Retrieve version of Python engine & packages
This commit is contained in:
Родитель
08587a0d45
Коммит
42a584e9e1
|
@ -0,0 +1,51 @@
|
|||
//
|
||||
// get_modules_version_sf()
|
||||
//
|
||||
// Returns version information for the Python engine and the specified packages
|
||||
//
|
||||
|
||||
.create function with (folder = "Packages\\Utils", docstring = "Returns version information for the Python engine and the specified packages")
|
||||
get_modules_version_sf(modules:(*))
|
||||
{
|
||||
let code =
|
||||
'import importlib\n'
|
||||
'import sys\n'
|
||||
'\n'
|
||||
'result = df\n'
|
||||
'for i in range(df.shape[0]):\n'
|
||||
' try:\n'
|
||||
' m = importlib.import_module(df.iloc[i, 0])\n'
|
||||
' result.loc[i, "ver"] = m.__version__\n'
|
||||
' except Exception as ex:\n'
|
||||
' result.loc[i, "ver"] = ex.msg\n'
|
||||
'id = df.shape[0]\n'
|
||||
'result.loc[id, df.columns[0]] = "Python"\n'
|
||||
'result.loc[id, "ver"] = sys.version\n';
|
||||
modules | evaluate python(code, 'df(*),ver:string')
|
||||
}
|
||||
|
||||
|
||||
let get_modules_version_sf = (modules:(*))
|
||||
{
|
||||
let code =
|
||||
'import importlib\n'
|
||||
'import sys\n'
|
||||
'\n'
|
||||
'result = df\n'
|
||||
'for i in range(df.shape[0]):\n'
|
||||
' try:\n'
|
||||
' m = importlib.import_module(df.iloc[i, 0])\n'
|
||||
' result.loc[i, "ver"] = m.__version__\n'
|
||||
' except Exception as ex:\n'
|
||||
' result.loc[i, "ver"] = ex.msg\n'
|
||||
'id = df.shape[0]\n'
|
||||
'result.loc[id, df.columns[0]] = "Python"\n'
|
||||
'result.loc[id, "ver"] = sys.version\n';
|
||||
modules | evaluate python(code, 'df(*),ver:string')
|
||||
}
|
||||
;
|
||||
|
||||
datatable(module:string)
|
||||
['numpy', 'scipy', 'pandas', 'matplotlib', 'statsmodels', 'sklearn', 'azure.kusto.data', 'adal', 'tensorflow', 'keras']
|
||||
| invoke get_modules_version_sf()
|
||||
|
41
index.md
41
index.md
|
@ -1,20 +1,13 @@
|
|||
# azure-kusto-analytics-lib Repository
|
||||
|
||||
1. **Time Series Analysis**
|
||||
1. **KqlMagic**
|
||||
|
||||
* Functions
|
||||
1. [Getting Started with KqlMagic](./KqlMagic/Getting-Started-With-KqlMagic-on-ADX.ipynb)
|
||||
|
||||
1. [blackman_filter_sf()](./Series/functions/blackman_filter.csl) - Create a Blackman window low pass filter of specific width
|
||||
1. [series_fit_poly_sf()](./Series/functions/series_fit_poly.csl)<sup>[1](#footnotes)</sup> - Fit a polynomial of a specified degree to a series
|
||||
1. [series_fit_sine_sf()](./Series/functions/series_fit_sine.csl)<sup>[1](#footnotes)</sup> - Fit a sine wave to a series
|
||||
1. [series_moving_avg_sf()](./Series/functions/series_moving_avg.csl) - Moving average of specific width
|
||||
1. [series_partial_sf()](./Series/functions/series_partial.csl) - Test for series with empty bins
|
||||
1. [series_rolling_sf()](./Series/functions/series_rolling.csl)<sup>[1](#footnotes)</sup> - Rolling window functions on a series
|
||||
1. [series_segment_sf()](./Series/functions/series_segment.csl) - Sequental numbering of non zero segments of a boolean series
|
||||
1. [series_summarize_sf()](./Series/functions/series_summarize.csl)<sup>[1](#footnotes)</sup> - Aggregation functions on a series
|
||||
* Queries
|
||||
1. **Labs**
|
||||
|
||||
1. [Time Series Analysis Tutorial](./Series/queries/Time-Series-Analysis-Tutorial.csl) - Walkthrough of typical series functions from each category
|
