mark tutorials as experimental (#404)
This commit is contained in:
Родитель
5c36192161
Коммит
ab708d3224
|
@ -58,11 +58,11 @@ path|status|notebooks|description
|
|||
[an-introduction](tutorials/an-introduction)|[![an-introduction](https://github.com/Azure/azureml-examples/workflows/tutorial-an-introduction/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-an-introduction)|[1.hello-world.ipynb](tutorials/an-introduction/1.hello-world.ipynb)<br>[2.pytorch-model.ipynb](tutorials/an-introduction/2.pytorch-model.ipynb)<br>[3.pytorch-model-cloud-data.ipynb](tutorials/an-introduction/3.pytorch-model-cloud-data.ipynb)|Run 'hello world' and train a simple model on Azure Machine Learning.
|
||||
[automl-with-pycaret](tutorials/automl-with-pycaret)|[![automl-with-pycaret](https://github.com/Azure/azureml-examples/workflows/tutorial-automl-with-pycaret/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-automl-with-pycaret)|[1.classification.ipynb](tutorials/automl-with-pycaret/1.classification.ipynb)|Learn how to use [PyCaret](https://github.com/pycaret/pycaret) for automated machine learning, with tracking and scaling in Azure ML.
|
||||
[deploy-edge](tutorials/deploy-edge)|[![deploy-edge](https://github.com/Azure/azureml-examples/workflows/tutorial-deploy-edge/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-deploy-edge)|[ase-gpu.ipynb](tutorials/deploy-edge/ase-gpu.ipynb)|Learn how to deploy models to Edge devices using Azure ML.
|
||||
[deploy-triton](tutorials/deploy-triton)|[![deploy-triton](https://github.com/Azure/azureml-examples/workflows/tutorial-deploy-triton/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-deploy-triton)|[1.densenet-local.ipynb](tutorials/deploy-triton/1.densenet-local.ipynb)<br>[2.bidaf-aks-v100.ipynb](tutorials/deploy-triton/2.bidaf-aks-v100.ipynb)|Learn how to efficiently deploy to GPUs with the [Triton inference server](https://github.com/triton-inference-server/server) and Azure ML.
|
||||
[deploy-triton](tutorials/deploy-triton)|[![deploy-triton](https://github.com/Azure/azureml-examples/workflows/tutorial-deploy-triton/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-deploy-triton)|[1.densenet-local.ipynb](tutorials/deploy-triton/1.densenet-local.ipynb)<br>[2.bidaf-aks-v100.ipynb](tutorials/deploy-triton/2.bidaf-aks-v100.ipynb)|[Experimental] Learn how to efficiently deploy to GPUs with the [Triton inference server](https://github.com/triton-inference-server/server) and Azure ML.
|
||||
[using-dask](tutorials/using-dask)|[![using-dask](https://github.com/Azure/azureml-examples/workflows/tutorial-using-dask/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-using-dask)|[1.intro-to-dask.ipynb](tutorials/using-dask/1.intro-to-dask.ipynb)|Learn how to read from cloud data and scale PyData tools (Numpy, Pandas, Scikit-Learn, etc.) with [Dask](https://dask.org) and Azure ML.
|
||||
[using-pytorch-lightning](tutorials/using-pytorch-lightning)|[![using-pytorch-lightning](https://github.com/Azure/azureml-examples/workflows/tutorial-using-pytorch-lightning/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-using-pytorch-lightning)|[1.train-single-node.ipynb](tutorials/using-pytorch-lightning/1.train-single-node.ipynb)<br>[2.log-with-tensorboard.ipynb](tutorials/using-pytorch-lightning/2.log-with-tensorboard.ipynb)<br>[3.log-with-mlflow.ipynb](tutorials/using-pytorch-lightning/3.log-with-mlflow.ipynb)<br>[4.train-multi-node-ddp.ipynb](tutorials/using-pytorch-lightning/4.train-multi-node-ddp.ipynb)|Learn how to train and log metrics with [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and Azure ML.
|
||||
[using-pytorch-lightning](tutorials/using-pytorch-lightning)|[![using-pytorch-lightning](https://github.com/Azure/azureml-examples/workflows/tutorial-using-pytorch-lightning/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-using-pytorch-lightning)|[1.train-single-node.ipynb](tutorials/using-pytorch-lightning/1.train-single-node.ipynb)<br>[2.log-with-tensorboard.ipynb](tutorials/using-pytorch-lightning/2.log-with-tensorboard.ipynb)<br>[3.log-with-mlflow.ipynb](tutorials/using-pytorch-lightning/3.log-with-mlflow.ipynb)<br>[4.train-multi-node-ddp.ipynb](tutorials/using-pytorch-lightning/4.train-multi-node-ddp.ipynb)|[Experimental] Learn how to train and log metrics with [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and Azure ML.
|
||||
[using-rapids](tutorials/using-rapids)|[![using-rapids](https://github.com/Azure/azureml-examples/workflows/tutorial-using-rapids/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-using-rapids)|[1.train-and-hpo.ipynb](tutorials/using-rapids/1.train-and-hpo.ipynb)<br>[2.train-multi-gpu.ipynb](tutorials/using-rapids/2.train-multi-gpu.ipynb)|Learn how to accelerate PyData tools (Numpy, Pandas, Scikit-Learn, etc.) on NVIDIA GPUs with [RAPIDS](https://github.com/rapidsai) and Azure ML.
|
||||
[using-xgboost](tutorials/using-xgboost)|[![using-xgboost](https://github.com/Azure/azureml-examples/workflows/tutorial-using-xgboost/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-using-xgboost)|[1.local-eda.ipynb](tutorials/using-xgboost/1.local-eda.ipynb)<br>[2.distributed-cpu.ipynb](tutorials/using-xgboost/2.distributed-cpu.ipynb)|Learn how to use [XGBoost](https://github.com/dmlc/xgboost) with Azure ML.
|
||||
[using-xgboost](tutorials/using-xgboost)|[![using-xgboost](https://github.com/Azure/azureml-examples/workflows/tutorial-using-xgboost/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Atutorial-using-xgboost)|[1.local-eda.ipynb](tutorials/using-xgboost/1.local-eda.ipynb)<br>[2.distributed-cpu.ipynb](tutorials/using-xgboost/2.distributed-cpu.ipynb)|[Experimental] Learn how to use [XGBoost](https://github.com/dmlc/xgboost) with Azure ML.
|
||||
|
||||
**Notebooks** ([notebooks](notebooks))
|
||||
|
||||
|
|
|
@ -5,11 +5,13 @@ languages:
|
|||
- azurecli
|
||||
products:
|
||||
- azure-machine-learning
|
||||
description: Learn how to efficiently deploy to GPUs with the [Triton inference server](https://github.com/triton-inference-server/server) and Azure ML.
|
||||
description: [Experimental] Learn how to efficiently deploy to GPUs with the [Triton inference server](https://github.com/triton-inference-server/server) and Azure ML.
|
||||
---
|
||||
|
||||
# Real-time inference on GPUs in Azure Machine Learning
|
||||
|
||||
**Note**: this tutorial is experimental and prone to failure
|
||||
|
||||
The notebooks in this directory show how to take advantage of the interoperability between Azure Machine Learning and [NVIDIA Triton Inference Server](https://developer.nvidia.com/nvidia-triton-inference-server) for cost-effective real time inference on GPUs.
|
||||
|
||||
## Python instructions
|
||||
|
|
|
@ -5,11 +5,13 @@ languages:
|
|||
- azurecli
|
||||
products:
|
||||
- azure-machine-learning
|
||||
description: Learn how to train and log metrics with [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and Azure ML.
|
||||
description: [Experimental] Learn how to train and log metrics with [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and Azure ML.
|
||||
---
|
||||
|
||||
# Train with PyTorch Lightning
|
||||
|
||||
**Note**: this tutorial is experimental and prone to failure
|
||||
|
||||
[PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) is a lightweight open-source library that provides a high-level interface for PyTorch.
|
||||
|
||||
The model training code for this tutorial can be found in [`src`](src). This tutorial goes over the steps to run PyTorch Lightning on Azure ML, and it includes the following parts:
|
||||
|
|
|
@ -5,11 +5,13 @@ languages:
|
|||
- azurecli
|
||||
products:
|
||||
- azure-machine-learning
|
||||
description: Learn how to use [XGBoost](https://github.com/dmlc/xgboost) with Azure ML.
|
||||
description: [Experimental] Learn how to use [XGBoost](https://github.com/dmlc/xgboost) with Azure ML.
|
||||
---
|
||||
|
||||
# XGBoost
|
||||
|
||||
**Note**: this tutorial is experimental and prone to failure
|
||||
|
||||
This tutorial demonstrates how to run XGBoost on Azure through a series of Python notebooks to demonstrate how a project might develop. This tutorial leverages the [Microsoft Kaggle Malware](https://kaggle.com/c/microsoft-malware-prediction), repartitioned and hosted in Azure Blob.
|
||||
|
||||
This tutorial consists of two notebooks:
|
||||
|
|
Загрузка…
Ссылка в новой задаче