1f7Y48qNnwTk/gkl3gqvFP0UNdbZnb+C07t2SLD7blmypLIbYtO67rg+4ggzjsxMYn320F3R/ZS2biivZXFLBpuIKNu2t5K21e3mx6mjYi48MYWxWPOcNS+FcrbLtuKJl9vFgARzef+z/+Ih4gEKdiHRM1hmw+t+QMgIu/B2cdg1EJrbvs8bYIdVB59seu/m/hPWvw6y/Q9pp9j35b0DlXpj1kPd+hhNprlVXVhjwoe5E+kSHcWZ0GGcOPBo0HMehtLKWzcWVNugVV/DJ1v3cO3sdsI4hqdGcNyyV84alMD47nmBX4PVwekx1GZTkQ85UKFhoe+uGTPd1qyTAKNSJSMdc+CCc+W1bDLizQ3ExfeHLz9vevnk/sJPHz74LptwDSx6FPoNs8OtO8dn2sbwI8ELx5p6oJB/eugeuee6EcxeNMaTEhJMSE85Zg5IAjqyy/XBDCfPzS/jn4m08tnArcREhTB2SzLThKUwdkkx8pBZgHGPncsCxUwq2L4ZdyxXqxOMU6kSkYyIT298zdyojLoX+k+Hdn8HiP9ph3fIiuOgP3T+vLd4/atV51IpnoGARbJkPo69q10darrK9dfIADtXU89HmfczPL2HBxhLe+GI3QQbGZydw7rAUxmbFMzI9ViGvaCkYF+RMgeTh7pAn4lkKdSLiW5GJcNkjMOpKmHMXRCTC2Ou6vx2hURDZx6/LmnSI40D+XPt824J2h7rWYsNDmDE6jRmj02hyL8D4cEMJH2ws4Q/vbDzyvoz4CEakxzIyPZaR6XGMyoilb2x471l4UbQE+o6CsGjIzLU1HB3Hs/szS6+nUCciPcOgafCdZVBbefIaeN7m57XqOmT353Bop60FWLDII6cMCjKMy05gXHYCd08fyoHDdazbXc663YfcX+W8n1+M49j3J0aFMjI91h324hidEUf/PpGBF/QaG2DnChh3g/0+Iw9WPgcHtkGfgb5tmwQUhToR6TlCIuyXr8Rn2+LJvcGGuXY48KzvwYIH4eB2u0LZgxKjQo/Uymt2uLaBDXttyFu7ywa+pz4qoL7RJr34yBDGZMYzNiuesdnxjM2M9/8CycVrof4wZLnnajbvo7xzuUKdeJRCnYhIs7gs2PRO7xgWy58D/c+CEZfZUFewyOOh7kSiwoLJ7ZdIbr+j8zLrGprYXFLBmp3lfF5YxqqiMv62efORHr3+fSJtyMuKZ2x2AsPTYggL9vLWcZ7UXMqkOdSlDIeQKLtYYsyXfdcuCTgKdSIizeL7QUMNVJZATKqvW+M9pRth3yaYcBskD4WoFBvqxn/FJ80JDQ5iZHocI9PjuHaCXYVcWdvA6p024K0qLOOTrft5fdVu+35XEMPTYxmSEs3AFLtoY0ByFNmJkYT0xLIqRUshJv3oFnlBLlvIW4slxMN6TagzxswEZg4aNMjXTRGRnqq5rElZYWCHuvw59nHYxbZHMmeKDXU9qIcyOiyYSQOTmDTwaCmVPeU1NuQVlbF6ZxkLNpXyyoqdRz4THGTo1yfSHfKiGZgcZUNfUjRxkSG++lFsqMueeOyfbWYufPoINNRCcJjv2iYBpdeEOsdx5gBz8vLytOGeiJzYkVC3A7JO921bvCl/jp2sH5tuvx8wFda+anvwUob5tm0nYYwhPT6C9PgIZow+Why6vLqebaWVbCs9zNbSSra6n3+4seTIPD2AtLhwxmcnMC47ntx+CYxMjyM0uBt69cp32TI9Z3772OMZedBUD3vXQGae99shvUKvCXUiIqfUXKuuvKjt9/mzsiLYswrO/+XRYzlT7GPBoh4b6k4mLiLkyIrblhoamyg6WM220kq2lFSybvchVuw4yLw1ewA75HtaRhzj+yUwPjue8dkJpMSGe76BO1vNp2vWcrGEQp14iEKdiEizsBi7s0IglzXZ4K5NN3zm0WMJ/e18woKFMPE2nzTL04JdQeQkRZGTFMW04UeH0osP1bByx0FWFh5kxY6DPPPxdp5Y1ARAZkIEuf0SGJcVT1ZiJMkxYSTHhJEUHdb5uXqFSyE4wu7A0lJcBsSk2cUSIh6iUCci0lKg16rLn2v37W1dSiNnit13t6nRTuQPUKmx4Vw0Oo2L3EO4tQ2NrN11iM/dIe/TrfuZ7V6Q0VJiVCjJ0WFHgl5KzNHnfWPDye4TSWpMOEFBreYkFi21vXKuE8zpy8jVYgnxKIU6EZGW4rPt3LKOqCyBwiW296uHLDQ4ocpSKPwEpvzw+NdypsLn/4K9q+3KzF4iLNhFbr8EcvslcOtkuyCjpKKWveU1lFTUUtr8VVlDyaFaSitr2b79MCUVtdQ1NB1zrtDgILISIujXx67EzYkz3LRnNWXjbieyvpHwkFZhOTPP9pxWHfDc1nvSqynUiYi0FN8PNr/f/pWgVQfgmUtg30aY9ZDPyoK0y8Y3wWmCYZcc/1rzvLptC3tVqGvNGENqbDipp5hf5zgOFbUNlByqZU95NYUHqijcX8WO/VUUHqhiWcEBRtat4athDXx/STgffvI2qbFh9EuMIisxkuzESMY7/ZgMlG35lLjRMwJvJw3pdgp1IiItxWVBQzUc3gfRyW2/t74aXrwODhbYOVNv/T87IT55aPe0taM2zLWhtfX8LrAlXJKH2cUSZ9/V/W3zM8YYYsNDiA0PYVBK9HGvO45D9QdfwGK4+rLLGV8RSuGBKnYcqOKTrft47fMaIp0m1oQZnnn5VR5/xUVWYgTZiZFHQl92YiSZCZGkxYcTExas0CenpFAnItJSy1p1bYW6xgZ49et2ztTVT0PWGfDYWfDq1+DW+RDihZWUXVFzCLYtsAWHTxYOmodgG+og2M+35vIxYwyRe5dD0lBmTBh53Os19Y3sKqum6vnBXB1STGX/bNvbd6CKT7bup6qu8Zj3R4W6SI0LJy0unL6xEfax+fu4cNLiIkiIDFHw6+UU6kREWmpZqy4z98TvcRx48/uwcR5c9HsYebk9ftlj8MLV8N69MOP33dPe9tr8LjTWHbvqtbWcKbDscbsis9+k7mtbIGpqsuVMTjTUDYSHuBiYHA0DJhK9YS4/u3j4kbDtOA4HDtdReKCKooPVFJfXsKe8hr2HqtlbXsOnW/dRXFFLY5NzzDlDg4NIjwsnMyGSjPgIMhIiyIiPIDPBPu8bG05wT9xxQzxGoU5EpKX21Kpb+HtY8QycfTdM/ObR40Omwxl3wJJHYMA5MGyGFxvaQflzIDoVMiec/D39zwITZIdgFeq6Zv9mqD4I2We0/b7MPNs7emDbkRXJxhj6RIfRJzrsuPp7zRqbHPZV1tqwV27D3p7yGnaVVbPzYDUfbCyhtKL2mM+4ggx9Y8PJSIggMz6CrMRIhqTGMLRvDP37RCrwBQCFOhGRlsLj7NfJypqseBYWPABjrodp9x7/+vn3wfaPYPYdkP7J0V0bfKm+Gja/B6ddA0Ft/OKOSIC0MXaxxDk/6r72BaKipfaxddHh1jLchYd3rTi+zEwbXEEtFnRkxZ/wPTX1jewuq2ZXWTW7DlYfCXy7DlaztOAA/121C8fd2RfqCmJgSjRDU6MZ0jeGoakxDEmNISM+4vgyLdJjKdSJiLR2slp1G96EuXfBoPNh1t9OPDctOAyuehoenwKv3QZfme37um/bFkD94baHXpvlTLF7ktYdhtAorzctYBUthYhE6HOK/cZThkNIlK1Xd9o1Hm1CeIiLAe59cE+kpr6RLSWVbNxbwabiCjYWV7Cs4ACvt6jTFxXqYnCqDXkJUaGEugyhwUH2yxVEaLCLEPexsCPHXYQGBxEZ6iIi1EVEiOvI81BXkOb9eZFCnYhIa/H9YP+WY48VLoVXb4G0sXD1sycuJtssaRDM+IPtrVv8J5h6grpw3Sl/DoTFQf/Jp35vzlT4+K+27t6gad5vW6AqXGp76U4VYIJckD7WJztLhIe4GJURx6iMuGOOH6qpZ3NxBRv3Vtqwt7eC+RuKOVTTcFxtvo5yBRkiQmzAi3QHvohQF7HhIcRFhBAfGUJ8RAhxkaH2e/exuIgQ4tyPYcGBWxy7qxTqRERai8+GrR8crVVXuhFe/LIdSr3hFQg7cc/HMcZeD9s+hAUPQs7kU8+t8pbGBlufbuiF7VvRmn0GBIXYLcMU6jrn8H47p27s9e17f0YuLH0MGmptT6+PxYaHkNsvkdx+xxdEdhyH+kaHusYm6hqaqHc/1jbYx7oj3zdSXddIdX0jVXUtnze0+t4+L6uqY/v+w5RV1XOopv7IsPCJxIQF0y8pkgFJ0eQkRTEgOco+T44iOqx3x5re/dOLiJxIXBbUV9nCwo218PyVNujc+BpEJbXvHMbAxX+CnZ/Bf26Fby22c9a6246P7YT9k6zCPE5oFGSebhdLSOfs/Mw+tjfIZ+bBJ3Wwd4193oMZYwgNtsOteCl/NjU5VNQ0UFZdR3l1PWVV9ZRV11NeXU95VR2lFbUU7K9iZeFB5qzefUwATIkJsyEvOZoB7sAXEx6C40CT49DkODgOx3+PQ1PT0bmKGfERxEb4X21AhToRkdaay5rsXQ3v/BSqy+CWeZCY07HzhMfClU/BU9PhjTvhmue6fxuxDXPthvId6XUbMBUW/NaGQV8EUX9XtASCgtu/M0fLxRI9PNR1h6AgY4daI9uY4uBWU9/Ijv1VFOyrZGvpYQr2HWZbaSVvrdnDwar6LrUjKtRFWnwE6fERZMSHkx4X4f7ehr6+ceE9bihYoU5EpLXmUPfq16C2wg65po3p3Lkyc+G8n8P7v4CVz0LuzR5r5ik1NUH+XBvoOrLoIWeKHTbe/jEMb2cPnxxVtMz+9xIS0b73x2VATJpdLNGyRI43Hdhm2znm2u65npeEh7gY2teWZWnt4OE6tu07TFVdA0HGYAwYDEHGBkeD7XkMMkcf6xsdig/VHFk1vKesht3l1azfXc6+yrrjrnHx6DQevmF8N/yk7aNQJyLSWnOoqz4AVz4JA8/t2vkm3WlXoL71I7vzRMqwLjexXXavhIrdMPwXHftcRh6ERNohWIW6jmmosz1ueV/v2Ocycrt3scQHv4G1r0LWBEgc0H3X7UYJUaHk1hTZuYopw7vcS15T38jechv4drsf0+PbGdy7iUKdiEhrEfEw9GIYdB6Mvqrr5wsKgssfh0cn2d6/b8xvfy9OV+TPscOAQy7o2OeCQyH7TLtYQjpm7xpoqLFhqSMycu1QedUBiDx+gYJH1dfAprft8zX/8f3qbG+pLIUnzoXacohKsT3QA6baFd4J/Tp8uvAQF/2Touif1HNL/ah8tIjIiVz3Apx+q+fOF5Nqg13JOnj3Z54778k4jg11/Sd3bl5czhQo3QAVxZ5vWyBrb9Hh1jJbzKvztq0fQF0lhMfDmldoc6mpP/vgV7Y+4wUP2h1eti+GN74Lfz0N/jrGznNd+x84vM/XLfUY9dSJiHSXwefDmd+BT/8OThOkjoSEHDv8FZcFLg/+k1y6AQ5shTO/3bnPD5hqH7cv9kxvZW9RtMQO38emdexz6eMAY0Pd4C95pWlHrJ9tA925P4G37oHitdB3tHev2d12fw4r/2X/+z/zDnvMcezfi20LbS/0uv/aea4AqaNsD96wGdD/bN+1u4t6TagzxswEZg4adIrq3iIi3jTtF3aS+qoX7DBds6BgGwaaQ16i+zEhBxL6Q0h4x66TPwcwMOzizrWz72l2u7RtCxTq2stx7OKDzoSCsBg772unl+fVNdTCxrfs7iKjroJ3fmJ76wIp1DkOvHkPRCXD1P939Lgx9s84ZTic8S1bw3HPKvvfeMFC+OyfsORhuHW+365C7jWhznGcOcCcvLy8b/i6LSLSiwWHwnUv2pWpFXvgYIENeQfcjwcLbJ2z2kMtPhNhexzO+p4tk9Ie+W/YeV0xfTvXziCXHbpVvbr2Kyu097SjQ6/NMsbbreiai157w7aFdo7ZiEshqg8MnGbn1U27r+19gf3J6pdh5zK49OG2/764gm14y8yDKT+wpYv+NBw+f16hTkREOiAoyJayiMs4vmfHceyE+ebAt/EtWPy/sOIZOOdHtixKW9uUHdxuJ+xPv79rbcyZaifvH9xuewulbUXL7GOnQ12eDRQHtkGfgZ5rV0vrZ9st45qH10dfDZvfscPG/SZ555rdqbYC3rsX0sfDmHbu6NEsIt72YK57DS78bcd7x3uAAInlIiIBxBjbi5KZZzd5v/pp+MYHkDwU3vwBPHKGrT93sgnu+XPtY3t3kTiZnCn2Ub117VO0FEKj7VzJzvD2YonGehvSh150dDuyoRfZ8jVrXvHONbvb4j9C5V6793Jneh7HXAc15XZrPT+kUCci4g8ycuHmeXDti2CC4KUb4OmLTjwHa8NcSB3d8R0wWkseCtGpCnXtVbTEBrOgTu4ykDzcBixvhbqCRVBTZodem4VFw9AZsO51G/r82f6t8OnDtoeus8OnOVMgNgO+eNGzbesmCnUiIv7CGLs67/ZP4ZI/219i/5wGr9xs5+QBVJZA4RLPFA02xv6SK1jkv2UvHAfmfA9evA6aGr13ndoKKF7X+aFXsHO80sd5b7HE+tm2J3HgecceH32VLbS99UPvXLe7vPNTcIXB+R0stt1SkMv2jm+Z75flfBTqRET8jSsY8r4Gd660q/s2vQN/Px3e/rGdk4Vj5wZ5Qs4UqCyG0o2eOV93W/aEnYu48U346M/eu86uFbZMTVdCHdge2b2r7SpVT2pssD24Qy48fq7YwGlHa9b5q83vwaa3bCHlzi4OajbmenAa/fLPQ6FORMRfhcXYWmPfXQljr4Olj8H8X9pSKCkjPHONHPeEen8cgt25wvbeDLkIRlxm97Pdvco71ypcCpiur5rMyIXGOti71iPNOmLHx1C1/9ih12bBoTDyMtgwD+oOe/a63aGhDt7+EfQZBBNv7/r5kofY++CHQ7AKdSIi/i42DWY9BN/6GEZdCVN+6LmSGAn9IL6f/20ZVnXADkvHpMFlj9jh6qhkeO02qK/2/PWKltogHR7XtfMcWSzh4SHY9bPtfL1B55/49dFX290XNr7l2et2h2WPw/4tdueI4FDPnHPMdbYo857VnjlfN1GoExEJFKkj4KqnYGwHSzmcyoCpdmcJb85J86SmJnj9dlsz7ppn7F6qkYk23O3bCO//0sPXa7S1BbO7OPQKdpJ+dF/PLpZoarTFqAdPh9DIE78nexLEpNtts/xJRTEs+B0MvgCGTPfceUddCa5Qv+utU6gTEZG25Uy1ZR72fOHrlrTPJ3+zG9Zf8IAdRms28DyY8E1Y+qjd/9RTSjfYYtFdnU8Htoc1M8+ziyUKl8DhkhMPvTYLCoLRV9q5aVUHPHdtb5v/K7szy4UPeva8kYl2/uHql/1qVbBCnYiItK3/ZPvoD/Pqdnxif9GPuAwmnGADofPvg6Qh8PodngsvRUvtoydCHdggemCr59q3fjYEh9ueuraMugqa6u1uJP5g5wpY9bzd29UbxZrHfN9LzwAAENVJREFUXg9V+2DL+54/t5co1ImISNtiUm0NtZ4e6ipL4dWv2d0vZj104nmFoZFwxRNwuNQWcvaEwqUQleK5XTeaexd3rez6uZqabEgbdL6tSdeWtDHQZzCsebXr1/W2piZ464e2juKUH3rnGoPOh8gku0+zn1CoExGRU8uZAoWf2pWGPVFTI7x2K1QfhGuebXvPz/Rxdru1tf/xTIApWmr32fXU4pT0cYDxzGKJnZ/ZuYUjLjv1e42xCya2fwSHdnf92t60+t923uH5v7SrwL3BFWL/PDa97TdD0gp1IiJyagOmQn2V51dlesqiP8C2BXZ7qL6jT/3+s/4HMifA3LuhfGfnr1tZYvfozT6j8+doLTwWkod5ZrHE+tl2wv+QC9r3/tFXAQ6sfa3r1/aWmkPw3i8g83Q47cvevdbY62yJmXU9+M+jhWBfN0BERPxAv7Ps9mRLHrFlHhrr7FdTw9HnjQ3HHjcuWwR58Jc6v3VWe2z9EBb81pahGHdT+z7jCoYrHodHz7YrZW+a3bm9Qj09n65ZZi5seNPuiNHZHkDHsaFu4LS2ey5b6jMQ0sfbwruTvtO563rbot/b4fPr/925e9YRfU+DlJGw6kU4/VbvXssDFOpEROTUIuJtsMufY79aMi7bG+QKtWHJFWqHrmoO2YnscVkw/qsw7kZbU8+TDu2G/9xqe7Yu/mPHAlDiALtqcs6dtnDzmXd07NoHt8Pyp+zWVGljOvbZU8nIs7uDHCyw7eyMXSvh0E4472cd+9zoq+Cdn8C+zZA0uHPX9paSfFjyGIy74diVzd5ijO2te/dnPfPPoxWFOhERaZ8bX7Nz1lwhR4NbUMjJe0sa6+32XMufgg/vtzs6DJsBubfAgHO73svS2GAXRtRX23l0oVEdP8f4r9iCu+/fBwPPhZThp/7M3jXw8V/tEKUJgqn3QHBYx6/dluYixDtXdD7UrX/d3p+hF3bscyOvsDtxrHkVzv1x567tDaWb4LnLbIHnaV3Y37WjRl9jh3tXvdC1fWW7gebUiYhI+wSH2pWwkYl2JWVwWNvBzBVia6N9ZbbdyuzMb9uSI89fAQ+Ng4/+YlesdtYHv7aLN2b+FZKHdu4cxsCsv9nJ9q994+QLQRzHLiB4/kp47GwbBM+8A+5abUOdpyUPtztAdHYOY/PQ64BzICKhY5+NTYOcyXYI1nE6d31PK9kAz1xs92S9eS5Ep3TftWNSYdA0WP1Sjy/ArVAnIiLe12cgTP813J0PVz5pd054/xfwp+G2t237Rx0LEBvfho//Ynv9Tru6a22LTrElUPaugQUPHPtaUxPkz4V/nm9Dxe5VcN7P4X/WwvT7ITa9a9c+GVcwpI21q1c7Y88XULaj7YLDbRl9ta2Vt8dLe+V2RPF6ePYSG8Bvnte+3lRPG3MdHNrV48v6aPhVRES6T3CYnbM1+ioo3QjLn4YvXrDlRYKC7XChK8QurAgKscdcwS2eu1/bv9VOYr/wt55p17AZdij2o7/YLacycmHNy3aYdd8mu//txX+EsTdASIRnrnkqg86DD+6HDx+0JVg6Ml9w/Ww713HYxZ279vCZMO/7dgg2fVznzuEJe9fCc7PscP9X5/huTtvQGRAWZ7cNG3iub9rQDgp1IiLiG8lD4aLf2nlK62fbkNdUb4e4Guvdzxvs3LmmBvt98/OEHPjSLyEk3HPtueAB2xPz6i2AgYrdkDra9iyOuMyGy+509t1woAAW/hYaqm1NtvYEu+ah15wpdqi8MyIS7A4Ua/8DX/qVd1cvn8ye1fDcpXY3jJvnemfXiPYKCYdRl9ttw2orvFcbr4sU6kRExLdCImDMtb5uhf1FffkT8OxMW0x41kN2LpWnigp3VJALZv3dhpqP/2oXhFz4u1MvMClZb4dOJ323a9cfdSVsmAs7PrYBsTvtXmUDXWg03Dyn84tFPGnM9bDiGVj/hl192wMp1ImIiDTLngg/LvL8atbOCgqyw74hEfDp3+3m9Zf8pe2es/Wz7arcYZd07dpDLrShas0r3Rvqdq2Ef11mhztvnuO57de6KmsCJA60Q7A9NNRpoYSIiEhLPSXQNTPGLsqYcg+sfA7++007DH0y62fbmoLRyV27bmikDYbr34CG2q6dq712LneXLYmHW+b1nEAH9j6MuQ62L4aDO3zdmhNSqBMREenpjIHzfgrT7rU9Z6/efOLyKyUboHRD51e9tjb6aqgpgy3zPXO+thQts4EuMtGuco3P9v41O2qMe1uy1S/5th0n0WtCnTFmpjHmifLycl83RUREpHMmf9+u+M2fAy/dAPU1x76e/wZg7OpVTxgwFSKTbJD0ph2fwr8ut+Vlbp4H8VnevV5nxWdD/8l2CLan1PBrodeEOsdx5jiOc1tcXJyvmyIiItJ5Z9xu59Vtfg9euAbqDh99bf1syD4TYvp65lquEBh5uS22XFvhmXO2tv1jW9Q5Js0GurgM71zHU8ZeDwe2Hd33twfpNaFOREQkYOTdApc/Zud3PX+l3Wd33xYoXuu5oddmo6+yJVWWPubZ3qmGOljwO7vKNS7TBjpP7w3sDcNn2d0+Vr3g65YcR6FORETEH425Fq56yu468dylsPIZe9xTQ6/NMifY7cY+uN/uqlGS3/Vz7v4c/nGu3cFjxKXwtbftdlz+ICzaBrt1/7VlZnoQhToRERF/NfJy+PLztofuk4dsAPP08GVQENz4X5j5N1sD77Gz4b17obay4+eqr4H374N/TIPD++DaF+GqJztfJNlXxl4HtYdgwzxft+QYCnUiIiL+bOhFcP1LEBoD42/yzjWCgiD3q/CdFbasx8d/hYcn2HIn7R2SLVxqA+FHf7bz0r691G7P5o/6T4HYTPji375uyTGM0wNXb3hTXl6es3z5cl83Q0RExLMa6+3Chu5QuBTm3W17CAd9CWb8/uS7PtQdhvm/tnPy4rJg1l9h4Hnd005v2jIfYjMgZZhXL2OMWeE4Tl673qtQJyIiIh3W2ADLnoAPf2MD5eTvw1nfO3Y/3m0L4Y3vQtkOmHAbTPuFnZMm7daRUKfhVxEREek4VzCceQd85zMYdrFd9PDombYHq6Yc5nwPnpsFQcFwy1sw4w8KdF6mvV9FRESk82LT4eqn7Xy+eT+A56+w+7bWVcCkO+Hcn9i9a8XrFOpERESk6waeB3d8Ch//DbYvgmn3QWaur1vVqyjUiYiIiGcEh8HUH9ov6XaaUyciIiISABTqRERERAKAQp2IiIhIAFCoExEREQkACnUiIiIiAUChTkRERCQAKNSJiIiIBACFOhEREZEAoFAnIiIiEgAU6kREREQCgEKdiIiISABQqBMREREJAAp1IiIiIgFAoU5EREQkACjUiYiIiAQAhToRERGRAKBQJyIiIhIAFOpEREREAoBCnYiIiEgAUKgTERERCQC9JtQZY2YaY54oLy/3dVNEREREPK7XhDrHceY4jnNbXFycr5siIiIi4nG9JtSJiIiIBDLjOI6v29CtjDGlwI5uuFQSsK8briPep3sZOHQvA4vuZ+DQvTy5fo7jJLfnjb0u1HUXY8xyx3HyfN0O6Trdy8ChexlYdD8Dh+6lZ2j4VURERCQAKNSJiIiIBACFOu95wtcNEI/RvQwcupeBRfczcOheeoDm1ImIiIgEAPXUiYiIiAQAhToRERGRAKBQ52HGmERjzH+NMYeNMTuMMdf7uk3SPsaY7xhjlhtjao0xz7R6bZoxZoMxpsoY86Expp+PmintYIwJM8Y86f47WGGM+dwYc1GL13U//Ygx5nljzB5jzCFjzCZjzK0tXtO99EPGmMHGmBpjzPMtjl3v/jt72BjzujEm0Zdt9EcKdZ73MFAHpAI3AI8aY0b6tknSTruB+4GnWh40xiQBrwE/BxKB5cBL3d466YhgoAiYCsRh793Lxpj+up9+6UGgv+M4scAs4H5jTK7upV97GPis+Rv378nHgZuwvz+rgEd80zT/pYUSHmSMiQIOAqMcx9nkPvYvYJfjOD/yaeOk3Ywx9wOZjuPc7P7+NuBmx3Emub+PwlY+H+c4zgafNVQ6xBizGvgl0AfdT79ljBkKLAC+B8Sje+l3jDHXAlcA64FBjuPcaIx5ABvcr3e/ZyCQD/RxHKfCd631L+qp86whQGNzoHP7AlBPnX8bib2PADiOcxjYiu6r3zDGpGL/fq5D99MvGWMeMcZUARuAPcCb6F76HWNMLPAr4PutXmp9L7diR72GdF/r/J9CnWdFA+WtjpUDMT5oi3iO7qsfM8aEAP8HPOvuvdH99EOO49yBvUeTsUOutehe+qNfA086jlPU6rjupQco1HlWJRDb6lgsoK5j/6b76qeMMUHAv7D/x/8d92HdTz/lOE6j4zgfAZnA7ehe+hVjzFjgfODPJ3hZ99IDgn3dgACzCQg2xgx2HGez+9gY7JCP+K91wFebv3HP2xmI7muPZowxwJPYSdczHMepd7+k++n/gjl6z3Qv/cc5QH+g0P71JBpwGWNGAG9jf18CYIwZAIRhf69KO6mnzoPc8zleA35ljIkyxpwFXIrtKZAezhgTbIwJB1zYf2jCjTHBwH+BUcaYK92v3wus1kTsHu9RYDgw03Gc6hbHdT/9iDEmxRhzrTEm2hjjMsZcAFwHfIDupb95Ahu6x7q/HgPmARdgp0jMNMZMdofzXwGvaZFExyjUed4dQARQArwI3O44jv6v0T/8DKgGfgTc6H7+M8dxSoErgd9gVzdPBK71VSPl1Ny1yr6J/cWx1xhT6f66QffT7zjYodad2Pv1v8BdjuPM1r30L47jVDmOs7f5CzvkWuM4Tqn79+S3sOGuBDuX7g4fNtcvqaSJiIiISABQT52IiIhIAFCoExEREQkACnUiIiIiAUChTkRERCQAKNSJiIiIBACFOhEREZEAoFAnItLNjDH9jTGOu7i1iIhHKNSJiIiIBACFOhEREZEAoFAnIgIYY9KNMf8xxpQaYwqMMXe6j99njHnVGPOSMabCGLPSGNNy4/HhxpgFxpgyY8w6Y8ysFq9FGGP+aIzZYYwpN8Z8ZIyJaHHZG4wxhcaYfcaYn3bjjysiAUihTkR6PWNMEDAH+ALIAKYBd7k3jwe4FHgFSAReAF43xoQYY0Lcn3sXSAG+C/yfMWao+3P/C+QCk9yfvQdoanHps4Gh7uvda4wZ7rUfUkQCnvZ+FZFezxgzEXjFcZzsFsd+DAwBdgAXOo5zhvt4ELALuMb91leAdMdxmtyvvwhsBH4FHAbOcBzni1bX6w8UAFmO4+x0H1sG/MlxnH976ccUkQCnlVciItAPSDfGlLU45gIWY0NdUfNBx3GajDE7gXT3oaLmQOe2A9vblwSEA1vbuO7eFs+rgOhO/wQi0utp+FVExIa2Asdx4lt8xTiOM8P9elbzG909dZnAbvdXlvtYs2xsT94+oAYY2C0/gYj0egp1IiKwDDhkjPl/7sUNLmPMKGPM6e7Xc40xV7jryt0F1AJLgKXYIdZ73HPszgFmAv929949BfzJvQjDZYw50xgT1u0/nYj0Cgp1ItLrOY7TiA1jY7Fz3fYB/wTi3G+ZDXwZOAjcBFzhOE694zh1wCzgIvdnHgG+4jjOBvfnfgCsAT4DDgC/Q//uioiXaKGEiEgbjDH3AYMcx7nR120REWmL/o9RREREJAAo1ImIiIgEAA2/ioiIiAQA9dSJiIiIBACFOhEREZEAoFAnIiIiEgAU6kREREQCgEKdiIiISABQqBMREREJAP8f88gOs1FHV2gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_df = pd.DataFrame.from_dict({'train_loss':history.history['loss'], 'val_loss':history.history['val_loss']})\n", + "plot_df.plot(logy=True, figsize=(10,10), fontsize=12)\n", + "plt.xlabel('epoch', fontsize=12)\n", + "plt.ylabel('loss', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluate the model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create the test set" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-11-01 00:00:002,514.00
