5066ef78e6
Re-emit from TypeSpec. TypeSpec changes include adding Entra ID auth and rename of some input argument names in the operation methods (instead of image_content, call it image_url and image_data, depending on the method). There is no breaking change in the APIs, since the auto generated operation methods are internal. Public operation methods (handwritten in _patch.py) have not changed, and already include image_url and image_data input arguments in the appropriate overloads. Add two samples with Entra ID auth, using DefaultAzureCredential. Add two tests with Entra ID auth, using get_credential from the test recording library. Updated package, samples and test README files to mention Entra ID related changes. Some minor fixes in sample function names. |
||
---|---|---|
.. | ||
async_samples | ||
README.md | ||
run_all_samples.cmd | ||
run_all_samples.ps1 | ||
sample.jpg | ||
sample_analyze_all_image_file.py | ||
sample_caption_image_file.py | ||
sample_caption_image_file_entra_id_auth.py | ||
sample_caption_image_url.py | ||
sample_dense_captions_image_file.py | ||
sample_objects_image_file.py | ||
sample_ocr_image_file.py | ||
sample_ocr_image_url.py | ||
sample_people_image_file.py | ||
sample_smart_crops_image_file.py | ||
sample_tags_image_file.py |
README.md
page_type | languages | products | urlFragment | |||
---|---|---|---|---|---|---|
sample |
|
|
image-analysis-samples |
Samples for Image Analysis client library for Python
These are runnable console Python programs that show how to use the Image Analysis client library.
- They cover all the supported visual features.
- Most use the synchronous client to analyze an image file or image URL. Three samples (located in the
async_samples
folder) use the asynchronous client. - Most use API key authentication. Two samples (having
_entra_id_auth
in their name) use Entra ID authentication.
The concepts are similar, you can easily modify any of the samples to your needs.
Synchronous client samples
File Name | Description |
---|---|
sample_analyze_all_image_file.py | Extract all 7 visual features from an image file, using a synchronous client. Logging turned on. |
sample_caption_image_file.py and sample_caption_image_url.py | Generate a human-readable sentence that describes the content of an image file or image URL, using a synchronous client. |
sample_caption_image_file_entra_id_auth.py | Generate a human-readable sentence that describes the content of an image file, using a synchronous client and Entra ID authentication. |
sample_dense_captions_image_file.py | Generating a human-readable caption for up to 10 different regions in the image, including one for the whole image, using a synchronous client. |
sample_ocr_image_file.py and sample_ocr_image_url.py | Extract printed or handwritten text from an image file or image URL, using a synchronous client. |
sample_tags_image_file.py | Extract content tags for thousands of recognizable objects, living beings, scenery, and actions that appear in an image file, using a synchronous client. |
sample_objects_image_file.py | Detect physical objects in an image file and return their location, using a synchronous client. |
sample_smart_crops_image_file.py | Find a representative sub-region of the image for thumbnail generation, using a synchronous client. |
sample_people_image_file.py | Locate people in the image and return their location, using a synchronous client. |
Asynchronous client samples
File Name | Description |
---|---|
sample_caption_image_file_async.py | Generate a human-readable sentence that describes the content of an image file, using an asynchronous client. |
sample_ocr_image_url_async.py | Extract printed or handwritten text from an image URL, using an asynchronous client. |
sample_ocr_image_url_entra_id_auth_async.py | Extract printed or handwritten text from an image URL, using an asynchronous client and Entra ID authentication |
Prerequisites
See Prerequisites here.
Setup
- Clone or download this sample repository
- Open a command prompt / terminal window in this samples folder
- Install the Image Analysis client library for Python with pip:
pip install azure-ai-vision-imageanalysis
- If you plan to run the asynchronous client samples, insall the additional package aiohttp:
pip install aiohttp
Set environment variables
See Set environment variables here.
Running the samples
To run the first sample, type:
python sample_analyze_all_image_file.py
similarly for the other samples.
Example console output
The sample sample_analyze_all_image_file.py
analyzes the image sample.jpg
in this folder:
And produces an output similar to the following:
Image analysis results:
Caption:
'a person wearing a mask sitting at a table with a laptop', Confidence 0.8498
Dense Captions:
'a person wearing a mask sitting at a table with a laptop', {'x': 0, 'y': 0, 'w': 864, 'h': 576}, Confidence: 0.8498
'a person using a laptop', {'x': 293, 'y': 383, 'w': 195, 'h': 100}, Confidence: 0.7724
'a person wearing a face mask', {'x': 383, 'y': 233, 'w': 275, 'h': 336}, Confidence: 0.8209
'a close-up of a green chair', {'x': 616, 'y': 211, 'w': 164, 'h': 249}, Confidence: 0.8763
'a person wearing a colorful cloth face mask', {'x': 473, 'y': 294, 'w': 68, 'h': 56}, Confidence: 0.7086
'a person using a laptop', {'x': 288, 'y': 211, 'w': 151, 'h': 244}, Confidence: 0.7642
'a person wearing a colorful fabric face mask', {'x': 433, 'y': 240, 'w': 180, 'h': 236}, Confidence: 0.7734
'a close-up of a laptop on a table', {'x': 115, 'y': 443, 'w': 476, 'h': 125}, Confidence: 0.8537
'a person wearing a mask and using a laptop', {'x': 0, 'y': 0, 'w': 774, 'h': 432}, Confidence: 0.7816
'a close up of a text', {'x': 714, 'y': 493, 'w': 130, 'h': 80}, Confidence: 0.6407
Read:
Line: 'Sample text', Bounding box [{'x': 721, 'y': 502}, {'x': 843, 'y': 502}, {'x': 843, 'y': 519}, {'x': 721, 'y': 519}]
Word: 'Sample', Bounding polygon [{'x': 722, 'y': 503}, {'x': 785, 'y': 503}, {'x': 785, 'y': 520}, {'x': 722, 'y': 520}], Confidence 0.9930
Word: 'text', Bounding polygon [{'x': 800, 'y': 503}, {'x': 842, 'y': 502}, {'x': 842, 'y': 519}, {'x': 800, 'y': 520}], Confidence 0.9890
Line: 'Hand writing', Bounding box [{'x': 720, 'y': 525}, {'x': 819, 'y': 526}, {'x': 819, 'y': 544}, {'x': 720, 'y': 543}]
Word: 'Hand', Bounding polygon [{'x': 721, 'y': 526}, {'x': 759, 'y': 526}, {'x': 759, 'y': 544}, {'x': 721, 'y': 543}], Confidence 0.9890
Word: 'writing', Bounding polygon [{'x': 765, 'y': 526}, {'x': 819, 'y': 527}, {'x': 819, 'y': 545}, {'x': 765, 'y': 544}], Confidence 0.9940
Line: '123 456', Bounding box [{'x': 721, 'y': 548}, {'x': 791, 'y': 548}, {'x': 791, 'y': 563}, {'x': 721, 'y': 564}]
Word: '123', Bounding polygon [{'x': 723, 'y': 548}, {'x': 750, 'y': 548}, {'x': 750, 'y': 564}, {'x': 723, 'y': 564}], Confidence 0.9940
Word: '456', Bounding polygon [{'x': 761, 'y': 548}, {'x': 788, 'y': 549}, {'x': 787, 'y': 564}, {'x': 760, 'y': 564}], Confidence 0.9990
Tags:
'furniture', Confidence 0.9874
'clothing', Confidence 0.9793
'person', Confidence 0.9427
'houseplant', Confidence 0.9400
'desk', Confidence 0.9183
'indoor', Confidence 0.8964
'laptop', Confidence 0.8782
'computer', Confidence 0.8482
'sitting', Confidence 0.8135
'wall', Confidence 0.7512
'woman', Confidence 0.7411
'table', Confidence 0.6811
'plant', Confidence 0.6445
'using', Confidence 0.5359
Objects:
'chair', {'x': 603, 'y': 225, 'w': 152, 'h': 224}, Confidence: 0.6180
'person', {'x': 399, 'y': 244, 'w': 249, 'h': 325}, Confidence: 0.8810
'Laptop', {'x': 295, 'y': 387, 'w': 211, 'h': 102}, Confidence: 0.7670
'chair', {'x': 441, 'y': 436, 'w': 256, 'h': 136}, Confidence: 0.5810
'dining table', {'x': 123, 'y': 437, 'w': 460, 'h': 125}, Confidence: 0.6060
People:
{'x': 395, 'y': 241, 'w': 261, 'h': 333}, Confidence 0.9603
{'x': 831, 'y': 246, 'w': 31, 'h': 255}, Confidence 0.0017
Smart Cropping:
Aspect ratio 0.9: Smart crop {'x': 238, 'y': 0, 'w': 511, 'h': 568}
Aspect ratio 1.33: Smart crop {'x': 54, 'y': 0, 'w': 760, 'h': 571}
Image height: 576
Image width: 864
Model version: 2023-10-01
Troubleshooting
See Troubleshooting here.