This commit is contained in:
Hussein Nomier 2018-09-12 00:56:58 -07:00
Родитель fa549ee603
Коммит d0a4911b09
2 изменённых файлов: 12 добавлений и 12 удалений

Просмотреть файл

@ -3,8 +3,8 @@ This sample shows how to use azure application insights add monitoring and telem
The tutorial is written as a python sample but you can achieve the same in scala with application insights java sdk
## Prerequisites
Databricks or HDInsight cluster with with Cosmos DB Spark Connector loaded
Application Insights workspace (Note down the instrumentation key from the Dashboard)
<EFBFBD> Databricks or HDInsight cluster with with Cosmos DB Spark Connector loaded
<EFBFBD> Application Insights workspace (Note down the instrumentation key from the Dashboard)
## Setup
### Databricks
@ -65,14 +65,14 @@ logger.addHandler(handler)
4. Using the telemetry client, add relevant log messages and metrics. Track exceptions/failures separately
tc.track_event('Reading from Cosmos DB collection')
tc.track_metric('read_latency', readend-readstart)
except Exception, e:
<EFBFBD> tc.track_event('Reading from Cosmos DB collection')
<EFBFBD> tc.track_metric('read_latency', readend-readstart)
<EFBFBD> except Exception, e:
tc.track_exception()
5. Make sure you flush the telemetry client and shutdown logging at the end of the script:
tc.flush()
logging.shutdown()
<EFBFBD> tc.flush()
<EFBFBD> logging.shutdown()
## Application insights logging and metrics
@ -107,14 +107,14 @@ traces | where customDimensions["application_id"] == "app-20180912021715-0000" |
```
exceptions | where outerMessage contains "cosmosdb" | project timestamp, outerMessage
```
![Image not available](./images/analytics_exceptions.jpg)
![Image not available](./images/analytics_exceptions.PNG)
4. Get different metrics for an application id
```
customMetrics | where name in ("write_latency", "read_latency", "read_count") and customDimensions["application_id"] == "app-20180912021715-0000" | project name, value
```
![Image not available](./images/all_metrics_values.jpg)
![Image not available](./images/all_metrics_values.PNG)
5. Create a time chart for write_latency for all runs for a certain application name ( similar for read latency and count)

Просмотреть файл

@ -91,9 +91,9 @@ def run():
logger.error(e)
print(e)
tc.track_exception()
tc.flush()
logging.shutdown()
finally:
tc.flush()
logging.shutdown()
# start running the sample app
run()