2014-11-01 01:00:002,434.00
2014-11-01 02:00:002,390.00
2014-11-01 03:00:002,382.00
2014-11-01 04:00:002,419.00
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 2,514.00\n", + "2014-11-01 01:00:00 2,434.00\n", + "2014-11-01 02:00:00 2,390.00\n", + "2014-11-01 03:00:00 2,382.00\n", + "2014-11-01 04:00:00 2,419.00" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "look_back_dt = dt.datetime.strptime(test_start_dt, '%Y-%m-%d %H:%M:%S') - dt.timedelta(hours=T-1)\n", + "test = energy.copy()[test_start_dt:][['load']]\n", + "test.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Scale the test data" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
load
2014-11-01 00:00:000.16
2014-11-01 01:00:000.14
2014-11-01 02:00:000.13
2014-11-01 03:00:000.12
2014-11-01 04:00:000.14
\n", + "
" + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.16\n", + "2014-11-01 01:00:00 0.14\n", + "2014-11-01 02:00:00 0.13\n", + "2014-11-01 03:00:00 0.12\n", + "2014-11-01 04:00:00 0.14" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create test set features" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "test_shifted = test.copy()\n", + "test_shifted['y_t+1'] = test_shifted['load'].shift(-1, freq='H')\n", + "for t in range(1, T+1):\n", + " test_shifted['load_t-'+str(T-t)] = test_shifted['load'].shift(T-t, freq='H')\n", + "test_shifted = test_shifted.dropna(how='any')\n", + "y_test = test_shifted['y_t+1'].as_matrix()\n", + "X_test = test_shifted[['load_t-'+str(T-t) for t in range(1, T+1)]].as_matrix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make predictions on test set" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.22],\n", + " [0.3 ],\n", + " [0.38],\n", + " ...,\n", + " [0.53],\n", + " [0.45],\n", + " [0.41]], dtype=float32)" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions = model.predict(X_test)\n", + "predictions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare predictions to actual load" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestamphpredictionactual
02014-11-01 05:00:00t+12,687.072,714.00
12014-11-01 06:00:00t+12,954.292,970.00
22014-11-01 07:00:00t+13,195.963,189.00
32014-11-01 08:00:00t+13,336.523,356.00
42014-11-01 09:00:00t+13,471.933,436.00
\n", + "
" + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-11-01 05:00:00 t+1 2,687.07 2,714.00\n", + "1 2014-11-01 06:00:00 t+1 2,954.29 2,970.00\n", + "2 2014-11-01 07:00:00 t+1 3,195.96 3,189.00\n", + "3 2014-11-01 08:00:00 t+1 3,336.52 3,356.00\n", + "4 2014-11-01 09:00:00 t+1 3,471.93 3,436.00" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test_shifted.index\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.transpose(y_test).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute the mean absolute percentage error over all predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.016553609590006874" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mape(eval_df['prediction'], eval_df['actual'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions vs the actuals for the first week of the test set" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAH9CAYAAABYwFKVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8XHW9//HXydKkSdvsTfck3WgTSsvWllWWq4AgmyjIooiAov4EwQtcvC6o1+2CIFyVCxQVxQVZ9aoFCgUKBaSF0pUuafY2aSdbk2ZPzu+P7zmTyZ7JTDJn0vfz8ehjkpnJ9DTTc+a8z+fz/X4t27YRERERERERiYn0BoiIiIiIiIg3KCCKiIiIiIgIoIAoIiIiIiIiDgVEERERERERARQQRURERERExKGAKCIiIiIiIoACooiIiIiIiDgUEEVERERERARQQBQRERERERFHXKQ3YCxkZmbaubm5kd4MERERERGRiNi4caPPtu2soZ53RATE3NxcNmzYEOnNEBERERERiQjLskqG8zy1mIqIiIiIiAiggCgiIiIiIiIOBUQREREREREBjpAxiCIiIiIi4i3t7e2Ul5fT0tIS6U0ZVxITE5k1axbx8fEj+nkFRBERERERGXPl5eVMnjyZ3NxcLMuK9OaMC7ZtU11dTXl5OXl5eSN6DbWYioiIiIjImGtpaSEjI0PhMIwsyyIjIyOkqqwCooiIiIiIRITCYfiF+jtVQBQRERERERFAAVFERERERCQsJk2aBMC+ffu47LLLBn3u/fffT1NTk//7j3/849TV1Y3q9g2HAqKIiIiIiMgAOjs7g/6ZGTNm8NRTTw36nN4B8R//+AepqalB/13hpllMRUREREQksm65BTZtCu9rLlsG998/6FOKi4s599xzWbFiBe+//z4LFy7k8ccfJz8/n+uuu44XX3yRr371q5x44ol85Stf4eDBgyQlJfHII4+waNEiioqKuPLKK+no6ODcc8/t8boXXHABW7dupbOzkzvuuIMXXngBy7K44YYbsG2bffv2ceaZZ5KZmcnatWvJzc1lw4YNZGZm8rOf/YzHHnsMgOuvv55bbrmF4uJizjvvPE499VTWr1/PzJkzef7555k4cWJYf22qIIqIiIiIyBFr586d3HjjjWzevJkpU6bwy1/+EjDrCb7xxhtcccUV3HjjjTz44INs3LiRe+65hy9/+csA3Hzzzdx00028++67TJs2rd/Xf/jhhykqKuL9999n8+bNXHXVVXzta19jxowZrF27lrVr1/Z4/saNG/n1r3/NO++8w9tvv80jjzzC+++/D8Du3bv5yle+wrZt20hNTeXpp58O++9DFUQREREREYmsISp9o2n27NmccsopAFx99dU88MADAFx++eUANDY2sn79ej71qU/5f6a1tRWAN9980x/SrrnmGu64444+r79mzRq+9KUvERdnold6evqg2/PGG29wySWXkJycDMCll17KunXruPDCC8nLy2PZsmUAHH/88RQXF4/0nz0gBUQRERERETli9V4Wwv3eDWhdXV2kpqayaYAW2KGWlbBtO6ilJ2zbHvCxhIQE/9exsbE0NzcP+3WHSy2mIiIiIiJyxCotLeWtt94C4I9//COnnnpqj8enTJlCXl4ef/nLXwAT4D744AMATjnlFP70pz8B8MQTT/T7+h/72Md46KGH6OjoAKCmpgaAyZMn09DQ0Of5p59+Os899xxNTU0cPnyYZ599ltNOOy0M/9LhUUAUEREREZEj1uLFi/ntb3/LMcccQ01NDTfddFOf5zzxxBOsWrWKpUuXUlBQwPPPPw/Az3/+c37xi19w4oknUl9f3+/rX3/99cyZM4djjjmGpUuX8oc//AGAG2+8kfPOO48zzzyzx/OPO+44rr32WpYvX86KFSu4/vrrOfbYY8P8rx6YNVgJc7w44YQT7A0bNkR6M0RExo5tQ2EhzJ8f6S0RERHp144dO1i8eHFEtyFwttHxpL/frWVZG23bPmGon1UFUURkPHrlFViwAHbvjvSWiIiISBRRQBQRGY9KS81teXlkt0NERMTDcnNzx131MFQKiCIi41Ftrbmtq4vsdoiIiEhUUUAUERmP3GCogCgiIiJBUEAUERmPVEEUERGREVBAFBEZj1RBFBERkRFQQBQRGY9UQRQREQmrV199lfXr14f0GpMmTQrT1oweBUQRkfHIDYZuUBQREZGQhCMgRoO4SG+AiIiMAlUQRUQkitxyC2zaFN7XXLYM7r9/6OddfPHFlJWV0dLSws0338yNN97I6tWrueuuu+js7CQzM5NVq1bx0EMPERsby+9//3sefPBBVq1axQUXXMBll10GmOpgY2MjjY2NXHTRRdTW1tLe3s4PfvADLrroovD+40aRAqKIyHikgCgiIjIsjz32GOnp6TQ3N3PiiSdy0UUXccMNN/D666+Tl5dHTU0N6enpfOlLX2LSpEl84xvfAGDVqlX9vl5iYiLPPvssU6ZMwefzsXLlSi688EIsyxrLf9aIKSCKiIxHmqRGRESiyHAqfaPlgQce4NlnnwWgrKyMhx9+mNNPP528vDwA0tPTg3o927a56667eP3114mJiaGiooKqqiqmTZsW9m0fDQqIIiLjTWsrNDebrxUQRUREBvTqq6+yZs0a3nrrLZKSkjjjjDNYunQpO3fuHPJn4+Li6OrqAkwobGtrA+CJJ57g4MGDbNy4kfj4eHJzc2lpaRnVf0c4aZIaEZHxxg2FCQkKiCIiIoOor68nLS2NpKQkPvzwQ95++21aW1t57bXXKCoqAqCmpgaAyZMn09DQ4P/Z3NxcNm7cCMDzzz9Pe3u7/zWnTp1KfHw8a9eupaSkZIz/VaFRQBQRGW/c8Ye5udDQAB0dEd0cERERrzr33HPp6OjgmGOO4Vvf+hYrV64kKyuLhx9+mEsvvZSlS5dy+eWXA/CJT3yCZ599lmXLlrFu3TpuuOEGXnvtNZYvX84777xDcnIyAFdddRUbNmzghBNO4IknnmDRokWR/CcGzbJtO9LbMOpOOOEEe8OGDZHeDBGRsfH223DSSXDuubB6Nfh8kJER6a0SOfJ88AGkp8Ps2ZHeEhFP2rFjB4sXL470ZoxL/f1uLcvaaNv2CUP9rCqIIiLjjVtBdAbXq81UJEI+/Wn4z/+M9FaIiARFAVFEZLxxA2Fubs/vRWRsVVbCgQOR3goRkaAoIIqIjDeqIIpEXkcHHDoE9fWR3hIRTzsShruNtVB/pwqIIiLjjSqIIpGntUhFhpSYmEh1dbVCYhjZtk11dTWJiYkjfg2tgygiMt7U1sLEiZCd3f29iIwtd79TQBQZ0KxZsygvL+fgwYOR3pRxJTExkVmzZo3458c0IFqWFQtsACps277Asqw84E9AOvAecI1t222WZSUAjwPHA9XA5bZtFzuv8R/AF4BO4Gu2bb8wlv8GERHPq6uD1FRIS+v+XkTGlhsQ1WIqMqD4+Hjy3OEQ4hlj3WJ6M7Aj4PufAPfZtr0AqMUEP5zbWtu25wP3Oc/Dsqx84AqgADgX+KUTOkVExFVba8LhpEkQE6OAKBIJzsLaNDVBW1tkt0VEJAhjFhAty5oFnA886nxvAWcBTzlP+S1wsfP1Rc73OI+f7Tz/IuBPtm232rZdBOwBlo/Nv0BEJEq4FUTLMrcKiCJjL7C1W1VEEYkiY1lBvB+4Hehyvs8A6mzb7nC+LwdmOl/PBMoAnMfrnef77+/nZ3qwLOtGy7I2WJa1QX3NInJEcSuIoIAoEiluBRG0D4pIVBmTgGhZ1gXAAdu2Nwbe3c9T7SEeG+xnet5p2w/btn2CbdsnZGVlBbW9IiJRza0gggKiSKSogigSee+9B5/5DLS3R3pLospYVRBPAS60LKsYMynNWZiKYqplWe5EObOAfc7X5cBsAOfxFKAm8P5+fkZEREAVRBEvCAyI2gejV2MjaAmG6PUf/wF/+hOUlQ39XPEbk4Bo2/Z/2LY9y7btXMwkM6/Ytn0VsBa4zHna54Dnna//6nyP8/grtlkg5a/AFZZlJTgzoC4A/jUW/wYRkajQ1WVORt2AmJamZS5EIkEtptGvtBSysmD16khviYzE5s3w4ovma30OBmWsZzHt7Q7gVsuy9mDGGK5y7l8FZDj33wrcCWDb9jbgSWA7sBr4im3bnWO+1SIiXtXQYK52q8VUJLJqa7v3Q+2D0emFF6ClBXbsGPq54j333tv9tQJiUMZ0HUQA27ZfBV51vt5LP7OQ2rbdAnxqgJ//L+C/Rm8LRUSimPshqBZTkciqrYW8PHj/fY1BjFYvvWRuNdlh9Ckvhz/8Ac44A159VZ+DQYp0BVFERMLJ/RAMrCBqHTaRsVdTA3PmaC3SaNXVBS+/bL5WQIw+Dz5o3sO77zbfq4IYFAVEEZHxpL8KIqiCEY3Wr4df/SrSWyEjVVsLGRmQkqKAGI02beoeR6qAGF0OHYKHHoLLLoPjjjP3aR8MigKiiMh40l8FMfB+iR733gu33x7prZCRqqkxF2pSU3WBJhqtWWNu8/MVEKPNqlUmJH7jG5CcDLGxqiAGSQFRRGQ8GaiCqA/H6LNpk5liX+3B0ae1FZqbzX6oCmJ0WrMGjj4alixRQIwm7e1w//1w+ulw4olgWWY/1D4YFAVEEZHxpHcF0Q2K+nCMLvX1sHev+TpwuQSJDu4FmfR0TRQVjVpaYN06+Ld/M8tcKCBGj6eeMsuTfOMb3felpuoiaZAUEEVExpPaWjMpxuTJ5nu1mEanzZu7v66ujtx2yMi4od5tMdX+F13Wrzch0Q2I9fWq5EcD24Z77oGjjoLzz+++XxXEoCkgioiMJ3V1pqUtxjm8KyBGp02bur9WQIw+gRXElBSNQYw2a9ZAXJxpU8zKMvf5fJHdJhna/v3w3ntwww3dn4GgCuIIKCCKiIwntbXdbaWggBitAgOiWkyjT+BYYFUQo8+aNbBypenEcAOi2ky9z70QM3Nmz/vT0hQQg6SAKCIyntTVdYdCgKQkcyVcJ6jRZdMm0yYFqiBGo94tpocOQWdnZLdJhqe2FjZsMO2loIAYTRoazO2kST3vV4tp0BQQRUTGk94VRMtSe020aW+HrVvh7LPN9wqI0af3JDXQffIq3rZ2rRnLpoAYfRobza07Bt/lfgba9thvU5RSQBQRGU96VxBBV0+jzY4dZkKMU06BCRPUYhqN3PcsJcX8Ae2D0WLNGlOBWr7cfK+AGD3cizC9A2Jamrnw1tw89tsUpRQQRUTGk94VRNAYqGjjjj889ljIyFAFMRrV1pr9LjZW44CjzZo1cMYZEB9vvk9PN50YCojeN1CLqdYDDpoCoojIeNJfBVEBMbps2gQTJ8LChebkVAEx+gReqFFAjB4lJbB7d3d7KZiQn5GhgBgNBmox1XrAQVNAFBEZL1pbTQuNKojRbdMmWLKk+8RUATH61NR074dui6mWuvC+l182t4EBEUybqQKi9w3UYqoKYtAUEEVExgs3BKqCGL1s2wTEZcvM9xkZGoMYjWprTfUXVEGMJmvWwLRpkJ/f834FxOjgVhCTknrerwpi0BQQRUTGi8C11wIpIEaPsjLzPgYGRFUQo49aTKPTe+/BySebMYeBFBCjQ0ODGX8Y0yveqIIYNAVEEZHxwv3w628W05YW80e8zZ2gxg2I7hhETc8eXQJbTKdMMbdqMfW+ujrIzOx7vwJidHADYm/uvqiAOGwKiCIi44Vboeivghj4uHjXpk2merFkifk+I8MseXH4cGS3S4bPtnu2mMbFmZNW7X/eV1/fPWY0UFaWCf2dnWO/TTJ8jY19xx+CPgNHQAFRRGS8GKzFFPThGA02bYIFC7qvgmdkmFuNQ4wehw+bNdcC90O1eXuf22XRuwMDTEC0bbV7e11DQ/8B0b1IowrisCkgioiMF4NNUhP4uHhX4AQ10F2F0olp9HBPQt33DhQQo4HbAjxQQAS1mXpdQwNFsfPp6urnsbQ07YNBUEAUERkHWlvBrhlgDKICYnSoq4Oiop4B0a0gKiBGj/4q+SkpGoPodfX1fJKn+OpzZ/d9TAExKlTVTmDhhif43//t58HUVFUQg6CAKCIS5To7Yc4c+PbfV5gF1hMSej5BATE6bN5sbhUQo5vbDqwW06hi19bxEh/loZcXUFLS60EFxKiwvWYaHXYcf/lLPw+qghgUBUQRkShXUwMHDsCP3jmTzZNO7vsEzeAWHd5/39z2FxA1BjF6qMU0KvlKDtPAFDq7Yrj//l4PKiBGhV0N0wF4/fV+DpmqIAZFAVFEJMq5xaVOO5YbG+/tO/5CFcTosGkTTJ1qFup2aQxi9BmogqgWU0/bs9scOGdlt/PII72yhLv0hQKip+1qng2Yrpp//KPXg6ogBkUBUUQkyvl85vbq7Jd4p3lp3/EXiYmm7VQfjt62aRMce2zPRbonTDCz7ykgRo/+KogpKWb/03qWnrWn0JwS3/udQxw+DL/6VcCD8fEm5CsgeldXF7vacynIqmL6dHj++V6Pp6WpghgEBUQRkSjnZoebU3/L2RmbuPNO2L+/15PU4uZtbW2wbVvP9lJXRoYCYjSprYXY2J4LdqemmrKG1rP0rD1lCVh0cdGnEzjnHHjgAbPqhV9WlgKilzU1sZsFLJpWxyc+AatXm8nb/FJTzTIYHR0R28RoooAoIhLl3Api5uESHjr1d7S2wi239HqSAqK37dhh1s7rLyCmp2sMYjSpqTHVisBKsNq8Pa+wMok5lJKQnsztt0NVFfz+9wFPUED0tI7aBgqZx8IZh7noImhshLVrA57gtnyr1XtYFBBFRKKcW1zKbCxm/uw2vvUtePLJXmMwFBC9rbjY3M6f3/cxVRCjS21tz/ZSMC2moJNTD9tzMIX5cSVgWZx5Jhx3HNxzD91juhUQPa34wxY6iGfBnBbOOguSk3u1mboXadRmOiwKiCIiUc7ngwkTbJLrKiAtjX//d1i8GL78ZWhudp6kGdy87dAhc9vfIt0KiNGltrbnBDWgCmIU2FOXybyJ+wBT/L39dti5E/72N+cJCoietmtHJwAL53aSmAjnnAN//WtAwHf3Se2Dw6KAKCIS5aqrITPDxsKG1FQmTIAf/xhKSmD9eudJmsHN29yAOGVK38cyMtRiGk3cFtNACoieVlcH1a2TmT+5yn/fJz8Jubnw0586d2RlmatxfaaJFi/YvdvcLlxobi+6CPbtg40bnSeoghgUBUQRkSjn80HGFGfgvXNiunKl+XbLFudJajH1tkOH6CC2/4CYnm5OanRiGh36azF1T07VYupJhYXmdn5694WYuDi49VZzke3ttzEBsbNTx1GP2rU3jlRqyZyZAMD555u5ovxtpqogBkUBUUQkylVXQ+YUZ7o250R06lTzp09A1DT7nvTezmQm0ciGrYl9H8zIMOFQJzbRob8KojsGUe+hJ+3ZY27nZ/UM8FddZW7ffBMTEEFtph61qzSRBezGmjIZMIfNU0/tJyCqgjgsCogi0r9HHoGyskhvhQyDzwcZE53BhgEnpkuW9AqI7e0BgxLFSzYWZ9BKIj/5ST8PZmSYW41D9D43yA80SY0Coie5AXHujJYe96enm91vzx4UED1u175kFrILJk/233fRRbB1K+zdi9q8g6SAKCJ9VVXBjTfC449HektkGKqrIXNio/kmYJKTJUvM0npdXejD0eNKfMkAPPMMFBX1etANGxqH6H2HDpkqfe8KYmKi+aP9z5MKC2G6tZ/krKQ+j82fr4Dodc3NUFY7yQTEgPVHL7zQ3D7/PJCUBPHxqiAOkwKiiPTlDsjQCanndXWZtykjzpnkpFcFsalJV0+jQXFdKmmx9cTEwP3393pQFcTo4R4zewdEMFVEjUH0pD27bebbu7srvQEUEL2vsBBs2+oTEOfNg4ICJyBalmbzDoICooj0tXevudWB1PPq6kxIzIx13qteFUSAzZvR+AuPK2lIZ8mkIj7zGVi1qtfbpIAYPdw3rneLKWiiKA/bs8dmHoX9LjMzbx6UlkLrFAVEr9q1y9wumFBqZhcKcNFFsG6dc21Gs3kPmwKiiPSlgBg1fD5zm0E1xMT0GH9RUGAumm7ZgiqIHlfSnEXO5Bpuuw0OH4aHHw54UAExerjHzP4qiAqInnT4MOyvjGE+e/oNiPPnm4twxZWJpjqlgOg5/oA4ubLPY6eeat6/zZtRBTEICogi0pfbYqoDqee5mSGz64Bpj4rpPqwnJZmTGwVEb2tvh4r2qeSkHmLpUjj7bHjgAWhrc56QkmKSvlq+vc99j1RBjBru9dD57BmwxRQC2kwVED1n1y6YlljHlBSrz2NHH21ut25FFcQgKCCKSF/uJ6YOpJ7nryC2V/ZbtfDPZKqA6Fnl5dBFLLmZZqKhW281Czz/+c/OE2JjzXurCqL3DVZB1BhET/IvcTFIBdH/PAVET9q9GxYml/cYf+iaNcvselu3ogpiEBQQRaQvVRCjhr+C2FoxYEDcswea4jXNvleVFJu1KXOyzRT7554LixfDvfcGLFuZkaGA6HF/+AOc/dNzqCZdLaZRxA2IA41BzMyEKVMUEL1s1y5n/GHAEAuXZZkq4pYtqIIYBAVEEempqQn27zdHVQVEz/NXEJvK+j25WbLEjL/YXpgAEyfqw9GDSgrbAciZ2QGYLuFbb4UPPoBXXnGelJ6ugOhxr7wCr+zN5ePWaho6JvZ9ggKiJxUWQsakFlKp77fF1LJ6zWSqgOgpdXVw4AAsjC3sNyCCCYhbt4KdmmbOa/xX3mQgCogi0lNxsblduBAaGqCjI6KbI4OrrjaTtk05VD5gBRECrp4q9HtOyW4z2HDO7O6TlquvhqlTTRURMBVEjUH0NJ8PUiY0sdE+lgsvNGuz9ZCSAq2t0NLS789LZOzZA/Mz+s4CHahPQFTA8Izdu81t7yUuAi1ZYj769sXMMuc0TU1juIXRSQFRRHpy20uPP97c6oq3p/l8JjtY9XUDTtE+cWLAOES9n55TXNjFdPaRkNF9cpOYCJ/7HLz0knMuoxZTz/P54PiUPfx25l289hpcfrmZgMjP3T81DtFT9uyB+VOcquCUKf0+Z/58c+20PT3bzB7V0DB2GyiD8gfE9m2DVhABth7OM1/oQumQFBBFpCd3gpoTTjC3OpB6WnW1GSNDbW2/FcTYWLPchQKid5WUQg4lfU5OTz/dXOzesAEFxCjg80GmVc1VeW/xP/8Df/sbXHutafEGNFGUB7W2QlkZzEvab6pPvdbQc82fb/bF0phcc4faTD1j1y7TBjy3eeiAuKV6hvlC5zVDUkAUkZ727jUH2QULzPc6kHpadTVkpHWZtrUB2qN6zGSqk1PPKamIMwGx1/inlSvN7fr1mDGIjY0Ba1+I1/h8kNl5ANLS+PKX4Uc/MhPX/PCHzhMUED2nuNgE+PkTSgc8fkLATKYts8wXCoiesWsX5OTYJB6uHrDFNCMDpk+HrVVZ5g7tg0NSQBSRngoLYe7c7mqUDqSe5vNB5pRW801/a69hAmJVFRxInKPA7zFdXVB6IJFcivtUEDMzzVDgt97CnOGAxiF6VGeneWsy2/f798M77zQh/4UXnCe5FwDUYuoZ/iUurP5nMHX5A2JDtvlCAdEzdu2ChfO7zE44QAURnIlqyp19UJ+DQ1JAFJGe9u7tGRB1IPW06mrISHJmw+hvan0CJqqxj+6e9lQ8Yf9+aO+I6bfFFOCkk0xAtNOdgKg2U09yJ0bsvdzM0qWwbZszp4kqiJ7jX+Kia3e/M5i6pk2DpCTYU+28twqInmDbTkCc41wkHaCCCOZzcNveiXQSo31wGBQQRaRbV5cJiPPmdZ/MKCB6lm07YxATD5s7BqkgAmxpXQCHDmkWRQ8pKTG3AwXEk08256KFLTPNHQqInuRed8ls7TmbcEGBOYRWVqKA6EGFzsoIWYeLB60g+pe62J9s7lBA9IQDB8x8QQtmOrOSDlFBbGmNYS9zdV4zDGMSEC3LSrQs61+WZX1gWdY2y7Ludu5fZ1nWJufPPsuynnPuP8OyrPqAx74d8FrnWpa107KsPZZl3TkW2y9yxNi/34zaVwUxKhw6ZCZOyIg/ZO4YoIKYnW1mZ99Sn2Pu0MmNZ7gBMZfifisYJ51kbt8qc8Y+qcXUk9xdKhNfjws1BQXmdts21GLqQXv2mOBnHep/DcRA8+dDYUmsmWJYx1BP2LXL3C6c5nwGDhEQAbawRBdphmGsKoitwFm2bS8FlgHnWpa10rbt02zbXmbb9jLgLeCZgJ9Z5z5m2/b3ACzLigV+AZwH5AOfsSwrf4z+DSLjnzuD6dy5Zm2EhAQFRA/zVy