Update binary-classification-customer-relationship-prediction.md
This commit is contained in:
Родитель
68daaafe39
Коммит
395dc45fc2
|
@ -36,7 +36,7 @@ First, some simple data processing.
|
|||
|
||||
- Then use the Boosted Decision Tree binary classifier with the default parameters to build the prediction models. Build one model per task, that is, one model each to predict up-selling, appetency, and churn.
|
||||
|
||||
- In the right part of the pipeline, we use **SMOTE** module to increase the percentage of positive examples. The SMOTE percentage is set to 100 to double the positive examples. Learn more on how SMOTE module works with [SMOTE module reference0](algorithm-module-reference/smote.md).
|
||||
- In the right part of the pipeline, we use **SMOTE** module to increase the percentage of positive examples. The SMOTE percentage is set to 100 to double the positive examples. Learn more on how SMOTE module works with [SMOTE module reference0](https://aka.ms/aml/smote).
|
||||
|
||||
## Results
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче