* fix path in jobs and specs
* add PYTHONPATH hack to both runnable files
* ignore E402
This commit is contained in:
Jeff Omhover 2022-07-18 22:20:05 -07:00 коммит произвёл GitHub
Родитель 49e49ae21a
Коммит a1a36f636e
5 изменённых файлов: 28 добавлений и 13 удалений

Просмотреть файл

@ -12,6 +12,7 @@ Using your editor, search for those strings to get an idea of how to implement:
- MLFLOW : how to implement mlflow reporting of metrics and artifacts
- PROFILER : how to implement pytorch profiler
"""
import os
import sys
import time
import logging
@ -24,16 +25,22 @@ import mlflow
# the long list of torch imports
import torch
# fix to AzureML PYTHONPATH
ROOT_FOLDER_PATH = os.path.join(os.path.dirname(__file__), "..")
if ROOT_FOLDER_PATH not in sys.path:
print(f"Adding root folder to PYTHONPATH: {ROOT_FOLDER_PATH}")
sys.path.append(ROOT_FOLDER_PATH)
# internal imports
## non-specific helper code
from common.profiling import LogTimeBlock, LogDiskIOBlock
from common.profiling import LogTimeBlock, LogDiskIOBlock # noqa : E402
## pytorch generic helping code
from pytorch_benchmark.helper.training import PyTorchDistributedModelTrainingSequence
from pytorch_benchmark.helper.training import PyTorchDistributedModelTrainingSequence # noqa : E402
## classification specific code
from pytorch_benchmark.classification.model import get_model_metadata, load_model
from pytorch_benchmark.classification.io import build_image_datasets
from pytorch_benchmark.classification.model import get_model_metadata, load_model # noqa : E402
from pytorch_benchmark.classification.io import build_image_datasets # noqa : E402
SCRIPT_START_TIME = time.time() # just to measure time to start

Просмотреть файл

@ -11,6 +11,8 @@ Using your editor, search for those strings to get an idea of how to implement:
- DISTRIBUTED : how to implement distributed tensorflow
- MLFLOW : how to implement mlflow reporting of metrics and artifacts
"""
import os
import sys
import time
import logging
import argparse
@ -22,16 +24,22 @@ import mlflow
import tensorflow as tf
from tensorflow import keras
# fix to AzureML PYTHONPATH
ROOT_FOLDER_PATH = os.path.join(os.path.dirname(__file__), "..")
if ROOT_FOLDER_PATH not in sys.path:
print(f"Adding root folder to PYTHONPATH: {ROOT_FOLDER_PATH}")
sys.path.append(ROOT_FOLDER_PATH)
# internal imports
## non-specific helper code
from common.profiling import LogTimeBlock, LogDiskIOBlock
from common.profiling import LogTimeBlock, LogDiskIOBlock # noqa : E402
## tensorflow generic helping code
from tensorflow_benchmark.helper.training import TensorflowDistributedModelTrainingSequence
from tensorflow_benchmark.helper.training import TensorflowDistributedModelTrainingSequence # noqa : E402
## classification specific code
from tensorflow_benchmark.segmentation.model import load_model
from tensorflow_benchmark.segmentation.io import ImageAndMaskSequenceDataset
from tensorflow_benchmark.segmentation.model import load_model # noqa : E402
from tensorflow_benchmark.segmentation.io import ImageAndMaskSequenceDataset # noqa : E402
SCRIPT_START_TIME = time.time() # just to measure time to start

Просмотреть файл

@ -104,7 +104,7 @@ code: ../
environment: azureml:nvidia_tensorflow:22.02-tf2-py3-mod3
command: >-
python train.py
python tensorflow_benchmark/image_segmentation.py
--train_images ${{inputs.train_images}}
--train_masks ${{inputs.train_masks}}
--test_images ${{inputs.test_images}}

Просмотреть файл

@ -1,5 +1,5 @@
$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: ../../components/tensorflow_image_segmentation/
code: ../../components/
display_name: "tf_unet"
experiment_name: "tensorflow_unet_pets"
@ -73,7 +73,7 @@ outputs:
###############
command: >-
python train.py
python tensorflow_benchmark/image_segmentation.py
--train_images ${{inputs.train_images}}
--train_masks ${{inputs.train_masks}}
--test_images ${{inputs.test_images}}

Просмотреть файл

@ -14,12 +14,12 @@ compute: azureml:gpu-cluster
trial:
code: ../../components/tensorflow_image_segmentation/
code: ../../components/
### COMMAND ###
command: >-
python train.py
python tensorflow_benchmark/image_segmentation.py
--train_images ${{inputs.train_images}}
--train_masks ${{inputs.train_masks}}
--test_images ${{inputs.test_images}}