This commit is contained in:
Ubuntu 2019-06-11 08:56:05 +00:00
Родитель 0d31ed1583
Коммит d3afdd825c
5 изменённых файлов: 10 добавлений и 8 удалений

Просмотреть файл

@ -1,3 +1,3 @@
# Multi-step forecasting with recurrent neural network that generates vector output # Multi-step forecasting with convolutional neural network
The hyperparameters of recurrent neural network are tuned using Hyperdrive, a feature of Azure Machine Learning (Azure ML) service. To run this code, open and run the [hyperparameter_tuning.ipynb](../hyperparameter_tuning.ipynb) notebook, and specify [rnn_multistep_config.json](../rnn_multistep_config.json) as the configuration file. The hyperparameters of convolutional neural network are tuned using Hyperdrive, a feature of Azure Machine Learning (Azure ML) service. To run this code, open and run the [hyperparameter_tuning.ipynb](../hyperparameter_tuning.ipynb) notebook, and specify [cnn_config.json](../cnn_config.json) as the configuration file.

Просмотреть файл

@ -24,12 +24,13 @@ The hyper-parameters of methods presented in this tutorial are tuned using Hyper
### Run hyper-parameter tuning notebook ### Run hyper-parameter tuning notebook
Hyper-parameter tuning is done in [hyperparameter_tuning.ipynb](./hyperparameter_tuning.ipynb) notebook. This notebook is used to tune several approaches: Hyper-parameter tuning is done in [hyperparameter_tuning.ipynb](./hyperparameter_tuning.ipynb) notebook. This notebook is used to tune several approaches:
- Feed-forward network multi-step multivariate approach - [ff_multistep_config.json](ff_multistep_config.json) - Feed-forward network multi-step multivariate - [ff_multistep_config.json](ff_multistep_config.json)
- RNN multi-step approach - [rnn_multistep_config.json](rnn_multistep_config.json) - RNN multi-step - [rnn_multistep_config.json](rnn_multistep_config.json)
- RNN teacher forcing approach - [rnn_teacher_forcing_config.json](rnn_teacher_forcing_config.json) - RNN teacher forcing - [rnn_teacher_forcing_config.json](rnn_teacher_forcing_config.json)
- RNN encoder decoder approach - [rnn_encoder_decoder_config.json](rnn_encoder_decoder_config.json) - RNN encoder decoder - [rnn_encoder_decoder_config.json](rnn_encoder_decoder_config.json)
- CNN - [cnn_config.json](cnn_config.json)
Each of these use cases is defined in a json configuration file listed above alongside each usecase. To run a specific approach, please specify the appropriate configuration file in the hyperparameter_tuning notebook. Each of these use cases is defined in a json configuration file listed above alongside each usecase. To run a specific approach, please specify the appropriate configuration file in the hyperparameter_tuning notebook.
The running time depends on the size of your Azure ML cluster and the method being tuned. The running time depends on the size of your Azure ML cluster and the model being tuned.

Просмотреть файл

@ -80,6 +80,7 @@
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"scrolled": true,
"tags": [ "tags": [
"install" "install"
] ]

Просмотреть файл

@ -17,7 +17,7 @@ dependencies:
- ipykernel>=4.6.1 - ipykernel>=4.6.1
- jupyter>=1.0.0 - jupyter>=1.0.0
- pip: - pip:
- azureml-sdk - azureml-sdk==1.0.39
- azureml-widgets - azureml-widgets
- keras - keras
- numpy==1.16.3 - numpy==1.16.3