Update binary-classification-customer-relationship-prediction.md

This commit is contained in:
Blanca Li 2021-03-01 14:14:34 +08:00 коммит произвёл GitHub
Родитель 68daaafe39
Коммит 395dc45fc2
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 1 добавлений и 1 удалений

Просмотреть файл

@ -36,7 +36,7 @@ First, some simple data processing.
- Then use the Boosted Decision Tree binary classifier with the default parameters to build the prediction models. Build one model per task, that is, one model each to predict up-selling, appetency, and churn.
- In the right part of the pipeline, we use **SMOTE** module to increase the percentage of positive examples. The SMOTE percentage is set to 100 to double the positive examples. Learn more on how SMOTE module works with [SMOTE module reference0](algorithm-module-reference/smote.md).
- In the right part of the pipeline, we use **SMOTE** module to increase the percentage of positive examples. The SMOTE percentage is set to 100 to double the positive examples. Learn more on how SMOTE module works with [SMOTE module reference0](https://aka.ms/aml/smote).
## Results