minor updates added to AzureML in day file (#2085)

* minor updates added to AzureML in day file

* add text to modify notebook

* fix meta data

* fix meta data

---------

Co-authored-by: Kenwiggan <kwiggan@microsoft.com>
Co-authored-by: Sheri Gilley <sgilley@microsoft.com>
This commit is contained in:
Kenwiggan 2023-02-23 10:54:05 -08:00 коммит произвёл GitHub
Родитель b95e94508f
Коммит ed819aa945
2 изменённых файлов: 10 добавлений и 4 удалений

Просмотреть файл

@ -88,6 +88,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@ -95,7 +96,9 @@
"\n",
"1. In the upper right Azure Machine Learning studio toolbar, select your workspace name.\n",
"1. Copy the value for workspace, resource group and subscription ID into the code. \n",
"1. You'll need to copy one value, close the area and paste, then come back for the next one."
"1. You'll need to copy one value, close the area and paste, then come back for the next one.\n",
"\n",
"![image of workspace credentials](media\\find-credentials.png)"
]
},
{
@ -327,12 +330,13 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This script handles the preprocessing of the data, splitting it into test and train data. It then consumes this data to train a tree based model and return the output model. \n",
"\n",
"[MLFlow](https://mlflow.org/docs/latest/tracking.html) will be used to log the parameters and metrics during our pipeline run. \n",
"[MLFlow](https://learn.microsoft.com/azure/machine-learning/how-to-log-mlflow-models) will be used to log the parameters and metrics during our pipeline run. \n",
"\n",
"The cell below uses IPython magic to write the training script into the directory you just created."
]
@ -455,6 +459,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@ -468,7 +473,8 @@
"* Use the compute created earlier to run this command.\n",
"* Use the environment created earlier - you can use the `@latest` notation to indicate the latest version of the environment when the command is run.\n",
"* Configure some metadata like display name, experiment name etc. An *experiment* is a container for all the iterations you do on a certain project. All the jobs submitted under the same experiment name would be listed next to each other in Azure ML studio.\n",
"* Configure the command line action itself - `python main.py` in this case. The inputs/outputs are accessible in the command via the `${{ ... }}` notation."
"* Configure the command line action itself - `python main.py` in this case. The inputs/outputs are accessible in the command via the `${{ ... }}` notation.\n",
"* In this sample, we access the data from a file on the internet. "
]
},
{
@ -815,7 +821,7 @@
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "52018653a280796ddf8e50b3c9e20a616cd949148570d3142cd79b620301346b"
"hash": "71a65d72c50a26f05c9d6876d6234594cb07dd1b273faf1eea7eaa26341f62bb"
}
}
},

Двоичные данные
tutorials/azureml-in-a-day/media/find-credentials.png Normal file

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 179 KiB