This repository stores several Notebooks that implements multiple Document Matching data science approaches and evaluation metrics.
Перейти к файлу
unknown 761b83695a upload img 2017-03-30 19:18:39 -04:00
pic upload img 2017-03-30 19:18:39 -04:00
Part_1_TextPrep_LearnPhrases_SaveData.ipynb update notebooks 2017-03-30 10:18:12 -04:00
Part_2_TFIDF_Cosine_Similarity_Experiment_1.ipynb upload notebooks 2017-03-29 23:30:01 -04:00
Part_3_TFIDF_Cosine_Similarity_Experiment_2.ipynb upload notebooks 2017-03-29 23:30:01 -04:00
Part_4_Naive_Bayes_Classifier.ipynb update notebooks 2017-03-30 10:18:12 -04:00
Part_5_Calibrated_SVM_Classifier.ipynb update notebooks 2017-03-30 10:18:12 -04:00
README.txt update readme 2017-02-02 10:44:05 -05:00

README.txt

This repository stores 5 Azure Notebooks that demonstrates the various data science processes of a Document (QnA) Matching scenario. 

Part 1: performs the text processing and phrases learning. The outputs are stored in Azure Blob Storage.
Part 2-5: implements 4 different machine learning models and can be run seperately after completing Part 1.

Please feel free to contact Katherine Zhao (mez@microsoft.com) and T.J. Hazen (TJ.Hazen@microsoft.com) with any question or comment.