Fix input column names for OD/IS components (#3557)

* Fix input column names for vision finetuning validation.

* Update input column names for classification, for consistency purposes.
This commit is contained in:
rdondera-microsoft 2024-11-04 07:58:51 -08:00 коммит произвёл GitHub
Родитель 04eff530e2
Коммит 13b756960b
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
6 изменённых файлов: 34 добавлений и 31 удалений

Просмотреть файл

@ -263,7 +263,8 @@ jobs:
compute_model_import: ${{parent.inputs.compute_model_import}}
compute_finetune: ${{parent.inputs.compute_finetune}}
task_name: ${{parent.inputs.task_type}}
user_column_names: image_url, label
label_column_name: label
user_column_names: image_url,label
task_specific_extra_params: '"model_family=HuggingFaceImage;model_name=${{parent.inputs.model_name}};metric_for_best_model=${{parent.inputs.primary_metric}};number_of_epochs=${{parent.inputs.number_of_epochs}}"'
framework_selector:

Просмотреть файл

@ -1,7 +1,7 @@
$schema: https://azuremlschemas.azureedge.net/latest/pipelineComponent.schema.json
type: pipeline
version: 0.0.9
version: 0.0.10
name: diffusers_text_to_image_dreambooth_pipeline
display_name: Text to Image Dreambooth Finetuning Diffusers Pipeline
description: Pipeline component for text to image dreambooth training using diffusers library and transformers models.

Просмотреть файл

@ -359,13 +359,13 @@ inputs:
type: string
default: label
optional: true
description: Label column name in provided test dataset, for example "label".
description: Label column name to be ignored by model for prediction purposes, for example "label".
input_column_names:
type: string
default: image_url
optional: true
description: Input column names in provided test dataset, for example column1. Add comma delimited values in case of multiple input columns, for example column1,column2.
description: Input column names provided to model for prediction, for example column1. Add comma delimited values in case of multiple input columns, for example column1,column2.
evaluation_config:
type: uri_file
@ -406,8 +406,8 @@ jobs:
process_count_per_instance: ${{parent.inputs.process_count_per_instance}}
compute_model_evaluation: ${{parent.inputs.compute_model_evaluation}}
task_name: ${{parent.inputs.task_name}}
label_column_name: '${{parent.inputs.label_column_name}}'
user_column_names: '${{parent.inputs.input_column_names}}, ${{parent.inputs.label_column_name}}'
label_column_name: label
user_column_names: image_url,label
test_batch_size: ${{parent.inputs.test_batch_size}}
device: auto
evaluation_config: ${{parent.inputs.evaluation_config}}

Просмотреть файл

@ -1,7 +1,7 @@
$schema: https://azuremlschemas.azureedge.net/latest/pipelineComponent.schema.json
type: pipeline
version: 0.0.22
version: 0.0.23
name: image_instance_segmentation_pipeline
display_name: Image Instance Segmentation Pipeline
description: Pipeline component for image instance segmentation.
@ -300,7 +300,7 @@ jobs:
finetune_common_validation:
type: command
component: azureml:finetune_common_validation:0.0.5
component: azureml:finetune_common_validation:0.0.6
compute: ${{parent.inputs.compute_model_import}}
inputs:
train_mltable_path: ${{parent.inputs.training_data}}
@ -308,12 +308,13 @@ jobs:
compute_model_import: ${{parent.inputs.compute_model_import}}
compute_finetune: ${{parent.inputs.compute_finetune}}
task_name: ${{parent.inputs.task_type}}
user_column_names: image_url, label
label_column_name: label
user_column_names: image_url,label
task_specific_extra_params: '"model_family=MmDetectionImage;model_name=${{parent.inputs.model_name}};metric_for_best_model=${{parent.inputs.primary_metric}};number_of_epochs=${{parent.inputs.number_of_epochs}}"'
framework_selector:
type: command
component: azureml:image_framework_selector:0.0.17
component: azureml:image_framework_selector:0.0.18
compute: ${{parent.inputs.compute_model_import}}
inputs:
task_type: ${{parent.inputs.task_type}}
@ -369,7 +370,7 @@ jobs:
mm_detection_model_import:
type: command
component: azureml:mmdetection_image_objectdetection_instancesegmentation_model_import:0.0.18
component: azureml:mmdetection_image_objectdetection_instancesegmentation_model_import:0.0.19
compute: ${{parent.inputs.compute_model_import}}
inputs:
model_family: 'MmDetectionImage'
@ -379,7 +380,7 @@ jobs:
mm_detection_finetune:
type: command
component: azureml:mmdetection_image_objectdetection_instancesegmentation_finetune:0.0.18
component: azureml:mmdetection_image_objectdetection_instancesegmentation_finetune:0.0.19
compute: ${{parent.inputs.compute_finetune}}
distribution:
type: pytorch
@ -423,7 +424,7 @@ jobs:
output_selector:
type: command
component: azureml:image_model_output_selector:0.0.16
component: azureml:image_model_output_selector:0.0.17
compute: ${{parent.inputs.compute_model_import}}
inputs:
mlflow_model_t: ${{parent.jobs.image_instance_segmentation_runtime_component.outputs.mlflow_model_folder}}

Просмотреть файл

@ -1,7 +1,7 @@
$schema: https://azuremlschemas.azureedge.net/latest/pipelineComponent.schema.json
type: pipeline
version: 0.0.22
version: 0.0.23
name: mmdetection_image_objectdetection_instancesegmentation_pipeline
display_name: Image Object Detection and Instance Segmentation MMDetection Pipeline
description: Pipeline component for image object detection and instance segmentation using MMDetection models.
@ -357,13 +357,13 @@ inputs:
type: string
default: label
optional: true
description: Label column name in provided test dataset, for example "label".
description: Label column name to be ignored by model for prediction purposes, for example "label".
input_column_names:
type: string
default: image_url
default: image,image_meta_info,text_prompt
optional: true
description: Input column names in provided test dataset, for example column1. Add comma delimited values in case of multiple input columns, for example column1,column2.
description: Input column names provided to model for prediction, for example column1. Add comma delimited values in case of multiple input columns, for example column1,column2.
evaluation_config:
type: uri_file
@ -391,7 +391,7 @@ outputs:
jobs:
finetune_common_validation:
type: command
component: azureml:finetune_common_validation:0.0.5
component: azureml:finetune_common_validation:0.0.6
compute: ${{parent.inputs.compute_model_import}}
inputs:
mlflow_model_path: ${{parent.inputs.mlflow_model}}
@ -404,8 +404,8 @@ jobs:
process_count_per_instance: ${{parent.inputs.process_count_per_instance}}
compute_model_evaluation: ${{parent.inputs.compute_model_evaluation}}
task_name: ${{parent.inputs.task_name}}
label_column_name: '${{parent.inputs.label_column_name}}'
user_column_names: '${{parent.inputs.input_column_names}}, ${{parent.inputs.label_column_name}}'
label_column_name: label
user_column_names: image_url,label
test_batch_size: ${{parent.inputs.test_batch_size}}
device: auto
evaluation_config: ${{parent.inputs.evaluation_config}}
@ -414,7 +414,7 @@ jobs:
image_od_is_model_import:
type: command
component: azureml:mmdetection_image_objectdetection_instancesegmentation_model_import:0.0.18
component: azureml:mmdetection_image_objectdetection_instancesegmentation_model_import:0.0.19
compute: ${{parent.inputs.compute_model_import}}
inputs:
model_family: ${{parent.inputs.model_family}}
@ -426,7 +426,7 @@ jobs:
image_od_is_finetune:
type: command
component: azureml:mmdetection_image_objectdetection_instancesegmentation_finetune:0.0.18
component: azureml:mmdetection_image_objectdetection_instancesegmentation_finetune:0.0.19
compute: ${{parent.inputs.compute_finetune}}
distribution:
type: pytorch
@ -482,7 +482,7 @@ jobs:
model_prediction:
type: command
component: azureml:model_prediction:0.0.28
component: azureml:model_prediction:0.0.34
compute: '${{parent.inputs.compute_model_evaluation}}'
inputs:
task: '${{parent.inputs.task_name}}'
@ -497,7 +497,7 @@ jobs:
compute_metrics:
type: command
component: azureml:compute_metrics:0.0.28
component: azureml:compute_metrics:0.0.33
compute: '${{parent.inputs.compute_model_evaluation}}'
inputs:
task: '${{parent.inputs.task_name}}'

Просмотреть файл

@ -1,7 +1,7 @@
$schema: https://azuremlschemas.azureedge.net/latest/pipelineComponent.schema.json
type: pipeline
version: 0.0.22
version: 0.0.23
name: image_object_detection_pipeline
display_name: Image Object Detection Pipeline
description: Pipeline component for image object detection.
@ -325,7 +325,7 @@ jobs:
finetune_common_validation:
type: command
component: azureml:finetune_common_validation:0.0.5
component: azureml:finetune_common_validation:0.0.6
compute: ${{parent.inputs.compute_model_import}}
inputs:
train_mltable_path: ${{parent.inputs.training_data}}
@ -333,12 +333,13 @@ jobs:
compute_model_import: ${{parent.inputs.compute_model_import}}
compute_finetune: ${{parent.inputs.compute_finetune}}
task_name: ${{parent.inputs.task_type}}
user_column_names: image_url, label
label_column_name: label
user_column_names: image_url,label
task_specific_extra_params: '"model_family=MmDetectionImage;model_name=${{parent.inputs.model_name}};metric_for_best_model=${{parent.inputs.primary_metric}};number_of_epochs=${{parent.inputs.number_of_epochs}}"'
framework_selector:
type: command
component: azureml:image_framework_selector:0.0.17
component: azureml:image_framework_selector:0.0.18
compute: ${{parent.inputs.compute_model_import}}
inputs:
task_type: ${{parent.inputs.task_type}}
@ -396,7 +397,7 @@ jobs:
mm_detection_model_import:
type: command
component: azureml:mmdetection_image_objectdetection_instancesegmentation_model_import:0.0.18
component: azureml:mmdetection_image_objectdetection_instancesegmentation_model_import:0.0.19
compute: ${{parent.inputs.compute_model_import}}
inputs:
model_family: 'MmDetectionImage'
@ -406,7 +407,7 @@ jobs:
mm_detection_finetune:
type: command
component: azureml:mmdetection_image_objectdetection_instancesegmentation_finetune:0.0.18
component: azureml:mmdetection_image_objectdetection_instancesegmentation_finetune:0.0.19
compute: ${{parent.inputs.compute_finetune}}
distribution:
type: pytorch
@ -450,7 +451,7 @@ jobs:
output_selector:
type: command
component: azureml:image_model_output_selector:0.0.16
component: azureml:image_model_output_selector:0.0.17
compute: ${{parent.inputs.compute_model_import}}
inputs:
mlflow_model_t: ${{parent.jobs.image_object_detection_runtime_component.outputs.mlflow_model_folder}}