зеркало из https://github.com/Azure/aztk.git
Feature: SDK refactor (#622)
* start refactor * continue refactor for cluster and job functions * fix imports * fixes * fixes * refactor integration test secrets management * fix cluster create, add new test * add tests for new sdk api and fix bugs * fix naming and bugs * update job operations naming, bug fixes * fix cluster tests * fix joboperations and tests * update cli and fix some bugs * start fixes * fix pylint errors, bugs * add deprecated warning checks, rename tests * add docstrings for baseoperations * add docstrings * docstrings, add back compat for coreclient, fix init for spark client * whitespace * docstrings, whitespace * docstrings, fixes * docstrings, fixes * fix the sdk documentation, bugs * fix method call * pool_id->id * rename ids * cluster_id->id * cluster_id->id * add todo * fixes * add some todos * rename pool to cluster, add todo for nodes params * add todos for nodes param removal * update functions names * remove deprecated fucntion calls * update docs and docstrings * update docstrings * get rid of TODOs, fix docstrings * remove unused setting * inheritance -> composition * fix models bugs * fix create_user bug * update sdk_example.py * fix create user argument issue * update sdk_example.py * update doc * use Software model instead of string * add job wait flag, add cluster application wait functions * add docs for wait, update tests * fix bug * add clientrequesterror catch to fix tests
This commit is contained in:
Родитель
c9fd8bbfeb
Коммит
b18eb695a1
|
@ -3,5 +3,5 @@ based_on_style=pep8
|
|||
spaces_before_comment=4
|
||||
split_before_logical_operator=True
|
||||
indent_width=4
|
||||
column_limit=140
|
||||
column_limit=120
|
||||
split_arguments_when_comma_terminated=True
|
||||
|
|
|
@ -14,5 +14,5 @@
|
|||
"python.formatting.provider": "yapf",
|
||||
"python.venvPath": "${workspaceFolder}/.venv/",
|
||||
"python.pythonPath": "${workspaceFolder}/.venv/Scripts/python.exe",
|
||||
"python.unitTest.pyTestEnabled": true
|
||||
"python.unitTest.pyTestEnabled": true,
|
||||
}
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
from .client import CoreClient
|
|
@ -0,0 +1 @@
|
|||
from .base_operations import BaseOperations
|
|
@ -0,0 +1,223 @@
|
|||
from aztk import models
|
||||
from aztk.internal import cluster_data
|
||||
from aztk.utils import ssh as ssh_lib
|
||||
|
||||
from .helpers import (create_user_on_cluster, create_user_on_node, delete_user_on_cluster, delete_user_on_node,
|
||||
generate_user_on_cluster, generate_user_on_node, get_application_log, get_remote_login_settings,
|
||||
node_run, run, ssh_into_node)
|
||||
|
||||
|
||||
class BaseOperations:
|
||||
"""Base operations that all other operations have as an attribute
|
||||
|
||||
Attributes:
|
||||
batch_client (:obj:`azure.batch.batch_service_client.BatchServiceClient`): Client used to interact with the
|
||||
Azure Batch service.
|
||||
blob_client (:obj:`azure.storage.blob.BlockBlobService`): Client used to interact with the Azure Storage
|
||||
Blob service.
|
||||
secrets_configuration (:obj:`aztk.models.SecretsConfiguration`): Model that holds AZTK secrets used to authenticate
|
||||
with Azure and the clusters.
|
||||
"""
|
||||
|
||||
def __init__(self, context):
|
||||
self.batch_client = context['batch_client']
|
||||
self.blob_client = context['blob_client']
|
||||
self.secrets_configuration = context['secrets_configuration']
|
||||
|
||||
def get_cluster_config(self, id: str) -> models.ClusterConfiguration:
|
||||
"""Open an ssh tunnel to a node
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster the node is in
|
||||
node_id (:obj:`str`): the id of the node to open the ssh tunnel to
|
||||
username (:obj:`str`): the username to authenticate the ssh session
|
||||
ssh_key (:obj:`str`, optional): ssh public key to create the user with, must use ssh_key
|
||||
or password. Defaults to None.
|
||||
password (:obj:`str`, optional): password for the user, must use ssh_key or password. Defaults to None.
|
||||
port_forward_list (:obj:`List[PortForwardingSpecification`, optional): list of PortForwardingSpecifications.
|
||||
The defined ports will be forwarded to the client.
|
||||
internal (:obj:`bool`, optional): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.ClusterConfiguration`: Object representing the cluster's configuration
|
||||
"""
|
||||
return self.get_cluster_data(id).read_cluster_config()
|
||||
|
||||
def get_cluster_data(self, id: str) -> cluster_data.ClusterData:
|
||||
"""Gets the ClusterData object to manage data related to the given cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to get
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.ClusterData`: Object used to manage the data and storage functions for a cluster
|
||||
"""
|
||||
return cluster_data.ClusterData(self.blob_client, id)
|
||||
|
||||
def ssh_into_node(self, id, node_id, username, ssh_key=None, password=None, port_forward_list=None, internal=False):
|
||||
"""Open an ssh tunnel to a node
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster the node is in
|
||||
node_id (:obj:`str`): the id of the node to open the ssh tunnel to
|
||||
username (:obj:`str`): the username to authenticate the ssh session
|
||||
ssh_key (:obj:`str`, optional): ssh public key to create the user with, must use ssh_key or password. Defaults to None.
|
||||
password (:obj:`str`, optional): password for the user, must use ssh_key or password. Defaults to None.
|
||||
port_forward_list (:obj:`List[PortForwardingSpecification`, optional): list of PortForwardingSpecifications.
|
||||
The defined ports will be forwarded to the client.
|
||||
internal (:obj:`bool`, optional): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
ssh_into_node.ssh_into_node(self, id, node_id, username, ssh_key, password, port_forward_list, internal)
|
||||
|
||||
def create_user_on_node(self, id, node_id, username, ssh_key=None, password=None):
|
||||
"""Create a user on a node
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): id of the cluster to create the user on.
|
||||
node_id (:obj:`str`): id of the node in the cluster to create the user on.
|
||||
username (:obj:`str`): name of the user to create.
|
||||
ssh_key (:obj:`str`, optional): ssh public key to create the user with, must use ssh_key or password.
|
||||
password (:obj:`str`, optional): password for the user, must use ssh_key or password.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return create_user_on_node.create_user_on_node(self, id, node_id, username, ssh_key, password)
|
||||
|
||||
#TODO: remove nodes as param
|
||||
def create_user_on_cluster(self, id, nodes, username, ssh_pub_key=None, password=None):
|
||||
"""Create a user on every node in the cluster
|
||||
|
||||
Args:
|
||||
username (:obj:`str`): name of the user to create.
|
||||
id (:obj:`str`): id of the cluster to create the user on.
|
||||
nodes (:obj:`List[ComputeNode]`): list of nodes to create the user on
|
||||
ssh_key (:obj:`str`, optional): ssh public key to create the user with, must use ssh_key or password. Defaults to None.
|
||||
password (:obj:`str`, optional): password for the user, must use ssh_key or password. Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return create_user_on_cluster.create_user_on_cluster(self, id, nodes, username, ssh_pub_key, password)
|
||||
|
||||
def generate_user_on_node(self, id, node_id):
|
||||
"""Create a user with an autogenerated username and ssh_key on the given node.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to generate the user on.
|
||||
node_id (:obj:`str`): the id of the node in the cluster to generate the user on.
|
||||
|
||||
Returns:
|
||||
:obj:`tuple`: A tuple of the form (username: :obj:`str`, ssh_key: :obj:`Cryptodome.PublicKey.RSA`)
|
||||
"""
|
||||
return generate_user_on_node.generate_user_on_node(self, id, node_id)
|
||||
|
||||
#TODO: remove nodes as param
|
||||
def generate_user_on_cluster(self, id, nodes):
|
||||
"""Create a user with an autogenerated username and ssh_key on the cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to generate the user on.
|
||||
node_id (:obj:`str`): the id of the node in the cluster to generate the user on.
|
||||
|
||||
Returns:
|
||||
:obj:`tuple`: A tuple of the form (username: :obj:`str`, ssh_key: :obj:`Cryptodome.PublicKey.RSA`)
|
||||
"""
|
||||
return generate_user_on_cluster.generate_user_on_cluster(self, id, nodes)
|
||||
|
||||
def delete_user_on_node(self, id: str, node_id: str, username: str) -> str:
|
||||
"""Delete a user on a node
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to delete the user on.
|
||||
node_id (:obj:`str`): the id of the node in the cluster to delete the user on.
|
||||
username (:obj:`str`): the name of the user to delete.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return delete_user_on_node.delete_user(self, id, node_id, username)
|
||||
|
||||
#TODO: remove nodes as param
|
||||
def delete_user_on_cluster(self, username, id, nodes):
|
||||
"""Delete a user on every node in the cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to delete the user on.
|
||||
node_id (:obj:`str`): the id of the node in the cluster to delete the user on.
|
||||
username (:obj:`str`): the name of the user to delete.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return delete_user_on_cluster.delete_user_on_cluster(self, username, id, nodes)
|
||||
|
||||
def node_run(self, id, node_id, command, internal, container_name=None, timeout=None):
|
||||
"""Run a bash command on the given node
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to run the command on.
|
||||
node_id (:obj:`str`): the id of the node in the cluster to run the command on.
|
||||
command (:obj:`str`): the bash command to execute on the node.
|
||||
internal (:obj:`bool`): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
container_name=None (:obj:`str`, optional): the name of the container to run the command in.
|
||||
If None, the command will run on the host VM. Defaults to None.
|
||||
timeout=None (:obj:`str`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.NodeOutput`: object containing the output of the run command
|
||||
"""
|
||||
return node_run.node_run(self, id, node_id, command, internal, container_name, timeout)
|
||||
|
||||
def get_remote_login_settings(self, id: str, node_id: str):
|
||||
"""Get the remote login information for a node in a cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster the node is in
|
||||
node_id (:obj:`str`): the id of the node in the cluster
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.RemoteLogin`: Object that contains the ip address and port combination to login to a node
|
||||
"""
|
||||
return get_remote_login_settings.get_remote_login_settings(self, id, node_id)
|
||||
|
||||
def run(self, id, command, internal, container_name=None, timeout=None):
|
||||
"""Run a bash command on every node in the cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to run the command on.
|
||||
command (:obj:`str`): the bash command to execute on the node.
|
||||
internal (:obj:`bool`): if true, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
container_name=None (:obj:`str`, optional): the name of the container to run the command in.
|
||||
If None, the command will run on the host VM. Defaults to None.
|
||||
timeout=None (:obj:`str`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`List[azkt.models.NodeOutput]`: list of NodeOutput objects containing the output of the run command
|
||||
"""
|
||||
return run.cluster_run(self, id, command, internal, container_name, timeout)
|
||||
|
||||
def get_application_log(self, id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
"""Get the log for a running or completed application
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to run the command on.
|
||||
application_name (:obj:`str`): str
|
||||
tail (:obj:`bool`, optional): If True, get the remaining bytes after current_bytes. Otherwise, the whole log will be retrieved.
|
||||
Only use this if streaming the log as it is being written. Defaults to False.
|
||||
current_bytes (:obj:`int`): Specifies the last seen byte, so only the bytes after current_bytes are retrieved.
|
||||
Only useful is streaming the log as it is being written. Only used if tail is True.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.ApplicationLog`: a model representing the output of the application.
|
||||
"""
|
||||
return get_application_log.get_application_log(self, id, application_name, tail, current_bytes)
|
|
@ -0,0 +1,11 @@
|
|||
import concurrent.futures
|
||||
|
||||
|
||||
#TODO: remove nodes param
|
||||
def create_user_on_cluster(base_operations, id, nodes, username, ssh_pub_key=None, password=None):
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = {
|
||||
executor.submit(base_operations.create_user_on_node, id, node.id, username, ssh_pub_key, password): node
|
||||
for node in nodes
|
||||
}
|
||||
concurrent.futures.wait(futures)
|
|
@ -0,0 +1,42 @@
|
|||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import models
|
||||
from aztk.utils import get_ssh_key
|
||||
|
||||
|
||||
def __create_user(self, id: str, node_id: str, username: str, password: str = None, ssh_key: str = None) -> str:
|
||||
"""
|
||||
Create a pool user
|
||||
:param pool: the pool to add the user to
|
||||
:param node: the node to add the user to
|
||||
:param username: username of the user to add
|
||||
:param password: password of the user to add
|
||||
:param ssh_key: ssh_key of the user to add
|
||||
"""
|
||||
# Create new ssh user for the given node
|
||||
self.batch_client.compute_node.add_user(
|
||||
id,
|
||||
node_id,
|
||||
batch_models.ComputeNodeUser(
|
||||
name=username,
|
||||
is_admin=True,
|
||||
password=password,
|
||||
ssh_public_key=get_ssh_key.get_user_public_key(ssh_key, self.secrets_configuration),
|
||||
expiry_time=datetime.now(timezone.utc) + timedelta(days=365),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def create_user_on_node(base_client, id, node_id, username, ssh_key=None, password=None):
|
||||
try:
|
||||
__create_user(
|
||||
base_client, id=id, node_id=node_id, username=username, ssh_key=ssh_key, password=password)
|
||||
except batch_error.BatchErrorException as error:
|
||||
try:
|
||||
base_client.delete_user_on_node(id, node_id, username)
|
||||
base_client.create_user_on_node(id=id, node_id=node_id, username=username, ssh_key=ssh_key)
|
||||
except batch_error.BatchErrorException as error:
|
||||
raise error
|
|
@ -0,0 +1,7 @@
|
|||
import concurrent.futures
|
||||
|
||||
#TODO: remove nodes param
|
||||
def delete_user_on_cluster(base_client, id, nodes, username):
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [executor.submit(base_client.delete_user_on_node, id, node.id, username) for node in nodes]
|
||||
concurrent.futures.wait(futures)
|
|
@ -0,0 +1,9 @@
|
|||
def delete_user(self, pool_id: str, node_id: str, username: str) -> str:
|
||||
"""
|
||||
Create a pool user
|
||||
:param pool: the pool to add the user to
|
||||
:param node: the node to add the user to
|
||||
:param username: username of the user to add
|
||||
"""
|
||||
# Delete a user on the given node
|
||||
self.batch_client.compute_node.delete_user(pool_id, node_id, username)
|
|
@ -0,0 +1,20 @@
|
|||
import concurrent.futures
|
||||
|
||||
from Cryptodome.PublicKey import RSA
|
||||
|
||||
from aztk.utils import secure_utils
|
||||
|
||||
|
||||
#TODO: remove nodes param
|
||||
def generate_user_on_cluster(base_operations, id, nodes):
|
||||
generated_username = secure_utils.generate_random_string()
|
||||
ssh_key = RSA.generate(2048)
|
||||
ssh_pub_key = ssh_key.publickey().exportKey('OpenSSH').decode('utf-8')
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = {
|
||||
executor.submit(base_operations.create_user_on_node, id, node.id, generated_username, ssh_pub_key): node
|
||||
for node in nodes
|
||||
}
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
return generated_username, ssh_key
|
|
@ -0,0 +1,11 @@
|
|||
from Cryptodome.PublicKey import RSA
|
||||
|
||||
from aztk.utils import secure_utils
|
||||
|
||||
|
||||
def generate_user_on_node(base_client, pool_id, node_id):
|
||||
generated_username = secure_utils.generate_random_string()
|
||||
ssh_key = RSA.generate(2048)
|
||||
ssh_pub_key = ssh_key.publickey().exportKey('OpenSSH').decode('utf-8')
|
||||
base_client.create_user_on_node(pool_id, node_id, generated_username, ssh_pub_key)
|
||||
return generated_username, ssh_key
|
|
@ -0,0 +1,114 @@
|
|||
import time
|
||||
|
||||
import azure
|
||||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk import models
|
||||
from aztk.utils import constants, helpers
|
||||
|
||||
output_file = constants.TASK_WORKING_DIR + \
|
||||
"/" + constants.SPARK_SUBMIT_LOGS_FILE
|
||||
|
||||
|
||||
def __check_task_node_exist(batch_client, cluster_id: str, task: batch_models.CloudTask) -> bool:
|
||||
try:
|
||||
batch_client.compute_node.get(cluster_id, task.node_info.node_id)
|
||||
return True
|
||||
except batch_error.BatchErrorException:
|
||||
return False
|
||||
|
||||
|
||||
def __wait_for_app_to_be_running(batch_client, cluster_id: str, application_name: str) -> batch_models.CloudTask:
|
||||
"""
|
||||
Wait for the batch task to leave the waiting state into running(or completed if it was fast enough)
|
||||
"""
|
||||
while True:
|
||||
task = batch_client.task.get(cluster_id, application_name)
|
||||
|
||||
if task.state is batch_models.TaskState.active or task.state is batch_models.TaskState.preparing:
|
||||
# TODO: log
|
||||
time.sleep(5)
|
||||
else:
|
||||
return task
|
||||
|
||||
|
||||
def __get_output_file_properties(batch_client, cluster_id: str, application_name: str):
|
||||
while True:
|
||||
try:
|
||||
file = helpers.get_file_properties(cluster_id, application_name, output_file, batch_client)
|
||||
return file
|
||||
except batch_error.BatchErrorException as e:
|
||||
if e.response.status_code == 404:
|
||||
# TODO: log
|
||||
time.sleep(5)
|
||||
continue
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
def get_log_from_storage(blob_client, container_name, application_name, task):
|
||||
try:
|
||||
blob = blob_client.get_blob_to_text(container_name, application_name + '/' + constants.SPARK_SUBMIT_LOGS_FILE)
|
||||
except azure.common.AzureMissingResourceHttpError:
|
||||
raise error.AztkError("Logs not found in your storage account. They were either deleted or never existed.")
|
||||
|
||||
return models.ApplicationLog(
|
||||
name=application_name,
|
||||
cluster_id=container_name,
|
||||
application_state=task.state._value_,
|
||||
log=blob.content,
|
||||
total_bytes=blob.properties.content_length,
|
||||
exit_code=task.execution_info.exit_code)
|
||||
|
||||
|
||||
def get_log(batch_client, blob_client, cluster_id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
job_id = cluster_id
|
||||
task_id = application_name
|
||||
|
||||
task = __wait_for_app_to_be_running(batch_client, cluster_id, application_name)
|
||||
|
||||
if not __check_task_node_exist(batch_client, cluster_id, task):
|
||||
return get_log_from_storage(blob_client, cluster_id, application_name, task)
|
||||
|
||||
file = __get_output_file_properties(batch_client, cluster_id, application_name)
|
||||
target_bytes = file.content_length
|
||||
|
||||
if target_bytes != current_bytes:
|
||||
ocp_range = None
|
||||
|
||||
if tail:
|
||||
ocp_range = "bytes={0}-{1}".format(current_bytes, target_bytes - 1)
|
||||
|
||||
stream = batch_client.file.get_from_task(
|
||||
job_id, task_id, output_file, batch_models.FileGetFromTaskOptions(ocp_range=ocp_range))
|
||||
content = helpers.read_stream_as_string(stream)
|
||||
|
||||
return models.ApplicationLog(
|
||||
name=application_name,
|
||||
cluster_id=cluster_id,
|
||||
application_state=task.state._value_,
|
||||
log=content,
|
||||
total_bytes=target_bytes,
|
||||
exit_code=task.execution_info.exit_code)
|
||||
else:
|
||||
return models.ApplicationLog(
|
||||
name=application_name,
|
||||
cluster_id=cluster_id,
|
||||
application_state=task.state._value_,
|
||||
log='',
|
||||
total_bytes=target_bytes,
|
||||
exit_code=task.execution_info.exit_code)
|
||||
|
||||
|
||||
def get_application_log(base_operations,
|
||||
cluster_id: str,
|
||||
application_name: str,
|
||||
tail=False,
|
||||
current_bytes: int = 0):
|
||||
try:
|
||||
return get_log(base_operations.batch_client, base_operations.blob_client, cluster_id,
|
||||
application_name, tail, current_bytes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,22 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error, models
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def _get_remote_login_settings(base_client, pool_id: str, node_id: str):
|
||||
"""
|
||||
Get the remote_login_settings for node
|
||||
:param pool_id
|
||||
:param node_id
|
||||
:returns aztk.models.RemoteLogin
|
||||
"""
|
||||
result = base_client.batch_client.compute_node.get_remote_login_settings(pool_id, node_id)
|
||||
return models.RemoteLogin(ip_address=result.remote_login_ip_address, port=str(result.remote_login_port))
|
||||
|
||||
|
||||
def get_remote_login_settings(base_client, cluster_id: str, node_id: str):
|
||||
try:
|
||||
return _get_remote_login_settings(base_client, cluster_id, node_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,30 @@
|
|||
import aztk.error as error
|
||||
import aztk.models as models
|
||||
from aztk.utils import ssh as ssh_lib
|
||||
|
||||
|
||||
def node_run(base_client, cluster_id, node_id, command, internal, container_name=None, timeout=None):
|
||||
cluster = base_client.get(cluster_id)
|
||||
pool, nodes = cluster.pool, list(cluster.nodes)
|
||||
try:
|
||||
node = next(node for node in nodes if node.id == node_id)
|
||||
except StopIteration:
|
||||
raise error.AztkError("Node with id {} not found".format(node_id))
|
||||
if internal:
|
||||
node_rls = models.RemoteLogin(ip_address=node.ip_address, port="22")
|
||||
else:
|
||||
node_rls = base_client.get_remote_login_settings(pool.id, node.id)
|
||||
try:
|
||||
generated_username, ssh_key = base_client.generate_user_on_node(pool.id, node.id)
|
||||
output = ssh_lib.node_exec_command(
|
||||
node.id,
|
||||
command,
|
||||
generated_username,
|
||||
node_rls.ip_address,
|
||||
node_rls.port,
|
||||
ssh_key=ssh_key.exportKey().decode('utf-8'),
|
||||
container_name=container_name,
|
||||
timeout=timeout)
|
||||
return output
|
||||
finally:
|
||||
base_client.delete_user_on_node(cluster_id, node.id, generated_username)
|
|
@ -0,0 +1,36 @@
|
|||
import asyncio
|
||||
|
||||
from azure.batch.models import batch_error
|
||||
|
||||
import aztk.models as models
|
||||
from aztk import error
|
||||
from aztk.utils import ssh as ssh_lib
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def cluster_run(base_operations, cluster_id, command, internal, container_name=None, timeout=None):
|
||||
cluster = base_operations.get(cluster_id)
|
||||
pool, nodes = cluster.pool, list(cluster.nodes)
|
||||
if internal:
|
||||
cluster_nodes = [(node, models.RemoteLogin(ip_address=node.ip_address, port="22")) for node in nodes]
|
||||
else:
|
||||
cluster_nodes = [(node, base_operations.get_remote_login_settings(pool.id, node.id)) for node in nodes]
|
||||
try:
|
||||
generated_username, ssh_key = base_operations.generate_user_on_cluster(pool.id, nodes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
try:
|
||||
output = asyncio.get_event_loop().run_until_complete(
|
||||
ssh_lib.clus_exec_command(
|
||||
command,
|
||||
generated_username,
|
||||
cluster_nodes,
|
||||
ssh_key=ssh_key.exportKey().decode('utf-8'),
|
||||
container_name=container_name,
|
||||
timeout=timeout))
|
||||
return output
|
||||
except OSError as exc:
|
||||
raise exc
|
||||
finally:
|
||||
base_operations.delete_user_on_cluster(pool.id, nodes, generated_username)
|
|
@ -0,0 +1,20 @@
|
|||
import aztk.models as models
|
||||
from aztk.utils import ssh as ssh_lib
|
||||
|
||||
|
||||
def ssh_into_node(base_client, pool_id, node_id, username, ssh_key=None, password=None, port_forward_list=None, internal=False):
|
||||
if internal:
|
||||
result = base_client.batch_client.compute_node.get(pool_id=pool_id, node_id=node_id)
|
||||
rls = models.RemoteLogin(ip_address=result.ip_address, port="22")
|
||||
else:
|
||||
result = base_client.batch_client.compute_node.get_remote_login_settings(pool_id, node_id)
|
||||
rls = models.RemoteLogin(ip_address=result.remote_login_ip_address, port=str(result.remote_login_port))
|
||||
|
||||
ssh_lib.node_ssh(
|
||||
username=username,
|
||||
hostname=rls.ip_address,
|
||||
port=rls.port,
|
||||
ssh_key=ssh_key,
|
||||
password=password,
|
||||
port_forward_list=port_forward_list,
|
||||
)
|
|
@ -13,21 +13,38 @@ import aztk.utils.constants as constants
|
|||
import aztk.utils.get_ssh_key as get_ssh_key
|
||||
import aztk.utils.helpers as helpers
|
||||
import aztk.utils.ssh as ssh_lib
|
||||
from aztk.client.cluster import CoreClusterOperations
|
||||
from aztk.client.job import CoreJobOperations
|
||||
from aztk.internal import cluster_data
|
||||
from aztk.utils import secure_utils
|
||||
from aztk.utils import deprecated, secure_utils
|
||||
|
||||
|
||||
class Client:
|
||||
def __init__(self, secrets_config: models.SecretsConfiguration):
|
||||
self.secrets_config = secrets_config
|
||||
class CoreClient:
|
||||
"""The base AZTK client that all other clients inherit from.
|
||||
|
||||
azure_api.validate_secrets(secrets_config)
|
||||
self.batch_client = azure_api.make_batch_client(secrets_config)
|
||||
self.blob_client = azure_api.make_blob_client(secrets_config)
|
||||
**This client should not be used directly. Only software specific clients
|
||||
should be used.**
|
||||
|
||||
"""
|
||||
def _get_context(self, secrets_configuration: models.SecretsConfiguration):
|
||||
self.secrets_configuration = secrets_configuration
|
||||
|
||||
azure_api.validate_secrets(secrets_configuration)
|
||||
self.batch_client = azure_api.make_batch_client(secrets_configuration)
|
||||
self.blob_client = azure_api.make_blob_client(secrets_configuration)
|
||||
context = {
|
||||
'batch_client': self.batch_client,
|
||||
'blob_client': self.blob_client,
|
||||
'secrets_configuration': self.secrets_configuration,
|
||||
}
|
||||
return context
|
||||
|
||||
# ALL THE FOLLOWING METHODS ARE DEPRECATED AND WILL BE REMOVED IN 0.10.0
|
||||
@deprecated("0.10.0")
|
||||
def get_cluster_config(self, cluster_id: str) -> models.ClusterConfiguration:
|
||||
return self._get_cluster_data(cluster_id).read_cluster_config()
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def _get_cluster_data(self, cluster_id: str) -> cluster_data.ClusterData:
|
||||
"""
|
||||
Returns ClusterData object to manage data related to the given cluster id
|
||||
|
@ -38,6 +55,7 @@ class Client:
|
|||
General Batch Operations
|
||||
'''
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __delete_pool_and_job(self, pool_id: str, keep_logs: bool = False):
|
||||
"""
|
||||
Delete a pool and it's associated job
|
||||
|
@ -67,6 +85,7 @@ class Client:
|
|||
|
||||
return job_exists or pool_exists
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __create_pool_and_job(self, cluster_conf: models.ClusterConfiguration, software_metadata_key: str, start_task, VmImageModel):
|
||||
"""
|
||||
Create a pool and job
|
||||
|
@ -128,6 +147,7 @@ class Client:
|
|||
|
||||
return helpers.get_cluster(cluster_conf.cluster_id, self.batch_client)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __get_pool_details(self, cluster_id: str):
|
||||
"""
|
||||
Print the information for the given cluster
|
||||
|
@ -138,6 +158,7 @@ class Client:
|
|||
nodes = self.batch_client.compute_node.list(pool_id=cluster_id)
|
||||
return pool, nodes
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __list_clusters(self, software_metadata_key):
|
||||
"""
|
||||
List all the cluster on your account.
|
||||
|
@ -155,6 +176,7 @@ class Client:
|
|||
aztk_pools.append(pool)
|
||||
return aztk_pools
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __create_user(self, pool_id: str, node_id: str, username: str, password: str = None, ssh_key: str = None) -> str:
|
||||
"""
|
||||
Create a pool user
|
||||
|
@ -173,9 +195,10 @@ class Client:
|
|||
is_admin=True,
|
||||
password=password,
|
||||
ssh_public_key=get_ssh_key.get_user_public_key(
|
||||
ssh_key, self.secrets_config),
|
||||
ssh_key, self.secrets_configuration),
|
||||
expiry_time=datetime.now(timezone.utc) + timedelta(days=365)))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __delete_user(self, pool_id: str, node_id: str, username: str) -> str:
|
||||
"""
|
||||
Create a pool user
|
||||
|
@ -186,6 +209,7 @@ class Client:
|
|||
# Delete a user on the given node
|
||||
self.batch_client.compute_node.delete_user(pool_id, node_id, username)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __get_remote_login_settings(self, pool_id: str, node_id: str):
|
||||
"""
|
||||
Get the remote_login_settings for node
|
||||
|
@ -197,6 +221,7 @@ class Client:
|
|||
pool_id, node_id)
|
||||
return models.RemoteLogin(ip_address=result.remote_login_ip_address, port=str(result.remote_login_port))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __create_user_on_node(self, username, pool_id, node_id, ssh_key=None, password=None):
|
||||
try:
|
||||
self.__create_user(pool_id=pool_id, node_id=node_id, username=username, ssh_key=ssh_key, password=password)
|
||||
|
@ -207,6 +232,7 @@ class Client:
|
|||
except batch_error.BatchErrorException as error:
|
||||
raise error
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __generate_user_on_node(self, pool_id, node_id):
|
||||
generated_username = secure_utils.generate_random_string()
|
||||
ssh_key = RSA.generate(2048)
|
||||
|
@ -214,6 +240,7 @@ class Client:
|
|||
self.__create_user_on_node(generated_username, pool_id, node_id, ssh_pub_key)
|
||||
return generated_username, ssh_key
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __generate_user_on_pool(self, pool_id, nodes):
|
||||
generated_username = secure_utils.generate_random_string()
|
||||
ssh_key = RSA.generate(2048)
|
||||
|
@ -228,6 +255,7 @@ class Client:
|
|||
|
||||
return generated_username, ssh_key
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __create_user_on_pool(self, username, pool_id, nodes, ssh_pub_key=None, password=None):
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = {executor.submit(self.__create_user_on_node,
|
||||
|
@ -238,11 +266,13 @@ class Client:
|
|||
password): node for node in nodes}
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __delete_user_on_pool(self, username, pool_id, nodes):
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [executor.submit(self.__delete_user, pool_id, node.id, username) for node in nodes]
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __node_run(self, cluster_id, node_id, command, internal, container_name=None, timeout=None):
|
||||
pool, nodes = self.__get_pool_details(cluster_id)
|
||||
try:
|
||||
|
@ -271,6 +301,7 @@ class Client:
|
|||
finally:
|
||||
self.__delete_user(cluster_id, node.id, generated_username)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __cluster_run(self, cluster_id, command, internal, container_name=None, timeout=None):
|
||||
pool, nodes = self.__get_pool_details(cluster_id)
|
||||
nodes = list(nodes)
|
||||
|
@ -297,6 +328,7 @@ class Client:
|
|||
finally:
|
||||
self.__delete_user_on_pool(generated_username, pool.id, nodes)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __cluster_copy(self, cluster_id, source_path, destination_path=None, container_name=None, internal=False, get=False, timeout=None):
|
||||
pool, nodes = self.__get_pool_details(cluster_id)
|
||||
nodes = list(nodes)
|
||||
|
@ -325,6 +357,7 @@ class Client:
|
|||
finally:
|
||||
self.__delete_user_on_pool(generated_username, pool.id, nodes)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __ssh_into_node(self, pool_id, node_id, username, ssh_key=None, password=None, port_forward_list=None, internal=False):
|
||||
if internal:
|
||||
result = self.batch_client.compute_node.get(pool_id=pool_id, node_id=node_id)
|
||||
|
@ -342,6 +375,7 @@ class Client:
|
|||
port_forward_list=port_forward_list,
|
||||
)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def __submit_job(self,
|
||||
job_configuration,
|
||||
start_task,
|
||||
|
@ -429,44 +463,3 @@ class Client:
|
|||
self.batch_client.job_schedule.add(setup)
|
||||
|
||||
return self.batch_client.job_schedule.get(job_schedule_id=job_configuration.id)
|
||||
|
||||
|
||||
'''
|
||||
Define Public Interface
|
||||
'''
|
||||
|
||||
def create_cluster(self, cluster_conf, wait: bool = False):
|
||||
raise NotImplementedError()
|
||||
|
||||
def create_clusters_in_parallel(self, cluster_confs):
|
||||
raise NotImplementedError()
|
||||
|
||||
def delete_cluster(self, cluster_id: str):
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_cluster(self, cluster_id: str):
|
||||
raise NotImplementedError()
|
||||
|
||||
def list_clusters(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def wait_until_cluster_is_ready(self, cluster_id):
|
||||
raise NotImplementedError()
|
||||
|
||||
def create_user(self, cluster_id: str, username: str, password: str = None, ssh_key: str = None) -> str:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_remote_login_settings(self, cluster_id, node_id):
|
||||
raise NotImplementedError()
|
||||
|
||||
def cluster_run(self, cluster_id, command):
|
||||
raise NotImplementedError()
|
||||
|
||||
def cluster_copy(self, cluster_id, source_path, destination_path):
|
||||
raise NotImplementedError()
|
||||
|
||||
def cluster_download(self, cluster_id, source_path, destination_path):
|
||||
raise NotImplementedError()
|
||||
|
||||
def submit_job(self, job):
|
||||
raise NotImplementedError()
|
|
@ -0,0 +1 @@
|
|||
from .operations import CoreClusterOperations
|
|
@ -0,0 +1,41 @@
|
|||
import asyncio
|
||||
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
import aztk.models as models
|
||||
from aztk import error
|
||||
from aztk.utils import ssh as ssh_lib
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def cluster_copy(cluster_operations, cluster_id, source_path, destination_path=None, container_name=None, internal=False, get=False, timeout=None):
|
||||
cluster = cluster_operations.get(cluster_id)
|
||||
pool, nodes = cluster.pool, list(cluster.nodes)
|
||||
if internal:
|
||||
cluster_nodes = [(node, models.RemoteLogin(ip_address=node.ip_address, port="22")) for node in nodes]
|
||||
else:
|
||||
cluster_nodes = [(node, cluster_operations.get_remote_login_settings(pool.id, node.id)) for node in nodes]
|
||||
|
||||
try:
|
||||
generated_username, ssh_key = cluster_operations.generate_user_on_cluster(pool.id, nodes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
try:
|
||||
output = asyncio.get_event_loop().run_until_complete(
|
||||
ssh_lib.clus_copy(
|
||||
container_name=container_name,
|
||||
username=generated_username,
|
||||
nodes=cluster_nodes,
|
||||
source_path=source_path,
|
||||
destination_path=destination_path,
|
||||
ssh_key=ssh_key.exportKey().decode('utf-8'),
|
||||
get=get,
|
||||
timeout=timeout
|
||||
)
|
||||
)
|
||||
return output
|
||||
except (OSError, batch_error.BatchErrorException) as exc:
|
||||
raise exc
|
||||
finally:
|
||||
cluster_operations.delete_user_on_cluster(pool.id, nodes, generated_username)
|
|
@ -0,0 +1,67 @@
|
|||
from datetime import timedelta
|
||||
import azure.batch.models as batch_models
|
||||
|
||||
from aztk import models
|
||||
from aztk.utils import helpers, constants
|
||||
|
||||
|
||||
def create_pool_and_job(core_cluster_operations, cluster_conf: models.ClusterConfiguration, software_metadata_key: str, start_task, VmImageModel):
|
||||
"""
|
||||
Create a pool and job
|
||||
:param cluster_conf: the configuration object used to create the cluster
|
||||
:type cluster_conf: aztk.models.ClusterConfiguration
|
||||
:parm software_metadata_key: the id of the software being used on the cluster
|
||||
:param start_task: the start task for the cluster
|
||||
:param VmImageModel: the type of image to provision for the cluster
|
||||
:param wait: wait until the cluster is ready
|
||||
"""
|
||||
core_cluster_operations.get_cluster_data(cluster_conf.cluster_id).save_cluster_config(cluster_conf)
|
||||
# reuse pool_id as job_id
|
||||
pool_id = cluster_conf.cluster_id
|
||||
job_id = cluster_conf.cluster_id
|
||||
|
||||
# Get a verified node agent sku
|
||||
sku_to_use, image_ref_to_use = \
|
||||
helpers.select_latest_verified_vm_image_with_node_agent_sku(
|
||||
VmImageModel.publisher, VmImageModel.offer, VmImageModel.sku, core_cluster_operations.batch_client)
|
||||
|
||||
network_conf = None
|
||||
if cluster_conf.subnet_id is not None:
|
||||
network_conf = batch_models.NetworkConfiguration(
|
||||
subnet_id=cluster_conf.subnet_id)
|
||||
auto_scale_formula = "$TargetDedicatedNodes={0}; $TargetLowPriorityNodes={1}".format(
|
||||
cluster_conf.size, cluster_conf.size_low_priority)
|
||||
|
||||
# Configure the pool
|
||||
pool = batch_models.PoolAddParameter(
|
||||
id=pool_id,
|
||||
virtual_machine_configuration=batch_models.VirtualMachineConfiguration(
|
||||
image_reference=image_ref_to_use,
|
||||
node_agent_sku_id=sku_to_use),
|
||||
vm_size=cluster_conf.vm_size,
|
||||
enable_auto_scale=True,
|
||||
auto_scale_formula=auto_scale_formula,
|
||||
auto_scale_evaluation_interval=timedelta(minutes=5),
|
||||
start_task=start_task,
|
||||
enable_inter_node_communication=True if not cluster_conf.subnet_id else False,
|
||||
max_tasks_per_node=4,
|
||||
network_configuration=network_conf,
|
||||
metadata=[
|
||||
batch_models.MetadataItem(
|
||||
name=constants.AZTK_SOFTWARE_METADATA_KEY, value=software_metadata_key),
|
||||
batch_models.MetadataItem(
|
||||
name=constants.AZTK_MODE_METADATA_KEY, value=constants.AZTK_CLUSTER_MODE_METADATA)
|
||||
])
|
||||
|
||||
# Create the pool + create user for the pool
|
||||
helpers.create_pool_if_not_exist(pool, core_cluster_operations.batch_client)
|
||||
|
||||
# Create job
|
||||
job = batch_models.JobAddParameter(
|
||||
id=job_id,
|
||||
pool_info=batch_models.PoolInformation(pool_id=pool_id))
|
||||
|
||||
# Add job to batch
|
||||
core_cluster_operations.batch_client.job.add(job)
|
||||
|
||||
return helpers.get_cluster(cluster_conf.cluster_id, core_cluster_operations.batch_client)
|
|
@ -0,0 +1,31 @@
|
|||
import azure.batch.models as batch_models
|
||||
|
||||
|
||||
def delete_pool_and_job(core_cluster_operations, pool_id: str, keep_logs: bool = False):
|
||||
"""
|
||||
Delete a pool and it's associated job
|
||||
:param cluster_id: the pool to add the user to
|
||||
:return bool: deleted the pool if exists and job if exists
|
||||
"""
|
||||
# job id is equal to pool id
|
||||
job_id = pool_id
|
||||
job_exists = True
|
||||
|
||||
try:
|
||||
core_cluster_operations.batch_client.job.get(job_id)
|
||||
except batch_models.batch_error.BatchErrorException:
|
||||
job_exists = False
|
||||
|
||||
pool_exists = core_cluster_operations.batch_client.pool.exists(pool_id)
|
||||
|
||||
if job_exists:
|
||||
core_cluster_operations.batch_client.job.delete(job_id)
|
||||
|
||||
if pool_exists:
|
||||
core_cluster_operations.batch_client.pool.delete(pool_id)
|
||||
|
||||
if not keep_logs:
|
||||
cluster_data = core_cluster_operations.get_cluster_data(pool_id)
|
||||
cluster_data.delete_container(pool_id)
|
||||
|
||||
return job_exists or pool_exists
|
|
@ -0,0 +1,15 @@
|
|||
|
||||
|
||||
#TODO: return Cluster instead of (pool, nodes)
|
||||
from aztk import models
|
||||
|
||||
|
||||
def get_pool_details(core_cluster_operations, cluster_id: str):
|
||||
"""
|
||||
Print the information for the given cluster
|
||||
:param cluster_id: Id of the cluster
|
||||
:return pool: CloudPool, nodes: ComputeNodePaged
|
||||
"""
|
||||
pool = core_cluster_operations.batch_client.pool.get(cluster_id)
|
||||
nodes = core_cluster_operations.batch_client.compute_node.list(pool_id=cluster_id)
|
||||
return models.Cluster(pool, nodes)
|
|
@ -0,0 +1,20 @@
|
|||
from aztk import models
|
||||
from aztk.utils import constants
|
||||
|
||||
|
||||
def list_clusters(cluster_client, software_metadata_key):
|
||||
"""
|
||||
List all the cluster on your account.
|
||||
"""
|
||||
pools = cluster_client.batch_client.pool.list()
|
||||
software_metadata = (
|
||||
constants.AZTK_SOFTWARE_METADATA_KEY, software_metadata_key)
|
||||
cluster_metadata = (
|
||||
constants.AZTK_MODE_METADATA_KEY, constants.AZTK_CLUSTER_MODE_METADATA)
|
||||
|
||||
aztk_clusters = []
|
||||
for pool in [pool for pool in pools if pool.metadata]:
|
||||
pool_metadata = [(metadata.name, metadata.value) for metadata in pool.metadata]
|
||||
if all([metadata in pool_metadata for metadata in [software_metadata, cluster_metadata]]):
|
||||
aztk_clusters.append(models.Cluster(pool))
|
||||
return aztk_clusters
|
|
@ -0,0 +1,12 @@
|
|||
import time
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
|
||||
|
||||
def wait_for_task_to_complete(core_cluster_operations, job_id: str, task_id: str):
|
||||
while True:
|
||||
task = core_cluster_operations.batch_client.task.get(job_id=job_id, task_id=task_id)
|
||||
if task.state != batch_models.TaskState.completed:
|
||||
time.sleep(2)
|
||||
else:
|
||||
return
|
|
@ -0,0 +1,94 @@
|
|||
from aztk.client.base import BaseOperations
|
||||
from aztk.models import ClusterConfiguration
|
||||
|
||||
from .helpers import copy, create, delete, get, list, wait_for_task_to_complete
|
||||
|
||||
|
||||
class CoreClusterOperations(BaseOperations):
|
||||
def create(self, cluster_configuration: ClusterConfiguration, software_metadata_key: str, start_task,
|
||||
vm_image_model):
|
||||
"""Create a cluster.
|
||||
|
||||
Args:
|
||||
cluster_configuration (:obj:`aztk.models.ClusterConfiguration`): Configuration for the cluster to be created
|
||||
software_metadata_key (:obj:`str`): the key for the primary software that will be run on the cluster
|
||||
start_task (:obj:`azure.batch.models.StartTask`): Batch StartTask defintion to configure the Batch Pool
|
||||
vm_image_model (:obj:`azure.batch.models.VirtualMachineConfiguration`): Configuration of the virtual machine image and settings
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.Cluster`: A Cluster object representing the state and configuration of the cluster.
|
||||
"""
|
||||
return create.create_pool_and_job(self, cluster_configuration, software_metadata_key, start_task,
|
||||
vm_image_model)
|
||||
|
||||
def get(self, id: str):
|
||||
"""Get the state and configuration of a cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to get.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.models.Cluster`: A Cluster object representing the state and configuration of the cluster.
|
||||
"""
|
||||
return get.get_pool_details(self, id)
|
||||
|
||||
def copy(self, id, source_path, destination_path=None, container_name=None, internal=False, get=False,
|
||||
timeout=None):
|
||||
"""Copy files to or from every node in a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to copy files with.
|
||||
source_path (:obj:`str`): the path of the file to copy from.
|
||||
destination_path (:obj:`str`, optional): the local directory path where the output should be written.
|
||||
If None, a SpooledTemporaryFile will be returned in the NodeOutput object, else the file will be
|
||||
written to this path. Defaults to None.
|
||||
container_name (:obj:`str`, optional): the name of the container to copy to or from.
|
||||
If None, the copy operation will occur on the host VM, Defaults to None.
|
||||
internal (:obj:`bool`, optional): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
get (:obj:`bool`, optional): If True, the file are downloaded from every node in the cluster.
|
||||
Else, the file is copied from the client to the node. Defaults to False.
|
||||
timeout (:obj:`int`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.models.NodeOutput]`: A list of NodeOutput objects representing the output of the copy command.
|
||||
"""
|
||||
return copy.cluster_copy(self, id, source_path, destination_path, container_name, internal, get, timeout)
|
||||
|
||||
def delete(self, id: str, keep_logs: bool = False):
|
||||
"""Copy files to or from every node in a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to delete
|
||||
keep_logs (:obj:`bool`): If True, the logs related to this cluster in Azure Storage are not deleted.
|
||||
Defaults to False.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.models.NodeOutput]`: A list of NodeOutput objects representing the output of the copy command.
|
||||
"""
|
||||
return delete.delete_pool_and_job(self, id, keep_logs)
|
||||
|
||||
def list(self, software_metadata_key):
|
||||
"""List clusters running the specified software.
|
||||
|
||||
Args:
|
||||
software_metadata_key(:obj:`str`): the key of the primary softare running on the cluster.
|
||||
This filters out non-aztk clusters and aztk clusters running other software.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.models.Cluster]`: list of clusters running the software defined by software_metadata_key
|
||||
"""
|
||||
return list.list_clusters(self, software_metadata_key)
|
||||
|
||||
def wait(self, id, task_name):
|
||||
"""Wait until the task has completed
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job the task was submitted to
|
||||
task_name (:obj:`str`): the name of the task to wait for
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return wait_for_task_to_complete.wait_for_task_to_complete(self, id, task_name)
|
|
@ -0,0 +1 @@
|
|||
from .operations import CoreJobOperations
|
|
@ -0,0 +1,76 @@
|
|||
from datetime import timedelta
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
from aztk.utils import helpers, constants
|
||||
|
||||
|
||||
def submit_job(
|
||||
job_client,
|
||||
job_configuration,
|
||||
start_task,
|
||||
job_manager_task,
|
||||
autoscale_formula,
|
||||
software_metadata_key: str,
|
||||
vm_image_model,
|
||||
application_metadata):
|
||||
"""
|
||||
Job Submission
|
||||
:param job_configuration -> aztk_sdk.spark.models.JobConfiguration
|
||||
:param start_task -> batch_models.StartTask
|
||||
:param job_manager_task -> batch_models.TaskAddParameter
|
||||
:param autoscale_formula -> str
|
||||
:param software_metadata_key -> str
|
||||
:param vm_image_model -> aztk_sdk.models.VmImage
|
||||
:returns None
|
||||
"""
|
||||
job_client.get_cluster_data(job_configuration.id).save_cluster_config(job_configuration.to_cluster_config())
|
||||
|
||||
# get a verified node agent sku
|
||||
sku_to_use, image_ref_to_use = \
|
||||
helpers.select_latest_verified_vm_image_with_node_agent_sku(
|
||||
vm_image_model.publisher, vm_image_model.offer, vm_image_model.sku, job_client.batch_client)
|
||||
|
||||
# set up subnet if necessary
|
||||
network_conf = None
|
||||
if job_configuration.subnet_id:
|
||||
network_conf = batch_models.NetworkConfiguration(subnet_id=job_configuration.subnet_id)
|
||||
|
||||
# set up a schedule for a recurring job
|
||||
auto_pool_specification = batch_models.AutoPoolSpecification(
|
||||
pool_lifetime_option=batch_models.PoolLifetimeOption.job_schedule,
|
||||
auto_pool_id_prefix=job_configuration.id,
|
||||
keep_alive=False,
|
||||
pool=batch_models.PoolSpecification(
|
||||
display_name=job_configuration.id,
|
||||
virtual_machine_configuration=batch_models.VirtualMachineConfiguration(
|
||||
image_reference=image_ref_to_use, node_agent_sku_id=sku_to_use),
|
||||
vm_size=job_configuration.vm_size,
|
||||
enable_auto_scale=True,
|
||||
auto_scale_formula=autoscale_formula,
|
||||
auto_scale_evaluation_interval=timedelta(minutes=5),
|
||||
start_task=start_task,
|
||||
enable_inter_node_communication=not job_configuration.mixed_mode(),
|
||||
network_configuration=network_conf,
|
||||
max_tasks_per_node=4,
|
||||
metadata=[
|
||||
batch_models.MetadataItem(name=constants.AZTK_SOFTWARE_METADATA_KEY, value=software_metadata_key),
|
||||
batch_models.MetadataItem(name=constants.AZTK_MODE_METADATA_KEY, value=constants.AZTK_JOB_MODE_METADATA)
|
||||
]))
|
||||
|
||||
# define job specification
|
||||
job_spec = batch_models.JobSpecification(
|
||||
pool_info=batch_models.PoolInformation(auto_pool_specification=auto_pool_specification),
|
||||
display_name=job_configuration.id,
|
||||
on_all_tasks_complete=batch_models.OnAllTasksComplete.terminate_job,
|
||||
job_manager_task=job_manager_task,
|
||||
metadata=[batch_models.MetadataItem(name='applications', value=application_metadata)])
|
||||
|
||||
# define schedule
|
||||
schedule = batch_models.Schedule(do_not_run_until=None, do_not_run_after=None, start_window=None, recurrence_interval=None)
|
||||
|
||||
# create job schedule and add task
|
||||
setup = batch_models.JobScheduleAddParameter(id=job_configuration.id, schedule=schedule, job_specification=job_spec)
|
||||
|
||||
job_client.batch_client.job_schedule.add(setup)
|
||||
|
||||
return job_client.batch_client.job_schedule.get(job_schedule_id=job_configuration.id)
|
|
@ -0,0 +1,30 @@
|
|||
from aztk.client.base import BaseOperations
|
||||
|
||||
from .helpers import submit
|
||||
|
||||
|
||||
class CoreJobOperations(BaseOperations):
|
||||
def submit(self, job_configuration, start_task, job_manager_task, autoscale_formula, software_metadata_key: str,
|
||||
vm_image_model, application_metadata):
|
||||
"""Submit a job
|
||||
|
||||
Jobs are a cluster definition and one or many application definitions which run on the cluster. The job's
|
||||
cluster will be allocated and configured, then the applications will be executed with their output stored
|
||||
in Azure Storage. When all applications have completed, the cluster will be automatically deleted.
|
||||
|
||||
Args:
|
||||
job_configuration (:obj:`aztk.models.JobConfiguration`): Model defining the job's configuration.
|
||||
start_task (:obj:`azure.batch.models.StartTask`): Batch StartTask defintion to configure the Batch Pool
|
||||
job_manager_task (:obj:`azure.batch.models.JobManagerTask`): Batch JobManagerTask defintion to schedule
|
||||
the defined applications on the cluster.
|
||||
autoscale_formula (:obj:`str`): formula that defines the numbers of nodes allocated to the cluster.
|
||||
software_metadata_key (:obj:`str`): the key of the primary softare running on the cluster.
|
||||
vm_image_model
|
||||
application_metadata (:obj:`List[str]`): list of the names of all applications that will be run as a
|
||||
part of the job
|
||||
|
||||
Returns:
|
||||
:obj:`azure.batch.models.CloudJobSchedule`: Model representing the Azure Batch JobSchedule state.
|
||||
"""
|
||||
return submit.submit_job(self, job_configuration, start_task, job_manager_task, autoscale_formula,
|
||||
software_metadata_key, vm_image_model, application_metadata)
|
|
@ -18,4 +18,5 @@ from .software import Software
|
|||
from .cluster import Cluster
|
||||
from .scheduling_target import SchedulingTarget
|
||||
from .port_forward_specification import PortForwardingSpecification
|
||||
from .application_log import ApplicationLog
|
||||
from .plugins import *
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
import azure.batch.models as batch_models
|
||||
|
||||
|
||||
class ApplicationLog():
|
||||
def __init__(self, name: str, cluster_id: str, log: str, total_bytes: int,
|
||||
application_state: batch_models.TaskState, exit_code: int):
|
||||
self.name = name
|
||||
self.cluster_id = cluster_id # TODO: change to something cluster/job agnostic
|
||||
self.log = log
|
||||
self.total_bytes = total_bytes
|
||||
self.application_state = application_state
|
||||
self.exit_code = exit_code
|
|
@ -1,10 +1,11 @@
|
|||
"""
|
||||
This is the code that all nodes will run in their start task to try to allocate the master
|
||||
"""
|
||||
|
||||
import azure.batch.batch_service_client as batch
|
||||
import azure.batch.models as batchmodels
|
||||
import azure.batch.models.batch_error as batcherror
|
||||
from msrest.exceptions import ClientRequestError
|
||||
|
||||
from core import config
|
||||
|
||||
MASTER_NODE_METADATA_KEY = "_spark_master_node"
|
||||
|
@ -36,7 +37,7 @@ def try_assign_self_as_master(client: batch.BatchServiceClient, pool: batchmodel
|
|||
if_match=pool.e_tag,
|
||||
))
|
||||
return True
|
||||
except batcherror.BatchErrorException:
|
||||
except (batcherror.BatchErrorException, ClientRequestError):
|
||||
print("Couldn't assign itself as master the pool because the pool was modified since last get.")
|
||||
return False
|
||||
|
||||
|
|
|
@ -1,361 +0,0 @@
|
|||
from typing import List
|
||||
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
import aztk
|
||||
from aztk import error
|
||||
from aztk.client import Client as BaseClient
|
||||
from aztk.internal.cluster_data import NodeData
|
||||
from aztk.spark import models
|
||||
from aztk.spark.helpers import create_cluster as create_cluster_helper
|
||||
from aztk.spark.helpers import get_log as get_log_helper
|
||||
from aztk.spark.helpers import job_submission as job_submit_helper
|
||||
from aztk.spark.helpers import submit as cluster_submit_helper
|
||||
from aztk.spark.helpers import cluster_diagnostic_helper
|
||||
from aztk.spark.utils import util
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
class Client(BaseClient):
|
||||
"""
|
||||
Aztk Spark Client
|
||||
This is the main entry point for using aztk for spark
|
||||
|
||||
Args:
|
||||
secrets_config(aztk.spark.models.models.SecretsConfiguration): Configuration with all the needed credentials
|
||||
"""
|
||||
|
||||
def create_cluster(self, cluster_conf: models.ClusterConfiguration, wait: bool = False):
|
||||
"""
|
||||
Create a new aztk spark cluster
|
||||
|
||||
Args:
|
||||
cluster_conf(aztk.spark.models.models.ClusterConfiguration): Configuration for the the cluster to be created
|
||||
wait(bool): If you should wait for the cluster to be ready before returning
|
||||
|
||||
Returns:
|
||||
aztk.spark.models.Cluster
|
||||
"""
|
||||
cluster_conf = _apply_default_for_cluster_config(cluster_conf)
|
||||
cluster_conf.validate()
|
||||
|
||||
cluster_data = self._get_cluster_data(cluster_conf.cluster_id)
|
||||
try:
|
||||
zip_resource_files = None
|
||||
node_data = NodeData(cluster_conf).add_core().done()
|
||||
zip_resource_files = cluster_data.upload_node_data(node_data).to_resource_file()
|
||||
|
||||
start_task = create_cluster_helper.generate_cluster_start_task(self,
|
||||
zip_resource_files,
|
||||
cluster_conf.cluster_id,
|
||||
cluster_conf.gpu_enabled(),
|
||||
cluster_conf.get_docker_repo(),
|
||||
cluster_conf.file_shares,
|
||||
cluster_conf.plugins,
|
||||
cluster_conf.mixed_mode(),
|
||||
cluster_conf.worker_on_master)
|
||||
|
||||
software_metadata_key = "spark"
|
||||
|
||||
vm_image = models.VmImage(
|
||||
publisher='Canonical',
|
||||
offer='UbuntuServer',
|
||||
sku='16.04')
|
||||
|
||||
cluster = self.__create_pool_and_job(
|
||||
cluster_conf, software_metadata_key, start_task, vm_image)
|
||||
|
||||
# Wait for the master to be ready
|
||||
if wait:
|
||||
util.wait_for_master_to_be_ready(self, cluster.id)
|
||||
cluster = self.get_cluster(cluster.id)
|
||||
|
||||
return cluster
|
||||
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def create_clusters_in_parallel(self, cluster_confs):
|
||||
for cluster_conf in cluster_confs:
|
||||
self.create_cluster(cluster_conf)
|
||||
|
||||
def delete_cluster(self, cluster_id: str, keep_logs: bool = False):
|
||||
try:
|
||||
return self.__delete_pool_and_job(cluster_id, keep_logs)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_cluster(self, cluster_id: str):
|
||||
try:
|
||||
pool, nodes = self.__get_pool_details(cluster_id)
|
||||
return models.Cluster(pool, nodes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def list_clusters(self):
|
||||
try:
|
||||
return [models.Cluster(pool) for pool in self.__list_clusters(aztk.models.Software.spark)]
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_remote_login_settings(self, cluster_id: str, node_id: str):
|
||||
try:
|
||||
return self.__get_remote_login_settings(cluster_id, node_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def submit(self, cluster_id: str, application: models.ApplicationConfiguration, remote: bool = False, wait: bool = False):
|
||||
try:
|
||||
cluster_submit_helper.submit_application(self, cluster_id, application, remote, wait)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def submit_all_applications(self, cluster_id: str, applications):
|
||||
for application in applications:
|
||||
self.submit(cluster_id, application)
|
||||
|
||||
def wait_until_application_done(self, cluster_id: str, task_id: str):
|
||||
try:
|
||||
helpers.wait_for_task_to_complete(job_id=cluster_id, task_id=task_id, batch_client=self.batch_client)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def wait_until_applications_done(self, cluster_id: str):
|
||||
try:
|
||||
helpers.wait_for_tasks_to_complete(job_id=cluster_id, batch_client=self.batch_client)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def wait_until_cluster_is_ready(self, cluster_id: str):
|
||||
try:
|
||||
util.wait_for_master_to_be_ready(self, cluster_id)
|
||||
pool = self.batch_client.pool.get(cluster_id)
|
||||
nodes = self.batch_client.compute_node.list(pool_id=cluster_id)
|
||||
return models.Cluster(pool, nodes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def wait_until_all_clusters_are_ready(self, clusters: List[str]):
|
||||
for cluster_id in clusters:
|
||||
self.wait_until_cluster_is_ready(cluster_id)
|
||||
|
||||
def create_user(self, cluster_id: str, username: str, password: str = None, ssh_key: str = None) -> str:
|
||||
try:
|
||||
cluster = self.get_cluster(cluster_id)
|
||||
master_node_id = cluster.master_node_id
|
||||
if not master_node_id:
|
||||
raise error.ClusterNotReadyError("The master has not yet been picked, a user cannot be added.")
|
||||
self.__create_user_on_pool(username, cluster.id, cluster.nodes, ssh_key, password)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_application_log(self, cluster_id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
try:
|
||||
return get_log_helper.get_log(self.batch_client, self.blob_client,
|
||||
cluster_id, application_name, tail, current_bytes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_application_status(self, cluster_id: str, app_name: str):
|
||||
try:
|
||||
task = self.batch_client.task.get(cluster_id, app_name)
|
||||
return task.state._value_
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def cluster_run(self, cluster_id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
try:
|
||||
return self.__cluster_run(cluster_id,
|
||||
command,
|
||||
internal,
|
||||
container_name='spark' if not host else None,
|
||||
timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def node_run(self, cluster_id: str, node_id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
try:
|
||||
return self.__node_run(cluster_id,
|
||||
node_id,
|
||||
command,
|
||||
internal,
|
||||
container_name='spark' if not host else None,
|
||||
timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def cluster_copy(self, cluster_id: str, source_path: str, destination_path: str, host: bool = False, internal: bool = False, timeout: int = None):
|
||||
try:
|
||||
container_name = None if host else 'spark'
|
||||
return self.__cluster_copy(cluster_id,
|
||||
source_path,
|
||||
destination_path=destination_path,
|
||||
container_name=container_name,
|
||||
get=False,
|
||||
internal=internal,
|
||||
timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def cluster_download(self, cluster_id: str, source_path: str, destination_path: str = None, host: bool = False, internal: bool = False, timeout: int = None):
|
||||
try:
|
||||
container_name = None if host else 'spark'
|
||||
return self.__cluster_copy(cluster_id,
|
||||
source_path,
|
||||
destination_path=destination_path,
|
||||
container_name=container_name,
|
||||
get=True,
|
||||
internal=internal,
|
||||
timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def cluster_ssh_into_master(self, cluster_id, node_id, username, ssh_key=None, password=None, port_forward_list=None, internal=False):
|
||||
try:
|
||||
self.__ssh_into_node(cluster_id, node_id, username, ssh_key, password, port_forward_list, internal)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
'''
|
||||
job submission
|
||||
'''
|
||||
def submit_job(self, job_configuration: models.JobConfiguration):
|
||||
try:
|
||||
job_configuration = _apply_default_for_job_config(job_configuration)
|
||||
job_configuration.validate()
|
||||
cluster_data = self._get_cluster_data(job_configuration.id)
|
||||
node_data = NodeData(job_configuration.to_cluster_config()).add_core().done()
|
||||
zip_resource_files = cluster_data.upload_node_data(node_data).to_resource_file()
|
||||
|
||||
start_task = create_cluster_helper.generate_cluster_start_task(self,
|
||||
zip_resource_files,
|
||||
job_configuration.id,
|
||||
job_configuration.gpu_enabled,
|
||||
job_configuration.get_docker_repo(),
|
||||
mixed_mode=job_configuration.mixed_mode(),
|
||||
worker_on_master=job_configuration.worker_on_master)
|
||||
|
||||
application_tasks = []
|
||||
for application in job_configuration.applications:
|
||||
application_tasks.append(
|
||||
(application, cluster_submit_helper.generate_task(self, job_configuration.id, application))
|
||||
)
|
||||
|
||||
job_manager_task = job_submit_helper.generate_task(self, job_configuration, application_tasks)
|
||||
|
||||
|
||||
software_metadata_key = "spark"
|
||||
|
||||
vm_image = models.VmImage(
|
||||
publisher='Canonical',
|
||||
offer='UbuntuServer',
|
||||
sku='16.04')
|
||||
|
||||
autoscale_formula = "$TargetDedicatedNodes = {0}; " \
|
||||
"$TargetLowPriorityNodes = {1}".format(
|
||||
job_configuration.max_dedicated_nodes,
|
||||
job_configuration.max_low_pri_nodes)
|
||||
|
||||
job = self.__submit_job(
|
||||
job_configuration=job_configuration,
|
||||
start_task=start_task,
|
||||
job_manager_task=job_manager_task,
|
||||
autoscale_formula=autoscale_formula,
|
||||
software_metadata_key=software_metadata_key,
|
||||
vm_image_model=vm_image,
|
||||
application_metadata='\n'.join(application.name for application in (job_configuration.applications or [])))
|
||||
|
||||
return models.Job(job)
|
||||
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def list_jobs(self):
|
||||
try:
|
||||
return [models.Job(cloud_job_schedule) for cloud_job_schedule in job_submit_helper.list_jobs(self)]
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def list_applications(self, job_id):
|
||||
try:
|
||||
applications = job_submit_helper.list_applications(self, job_id)
|
||||
for item in applications:
|
||||
if applications[item]:
|
||||
applications[item] = models.Application(applications[item])
|
||||
return applications
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_job(self, job_id):
|
||||
try:
|
||||
job, apps, pool, nodes = job_submit_helper.get_job(self, job_id)
|
||||
return models.Job(job, apps, pool, nodes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def stop_job(self, job_id):
|
||||
try:
|
||||
return job_submit_helper.stop(self, job_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def delete_job(self, job_id: str, keep_logs: bool = False):
|
||||
try:
|
||||
return job_submit_helper.delete(self, job_id, keep_logs)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_application(self, job_id, application_name):
|
||||
try:
|
||||
return models.Application(job_submit_helper.get_application(self, job_id, application_name))
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def get_job_application_log(self, job_id, application_name):
|
||||
try:
|
||||
return job_submit_helper.get_application_log(self, job_id, application_name)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def stop_job_app(self, job_id, application_name):
|
||||
try:
|
||||
return job_submit_helper.stop_app(self, job_id, application_name)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def wait_until_job_finished(self, job_id):
|
||||
try:
|
||||
job_submit_helper.wait_until_job_finished(self, job_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
def wait_until_all_jobs_finished(self, jobs):
|
||||
for job in jobs:
|
||||
self.wait_until_job_finished(job)
|
||||
|
||||
def run_cluster_diagnostics(self, cluster_id, output_directory=None):
|
||||
try:
|
||||
output = cluster_diagnostic_helper.run(self, cluster_id, output_directory)
|
||||
return output
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
|
||||
def _default_scheduling_target(vm_count: int):
|
||||
if vm_count == 0:
|
||||
return models.SchedulingTarget.Any
|
||||
else:
|
||||
return models.SchedulingTarget.Dedicated
|
||||
|
||||
def _apply_default_for_cluster_config(configuration: models.ClusterConfiguration):
|
||||
cluster_conf = models.ClusterConfiguration()
|
||||
cluster_conf.merge(configuration)
|
||||
if cluster_conf.scheduling_target is None:
|
||||
cluster_conf.scheduling_target = _default_scheduling_target(cluster_conf.size)
|
||||
return cluster_conf
|
||||
|
||||
def _apply_default_for_job_config(job_conf: models.JobConfiguration):
|
||||
if job_conf.scheduling_target is None:
|
||||
job_conf.scheduling_target = _default_scheduling_target(job_conf.max_dedicated_nodes)
|
||||
|
||||
return job_conf
|
|
@ -0,0 +1 @@
|
|||
from .client import Client
|
|
@ -0,0 +1 @@
|
|||
from .operations import SparkBaseOperations
|
|
@ -0,0 +1,96 @@
|
|||
import os
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
import yaml
|
||||
|
||||
from aztk.utils import helpers
|
||||
from aztk.utils.command_builder import CommandBuilder
|
||||
|
||||
|
||||
def generate_application_task(core_base_operations, container_id, application, remote=False):
|
||||
resource_files = []
|
||||
|
||||
# The application provided is not hosted remotely and therefore must be uploaded
|
||||
if not remote:
|
||||
app_resource_file = helpers.upload_file_to_container(
|
||||
container_name=container_id,
|
||||
application_name=application.name,
|
||||
file_path=application.application,
|
||||
blob_client=core_base_operations.blob_client,
|
||||
use_full_path=False)
|
||||
|
||||
# Upload application file
|
||||
resource_files.append(app_resource_file)
|
||||
|
||||
application.application = '$AZ_BATCH_TASK_WORKING_DIR/' + os.path.basename(application.application)
|
||||
|
||||
# Upload dependent JARS
|
||||
jar_resource_file_paths = []
|
||||
for jar in application.jars:
|
||||
current_jar_resource_file_path = helpers.upload_file_to_container(
|
||||
container_name=container_id,
|
||||
application_name=application.name,
|
||||
file_path=jar,
|
||||
blob_client=core_base_operations.blob_client,
|
||||
use_full_path=False)
|
||||
jar_resource_file_paths.append(current_jar_resource_file_path)
|
||||
resource_files.append(current_jar_resource_file_path)
|
||||
|
||||
# Upload dependent python files
|
||||
py_files_resource_file_paths = []
|
||||
for py_file in application.py_files:
|
||||
current_py_files_resource_file_path = helpers.upload_file_to_container(
|
||||
container_name=container_id,
|
||||
application_name=application.name,
|
||||
file_path=py_file,
|
||||
blob_client=core_base_operations.blob_client,
|
||||
use_full_path=False)
|
||||
py_files_resource_file_paths.append(current_py_files_resource_file_path)
|
||||
resource_files.append(current_py_files_resource_file_path)
|
||||
|
||||
# Upload other dependent files
|
||||
files_resource_file_paths = []
|
||||
for file in application.files:
|
||||
files_resource_file_path = helpers.upload_file_to_container(
|
||||
container_name=container_id,
|
||||
application_name=application.name,
|
||||
file_path=file,
|
||||
blob_client=core_base_operations.blob_client,
|
||||
use_full_path=False)
|
||||
files_resource_file_paths.append(files_resource_file_path)
|
||||
resource_files.append(files_resource_file_path)
|
||||
|
||||
# Upload application definition
|
||||
application.jars = [os.path.basename(jar) for jar in application.jars]
|
||||
application.py_files = [os.path.basename(py_files) for py_files in application.py_files]
|
||||
application.files = [os.path.basename(files) for files in application.files]
|
||||
application_definition_file = helpers.upload_text_to_container(
|
||||
container_name=container_id,
|
||||
application_name=application.name,
|
||||
file_path='application.yaml',
|
||||
content=yaml.dump(vars(application)),
|
||||
blob_client=core_base_operations.blob_client)
|
||||
resource_files.append(application_definition_file)
|
||||
|
||||
# create command to submit task
|
||||
task_cmd = CommandBuilder('sudo docker exec')
|
||||
task_cmd.add_argument('-i')
|
||||
task_cmd.add_option('-e', 'AZ_BATCH_TASK_WORKING_DIR=$AZ_BATCH_TASK_WORKING_DIR')
|
||||
task_cmd.add_option('-e', 'STORAGE_LOGS_CONTAINER={0}'.format(container_id))
|
||||
task_cmd.add_argument('spark /bin/bash >> output.log 2>&1')
|
||||
task_cmd.add_argument('-c "source ~/.bashrc; ' \
|
||||
'export PYTHONPATH=$PYTHONPATH:\$AZTK_WORKING_DIR; ' \
|
||||
'cd \$AZ_BATCH_TASK_WORKING_DIR; ' \
|
||||
'\$AZTK_WORKING_DIR/.aztk-env/.venv/bin/python \$AZTK_WORKING_DIR/aztk/node_scripts/submit.py"')
|
||||
|
||||
# Create task
|
||||
task = batch_models.TaskAddParameter(
|
||||
id=application.name,
|
||||
command_line=helpers.wrap_commands_in_shell([task_cmd.to_str()]),
|
||||
resource_files=resource_files,
|
||||
constraints=batch_models.TaskConstraints(max_task_retry_count=application.max_retry_count),
|
||||
user_identity=batch_models.UserIdentity(
|
||||
auto_user=batch_models.AutoUserSpecification(
|
||||
scope=batch_models.AutoUserScope.task, elevation_level=batch_models.ElevationLevel.admin)))
|
||||
|
||||
return task
|
|
@ -0,0 +1,148 @@
|
|||
from typing import List
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.internal.cluster_data import NodeData
|
||||
from aztk.spark import models
|
||||
from aztk.spark.utils import util
|
||||
from aztk.utils import constants, helpers
|
||||
from aztk.spark import models
|
||||
|
||||
POOL_ADMIN_USER_IDENTITY = batch_models.UserIdentity(
|
||||
auto_user=batch_models.AutoUserSpecification(
|
||||
scope=batch_models.AutoUserScope.pool, elevation_level=batch_models.ElevationLevel.admin))
|
||||
|
||||
|
||||
def _get_aztk_environment(cluster_id, worker_on_master, mixed_mode):
|
||||
envs = []
|
||||
envs.append(batch_models.EnvironmentSetting(name="AZTK_MIXED_MODE", value=helpers.bool_env(mixed_mode)))
|
||||
envs.append(batch_models.EnvironmentSetting(name="AZTK_WORKER_ON_MASTER", value=helpers.bool_env(worker_on_master)))
|
||||
envs.append(batch_models.EnvironmentSetting(name="AZTK_CLUSTER_ID", value=cluster_id))
|
||||
return envs
|
||||
|
||||
|
||||
def __get_docker_credentials(core_base_operations):
|
||||
creds = []
|
||||
docker = core_base_operations.secrets_configuration.docker
|
||||
if docker:
|
||||
if docker.endpoint:
|
||||
creds.append(batch_models.EnvironmentSetting(name="DOCKER_ENDPOINT", value=docker.endpoint))
|
||||
if docker.username:
|
||||
creds.append(batch_models.EnvironmentSetting(name="DOCKER_USERNAME", value=docker.username))
|
||||
if docker.password:
|
||||
creds.append(batch_models.EnvironmentSetting(name="DOCKER_PASSWORD", value=docker.password))
|
||||
|
||||
return creds
|
||||
|
||||
|
||||
def __get_secrets_env(core_base_operations):
|
||||
shared_key = core_base_operations.secrets_configuration.shared_key
|
||||
service_principal = core_base_operations.secrets_configuration.service_principal
|
||||
if shared_key:
|
||||
return [
|
||||
batch_models.EnvironmentSetting(name="BATCH_SERVICE_URL", value=shared_key.batch_service_url),
|
||||
batch_models.EnvironmentSetting(name="BATCH_ACCOUNT_KEY", value=shared_key.batch_account_key),
|
||||
batch_models.EnvironmentSetting(name="STORAGE_ACCOUNT_NAME", value=shared_key.storage_account_name),
|
||||
batch_models.EnvironmentSetting(name="STORAGE_ACCOUNT_KEY", value=shared_key.storage_account_key),
|
||||
batch_models.EnvironmentSetting(name="STORAGE_ACCOUNT_SUFFIX", value=shared_key.storage_account_suffix),
|
||||
]
|
||||
else:
|
||||
return [
|
||||
batch_models.EnvironmentSetting(name="SP_TENANT_ID", value=service_principal.tenant_id),
|
||||
batch_models.EnvironmentSetting(name="SP_CLIENT_ID", value=service_principal.client_id),
|
||||
batch_models.EnvironmentSetting(name="SP_CREDENTIAL", value=service_principal.credential),
|
||||
batch_models.EnvironmentSetting(
|
||||
name="SP_BATCH_RESOURCE_ID", value=service_principal.batch_account_resource_id),
|
||||
batch_models.EnvironmentSetting(
|
||||
name="SP_STORAGE_RESOURCE_ID", value=service_principal.storage_account_resource_id),
|
||||
]
|
||||
|
||||
|
||||
def __cluster_install_cmd(zip_resource_file: batch_models.ResourceFile,
|
||||
gpu_enabled: bool,
|
||||
docker_repo: str = None,
|
||||
plugins=None,
|
||||
worker_on_master: bool = True,
|
||||
file_mounts=None,
|
||||
mixed_mode: bool = False):
|
||||
"""
|
||||
For Docker on ubuntu 16.04 - return the command line
|
||||
to be run on the start task of the pool to setup spark.
|
||||
"""
|
||||
default_docker_repo = constants.DEFAULT_DOCKER_REPO if not gpu_enabled else constants.DEFAULT_DOCKER_REPO_GPU
|
||||
docker_repo = docker_repo or default_docker_repo
|
||||
|
||||
shares = []
|
||||
|
||||
if file_mounts:
|
||||
for mount in file_mounts:
|
||||
# Create the directory on the node
|
||||
shares.append('mkdir -p {0}'.format(mount.mount_path))
|
||||
|
||||
# Mount the file share
|
||||
shares.append(
|
||||
'mount -t cifs //{0}.file.core.windows.net/{2} {3} -o vers=3.0,username={0},password={1},dir_mode=0777,file_mode=0777,sec=ntlmssp'.
|
||||
format(mount.storage_account_name, mount.storage_account_key, mount.file_share_path, mount.mount_path))
|
||||
|
||||
setup = [
|
||||
'time('\
|
||||
'apt-get -y update;'\
|
||||
'apt-get -y --no-install-recommends install unzip;'\
|
||||
'unzip -o $AZ_BATCH_TASK_WORKING_DIR/{0};'\
|
||||
'chmod 777 $AZ_BATCH_TASK_WORKING_DIR/aztk/node_scripts/setup_host.sh;'\
|
||||
') 2>&1'.format(zip_resource_file.file_path),
|
||||
'/bin/bash $AZ_BATCH_TASK_WORKING_DIR/aztk/node_scripts/setup_host.sh {0} {1}'.format(
|
||||
constants.DOCKER_SPARK_CONTAINER_NAME,
|
||||
docker_repo,
|
||||
)
|
||||
]
|
||||
|
||||
commands = shares + setup
|
||||
return commands
|
||||
|
||||
|
||||
def generate_cluster_start_task(core_base_operations,
|
||||
zip_resource_file: batch_models.ResourceFile,
|
||||
cluster_id: str,
|
||||
gpu_enabled: bool,
|
||||
docker_repo: str = None,
|
||||
file_shares: List[models.FileShare] = None,
|
||||
plugins: List[models.PluginConfiguration] = None,
|
||||
mixed_mode: bool = False,
|
||||
worker_on_master: bool = True):
|
||||
"""
|
||||
This will return the start task object for the pool to be created.
|
||||
:param cluster_id str: Id of the cluster(Used for uploading the resource files)
|
||||
:param zip_resource_file: Resource file object pointing to the zip file containing scripts to run on the node
|
||||
"""
|
||||
|
||||
resource_files = [zip_resource_file]
|
||||
spark_web_ui_port = constants.DOCKER_SPARK_WEB_UI_PORT
|
||||
spark_worker_ui_port = constants.DOCKER_SPARK_WORKER_UI_PORT
|
||||
spark_job_ui_port = constants.DOCKER_SPARK_JOB_UI_PORT
|
||||
|
||||
spark_container_name = constants.DOCKER_SPARK_CONTAINER_NAME
|
||||
spark_submit_logs_file = constants.SPARK_SUBMIT_LOGS_FILE
|
||||
|
||||
# TODO use certificate
|
||||
environment_settings = __get_secrets_env(core_base_operations) + [
|
||||
batch_models.EnvironmentSetting(name="SPARK_WEB_UI_PORT", value=spark_web_ui_port),
|
||||
batch_models.EnvironmentSetting(name="SPARK_WORKER_UI_PORT", value=spark_worker_ui_port),
|
||||
batch_models.EnvironmentSetting(name="SPARK_JOB_UI_PORT", value=spark_job_ui_port),
|
||||
batch_models.EnvironmentSetting(name="SPARK_CONTAINER_NAME", value=spark_container_name),
|
||||
batch_models.EnvironmentSetting(name="SPARK_SUBMIT_LOGS_FILE", value=spark_submit_logs_file),
|
||||
batch_models.EnvironmentSetting(name="AZTK_GPU_ENABLED", value=helpers.bool_env(gpu_enabled)),
|
||||
] + __get_docker_credentials(core_base_operations) + _get_aztk_environment(cluster_id, worker_on_master, mixed_mode)
|
||||
|
||||
# start task command
|
||||
command = __cluster_install_cmd(zip_resource_file, gpu_enabled, docker_repo, plugins, worker_on_master, file_shares,
|
||||
mixed_mode)
|
||||
|
||||
return batch_models.StartTask(
|
||||
command_line=helpers.wrap_commands_in_shell(command),
|
||||
resource_files=resource_files,
|
||||
environment_settings=environment_settings,
|
||||
user_identity=POOL_ADMIN_USER_IDENTITY,
|
||||
wait_for_success=True)
|
|
@ -0,0 +1,64 @@
|
|||
from typing import List
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
|
||||
from aztk.client.base import BaseOperations as CoreBaseOperations
|
||||
from aztk.spark import models
|
||||
|
||||
from .helpers import generate_cluster_start_task, generate_application_task
|
||||
|
||||
|
||||
class SparkBaseOperations:
|
||||
"""Spark Base operations object that all other Spark operations objects inherit from
|
||||
"""
|
||||
|
||||
#TODO: make this private or otherwise not public
|
||||
def _generate_cluster_start_task(self,
|
||||
core_base_operations,
|
||||
zip_resource_file: batch_models.ResourceFile,
|
||||
id: str,
|
||||
gpu_enabled: bool,
|
||||
docker_repo: str = None,
|
||||
file_shares: List[models.FileShare] = None,
|
||||
plugins: List[models.PluginConfiguration] = None,
|
||||
mixed_mode: bool = False,
|
||||
worker_on_master: bool = True):
|
||||
"""Generate the Azure Batch Start Task to provision a Spark cluster.
|
||||
|
||||
Args:
|
||||
zip_resource_file (:obj:`azure.batch.models.ResourceFile`): a single zip file of all necessary data
|
||||
to upload to the cluster.
|
||||
id (:obj:`str`): the id of the cluster.
|
||||
gpu_enabled (:obj:`bool`): if True, the cluster is GPU enabled.
|
||||
docker_repo (:obj:`str`, optional): the docker repository and tag that identifies the docker image to use.
|
||||
If None, the default Docker image will be used. Defaults to None.
|
||||
file_shares (:obj:`aztk.spark.models.FileShare`, optional): a list of FileShares to mount on the cluster.
|
||||
Defaults to None.
|
||||
plugins (:obj:`aztk.spark.models.PluginConfiguration`, optional): a list of plugins to set up on the cluster.
|
||||
Defaults to None.
|
||||
mixed_mode (:obj:`bool`, optional): If True, the cluster is configured to use both dedicated and low priority VMs.
|
||||
Defaults to False.
|
||||
worker_on_master (:obj:`bool`, optional): If True, the cluster is configured to provision a Spark worker
|
||||
on the VM that runs the Spark master. Defaults to True.
|
||||
|
||||
Returns:
|
||||
:obj:`azure.batch.models.StartTask`: the StartTask definition to provision the cluster.
|
||||
"""
|
||||
return generate_cluster_start_task.generate_cluster_start_task(
|
||||
core_base_operations, zip_resource_file, id, gpu_enabled, docker_repo, file_shares, plugins, mixed_mode, worker_on_master)
|
||||
|
||||
#TODO: make this private or otherwise not public
|
||||
def _generate_application_task(self, core_base_operations, container_id, application, remote=False):
|
||||
"""Generate the Azure Batch Start Task to provision a Spark cluster.
|
||||
|
||||
Args:
|
||||
container_id (:obj:`str`): the id of the container to run the application in
|
||||
application (:obj:`aztk.spark.models.ApplicationConfiguration): the Application Definition
|
||||
remote (:obj:`bool`): If True, the application file will not be uploaded, it is assumed to be reachable
|
||||
by the cluster already. This is useful when your application is stored in a mounted Azure File Share
|
||||
and not the client. Defaults to False.
|
||||
|
||||
Returns:
|
||||
:obj:`azure.batch.models.TaskAddParameter`: the Task definition for the Application.
|
||||
"""
|
||||
return generate_application_task.generate_application_task(core_base_operations, container_id, application, remote)
|
|
@ -0,0 +1,233 @@
|
|||
from typing import List
|
||||
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
import aztk
|
||||
from aztk import error
|
||||
from aztk import models as base_models
|
||||
from aztk.client import CoreClient
|
||||
from aztk.internal.cluster_data import NodeData
|
||||
from aztk.spark import models
|
||||
from aztk.spark.client.cluster import ClusterOperations
|
||||
from aztk.spark.client.job import JobOperations
|
||||
from aztk.spark.helpers import cluster_diagnostic_helper
|
||||
from aztk.spark.helpers import create_cluster as create_cluster_helper
|
||||
from aztk.spark.helpers import get_log as get_log_helper
|
||||
from aztk.spark.helpers import job_submission as job_submit_helper
|
||||
from aztk.spark.helpers import submit as cluster_submit_helper
|
||||
from aztk.spark.utils import util
|
||||
from aztk.utils import azure_api, deprecated, deprecate, helpers
|
||||
|
||||
|
||||
class Client(CoreClient):
|
||||
"""The client used to create and manage Spark clusters
|
||||
|
||||
Attributes:
|
||||
cluster (:obj:`aztk.spark.client.cluster.ClusterOperations`): Cluster
|
||||
job (:obj:`aztk.spark.client.job.JobOperations`): Job
|
||||
"""
|
||||
def __init__(self, secrets_configuration: models.SecretsConfiguration = None, **kwargs):
|
||||
self.secrets_configuration = None
|
||||
context = None
|
||||
if kwargs.get("secrets_config"):
|
||||
deprecate(version="0.10.0", message="secrets_config key is deprecated in secrets.yaml",
|
||||
advice="Please use secrets_configuration key instead.")
|
||||
context = self._get_context(kwargs.get("secrets_config"))
|
||||
else:
|
||||
context = self._get_context(secrets_configuration)
|
||||
self.cluster = ClusterOperations(context)
|
||||
self.job = JobOperations(context)
|
||||
|
||||
|
||||
# ALL THE FOLLOWING METHODS ARE DEPRECATED AND WILL BE REMOVED IN 0.10.0
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def create_cluster(self, cluster_conf: models.ClusterConfiguration, wait: bool = False):
|
||||
return self.cluster.create(cluster_configuration=cluster_conf, wait=wait)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def create_clusters_in_parallel(self, cluster_confs): # NOT IMPLEMENTED
|
||||
for cluster_conf in cluster_confs:
|
||||
self.cluster.create(cluster_conf)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def delete_cluster(self, cluster_id: str, keep_logs: bool = False):
|
||||
return self.cluster.delete(id=cluster_id, keep_logs=keep_logs)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_cluster(self, cluster_id: str):
|
||||
return self.cluster.get(id=cluster_id)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def list_clusters(self):
|
||||
return self.cluster.list()
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_remote_login_settings(self, cluster_id: str, node_id: str):
|
||||
return self.cluster.get_remote_login_settings(cluster_id, node_id)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def submit(self,
|
||||
cluster_id: str,
|
||||
application: models.ApplicationConfiguration,
|
||||
remote: bool = False,
|
||||
wait: bool = False):
|
||||
return self.cluster.submit(id=cluster_id, application=application, remote=remote, wait=wait)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def submit_all_applications(self, cluster_id: str, applications): # NOT IMPLEMENTED
|
||||
for application in applications:
|
||||
self.cluster.submit(cluster_id, application)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def wait_until_application_done(self, cluster_id: str, task_id: str): # NOT IMPLEMENTED
|
||||
try:
|
||||
helpers.wait_for_task_to_complete(job_id=cluster_id, task_id=task_id, batch_client=self.batch_client)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def wait_until_applications_done(self, cluster_id: str): # NOT IMPLEMENTED
|
||||
try:
|
||||
helpers.wait_for_tasks_to_complete(job_id=cluster_id, batch_client=self.batch_client)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def wait_until_cluster_is_ready(self, cluster_id: str): # NOT IMPLEMENTED
|
||||
try:
|
||||
util.wait_for_master_to_be_ready(self.cluster._core_cluster_operations, self.cluster, cluster_id)
|
||||
pool = self.batch_client.pool.get(cluster_id)
|
||||
nodes = self.batch_client.compute_node.list(pool_id=cluster_id)
|
||||
return models.Cluster(base_models.Cluster(pool, nodes))
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def wait_until_all_clusters_are_ready(self, clusters: List[str]): # NOT IMPLEMENTED
|
||||
for cluster_id in clusters:
|
||||
self.wait_until_cluster_is_ready(cluster_id)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def create_user(self, cluster_id: str, username: str, password: str = None, ssh_key: str = None) -> str:
|
||||
return self.cluster.create_user(id=cluster_id, username=username, password=password, ssh_key=ssh_key)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_application_log(self, cluster_id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
return self.cluster.get_application_log(
|
||||
id=cluster_id, application_name=application_name, tail=tail, current_bytes=current_bytes)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_application_status(self, cluster_id: str, app_name: str):
|
||||
return self.cluster.get_application_status(id=cluster_id, application_name=app_name)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def cluster_run(self, cluster_id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
return self.cluster.run(id=cluster_id, command=command, host=host, internal=internal)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def node_run(self, cluster_id: str, node_id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
return self.cluster.node_run(
|
||||
id=cluster_id, node_id=node_id, command=command, host=host, internal=internal, timeout=timeout)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def cluster_copy(self,
|
||||
cluster_id: str,
|
||||
source_path: str,
|
||||
destination_path: str,
|
||||
host: bool = False,
|
||||
internal: bool = False,
|
||||
timeout: int = None):
|
||||
return self.cluster.copy(
|
||||
id=cluster_id,
|
||||
source_path=source_path,
|
||||
destination_path=destination_path,
|
||||
host=host,
|
||||
internal=internal,
|
||||
timeout=timeout)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def cluster_download(self,
|
||||
cluster_id: str,
|
||||
source_path: str,
|
||||
destination_path: str = None,
|
||||
host: bool = False,
|
||||
internal: bool = False,
|
||||
timeout: int = None):
|
||||
return self.cluster.download(
|
||||
id=cluster_id,
|
||||
source_path=source_path,
|
||||
destination_path=destination_path,
|
||||
host=host,
|
||||
internal=internal,
|
||||
timeout=timeout)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def cluster_ssh_into_master(self,
|
||||
cluster_id,
|
||||
node_id,
|
||||
username,
|
||||
ssh_key=None,
|
||||
password=None,
|
||||
port_forward_list=None,
|
||||
internal=False):
|
||||
return self.cluster._core_cluster_operations.ssh_into_node(cluster_id, node_id, username, ssh_key, password, port_forward_list, internal)
|
||||
|
||||
'''
|
||||
job submission
|
||||
'''
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def submit_job(self, job_configuration: models.JobConfiguration):
|
||||
return self.job.submit(job_configuration)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def list_jobs(self):
|
||||
return self.job.list()
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def list_applications(self, job_id):
|
||||
return self.job.list_applications(job_id)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_job(self, job_id):
|
||||
return self.job.get(job_id)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def stop_job(self, job_id):
|
||||
return self.job.stop(job_id)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def delete_job(self, job_id: str, keep_logs: bool = False):
|
||||
return self.job.delete(job_id, keep_logs)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_application(self, job_id, application_name):
|
||||
return self.job.get_application(job_id, application_name)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def get_job_application_log(self, job_id, application_name):
|
||||
return self.job.get_application_log(job_id, application_name)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def stop_job_app(self, job_id, application_name): # NOT IMPLEMENTED
|
||||
try:
|
||||
return job_submit_helper.stop_app(self, job_id, application_name)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def wait_until_job_finished(self, job_id):
|
||||
try:
|
||||
self.job.wait(job_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def wait_until_all_jobs_finished(self, jobs): # NOT IMPLEMENTED
|
||||
for job in jobs:
|
||||
self.wait_until_job_finished(job)
|
||||
|
||||
@deprecated("0.10.0")
|
||||
def run_cluster_diagnostics(self, cluster_id, output_directory=None):
|
||||
return self.cluster.diagnostics(cluster_id, output_directory)
|
|
@ -0,0 +1 @@
|
|||
from .operations import ClusterOperations
|
|
@ -0,0 +1,19 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def cluster_copy(core_cluster_operations, cluster_id: str, source_path: str, destination_path: str, host: bool = False, internal: bool = False, timeout: int = None):
|
||||
try:
|
||||
container_name = None if host else 'spark'
|
||||
return core_cluster_operations.copy(
|
||||
cluster_id,
|
||||
source_path,
|
||||
destination_path=destination_path,
|
||||
container_name=container_name,
|
||||
get=False,
|
||||
internal=internal,
|
||||
timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,67 @@
|
|||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk import models as base_models
|
||||
from aztk.internal.cluster_data import NodeData
|
||||
from aztk.spark import models
|
||||
from aztk.spark.utils import constants, util
|
||||
from aztk.utils import helpers
|
||||
|
||||
POOL_ADMIN_USER_IDENTITY = batch_models.UserIdentity(
|
||||
auto_user=batch_models.AutoUserSpecification(
|
||||
scope=batch_models.AutoUserScope.pool, elevation_level=batch_models.ElevationLevel.admin))
|
||||
|
||||
def _default_scheduling_target(vm_count: int):
|
||||
if vm_count == 0:
|
||||
return models.SchedulingTarget.Any
|
||||
else:
|
||||
return models.SchedulingTarget.Dedicated
|
||||
|
||||
|
||||
def _apply_default_for_cluster_config(configuration: models.ClusterConfiguration):
|
||||
cluster_conf = models.ClusterConfiguration()
|
||||
cluster_conf.merge(configuration)
|
||||
if cluster_conf.scheduling_target is None:
|
||||
cluster_conf.scheduling_target = _default_scheduling_target(cluster_conf.size)
|
||||
return cluster_conf
|
||||
|
||||
|
||||
def create_cluster(core_cluster_operations, spark_cluster_operations, cluster_conf: models.ClusterConfiguration, wait: bool = False):
|
||||
"""
|
||||
Create a new aztk spark cluster
|
||||
|
||||
Args:
|
||||
cluster_conf(aztk.spark.models.models.ClusterConfiguration): Configuration for the the cluster to be created
|
||||
wait(bool): If you should wait for the cluster to be ready before returning
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.Cluster`
|
||||
"""
|
||||
cluster_conf = _apply_default_for_cluster_config(cluster_conf)
|
||||
cluster_conf.validate()
|
||||
|
||||
cluster_data = core_cluster_operations.get_cluster_data(cluster_conf.cluster_id)
|
||||
try:
|
||||
zip_resource_files = None
|
||||
node_data = NodeData(cluster_conf).add_core().done()
|
||||
zip_resource_files = cluster_data.upload_node_data(node_data).to_resource_file()
|
||||
|
||||
start_task = spark_cluster_operations._generate_cluster_start_task(core_cluster_operations, zip_resource_files, cluster_conf.cluster_id,
|
||||
cluster_conf.gpu_enabled(), cluster_conf.get_docker_repo(),
|
||||
cluster_conf.file_shares, cluster_conf.plugins,
|
||||
cluster_conf.mixed_mode(), cluster_conf.worker_on_master)
|
||||
|
||||
software_metadata_key = base_models.Software.spark
|
||||
|
||||
cluster = core_cluster_operations.create(cluster_conf, software_metadata_key, start_task, constants.SPARK_VM_IMAGE)
|
||||
|
||||
# Wait for the master to be ready
|
||||
if wait:
|
||||
util.wait_for_master_to_be_ready(core_cluster_operations, spark_cluster_operations, cluster.id)
|
||||
cluster = spark_cluster_operations.get(cluster.id)
|
||||
|
||||
return cluster
|
||||
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,15 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def create_user(core_cluster_operations, spark_cluster_operations, cluster_id: str, username: str, password: str = None, ssh_key: str = None) -> str:
|
||||
try:
|
||||
cluster = spark_cluster_operations.get(cluster_id)
|
||||
master_node_id = cluster.master_node_id
|
||||
if not master_node_id:
|
||||
raise error.ClusterNotReadyError("The master has not yet been picked, a user cannot be added.")
|
||||
core_cluster_operations.create_user_on_cluster(cluster.id, cluster.nodes, username, ssh_key, password)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,11 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def delete_cluster(core_cluster_operations, cluster_id: str, keep_logs: bool = False):
|
||||
try:
|
||||
return core_cluster_operations.delete(cluster_id, keep_logs)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,44 @@
|
|||
|
||||
|
||||
|
||||
import os
|
||||
|
||||
from azure.batch.models import batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def _run(spark_cluster_operations, cluster_id, output_directory=None):
|
||||
# copy debug program to each node
|
||||
output = spark_cluster_operations.copy(cluster_id, os.path.abspath("./aztk/spark/utils/debug.py"), "/tmp/debug.py", host=True)
|
||||
ssh_cmd = _build_diagnostic_ssh_command()
|
||||
run_output = spark_cluster_operations.run(cluster_id, ssh_cmd, host=True)
|
||||
remote_path = "/tmp/debug.zip"
|
||||
if output_directory:
|
||||
local_path = os.path.join(os.path.abspath(output_directory), "debug.zip")
|
||||
output = spark_cluster_operations.download(cluster_id, remote_path, local_path, host=True)
|
||||
|
||||
# write run output to debug/ directory
|
||||
with open(os.path.join(os.path.dirname(local_path), "debug-output.txt"), 'w', encoding="UTF-8") as f:
|
||||
[f.write(line + '\n') for node_output in run_output for line in node_output.output]
|
||||
else:
|
||||
output = spark_cluster_operations.download(cluster_id, remote_path, host=True)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def _build_diagnostic_ssh_command():
|
||||
return "sudo rm -rf /tmp/debug.zip; "\
|
||||
"sudo apt-get install -y python3-pip; "\
|
||||
"sudo -H pip3 install --upgrade pip; "\
|
||||
"sudo -H pip3 install docker; "\
|
||||
"sudo python3 /tmp/debug.py"
|
||||
|
||||
|
||||
def run_cluster_diagnostics(spark_cluster_operations, cluster_id, output_directory=None):
|
||||
try:
|
||||
output = _run(spark_cluster_operations, cluster_id, output_directory)
|
||||
return output
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,19 @@
|
|||
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def cluster_download(core_cluster_operations, cluster_id: str, source_path: str, destination_path: str = None, host: bool = False, internal: bool = False, timeout: int = None):
|
||||
try:
|
||||
container_name = None if host else 'spark'
|
||||
return core_cluster_operations.copy(cluster_id,
|
||||
source_path,
|
||||
destination_path=destination_path,
|
||||
container_name=container_name,
|
||||
get=True,
|
||||
internal=internal,
|
||||
timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,13 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def get_cluster(core_cluster_operations, cluster_id: str):
|
||||
try:
|
||||
cluster = core_cluster_operations.get(cluster_id)
|
||||
return models.Cluster(cluster)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,7 @@
|
|||
from aztk.spark import models
|
||||
|
||||
|
||||
def get_application_log(core_base_operations, cluster_id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
base_application_log = core_base_operations.get_application_log(
|
||||
cluster_id, application_name, tail, current_bytes)
|
||||
return models.ApplicationLog(base_application_log)
|
|
@ -0,0 +1,12 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def get_application_status(core_cluster_operations, cluster_id: str, app_name: str):
|
||||
try:
|
||||
task = core_cluster_operations.batch_client.task.get(cluster_id, app_name)
|
||||
return task.state._value_
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,12 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def get_remote_login_settings(core_cluster_operations, id: str, node_id: str):
|
||||
try:
|
||||
return models.RemoteLogin(core_cluster_operations.get_remote_login_settings(id, node_id))
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,14 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk import models as base_models
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def list_clusters(core_cluster_operations):
|
||||
try:
|
||||
software_metadata_key = base_models.Software.spark
|
||||
return [models.Cluster(cluster) for cluster in core_cluster_operations.list(software_metadata_key)]
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,18 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def node_run(core_cluster_operations,
|
||||
cluster_id: str,
|
||||
node_id: str,
|
||||
command: str,
|
||||
host=False,
|
||||
internal: bool = False,
|
||||
timeout=None):
|
||||
try:
|
||||
return core_cluster_operations.node_run(
|
||||
cluster_id, node_id, command, internal, container_name='spark' if not host else None, timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,12 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def cluster_run(core_cluster_operations, cluster_id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
try:
|
||||
return core_cluster_operations.run(
|
||||
cluster_id, command, internal, container_name='spark' if not host else None, timeout=timeout)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,12 @@
|
|||
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def cluster_ssh_into_master(spark_cluster_operations, cluster_id, node_id, username, ssh_key=None, password=None, port_forward_list=None, internal=False):
|
||||
try:
|
||||
spark_cluster_operations.ssh_into_node(cluster_id, node_id, username, ssh_key, password, port_forward_list, internal)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,47 @@
|
|||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.error import AztkError
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def __get_node(core_cluster_operations, node_id: str, cluster_id: str) -> batch_models.ComputeNode:
|
||||
return core_cluster_operations.batch_client.compute_node.get(cluster_id, node_id)
|
||||
|
||||
|
||||
def affinitize_task_to_master(core_cluster_operations, spark_cluster_operations, cluster_id, task):
|
||||
cluster = spark_cluster_operations.get(cluster_id)
|
||||
if cluster.master_node_id is None:
|
||||
raise AztkError("Master has not yet been selected. Please wait until the cluster is finished provisioning.")
|
||||
master_node = core_cluster_operations.batch_client.compute_node.get(pool_id=cluster_id, node_id=cluster.master_node_id)
|
||||
task.affinity_info = batch_models.AffinityInformation(affinity_id=master_node.affinity_id)
|
||||
return task
|
||||
|
||||
|
||||
def submit_application(core_cluster_operations, spark_cluster_operations, cluster_id, application, remote: bool = False, wait: bool = False):
|
||||
"""
|
||||
Submit a spark app
|
||||
"""
|
||||
task = spark_cluster_operations._generate_application_task(core_cluster_operations, cluster_id, application, remote)
|
||||
task = affinitize_task_to_master(core_cluster_operations, spark_cluster_operations, cluster_id, task)
|
||||
|
||||
# Add task to batch job (which has the same name as cluster_id)
|
||||
job_id = cluster_id
|
||||
core_cluster_operations.batch_client.task.add(job_id=job_id, task=task)
|
||||
|
||||
if wait:
|
||||
helpers.wait_for_task_to_complete(job_id=job_id, task_id=task.id, batch_client=core_cluster_operations.batch_client)
|
||||
|
||||
|
||||
def submit(core_cluster_operations,
|
||||
spark_cluster_operations,
|
||||
cluster_id: str,
|
||||
application: models.ApplicationConfiguration,
|
||||
remote: bool = False,
|
||||
wait: bool = False):
|
||||
try:
|
||||
submit_application(core_cluster_operations, spark_cluster_operations, cluster_id, application, remote, wait)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,10 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
def wait_for_application_to_complete(core_cluster_operations, id, application_name):
|
||||
try:
|
||||
return core_cluster_operations.wait(id, application_name)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,248 @@
|
|||
from aztk.client.cluster import CoreClusterOperations
|
||||
from aztk.spark import models
|
||||
from aztk.spark.client.base import SparkBaseOperations
|
||||
|
||||
from .helpers import (copy, create, create_user, delete, diagnostics, download, get, get_application_log,
|
||||
get_application_status, get_remote_login_settings, list, node_run, run, submit, wait)
|
||||
|
||||
|
||||
class ClusterOperations(SparkBaseOperations):
|
||||
"""Spark ClusterOperations object
|
||||
|
||||
Attributes:
|
||||
_core_cluster_operations (:obj:`aztk.client.cluster.CoreClusterOperations`):
|
||||
# _spark_base_cluster_operations (:obj:`aztk.spark.client.cluster.CoreClusterOperations`):
|
||||
"""
|
||||
|
||||
def __init__(self, context):
|
||||
self._core_cluster_operations = CoreClusterOperations(context)
|
||||
# self._spark_base_cluster_operations = SparkBaseOperations()
|
||||
|
||||
def create(self, cluster_configuration: models.ClusterConfiguration, wait: bool = False):
|
||||
"""Create a cluster.
|
||||
|
||||
Args:
|
||||
cluster_configuration (:obj:`ClusterConfiguration`): Configuration for the cluster to be created.
|
||||
wait (:obj:`bool`): if True, this function will block until the cluster creation is finished.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.Cluster`: An Cluster object representing the state and configuration of the cluster.
|
||||
"""
|
||||
return create.create_cluster(self._core_cluster_operations, self, cluster_configuration, wait)
|
||||
|
||||
def delete(self, id: str, keep_logs: bool = False):
|
||||
"""Delete a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to delete.
|
||||
keep_logs (:obj:`bool`): If True, the logs related to this cluster in Azure Storage are not deleted.
|
||||
Defaults to False.
|
||||
Returns:
|
||||
:obj:`bool`: True if the deletion process was successful.
|
||||
"""
|
||||
return delete.delete_cluster(self._core_cluster_operations, id, keep_logs)
|
||||
|
||||
def get(self, id: str):
|
||||
"""Get details about the state of a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to get.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.Cluster`: A Cluster object representing the state and configuration of the cluster.
|
||||
"""
|
||||
return get.get_cluster(self._core_cluster_operations, id)
|
||||
|
||||
def list(self):
|
||||
"""List all clusters.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.spark.models.Cluster]`: List of Cluster objects each representing the state and configuration of the cluster.
|
||||
"""
|
||||
return list.list_clusters(self._core_cluster_operations)
|
||||
|
||||
def submit(self, id: str, application: models.ApplicationConfiguration, remote: bool = False, wait: bool = False):
|
||||
"""Submit an application to a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to submit the application to.
|
||||
application (:obj:`aztk.spark.models.ApplicationConfiguration`): Application definition
|
||||
remote (:obj:`bool`): If True, the application file will not be uploaded, it is assumed to be reachable
|
||||
by the cluster already. This is useful when your application is stored in a mounted Azure File Share
|
||||
and not the client. Defaults to False.
|
||||
wait (:obj:`bool`, optional): If True, this function blocks until the application has completed. Defaults to False.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return submit.submit(self._core_cluster_operations, self, id, application, remote, wait)
|
||||
|
||||
def create_user(self, id: str, username: str, password: str = None, ssh_key: str = None):
|
||||
"""Create a user on every node in the cluster
|
||||
|
||||
Args:
|
||||
username (:obj:`str`): name of the user to create.
|
||||
pool_id (:obj:`str`): id of the cluster to create the user on.
|
||||
ssh_key (:obj:`str`, optional): ssh public key to create the user with, must use ssh_key or password. Defaults to None.
|
||||
password (:obj:`str`, optional): password for the user, must use ssh_key or password. Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return create_user.create_user(self._core_cluster_operations, self, id, username, ssh_key, password)
|
||||
|
||||
def get_application_status(self, id: str, application_name: str):
|
||||
"""Get the status of a submitted application
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the name of the cluster the application was submitted to
|
||||
application_name (:obj:`str`): the name of the application to get
|
||||
|
||||
Returns:
|
||||
:obj:`str`: the status state of the application
|
||||
"""
|
||||
return get_application_status.get_application_status(self._core_cluster_operations, id, application_name)
|
||||
|
||||
def run(self, id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
"""Run a bash command on every node in the cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to run the command on.
|
||||
command (:obj:`str`): the bash command to execute on the node.
|
||||
internal (:obj:`bool`): if true, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
container_name=None (:obj:`str`, optional): the name of the container to run the command in.
|
||||
If None, the command will run on the host VM. Defaults to None.
|
||||
timeout=None (:obj:`str`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.spark.models.NodeOutput]`: list of NodeOutput objects containing the output of the run command
|
||||
"""
|
||||
return run.cluster_run(self._core_cluster_operations, id, command, host, internal, timeout)
|
||||
|
||||
def node_run(self, id: str, node_id: str, command: str, host=False, internal: bool = False, timeout=None):
|
||||
"""Run a bash command on the given node
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to run the command on.
|
||||
node_id (:obj:`str`): the id of the node in the cluster to run the command on.
|
||||
command (:obj:`str`): the bash command to execute on the node.
|
||||
internal (:obj:`bool`): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
container_name=None (:obj:`str`, optional): the name of the container to run the command in.
|
||||
If None, the command will run on the host VM. Defaults to None.
|
||||
timeout=None (:obj:`str`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.NodeOutput`: object containing the output of the run command
|
||||
"""
|
||||
return node_run.node_run(self._core_cluster_operations, id, node_id, command, host, internal, timeout)
|
||||
|
||||
def copy(self,
|
||||
id: str,
|
||||
source_path: str,
|
||||
destination_path: str,
|
||||
host: bool = False,
|
||||
internal: bool = False,
|
||||
timeout: int = None):
|
||||
"""Copy a file to every node in a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to copy files with.
|
||||
source_path (:obj:`str`): the local path of the file to copy.
|
||||
destination_path (:obj:`str`, optional): the path on each node the file is copied to.
|
||||
container_name (:obj:`str`, optional): the name of the container to copy to or from.
|
||||
If None, the copy operation will occur on the host VM, Defaults to None.
|
||||
internal (:obj:`bool`, optional): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
timeout (:obj:`int`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.spark.models.NodeOutput]`: A list of NodeOutput objects representing the output of the copy command.
|
||||
"""
|
||||
return copy.cluster_copy(self._core_cluster_operations, id, source_path, destination_path, host, internal, timeout)
|
||||
|
||||
def download(self,
|
||||
id: str,
|
||||
source_path: str,
|
||||
destination_path: str = None,
|
||||
host: bool = False,
|
||||
internal: bool = False,
|
||||
timeout: int = None):
|
||||
"""Download a file from every node in a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to copy files with.
|
||||
source_path (:obj:`str`): the path of the file to copy from.
|
||||
destination_path (:obj:`str`, optional): the local directory path where the output should be written.
|
||||
If None, a SpooledTemporaryFile will be returned in the NodeOutput object, else the file will be
|
||||
written to this path. Defaults to None.
|
||||
container_name (:obj:`str`, optional): the name of the container to copy to or from.
|
||||
If None, the copy operation will occur on the host VM, Defaults to None.
|
||||
internal (:obj:`bool`, optional): if True, this will connect to the node using its internal IP.
|
||||
Only use this if running within the same VNET as the cluster. Defaults to False.
|
||||
timeout (:obj:`int`, optional): The timeout in seconds for establishing a connection to the node.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.spark.models.NodeOutput]`: A list of NodeOutput objects representing the output of the copy command.
|
||||
"""
|
||||
return download.cluster_download(self._core_cluster_operations, id, source_path, destination_path, host, internal,
|
||||
timeout)
|
||||
|
||||
def diagnostics(self, id, output_directory=None):
|
||||
"""Download a file from every node in a cluster.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to copy files with.
|
||||
output_directory (:obj:`str`, optional): the local directory path where the output should be written.
|
||||
If None, a SpooledTemporaryFile will be returned in the NodeOutput object, else the file will be
|
||||
written to this path. Defaults to None.
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.spark.models.NodeOutput]`: A list of NodeOutput objects representing the output of the copy command.
|
||||
"""
|
||||
return diagnostics.run_cluster_diagnostics(self, id, output_directory)
|
||||
|
||||
def get_application_log(self, id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
"""Get the log for a running or completed application
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster to run the command on.
|
||||
application_name (:obj:`str`): str
|
||||
tail (:obj:`bool`, optional): If True, get the remaining bytes after current_bytes. Otherwise, the whole log will be retrieved.
|
||||
Only use this if streaming the log as it is being written. Defaults to False.
|
||||
current_bytes (:obj:`int`): Specifies the last seen byte, so only the bytes after current_bytes are retrieved.
|
||||
Only useful is streaming the log as it is being written. Only used if tail is True.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.ApplicationLog`: a model representing the output of the application.
|
||||
"""
|
||||
return get_application_log.get_application_log(self._core_cluster_operations, id, application_name, tail, current_bytes)
|
||||
|
||||
def get_remote_login_settings(self, id: str, node_id: str):
|
||||
"""Get the remote login information for a node in a cluster
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster the node is in
|
||||
node_id (:obj:`str`): the id of the node in the cluster
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.RemoteLogin`: Object that contains the ip address and port combination to login to a node
|
||||
"""
|
||||
return get_remote_login_settings.get_remote_login_settings(self._core_cluster_operations, id, node_id)
|
||||
|
||||
def wait(self, id: str, application_name: str):
|
||||
"""Wait until the application has completed
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the cluster the application was submitted to
|
||||
application_name (:obj:`str`): the name of the application to wait for
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return wait.wait_for_application_to_complete(self._core_cluster_operations, id, application_name)
|
|
@ -0,0 +1 @@
|
|||
from .operations import JobOperations
|
|
@ -0,0 +1,39 @@
|
|||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
|
||||
def _delete(core_job_operations, spark_job_operations, job_id, keep_logs: bool = False):
|
||||
recent_run_job = get_recent_job(core_job_operations, job_id)
|
||||
deleted_job_or_job_schedule = False
|
||||
# delete job
|
||||
try:
|
||||
core_job_operations.batch_client.job.delete(recent_run_job.id)
|
||||
deleted_job_or_job_schedule = True
|
||||
except batch_models.batch_error.BatchErrorException:
|
||||
pass
|
||||
# delete job_schedule
|
||||
try:
|
||||
core_job_operations.batch_client.job_schedule.delete(job_id)
|
||||
deleted_job_or_job_schedule = True
|
||||
except batch_models.batch_error.BatchErrorException:
|
||||
pass
|
||||
|
||||
# delete storage container
|
||||
if keep_logs:
|
||||
cluster_data = core_job_operations.get_cluster_data(job_id)
|
||||
cluster_data.delete_container(job_id)
|
||||
|
||||
return deleted_job_or_job_schedule
|
||||
|
||||
|
||||
def delete(core_job_operations, spark_job_operations, job_id: str, keep_logs: bool = False):
|
||||
try:
|
||||
return _delete(core_job_operations, spark_job_operations, job_id, keep_logs)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,32 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
|
||||
def _get_job(core_job_operations, job_id):
|
||||
job = core_job_operations.batch_client.job_schedule.get(job_id)
|
||||
job_apps = [
|
||||
app for app in core_job_operations.batch_client.task.list(job_id=job.execution_info.recent_job.id) if app.id != job_id
|
||||
]
|
||||
recent_run_job = get_recent_job(core_job_operations, job_id)
|
||||
pool_prefix = recent_run_job.pool_info.auto_pool_specification.auto_pool_id_prefix
|
||||
pool = nodes = None
|
||||
for cloud_pool in core_job_operations.batch_client.pool.list():
|
||||
if pool_prefix in cloud_pool.id:
|
||||
pool = cloud_pool
|
||||
break
|
||||
if pool:
|
||||
nodes = core_job_operations.batch_client.compute_node.list(pool_id=pool.id)
|
||||
return job, job_apps, pool, nodes
|
||||
|
||||
|
||||
def get_job(core_job_operations, job_id):
|
||||
try:
|
||||
job, apps, pool, nodes = _get_job(core_job_operations, job_id)
|
||||
return models.Job(job, apps, pool, nodes)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,25 @@
|
|||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
|
||||
def _get_application(spark_job_operations, job_id, application_name):
|
||||
# info about the app
|
||||
recent_run_job = get_recent_job(spark_job_operations._core_job_operations, job_id)
|
||||
try:
|
||||
return spark_job_operations._core_job_operations.batch_client.task.get(job_id=recent_run_job.id, task_id=application_name)
|
||||
except batch_models.batch_error.BatchErrorException:
|
||||
raise error.AztkError(
|
||||
"The Spark application {0} is still being provisioned or does not exist.".format(application_name))
|
||||
|
||||
|
||||
def get_application(spark_job_operations, job_id, application_name):
|
||||
try:
|
||||
return models.Application(_get_application(spark_job_operations, job_id, application_name))
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,40 @@
|
|||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
from .list_applications import list_applications
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
|
||||
def _get_application_log(core_job_operations, spark_job_operations, job_id, application_name):
|
||||
# TODO: change where the logs are uploaded so they aren't overwritten on scheduled runs
|
||||
# current: job_id, application_name/output.log
|
||||
# new: job_id, recent_run_job.id/application_name/output.log
|
||||
recent_run_job = get_recent_job(core_job_operations, job_id)
|
||||
try:
|
||||
task = core_job_operations.batch_client.task.get(job_id=recent_run_job.id, task_id=application_name)
|
||||
except batch_models.batch_error.BatchErrorException as e:
|
||||
# see if the application is written to metadata of pool
|
||||
applications = spark_job_operations.list_applications(job_id)
|
||||
|
||||
for application in applications:
|
||||
if applications[application] is None and application == application_name:
|
||||
raise error.AztkError("The application {0} has not yet been created.".format(application))
|
||||
raise error.AztkError("The application {0} does not exist".format(application_name))
|
||||
else:
|
||||
if task.state in (batch_models.TaskState.active, batch_models.TaskState.running,
|
||||
batch_models.TaskState.preparing):
|
||||
raise error.AztkError("The application {0} has not yet finished executing.".format(application_name))
|
||||
|
||||
return core_job_operations.get_application_log(job_id, application_name)
|
||||
|
||||
|
||||
def get_job_application_log(core_job_operations, spark_job_operations, job_id, application_name):
|
||||
try:
|
||||
return models.ApplicationLog(
|
||||
_get_application_log(core_job_operations, spark_job_operations, job_id, application_name))
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,3 @@
|
|||
def get_recent_job(core_job_operations, job_id):
|
||||
job_schedule = core_job_operations.batch_client.job_schedule.get(job_id)
|
||||
return core_job_operations.batch_client.job.get(job_schedule.execution_info.recent_job.id)
|
|
@ -0,0 +1,16 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def _list_jobs(core_job_operations):
|
||||
return [cloud_job_schedule for cloud_job_schedule in core_job_operations.batch_client.job_schedule.list()]
|
||||
|
||||
|
||||
def list_jobs(core_job_operations):
|
||||
try:
|
||||
return [models.Job(cloud_job_schedule) for cloud_job_schedule in _list_jobs(core_job_operations)]
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,35 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
|
||||
def _list_applications(core_job_operations, job_id):
|
||||
recent_run_job = get_recent_job(core_job_operations, job_id)
|
||||
# get application names from Batch job metadata
|
||||
applications = {}
|
||||
for metadata_item in recent_run_job.metadata:
|
||||
if metadata_item.name == "applications":
|
||||
for app_name in metadata_item.value.split('\n'):
|
||||
applications[app_name] = None
|
||||
|
||||
# get tasks from Batch job
|
||||
for task in core_job_operations.batch_client.task.list(recent_run_job.id):
|
||||
if task.id != job_id:
|
||||
applications[task.id] = task
|
||||
|
||||
return applications
|
||||
|
||||
|
||||
def list_applications(core_job_operations, job_id):
|
||||
try:
|
||||
applications = _list_applications(core_job_operations, job_id)
|
||||
for item in applications:
|
||||
if applications[item]:
|
||||
applications[item] = models.Application(applications[item])
|
||||
return applications
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,22 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
|
||||
def _stop(core_job_operations, job_id):
|
||||
# terminate currently running job and tasks
|
||||
recent_run_job = get_recent_job(core_job_operations, job_id)
|
||||
core_job_operations.batch_client.job.terminate(recent_run_job.id)
|
||||
# terminate job_schedule
|
||||
core_job_operations.batch_client.job_schedule.terminate(job_id)
|
||||
|
||||
|
||||
def stop(self, job_id):
|
||||
try:
|
||||
return _stop(self, job_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,16 @@
|
|||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
from .get_recent_job import get_recent_job
|
||||
|
||||
def stop_app(core_job_operations, job_id, application_name):
|
||||
recent_run_job = get_recent_job(core_job_operations, job_id)
|
||||
|
||||
# stop batch task
|
||||
try:
|
||||
core_job_operations.batch_client.task.terminate(job_id=recent_run_job.id, task_id=application_name)
|
||||
return True
|
||||
except batch_error.BatchErrorException:
|
||||
return False
|
|
@ -0,0 +1,116 @@
|
|||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
import yaml
|
||||
|
||||
from aztk import error
|
||||
from aztk import models as base_models
|
||||
from aztk.internal.cluster_data import NodeData
|
||||
from aztk.spark import models
|
||||
from aztk.utils import helpers
|
||||
from aztk.utils.command_builder import CommandBuilder
|
||||
|
||||
|
||||
def __app_cmd():
|
||||
docker_exec = CommandBuilder("sudo docker exec")
|
||||
docker_exec.add_argument("-i")
|
||||
docker_exec.add_option("-e", "AZ_BATCH_TASK_WORKING_DIR=$AZ_BATCH_TASK_WORKING_DIR")
|
||||
docker_exec.add_option("-e", "AZ_BATCH_JOB_ID=$AZ_BATCH_JOB_ID")
|
||||
docker_exec.add_argument("spark /bin/bash >> output.log 2>&1 -c \"" \
|
||||
"source ~/.bashrc; " \
|
||||
"export PYTHONPATH=$PYTHONPATH:\$AZTK_WORKING_DIR; " \
|
||||
"cd \$AZ_BATCH_TASK_WORKING_DIR; " \
|
||||
"\$AZTK_WORKING_DIR/.aztk-env/.venv/bin/python \$AZTK_WORKING_DIR/aztk/node_scripts/job_submission.py\"")
|
||||
return docker_exec.to_str()
|
||||
|
||||
|
||||
def generate_job_manager_task(core_job_operations, job, application_tasks):
|
||||
resource_files = []
|
||||
for application, task in application_tasks:
|
||||
task_definition_resource_file = helpers.upload_text_to_container(
|
||||
container_name=job.id,
|
||||
application_name=application.name + '.yaml',
|
||||
file_path=application.name + '.yaml',
|
||||
content=yaml.dump(task),
|
||||
blob_client=core_job_operations.blob_client)
|
||||
resource_files.append(task_definition_resource_file)
|
||||
|
||||
task_cmd = __app_cmd()
|
||||
|
||||
# Create task
|
||||
task = batch_models.JobManagerTask(
|
||||
id=job.id,
|
||||
command_line=helpers.wrap_commands_in_shell([task_cmd]),
|
||||
resource_files=resource_files,
|
||||
kill_job_on_completion=False,
|
||||
allow_low_priority_node=True,
|
||||
user_identity=batch_models.UserIdentity(
|
||||
auto_user=batch_models.AutoUserSpecification(
|
||||
scope=batch_models.AutoUserScope.task, elevation_level=batch_models.ElevationLevel.admin)))
|
||||
|
||||
return task
|
||||
|
||||
|
||||
def _default_scheduling_target(vm_count: int):
|
||||
if vm_count == 0:
|
||||
return models.SchedulingTarget.Any
|
||||
else:
|
||||
return models.SchedulingTarget.Dedicated
|
||||
|
||||
|
||||
def _apply_default_for_job_config(job_conf: models.JobConfiguration):
|
||||
if job_conf.scheduling_target is None:
|
||||
job_conf.scheduling_target = _default_scheduling_target(job_conf.max_dedicated_nodes)
|
||||
|
||||
return job_conf
|
||||
|
||||
|
||||
def submit_job(core_job_operations, spark_job_operations, job_configuration: models.JobConfiguration, wait: bool = False):
|
||||
try:
|
||||
job_configuration = _apply_default_for_job_config(job_configuration)
|
||||
job_configuration.validate()
|
||||
cluster_data = core_job_operations.get_cluster_data(job_configuration.id)
|
||||
node_data = NodeData(job_configuration.to_cluster_config()).add_core().done()
|
||||
zip_resource_files = cluster_data.upload_node_data(node_data).to_resource_file()
|
||||
|
||||
start_task = spark_job_operations._generate_cluster_start_task(
|
||||
core_job_operations,
|
||||
zip_resource_files,
|
||||
job_configuration.id,
|
||||
job_configuration.gpu_enabled,
|
||||
job_configuration.get_docker_repo(),
|
||||
mixed_mode=job_configuration.mixed_mode(),
|
||||
worker_on_master=job_configuration.worker_on_master)
|
||||
|
||||
application_tasks = []
|
||||
for application in job_configuration.applications:
|
||||
application_tasks.append((application,
|
||||
spark_job_operations._generate_application_task(core_job_operations, job_configuration.id,
|
||||
application)))
|
||||
|
||||
job_manager_task = generate_job_manager_task(core_job_operations, job_configuration, application_tasks)
|
||||
|
||||
software_metadata_key = base_models.Software.spark
|
||||
|
||||
vm_image = models.VmImage(publisher='Canonical', offer='UbuntuServer', sku='16.04')
|
||||
|
||||
autoscale_formula = "$TargetDedicatedNodes = {0}; " \
|
||||
"$TargetLowPriorityNodes = {1}".format(
|
||||
job_configuration.max_dedicated_nodes,
|
||||
job_configuration.max_low_pri_nodes)
|
||||
|
||||
job = core_job_operations.submit(
|
||||
job_configuration=job_configuration,
|
||||
start_task=start_task,
|
||||
job_manager_task=job_manager_task,
|
||||
autoscale_formula=autoscale_formula,
|
||||
software_metadata_key=software_metadata_key,
|
||||
vm_image_model=vm_image,
|
||||
application_metadata='\n'.join(application.name for application in (job_configuration.applications or [])))
|
||||
|
||||
if wait:
|
||||
spark_job_operations.wait(id=job_configuration.id)
|
||||
|
||||
return models.Job(job)
|
||||
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,22 @@
|
|||
import time
|
||||
|
||||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
|
||||
|
||||
def _wait_until_job_finished(core_job_operations, job_id):
|
||||
job_state = core_job_operations.batch_client.job_schedule.get(job_id).state
|
||||
|
||||
while job_state != batch_models.JobScheduleState.completed:
|
||||
time.sleep(3)
|
||||
job_state = core_job_operations.batch_client.job_schedule.get(job_id).state
|
||||
|
||||
|
||||
def wait_until_job_finished(core_job_operations, job_id):
|
||||
try:
|
||||
_wait_until_job_finished(core_job_operations, job_id)
|
||||
except batch_error.BatchErrorException as e:
|
||||
raise error.AztkError(helpers.format_batch_exception(e))
|
|
@ -0,0 +1,134 @@
|
|||
from aztk.client.job import CoreJobOperations
|
||||
from aztk.spark import models
|
||||
from aztk.spark.client.base import SparkBaseOperations
|
||||
|
||||
from .helpers import (delete, get, get_application, get_application_log, list, list_applications, stop,
|
||||
stop_application, submit, wait_until_complete)
|
||||
|
||||
|
||||
class JobOperations(SparkBaseOperations):
|
||||
"""Spark ClusterOperations object
|
||||
|
||||
Attributes:
|
||||
_core_job_operations (:obj:`aztk.client.cluster.CoreJobOperations`):
|
||||
"""
|
||||
|
||||
def __init__(self, context):
|
||||
self._core_job_operations = CoreJobOperations(context)
|
||||
# self._spark_base_cluster_operations = SparkBaseOperations()
|
||||
|
||||
|
||||
def list(self):
|
||||
"""List all jobs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[Job]`: List of aztk.models.Job objects each representing the state and configuration of the job.
|
||||
"""
|
||||
return list.list_jobs(self._core_job_operations)
|
||||
|
||||
def delete(self, id, keep_logs: bool = False):
|
||||
"""Delete a job.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job to delete.
|
||||
keep_logs (:obj:`bool`): If True, the logs related to this job in Azure Storage are not deleted.
|
||||
Defaults to False.
|
||||
Returns:
|
||||
:obj:`bool`: True if the deletion process was successful.
|
||||
"""
|
||||
return delete.delete(self._core_job_operations, self, id, keep_logs)
|
||||
|
||||
def get(self, id):
|
||||
"""Get details about the state of a job.
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job to get.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.job`: A job object representing the state and configuration of the job.
|
||||
"""
|
||||
return get.get_job(self._core_job_operations, id)
|
||||
|
||||
def get_application(self, id, application_name):
|
||||
"""Get information on a submitted application
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the name of the job the application was submitted to
|
||||
application_name (:obj:`str`): the name of the application to get
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.Application`: object representing that state and output of an application
|
||||
"""
|
||||
return get_application.get_application(self, id, application_name)
|
||||
|
||||
def get_application_log(self, id, application_name):
|
||||
"""Get the log for a running or completed application
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job the application was submitted to.
|
||||
application_name (:obj:`str`): the name of the application to get the log of
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.ApplicationLog`: a model representing the output of the application.
|
||||
"""
|
||||
return get_application_log.get_job_application_log(self._core_job_operations, self, id, application_name)
|
||||
|
||||
def list_applications(self, id):
|
||||
"""List all application defined as a part of a job
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job to list the applications of
|
||||
|
||||
Returns:
|
||||
:obj:`List[aztk.spark.models.Application]`: a list of all applications defined as a part of the job
|
||||
"""
|
||||
return list_applications.list_applications(self._core_job_operations, id)
|
||||
|
||||
def stop(self, id):
|
||||
"""Stop a submitted job
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job to stop
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
return stop.stop(self._core_job_operations, id)
|
||||
|
||||
def stop_application(self, id, application_name):
|
||||
"""Stops a submitted application
|
||||
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job the application belongs to
|
||||
application_name (:obj:`str`): the name of the application to stop
|
||||
|
||||
Returns:
|
||||
:obj:`bool`: True if the stop was successful, else False
|
||||
"""
|
||||
return stop_application.stop_app(self._core_job_operations, id, application_name)
|
||||
|
||||
def submit(self, job_configuration: models.JobConfiguration, wait: bool = False):
|
||||
"""Submit a job
|
||||
|
||||
Jobs are a cluster definition and one or many application definitions which run on the cluster. The job's
|
||||
cluster will be allocated and configured, then the applications will be executed with their output stored
|
||||
in Azure Storage. When all applications have completed, the cluster will be automatically deleted.
|
||||
|
||||
Args:
|
||||
job_configuration (:obj:`aztk.spark.models.JobConfiguration`): Model defining the job's configuration.
|
||||
wait (:obj:`bool`): If True, blocks until job is completed. Defaults to False.
|
||||
|
||||
Returns:
|
||||
:obj:`aztk.spark.models.Job`: Model representing the state of the job.
|
||||
"""
|
||||
return submit.submit_job(self._core_job_operations, self, job_configuration, wait)
|
||||
|
||||
def wait(self, id):
|
||||
"""Wait until the job has completed.
|
||||
Args:
|
||||
id (:obj:`str`): the id of the job the application belongs to
|
||||
|
||||
Returns:
|
||||
:obj:`None`
|
||||
"""
|
||||
wait_until_complete.wait_until_job_finished(self._core_job_operations, id)
|
|
@ -0,0 +1,2 @@
|
|||
# ALL FILES IN THIS DIRECTORY ARE DEPRECATED, WILL BE REMOTE IN v0.9.0
|
||||
|
|
@ -1,13 +1,13 @@
|
|||
import time
|
||||
import azure.batch.models as batch_models
|
||||
|
||||
import azure
|
||||
import azure.batch.models as batch_models
|
||||
import azure.batch.models.batch_error as batch_error
|
||||
|
||||
from aztk import error
|
||||
from aztk.utils import helpers
|
||||
from aztk.utils import constants
|
||||
from aztk import models as base_models
|
||||
from aztk.spark import models
|
||||
|
||||
from aztk.utils import constants, helpers
|
||||
|
||||
output_file = constants.TASK_WORKING_DIR + \
|
||||
"/" + constants.SPARK_SUBMIT_LOGS_FILE
|
||||
|
@ -53,14 +53,14 @@ def get_log_from_storage(blob_client, container_name, application_name, task):
|
|||
blob = blob_client.get_blob_to_text(container_name, application_name + '/' + constants.SPARK_SUBMIT_LOGS_FILE)
|
||||
except azure.common.AzureMissingResourceHttpError:
|
||||
raise error.AztkError("Logs not found in your storage account. They were either deleted or never existed.")