1infdogAoiwDHHwJYDU803VVWjvGUyXP4KYvx+s7/1kp9vznnW71SLqZf590V8fSqI4ATE5GQzrbBOTj3DDYjU9b9MUKD586Gw0KIzM1sB0SP8ATHTuXA2SItpfr6pBG9NOF7nNcMwJgHRNhqdb+OdP/5VRi3LmgycBTw3xEstB/bYtr3Xtu024E/ARaOwySJHJncNxHnzzK0WVvc0Nytk2M7Z6QAVRDBtpltLp5jxFwcOjMHWyXAUF0NGYiPJKf1Prx8bayY6eWtzkrlDAdGTegTEgAs1U6ea+YW2bcOcnWomYc/o6DD737y59rADYlsbVKQWKCB6xK5dEB8POcnODjhIBTE52Vz73hq7VPvgMIzZGETLsmIty9oEHABesm37nYCHLwFetm37UMB9Jzktqf+0LMu5BsdMoCzgOeXOff39fTdalrXBsqwNB7UjiwzP3r0QEwNz5pjvFRA9zX9S2nXAnHwO0iK1ZAk0t8aa8RcKiJ5RUgI5SQcHXKAbTJvplm0xNMSlKSB61EAVRMsyVcRt25w7FBA9o6wM2tth/pw2MwPmEC2m7nXTPYlHKyB6xO7d5n2JbWowdwwSEMFZ8qkzX+c1wzBmAdG27U6nlXQWsNyyrKMDHv4M8MeA798DcpyW1Afprixa/b30AH/fw7Ztn2Db9glZWVmh/wNEjgSFhSYcTphgvk9L08mMh/kriG37zYlnzMCHdP9ENSxRi6mHlJRA7oT9g56cnnwydHVZ/Gvy2RqD6FE+HyQntDORlj6VfDcg2jbmfdYYRE+3AGfqAAAgAElEQVTwL3Ex1alNDKOCCLAn9igFRI8oLHSCe6PTpDhIiymYcYi7W3NoqT48+hsX5cZ8FlPbtuuAV4FzASzLysC0jv494DmH3JZU27b/AcRblpWJqRjODni5WcC+sdlykSOAu8SFSxVET+sxc+Ig4w/BnKRaFmyJP04VRI+wbaeCGFs+aAVxxQpz+1b8aaogepTPB5nJznIzvfbFggKTCfftQxVED/GPqEhzLroMERBnzTLDhPd05CogekRlJcyYgZnKFIasIB59NHQSy4dVAw/HEGOsZjHNsiwr1fl6IvBvwIfOw58C/s+27ZaA50+zLMtyvl7ubGc18C6wwLKsPMuyJgBXAH8di3+DyBGhd0BMTVVA9LDqalM0TGncN+j4QzBreM2bB1vij1dA9AifD5qaIIfiQQNiaqoJGevblysgepTPB5mJThWjV9DId6bS27YNBUQPKSw0gW9GgrNPDdFiGhNjPh73tMw0O+5hVaEiqaPD5PRp0xh2QHQ7abZWTx/djRsHxqqCOB1Ya1nWZkzIe8m27f9zHruCnu2lAJcBWy3L+gB4ALjCmeimA/gq8AKwA3jStu1tiEjoGhpMcHAHWoAqiB7n85kJMGJqq4esIIIz/qIrXy2mHuGfwbRj76ABEcw4xLcbC+jyqcXUi3w+yIw/ZFrc4uN7PNZnqQu1mHpCWRnMng0xh5zAPkQFEZy1EOudYUu60BZRPp/pwpg2DdNiGh/fPTxmAAsWQHxMB1sa88ZmI6PYWM1iutm27WNt2z7Gtu2j3WUrnMfOsG17da/n/49t2wW2bS+1bXulbdvrAx77h23bC23bnmfb9n+NxfbLCHz72/D970d6KyQYRUXmtneLaX09dHVFZptkUNXVJiBSWztkBRFg4UIoap1BZ5Vv9DdOhuRfA7F155DVi5NPhtr2yew8oNYoL/L5IDOurt+gP3UqZGaqgug1bkD0vx/DDYgHU8zkF5WVo7l5MgT31++vIA5RPQSTIRdnVbO1faGZoUgGNOZjEOUI8cc/wv/+b6S3QoIRuAaiKy3NXKLTFW9P8vnMiSc1NcOqIM6dC+12PBWVsaO/cTIkfwWxcduwKogAb9UucmY7ES/x+SAzpnrA97GgALZvx4SQxkbTHycR5Q+I7ufbEBdpwATE5tZY9jMd9u8f3Q2UQfUIiI2NQ05Q4zp6Vh1bOVrnNUNQQJTw6+w0Zz4VFeaPRIfeayBCd1VKbaaeZCqI9rAriHlOV02Rb7Kqwh5QXAyTJ9ukdgy+zAWY6m96UjNvdZ6osU8e09YGhw45S1wMEhC3bQM7xalS6eQ0ojo7zaRBI6kgAuxhviqIEeb++rOzGXYFEeDouU2UkkN9qfbBwSggSvhVVHSX7v/1r8huiwzf3r3mAzIwaLhfqyXKk3w+yJzSbs52hlFB9AfErjkK/R5QUgK5szrN+k1DBMSYGFg57yDrOVkT1XiMfzbhzgMDnqQWFJgQWdHlTI6hgBhR+/ebw6Y/ICYkQGLikD/nD4jWQgXECBtpQFyyyJyfbnu/bZS2bHxQQJTwc1sVAd55J3LbIcN24ABUba/uWT0EVRA9zLadCmKSM7X+MCqIc+aAZdnsZa4mWPCAkhLImdZqvhlGe9vJSxrYTgF1JQoXXuIPiB2Vg1YQAbbVzzRf6KJbRJWVmVt/i+kw9j8wx9C4ONgzcYkCYoRVVZmu0kmTCK7F9BgTfbZsVqv+YBQQJfzcyU6mTlVAjBKf+xxc/PYdPccfQnfLjQKi5zQ2mtY2/9T6w6ggTpgAs7NaKSJPM5l6QEkJ5GQ67aJDVBABTjqxE4C33+wczc2SIHWvR1oxaAURYNvBbPOFAmJE9QiIdXXDai8FEw7z8mBP/GKNQYywykpn/CEEVUHMWZzEJBrYujN+6CcfwRQQJfz27jX9UJdcAhs2mD4O8bQtW2zeaVlK7YyCng+oguhZbpdhRvwh88UwKogAeXM6TUBUBTGi6uvNeWlOmvP+DSMgLj85jhg6eWujTmy8xA2IWc2lA76PmZnmmum2CieIKCBG1EgDIjgzmdpzVUGMsJEGRCstlaPZypa9yaO3ceOAAqKEX1GROeqecoopc2zfHuktkkE0N0NFhYVNDK+1ndTzQQVEz/JXLWKcdfGGUUEEyJsfo4DoAf4lLlKcfWsYAXHS7DQWsouthRNHccskWP598XDJoCepBQWwrdR5/ODBMdgyGUhZmelITEkhqBZTcAJi80zs/QqIkVRZ6Yw/hKBaTElLo4BtbN83/Pf8SKSAKOFXVGRaFVesMN+rzdTT3I5ggFf2L+75YHKy6alRQPQcfwUR54vhVhCPSmAfM2mp0EQnkeRf4iLJCQrDCIikp5NHEcUHkkZvwyRobkBM7zww6PtYUADb98RrDT0PcJe4sCyCriDOmwcN7RM5WNWl2aAjqKpqZBVEEhMpiN3JwcPJuk4zCAVECb+9e02T/oIF5qRVAdHT3NUtMjnIK9uzez5oWeY9VDuU53TPnOiMJRxuBXGeOewX71XrdyT5A+IEZxzTcCoYCQnkxZVTVD2MMCljxueD1JQu4ukYMiA2NFiUpS1VQIww/xqIEHRAdGeDLumYYdaglTHX2mquW0+bhhmM39Y2/AqiZZE/2fQYq8FtYAqIEl5NTeaDb+5cEy6WL1dA9Dg3IH7O+h3bdk3oO3dJWpoqiB7kryC27Tezz0wcXtuhOw9RUZnGsUVScbGZVX+q7exww6kgAnkpNdS2JmuVBA/x+SAz1Vn4fogWU4BtU05SQIywHgExyBbT3FxzW0yu3scIcc9Tpk3DtJfC8CuIQH66ed8UEAemgCjhVVxsbt1LbCtWmNWB3R1YPKewECbFNXP5jHUArF3b6wkKiJ7k8zkF3qYKUz20rGH9nH8txEqNY4ukkhLIyQGr4ZAJ+AkJw/q5vPmxQM/WcIks/3qkMGQFEWDbhGM1A2YEtbWZgDF7tvNNc3NQFcScHHOrgBg57q992jRMeykEFRBnZbUyOfawAuIgFBAlvNyzlsCA2NUFGzdGbptkUIWFMD+hjOMWNJCSAq+80usJqakKiB5UXW2ye2x9zbDHH4L5QE2IaaOoRgP0I8kNiBw6NOzqIUDusea9LtrWNEpbJsHy+SBzUov5ZpCT1PR0s/9t61qkYBFBFRVmHVn/GogQVAUxJQXSUjpNQFTQjwh398nOprsAMdwWU8DKSCc/oVABcRAKiBJebkB0+9iWLze3ajP1rMJCmMdeYqdlccYZ/QREVRA9yeczU+dTUzPs8YdgVqDJTaml6HDW6G2cDKlHQAzi5DTvdNMXV/y2AoZX+HyQmTS89SwLCmDb4Vxzhmtroe5I6LPEBQRVQQTTZqoKYuT0aDEdQQWR/HzyW95j2zbtgwNRQJTw2rsXkpLMgk9gzmDnzlVA9KjOTpPp57V/CFOnctZZJjC6E2gACogeVV0NGRmY9yaICiLA3KxG9nbMMa1VMuZaWswqI3PmYCoYQVQQ0047minUU7S5YfQ2UILi80Fm4vDGQRUUwPaaaXS1tqGBpJFRWmpuQwqIc2MotvIUECPE/bVPncrIAuKxx5LftZWqKss/nl96UkCU8CoqMu2lgeOhVqxQQPSo8nJob4d5bdshO5uzzjL396giurOY6mq3p4y0ggiQN7NVayFG0L595nbWLIJuMbVmziAvtoyiIu2PXnD4sLnOkhl/yNwxjAri4bYJlDJH4SJCelQQR9BiCpCba1FMrtZCjJDKSvOxl5DAiFpMOe448jH9pTt2hH/7xgMFRAkvd4mLQCtWmKb/iorIbJMMyJ3BdB6FMHUqBQWQldVPQOzs1ERDHhNKBTEv16aONOoKdek0EtxD4cyZBB0QsSzy0uspOhjEyZCMGv9yM3FOJWoYARFgGwUavxYhZWXmkJmcTEgtpk12Er5SjQWOhMrKXmsgQnAVxAULKEjcC2gm04EoIEr42LapILrjD10rVphbVRE9p3dAtCw46ywTEP0FQzd8qM3UU3w+yEzvMgEj2AriwgkAFG09PBqbJkPoExCDrV7M6aKoZTp2a1v4N06C4gbErJhqM8A3KWnQ58+bZ241fi1y+qyBCCMKiADFFVouKBIqK50JamBEy1wQG8vsZRkkxzSxbVvYN29cUECU8KmpMVdyelcQly2D+HgFRA8qLIT4uC5mU+YfN3rWWaYFbtcu50nuB6cComc0NZlxbBlJzhjCYMcgLkkGYO+HChiRUF5ubmfOJOgxiAB5BUk0kczB9bvDv3ESFH8F0T5gTlCHWG5m6lSIj7cpY7YCYoT0WQMRRtBiam6LDyaHbbtk+Kqq+qkgBtNiCsQct4zFfMh2TVTTLwVECZ+9plzfJyAmJpqQqIDoOYWFkJvRQCxdPQIiBLSZqoLoOf6T0kTngzHYCuKxJvQXFQ9v7UQJr4oKcy4zZbIdfIspkLfC7KvFrxaPwtZJMPz7YueBYVUwYmLM2NOymFwFxAgpK3MmiAJTQYyJCTpc+NdCPJwJra3h3UAZUp8W05gYmBjk2r7HHktB12a2b+0M+/aNBwqIEj7OEhedOXO59Va4776Ax1asgA0bzFg28YzCQpiX6oxDcwLivHnm6qoCone5s65lxDkTYwRZQUydkUQqtRTtmxDmLZPhqKgw1UOrrdXMEhVsQDxlBgBF7/pGY/MkCP6A2L5/2O/j7NkWZfGaATMSmppMs1OPFtOUFBMwgpCSAmlJrWoVjoDGRjM5lD8gNjaagD9E9b6PY48ln+3sq4rzdxpLNwVECZ+9e+nC4oZ7F3HffbBqVcBjK1aYPVqjgT3Dtp2AOHG/ufKWbFpl3HGIa9dCVxcKiB7kPymNqTFfBFlBBMibUEHRAU10EgluQOSQE/CDbW+bFwtA0YeqXESaz2eyRWpLZRABEdNiqklqxlyPGUzBtJgGuf+5cqe3KCAGsm248kp47rlR/WvcX3ePCmIw4w9dRx9NfsxOQKem/VFAlLDp2lvMlxJ/w69/H09ODuzeDR0dzoPuRDXvvhux7ZOeqqvN+em82GJTPQy4+nbWWebxLVtQQPQgfwXRdpJikBVEgLxJBymqDz5YSujKywPGH0LQFcRJk0x7cVFFvJafiTCfz8wmHNNQP+yT1FmzoKIti679VaO8ddJbn4BYVxf0BDWu3DldCoiBysrgj3+Er3/ddEaMEvfX7Z+kZqQBMSGB/AVmOxUQ+1JAlLCwbfjqP8/nkZbPctdd8O1vQ1sbFBc7T3Ab9rXUhWf4ZzDt2u1vL3Wdeaa5fe01zIE3Jgb1YHhH97gn5wRzBBXEuel1FDVnmyqxjJmuLjMJVI8KYpABESAvu5mitpkBB1mJBP96pEGMJZ09G9rteA7s15CLsRbWgDg/XmshBtq40dwWF8MTT4zaX1PlfOz1aTEdgdwV2UykSQGxHwqIEjLbhptvhl+Vf4LbF/2VH/wAFi82j334ofOkCRNM0KjWumte4Q+IzVv7BMRZs8zxtrAQp38qVRVED3F3o/RWp0VtBCc4edlNtNoJuvg9xg4eNJ0Vs2YRWkBcEGuqF++/H9btk+D4A2IQVQw3nJRVJ41qpUX6cgPizJnOHaG0mC6eSBPJ+Arrw7Nx0W7jRoiNhSVL4Ic/HLU5J8LWYoo7k+kOtr/fEp6NG0cUECVkjz8ODz4It1r38eOL38ay4KijzGM7dwY8MSNDAdFD3IA499CmPgHRskzRt6TEuUMB0VN8PvOWxNVXmw/G+ODX4sqbZfq/iwpVQhxLfdZAhBGdoOYdM4UScuh6/4PwbZwEbaQVRIAyZpkrBjJmyspMa2JCgnNHKBVEZyxwcaEqwYCZiLCgAL77XTPG6MknR+Wvqaw0160zM507QgiI7kQ127aqVb83BUQJ2RtvQEZaJ/fYt2LNNUtcpKdDVlZABREUED2msBBmzLCZeLC0T0CEXgExLU0B0UOqq83uRG3tiMYfAuTNdyY62Xo4jFsmQ+mxBmIoFcSF8bSRwL63SoZ+soyagwchM8MeWQVRE9WMuR5rIEJoATHX3BaXxYa8XVHPtk0F8fjj4eKLIT8f/uu/GI0xDJWV5pQl1v21h9BiyrJl5LOdct9E/+FYDAVECdmOHVAwuwELYO5c//2LFvUKiOnpZn5p8YTCQpiX02lanAYIiKWlzjcKiJ5SVWUuwFBTM6LxhwC5R5lL6EXbm8O4ZTKUHhXEEU5SA90np0WbG8KyXRI82zYVxKzUdnMiPMz3MSMDEhO6TEBUj/eY6hEQu7pMsB9hi6k7tUJRVVJ4Ni6alZWBz0fncSea8t43vwnbtsHzz4f9r6qsDJigBkKrIE6ZQsF0c166Y0fo2zaeKCBKSGzbzP6Un+58yOXl+R/rExBVQfSUwkKYN92pHvUTEOfMMfmjsREFRI8pLXUWeg6hgpg4K5MZVLB3t9qjxlJFhbnynZ1NaBVE51BbdDC5e9YiGVP19WaYVeYkZ/zSMN9Hy4LZMzoVECOgR0A8dMicxIywgpiSAmkTGimuHVnAHFc2bOAgmeR87wt86lPQdMGnYf58+P73wz7TclVVwPhDMCcpIw2IQP4ysx6wJqrpSQFRQlJVZc5R8xP2mKtGAb0bRx1lzlv8mVAB0TOamkxn07x0Z2bSASqI4LSZpqVpFlOP6OoyJzlz5hBSBZHsbPIooqh0HLVH7d8PH/2opy8FV1TA9OlOe9ShQ2YCL/+AqOHLyQHLsikiDzZtCv+GypD8swlPdC60BXGSOmtOrALiGKuvN8WmHjOYwogriAB5aXUUH87ScjMbN3KbdR9VtfE8/TSc9bE4Dn71bjOJ1j//Gda/qrIyICB2dpoTmpG2mAJ5p8wkgRa2vaeJagIpIEpI3Csu+R1bzBlrwGQZixaZW/9ENRkZ5oA8SjNbyfDt3Wtu501y5oseJCCWltJdQTzSPwQ94OBBaG113p8QKohMnWoCYmViWLcvot5/H9asMYs1t3pzEXn/GohgAuIIT04TEmDGtC7NZBpB/oCY4LT5BlEJnp0TQ5mVo4A4hvosceG2eI+wggiQO7WZYnvOEX8B9eUXOvidfTV33mnx9NPwwQdw0oOfYdf0j4S1imjbvQJiY6O5DaGCGHv8MhbxIdvf1Xj8QAqIEhJ/QKxb36O9FLoDor/NNCPD7N1qVYw4/xIXCc6MGQO0mEJABbGtDZo1Xi3S3HGhIVcQ09OZaxVTXjeJtrawbV5kuSdpmzbBt74V2W0ZQEVFryn2R9Be6sqbF0tRwiJVECPEHxAnOK3CQZykzp4N++1sOiqqRmHLpD/9roEIoQXE2Z1mLcR9R+5kQy3NNl96/4vMn1LFXXfBJZfA2rVQX29x8qF/8ubbMfD222H5u2przbQJfQJiCBVEjj2WAraxfVdcyNs3niggSki2bzfH1mnlG3pMUANmEoUJE3pVEEFtph7gD4g4X/jni+42fTrExTkB0f0AVbiPOH9AnNpiqmQjrSDGxJA32UeXHdM9GVG0cysCF14I99xjzlI8pqLCWQMRgloaoT95eVAUM08VxAjxB8RY57gYTAVxNnQSR2WZ1kEcKwNWEENoMc2dF0szSRz88Mg9r/nhnfXs6ZrLr659h4kTzX0rV5pMmD4tgbN5mW2/fC0sf1eVcz3FP0lNg1O9D6GCSHY2+ZPKKKlN8edNUUCUEG3fDvmLOrGqKvtUEGNjYcGCXhVEUED0gMJC85mY3lBiAsaECX2eExtrPkj9FURQQPQAd+mROZOcGYFHWkEE8jLNh2tRUahb5RHuCd+jj5qDz2c/66n/sw0NJhP2aDENISDm5kJ5SybtHxaacTgypvwBEeeLIAMiQNl+VS3GSlmZmSph+nTnjnBUEBebRFS8/cjc/3bsgB//cgpX8zv+7appPR6bNw/eWB9DfJzND55eFJYlL9yObH8FMRwBEchfaNYF9vDw9TGngCgh2b4d8mc67TW9AiL0msnUDYha6mJkwjh2s7DQHLytgwf6bS91+Ze6UED0jNJSSE6GNNvZj0ZaQQTyZphxeuMqIMbFmYr4E0+Ys4mbbvLM2NkeS1xASGMQwRxyu+wYSu1ZsGVL6BsoQfH5zLW1Se3OcTHIFlOAMt/EUdgy6U9ZGcyYYQ4RQHgC4lKz/xbvPvIqwV1d8MUvwqS4Fu6NvQOOOabPc6ZOhS+fV8STzZ9g95/fC/nv7BMQw9FiChQsTwZg+6bxMt4idAqIMmIHD5o/+WlO732vFlMwAbGw0Axf81c6VEEc0o4dcGh3Ffz5z+YENz/fzEoRplYyNyByYPCAOGeOKoheU1rqzGBZG3oFcebsGOJpG18BMSXFrCNwwgnw3e+afej3v4/0lgH9BMRQxyA61+SKyYVdu0LaNgmez2euRVgNwS9X4g+IrVndVRAZVT2WuICQ1iF15RSYYFJcYoWwZdHpN7+Bdevgv+c+xNQl2ZDY/4RnX//ZHOJp5yc/CD1Ej1YFce6ZOcTQye63tGSQSwFRRswtxefH7zZf9FNBPOooU/jauxe1mA5k/Xr4/Ofh4ovhIx/h9Xmf55j8dj63cD1ccYWphMycaX6Rb74Z8l/X0QHFxcMLiDk5sG8ftE9yAuIRPlObF/RYAxFCqiDGTssi2zowfiZSdAOi68474dRT4eab8cJMPP1WEMMQEIvI6x5gJWPGDYg0NJie/AFOkPuTkgKTEtu11MUY6hMQN282A4IDZl8P1pQUi/SYWoorg1+qJprZNvzoR3DiiTaf3/9Dc0FuANPmT+L6ua/w+PbjKSsJrc20stJU7f1F3zDMYgoQd8IypnKAql31Ib3OeKKAKCPmn8G0/QNISuo3aPSYyTQlxXyIKiD2dPfdpspRVERx63Q+WX4/thXD89bFFD33gWnJffFFc0QMQ4N8ebkJicMNiF1dUN7shHtVECPOHxBrQq8gkp1Nul1Nra8jLNsWcfX1PdvFYmNNSKythZdfjtx2OXoERNsOOSDOnGna5YoS882OLWPq4EHIyqL7fbSGX0WyLJiV1aqAOEZsu1dA7OiAl16Cc88N+bVzJ1ZRXD3y/Tgavf467NkDX73cR0xtNRx//KDPv/3rHdhY/Pdtoc32WlVlJqjx72puBTHEFlPy8pgWc5Cq8iOvVXggCogyYtu3m31y1oH3zKXsfj4cjzrK3H74Iebx9HQFxEAdHaaCeO21NLzxARc2/YmOpBReejmWmBiLX6w7xpwBWhYsXtydykPgn8E0t9O8F0O0mAKU1jpX5xQQI6qpyZyUhquCyNSppFFL7YFxFBB7j+k7+2xzdfmZZwb8sa4ueOWV0S8ylpebtyspCTMDbXt7SGMQ4+LMCW9R4mJVECOgRwVxBBWM2bNsBcQxUl0NLS0BAfHtt83xIhwBMaWW4saMkF8nmjz6qLkmctm0N8wdg1QQAeZcexbXxP6BR57L8s9EOhI91kCEsLWYYllkT2mmslqTRrkUEGXEtm83Q+Os4qJ+20vBHEBmzOi11IUCYrcPPoDGRrpOOY1rrjG/0yefhDPPhMsuMwdh/7TL+fnhDYipzvswRAURoKQ81ryZCogR5WYAfwUxNjakCpQ/IFaHPrucJ/QTEFutRMrOuAaee67fiZ5sG77+dZMj77prdDevxxqIh4Ift9afvDy1mEaKPyCOsBI8Oy9eAXGMuOOs/QFx9Wpz/Dz77JBfOzfrMMWt070yF9aoq6uDp56CK6+EpK3/Mi26S5YM/kOTJnHnWe/S1hnLffeO/POmT0B0T5CSk0f8mq5p02wqD08Oy2yr44ECoozYjh2Qn2+bI28/E9S4jjqq10ymCojd3jBX37719vk8/zz87Gfw0Y+ah772NXO+659fY/Fi0xIa4u9v506YOBFmxTknJcOoIPonqlFAjCh3vcKcHMx7kZoaVFtbH9nZpFFLTd04mWChV0Ds6jJDe+f940Ee9V1kZlTo5e674YEHzP/1+++HrVtHb/N6BMQwTJABJiAWt01XQBxjHR1mFwwpIM5PoIps2soPhH8DpYe//MVU3E85xblj9Wo46aSQZjB15c5oN2shVkR+nPNY+MMfTDX2+uuBjRvh6KPNJHpDWPiF0/gUf+GXv+ga8alEvxXE5GSzfkmIsuckUmVPxS4uCfm1xgMFRBmRujozeUl+TpPZQQeoIEL3Uhe2jQJib+vW8VTWTfzwf6Zw/fXw//5f90MnnWTa+h94wPnd5eebB0Ich7hjhwntMT7npGSQgJiYaPr9/UtdKCBGlBsQ/RXEUMYfAkydSjo11DaMk7aaXgHxwQfNeeDcuXADj3LzLebE3nXffSYgXnedOc9JTYUvf3n0VsWoqDBzYgBhrSBWNqXQXNOktRDHUG2t+X8SUovpHAubGPbtbQn/Bopfezv89rfwiU84C6xXVZkd/rzzwvL6uXnmAlvx+0fG5+Ojj8KyZXDcsTZs2DBke6nf+edz14R7aWiK48EHg/97OzvNEIs+ATHU9lLHtEWptJFA3frQO7XGAwVEGRH/DKYpzqwLg1QQFy0ygfLAAcwJrdZBNGwb1q3jp123UVAAv/hFz2KQZZkq4o4dzvwabkAMsc30ww+dyYMODB0QoddSFwqIEVVaav5fzJyJeS9CGX8I/hbTprZ4WlvDsomR09XVY13BzZvh9tvNSeHW7THcOu95HvjgDD5+nk1tLTz2GNx6q2nlfvj7VWRefS4//ujLrFsHv/td+Devvd1c/e7TYhrCGETotdSFqohjxufMhh9SBdFd6kJv26j6v/8zH3fXX+/c8eKL5jYM4w8BcheZ2WuLtzYO8czo9957ZrWt668Hq6TYfA4NMUGN36RJHPOJHC5MWM2PfmQHfZz1+cxhPjs74M7GxtAnqHFMW2aSZ+U7qiCCAqKMkH8G0zhn7a0hKojgjENUBbHb7t2UHEjk3ep5XHONmbq5t8svN/ntgQcwZxNJSSFVEJubzRIXwQTEnJyAgKhlLiKqpMSM6Y2PJzwVxPOqNPYAACAASURBVMRE0hJN9SLqs39Dg7nokpJCczNcdZX5L7tqlWktu/c7h3iMz/PaazZLl8INN8A555gW7tjv/Ce88ALX/emjrEx4n3//Wgu1NeEtI1ZWms0L9xjE3Fxzq4A4tg4eNLchVRDdgFg58mUWxpXa2u7PpTB69FGz351zjnPH6tXmc2/ZsrC8fs7R5r0v3hntV9mGtmqV6Sy68kpM9RCGX0EE+PSneaT1s6w4qp7PftYs8zzci5N91kCEsFYQs3NM0K/aHMIsOuOIAqKMyPbtZhxbToMzYGeQgNhjJtOMDJNSmptHfyO9bt06nuFSAD75yf6fkpAAX/yiuQJaWBQT8kymu3aZk9TFizEfxHFxQ47ByMkxlSs7VRXESPMvcQHhqSAC6blT/C8X1dwxfSkp3HGHGUv42986yxAAXHABn4/7PWs//RBtbXDyyfD005CwY5M567nlFmL+8Xd+NfMH+Orj+c+CZ+Hdd8O2eX3WQAzTGET3+o6PTAXEMbRvn7mdPp0RVxDdduOymtAn2PCs1lb41a/Yufhiqp5dP/hzL7sMVqzgYGkzL74IP/4xXHMNvPPOyP/6sjKTBz//eTMnDZ2d8MILJi2GYdwawJT5U0mnmuLisLycZzU3m2WZP/lJ56Nn40ZztfLoo4f/Iuefz9SJjaw56Vv8+7/DQw/Baad1D58YTL8BsbExfC2mzutW7tRaiADjZOCJjLXt200VKqakyJyBDVLinz3bhMkPPwQWOVNBV1cHDMY5Qq1bx1NxX2bZ0Tbz5w88SciXvmQWpP3FL+BnixfDa6+N+K90JwtatAh48YB574b4kJwzxwxIP5gwi6lRnyKGcOmlcMUV8OlPR3pL+lVaCiee6HwTjgoikHZsLnwItRVNsDgp5NeLGCdw/aPwKB58EG65JaBiAOaM5uyzOfntn1FcdBPxEyxiY5wpTNPT4dvfhrQ0lu38KF89ZzsPvnIx1516KseXPTdklX043IAY7jGI7jWCGtIVEMeQP/BP7zJVjBG8j5MnQ0pCM2UNqSa4xMaGeSsjyB349/3v8/fSo7mAv8OlpgPiuOPMn3nzTNtgZSXs39XA/lf+g50cRXnORP/LxMebppl33x3ZfFy/+Y1pS7zuOueOjRvN+UeYxh8CkJ1NLlsoqgitXdzrnn7aHGavvx5zrFm1ykyWMIwJavySk+H884l75kl+Wv4zVq6M59przf+HZ581YXEg/QbE/fu7qxAhcltXq6oIa+tqtFIFUUbEXeKCvXsHrR6CyR9HHRXQYgpqMwUq1u5ifcdyLrts8E+9GTPgU58yx+LGeUvNgdk9uQzShx+aD9kFCzBHwWGc+PqXurDnmEuIUT9YbQDt7eYT6hvfGP0F8Uagq8u89XPmON/U1YWlgpi20ny41r69c4hnelx9PTWk8fmHlrNkibmo0sell0JhIYm7t5hz8eefh1dfhe99r/t3GRfH955ZQnZmJze13Y/91NNh2bw+FcQwBUS3AaA2aZYC4hiqqDAd/ylxh80dI6xizE5vooxZ3YMax4M1a8xVyBtuoDjtWK6Z9BxLp+7jZ9atnLWyiaIi+MEP4HOfg9tuM0Mo3nitgyaS+MjUD7kn7k5e+WMVNTXw8MMm0/3tb8FvRleXGWv8b/8WcJqyerX5EHSnCw+HCROYEe+jqq6fcSLjyKOPwvz58JGT2sxJSUuLeYOCde21poPpb3/j0ktNp2pGhikgD7ZGortcmn8MYlGRufOMM4Lfhn6kpUF8XBeVZI/udNZRQgFRgtbQYCoZ+fkMucSFy53JVAHRsW8fz5Sagd0DtZcG+spXzPnk0zVnmjv864YEZ8cO80E5cSLmAN1jtHf//AGxfYb5YrxWEd2Wv7Iy00fjMQcOmNw6Zw7mP0NXV1gqiOmnm/agmncLQ36tiKqv53VO50BdAg88YMbJ9HHxxebk8JlnzIWOb3zDHMhuvLHH01JS4Ic/ieNdlvPir8LzeykvNxfa3UMghw6ZO4K5+t6P2FizvbWTFBDHkrtkidUQWtCfPa19/K2FePvt0N5O6zN/59MTnqUrNp6n/9DG1+37+N0JP2frVnMesXOnaYRoPtxFUcqxrP/Y3fz+Xwu5Le7nnPnczaSlwdVXm1Dy3e8GObvwT3/KK3evo7gYvvCFgPtXrzZtGJmZYf0npye1UH144tBPjFK7d5vmpS98AazbbjV9v7/+9ciqd+eea1opnHC5cKE5JB86ZCq9/b3Pb70F99wDF1wQUNhzrxpceOHI/lG9xMRAdlYXlUwzs5wd4RQQJWhuNslf1GlmzRiiggjmGFJUBC2TnIPykR4Q163jKS6jYG6TfxKfwZx0kjmePrvdORiPcKIa/wymYBJHEBXE0hbnueN1Flp3Ah7Lgp/8pN9F1SOpxJlYbc4cukN6OCqIs82nbe22fSG/VkTV15sF4xlkzeapU00P09NPmzUwCgvNWhdxfUdbXHW1xbRJDdy/9WyT7kJUUWG6AfxtcvX1IVcPXenpUDNhnKyF+NRTZvKQhx/2ZCXftW+fUw1uaDB3jLSCOIfxFxDr6uAjH+G2lz/Ou+9a/PrXMO/sXPjIR0xJz7ZJSjLBIC0NrHWvmwPctdeaD5w77oA//xlef524OPjWt8zMmc8/3/9fV15ulhT2B4uaGrjzTh79XgXpya1cfHHA/e+8E7bZSwNlpHRQ0xrFLfpDePZZc3tN8jNmvMttt5mS30jExpo+1RdfNCeGQEEB/Pd/wz/+YV4+0P795kL6nDnw+OMBD/z1r+YC37x5I9uOfmTPiKUqdqYCImMUEC3LSrQs61+WZX1gWdY2y7Ludu7/jWVZRZZlbXL+LHPutyzLesCyrD2WZW22LOu4gNf6nGVZu50/nxuL7Zee/DOYplWaRcWGERAXLTIH79314zxkDFPl6k2s4zQuu6q/MkdfMTGm+PHCm8kcjk8d0UQ1XV3mim2wATE11VyxKzk8zsO9W0G88krzi3I/ET2izxqIEJYKor9FsbjetAxFKycgTp7UNfiv5dJLTfvQt78N558PH/tYv0+bMAG+8oVWVnMeO/7n5ZA3r8caiDDiiU36k5YGtXGZYQmyEffmm/DBB2Z2rgULzCwWHmxrdyuIobYKz547AR9ZtJSGf/bOiGlo4E+VZ/hzxCWXOPdfdx3s2QPr1vV8/m9+Y35/bpK7/XYzecHXvgadnVx5pfmv8N3vms+xQCUl5gLqaafBWWc5E9qsW0e1ncaz1qVcc/ghEp90UsVLL5kXCOf4Q0dGdhyNXclevqYRktdeg0V5Lcy88xrzy+63hz8I111nrpatWuW/6ytfgY9/3DR2bNtm7mtzulnr681Hsv+aaF2d2agwVQ9d06ZZVCbmmGPQEW6sKoitwFm2bS8FlgHnWpa10nns323bXub82eTcdx6wwPlzI/ArAMuy0oHvACuA5cB3LMsK/RK6BGX7dnPyNLdrj7ljmC2mADurnLPR8Royhum5l5KxieGyTw9/F7zkEmhpsVg97doRBcSSEnP+v3gxcPiwWVR7GAHRspylLuqcAfjjaaxMIDcgXnedubT9wx+O3orpI+AGxJwcwlpBjI2FKUnt1HROCeusnWPOCYh5eUNMZnGpmTmY9nbTszSIL34zk0SrhZ8/Fvosef5A4QpYszFU6elQY6eZ1xzh+GTPaGw0U4OuXm1+YTfdZHoMX3op0lvmZ9sBFUT39z3SCuIiM4Np+c7DYdq6yNtRP4PrX7uaU07plSMuu8z8ngJCAY2Npmp8+eXO2AfM4M577jEn6Y8+6q8ifvABPPdc949WVprxhY2NcPfdJlSsXAmX3pbHD2K/S5s9gS+s3Goqk48/bv5PpaUFzPQVPumzTPWweu/4mwGzsxPeeMPmI9XPmvfvz3921loKwezZJg0+9pg5FmOO2489Zg6Ln/mMOV+59VZzzWjVql6dIatXmwJFmANidjZUkW0qiB76/I+EMQmItuGuIBrv/BnsN38R8Ljzc28DqZZlTQfOAV6ybbvGtu1a4CUg/L0C0e799+Gf/xy1l9++3bSMxpU4Y3OGUUFcuNDs/DsKJ5iD/5EcEOvqeKpiJUdl+igoGP6PnX66ORF81rp0RC2mPWYwHeYaiK6cHCg56Hx4uwuAjTduQExPhzvvNPvRCy9EdpsClJY6sx6mENYKIkB6Zgy1pMHrr4fl9SKivp4i5pI3d4ipDmfPNgObvvMdhurvzsqCq0/cyeMHz6V6Y/GIN822TXGvT0AMZwWx3RmYE+1tpu609eecY84MX3zRtAB/85uD/9zLL8Opp47JEkrV1aao2aPFdKQVxPlmDGpZUUeYti7CWlu5uf2/SZrQ0TdHJCWZM/+//KU7WD/1lLlgee21PV/nU58yLanf/Cbs2sVnLmlh4cLuKmJtrSn+799vTne+/W3TMX733bCmaC73d/4/li+HJS//3JQWr73W/L0f+9iozBabMc9c7Kn+YBxU8XvZ9OZhDh2y+EjD/8GTTzpru4TBjTeaN/Dvf/fflZ1thjZu2QJnZm3xV6GvuKLXz/71r+b8Zfny8GyLY9o0qGqeQtehhu5xHUeoMRuDaFlWrGVZm4ADmJDnrmzzX04b6X2WZbmj9WcCgZ9y5c59A93f3993o2VZGyzL2nBwvJ7Q9qe0FM4+Gy66yBwtR4F/BtOiInOgdVf7HURSkgkZO3ZgZmn4/+ydeXxjZb3/3yfd23SapEmbtrMyGwPCALKDLIODKAyIoiC4XtDrFa8LF9z1iopeUS96xQ0u4i6IP9RRuSI6M6wygKwDw9AZZm/Tpk23pFuanN8f33NOk+5L0pyTPO/Xq6+0aZo8zZNzzvN5Pt+lgAVi+L4n2cY5XPaG6KzKdhcXy2bZn9pOYnjPwVkvhOYjEJcuhQOtxpU+Xx1EMwexpka6rC9eLC7iTEgkxsc+ZRizB6KmkVEHEcBbW0RX9TJHC0S9u4e9LGfFihkcVD//OXzuczN63o99JcAAldz2mb1zHltXl+yGZ0sg+nwQGTA2cPJBIFYZfQHNapPveY+UsjSP0Ym4804RlNu2ZX2IaRVp5xliavVCPDSHHg52pK+PXazljUcdSP+8m1x9tVy77rpLfv7pTyV+9LTT0h+nafCd78jBs3YtxdUVfOHgNbzwAvz82G/wpvNH2LVLHMVTjXi06mr4wocj7EkewRfPfZBbbkEWH5s3i0iMxbKSfwhQu0ZSMCI786zJel8fD75HHN+zfnil7FRnije+URKzx1RCfdPxrXzYfSePR49hg/dp/uu/xvxdPC7JihddlHGxX18PiaSLTmoLPg9xwQSirusJXdePAxYDJ2ua9hrg08CRwEmAD/ik8fCJzpT6FPdP9Hq36bp+oq7rJwasTsl5Tjwu2ywjI7JtN92O6xwYGBBdaLW4WLJkxqEGVo/3AheIf/h5LwmKueza6SuIjuXSS6FnqJxtnD1a83mG7Nwphdv8fubkIEYiGtGq+vwViCmN1ikthRtukFyZsfkyY9F1eO1rxXXMIvv3G/mHMOogZkogeiFStVgW2CPOdDLC7Tr9VM0koGFWHL2xkY01T3DrlqPMSKhZM67FBWS0SI3XC13RErkY5oNAHNt/7LzzZANmsh6wyaS0VgBZOGaZtPmcZ5EaSyC2z6+arV3Qe/too5762knOIyedJBVJfvxjWUxs2yYbABPtlq5fLz0Qbr8dbrqJK652c2T1Id774g08+bSLu+6SENM0Hn6YAGH+80YXp59u3GeKxF/8Qjb/soDvaHHVOpvzqL5CXx9ccAEP7lvOymCUpg9cmNnnLy6WDYO//GXUrRsYgDe/mZsT13PrGb/mN10bKX5oS/rfPfywnD8zHF4Koz0WrTDTAmbBq5jqut4NbAMu0HW91QgjHQLuRPIKQZzBVFtqMdAyxf0KEEH4j3/IyfT66yVO/IknMvoSL7wg6+Gjj2bGLS5M1q0TTZPwBQpaIP728SZWlh1i/amzL4m9cSNUVSS4l9mHmY6rYAqzEogA+2uOzf8QU3PRfs01oqanS8bfs0eSY375y6zmLJgOIiC76uXlozk788Tng64iv+ywP/NMRp5zodkbkvci0wIR4GNXhGgZqeeeW+YWPmYKimwWqYnHNWJadX4KxFNOkUX+3ycpFvTCC9JArbxcBGKWc4cy6SBWVkJtaS8Hu/KjKXdva4whyqmvm2QONE3yvLdvl2qlmgbvetfkT3j88XIu/sxnKPrut7npziZKGObHa74+WvwmlW3b5HMwNvSwslLE4Xxz5yahdrGcfzr392Xl+RccQxwmH3+Ch90XcPabsvT5NHuQ3HGHHLfvex88+SQVv7qDa/92KbWLKyUBNfWY3rxZ5njc7sD8MQViqOGEgi9Us1BVTAOapnmM7yuA1wMvG3mFaJqmAW8GzM6Um4F3G9VMTwV6dF1vBe4Hztc0zWsUpznfuE/x5z9LjeAPflCSva+/Xhb/n/hERi+Wjz4qt6edhjiIs1iNHXWUhFntL19bsAKxq2WAv3e/lreub55VeKlJRYVEZfyBS0i+mAGBOEN33Wp1UbUufx3E7m5ZmJotDyor4eMflwQXs6TaRJjORUsLPP10VoYWi8khY84DkUjG8g9hTA7bdI6pTdnbIQ5ONgTiBV84mbW8zC3f1qY/nXZ0wH//d1qbFLO4qOUgDg3J5y1DDrD5UeiqW5ufArG0VConbtky8d+YBWyuu06uS83NWR3i4cOia4JBRCCWlMyrn+WSRb0cjOVHvb22/VIJuT44xQXuXe+S8+w994g7bO18Tc9b3qrR/Zlv8O5dn5X8tbFs2wannz7v/qKzxexvGjns4ErQJrou4Zvbt7Pj5vvoipZy9tlZeq1lyyTs9447RAjefTf8139JRdvyckkFeOwxcRnNsW3eLOLQDEXPIGZr6LamE5SDuECv0wBs1TTteeBJJAfxT8AvNU17AXgB8ANfMR5/H/AqsBu4HfgQgK7rEeDLxnM8CXzJuK+wOXgQ3v1uCce45Ra5r7pasrkffDAtAXi+PPKImIaNnn7ZsZ3FamzdOrndybqCFYhb7tjLCCW8+bK572Je+tYiQjTw+KMz79PX2SnGnzkHtLfLIqxyZn2bzOv3/tLV+SsQe3rGV5X8l3+R26laXvztbyK0NW20cW+GMdf8aQ5ihsQFGAKxpwh95SrH5iHu7ZH3Y/nyzD+3qzHIR9f8hadam3js0WkU4o9+JFUVHnvMust0nKzaDk88IQLyxBMzMj7zo5CPAlHXxWQ45aUf884XP8WNN/Txq19JSqIVDf3AA3Jyu+Ya+TmLRdpA5rO+3jCj+vrm7QQvCQxwcKRBdoIcTtthmZT6xilywwKB0fDA98y+W1nlVZfKB+O3v03/RSQirs8558z6OedLZSWUuuJ0hrObi74gtLXJdeDGG3mwdCNA9gQiSLGalha46SZxEG+4YfR373ufrDM/9zmZ8xdflOi1LISXQoqD6DtKNpry4JicKwtVxfR5XdeP13X9WF3XX6Pr+peM+zfoun6Mcd87zUqnRtjptbqurzR+/1TKc/1Y1/VVxtedCzF+W2PmHQ4Py25ceUpfvWuukfKhn/xkRvKKdF0E4plnAvv2yZ2zDDEFeGnoCFngZrmohx15+el+AI554+JpHjk5F14IJVqc3z0/8+awaQVqYMY9EE0aGmTDdz/L8jvEdKxADAYlZ2Yy4ZdIiKtx0UViq2dJIKb1QAR45ZUUO3H++Hxiag2c8XpxEB14bO6N1hEo7x1nPmWKd/97DV4ibNigU12N9eX3w733pjxw61a5TXG7Dh+Ww6201Lhj2zbZUMhQwQfTQYx4V+adQLzzTklXS7hreJjXceO33Fx1lWjrpia49oMjPLgtSeK882UhuXbtgghEyw3OQKjwksVwkCVW03An09Yq5476JaVTP/DTnxaXyGw7MxuOOgpe8xpxm1J5+GFZqORAIGoa1FYN0hkrc76oMPNqly/nwQflUpPBy814LrxQmt2fc470PU0NryotlYrTTz8tFYk2b5b7L7ooK0NZtEjM51DFilFBWqAseA6iIsP8/veyU/2DH0glsFRKSsSqf+klucrOk927RVeceSYSxgOzchC9Xtl13dm3WBagZs5XAdG8t5hGDuNe0zjn56ipgfNWvMq9kbPRh2dWNWO+AtEsVrt/pCm/HUSza3wqF18sjk8oNP53zzwjmx2vfz1s2iQXMdMuyiBm/v7SpUj/ypdeksI4GcJyoI7fILvwc+izmWv2DjawoiZ7ASVV77iYX7jew4ePfZgPfADrKxiUVn09PYjKNp1DI1+uu1vWNGk9vLZtk4iPDIUJW/NXs1wEolP7d+l6mkA8eFCivM85B554rpz9nuPof/e/sWMH/PrXcv+dP9E4Z/gBlvzqv/jMZyBxwYXy/vb3Z22Yhw9L8UVAFtNzLFBjsnh1Bd146d/p/LL6bW3y2atfVj71A088USIzZhjFMo7LL5ecl9QNkcnyDxeIWk+CCL7R9ZFTMfJqdXc1Dz2UZfcQZK367LNyziydYGPhqqtk4+fzn5c178knZ67VxhjM0PE2zbASCzjMVAlEp7NjB7hc0jPIoLlZnD5AduhOP12aBM1zV8t8zjPPZHSncxYOIsjG385OI8i7AMNMX2l1s6Zk38QnwVlw6dldvMpKXrhvZm7Bzp1y3bR2AWcpEEH+9sBgQD5HC9BrbMHp7h7nIO7YAVc+ei3ncz+nn6lxzDGyJ7J8uZRWv/Q9i/gQ3+PLz13M0yuNY/BPf8r40A4ckMO8sRG5YCWTcMIJGXt+S2AcaZSad1qYaTLJ3sQSVvizWCCitpY3nT/Ct7r+hW99U+db34JvfUuq9IfD0n+NJ56QY2PdOnj8cYjF+PSn5fc332w8jykiM+hyWA5iRZO8fsShmRfDwxLt4naj6/D+98uPd9wBrpIiOPdcyh/6K0cfLYEzd98N4X/7T+4quooTTynma1+D7w59QN5j08nNApl2EP2rZGMq8uIEOXUOIxQuwkUC/7LM54elcfnlcpsaZpqj/EMTX6BI2iPs3p2T188YhoO4sytIOLwAAhFkU8g1iSQpLpYT7IsvwpNPZi281CQYhFDULWMq4EI1SiA6nV27ZLVqnBDNg/mcc4wIJ02T4jWhENx667xe6pFHJBH7yCORHbLKyhkXOTFZtw52hjxSjr0ABWJzV4DVNfPvk3TJFRVoJPndr2eWEP/yyxJtbLUMmoNAXLoU9vcaSiIfXcQxIaa/+pUUT/zLdg/RUh/u3lZWr5ZaGWeeKaZB8/4S7i66ki/c7ObEy4/gavfdtN2TeXF14IAsSEtKGC2EkwUHMVLRJKU2HSYQE919HGApK+qzvHFxySVy7kupIPza10o0/3e/Cy/d/YKcc7/wBYjH+cftO/jhD+GjH03R89u3S7Wuc8/N2LAsgV9m7Hofmlu11ZwTjcqt282dd8L998PXv56yD7lhg2xOpoRiVj14H5efcYg//LmYTZvgMz9dQ3P5MVkLMx0clEuXJRAz4CD6loiYirzi/PNqW6SEAGGKPPN7T6Zl9WqpcGqGmeYw/9CktrFMBGKWelAvGIaD+OAu2cxfEIE4HW9722gYxqZNWX2p+npoa9fk9ZSDqHAsL78s1jtiKrznPXLxWrECLrvM2Mg6/XRZ0f7iF/N6qUcegTPOMMLD9+6VF5llKc5166AnVkIrDQUnELu6oCNew5r6+YfW1p+xijN4lHsfrJ3R49MqmCaTspMwBwexpaeKOMX5KxA9HoaH4d//XaJaXvtaePFFjceuuZO/xs7g3l8N8rOfyaH0wOYBdoyso/OjX6arC/7jPzR+3v8WVv/9B3zzq0MMD2duaGktLp5+WhLfFs89j3UsVhXMbiMv7qGHHBWmeHhXlDilrGjK4Js+EWbey5hc05tuks3mj/zyFPT1x8GmTcSLK/jATUtZsgS+9KWUB5v5h697XcaGZRbfjbiM84FT8xANgXhwuJ6Pf1wWph/6UMrvzztPbs38znBYwrw3bkTTJH2prEzjfRV3kfjzX7LyGW4xGmtl0kH01cp1NPJq97yexw60dZdRr7WPVoPOJpdfLhsu+/blNP/QpDZYSkTz542D+ODzXpqaZh0olh1crtECYGnx+pknGDQyStavl00HB10LM4kSiE4mmZRiFYZAvOUW2TT91rdk51XTxInv6UFOpDt2zDm3qL1dXurMM407ZtkD0aSQK5malddXL83AIraqird5/87zbfXTbnANDsp0WRVMu7qkuMocBGIyqXGIxfknEHUdeno4pC3h7LPFbP+P/5CUiIYGZMeyvz+9zP6jj0oo2+tfj8cjRv2OO57gLB7ihs+WccwxmUtHHCcQTzhh1pszU2E5UF2IQGxtddQiZ+/LQwCsWJbl4jqLF8t7bxZKMAgE4MtfiPP37tdy7+KPQFUV/734v9nR0cCtt47p2rB1Kxx3XEar0GqaUYk2aeTQOlgg6sD7f3EWIyNSnCYt6uzII+WANPshmi1mNkqlxcZG+J//gUe7juK7+y6Si1aGSeuBCCIQ5+sgmiHCh7KXN7lQtPVVUl+8QCHOb3+73P7mNznPPwSZx0586M3OOXdOSF8fOvDgU1WcfXZGLzXz47TT4JvfzPqA6utl72nk6PWygHbq+XSeKIHoZA4dknyTtWt54gn41Kfg0kvh2mtFu/32tyJKrrwSEpdeJgfVb34zp5cy+x+eeSaymJ5lD0STo46S24IUiDskHHT1msyc3K46YSel2jB33DHN6zbLXsK4HoizFIjmfsAeVuZfJdPBQfThYc66Swpg3HOPXIesnsrnnCM9l1Kdo7/9TR6Q4gStufJE/rToKv608Ts0N8sCd74kk3J9WroUEaQ7dmQ0/xBSQkwjyK4pZGVxnS32NkuV5hUrF+CStmkT/OMf446BDx7zKMfwPNdtfzsvvgg3HrqaS7mXi1/Xg75fegAAIABJREFUNfqgwUH52wyGl5p4vRAZrBDnxqkLmmiUu7iC+59rSA8tNdE0CTPdskWuQw88IIWlUtqFvPOdcNGGfj7DV2n+6WNkmnECMQNtLiyB2BZ3ZAXhVNpiburLF8gJXbFCBOHdd+c8/xAkBWdYLyW22+G5pL29NLOaUHtRpgotO4pgUE4vHb41ckcWCs85ASUQncyuXQD0NB3FFVfI7ukdd4xurpx7ruTF3HcffPo7QYnXufvuOdnlDz8sm3MnnIAIu2h0Tg5iMAg1NTovcXTBCcRXno6hkWTlsZlJ3q89fimXar/nF7/QGZwiFdGsYJrWAxFmLRDNIrnN5GEvxJ4eQgTZ2+XlppskPDuN8nI4/3wpQGMeP3/7m+xoptpDpaXwhjdw4fNf45RTdP7wh/kPLRSSbjZLlyLiMB7PuEBctEicmq4uRv+fLFaBzDR794FGkqWrF2BxePHF8hkY01+2+KEtfFf7KAfClZxxBhSVaPwPH5FetCbbt4vIz0IYnM8HXd0uUS5OFYixGA/zOrzV8fTQ0lQ2bJA+bS+9JALxvPNSkqvl+vejn1dS5orzLz84MeN6K00gJhJStCtTAnGkejSG1YHoOrQNLKK+onfhXvTyyyWq4tlncxpeCiIQASIHY3KcO5W+Ph7SzgFskn+4wFi9EOPGhHY7P/R7LiiB6GR27UIHPnD7SRw4IGW/x0YtffCDksPxjW/Ar1Z8VtTCjh2zfqlHHpGNurIy5tTiwkTTYN06jZ3Fr3Fupb050rwzzjL2U7Zi7i0u0jjrLK5J3kYkovH730/+sJ075X23uqDMUSA2NkJFhU4za/JSIO5mFWBFbI/n4ovFtX/2WdncePppaW8xlk2boK2NS044xD//Of96IWk9ELNQoAZEHHo8hkCsMjYwnCQQD5awmEOU+ue3UJ8Rxx8v6mBsz8utWzn7xBhXXCFRSTd9BRZXREbDIY3H4HJlNP/QxOs15m/JEucKxGiUwzSxuH5k0oKGVh7i978vB5cRXppKYyN85/w/80j3Mdz6rcwu1A8flvpsNTWMFtWZZ4hpZSWUliQd3yIhGoWBZDn17gXsA5hSwT3XAtEU+p26d7RXtBPp6+PB4vOor5/iepjH1BuF9tuGjQW1EogKx7FrF/9X/hZ+88cKvvIVia6YiG9/W3537b0bCGkN45vLTkMsJuvStPxDmJNABKPVhX5k4TmIrxazhlcyV1zknHPYUPQQy2si/O//Tv6wl1+W/EGr3ZS5Qz1LgehywapVGs0lR+VfiGmKQFy5cpLHvOlNorT/+EdZ6Ov6xALxTW8Cl4tLkr8DxqWrzRpTIC5bhhyINTVzPvamwhIY5gfFQc2e97aWs4K949qUZAVNk02A++/Hsu77+8UdPPdcvv99+MlP4NqPFosQTM1b3bZNBOZE/Tbnic9n7Lk5XCC20EhTwxS237JlEr1y223y8wQCEeBd/1HPefyNr/9XMqMuotniQtOwqj3O10HUNPB5nC8Q24wC3fWLFrAN0pIlUj0vx/mHMOogOr2Sqd7Ty4PJMznrLBvlHy4gloPYbxzXBdizG5RAdDa7dnFf9eVUVUlBjckoKZFcqIFBF/8euEvyEGcRZrp9u0TSWJve8xSI69ZBWyJAJJTlioM2QtehudXNappTklfmSXU1rtNP5eqqu/n739Mqv6fx8ssp4aUgPdiammYtEEFcyGYtD0NMu7vZw0qKivTRXpFjqauT5oebN0t4aXU1nHTS+MfV1sLpp3PkYz9m9WrmHWa6fbtErh5xBFkpUGNiCQxTIDrJQQxXLZxABBGIsZgIPpBjKh6Hc8/F65Vq0kVFiNv10ksSJzw4KL0Rs+RyWAJ/8WJx1pyYy2YIxMbpTpHnnScNEleunDTVQXvdmVxd9ktaIhVWDn0mGNcDEebtIAL4/EVEHC4sLIHoWeBr+3e+Az/7WU7zDyElxBSfo4p8jSXcoXEw0TSp6ZDvmA5iqM+IplEOosJx7NrFlqEzOOuslGIak7B2rbTm+m37Wfy++SgJk5shjzwi69HTjB7avPqqlO1LK803c6xKpi0LtJizAe3t0DtUzpqKQylWXgbYuJH3tnwVl0ufsCBKMjmmxYWuy6L23HPnJDJWr4ZX40sYac+z8GDDQVzeODz1sbRpE/zzn/C738l7OFkp902b0J5/jktOD7N16+g6crbougjMDRugqjQuJbcznH9o4lQHcWgIWnrdrHAdEBdhIdiwQd4nM8x061ZRhGecMf5xIC7iP/6RtfxDEIHf3Q3JpiXScN6BLn+iN0aIII1LpmmRYL6vk7iHAJSVsemNI5QzwN2/HMnYGNMEotEOYL4OIkiri0h5Q344iLWZe79nxGtfmx5qmiMsB7GsydECsaVThPaSJTkeSI5wuyXToq2zWBbXSiAqHEV/Py0H4uzsbbKuldNxww2w/jUjfIjv0/2zmce9PfIIHHtsyub8HFtcmFgCsXP2DpZTsVpc1Gc4eX/jRhZziAvWt3LnneL0pvLrX0uh26OPNu546SVRq3Osorh6NcT1Eg60TrMj4TQMgbhyxTSui9mgt7194vBSk8sug6oqLv7ZZcTj8Jcf7Z/TsF5+WQyFiy9GkkmHhjKef2hiCcSiItmJd4iDuH8/6LhYUdm2cPFQZtGiP/5RVPzWreImj3WSzHDSLVtkYyZL+Ycg86fr0FNrnJsdGGbaFtJJUkTT8mnOLxs3yq7XVVdN+TD3h9/LhfyZ394VH3dunAu6LhH64xzETAhEH0SK6/JDIAYc6F5nACsH0bfK0U5wa5dstDU05HggOSQYhFCbJudvJRAVjqK5ma3IIn+mArGkBP73zmLaqOcTd6yZUZjpyIhsfFv5hzDnFhcmy5ZBRfEwO3szFGrpAMyOAWuWTlFudC6ceCLU1HCN73ccPixpUSY//Sm8+93S1u6KK4w7zXyoeQhEgOZw5nOocone1c1uVrFqTdHUDzz6aFi+XL6fSiAecQS88gqnf/wU/HTwh088AhdeCE8+OatxmQbVRRcxWqAmiw6iVTeqqsoxDqIV8b5ogXOaN20SEfboozKvEx1TRUXiGP797yIQTzgha2GwVquSaqNhpgMFYku7OIeNi6dZmtTWyoZJ2oVpAjZs4PLGR2jrqeChh+Y/vo4OMWfHOYiZCDH1Qafu8BzE1iQaSQJ1BZi4hqQCuN0QcS9ztINohlYWskCsr5fMADwelYOocBi7drGFDXgXjVhty2bCiSfCdW94idv73sG226bvc/b881KZzLoOJxJSNWMeArGoCNYGIuwcWeXsUtCzoLkZiomzbHVpZp+4uBg2bOCiV/6bujrdKlZz223wvvfJ5sH//d9oYUq2bhWBM8f5swRiT92c2qXYlUhomB48rFo3TWibpsG73iWVlqy43UlobKToWzdz0Tuqua/8LcQf/6eIhVkIr82bxYRasgQRiG53SjnazOLziYOo60j4pEMcREsg1i5gaX0Qwa9p0oB2ZGTyTZfzzpOKho88kpX+hyame9FVYaiX+ZbPzQEtYXEOGzNU6BlN48Lr11FJjLu/2z7vpxvXAzHTDuKwW6ITTOHpMNoOxamlk2Lv/AWzU6mthc6yRjkxjSxwqG2GaI3J/JnFWgqRYNBwxJWDqHAchkA899y0FlAz4sY7FrOS3bz/U75pr0OPPCK3lkDcs0dOevOsoriuqY+XOKpgWl288nKCleyheGmmVj4pbNxIycFXec+mLv74R/jiF+Ff/xXe+EZxoKyUx2RyNP9wjgSD4C4bpllfmVcnzd0HJedi5aoZnBJvvBFeeGHG4YyXvL2M7sEKHvr470R0PfPMjP4uHJbaJxdfbNzx9NNw3HFMXv9/fni9sv8TjSI7Cg4SiKXaMI3+BS6MUV8Pp5wiDmJJyfj8QxMzxCOZzGoZfstB1L0SIuxAB/FwpALIoEAEKq+5kk3Ff+H/3Vc+7/X6pAIxQw5if7yUQcomrzhmc0ItCeppy8j74VR8Puh0+aVolQOPQYDWAQ81pf1UVOR6JLkjzUHMo7XObFAC0aHs/WeEfaxgw8ZpHI8JqGzycvspd7C328vZZ+tT9uV9+GEJCbU6M3zjGxJHcf75cxu4wbojhtjPcmIHC0MgNu9MSAXTTLW4SMWYi6sb/4+REdEvb34z3HvvmJodzz0nFtE8BKKmwapglGbyq5Lp7laxWFetmsGDNW1WIm3jRpmHP+w7Vu6YYZjpffeJm3fxxYhye+aZrOUfwqjAsArVOCTE9NVXYVlJCy7PAvRAHIup3k85ZfLiU+vWyc5KUdH0IZHzwHIQuzU5zzhwcdrSU4WLhFVFMCNUV3P5xggdQ4vY+ruueT3VOIGY4RBTgC68jg0zbQtR8AKxthYiCSOM3Il5iLpOaNhHQ3U01yPJKcGg+BfD1bVKICqcxZZn5Woy0/zDsZz7oXX8kU288nKSU0+FF19M/31XF3zgA/Db36ZowZdfln4Z//ZvTN4LYGYcdaQkse96LsM5eTYkmYTmvUWZ7YGYysqVsGIFa5+/h/e+F97/fulkMq7i99atcjvPMLfVS4fyTiDuCS9CIzmf2kuTUlUlIvEPD1ShNy2esUDcvFkWoscfjySx9vdnLf8QRheoVqsLBzmIK1z7F67FRSqmQJzqmNI0KaayaVNGQhEnI03gO7QXYktfNcGSyKyjYqbjgq+ehZs+fnPzvnk9z+HDMp1W6F1vr5xoS+efOmAdf/icKSyAtrCLIKGsfs7tTm0tdA4Ym0VOzEMcGqJVDxKsWcBeljbEPMbby5aoHESFg9B1thxeS7CyZ9o0qEl561t5o/8pHjr+Y4yMSHTUli3iWNx1l2x6//jH0l/xlluMv/nsZ2Xh+NnPzvtfWHes5Jq8tCP/q50dPgyDw0WZ7YE4lo0bYetW7rwtzm23TdL2ZOtWyV+bp0hdtRL2soJ4a/4IxN3dtTSVdmStS8Ill0jq7nNr3gZPPDHt4wcHpeDQpk1GJGuWC9TAGIHhsCI1KxJ7ciMQjz5adtE+9rGpH/fNb0prlCxihZhGcK5A7K+hsSLzUSUVx63lkuB27n16OfGBuceZHj4soWfW+bWvL2NiyBKI7mXOdRAjxQXvIPp80NlTLGEjThSIvb200kCDtzDqQ0yG1QuxqEk5iArnoLeG2DLyOjYcFZp7VfeqKrjuOk547FYev/15Fi+GCy6QCuzveIdoiCeflHVNVRWyqL33Xrj+eumBOE9WHeemiBF2Ns8+RNZpWBVMs+UgggjE3t7JxcfICDz4YEaKZKw+qoQExezblT8XkN19QVZVh7L2/BddJEJvc9Gl4g5Mk3u7bZvos7T8w/Ly6QvjzINxIaYOcBB7e+WtXBF/JTcCEeCtbx1d3eeQ8nKoqDDmb/FiUTNJZ23AHR6spakyO4uxy//FTSTp5W83bZ/zc6T1QAT5AGZaINavc6RAjMUgNqgEYm0tdHVpJI9wZqsLvbePEEEaAvFcDyWnmA5imxaUXmEFUlAxFSUQHcjLDxwkRAMbXjfPjPtrrwWPh6V3fJFHHpF2CM8+C9/+NmzfboS2gdiKn/qUCMPrrpv3+AFKG2pZxW52Hshg03ibYvVArGzJXujNhg2iQB54YOLfP/207HZnQiAeJ/l65v+VD+wZbGKVN3ttEurr4dRT4Z7dx9OJD556asrHb94sGzPWdD39NKxfL1Vrs0RaiKlDitRYFUx5NXcC0Ub4fMb8eTyStzrgrDCxlmE/jYuyU8Hz/M+eRI3Ww2/umPvzTygQMySGrOPPoT30rB6ItBV8iGkyCT3LjnWkg9gXitFPFQ31+VOlfC5YDmLCL98UYJipEogOZMtfpFrfhrfMsxfdokXwkY/A736H59AO/vpXOcl/9KNjKqP+9a8Snvj5z2duZ7CykqNcu9jZml/99CaiuRkqioZoWuLKXiNvn08adU8mEDOUfwiw+hiJw2zeN00za4fQ2wvtST+rAtm9AFx9NezY56aRFq64vokHHpjY4NF1qT57/vlGkaFkUgRiFgvUgDOL1IwKxL1KICJzaIUIgyPm0GRoCDqTPhprsrMxUVZZxJuPP8DvQqcy9MxLc3qOcQIxKyGmS6UtSiKRkeddKNIEYgE7iOY8dgaPFqHvsHZQrfvEKQs2FGYvSxNTILbFjQlVAlHhBLY8tYjl2j5WnJ6BLqYf+Yj0VvvqV3G5UvrlmSST4h4uXy69EzLIusr9NHf5GV7g6vQLzSuvwKqyg7iWZCn/0GTjRrF+JzqRbdkivfsyUB6wrl6jWuujudU97+eyA3t2ywV8ZTC7jtnVV4tD/6+eu/nry0s5/3w44ggpDJxq9Dz7rLSws8JLX31VVGwW8w9Bjv3iYmeFmCqBmI7Xm+IAg6MEollNu9GXvcJlb79+KT14uOfzz8/6bwcG5L3NloO4aJFszEbKG6VFglky1SEogSjU1sptJLBWPjStrbkd0CwJHZLItIbFGa4U5TAqKuSSEhowTIwCzENUAtFhJBKwdf8KNnifyUw/tNpa+NCH4O67R5PlUrn7blmxfvnLGanUlspabxsJvYh9+zL6tLajuRlW61nMPzTZuFE+INu2pd8/PJzRJt2aBqvLD7G7Mz/c3z0vyYJ01dLs71SsXw//c+Ffaak9ll//WgTiJz4h7TVuv11SRTdvlvf4wguRReLXviZ/nGWBqGljBEYsZvvd7717wV0xQi2dSiAi7kVXF7LpB0ZTS2fQclAcs6ZA9o7D17+1hmOqXuU9f34bX//67D7epoDNloNoHX9FRo6/w/IQLYFY2p3xtYKTMAVi5yKjV7TDwkxbD0tYS8Oywp1Dk/p6CMWMc6kSiAq789xz0BWvZsPqQ5l70uuuk1Ld5kIURGj88IeSp3jssXDllZl7PYMmY6d4qj6MTmdkBPbs0Vkz+EL2KpianHaaLOxvuy3dOXjySXGD5toTZQJWL2qjuTeTzcpyx+4XZUG68ogFEkMnn0x5aB9XvO4wW7aInl+6VNrKHH00/OQncPr6KIHr3iXO/U9+Au99rxyHWcYSGJWVcg6I27tQwd69sKK+Hw2UQMTZIaYteyW0rbE+e6GVpaXw6Gf+zGX8lk99Ct7ylplHjo3rgQgZLVIDRg6pbsR6OywP0RSIddXOynvNNFaIaYWxIew0gdgmsiC4PEslvR1EMAhtvRXygxKICruz5a9i/597WgbDcOrrZXX6859L7sPDD0u+07/9m1ge99yTGbdyDI118r/ks0Dcvx9GRjRW67uy7yCWlkoLkvvug+OOg8cek/u3bpXt6bPPzthLrfZ3sW+oIS/Cg3e/kqSONqrrF6hg0kknya3RD/Hss2Wqfv97KC5Ksm8fXPLsjXLHtdeKBX3nnWS8OdwEjBMYNg8z3bsXVviMFb4nPxzt+WAVqXGgQDy8TzYjGhuyu1FT/dbzuYsruOWtj/CnP8GJJ8LzM4g4nVQgZjCc0ueDyGCFxHo70EH0lfZRsqgi10PJKVaIKYZSdFiIaWu4mDIG8S7JjxSS+VBfD6Euo6G0ykFU2J0t9w1wJDtpPLExs098/fWyAD3nHClnGolIt/UtW2DNmsy+loF5oc1ngbggLS5S+fSnRRCOjEjPkk9+UhrqHXvs6JUrA6xujJGkyMoBczJ79rpYxe6Fc6COO04WgIZABNHvl1wCz9/wC7ZwLh/9jFv62H372xKHukBYArHSEMs2FxgHD8Ky6i75QTmIeL0yZcOlxuLO5vOXSsvBBGUM4qvPcvGrNWvQVq3iYwNfY+tWeYtOOw1eeGHqPxsnEONxaViaaQexywXLnNcLsa3NCC8t4AqmIPtUmmb0QiwrkzBkBxGKlBAkhFatBGIwCG2dRuVw5SAq7MzICDz0ZAUb2AJr12b2yRcvliI0oZBUK925E972tuxV3QSqg1VUEaXlsL3znOaD1eKC5oURiCAi//nnpSrKzTdnNP/QZPUysQ6bX7J3COJM2H2wdGEFYkUFvOY143tW6jpF3/sfzj2qndKvfCEnjpjlQJkC0cYOYjIpay+Pq1fuUALRCm/rShiLdCflILZAIy3ZX5iaCb5btnDmCf089ZQYru9979QR1YcPy+Ms/WMu/DPtIEaAlSsdGWJaX9xR0AVqQPbZPR7o7ETei97eXA9pVrR2VxB0hbMSNeY0gkHo6dEY0CqVQFTYm8OHpRHt8TyTHVfvllsgHIYvfWmCcqaZR/PX0kgLLQecLzIm45VXYFH5EHW0L5xABLkw3XabhJueeiq8610ZffrVa+XU0fy8s/NNBgbgUEcFK9mzsILs5JOlF2JqlYzHH4d//hM+/OGsbsxMhZNy2AYG5O1z670SXl2ucmasViVxBzqIIReNtIwW2MkmF14o7t+WLTQ2wg9+IJ1kbr558j8xW1xYh6YpEDPtIEaQqAGHOYihENRr4YIXiCDBOpEI8tlwmIPY2uemoaQj18OwBVari0WrlUBU2Buz2udyX+Yqp6VRVLSwJ/e6OhGI+/NXIDY3w+qaMFpZWUZDPGfMG98I//hHxitg1i5z46HL8Q6iuQZbUAcRJA+xuzu9gMF3vyvHdYbF/GzwemVYyXL7O4imOeYe6VHuoYHVS2/QGSHCqRxuL144gXjWWbIJ8uc/A/DWt8Lb3w433gg7diC53BdckNaLsKVlgvxDyOg1s7ZWnja+bJVYUA7Ke2prg3o9VPAhpiDzaDmIDhOIoVg1DRVduR6GLbAEYuUKJRAV9sYSiKuKczqOjHH88SIQDzqrIfBseOUVWFO+f8zWs/PRAn5W00zzbmf/T2YUV04EIozmIba2SjGo971vYRbIk+DziSvXg7HIs7HAGBWI3UogGlgO4qBRKMTG8zeWls4ymji8MJ//sjJpC/TnP1su/q23ShDBey8fIP61b0ru9m23ARJ6euDAGIHY2Sm3GXYQAbrrjRQSh7iIAwOig4Ijh5SDiMyjE0NMh4ehc3gRDZXOGXM2CRgdZzoqljhqsyZTKIHoIPbvkwvZkmO9OR5Jhli3jsaSDloi5XZvtzYnRkZkUbEyuXthw0sXgkBABOLBslyPZF6YBt5K177RvLuF4OijJRfRFIi33SYfmGuvXbgxTMBoiKKxyHOCgzgcUQLRwJy/SF+JFEJySA5iXx9EB0sWzkEEuOgiqXK0Ywcgi8Hvfx/++VIF3yj9LJx+OsnPfI7f/G8vRx8tDz3lFONvEwn43OdEHB53XMaGZDnA3pXyjUMEotUDcfigEog4N8Q0FJLbYLVzNpayid8vt+HSJuUgKuzNvl1DNHKYsnULV9UwqxQV0bi0mIGR0rzcnOnslEIawf5X808g+sVBPNBRyWAGO64sNLt3g6e0H58nubAOb3GxhP0+8YRs2/7whxIOvHr1wo1hAkYFov3bXJjmmHuwQwlEA6tITRcitBziIJoVQhdUIL7pTXL7pz9Zd13m38bbuZsvjnyW28+/h5O7/8rl719EaSls3pyyf/P1r8Ojj4qirM9cP1hLILqXyjeOE4gHVIgpzg0xNQVig8fZtQUyheUgFgeVQFTYm327hljOvsxXMM0hjUdJYRCzSXI+0WHkeQe6F7CC6ULh87GaZnRdc8oaZkL27IFV7lY0Tw4ExkknwTPPwN13y5X53/994ccwBsuBGrR/kRrLQRwMK4FoYNZZsgoN2Xj+UjFbHS1YiClAQ4Ns0hh5iCSTcMMN3Nr4NTw+Fx/4YiMdi1bwU97Dc3c8xaZNxh7SU0/Bf/4nXHEFXHllRodkCcShKrEvHHJytQQibcpBROaxtxfiVR5HhZiaLRsbfPm3HpsL1dVS/yxMQAlEhb3Zf9DFMvbn3GXIJI0ni3BqedhZJb1nQjgst/5EKP8EYkkJq6tlVWC28nAiu3fDyrLDuREYJ50kyTuf/CSsWgVveMPCj2EMlgNl5rDZ2EE0BWJVtF0JRIOiInkrIhEcKRAbi9plRbZQXHihFPHq7JS+v089ReBr17F5s8btt8Ou3cW8u/5+ij76YRGQsRhcdZXUv//+9zMedWAJxAiwYgVOaTSbJhCVg2jVo4sU1znKQTQFYtA/ktuB2ARNk32acLJW5SAq7EsiAQc6K1muHZALR57QeK64oS3bD+Z4JJnHdBD9dOSfQARWB2RHzakCMR6H/fthVfHenPQctArVtLZK7JoN+k5ZIaYDRssIGwsMy0GMtSmBmEJaqxKH5CCaArHB3bewod4XXijCb/Nm+PSnYf16uOoqTj0VrrkGygKL4BvfgO3b4ac/hRtukBPez342erBkkDSB6HGO+2QKxDralYPIGIEYjcpnzAG0toJGkvqgs4vPZZJAADpGPCL0RwpLOOdJOcz8p7UVRpJFLK+LQUlJroeTMRqOk/yNlhfzr6xyvgtEb30ptQd7aG525uJ8/37ZeFmVbM6NwFi1ShaB8bhUL7UBlkDsK5aFugMcRHcslBuBb1OsXnoOy0GsLhlYeG1x0kmyAvz4x8UhuP9+sWFTeec74Uc/go98RD50118P556bleHU1MhhZ82fmRRmc9rawFM9QlnfsBKIjAr9Ts2ochKNOsJZDR1OEKCD4prs98F2CoEAhJuNuevtHZ3cAiD3W9aKGWG2uFi2LKfDyDhVVVBTEqNlX/7FvKcJxLT66HlCIMDqkn2OdRDNCqar4jtzIxA1Da67Dr7yFds4YBUV0m8+0qXJwekEgUjUNu+fHUhzEB0iEFtaoKk8svAtXlwuKVbT0wPnny9fY9E06YHR3w/HHivHa5YoKpK9DksgOsQBbmuDeo9xDXeAEMo2poPYmTR23BwSZtp6KEGQkBL5Kfj90DFgCOYCy0NUAtEh7NsrfSCWr6vI8UgyT6N3gJaeqlFFlSeEw7CobJDSomRGK93ZBr+fI/RXnZImMw6rxUX/C7kTGJ//PHzsY7l57UmwBEZlpa0FRjQKmqZTwYASiCl4vc7MQWwsDeemB+gVV8iuyM03T/6Y446DBx9jVud+AAAgAElEQVQUh7Esu6190hxgJwnEaqPypRIXoyGmSSOywSkCsUWngVYl8lMIBCAcNdbdBZaHqASiQ9i/Q3IRlp7gz/FIMk/j4iJaaBztCZcndHSAv6QXGhvHhy3lA34/9UMHCIed2cRyzx6orNQJRnerEMUU0gSizR3EqookLnQlEFPw+ZznIB4+bBSoyYVAvOACWfitXz/14848U4rTZBmrybrTBGKVMVYlEEdDTOMpoYkOINSuiUBUc2jh90NPfwnDlCgHUWFP9u2IUU+IiqPzpAdiCo1r3SIQt2/P9VAySkcH+F2deZl/CEAgQCAZIhbT7KwjJmX/fli+NImmBEYaloNhc4ERi4G7PCE/qPmzMB1EvdIZRWp03Qgx1RawB+JYFrJy6jSkOYgDA5IobXNCIaivMESQcp+orpZWt51DRmiiAxzEZBJCHcVKII7B7IXYSa0SiAp7sm9vUnogrlmT66FknMalJbRoTeiP559ADCTa8lcg+v0EkF4eZksPJ9HXBzWVcflBCQwLJzmI7jI1f2Px+aTuUX+Z19YC36SzU8bbmDyUO4FoI9I2aMDWxyDA4KAYsPWlRqE5JS7QNAkzjQxWyh0OEIidnTCScEkOohL5FqZALMReiEogOoT9oTKWuQ7lpdhobIS4XkLn9t2ynZwnhMM6/qH8nDPA8QIxGgV3qRIYY3FKkZNoFKpKjMIYav4srEq0rlpZvdvcgbJ6II4cUAKRMQ4i2N4Fbm+X2/riTrHNspyj6RR8PuiMGu2CHBBiahbMVQ5iOn4jqytMQOUgKuxHMgn7ezws9/XaoldapmlslNuW7gpJDMsTOjrAPxKChoZcDyU7BALS9wpnCsS+PnCbAkPlIFo4ykEsVgJxLFYvPYxvbDyHIPmHAI1De0ddswLG5xOjIlFpLNJtLhDNHohBV7s4TwvZx9LG1NZCZ58RuuwAB7G1VW6VQEzHdBA78CsHUWE/QiEYTpawfHF+Num0BGIe5SH298PAgCYtLvJVIOaDg1hsVN5TAsPC55MN75Fyt63FRTQK7iI1f2OxHETd2PSwucAwHcSmgd3KQUSOP12HHs0Z82cKxHpdtUdIpbYWIn1Gq3EHCUQVYpqOFWJavkQJRIX92L9HhOGyVSU5Hkl2sARi6Qp44oncDiZDmB07AoTzs8UFpAlEM8zISUSjUO0yBJASGBamwOguCdg+xNStxaTASHl5rodjGywH0Syxb+M5hFGBGNRzWKTGRoybP6cIxESLEogp+HzQGdEk7NZpIabqOLQwj8dw6WIlEBX2Y98/OwFYvj4/F7GmwdbS8Nq8cRBNR81Px4KURs8JixaxqHiAEteIcx1EzVg8K4FokZbDZncHkaiauzFY8zdiLNZtLhAPHwZ/bZIyhtXClBSBOGK4ODafP3NzsG74kHKeUqithc5OTUSzQxzE6tJBqip0EbUKQN4Knw86ioNKICrsx77nJDF22cn56USVlcnJtMVzFDzzDAwP53pI88Z0EPNaIGoaWsBPXXmf4wRiPA5DQ+DWjQu3EhkW1gLVVWvrxWk0Cm69V83dGEyBGBk2xJaN5xCMFhd1RrEoJRBHj7+4M3IQe3uhpAQqYh3KQUyh1qgRNeAOOEYgBit6lMifgEAAwq66gitSM+U2gaZpPwemLSup6/q7MzYixTj2Nw/hJ0zV+lW5HkrWaGyEltJlIg6few5OOinXQ5oXlkB0dcmVIl/x+wn0dxEOe3M9kllhrpndyV7ZoVAhihajOWxe6cOWTNqyOFYsBm5PD/hUgaFUqquhqAi6howS+zYXGC0t0FhrbAoqgTgqEAedMX+xmFFbqK8Pli3L9XBsgzmPnZVLWOyAENPWVmgojSiRPwF+P3R0qCI1Y9kN7DG+eoA3A0XAIeNvLwGmfcc0TSvXNO0JTdOe0zTtRU3TbjTu/6Wmabs0TduhadqPNU0rMe4/R9O0Hk3TnjW+vpDyXBcYf7Nb07RPzeWfdhr7Dhax3HUQ6upyPZSs0dgILcNGPeE8CDO1chDrNFsurjNGIEBA63Ccg2iuudwj3cqBGoMlEJPG+zI4mLvBTILlAMfV/I1F02QOIwMVcocDHMRGr1FsSAnEUYFozp+TBKJynyzMfeHOskZHOIihEDQUh5VAnIBAAMIJb8EJxCkdRF3XbzS/1zTtfuBCXdcfTrnvTODzM3idIWCDrutRQwQ+omna/wG/BN5pPOZXwDXAD4yfH9Z1/aLUJ9E0rQj4HrAREalPapq2Wdf1l2YwBseyr6Oa1yxqzevy0Y2NsGNHqYRj5kGhmnAYXCTwBPPcmaqrIzB0mN3tOuCcz6clEONdSmCMwVqgJoz3JRaTlhc2wtQ8VcNq/ibC54OufqMfnY0F4siIFDlpqjEPSCUQrRBhc/6cIhBbe5W4SMEUiJHSIPS9ktvBzIDWVmioURVMJ8Lvh38M1xScQJyNtXEq8PiY+7YDp033h7pgnuVKjC9d1/X7jN/pwBPAdB3FTwZ267r+qq7rw8BdiIuZt+g67B8IsDw4kOuhZJXGRgiFNBKvPVnyEB1ORwfUFvfgasjPvFGLiy6ibmAf4ZC9m3GPxdzQdQ91qh6IY7AcxLixWLdhoRpL4A91KoE4AV4vdMWMqtc2FohtbRLB3Og2QvCUQKSkRHRWpKdYYoVtLhD7+6GqSjfKQiuBaGKFmBbX276KaTQqX0Fd9UCciEAAOgaq0Ht65YRVIMxGID4DfFXTtAoA4/Ym4NmZ/LGmaUWapj0LtAMP6Lq+PeV3JcC7gL+k/MlpRkjq/2madrRxXxNwMOUxh4z7Jnq9D2ia9pSmaU+FnRb/lkL7wSEG9XKWL3eOOzMXmpogkYCwb+1o3WwH09GR5wVqTC67jEBlP9GBYjtGIk6KJTAGO5TAGENJiTgClkC0ocBQ8zc1Ph9Eeo0AIRsLDKs5d4WxM68EImDMX5cm74eN5w+MAIOypOxmK/fJwgox1fy2DzG1WlyMHFQCcQICAUjoRXTri2x/PGaS2QjE9wJnAD2aprUhOYlnAjMqUKPrekLX9eMQl/BkTdNek/Lr7wMPpYSvPg0s03V9PfBd4PfG/ROppAmL6Oi6fpuu6yfqun5iwOx06UD2PSZNopYdVZXjkWSX0V6Iy0VdJZzlSI2lo0MnMBLKf4FYVkbg7HUAhJ89nOPBzBzzHF890K4ExgR4vdA1aORA2dlBHFSVEyfC64Wu3iL5wYYC38QsCujRjG+UQAQMgRhB3g8bzx8YIaZlRhVadSxaWKH6Wq3tBaK1UTO8X4n8CfAb5THCBAoqzHTGAlHX9X26rp8OrAIuBlbpun66ruv7ZvOCuq53A9uACwA0TftPIABcl/KYXjMkVdf1+4ASTdP8iGO4JOXpFgMts3l9p7H/n1LtZPmJ/hyPJLtYArFoiexERiK5HdA8CYcS+AlDfZ6HmAKBN58JQPttv5/mkfbBEhixNiUQJ8DnSymSYWeBSJ+RAKVIRQSGJhV6bSwwrFzShAoxTcUSiFVVtncsYjGoKlUCcSwVFXL4des1IhD1aRsC5AxTIAYH9qk5nADTY+qgsCqZzrq8oq7rB5B8wUOaprk0TZv2OTRNC2ia5jG+rwBeD7ysado1wBuAd+i6nkx5fFDTpCKLpmknG+PsBJ4EVmuatkLTtFLgCmDzbP8HJ7HvJVmcLTtjuvRMZ2MJxKThuJnddx1KR7hAQkyBwNFSXTd870NSWtIBWAKjr1XlIE6A12vvIiejAjGqRMUEeI2Ce8lKeztQlkAcMRxEmxVDyhVpDqITBGKx0aZEuU9peDzQnaiWvDUbbrSZWCGmQ3vVHE6AKRDDBAqqF+KMBaKmaY2apv1O07ROYASIp3xNRwOwVdO05xGR94Cu638CfgjUA/8Y087iMmCHpmnPAf8DXGHUshkBPgzcD+wEfqPr+osz/R+cyP59SbxaF4uW5vcitr5eirRarS4cnDeaTEJnt6tgBKLZfSXcUwr/7//ldjAzZDREMawcxAlIK3Jiw4WNEohT4/WKYdFbGXSGQBzuErcsn1sCzQInCcT+fqgqMhLQlfuUhghE4/xk4zDT1lYoKdHxofogTkShhphO2eZiDD8C+oHzgAeBs4AvAvdN94e6rj8PHD/B/RO+vq7rtwK3TvK7+2bymvnCvlA5yyvbAWc1Ip8txcUiEltixmLdwQKxpwcSSRcBwgUhEK3dtdp18L3vwZVX5nZAM8Bcc1URUwJxAnw+eLLXvlUwzSEpgTgxpineXVaPx8YCI63djJpHC1Mg6lVutLC9o2liMah0GVXWlbhIw+OB7n7DFe/tte16oLUV6v0JXK26msMJUCGm03M68C+6rj+LtKh4Drga+I+sjEwBwL5eH8tq7XuBzySNjXC428gncnCIqalt/XQURA5iTY1Uvgyvfz089hg8O6PCxjklGoWy0iQljCiBOAFS5MS4PNjYQawipoTFBFitSsod4iAOdqp5TMHnkzptfeUBWzuIum6EmGqGQFThiWl4PNBtFvuysYMYCkFDrQoTnozKSqis1AvOQZyNQEwgoaUA3ZqmBYAYk7SZUMwfvS/K/pEmli9xdkXPmdLYCC0dpfKDgx3EDqkrhL+kpyDEh6ZJCEZ7w3rJzP/+93M9pGmJRsFdYaQ9qxzEcXi90D/gYohSWwqMtBBTVaRmHOZHuqu4zpbzZxKLSfRI6UCPEogpWE3Wi+tsLRAHB0UkVmGWhVbuUyoiEI1cbhsLxM5OqHUb9QPUHE6I3284iCoHcUK2A28yvr8fuBu4F3gq04NSCJ1P7SWGm+WrS3M9lAWhsRFaWjW5OjrYQbQEYi2ingqAujoI95ZJeOkvf2n7Xba+PnCXG+nTBSDiZ4tZor0Lr20dxJLiJKXElbCYANNB7C72214gVlVh7NioeTSxWiQUBWw9f+apoSppCETlPqXh8UC3mcvd25vbwUxBNArVJUogTkUgoBF2BW2/tskksxGI70JyDwE+BmwFdgD2TzhyKPsel9JSy9YXhsPR2Ci6MO5vyAsHMRAsyu1AFpBAwJiyD31IVg2/+EWuhzQl0ShUlxkhNUogjsMKUSyus61AdJu915SwGIc1fy6frR0oSxcqgZiGJRCx9/yZ2rUyGZUCQxUVuR2QzfB4oLuvSJp129hBjEahuliFCU+F3w/hovqCEogzLlJj9C80vx8AvpyVESks9j8vVvbyU/I/jw1GW12EatayxMEOopWD2FSW24EsIIEA7N0LnHCCOMA7d+Z6SFMSjYLb3DFVAnEcozlsDbZ0MKJRcJcOS5KDEhbjsIrUaD5bzp9JmoO4OL9bOc2GNIEYj8PwMJTaL5IorU1JdXXBRMzMFI8HhuMuBimnwuYC0V2kCg1NRSAAu1SRmonRNK1E07QbNU3bq2naoKZprxo/2++slSfsa5Yd8mVHFsaunNULsWq14x3EcgaobCwM5xfk5Glp+poaW4fTgHlBNEqzqxzEcVgCsbTevg5iieEAqxzEcVRXi6HTpdc4RyAqoW9hCcSEsXllUxdxVCB2K+dpAqyNGjy2vSbqunH4aSqPdCoCAQgnfCoHcRJuRhrc/yuwHvggsAH4ehbGpQD2tZSyqChaMOtXSyCWLnN2DmJ7Ej8daA32LGmdDQIBiaAZGkIWCjY/iUaj4HYZwkctbMZhLVBL6m0pMKJRcBcbAl81Vx+HphnhbclFtpw/EyUQJ8bcoIkkjHOT3QXicLcSFhOQ5uTb1EEcHoaREXDrSiBOhd8PsWQlA5GBXA9lwZiNQHwbcLGu63/VdX2Xrut/BS4F3p6doSn293pZ5u4smKgNSyC6lkgTqJGRqf/ApnS0DBdMD0STujq5DYdxjoOoRUVclJTkeji2w3IQi/y2dBBjMSMkqrISigon13c2eL3QNVItK8B4PNfDmRCVgzgx5eXy0e4cMhbrNhWIVpGaIdVgfSIsgVjZaFuBaFWE1vugrMyWocx2wOqF2FkgC3JmJxAne1cK591aYA4P+ljsseeFIRsEArLWa0nUS9xDZ2euhzQnwqGE9EAsIIFonjzDYcSRc4JA1KMq/3ASrDYJrlpbCsRoFKpc/UpUTIHHA13DxvtjUxcxFoOqiqSEHqi5TMPng8iQET5tU4FoFakZjKhIjAmwBGJ50LbXRFO3uhM9SuRPgbXG6SkcAT0bgXgP8EdN096gado6TdMuAH5v3K/INPE4oURgtHlpAeByQUMDtAwZTaAcmofY0YkIxPrCKC4EDhWIicLoUzkXiorkrYlotbYUF9EouIkpUTEFXi90Dxv56zacQzAEYpkRKaJySdPw+SAyUC4/2Hj+AKr6w0pcTIAlEMvq7e8gqjzSKfH75TbcWyYGRgEwG4H4CeBvwPeAfwLfRVpd3JCFcRU8yfYO2qgnWFcYH0STxkZoiRmLdqcKxO6SgnUQ29uxfQ7iyAgMDIA72asuiFPg9UKX7rGtg+gmqkTFFHi90DXoAIFoFhtSYj8NrxciMaMSts0dRCUQJ8YSiKV1theI1SMqTHgqrBDTpFcWEAXAlG0uNE3bMOaubcaXBpjK5UxgS6YHVuh0vtJJggaCTbPR8M6noQH2vGQUnXBgoZp4HHoGSiUHsYAcRCflIJqLmupEt1qUToHXC11t9qyCGY2C29un5m8KPB7oHrC3wLDalYCayzF4PPBqqxHOZtP5swRirF1ttk2AJRCLam17TbQcxMFOJRCnwIqSIiCtLgqgONp0fRDvmOR+UxyaQvGIjI1IAUCoWXabgssKp5ceiKb6x6PGRdGBDmJHh9z6ywrL3fB4oLg4JcR0eFjyisrs9/m1LojxLrUonQKfD7paqm3nIFpl2Rf1qPmbAq8XuqJGASYbivxEAgYHocpsN6PmMg2PB7qjRgEmmwpE89RQ0dumxMUElJfLJbDbZd8qptb1cKgTGpXInwyPB4pcSTqSRi9Es6piHjOlQNR1fcVCDUSRTuhVOfMGVxbWRbOuDjoiGklcuBzoIFoC0ZvI7UAWGE2TGP1wGGgyLjK9vaPbbjZiVCCqkJqp8HrhxeFqSNpLXAwMiEh0Kwd4SjweGIoXMUgZ5TYUiFYFTJcRrqXmMg2PB7r77C0QYzEoL9cpGhxR59JJ8HigW/PYXyAOhKG6NreDsTEuF9QuihPuNhzEAqCw4hcdROiglCUPri2sIhp1dZBMakR8q5ztIPpzO45cEAik5CCCbfMQR3dMI2pROgVeL3QNV9rOQRwV+EogToXVqgSvLR1EKzzR7Eeq5jINrxf6+jRGKLK1QKyqNALKVIjphEg/UvumXVjn05hygafD701IiKlN1zaZRglEmxJqTQIQXF1YB6yZy9buXevIHERTIAYapovezj8CgZQcRLD/BXGwQy1Kp8Drha6hSvR43FZ99Exh4R6OFFQY92yxWpXgtaXAMIdUhRKIE2HOX29ZnS0FPhgCsdyIllHiYkI8HuhOuMVBtGH1S6vNRaxNifxpCPihA79yEBW5pbW9mEqtH3d1YbWZtASi+whHOojmkP2Ly3M7kBxQV5eSgwj2F4hDSiBOhc8HQyPFDFBhKxfREhbKAZ4S00HsxmNLgWEJfd1coaq5TMUqcFLRYEuBD3JasNqUKIE4IR4PdMfdUj57aCjXwxmH+dGqVJVopyVQ7xotUlMAKIFoU0LdZTSUdKAVlj4cbZdQscyZDmJInJba5YV3orUcRKcIRKLqgjgFaSGKNhSI7uFOJSqmwDEhpkklECcircm6TQViLAaVJYZAVO7ThHg8Kf1IbXhNjEbB7dZxoavr4TT4G4qVQFTknlBfFcFK+51Mso3lIJY0OdJB7Dg4SA3dlDTarzhLtgkYofnD5c7IQaxGtUmYCrsKjDSBr+ZvUiyBYXMHsSphXOdUuHAaaU3WbSwQrT6WSlxMiMcD3YNGRJENC9VEo+CulJQmJfKnJhAsJoKPRFdhrM2VQLQpoYEagovss2u/UNTWSkXMsFYHkYitcp9mQkfLsPRADAZzPZQFx+oTFDeTZ+x5ErVyLpTAmBKfT24j+OzpIKr5mxJL4JfU21IgWqHCIz1QWipfCou0Jut2FojFRtikEogT4vFAd3+p9Iazq0BUeaQzIhAAHReRNmetS+eKEog2JRSvJegdzvUwFpyiIqkA2p40yoB2duZ2QLMk3JbET0dBCkTT/Q0POSPEtIqYEhhTYPsQUwqr1+hssYrUlARsKTCsHMQRVY12IiyBWOy35fyBIRCLjDYlyn2aEI8HhkeKGKTcltdEEYiG4FECcUrM6vQd4WRuB7JAKIFoQ4YiMbrwEawrjA/hWOrqoH3YuDo6LMy0I6IVrEC0HMQeww2w4cUQ5IJYWpKklLi6IE6BCjF1NiUlop+7i/y2mj8TK8R0uEvN4wRYAt9Va1uB2N8PlZohENW5dELSQr3t6iCWGmaEEvlTYq1xOgpDOhXGf+kw2nZGAAg2Feb01NVB+4BxsXFYoZqOnhIRiKadVkBYJ0+zUI2NBaK73CisoBamk2KGmNraQVTzNyUeD3TZXSCqarQTUl0t6Rbdmr02aFKJxaBKM84Nys2fELsLxL4+cJeoMOGZYK1xuktyO5AFojAViM1p3SUL6+CSwszJCASgvc9I6naQg6jr0BGrIFDeV5D5NFYF2nZEINq4SI27zAipUQvTSamuBpdLlxxEGy1QzaFU0q/mbxq8XujW7Fmkxgr1HlDtZibC5ZKWst16jW0dxFgMqvQYVFbKgBXjSBOINtw0jUbBXTQoPyiBOCVWiGlvYazv1BFtQ0Kvyo5cw8rKHI8kN9TVQXuXsUPjIAcxFoPBRCn+RYWRwDwWr1dySMNhZGVjw4shjAmpUQvTSXG5wLMoaUsHsbJsRMqyq/mbEq8XunSPLQVGLAZlZVDc36vmcRI8HuhOVtty/pJJGBhQudzTYXcHMRqF6mLj/K5CTKfEFIjhaEVuB7JAKIFoQ0IHRWAE19bkeCS5oa4OuntcDGtljnIQOzrk1u8rzNxRl0tOoI4IMVWV92aE12PPHETLAVZhbVMiAmORrebPJBYzpi+qQoUnw+OB7pFqebOS9rquDBiph1XJPnUcToETBKJbM84P6no4JWVlUF06SLi/0nbHYzZQAtGGhFrkg1d3pC/HI8kNZvpeh2+NoxxESyDWFe5hFQg4QyBWF5urG7WwmQpfrT3bXCgHeGZ4vdA1ogSiU/F4oDteJfkLpiKzCVaod0L1k52KtH6WNrwmRqNGPndxsSggxZQEqgfp0Gttm0KTSQp3JWtjQu0u/HRQ4inMxaspENtrVjvSQQw0FOd2IDkkTSDa9ATa1wfuon7Ve20GeH0uW4aYWg6wWphOiccDXfEqWwrEaFQJxOnweKB72Ahns1mYqVVkKNGjNtqmIK2fpc0cxOFhaTXtTvbJNVvTcj0k2xPwxAkTcNTadK4ogWhDQl2lBEuc1f8vk1gCsXqloxzE8EFJ9PYvLczcUTAKDLVj/xxETeXNzASvT6NLs1eRGhGIAxLTXF6e6+HYGq8XeuOVJPrsI/BNYuYhqATipHg80D1ofMbtKhDj3UogTkF5uRhz3SUB2wlEqyJ0okeFl84Qf60uAtF0BPIYJRBtSKi3kmCFPd2XhcCqhlm+xFG7NB375OTvX1G4J9q6OmeEmLqJqgviDPD5bBpi6hoQUaF2vKfEdC96YsUSpmgjJMRUT1GKirF4vdDdb0Q52GiTBlL7WHar+ZsGjwe6XbW2uyaaelUJxJkTqHcpgajIHaGBGoLV9roYLCSWg1jc5CgHsePgIEWMULOiMHNHQcR9dzfEqzwSvzI0lOshjSMaBbeu8mZmglkFU4/a53wkAjGmXIsZ4PXKbXeyWo5HGxGLQVV5QoSrOhYnxOOB6GAJIxTZzkE094yqhrvUsTgNIhC99nUQ412qgukMqW8qIUwAvd055sVcUQLRZug6tA7XEvTab2G9UNTUQEkJtGv1htpwRtuIjlAcPx24GupzPZScYbq/HS5D5dssDzGRkIWNO6FK688ErxcSFBPttU/FtlgM3Kq0/owwBaLdKtGCkYNYOiI/qLmcEMsBxn69EK0iNYMRJRCnweOBbt1+VUzNj1T1UIdyEGdI3bJyhimj+6C95jIbKIFoM3q6dYYop6Eukeuh5AxNM0IVE4YT5xArv6Ndp5ZOCAZzPZScYYUH68Y3NgupMXe93YketSidAT7jEOzqLcrtQFKIRqFKV3lrMyGtxL4NBYbVrkTN5YTYff4AqgY71PxNg9VuxmbXQ8tBHOpUAnGG1C+RSq/th+wVkZENlEC0GaFm2ZUINhR2bk1dHbQPG1dHh4SZdnRJ9Vmrm2oBYgpES9zb9YIY71IXxBlgOlCRXvtU5o1GwZ1UDvBMsLODGItBlapGOyWOEIj9HcpBnAbpZ+m2rYPoHgir6+EMqTcCxNoOj+R2IAuAEog2I7RLQvKCSwu7/H5dHbT3GxcdhxSq6egtw18WhSL7uC0LjZk/Go4bKxubCsTqeEQtSmeAJTCiJbkdiMHICAwOKgd4ppgCw7YCsUgqPyuBMTF2FohWDiJRNX/TIP0sK+0rEPvblUCcIeYapy2c/yaOEog2I7RHLuLBIwq3VQIY7RJ6jfLeDnEQOwcqqK0azPUwcorlIA4aFxub5SCmhdQogTEtlkCM2WPDytQ47hFVWn8mWEVq8NhKIMbjUjOnSjNURk1NbgdkU+wsEK0cRPrVuXQaPB7oHqpAHxqyVbEoJRBnj+kgtnfaJ6omWyiBaDNCByTkJri6sA/Wujpo7zJcCwc4iLoOncPV1FYXbnEhkJw1lwvaY8bi3WYOolXWW+XNzAgzBzEyUJHbgRhYC5qRLjV/M6CqCoqKdNs5iJbQ14xvVAXFCRkViPaaP5DhaJpOBQNqs2YaPB4YThQzSLmtXETreqj3KoE4Q/x+0EjS1pP/PXiVQLQZocNJShjGu6o210PJKXV10N+vEXNVO8JB7OuDERQQl1cAACAASURBVL2Y2kX5H5c+FS4X1NZCR8wQFDYTiJbAGFYO4kywHMRBmwnEIRUiPBM0DbyLErZzoKz8Nd0YkxKIE2IJxNI6W80fyBxWlifRQB2L05DmBNtIIJofqSpiSiDOkKIi8FfEaIvl/2deCUSbEWrXCBJCCxRuoRNIyWXzrXWEg9jZKbe1Pns1o84FtbXQGTVCEu0qEImqC+IMqKqCYleCrmF7hLyrEOHZ462xr4NYlTTOD0ogTojbLZtuXSX2FIhV5Ub7G+UgTkmaQLTRNTEaharKJC50dT2cBfXVA7THPbYKF84GSiDajNbOMoJFYSi1R85PrjAFYnvNakc4iB1hEYYFXMDUwu+HjkiRfIbtmoOIapMwEzQNfBUDdMWrJY46x1g73ioHccZ4vPbLQbTmMd4jHzI1lxPickl6Zndxre0EYn8/VJUZETNq/qbEzg6iu8JoqaYE4oyp9w7TRv2oM5CnKIFoM0K9lTRUdOd6GDnHEohVK5zhILZI7mFtXeFWMDXx+43z5iIb931SAnHGeCuGiOCV8qE5xspdU/M3Y7w+l30dxHi3nCdcaikyGR4PdLt8thOIsRhUlqo+ljPB1gKx3BD5SiDOmDp/UgSiA9am8+H/s/fm4XFd533/58wM1hkAsw9WiuACaiEtkhIteZHqyHbiOl4TO7HbuHWWOsnPdhwnTZNuT5O2blYnTZw4TZo4zi9JbXmTl8SO4ziyVC+SJVuiSEoiCRIkQSyzY5nBMgDm9o9zZwjKFImZuRug9/M8fC4wGNx7iDv33vM933eRu7LHmF3qoT/knQe5W9QbrneMbIuLMH9Jn7PYwAvb+QUzBzGHXvoWgbjtiYQqWmDU6tq7iJy/xgnHTIHoIYFRF/prRQkvvQHhsFmkxkPnD8wQ0zYzxE4cxOvi5RDTULt5DkUgbpnUgI8MSXOis3MRgegh1td1/7j+iPsr9W5TF4iBwW0RYpqf0ucsNuyNYh5uEo/r+6bR400HsS1QpYOKPBC3SLRnzTMOlAjExolElOeqYNYdxNWCCMQbEA7DnNHnqfMHpkAMiEDcCp52EGsCUe6nWyY13EaJHpamim4PxVZEIHqIbBYMfPTHN9weiusEg/pfhqTOY/N4MnB+dg1FlciI3GTjcd3nrBRMeVIg1kNq5IG4JSK9VQpExUHcpoTDUCSMUfKOwKjnIC7nRCDegHAY5qo9nnMQl5Yg6DcXs+VavC5eFYiLixAKmOdQFky3THKXbnGRPu+de6odiED0ELOX9cS1f8DlgXiEZBIyG2a7D4+HmeYyG0Qo4o9H3B6K68TMU5brHPZkkZpQh+TNNEKkr+rNEFNxLbZEJAJrtLO8sOb2UOrUHcSlrAjEGxCJwNx6yHMCsVyGbt+y/kauxevS2QkdHYY3Q0z95jkUgbhlUnv13CE96W3jolVEIHqI2bN6Zal/uM3lkXiDZBKyq+bkweMCMZ9XxMhf6Sz+AqZWyTXXNuCphyGYK6YSUtMQEbMKZnXR/dXSUgkC/irtVOT8bZF6L0sPRUPVcxDLaRGINyAchrlK0JMCMaiWoa3tBV91fSuEw4o5f9xTDmKpBD2+2sUo99OtkhrUxQgzszs72k8EooeYGdcXav8eyWMDnYeYWTJXJj2eh5if82mBGBEHsSYQ8wGPhpgGdMVZWTHdGtGYwsDHfNb91dJaiLA059469fC2Be887msCsXtRBOKNCIehvN7B2qK3ahNogVgW93CLhMMwF/CeQAxRhq4uCATcHs62oVZlP51W7g7EZrzzxBCYvagnrv375YEJZojpfIf+xusO4kIbMVWQSSubQkyJe1QgSlhUI0Ri+jFRzLgfolgqQVBK6zdE3UFc9M4EsFTSc1Lf4ryudiw8LzWBP1/p1MndHqFchqAhAnGr1NuVeOiZqAXioiyWNkhdIBZ2drSfIwJRKdWplPq2Uuq4UuqUUurXzNdHlVKPKqXOKqXuV0q1m693mN+Pmz/fvWlf/958/bRS6gecGL9TzE5t0MccXSPSbR1MgVgIYIDnHcRcuYt4x6Ju+vwCpx5iasR0cSEP9M+rUSpByLcMHR06NEq4IZGk/jsV81WXR6InpaE20wEWgbglagKjWPZOGGC5DMGgoS9IcRCvy1UFTjxSyXR9Xd/ag9VFuQ63SDgMc8o7RWoqFf0vVF0QgdggnZ3QFyiRWehweyi24pSDuArcZxjG7cBh4DVKqbuB3wR+zzCM/UAR+Enz/T8JFA3D2Af8nvk+lFK3Am8DbgNeA3xYKbVjOpPPphX9zF5ZnniBk0zC+roZt+91B3G5m1jXstvD8AThsO57nd8wnQGPrZj2+MoyqWmAaMoUiAXD5ZE8J0RYnIstUXMQ58reWRAplyHUbX6eRCBeFy8KxFq9qu6qFIvaKvV2JR4RiPU84PV5EYhNkOwukS7t7HmEIwLR0NQyrNvMfwZwH/Ap8/W/BN5kfv1G83vMn79SKaXM1z9uGMaqYRgTwDjwYgf+C44wm2+jn7TksZnUdHKmd5+3Kiw8h5UVWNroJBZadXsonsDn07V6chVvCkQJqWmMSL9eJS0UXB4Im6ruSWGMLVN3EFc63R3IJsplCHaaBR5EIF6XqwSiRwrV1KvQrs+LQNwi4TDMbfR45nlY06mh9Tl5HjZBqneZ9GofGO4vnNqFYzmISim/UupJIAN8BTgHzBmGYTYl4zIwZH49BEwCmD+fB2KbX7/G7zz3eO9SSj2ulHo863H3qcbsfBf9HUU9wxbqAjEbGvXG7PR5yOf1Nta3fv03voCIxyG3Yq6ueeSBCKbAMKSHXiNEBrSwKM65Hz6tBeKSnL8GqAuMVe8UPyuVIFhrNyMC8bp4WyDOybW4RcJh3a7EWPCGg1hvGVQpiEBsglRkjYyR8Mw1aQeOKRHDMDYMwzgMDKNdv1uu9TZze62ZiHGd1691vD81DONOwzDuTCQSzQzZcWaXeugP7dwPW6PUTluma9e2EIjx6M4uedwI8Tjkl80JqUd6IVarZmhbdV4mNQ1Qz0H0QBXMUglCSkKEGyEQgJ72FYqVkGdWu8tlCLaJQNwKXhSItRDTYGVOHMQtEg5DpdrGyqI3Cg3VPko9lbwIxCZIJTZIk/J8+lMrOP7ENwxjDvgacDcQVkrVSqsNA9Pm15eBEQDz531AYfPr1/idbU25DIvr3fSHvVPQw23qIaZtw54OMc3l9DYWd38C7RViMcgtmiFtHnEQl5b0/Di0LgKxEbq6FZ0sU1h0P4dNhwiLA9wo4a5V5ujzTMGoq4oNSRXT6+JFgVhvU7JaFIG4RbzWbqbuIK7kRCA2QbLfT4EYa7N5t4diG05VMU0opcLm113Aq4BngAeBt5hv+9fA58yvP29+j/nzfzIMwzBff5tZ5XQU2A9824n/g93Mzuptf1zCFGvUqmFm/P3edhCz2jmMJXdMvaSWicchXxMUHhGI9QfiWlEeiA0S8c1TLHlEIFYXZVLaIJHgGkUinhIYQb8pVsVBvC6hEPh8hicFYnBVWjttlbpAXOnQZWBdpv48XMrI87AJUsP6eZg95435jR04tZQxADyolHoKeAz4imEYfwv8MvALSqlxdI7hn5vv/3MgZr7+C8CvABiGcQr4BPA08PfAuw3D2BFxfXWB2O/uOLxEe7uu15Mxkp52EPOTunppbHBnlzxuhHgcckW/jv/2okCUSU1DRPyLFJfcLXJimF0RgtUFOX8NEg6ZAtEjVTBLJQj6zKrPIhCvi1IQ7q16UyCu5GWxZot4zQm+4iBmRSA2QWq3TqFJTyy5PBL7cKRzrmEYTwFHrvH6ea5RhdQwjBXgrc+zrw8AH7B6jG4ze6kCtDMw4p1mxl4gmYTMRhTm5mBjA/zec+ny0ytAiNiwd4pAuE0sBpWKokSIHo/kINYfiKt5ERgNEm1bpLDs7ud7dVXnkYY2RCA2SqS3yoSH2iSUyxBU5lhEIN6QcBiKcxEoeyOcrS4QZbFty1wlEBcWrrzgEvXnISURiE2Q3Kv/ZunJissjsQ9vBEMLzJ7Td9zUTd4pRe4FkknIrJo3Uo8IjeeSn1kjxCIdScmlqVELD863DXjOQexZycqkpkEi7WWKLlfBFAe4ecJ9Vc84iIZh5iDWOl/Jubwh4YjyjPMEm4rUUBYHcYt8j0B0mXqbCxGITZEa7QYgM7MjghiviQhEj5C9pMNt4ntkNXUziQRkl80JhEfzEHPZKjHyuvmfAFwRiLngTZ54GMJmgSFlvRsl0rlMseLuRPCq8yeioiEiEe+EtlUqOhgkWDX7kUpbpxsSjviYU97KIQXoZkkE4hbxmkCsfZSClOV52ASpft1UIZ1xv/2TXcid2SNkp9eIkicwsD1acjhFMgmZkulceDQPMZ9HBOJziMX0Ntc14omHITwnpEYERkNEu5YprLk7ibgSIlyQSWmDhCM+FullfcH9fJn6xHRjQSqYbpFIBOZU1HMCMYi0nNkqVwlED0RDlUrQ3bmBn6oIxCYIhaBTrZAuuF+8zS5EIHqEbMYgTu5KbwcB0H+O/GI76/g96yDm5/xaIEYibg/FM9RDTNu9F2IqArFxYsEVFqshVlfdG8NVZdnl/DVEJK5zt+ez7ufLXNVkXfIPt0Q4DHPKGw4w6HPo9xu0U5HFmi3S2Qkd7VVPCcRQpxkeKQKxYZSCVMccmYWdmxYmAtEj5Ao+EmSvdIcXAC0QDUORJ+ZdgbjQpsW9CMQ6dQcx0O+JhyGIQGyFVK8OgXezJ3D9/BlSpKZRIkld/KyYdb+8fk0ghipFEYhbJByGuWqvZwTi0hIEOzdQIAKxAcJ9hqdCTEMda/obEYhNkepeJF3euZ9/EYgeITvfTkLl5UJ9DjVDNYN3W13ky53E2hagbeeGGjRKOKxTi3K+pCcehiBJ+a2Q7NPWYTrt3hhE4DdPONEOQDFfdXkkmxxEEYhbJhyGJaObysKK20MBzCq0HeZig1yLWyYcVt5yENvNiAJ5HjZFsneF9Kq71WjtRASiR8iWu4h3lrRvLdS5SiB60EFcX4fiapBY17LbQ/EUfr9OycyrmGcEYqkEfl+VDlZlUtMgqZieDGbShmtjuKqogpy/hoj06x6tc0X3BWL9PC7nRCBukbDHCnmXy9DdbgpEcRC3TDiqmCPiiRNZKkGozVxwEIHYFKnIGpmNmJ4I7kBEIHoAw4DcSohESETGc6lF3GY7RjzpINaGFOtxP7fHa8RikNuIekoghrrMsCgRGA2RHNA5bG72fKqHJlKSSWmDhJOmg1h0fwGy7iCKQNwy9QInC96YspXLEGwz7wVyLW6ZcFgx5496QiAuLkLILwKxFVKJKhmSVHPeMy+swBt3mxc4c3OwYfhJ9InIeC51B7FzlycdxLzZtzjWt+buQDxIPA65tT79MDTcc55qlErQ02FeYyIQGyK1W1cSzlxwrwqmhJg2TySqhaEXBEZdIJYzIhC3SF0glgLuDsSkXIZgQO6ljaKLDUU8sWhaKkHIv6Sj1kTkN0Wy38cGAQrnvGdeWIH7TwuhXvghHtm5DTebJRrV4YppjzqINYEYj7ovgLxGPA75SgjW1nC1/KWJ5Fw0T3AoTDdl0pfcO48SYto8NYFRXPC7OxA2OcFLaWlzsUW8JhCXliAYMN0nERdbJhz2VpuLHmXeSyW1qSlSIzoyI3Nu0eWR2IMIRA+Qy+mtFDD9Xnw+/XdJ+wY96SDWzl0s7u44vEgsBrllc/LglRXTNlPgiMBojESCFGkys+4tYpVK0NW+rvt2yflriO5uaKNCsex+Ia2rhL44iFuiLhCXO9wdiEm5DN3KFIjd3e4OZhsRDsPcRg/GnDcEYohFWSxtgdRu3eIiPeF+f1k7EIHoAbJpXTggMeCN1UGvkUpB2qNFavI57RzGUu5PvLxGPA75pS4M8I5A9Muqd1PE4yTJkM64t9Ks+3ZJ5cRmUAoigUXmyu1uD+XqJusiELdEXSCudHoiXL9chqBvSYtDn0wjt0o4DBWjnZU596vRlkoQqopAbIXkHv23czM3307kyvYAuUm9+hAf8sbqoNdIpSC9HvdmiOmszj2MDcq5ey7xOKyu+SkT9ExITci/pDsWB2QxpiHice0gFtxbCCmVpDBGK4TbyhSXvCEQlTLoYlkE4hapC0SjF1bcFxflMgRZkuuwQerncc7dcdSyPkLVeRGILZA6oE9oesb96tB2IALRA2Qv6eqliZskVONapFLoXjNedBCnV2lnlVBKHpTPJRbT2xxxTziIi4sQUmV5IDZDOExSZcksuLcQUixCpNOs9CwOYsPEupbJL7n/jCmXIdhV1dWERSBuiWBQt+iZI3zFgnWRpSUISrGoholE9DY/7+4CZT0PeH1OnoctEB3owM86mazbI7EHEYgeIDu1RhdLdA/u3IabrZBKQXq5B2NlBZa91QokP7tGjDwqFnV7KJ4jbuZl5vFGL0SdcyGTmqbw+Uh1LZIpB6m6tFhaKEC0oxafKAsyjZLsWSZbcV+QlUqbmqyLQNwSSkG4u6IFYi2J00XKZQhWpd1MowwM6O3MYsjVUOFFs6ZKqFIUgdgCPh8k/XnSBfcjM+xABKIHyKU3SJC9MqMWrqK/H1bXA8zT57kw01ymSoy8LrcqXEXt4+wVB7FUgpCxKAKxSZI9y2wYftcuwUIBom2L0NWlSxsLDZEMV0ivx1zPYSuXIdhutgWSKqZbJhxc94RArFR0X/DujUURiA0yNKS3UxspV0OF6y2DKgURiC2S7JgnvdDp9jBsQQSiB8jmlAjE65BK6W2alOcEYr6AFoi12BGhzlUhpi7nIBqGWda7uiACsUlSEZ3/l067c/xCAaL+BZmUNkkyvkGWBNV5d0uyX9VDTxzELRPu3aBIxHWBWC8ytCH30kYZHNTbaQZdXTStfYR6VnMiEFsk1b1IprwzrwMRiB4gW/QTJycC8Xm4SiB6LA8xP2eeO3EQvwcvhZguL2uRGNqQnItmSSa085TJOH9swzAFoq8ok9ImSaWgip/8OXcrZJTLEGoz3RMRiFsm0lf1hINYF4jr87JY0yBdXRAJrjLFkKuLpnUHcTkrz8MWSfWukF7dmZEQIhA9QG6xg4QvLzfb58HTDuJiuziIz0M4rGP0c/5+1wVi/YG4JgKjWVID+nHhhoO4uAgbGxBFzl+zJAd1YQy3mzqXShD0SbGhRgmHlScE4pLZ8i1YkWuxGYbiq9pB9IJAXJMQ01ZJRtZIb8Tdjty3BRGIHiBb7ibRVdaZ6ML34FUH0TAgX+4kpiTR+1r4/Vo359oGvCMQZVLTNMkh3eIik3a+Sk3tso8aOTl/TZIc0XkymQvuNnUulyGolvR5lFzSLROOKE9UMa0dvrsyJ4vaTTCYXPeOg0hJ5i4tkkpWWaGLUsbd+6odiEB0meVlKK93Eu9xv7eRV4nHweczPCcQFxZgveon1r0s4v55iMch70+6noNYfyCu5kVgNEl0uBs/66Qvrjp+7NplH9vIyPlrktTuLgDSl9dcHYfuoVeW8NIGCcf8nnAQ6yGmqwURiE0wNIgWiB7IQRSB2DqpfjOy5rTLzS1tQASiy+Ryepvoc/eh7WX8fkgkYJYBT4WY5vN6Gws5P2HeLsTjkFMJ7ziIq3l5IDaJL5UgQZbMpHsCMbqWlklpkyT3aUGWmdlwdRzlsllNWCqYNkQ42c4y3azmPSIQl8XNb4bBYR+z9LNRdO+ZWG9zIQKxZZIjujdwetzd0H07EIHoMlmzwWYi7lJzsW1CKqVItw15ykGsCcR4eN3dgXiYWAzyRtR1gVh/IK4VZFLTLPE4KdKkXRAYdYG4Oivnr0mie8K6qbMLRYY2UypBcGNRHMQGCSd0iPd82t1oo7pARPogNsPQaBtV/K46+bUF0yBlEYgtUovMcDt03w5EILpMTSDGE3IqrkcqBWnfoDcdxOgOzE62iHgcchth1wVivaw30gexaeJxkmTIZJ0Pp64LxOUpOX9N4utsJ6FypPMB18ZgGLrISXB9XgRig4Qj+rqby1RcHUe9SA1lEYhNMDiqc4Gnp9ybN5RK0NWxQYANEYgtktqrn0duh+7bgagSl8lltHOYGHDvob0dSKUgbSQ86SDG4pJ/+HzEYpCr9GLMe8NBDFIWgdEsNQfRBYFRu9Yiy9Ny/logGSiSmW937fi1djPBtTkRiA0SDuvtXM7diJV6kRqW5FpsgqFdujDTVNq9OV+pBKEOU9CIQGyJxAHd4iw9s/OiAEUgukz2ki73nTArzAnXJpWC9HoMo+AdB7GWPxpLibh/PuJxWK22szTv7uranJk/HpE2Cc2TSGgHccH5e1WhAN3dBp1LEiLcCqnOedIl91yfmrgIVfIiEBukLhCL7kasXAkxFQexGQYH9XY6595CjQhE62hLhImRYzaz84wCEYguk7u8gp91wiNykV6P/n5YqXawmHc3vGYz+WwVHxuE+0XcPx/xuN7mFtpxs1FQoQBKGfQxLw/EZunuJhUoUK60O15pv1CAaMT8/MiktGmSwTKZZfc+/3VxsVIQgdggdYHocrFEEYitkUqBjw2mCl2ujaFUglCbWWxMnoet4fNxU2CKC5lut0diOSIQXSY7vUaMPL5k3O2heJpaL8TZfJu7A9lEfqZChCL+eMTtoXiWWExvc+t9sOpetddiEcKhdXwY4kC1QLJXRzw4XeikUIBon1kcR85f06T6VshUwq4dv14cY0UcxEapCcTioru9I5eWoL2tqvPX5FpsGL8f+tvyTC2497crlSAUMIsdiUBsmdGePBOFnVeVWQSiy2QzVRJkr8ykhWtSE4jphS6oeiPWO5/W4p5o1O2heJaag5gn5mqhmkIBokHTfZZJTdOkwvpvmE47e9xCAaI9Zu6VnL+mSUbWKBtB13qtX1UBU9pcNERtipAtuetUlMvQ3W5ei+IgNsVQV5Hpsnuf/8VFCPmWIRCAjg7XxrFTGE0tcWE55ZWpqWWIQHSZXN5HnNyVmbRwTeoC0XC/p16NXKaqBWJEHMTnox5iShzm510bR7EIkW5zxVQERtMkkzrM0xUHsdZvVM5f0yQT5vlzqRdiPQeRkjiIDdLZCZHOJWaWw66G65fLEOyQxZpWGArNM7XsnilQKkHIZ7a4UDsvd85pRm+qsmp0MHt5Z7U8E4HoMtm5Nu0gikC8LnWBSMozrS7yBSUO4g2oh5gSd99B7DTrs0tITdOk+vUjww0HMSYCv2VSA/r8Zc6702z9qvw1EYgNM9C3xIyRwjULGFMgtpnRGOIgNsVgX5npNffmfKUS9KiSPAstYvRm7cJOPOpyk1mLEYHoMtlSJ3F/Ebp3XoKrlcTjushImpRnWl3k5/za/RUH8XmJRPR5yxNztbpCsQiR9pp9IQKjWRKDOgfYSQfRMEyB31VrwCaT0mZJDuqKy+nz7giMqxp0i0BsmIHIKjMMuHovFYHYOkPRZYpGhOVld45fKkHIWBSBaBGjh3W48MR3vWFeWIUIRBfZ2IDCcheJ7iWx+W9AIACJ8Bqz9HvHQVxsFwfxBvj9urhIjrirwr5QgGig1gxRJjXN0tEfoY850tPOhSguLUGlAlER+C2T2q0rJ2YuuTMzFQexNQYS61oguvgMXFqCoF/c/FYYTOgWE9MX3Wn/VCpBqLogAtEidr9kAICJZ1xS/DYhAtFFCgUw8JHoWXF7KNuCVLzqGQdxeRmWKm2Sg7gFYlEzxLTW7dxhDMN0EP0L0NWlVavQHIkEKdJkLjvXbqZ2uUfbTIEvk9KmSezWiyNpl3JlJAexNQYGYIYBV/sBl8vQ7VvRq7bt7vXy284MDehqJlPjzguK9XVYWYHQurR8sorOvUMMMM3ExM4yekQgukg2q7fxiDsFA7YbqX7lmRzEmtaJtZfkIXkD4kmfDjF1SSAuLmq3PuorygOxVeJxkmQcdRDrAjFg5rCKQGyazsEovcyTSbtTbu8qB1GqmDbM4LCPCh0UL7ucg6iWJRKjBQaHtJCYPu+8OVBfpFmT56FlBAKMdsxwfsa93pZ2IALRRXI5vU3E3atItp1IDfk94yDWtE68x73eftuFeNJHzpd0TSDW1hMiRkHERavE49pBzDp3yLpAVOaJlHPYPLGYef7cefSXSuD3VWmnIg5iEwzcpBcjpy845+A/Fy0Ql+Q6bIGhXTqKZeqC8yGmi7VAjLWCCEQLGY0UmZjfWdFkIhBdpOYgJvol5G0rpAYDpElh5L0jEGNhcX9vRCwGeeVeDmJdYFTzMqlplURCO4iFNscOWbvWohR0rnbXzlqldZS+Pn3+is6dv83UCpwokMlpEwzs1cXsZi6799xZWjL7WIqD2DR9A910scTUZefNgVqhqNBqXq5BCxkdWOFyJcmaO2mltiAC0UWyZphPfMCdh/V2I5WCZbopZZbcHsoVgRjZYZ1RbSAeh1w1ipFz2UFcz4pAbBXTQcwvdrDuUBrbFYGf05NSKejVPH4/ybY5Mgudrhy+XIZgYFWfR8kFbpi6QJx17xoolyFYFYHYCircxxBTTLtwHmsCsWdZnodWMjqqqOLn0jPuhX9bjQhEF8lN6gTl+IisiG+F/n69nZ11dxxwJTw4lpBL6EbE47BidLKUdefGWRcYa2lZMW2VaJQkusdF1qEw0ysCUSY0VpDqXiBTdmdyXy5DyL8i4aVNMjCsRfVMxh1xbRhmkZrqolyLrdCnBeJU2nlzoO4gVqVIjZWM3qYXbyYedbhJsI3I7NZFslOr9DJPx4C0SdgKqZTepl3Kn9lMOg2KqoQHb4FYTG/zWXfc1rqDuDIjk5pWaWsj1a1nGE71QiwUoLMTupckRNgKkqElcqs9jjnAmymVIOhbEoHYJKEQhFSJmUKHK8dfWdEiMbixIA5iK/T2Msg00y6cx7pApCQC0UJGj+r8w4njCy6PxDrcn2m/gMnNrutG6/G420PZFtQFokv5M5uZnYU4OQLxsNtD8Ty1j3eu4M7tpuZAiqH7jQAAIABJREFURZanRWBYQDKqlUXaoYXSQsFsNTozcyWMQGiaVLiCgc+VmlHlMgRZkgqmLTDYnmNmoduVY9er0K7Ny720FWoO4lwQw+E0RBGI9jB89zAB1pg47V4BKasRgegi2QwkyIpA3CJ1gTjvfkhuenqDfmbNmatwPZJJvZ1d6Iaq8y5isag7kXSXJUTRClJxXSDDSQcxGgWmpmBoyJmD7mCSMX3+nBL4m9ECUXogtsJA1xzTJXf+fktm+n9wbU4cxFbo7GTQn2F1PeB41y4RiPYQSMXYpSaZuLRzospEILpItuDXArEWgydcl0RCh3Wmy+5P8menTIEY2Vllje1geFhvLxuDMD/v+PELBX2aVFkeiFaQ7NePDWcdRAMuX77yYRKaJpnUloVTAn8z5TKENhZEILbAQKjEzIo7z52ag9hdEYHYKkPdWhlOTTl73HqbCxGI1qIUo8EME5mdc12IQHSR3EKbhJg2QCAA8eAys2tRqLhr48+mIUVaHMQtMDAAPlVlkhFXeiEWixCNGPozIw5iy/T2d9PBirMOYmhNJ0CJg9gyqcEAAJlp55MQSyUzf00EYtMM9C0xsxZ3PDQRroiLnhWJxmiVwR79x5yedva4c3OglEEPiyIQLWY0tsDEYsLtYViGCESXMAzIlrpIBIrQ7U4+wXYk1bdCmhSOx2VswjAgnfNLiOkWCQRgMLbqmkAsFCDSa06GZVLTMiqZIEmWdNqZGWqhANEOMy5KBGLLJId1s/X0hWXHj10qQXB9TgRiCwzEKiwZ3XWx5iRXWgZlxEFskaGIjtd12kHMZiEaquCnKgLRYkaH18hsxCiXXFi9sQERiC5RKsHqRhvx4IrbQ9lWpCJrWiC61HQd9Crq8qpfO4gSYrolRvrX3XUQe0QgWkY8TopZMtPONOsuFCDqM0OTRSC2THg4RBsVMpOrjh53YwOKRYN4ZUYEYgsMJPV1N3PR+SiaessZCiIQW2Qgps+fGwIxETQXh0QgWsroPp1/eOE77vR8thoRiC5R66OX6Ns5FY+cIJWsuu4g1nKvJAdx64yM4K6DGDQnw/JAbJ14nCQZ0jP2C8TlZf0vapg3TBGILaPiMX3+HA4xLRSgWlUkyIhAbIHBAe1OzIw731e27iBSlMW2FumMdhPzFx0PMc3lIGG2KpLnobWMHtJ/z4nHHGoSbDMiEF2i1mQ6EXGhGdU2JtXvc91BnJ01x0L6SmlV4boMjwa4zDBGziUHsctcMZVJTevE46RIk8ko2w9Vdywq5qrM4KDtx9zxRKMkyThepKb+zCMrbS5aYGBE55DOnHc+RLjeMoiiOIit0tvLoG/WFQcx3iEC0Q5Gj+l6IhMnnF+8sQNHBKJSakQp9aBS6hml1Cml1PvM1+9XSj1p/ruglHrSfH23Ump508/+16Z93aGUOqGUGldK/YFSyv5Zig3UHpbxxLYcvmukhgIsEaQ040IChklNIPb3LEn+6BYZ2dfBMt0Uppyd1Kyvw8ICRDpEIFpGIqEFRiFge6GMukBcmdJljNvb7T3gC4FYTAv8vLPl2GvPvKQ4iC0xsFs3V5++uOb4sYtFCHVv0M6aCMRW6etjyLjsuIOYzUKibQ46OqDN/Z7SO4nkHSN0U2ZifGcYPwGHjrMO/KJhGN9VSvUA31FKfcUwjB+tvUEp9UFgcw38c4ZhHL7Gvv4YeBfwCPBF4DXAl+wbuj3UQ0wHnDoFO4P+3Z0AzF5cZZ9LY6iHmA7tnH43djOyS69FTU6Ck01d5ub0Ntpea/4kArFlTAexsu5jfh7CYfsOVROIscWLEl5qFTEdYvp0scPRw9YcywRZEYgt0DcUopNlZqac7ylbKEAktAZLyL20Vfr6GFq/xJNTBuCMUVCt6iyPxHBR3EMbUMFudgdOM3F5ZyxkOuIgGoYxYxjGd82vF4FngPrT3nQBfwT42PX2o5QaAHoNw/iWYRgG8P8Db7Jt4DaSTev8ncTQzvggOUVqdxegG9W7xews+FkntktWULfKyIjeTk47K6rrIVGBWvMnmdS0jJmDCPb3Qqw7iMVzIhCtIhQipbJkSl2Otkq4KsRUBGLTqGiEAWaYmXU++ki3nDHrJoiD2Bp9fQwyRTqtI12cYG5OF4uKq5wIRJsY7ckxkd8Z9zfHcxCVUruBI8Cjm16+B0gbhnF202ujSqknlFIPKaXuMV8bAi5ves9lNgnN5xznXUqpx5VSj2ez3ksYzU6u0kaFnqGd8UFyitSgFhjpWffKCKfTkPTl8A1LPtRWqQvEbKejx60VVYhu1GK6pedoy/T1kfLpEAi789jqAjF3RgSiVShFMlhmZb2NUsm5w9bTKsiJQGyFiCkQc85HHxWLEOkyK6/LYltr9PYyxBSGoeppK3ZTX6QxsiIQbWI0UWZiKelKn1KrcVQgKqVCwKeBnzcMY2HTj97O1e7hDLDLMIwjwC8A/0cp1cu1ffhrngbDMP7UMIw7DcO4M5HwXuPK3HSFBFlU3MmAu+1PrSZMOudeeOfsTJVUdQaGh10bw3YjlYI2tcbknLOTirqDWL6scy6k6mzrKEUyovOfHHMQC2flerOQZI/OybX7/G0mk9HVhNtYF4HYCuEwg0wzU3R2sQ1MB7FW8EscxNbo62MQnYDoVB5iPbVpY1YEok2M3lRlweilmHE+R9hqHBOISqk2tDj8G8MwPrPp9QDwQ8D9tdcMw1g1DCNvfv0d4BwwhnYMN88ShgGHU3ytITu7oUNtxNFoiJrWTxfdC82dnVzXLS7E0dgyPh8MBeeYXHRWoNUdxMWLugLm9qxp5TlSCZ3/5ISD2NZmEKQs15uFpKJ68uJkJdNsFhLdZnU/qWLaPB0dDPizzCw4L9CKRYi06wbvIhBbpK+PIXQJU6cqmdZd/Mq0CESbGB3ThX8mHnHIFrYRp6qYKuDPgWcMw/jd5/z4VcCzhmFc3vT+hFLKb369B9gPnDcMYwZYVErdbe7zXwGfc+L/YDW5vBlqIwKxIdraINY2T3qhy7UxpNOGCMQmGO5dZHLFWTe/7iAWzkmLBAuJJf0oqo44iNGeNR06ItebZSTjWuA76SBms5DskvL6VjDQPc/8ahdLS84et1CAaJvkc1vCJgfRKYFYdxBXL8s1aBOjh/Xi18Tj7rViswqnHMSXAe8A7tvUuuK15s/exvcWp7kXeEopdRz4FPAzhmHU/to/C/wZMI52FrddBVOAbDEgDmKT9HctMLvkzs3NMCCdD+geiBLy1hAj8SUuVwegUnHsmPXGzrmzMDDg2HF3OoFklLi/6IiDWA9pE4FoGcmUdtIddxDb53VroIBU726FgR4ttGdmnDvm8jKsrEDEb2YHSYun1ujtJUkGv6/qWIhp3UFcnhSBaBOjd+s8qImnne9TajWO3KUNw/g6z1PH1zCMd17jtU+jw1Gv9f7HgYNWjs8NsgsdWiDGJAexUVI9ZdJpG2vrX4e5Oais+8VBbIKR1BqfZj/VbB7fkDNirVDQC91tM5fgB+5z5JgvCBIJ+plletre+5d2LEzXSa43y6hVz3ZSIGYy8LJYUfIPLWAgvAzTWiDu3evMMevh+v556OrSeQNC8/T14cNgoG+JqSln3NhsVkcGd5WkSI1d9N0ySIQCExPbv0qNXOEusLYG8yudxNvMG63QEKm+VdLrUdwoE1WrNpYKFETcN8jIsEGFDrJn5xw7ZrEI0UgVFhYkxNRK4nH2bZxmfNzea7BQgKhvTt8n7Wy4+AKjPRkmQoH0lDP19ev913xSwdQKBuI6h9RJB7EuEClIeKkVmHm4Qz0LjhapSSQMKJVEINqF389oxzQTM84XkbIaEYguUI8DD624O5BtSiq2RpoUjtZoN6kJxP74uhQ8aZCR3bry7ORp5xJnCgWIBM1qYiIQrSMeZ4wzjI/rvlp2kc9DtJrT7qFcb9YRjZIiTWbKmXDvQkGLxKSREYFoAQNJfdE5KRDr+dxGQQrUWEEoBEox1F3k8uUbv90KsllIxKp6cV0Eom2M9hWZmNv+FdNFILrAxga8NvkYB+J5t4eyLUklDMqEKE0WHT92rahDrR+jsHVG9usVtcnzzpV/LhYh2mUKUhGI1pFIMMYZKhXFxYv2HaZQgFhlRsJLrSYWI0mGzEzVkcPVQlkT6zNSwdQCYv1ttFFxRSBGN7LiIFqBUtDby+7ONBcu6AUUu8lmId5nPn9FINrGaP8yEysDjpxTOxGB6ALDw/B3e36O+0Yn3B7KtqR/UH9s0+OLjh+77iDe1OH4sbc7I7foScXkJedCgwsFiNRy2KRIjXWYDiLAmTP2HGJ1FcpliC5fFoFoNaZATGedcWXrDbrXpsVBtABfNEw/s8xMO3cvrRf8WsuIg2gVfX3sbZ9kZcUZNziXg0Tvqv5GBKJtjO6BCh3MnHF+jmolIhDdIpeTHLYmGdirq6dNP+1cLluN9KxBGxUio5IP1Sjx/RE6WGFy2rnbTrEIUWV+TsRBtA4HBOJVPSxFIFpLLcS04Ew10ZpATK5cEoFoBeEwA8wwPelMDilschDX0iIQraKvj71+bRScO2f/4bJZiAfN1CYRiLYxeouuLTLxiIN9hGxABKJb5KQHYrPse2kSgLPHy44fe/ZShRRp1Ii0uGgU1d3FMFNMZpxzXwsFiGzkdJETCW2zjnicBFn6ulZtE4j1Cel6RlrKWI3pIBZKHaw5EPFdDzGdH4fI9s/NcZ1IhAFmmJly1kH0+aBnOSMhplbR18c+YxyA8XF7D7W0pP8lus15kwhE27j57jBv4gG65hyMAbcBaUbkBuvrul+CCMSmuOlIlDYqnD7j/PrG7KWKtLhoFqUYaU9zuZBw5HDLyzpMMbo2q91DKXJiHfE4ChiL5Tlzxh5nti4QKcj1ZjWmgwjaVbDbXL/Sf+0S7Npl78FeCEQiDDDN19POPQMLBa3tfUslcRCtoreXXTNn8fvtdxDrxRE7zD6WIhBtY/S1t/BAac+2v07EQXSD2sxHBGJTBNoU+zouc2bK+Ua96dmqnljJhLUpRrrzTC464+TVq+4tTUt4qdV0dUEwyFhoxn4HUQSi9XR1kWyfB5zphZjNQqR3nTbWYWTE/gPudMwQ0/x8gIozhWh1uH4UnRi8zSe+nqGvj7aFPDfdZL9ArC/StOnrXgSijQQCO+IaEYHoBktLcOutEjbVAmPRHKeLScePO5sLiIPYAiO980wtR21tjVDjqhw2EYjWE48z1nGBS5e0W2s1IhDtJdmni1WkHUiTyWQg0WPmPomD2DqRCIPo5nm1wml2U3MQKZUkxNQq+vpgfp69e50TiImA+WAUgSjcABGIbrB7N5w6BW94g9sj2bYcGFlivLKLjYoDSsOkWoXMQhf9pKUiZpOMxJbYIODIpKbuIM5NyPmyg927GSs/gWHYM7m5IhCL0N9v/QFe4KSiOvnQCYGYzW4KbROB2DpmDiI41wuxUIBo1BAH0Ur6+mBhwRGBWA8xVeYXIhCFGyACUdiWjB1QrNHOhUedqxKVz8OG4SPVswTt7Y4ddycxktKuxeSk/ceqO4grU+Ig2sGddzJ28R8BeyqZFgrgVxv0prqgrc36A7zAGUrpCpgXLth/rGwWkv6Cvm8mnY/82HGYIabgnEAsFiHSW9UrpSIQraG3FyoV9t20RrF4ZVHMDuohpnPj2gEWgSjcABGIwrbkwFH9gDrzjaxjx6z3QIw7V1p8pzE8oDvHOtELse4gUhSBaAfHjrF/7RRgn0CMBEqoYQkvtYOuZA+7AtOcPWv/sbJZSFTTOq3CJ9OOlgmFGPDp5NHpaWcOWShANFSpH1+wALOy9t5+XVnUThcxl9OpceHLJ2HvXinaJtwQuVML25ID9+hV6NNPLjl2zFooVmpQLptmGdntB2ByfNX2Y9UdRAoiEO3g2DF6KDHQV7ZFIObzEPNJ/qFtRKPsV+O2C8Rq1WzQvXpZwkutQimSkTV8quqIg1it6sLrkaB53xYH0RpqAjGme/XaKRCzWV0XUZ0b1wJREG6AzHSFbUn89iHCFDl9xrlVsLqDuMu5Pn47jchwkG7KXD5nv0AsFMCnqvSwKALRDkZHIRplrOuybQ5idCMrAtEuYjHG1p/mzBl73fxCQQuMZOm8CEQL8Ud6SXbMOyIQFxb0OYx2mYWGxEG0BlMg7gnrcBf7BaIBExMiEIUtIQJR2JaogJ8DHRc5M+XcSmb6si7qkNorD8dmUfEYI0wyedH+4kLFIkS6VvBhiEC0A6V0HmLlhD0CMVclup6Ras92EYux3zhNsajI5+07TL164vy4CEQriUQYbM85IhBr0RgR33z92IIF9PYCEKwUGRiwP8Q00bMKlYoIRGFLiEAUti1jMWdbXcyeK9PJMr17pH9l08RMgThl/62nUIBIu1lxTxLy7eHYMcaK3yabvTKJtIpCbkNaXNhJNMoYWtnb1csSrvRZTBhp6YFoJZEIA760IwKxXlF41TyYnEdrMB3EWquL8XH7DqUrCZsCXwSisAVEIArblgPDS0ytpSgt2l/wBGD24ir9zKJGxNFommhUC8S0/VVgi0WI+ubFPbSTY8cYM54FsDyXrVBUIhDtJBZjP/qk2ZmHWHcQyYqDaCXhMAPVaWcF4tJl/YUIRGt4jkC0PcQUM1RABKKwBUQgCtuWAzfr/MOzj887crz0TJUUaZmwtoLpIM7MdbG2Zu+hCgWIGHkRiHZy7JgtLtTaGiyUAyIQ7SQaZZQJ/L6qrQ5iTSAmyYhAtJJIhIH1STIZWLe5sHY9xHT+gg4vlSI11lATiGYvxOlpWF62/jDr6/ocJtamdcsgEfjCFhCBKGxbxo7qXMAz38w5crzZXIB+ZmXC2gqmg2gYyvby7MUiRNfSIhDtZHCQPQMr+JS1ImNOF/UTgWgnsRhtrDOaKNvqINZCTOPkZGJqJZEIAysTVKtXKmzbRd1BzJ+Vc2gltdSH+Xn27dNfnj9v/WEKBTAMSJQvwO7dut+FINwAEYjCtmX/y2qtLmxYcrsG6flOUm2FemK50ASBAMPdejl6ctLeQxUKBpGVGRGINtP+4sOMBiYtFYj1CWnHklxvdjEwAMBYJGO7gxjuWKItLM25LSUcZrSqk9YmJuw9VN1BTD8rAtFK2tqgu7seYgr25CHWXPz4nLS4ELaOCERh29J16yi7uOhIq4v1dcguB+nvdUaM7mRGoropsJ0Csda3K7qeqU+EBZs4doyxtVOceca6OLe6QEzII8o2wmG46Sb2V89w9qx2GOwgm4VkoCDhpVYTiThSZAj09djVBZ1T50QgWk1f31UC0Y48xJwZZJXInBKBKGwZefoK25fubg60X+DMtP35ENksGPjoj9uc7PECYCSpeyBevmzfMXTfLkWEojiIdmPmIZ45Y53IqAnEWL/9xYxe0Bw9ytjctymXsa3YSTYLCUMK1FhOJMJNXKQtYG8OKZgtg8JVyOdFIFpNXx8sLBCN6i/tEIh1B3HpoghEYcuIQBS2NbVWF3atfteo5Xik+u13K3c6vYkOev0lWx3EWkhUlIIIRLu5807GOEN5JWCZyLh0SW/7d4lAtJWjR9mf+TpgXyXTTAYSa1MiEK0mHMZPlb2DK444iNEes6qYCERr6e2F+XmUgn377BWICbIiEIUtIwJR2NYcGFlmcSNoe5L+7JRu7N5/U4e9B3ohEIsx4pu2VSDWHChxEB0gGmWsfxGwLtTtqeMGYYoM7++yZofCtTl6tN7qwi6Rkc1USYpAtB6zWf1Y/4KtRYbALPjVuaS/EYFoLWaIKWBbq4taiGmcHPVqOIJwA0QgCtuaWquL00+t2nqc9LieAKf2SHnvlonFGDEuOucgSg6i7YzdqQvJWCUyjn9njds5Lj1H7eboUUaYpCOwbovIqFYhl1fauRBhYS3hMABjsTxnz+q/tV0UChDx62egnEeLiUS0ff+Nb7B3L1y4YH3bkmwW+jpXaGMdRket3bmwYxGBKGxrxo5owXbmW3lbjzM7XgIgdSBs63FeEMRijKxPcOmSfXHBdQcxuAahkG3HETTD9+6hk2XOPLnU8r6qVXjqlJ8X8ZS0uLCb/n78Ayn2BtO2OIiFgs4FTiA5iJZTcxB7Z1hdtbfoV6FgLrYBDMuijaW8//26kunLX87ehz7C+vqVEHuryGYh0Tan76ddEpUhbA0RiMK2ZteL++lgxfZWF7MXVwhSIrRf3KiWicU4wGmyWVXPjbCauoMoRU4cwXfXMfZzljPfWWx5X+fPQ3nZz+0cF4HoBEePMlZ91hYHsXZ9J8mIQLQas8n6/k5d7cvOPMRiESLrGUgmoUPSLCzl7rvh2WfhV36FvY/+HwDO/e7nLLURcznJPxQaRwSisK3x7d+rJ6Y252Ckp6v0MysTViuIxTjCEwA88YQ9h6g7iEPd9hxAuJqjRxnjLGfO+Vve1fHjent77wW49daW9yfcgKNH2b/4XcbHDTY2rN11vTiGyksusNUEAtDTw1hAd1a3Kw+xUoFyGaIrMxJeahfBIPz6r7Pvq38CwLk/+hL8xm9YtvtsFuKVaRGIQkOIQBS2N/E4BwLnOD1lbxjhbM5PP2m9giq0RjTKYZ4E7BOIxSJ0qhW6RuL2HEC4mlCIsXiBc4VwywvfT315Bh8b3Pbzr9YTJ8Fejh5ljNNUKsryMMVMRm8TCbSgEawlEmGgcpFg0D4HsRaNESldEoFoM4P37KWjw+Bc/8vhy1+2bL+5bJXE6mURiEJDiEAUtjdKcSCW4/x8jLU1+w6Tnusg1TUPPrlkWiYWI0qRm5JL9jmIeYOIIS0unGTsgGLdCHBhorXc0uN/O8mYb5yu9/+MRSMTrsumSqZWu1D1ENNdndbuWNBEIqj5OcbG7BOItWiM6NyECESb8flgzx7FePB2ePxxbd+2iGGYOYgSYio0iMx2hW3P2Mgy60aAiQn7jjFb7qW/1948xxcMsRgAR4ay9jmImTVpceEwY3dHATj99RYSS0+d4vhMgttvrtSrNAo2MzLCWETXwbdaZNQbdO/ptXbHgiYchmKR/fsdcBCXp0QgOsDevXBubQRWVq7E27fA4iJU1nzS4kJoGBGIwrbnwM36Y3z6aYsTaEwqFSis95KKWVx7+oVKTSAmLnP2LJRK1h+ikF7TVfdEIDrGbT+4mwBrfP1zzVcUnv8vv8sFRrn9h/ZYODLhuihF/x1DhHxlyx3ETFr3s2zbLbnbthCJQLHI2Jhuj2CB4fQ91B1ECiIQHWDfPjif68UA+Na3Wt5frQeiOIhCo4hAFLY9Y0d1/uGZxxds2f/0lA6ZGxiwry3DC4qeHggEONJ7DsOwZJH0eyjmq9pBlB6IjtH38kPcG/gWn/9aT3M7OHOGpz4zDsDtL5HcQydRdxxlf/UMZ561tple9vKq9EC0k0gE5nSI6cYGtkTRiEB0lr17obzkI91/GB55pOX91QtFhZbrrVEEYSuIQBS2PdEXDRMna1uri1PfLgNw6wEbOxG/kFBKVzJtPwXYU6imMKfEQXSatjbecGSSp+eHOfdME1bG//gfPBU4CsCLXmTx2ITrc/Qo+znD2aettaCyUxVpcWEnZojp2Jj+1o4w03qIKUURiA5QM/nO3fyDljiI9TDvYel/KDSGCERh+7N3Lwc4zZmzypbdn/y8LiN+22vk4WgZ0ShDK+eIx+HJJ63ffbHUJg6iC7z+p1IAfOH3zzf2i+fPw1//NccPvJVoVLrJOM7Ro4xxhompdkuLfWWzhnYQRSDaQyQC5TL7d+uTZodALBRAUaVPLcqCmwPUBOJ4/8t13PDsbEv7q4eY7pU8YKExRCAK25/hYcbUOM/a1Ori5P8tMuybIvzal9qy/xcksRiqkOfwYesdxLU1KFU6iHYuQbf0QXSSPe94Gbepp/n8FxpcrPmN3wC/n+OBO7n9dm0yCw6yZw/7Oy+zUfVZGqaYKQREINqJGTIY9c0Ri9nTC7FYhL72ZfyDKWlV4gC7d+tqpuOdB/ULLbqI2VldmyFxi7R8EhpDBKKw/QkEuC06Q7rcU18ts4yFBU5e7uPgyDz4W28CLpjEYpDPc+QInDyJpa7FzIzeJsJSVMhxurp4w4HTPDy9l2Jui0WjHnsMPvpRNn78pzhxup3bb7d3iMI18PkYu0Xf36xyoapVyJc7SQaKkvtkF7WqlA8/bFuri0IBov55CS91iPZ2OHgQHp0cgLa2lvMQs+cX6GCF4C2ySCM0hghEYUfwot26QM2JE9bud/3Tn+MZ42YOvkxK7lvKJoFYqcDTT1u365Mn9fa2oTnrdipsmTe8PcgGAb70ofEbvzmXg7e8BQYHOffj/53lZck/dIv9d+k2JWeftaYadLEIG4afRHRDLGG7ePWrteX0oQ/ZJhCLRYhUpUCNk9x7L3zzET9rh4+17CDmLi6RIIvaJxVMhcYQgSjsCA7d0Q7AU98qW7rfc3/xMKt0cvDVkstmKbfcAtPTHFl8GLA2zLQmEA/ulb6VbvDin7ubJGm+cP/S9d+4sQH/8l/qHJtPfYrjl7TLJA6iO8RedjNR8px5bN6S/WUyeptIyTTDNvx+ePe74aGH2B+aYWoKytY+AikUDKJrsyIQHeTee/V5fGLvW+Dxx1sKsclOr+keiNLiQmgQuXMLO4LUe95KnCwnHrAwCSOX4+Q39GTp4CFZAbeU97wHbruN/f/lX9DdbVgqEE+cMBjiMpFRcX3dwBfu5XXDx/nS2b1UVq/TGubXfg3+4R/gD/8Q7ryT48f1fPfWW50bq7CJo0fZz1nOnly1ZHe16onJ4XZL9ic8Dz/5k9DdzdgznwVgfAvGfSMUslUi1bwIRAe55x69fThwHywvt9QLKptTJHx5KdgmNIwIRGFHoA4d5FBkihPHq9Z1C/7MZzhZvQWlDG65xZpdCiadnfBXf4U/l+b2rrPWOojfqXCQk1IYw0Xe8EaYr/byfz967tpv+Lu/g//23+Cd74Sf+ilAz4Fuvll/NAQXOHCkVKneAAAgAElEQVSA/f7znJm05gRkp7XrkdgtPS1tJRKBH/sxxr7+F4D1YabFQlV6IDpMfz+MjcHDs/v1Cy2EmeYW20mEVnTlG0FoAPnECDuGQ/eEObU2RvX+T1qzw499jJOhl7BvnxTDtIUjR+BXf5Uj+a/w5ONrVC1oM7m+Ds+c9XOIE/C617W+Q6EpXvWLh+lkmS98JPu9P5yYgHe8Aw4fhg9/uJ6fdvy45B+6it/P2GCJycUISzeIDt4KmTM6BzixX5x823nve9lX0X1lrRSIhgGFeb8IRBe49174v493sTEw3FKhmuxyiHhMejgLjSMCUdgxHPrBXZQJMfFbn9BPtlaYnoaHHuJk5x0cPCjhpbbxy7/MkdF5FpfbOP+tdMu7Gz9rsLoe4ODNG+IgukhwNMmrok/w+SeGr74Un30Wvv/79fX56U9Dl27eXCzC5KTkH7rN4UN6IvntR1qfUGYnSgDEb022vC/hBhw8SPC+uxnyz3DmWevEQKkEG1Wf7ikrAtFR7r0X5uYUJ2/9kaYdxMqqwUK1h8SAtCcRGkcEorBjeNFh/XE+cVLBN77R2s4++UlWjHbOFuMcPGjB4IRrEwhw5Hf+JQBPvOfPWhb2Jz+rE3AOvuXmlocmtMbrX73MxNoIp/7ugn7hS1+Cu+6C+XkdYrpnT/29Tz2ltyIQ3eXeN4TxscFX/2q65X1lJ1cIU6R9rwgLR3jvexnbeIazjxUt22WhoLdR/zykUpbtV7gx/+yf6e3DPT+ooy7SjS+g5h7VIf6JXRICJTSOCERhx3DbbaCUwVNdd8Hv/V5rO/v4xzl94I1sbCgRiDZz8AdvIuDb4IknFfzZn7W0rxMPjKOocuv/9wprBic0zet+UYv0z3/oInzwgzrkd3RUV+V76Uuvem+tBoMIRHfpe/trOaa+wz99qfVCNacvdHATF2F42IKRCTfk9a9nLDTDmXPWuUVFU2tGoj7JYXOYXbvgppvg4Xkz7r5RF/HECcZ/+JcBGHrFfotHJ7wQkCte2DEEg7Bnj+LETa+Dz35Wr7o1w8QEPPIIJw//GIAIRJvp6IBbD/p4InyfLlyy3mSD+7U1Th7fYF9olq4ByXtym8FjQxzrPsUXvtIJ//bfwpvfrJ39a4T+Hj8O8bguziC4SG8vr7xtlm+nd7GYab5NjGHA45NJjnWelKpDTuH3M/aKQfLrfeQfPmXJLusOYr9UonWDe++Fh0/FMAJtjQnEhx6Ce+7hwdWXoJTBy35kyL5BCjsWEYjCjuLQITixdrNe7fyDP2huJ/ffD8DJ6D20tcF+WXyznSNHFE9wWCeiffrTze3kH/6Bk5X9HDpk7diE5nnjvUUeMe7io298AD7xCb2Kcw2OH9fuofRTd59XvnOEddp4+He+3fQ+zj+apVgJceyYhQMTbsj+t98JwNnf+Zwl+6s7iMNSidYN7r0XMhnFmVveuPVCNZ/8pM7zHhzkwdvew5EjikjE3nEKOxMRiMKO4tAhODvRxvIP/xj8+Z/DwkLjO7n/frjrLk5Ohrn5Zmhrs36cwtUcOQLpuU5mdr+k6fDg5Y/ezzj7OHif5Mp4hZ//xEt59cuX+fHPvYkP/t61Hzff/jacPCnhpV7hpT97Ox2s8tX7c03v47HfehCAY79wj1XDErbA2B09AJz98nmsKEVbyOmCN9HdvS3vS2ice+/V24cSb4HHHoO1tev/wv/6X/CjPwrHjrH8la/zre92ct999o9T2Jk4IhCVUiNKqQeVUs8opU4ppd5nvv6rSqkppdST5r/Xbvqdf6+UGldKnVZK/cCm119jvjaulPoVJ8YvbB8OHYJqFZ55/S/B4iJ85CON7WBiAp58Et7yFk6elPBSpzhyRG+f/Of/Hh59tPF8i4UFnvn8War4OXi73/oBCk0R7PHxhX/s4q1v1VGmv/IrV+oQLSzAz/0c3H03xGLw4z/u7lgFTWe3j5eNTvHVS/vg0qXGd1Au89iXsnT6Vjn4gzdZP0DheRkdBb+vypnKTfC3f9vy/gqTZQCi+2Mt70tonP37dW2ghyt3wfIyfOc7z//mYhHe/3549avhK1/hm89GqVTg+77PufEKOwunHMR14BcNw7gFuBt4t1LqVvNnv2cYxmHz3xcBzJ+9DbgNeA3wYaWUXynlB/4I+OfArcDbN+1HEOp91J5au1X3Wftcg6E25vsXX/VmLlwQgegUhw/r7ROJ74dwuHEX8TOf4URlDEBCTD1GRwd87GPwMz8Dv/mb8G/+DTzwANx6K/zhH8K73w3PPCPXmpd45Q+FeYrbyXz4U43/8kc/ymMrhzh8y6pEXzhMezuM7lGc6bxdX3QtUpws0c4qXXsGLBid0ChK6WqmD53fhdHVff0ibn/1V7CyAr/xG9DVxYMPgt8P94iJLzSJIwLRMIwZwzC+a369CDwDXC9r9o3Axw3DWDUMYwIYB15s/hs3DOO8YRgV4OPmewUBgH37dE2EEyeA++7TcfsrK1vfwQMPwMGDPL26F5BJq1P09sLYGHztWx3wrnfpPMQLF7a+g7/+a072vZyODoN9+2wbptAkfj98+MPwn/+zjvz+oR+CaFQbxR/6kD7/gnd45VujADz40QuNtZ7Z2GDjg/+T7/ru5Nj39dgzOOG6jI0png3dAV/8IszNtbSvwvQKUQqoXdKqxC3uvRcuT/u4+Kb3wd/8zZXKQZsxDPiTP4EXv7gejvPgg3DnndAjl6HQJI7nICqldgNHgEfNl96jlHpKKfURpVQtlXYImNz0a5fN157v9Wsd511KqceVUo9ns1kL/weCl/H7tTNx4gTwildocfjtLRZbyGbh61+HN7+Zkyf1SyIQneNtb4N//EeY/KH36aXTD31oa794+TL80z9xMvEKbrlFEZCewJ5EKfiv/xX+4i/gf/5PHS11111uj0q4FnfcAb1dFb6aPqjviVvls5/lmYkOytVu7jwmFYfc4OhROFUcpFwJ6AXPFihm14lQhBERiG5Ry0N8+Laf1fOZa6XNfOMb8PTT8NM/DUCppKc9El4qtIKjAlEpFQI+Dfy8YRgLwB8De4HDwAzwwdpbr/HrxnVe/94XDeNPDcO40zCMOxOJRMtjF7YPhw6ZAvGee/Ss9Gtf29ovfuELOoHRFIjd3bB7t40DFa7ine/UC6F/+ZVBeOtbdTjN4uKNf/FjHwPD4MTibhH024B3vhPe9z4p/uRlAgF4xX0+vqpepRX9VjAM+O3f5vGELiUgFUzd4a67YGND8Z2B17ccZlooQlTN6SRhwRVuuw0iEXjo/IiON/2jP4KNjavf9Cd/osMwfvRHAb2ms76OFKgRWsIxgaiUakOLw78xDOMzAIZhpA3D2DAMowr8b3QIKWhncPOS1TAwfZ3XBaHOoUMwOwvZtbBObnvooa394gMP6M60hw9z8qS+MUtvYOcYHdUPtL/4C6i+7/26ismNigx98YvwgQ9QfPEPMJVuk/xDQbCIV35/gPPGHi58/BFtSdyIb34THn2Ux25+Bz09cOCA/WMUvpeaK//oLf8avvpVSKeb3ldxIUCke0X6z7iIz6fXuh9+GHjPe3TqxRe/eOUN+bxubfGOd9TbCD34oF6Ae9nLXBmysENwqoqpAv4ceMYwjN/d9PrmzOc3A2ZgH58H3qaU6lBKjQL7gW8DjwH7lVKjSql2dCGbzzvxfxC2DzWRcOIEesXtm9+E1dXr/1KpBF/5CrzpTaCUVDB1iZ/4CTh/Hh5eeTG89KXw+7//vauloN2KD3wAXvc62LOHU7/0UUDOmSBYxStfqbdfXX7J1nqT/s7vQCzGY0u3cscdsrjmFokE7N0Lj/heqiNiPvnJpveVW+oi2rNu4eiEZrj3Xhgfh+ljb4ShoavTL/7yL/X8xgwvBS0Q77pLR0EJQrM4dQt/GfAO4L7ntLT4LaXUCaXUU8D3Ae8HMAzjFPAJ4Gng74F3m07jOvAe4MvoQjefMN8rCHVqlUyvykN87LHr/9Lf/72+yb7pTeRy2oEUseE8b36zjpT5yEeAX/gF3Xbk7rvht3/7StGaUkmHoP6n/wT/4l/A17/OiWw/IOdMEKzi1luhv9/gq6E3wa/+qnajroVhwGc+A5/7HJWffi/HT/glvNRl7roLHn2mT98QmwwzXSisM1npZ2xwC+6xYCuveY3e/sEft8HP/qxezH72WX3t/emfwkteUl8Zn5/X+d2Sfyi0ilNVTL9uGIYyDONFm1taGIbxDsMwDpmvv8EwjJlNv/MBwzD2GoZxwDCML216/YuGYYyZP/uAE+MXthepFMTjDeYhfvazOs/i5S/nlLnkIGLDebq74e1vh099ChZe+Wb4gz/QP/h3/07HoB47piu1PfAAfPCDurR3dzcnT2phKbUUBMEalIL77lP8U/sPYCgfvOpV8Ja3wMWLV9704IPa6f/hH4YDB3jqFT9HpSL5h25z990wNQWXX/suHUGz+ZxtkSf/7HEAjrxWWly4zW23wb/6V7r70/lX/7TuZ/JHf6TTZ06fvso9fPhhbRxL/qHQKhIEIuw4lNpUqCYa1Zbi9QRipaKbCr/+9RAISAVTl/mJn9A9ge//pA/e+17t/p4/D7/1W/rkLi3Bl7+sHUYzN+bECX2+JFVGEKzjla+EdKGdU598Gv77f9e5T7fcAv/hP8D3f7+ehV6+DP/7f8NTT/H4OV2IXASiu9TyEB/Z9SP6i49/vOF9PHH/GQCO/ps7rBqW0AK//us6r/CXfjMOP/Ij8NGP6kXScFh/b/Lgg7r37N13uzdWYWcgAlHYkRw6BKdO6ZU0XvEKvYpaqVz7zV/7mo7LePObATh5UlcNG5CFU1c4dkyvmF5Vn2Z0FH7pl3Tt7gsXtJthYhj6nEmBGkGwlloe4j99owP+43/UbsX/a+/u47QqywSO/y5BFHkLXxERWS0TXC3UVaz82OuWL9TmZun6lmVbuqZiroofrS1di63MrNXNtmxZkTB1LXHNSq2sQFFGJKO3ddEIDEmUsCyQa/+4z9DIzjMMyMx5Zp7f9/OZz8xzznnOXHJ7njnXua/7vidPLnerbW1wxRXwi1/AaafB1lszb16p3thjj3rjbnWvfGVJEu5bvEvJFje1zHTVKuY/tBWjtnuGUWMH9UyQ2iSjR8PUqaWa+7uvuqgMtZg9G045BQYPXn9ce6f+ttvWGKz6BRNE9Uv77QfPPluGsHH44aVLqtE4xFtvLbWNb3oTUOr37Y2qT0TpRZw7tyzttDHLlsHKlfb4SlvaHnuUCU/uvLPasPvuMGtWmTHj0UdhypQX3InOm1cW5/azs16DBpX1EOfOpYzTXrAAFi3q/gluvpm2dfsz8RWdriKmmpx7brkmz/nCeJ4/qOom7lBe+tvfwkMPOf5QW4YJovql9olqHn6YP68029lyF+vWlQTxLW+BwYNZsKDc5Eye3GuhqhMnnljWYuvOEmwLF5bv9iBKW95xx5XK0vvv77Bxr71g2LAXHPfss6Vqw/LS5nDIIfDAA7Dm7e8sU8rOmtXt9z533Ux+wgQOeN2IHoxQm2rw4DLSYsEC+NIbbiglpuPHr9/ffotjgqgtwQRR/dK++5an2AsXUiaf2W+/zschzptXuqCq8tKrriqdiaed1qvhagM771yS9OnTYc2aro9tHzO67749H5fUai64oEz8dc45pZy7kba28rzNBLE5TJpUJvBe+OSoMsvlbbd1742PPcbCe1fyPAOZeIBdwc3m2GPL3HsXf3lPnnnvuS/Yd8895f7l4IMbvFnaBCaI6peGDCm9iF/9KqxdSxmH+MMfvjDbWLsWPvzhUo9z1FGsWAEzZpT1ZkeOrCtytXvPe2D58jL/RVcWLoRRo8rYJ0lb1rBhcPnlMGdO13OdPFAmvTRBbBLtk5TMnUt52jZ/fpnadGNmzKCNiQBMnNhz8WnzRMCVV8KKFeVv5Ic+BG99a+lIvOYaeM1ryi2N9GKZIKrfuuSSMuziK1+hJIi///2f72Iy4cwz4Vvfgs9/HkaO5ItfLEshfvCDNQat9Y44olT+nnVWWfapM3PmlDW8fWIq9Zx3v7skC+efXz5GOzNvHowZUx7WqH5jx5ae3/vuA44+umy8/fau35QJ06czf9ejGDGizA2m5nPAAaXK6ZZb4Oqry1wL48eXZPHTn647OvUXJojqt445pjxF/chH4PcHVeMQ28tMP/Up+MIXSv3U+97HmjXlg/aNb7RUsVkMGFCGzey7b1l+rb2UtN3995cEctddy5NTST1jq63gs58tK1p88pOdHzNvnr2HzSSi/P2bOxeYMAHGjSuzXnblgQfgZz+jbdtDmTjRyYaa2dVXlw7hZ58tVTS33ALTpjlZm7YcE0T1WxFlQPfSpXDl9TuWT87vfreswn7++WXtoMsvB8o8NUuWlN4qNY/hw8s9zZAhcNRR8MQTZfuDD5Zl2HbcEe6+u0wBLqnnHHZYGf80bVr5rOzo6afLahcmiM1l0iT4+c/hqZVRyky/850yo3cj06ezdtB2PLxsJw44oPfi1KYbOLD83dvKu3j1EP/XUr922GGlPn/aNFhx8JHw/e+XQYaHHlpqT6tP16uugj33hCOPrDde/X+7716SxBUryj3Oj35UViQZObIMyh8zpu4IpdbwL/9SJqK58MLy+vHH4d/+rSSOUJa4UPM4pFoJ4f77KWWmf/hDeaLWmT/9CWbO5KevO53nngvHH0otzgRR/d7HP17WlL3sidPKtG6jR8PXv75+cdn58+EHPyhDEgcMqDlYdeqAA8oEGQ8+CK9+dZk44557yjgbSb1j3LgyzmnGjFL6vccecPrpZVnEc84pS86qeRx0UHkGOncupXGGDm08m+k3vwm//S1t+54IOEGN1OpMENXvTZhQZvu6+tsv5dF3Xgh33AE77bR+/+c+V0oYTz21xiC1UZMnl7GGBx5YHoKPG1d3RFLrmTq1lJKOGlUmxFi0CB59FD7zGWdPbDbDhpVEfu5cYJttSl3+7Nn/f72SzDK4dJddmL92PwYPhpe/vJaQJTUJE0S1hI9+FAYODC4e8HHYe2+g/E1cuhRmzoRTToGXvKTmILVR739/mUdhr73qjkRqTUOHlpLFu+6Cc8+FffZxMpNmNmlSaa916yhP2X79a3jooRceNHNmKaO57DLaFgxg//3LGDdJrcsEUS1h9GiYMqX8HRwzpiSDW28Nu+3m0haSpP5p0iRYubJMIsQRR5RsvuNspqtXwz/+Ixx4IOtOOZW2NstLJYHPiNQyLrgAnnwS1q4tpTdDh5bv++xTviRJ6k/aJ6q57z54+cm7lEVjb7utLBQMZSbvpUvhppv438cHsGoVzmAqyQRRrWP4cLj22rqjkCSpd4wfDzvvDDfcACefTCkzvfjismbQ6tVlIOnJJ8Ohh9J2U3mPPYiSLDGVJEnqh7baqowVvfPODstdANx+exl3MWgQfOITQJnRe+BAF1uXZIIoSZLUb51xBmy/PVx6KbD//mVx2UsvLWMRP/xh2HVXANrayqzf225bb7yS6meCKEmS1E8NG1Z6EWfPhvltUXoRH3uszOh99tlAmdV7/nzLSyUVJoiSJEn92Jlnltm7L70UOPbYUnt61VXrF69ctgyWL3eCGkmFCaIkSVI/NmJE6Sy89VZ4eIfXwYoV8OY3r9/f1la+24MoCUwQJUmS+r2zzy7lppddBowcuX77unVlzhqAV7yintgkNRcTREmSpH5u5Eg46yy46SZ45JGybc6cslbiNdfAMceU5aAkyQRRkiSpBUyZAtttBxdeCCedBK96FSxdCtdfXxJHSQIYWHcAkiRJ6nk77FAmrJk2DbbZBi66CKZOhaFD645MUjMxQZQkSWoRU6fCkCFwwgmw5551RyOpGZkgSpIktYgRI+CSS+qOQlIzcwyiJEmSJAkwQZQkSZIkVUwQJUmSJEmACaIkSZIkqWKCKEmSJEkCTBAlSZIkSRUTREmSJEkSYIIoSZIkSaqYIEqSJEmSABNESZIkSVLFBFGSJEmSBJggSpIkSZIqJoiSJEmSJMAEUZIkSZJUMUGUJEmSJAEmiJIkSZKkigmiJEmSJAkwQZQkSZIkVSIz646hx0XEk8Bjm/HWscDjWzgc9a4RwDN1B6EXxTbs22y/vs827Ptsw77N9uv7mqENdwSGZOZOGzuwJRLEzRURT3bnH1HNKyKuzcy/rzsObT7bsG+z/fo+27Dvsw37Ntuv72uGNoyIBzLzoO4ca4lp156uOwC9aLfVHYBeNNuwb7P9+j7bsO+zDfs226/v61NtaA9iFzYl05YkSZKkZmQP4pZzbd0BSJIkSdKL1O28xh5ESZIkSRJgD6L6kYh4S0T8LCJ+GREXVttmVNt+HBFfjoit645TjTVowy9FxIKIeDgiboqIoXXHqcY6a8MO+z4XEavrik0b1+Aa/EpE/G9EPFR9vbLuONVYgzaMiPjniPh5RCyKiLPqjlONNWjDeztcg0sj4ta641RjDdrwDRExv2rDH0TES+uOsxF7ENUvRMQA4OfAm4AlwDzgeGAccEd12A3A9zPzmjpiVNe6aMMlmbmqOuYKYHlmfqK2QNVQozbMzJ9ExEHA2cDbM9Mkvwl1cQ2eD8zOzJtqDE/d0EUbHgK8Dnh3Zq6LiJ0zc3l9kaqRrj5HOxxzM/D1zJxeT5TqShfX4a3A2zJzUUScARycme+uLdAu2INYaZDpn1m9zojYse4Y1aWDgV9m5qOZ+Sfgq5SL8L+zAtwPjKk1SnWlURu2J4cBDAZ8qtW8Om3D6o/lJymJhppXp+1Xc0zaNI3a8HTgY5m5DsDksKl1eR1GxDDg9ZRkQ82pURsmMLw6ZgSwtKb4NsoEkfWZ/r8CRwATgOMjYgLwQ+CNwGM1hqfu2Q34VYfXS6ptAFSlpScB3+zluNR9DdswIq4DngD2AT7X+6Gpmxq14ZnANzJzWS1Rqbu6+hz956rM+zMRsU3vh6ZuatSGewHviogHIuKOiHhZLdGpO7q8nwHeDtzV/vBUTalRG54G/HdELKHckzZtNZQJYtGo56ItMxfXG5q6KTrZ1rGn6WpKeem9vRSPNl3DNszMU4HRwCLgXb0ZlDZJZ224DXAsJvZ9QaNrcCrl4cxfAdsDF/RmUNokjdpwG+C5aor7LwJf7tWotCk2dj9zPDCzl2LR5mnUhlOAIzNzDHAdcEWvRrUJTBCLjT2tUfNbAuze4fUYqq77iPgIsBNwbg1xqfsatiFAZj4PzAL+tpfjUvd11oaLgZcCv4yIxcB2EfHL3g9N3dDpNZiZy6pK/T9SbmoOriU6dUejz9ElwM3Vtv8C9u/luNR9Xd3P7EC5/m6vIS51X2dtuBx4RWbeV22bBbyqtwPrLhPEYmNPa9T85gEvi4i/iIhBwHHANyLiNODNlAHe62qNUBvTqA1fCuvHIE4GflpjjOpaZ214a2aOysxxmTkO+H1mNu3MbS2u0TW4K6y/Bv8G+HGNMaprnbYhZbza66tjDqdMoKHm1KgNoVRjzM7M52qLTt3RqA1HRMTe1TFvolRFNaWBdQfQJLrsuVDzy8y1EXEmcCcwAPhyZj4SEQsoY0jnlHsbbsnMj9UYqhrorA0pH573RsRwyoOcBZTJFtSEGl2HNYelburic/TuiNiJcg0+BHygzjjVWBdt+AlgRkRMAVZTxkKpCW3kc/Q4mnjcmooGbbggIt4H3BwR64CVwHvqjLMrLnMBRMRAytO0NwC/pmT+f9d+QVZlUQdl5oragpQkSZKkHmaJKSXTp8yydyelx+LG6onbWdVMQ2OAhyPi3+uMU5IkSZJ6kj2IkiRJkiTAHkRJkiRJUsUEUZIkSZIEtHCCGBEZEZ/u8Pq8iPinGkOSJEmSpFq1bIII/BE4JiJ2rDsQSZIkSWoGrZwgrgWuBaZsuCMi9oiIuyLi4er72IgYERGLI2Kr6pjtIuJXEbF1bwcuSZIkST2hlRNEgH8FToiIERts/zwwPTP3B2YAV2XmM5RFug+vjpkM3JmZa3otWkmSJEnqQS2dIGbmKmA6cNYGuw4Fbqh+/k/gNdXPs4B3VT8fV72WJEmSpH6hpRPEypXAe4EhXRzTvljkN4AjImJ74EDg7h6OTZIkSZJ6TcsniJn5FHAjJUls9yNKDyHACcAPqmNXA/cDnwVmZ+bzvRiqJEmSJPWolk8QK58GOs5mehZwakQ8DJwEnN1h3yzgRCwvlSRJktTPRGZu/ChJkiRJUr9nD6IkSZIkCTBBlCRJkiRVTBAlSZIkSUCLJYgRsXtE3BMRiyLikYg4u9q+fUR8OyJ+UX0fWW3fJyLmRMQfI+K8Ts43ICLaImJ2b/+3SJIkSdKW1lIJIrAW+FBmjgcmAf8QEROAC4G7MvNlwF3Va4CnKDOafqrB+c4GFvVsyJIkSZLUO1oqQczMZZk5v/r5d5TkbjfgbcB/VIf9B/A31THLM3MesGbDc0XEGOAo4N97IXRJkiRJ6nEtlSB2FBHjgInAfcAumbkMShIJ7NyNU1wJnA+s66EQJUmSJKlXtWSCGBFDgZuBczJz1Wa8/2hgeWY+uMWDkyRJkqSatFyCGBFbU5LDGZl5S7X5NxGxa7V/V2D5Rk7zauCtEbEY+Crw+oi4vodCliRJkqRe0VIJYkQE8CVgUWZe0WHXN4BTqp9PAb7e1Xkyc2pmjsnMccBxwN2ZeWIPhCxJkiRJvSYys+4Yek1EvAa4F1jIn8cOXkQZh3gjMBZ4HDg2M5+KiFHAA8Dw6vjVwISOZakR8VrgvMw8urf+OyRJkiSpJ7RUgihJkiRJaqylSkwlSZIkSY2ZIEqSJEmSABNESZIkSVLFBFGSJEmSBJggSpIkSZIqJoiSpJYTEWMjYnVEDKg7FkmSmokJoiSpJUTE4oh4I0BmPp6ZQzPz+V78/a+NiCW99fskSdocJoiSJEmSJMAEUZLUAiLiP4GxwG1Vaen5EZERMbDa/92IuCwiflTtvy0idh6f2bUAAALrSURBVIiIGRGxKiLmRcS4DufbJyK+HRFPRcTPIuKdHfYdGRE/iYjfRcSvI+K8iBgC3AGMrs6/OiJGR8TBETEnIp6OiGUR8fmIGNThXBkRZ0TEL6rzXRoRe1XvWRURN7Yf395DGREXRcSKqsf0hN75F5Yk9RcmiJKkfi8zTwIeByZn5lDgxk4OOw44CdgN2AuYA1wHbA8sAj4CUCV73wZuAHYGjgeujoh9q/N8CXh/Zg4D/hK4OzOfBY4AllalrUMzcynwPDAF2BE4FHgDcMYGcb0FOBCYBJwPXAucAOxenf/4DseOqs61G3AKcG1EvHyT/rEkSS3NBFGSpOK6zPyfzHyG0tv3P5n5ncxcC3wNmFgddzSwODOvy8y1mTkfuBl4R7V/DTAhIoZn5spqf6cy88HMnFudZzHwBeDwDQ6blpmrMvMR4MfAtzLz0Q5xTtzg+Esy84+Z+T3gduCdSJLUTSaIkiQVv+nw8x86eT20+nkP4JCqLPTpiHia0qM3qtr/t8CRwGMR8b2IOLTRL4yIvSNidkQ8ERGrgMspPYCbExfAyqq3st1jwOhGv1+SpA2ZIEqSWkVuofP8CvheZr6kw9fQzDwdIDPnZebbKOWnt/LnctbOfv81wE+Bl2XmcOAiIF5EbCOrEth2Y4GlL+J8kqQWY4IoSWoVvwH23ALnmQ3sHREnRcTW1ddfRcT4iBgUESdExIjMXAOsoowzbP/9O0TEiA7nGlYdszoi9gFO3wLxfbSK4zBKOezXtsA5JUktwgRRktQqPg5cXJWEvmNjBzeSmb8D/poyqc1S4AlgGrBNdchJwOKqZPQDwInV+34KzAQerUpTRwPnAX8H/A74IjBrc+OqPAGsrOKaAXyg+r2SJHVLZG6pihtJklSXiHgtcH1mjqk7FklS32UPoiRJkiQJMEGUJEmSJFUsMZUkSZIkAfYgSpIkSZIqJoiSJEmSJMAEUZIkSZJUMUGUJEmSJAEmiJIkSZKkyv8B/yAYNS8NmvsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "eval_df[eval_df.timestamp<'2014-11-08'].plot(x='timestamp', y=['prediction', 'actual'], style=['r', 'b'], figsize=(15, 8))\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "clean up model files" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "for m in glob('model_*.h5'):\n", + " os.remove(m)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.5", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/4_multi_step_RNN_vector_output.ipynb b/ReferenceNotebook/4_multi_step_RNN_vector_output.ipynb similarity index 99% rename from 4_multi_step_RNN_vector_output.ipynb rename to ReferenceNotebook/4_multi_step_RNN_vector_output.ipynb index 50a72b7..4e85146 100644 --- a/4_multi_step_RNN_vector_output.ipynb +++ b/ReferenceNotebook/4_multi_step_RNN_vector_output.ipynb @@ -935,7 +935,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.5", "language": "python", "name": "python3" }, @@ -949,7 +949,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.5.5" } }, "nbformat": 4, diff --git a/Quiz_weight_initialization.ipynb b/ReferenceNotebook/Quiz_weight_initialization.ipynb similarity index 100% rename from Quiz_weight_initialization.ipynb rename to ReferenceNotebook/Quiz_weight_initialization.ipynb From a1612153bc6db8d36bbb7f80df484a04c2443e3d Mon Sep 17 00:00:00 2001 From: angusrtaylor Date: Mon, 10 Jun 2019 22:08:30 +0000 Subject: [PATCH 5/5] rename reference notebooks --- ...RNN_vector_output.ipynb => multi_step_RNN_vector_output.ipynb} | 0 ..._one_step_FF_univariate.ipynb => one_step_FF_univariate.ipynb} | 0 .../{1_time_series_arima.ipynb => time_series_arima.ipynb} | 0 3 files changed, 0 insertions(+), 0 deletions(-) rename ReferenceNotebook/{4_multi_step_RNN_vector_output.ipynb => multi_step_RNN_vector_output.ipynb} (100%) rename ReferenceNotebook/{2_one_step_FF_univariate.ipynb => one_step_FF_univariate.ipynb} (100%) rename ReferenceNotebook/{1_time_series_arima.ipynb => time_series_arima.ipynb} (100%) diff --git a/ReferenceNotebook/4_multi_step_RNN_vector_output.ipynb b/ReferenceNotebook/multi_step_RNN_vector_output.ipynb similarity index 100% rename from ReferenceNotebook/4_multi_step_RNN_vector_output.ipynb rename to ReferenceNotebook/multi_step_RNN_vector_output.ipynb diff --git a/ReferenceNotebook/2_one_step_FF_univariate.ipynb b/ReferenceNotebook/one_step_FF_univariate.ipynb similarity index 100% rename from ReferenceNotebook/2_one_step_FF_univariate.ipynb rename to ReferenceNotebook/one_step_FF_univariate.ipynb diff --git a/ReferenceNotebook/1_time_series_arima.ipynb b/ReferenceNotebook/time_series_arima.ipynb similarity index 100% rename from ReferenceNotebook/1_time_series_arima.ipynb rename to ReferenceNotebook/time_series_arima.ipynb