remove experiment_name (#2154)
* remove experiment_name * remove bullet
This commit is contained in:
Родитель
a6a8465afa
Коммит
303957a3ad
|
@ -336,7 +336,6 @@
|
|||
"Here, you'll create input variables to specify the input data, split ratio, learning rate and registered model name. The command script will:\n",
|
||||
"* Use the compute cluster to run the command.\n",
|
||||
"* Use an *environment* that defines software and runtime libraries needed for the training script. Azure Machine Learning provides many curated or ready-made environments, which are useful for common training and inference scenarios. You'll use one of those environments here. In the [Train a model](train-model.ipynb) tutorial, you'll learn how to create a custom environment. \n",
|
||||
"* Configure some metadata like display name, experiment name etc. An *experiment* is a container for all the iterations you do on a certain project. All the jobs submitted under the same experiment name would be listed next to each other in Azure Machine Learning studio.\n",
|
||||
"* Configure the command line action itself - `python main.py` in this case. The inputs/outputs are accessible in the command via the `${{ ... }}` notation.\n",
|
||||
"* In this sample, we access the data from a file on the internet. "
|
||||
]
|
||||
|
@ -371,7 +370,6 @@
|
|||
" command=\"python main.py --data ${{inputs.data}} --test_train_ratio ${{inputs.test_train_ratio}} --learning_rate ${{inputs.learning_rate}} --registered_model_name ${{inputs.registered_model_name}}\",\n",
|
||||
" environment=\"AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest\",\n",
|
||||
" compute=\"cpu-cluster\",\n",
|
||||
" experiment_name=\"train_model_credit_default_prediction\",\n",
|
||||
" display_name=\"credit_default_prediction\",\n",
|
||||
")"
|
||||
]
|
||||
|
@ -709,9 +707,9 @@
|
|||
"name": "python310-sdkv2"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.10 - SDK v2",
|
||||
"language": "python",
|
||||
"name": "python310-sdkv2"
|
||||
"display_name": "Python 3.10 - SDK v2",
|
||||
"language": "python",
|
||||
"name": "python310-sdkv2"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
|
|
|
@ -473,7 +473,6 @@
|
|||
"Here, create input variables to specify the input data, split ratio, learning rate and registered model name. The command script will:\n",
|
||||
"* Use the compute created earlier to run this command.\n",
|
||||
"* Use the environment created earlier - you can use the `@latest` notation to indicate the latest version of the environment when the command is run.\n",
|
||||
"* Configure some metadata like display name, experiment name etc. An *experiment* is a container for all the iterations you do on a certain project. All the jobs submitted under the same experiment name are next to each other in Azure Machine Learning studio.\n",
|
||||
"* Configure the command line action itself - `python main.py` in this case. The inputs/outputs are accessible in the command via the `${{ ... }}` notation."
|
||||
]
|
||||
},
|
||||
|
@ -507,7 +506,6 @@
|
|||
" command=\"python main.py --data ${{inputs.data}} --test_train_ratio ${{inputs.test_train_ratio}} --learning_rate ${{inputs.learning_rate}} --registered_model_name ${{inputs.registered_model_name}}\",\n",
|
||||
" environment=\"aml-scikit-learn@latest\",\n",
|
||||
" compute=\"cpu-cluster\",\n",
|
||||
" experiment_name=\"train_model_credit_default_prediction\",\n",
|
||||
" display_name=\"credit_default_prediction\",\n",
|
||||
")"
|
||||
]
|
||||
|
@ -606,9 +604,9 @@
|
|||
"name": "python310-sdkv2"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.10 - SDK v2",
|
||||
"language": "python",
|
||||
"name": "python310-sdkv2"
|
||||
"display_name": "Python 3.10 - SDK v2",
|
||||
"language": "python",
|
||||
"name": "python310-sdkv2"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
|
|
Загрузка…
Ссылка в новой задаче