|
||||
|
||||
return models.ApplicationLog(
|
||||
base_model = base_models.ApplicationLog(
|
||||
name=application_name,
|
||||
cluster_id=container_name,
|
||||
application_state=task.state._value_,
|
||||
log=blob.content,
|
||||
total_bytes=blob.properties.content_length,
|
||||
exit_code = task.execution_info.exit_code)
|
||||
exit_code=task.execution_info.exit_code)
|
||||
return models.ApplicationLog(base_model)
|
||||
|
||||
|
||||
def get_log(batch_client, blob_client, cluster_id: str, application_name: str, tail=False, current_bytes: int = 0):
|
||||
|
@ -85,19 +85,20 @@ def get_log(batch_client, blob_client, cluster_id: str, application_name: str, t
|
|||
stream = batch_client.file.get_from_task(
|
||||
job_id, task_id, output_file, batch_models.FileGetFromTaskOptions(ocp_range=ocp_range))
|
||||
content = helpers.read_stream_as_string(stream)
|
||||
|
||||
return models.ApplicationLog(
|
||||
base_model = base_models.ApplicationLog(
|
||||
name=application_name,
|
||||
cluster_id=cluster_id,
|
||||
application_state=task.state._value_,
|
||||
log=content,
|
||||
total_bytes=target_bytes,
|
||||
exit_code=task.execution_info.exit_code)
|
||||
return models.ApplicationLog(base_model)
|
||||
else:
|
||||
return models.ApplicationLog(
|
||||
base_model = base_models.ApplicationLog(
|
||||
name=application_name,
|
||||
cluster_id=cluster_id,
|
||||
application_state=task.state._value_,
|
||||
log='',
|
||||
total_bytes=target_bytes,
|
||||
exit_code=task.execution_info.exit_code)
|
||||
return models.ApplicationLog(base_model)
|
||||
|
|
|
@ -17,10 +17,10 @@ class SparkToolkit(aztk.models.Toolkit):
|
|||
|
||||
|
||||
class Cluster(aztk.models.Cluster):
|
||||
def __init__(self, pool: batch_models.CloudPool = None, nodes: batch_models.ComputeNodePaged = None):
|
||||
super().__init__(pool, nodes)
|
||||
def __init__(self, cluster: aztk.models.Cluster):
|
||||
super().__init__(cluster.pool, cluster.nodes)
|
||||
self.master_node_id = self.__get_master_node_id()
|
||||
self.gpu_enabled = helpers.is_gpu_enabled(pool.vm_size)
|
||||
self.gpu_enabled = helpers.is_gpu_enabled(cluster.pool.vm_size)
|
||||
|
||||
def is_pool_running_spark(self, pool: batch_models.CloudPool):
|
||||
if pool.metadata is None:
|
||||
|
@ -47,7 +47,9 @@ class Cluster(aztk.models.Cluster):
|
|||
|
||||
|
||||
class RemoteLogin(aztk.models.RemoteLogin):
|
||||
pass
|
||||
def __init__(self, remote_login: aztk.models.RemoteLogin):
|
||||
super().__init__(remote_login.ip_address, remote_login.port)
|
||||
|
||||
|
||||
class PortForwardingSpecification(aztk.models.PortForwardingSpecification):
|
||||
pass
|
||||
|
@ -286,16 +288,16 @@ class Job():
|
|||
self.creation_time = cloud_job_schedule.creation_time
|
||||
self.applications = [Application(task) for task in (cloud_tasks or [])]
|
||||
if pool:
|
||||
self.cluster = Cluster(pool, nodes)
|
||||
self.cluster = Cluster(aztk.models.Cluster(pool, nodes))
|
||||
else:
|
||||
self.cluster = None
|
||||
|
||||
|
||||
class ApplicationLog():
|
||||
def __init__(self, name: str, cluster_id: str, log: str, total_bytes: int, application_state: batch_models.TaskState, exit_code: int):
|
||||
self.name = name
|
||||
self.cluster_id = cluster_id # TODO: change to something cluster/job agnostic
|
||||
self.log = log
|
||||
self.total_bytes = total_bytes
|
||||
self.application_state = application_state
|
||||
self.exit_code = exit_code
|
||||
class ApplicationLog(aztk.models.ApplicationLog):
|
||||
def __init__(self, application_log: aztk.models.ApplicationLog):
|
||||
self.name = application_log.name
|
||||
self.cluster_id = application_log.cluster_id # TODO: change to something cluster/job agnostic
|
||||
self.log = application_log.log
|
||||
self.total_bytes = application_log.total_bytes
|
||||
self.application_state = application_log.application_state
|
||||
self.exit_code = application_log.exit_code
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
from aztk.spark import models
|
||||
|
||||
SPARK_VM_IMAGE = models.VmImage(publisher='Canonical', offer='UbuntuServer', sku='16.04')
|
|
@ -17,18 +17,18 @@ class MasterInvalidStateError(Exception):
|
|||
pass
|
||||
|
||||
|
||||
def wait_for_master_to_be_ready(client, cluster_id: str):
|
||||
def wait_for_master_to_be_ready(core_operations, spark_operations, cluster_id: str):
|
||||
|
||||
master_node_id = None
|
||||
start_time = datetime.datetime.now()
|
||||
while True:
|
||||
if not master_node_id:
|
||||
master_node_id = client.get_cluster(cluster_id).master_node_id
|
||||
master_node_id = spark_operations.get(cluster_id).master_node_id
|
||||
if not master_node_id:
|
||||
time.sleep(5)
|
||||
continue
|
||||
|
||||
master_node = client.batch_client.compute_node.get(cluster_id, master_node_id)
|
||||
master_node = core_operations.batch_client.compute_node.get(cluster_id, master_node_id)
|
||||
|
||||
if master_node.state in [batch_models.ComputeNodeState.idle, batch_models.ComputeNodeState.running]:
|
||||
break
|
||||
|
|
|
@ -30,12 +30,12 @@ def execute(args: typing.NamedTuple):
|
|||
if args.ssh_key:
|
||||
ssh_key = args.ssh_key
|
||||
else:
|
||||
ssh_key = spark_client.secrets_config.ssh_pub_key
|
||||
ssh_key = spark_client.secrets_configuration.ssh_pub_key
|
||||
|
||||
ssh_key, password = utils.get_ssh_key_or_prompt(ssh_key, args.username, args.password, spark_client.secrets_config)
|
||||
ssh_key, password = utils.get_ssh_key_or_prompt(ssh_key, args.username, args.password, spark_client.secrets_configuration)
|
||||
|
||||
spark_client.create_user(
|
||||
cluster_id=args.cluster_id,
|
||||
spark_client.cluster.create_user(
|
||||
id=args.cluster_id,
|
||||
username=args.username,
|
||||
password=password,
|
||||
ssh_key=ssh_key
|
||||
|
|
|
@ -30,7 +30,7 @@ def execute(args: typing.NamedTuple):
|
|||
if args.tail:
|
||||
utils.stream_logs(client=spark_client, cluster_id=args.cluster_id, application_name=args.app_name)
|
||||
else:
|
||||
app_log = spark_client.get_application_log(cluster_id=args.cluster_id, application_name=args.app_name)
|
||||
app_log = spark_client.cluster.get_application_log(id=args.cluster_id, application_name=args.app_name)
|
||||
if args.output:
|
||||
with utils.Spinner():
|
||||
with open(os.path.abspath(os.path.expanduser(args.output)), "w", encoding="UTF-8") as f:
|
||||
|
|
|
@ -24,8 +24,8 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
with utils.Spinner():
|
||||
copy_output = spark_client.cluster_copy(
|
||||
cluster_id=args.cluster_id,
|
||||
copy_output = spark_client.cluster.copy(
|
||||
id=args.cluster_id,
|
||||
source_path=args.source_path,
|
||||
destination_path=args.dest_path,
|
||||
internal=args.internal
|
||||
|
|
|
@ -66,10 +66,10 @@ def execute(args: typing.NamedTuple):
|
|||
user_configuration = cluster_conf.user_configuration
|
||||
|
||||
if user_configuration and user_configuration.username:
|
||||
ssh_key, password = utils.get_ssh_key_or_prompt(spark_client.secrets_config.ssh_pub_key,
|
||||
ssh_key, password = utils.get_ssh_key_or_prompt(spark_client.secrets_configuration.ssh_pub_key,
|
||||
user_configuration.username,
|
||||
user_configuration.password,
|
||||
spark_client.secrets_config)
|
||||
spark_client.secrets_configuration)
|
||||
cluster_conf.user_configuration = aztk.spark.models.UserConfiguration(
|
||||
username=user_configuration.username,
|
||||
password=password,
|
||||
|
@ -82,8 +82,8 @@ def execute(args: typing.NamedTuple):
|
|||
utils.print_cluster_conf(cluster_conf, wait)
|
||||
with utils.Spinner():
|
||||
# create spark cluster
|
||||
cluster = spark_client.create_cluster(
|
||||
cluster_conf,
|
||||
cluster = spark_client.cluster.create(
|
||||
cluster_configuration=cluster_conf,
|
||||
wait=wait
|
||||
)
|
||||
|
||||
|
|
|
@ -22,5 +22,5 @@ def execute(args: typing.NamedTuple):
|
|||
if not args.output:
|
||||
args.output = os.path.join(os.getcwd(), "debug-{0}-{1}".format(args.cluster_id, timestr))
|
||||
with utils.Spinner():
|
||||
spark_client.run_cluster_diagnostics(cluster_id=args.cluster_id, output_directory=args.output)
|
||||
spark_client.cluster.diagnostics(id=args.cluster_id, output_directory=args.output)
|
||||
# TODO: analyze results, display some info about status
|
||||
|
|
|
@ -40,7 +40,7 @@ def execute(args: typing.NamedTuple):
|
|||
log.error("Confirmation cluster id does not match. Please try again.")
|
||||
return
|
||||
|
||||
if spark_client.delete_cluster(cluster_id, args.keep_logs):
|
||||
if spark_client.cluster.delete(id=cluster_id, keep_logs=args.keep_logs):
|
||||
log.info("Deleting cluster %s", cluster_id)
|
||||
else:
|
||||
log.error("Cluster with id '%s' doesn't exist or was already deleted.", cluster_id)
|
||||
|
|
|
@ -23,10 +23,10 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
cluster_id = args.cluster_id
|
||||
cluster = spark_client.get_cluster(cluster_id)
|
||||
cluster = spark_client.cluster.get(cluster_id)
|
||||
utils.print_cluster(spark_client, cluster, args.internal)
|
||||
|
||||
configuration = spark_client.get_cluster_config(cluster_id)
|
||||
configuration = spark_client.cluster.get_cluster_config(cluster_id)
|
||||
if configuration and args.show_config:
|
||||
log.info("-------------------------------------------")
|
||||
log.info("Cluster configuration:")
|
||||
|
|
|
@ -16,7 +16,7 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
|
||||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
clusters = spark_client.list_clusters()
|
||||
clusters = spark_client.cluster.list()
|
||||
if args.quiet:
|
||||
utils.print_clusters_quiet(clusters)
|
||||
else:
|
||||
|
|
|
@ -27,8 +27,8 @@ def execute(args: typing.NamedTuple):
|
|||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
with utils.Spinner():
|
||||
if args.node_id:
|
||||
results = [spark_client.node_run(args.cluster_id, args.node_id, args.command, args.host, args.internal)]
|
||||
results = [spark_client.cluster.node_run(args.cluster_id, args.node_id, args.command, args.host, args.internal)]
|
||||
else:
|
||||
results = spark_client.cluster_run(args.cluster_id, args.command, args.host, args.internal)
|
||||
results = spark_client.cluster.run(args.cluster_id, args.command, args.host, args.internal)
|
||||
|
||||
[utils.log_node_run_output(node_output) for node_output in results]
|
||||
|
|
|
@ -31,8 +31,8 @@ http_prefix = 'http://localhost:'
|
|||
|
||||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
cluster = spark_client.get_cluster(args.cluster_id)
|
||||
cluster_config = spark_client.get_cluster_config(args.cluster_id)
|
||||
cluster = spark_client.cluster.get(args.cluster_id)
|
||||
cluster_config = spark_client.cluster.get_cluster_config(args.cluster_id)
|
||||
ssh_conf = SshConfig()
|
||||
|
||||
ssh_conf.merge(
|
||||
|
@ -93,7 +93,7 @@ def native_python_ssh_into_master(spark_client, cluster, ssh_conf, password):
|
|||
log.warning("No ssh client found, using pure python connection.")
|
||||
return
|
||||
|
||||
configuration = spark_client.get_cluster_config(cluster.id)
|
||||
configuration = spark_client.cluster.get_cluster_config(cluster.id)
|
||||
plugin_ports = []
|
||||
if configuration and configuration.plugins:
|
||||
ports = [
|
||||
|
@ -104,7 +104,7 @@ def native_python_ssh_into_master(spark_client, cluster, ssh_conf, password):
|
|||
plugin_ports.extend(ports)
|
||||
|
||||
print("Press ctrl+c to exit...")
|
||||
spark_client.cluster_ssh_into_master(
|
||||
spark_client.cluster.ssh_into_master(
|
||||
cluster.id,
|
||||
cluster.master_node_id,
|
||||
ssh_conf.username,
|
||||
|
|
|
@ -134,8 +134,8 @@ def execute(args: typing.NamedTuple):
|
|||
log.info("-------------------------------------------")
|
||||
|
||||
|
||||
spark_client.submit(
|
||||
cluster_id=args.cluster_id,
|
||||
spark_client.cluster.submit(
|
||||
id=args.cluster_id,
|
||||
application = aztk.spark.models.ApplicationConfiguration(
|
||||
name=args.name,
|
||||
application=args.app,
|
||||
|
@ -162,8 +162,8 @@ def execute(args: typing.NamedTuple):
|
|||
exit_code = utils.stream_logs(client=spark_client, cluster_id=args.cluster_id, application_name=args.name)
|
||||
else:
|
||||
with utils.Spinner():
|
||||
spark_client.wait_until_application_done(cluster_id=args.cluster_id, task_id=args.name)
|
||||
application_log = spark_client.get_application_log(cluster_id=args.cluster_id, application_name=args.name)
|
||||
spark_client.cluster.wait(id=args.cluster_id, application_name=args.name) # TODO: replace wait_until_application_done
|
||||
application_log = spark_client.cluster.get_application_log(id=args.cluster_id, application_name=args.name)
|
||||
with open(os.path.abspath(os.path.expanduser(args.output)), "w", encoding="UTF-8") as f:
|
||||
f.write(application_log.log)
|
||||
exit_code = application_log.exit_code
|
||||
|
|
|
@ -29,7 +29,7 @@ def execute(args: typing.NamedTuple):
|
|||
|
||||
if not args.force:
|
||||
# check if job exists before prompting for confirmation
|
||||
spark_client.get_job(job_id)
|
||||
spark_client.job.get(id=job_id)
|
||||
|
||||
if not args.keep_logs:
|
||||
log.warning("All logs persisted for this job will be deleted.")
|
||||
|
@ -40,7 +40,7 @@ def execute(args: typing.NamedTuple):
|
|||
log.error("Confirmation cluster id does not match. Please try again.")
|
||||
return
|
||||
|
||||
if spark_client.delete_job(job_id, args.keep_logs):
|
||||
if spark_client.job.delete(id=job_id, keep_logs=args.keep_logs):
|
||||
log.info("Deleting Job %s", job_id)
|
||||
else:
|
||||
log.error("Job with id '%s' doesn't exist or was already deleted.", job_id)
|
||||
|
|
|
@ -16,4 +16,4 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
|
||||
utils.print_job(spark_client, spark_client.get_job(args.job_id))
|
||||
utils.print_job(spark_client, spark_client.job.get(id=args.job_id))
|
||||
|
|
|
@ -20,4 +20,4 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
|
||||
utils.print_application(spark_client.get_application(args.job_id, args.app_name))
|
||||
utils.print_application(spark_client.job.get_application(args.job_id, args.app_name))
|
||||
|
|
|
@ -22,7 +22,7 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
|
||||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
app_log = spark_client.get_job_application_log(args.job_id, args.app_name)
|
||||
app_log = spark_client.job.get_application_log(args.job_id, args.app_name)
|
||||
if args.output:
|
||||
with utils.Spinner():
|
||||
with open(os.path.abspath(os.path.expanduser(args.output)), "w", encoding="UTF-8") as f:
|
||||
|
|
|
@ -13,4 +13,4 @@ def setup_parser(_: argparse.ArgumentParser):
|
|||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
|
||||
utils.print_jobs(spark_client.list_jobs())
|
||||
utils.print_jobs(spark_client.job.list())
|
||||
|
|
|
@ -14,4 +14,4 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
|
||||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
utils.print_applications(spark_client.list_applications(args.job_id))
|
||||
utils.print_applications(spark_client.job.list_applications(args.job_id))
|
||||
|
|
|
@ -15,5 +15,5 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
|
||||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
spark_client.stop_job(args.job_id)
|
||||
spark_client.job.stop(args.job_id)
|
||||
log.print("Stopped Job {0}".format(args.job_id))
|
||||
|
|
|
@ -20,7 +20,7 @@ def setup_parser(parser: argparse.ArgumentParser):
|
|||
def execute(args: typing.NamedTuple):
|
||||
spark_client = aztk.spark.Client(config.load_aztk_secrets())
|
||||
|
||||
if spark_client.stop_job_app(args.job_id, args.app_name):
|
||||
if spark_client.job.stop_application(args.job_id, args.app_name):
|
||||
log.info("Stopped app {0}".format(args.app_name))
|
||||
else:
|
||||
log.error("App with name {0} does not exist or was already deleted")
|
||||
|
|
|
@ -48,4 +48,4 @@ def execute(args: typing.NamedTuple):
|
|||
)
|
||||
|
||||
#TODO: utils.print_job_conf(job_configuration)
|
||||
spark_client.submit_job(job_configuration)
|
||||
spark_client.job.submit(job_configuration)
|
||||
|
|
Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше
Загрузка…
Ссылка в новой задаче