||||
1. [Custom Time Series Forecasting](./Lab/Custom-Time-Series-Forcasting/Time-Series-Forcast-Walkthrough.csl)<sup>[1](#footnotes)</sup> - build and tailor a time series forecasting model from lower level functions. See task [readme](./Lab/Custom-Time-Series-Forcasting/Time-Series-Forcast-Readme.docx) file
|
||||
1. [Classification](./Lab/Classifier) - [Build a classifier in Python](./Lab/Classifier/Prediction-of-Room-Occupancy-from-Kusto-Table-with-Kqlmagic.ipynb), [score](./Lab/Classifier/Classifier-Scoring.csl)<sup>[1](#footnotes)</sup> in ADX. See task [readme](./Lab/Classifier/Classifier-Readme.docx) file
|
||||
|
||||
1. **Machine Learning**
|
||||
|
||||
|
@ -32,14 +25,28 @@
|
|||
|
||||
1. [Training a classifier](./ML/notebooks/Prediction-of-Room-Occupancy-from-Kusto-Table-with-Kqlmagic.ipynb) - Demo of building and training a classifier for prediction of room occupancy in Jupyter using KqlMagic. Scoring is done using the Python plugin (see the [previous tutorial](./ML/queries/Python-Plugin-Tutorial.csl))
|
||||
|
||||
1. **KqlMagic**
|
||||
1. **Time Series Analysis**
|
||||
|
||||
1. [Getting Started with KqlMagic](./KqlMagic/Getting-Started-With-KqlMagic-on-ADX.ipynb)
|
||||
* Functions
|
||||
|
||||
1. [blackman_filter_sf()](./Series/functions/blackman_filter.csl) - Create a Blackman window low pass filter of specific width
|
||||
1. [series_fit_poly_sf()](./Series/functions/series_fit_poly.csl)<sup>[1](#footnotes)</sup> - Fit a polynomial of a specified degree to a series
|
||||
1. [series_fit_sine_sf()](./Series/functions/series_fit_sine.csl)<sup>[1](#footnotes)</sup> - Fit a sine wave to a series
|
||||
1. [series_moving_avg_sf()](./Series/functions/series_moving_avg.csl) - Moving average of specific width
|
||||
1. [series_partial_sf()](./Series/functions/series_partial.csl) - Test for series with empty bins
|
||||
1. [series_rolling_sf()](./Series/functions/series_rolling.csl)<sup>[1](#footnotes)</sup> - Rolling window functions on a series
|
||||
1. [series_segment_sf()](./Series/functions/series_segment.csl) - Sequental numbering of non zero segments of a boolean series
|
||||
1. [series_summarize_sf()](./Series/functions/series_summarize.csl)<sup>[1](#footnotes)</sup> - Aggregation functions on a series
|
||||
* Queries
|
||||
|
||||
1. [Time Series Analysis Tutorial](./Series/queries/Time-Series-Analysis-Tutorial.csl) - Walkthrough of typical series functions from each category
|
||||
|
||||
1. **Utils**
|
||||
|
||||
* Functions
|
||||
1. [get_modules_version_sf()](./Utils/functions/get_modules_version.csl)<sup>[1](#footnotes)</sup> - Aggregation functions on a series
|
||||
|
||||
1. **Labs**
|
||||
|
||||
1. [Custom Time Series Forecasting](./Lab/Custom-Time-Series-Forcasting/Time-Series-Forcast-Walkthrough.csl)<sup>[1](#footnotes)</sup> - build and tailor a time series forecasting model from lower level functions. See task [readme](./Lab/Custom-Time-Series-Forcasting/Time-Series-Forcast-Readme.docx) file
|
||||
1. [Classification](./Lab/Classifier) - [Build a classifier in Python](./Lab/Classifier/Prediction-of-Room-Occupancy-from-Kusto-Table-with-Kqlmagic.ipynb), [score](./Lab/Classifier/Classifier-Scoring.csl)<sup>[1](#footnotes)</sup> in ADX. See task [readme](./Lab/Classifier/Classifier-Readme.docx) file
|
||||
|
||||
<f name="footnotes">
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче