readme updates; minor requirements.txt updates (#390)

* saving; need to run readme

* update requirements.txt; run readme.py

* move contents to suffix

* add blurb

* minor edit
This commit is contained in:
Cody 2021-03-12 12:49:12 -08:00 коммит произвёл GitHub
Родитель 3b1a0bb7ed
Коммит fd8e0e4457
4 изменённых файлов: 52 добавлений и 41 удалений

Просмотреть файл

@ -8,7 +8,7 @@ products:
description: Top-level directory for official Azure Machine Learning sample code and notebooks.
---
# Azure Machine Learning Examples
# Azure Machine Learning examples
[![smoke](https://github.com/Azure/azureml-examples/workflows/smoke/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Asmoke)
[![cleanup](https://github.com/Azure/azureml-examples/workflows/cleanup/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Acleanup)
@ -34,11 +34,11 @@ pip install --upgrade -r requirements.txt
To create or setup a workspace with the assets used in these examples, run the [setup script](setup-workspace.py).
> If you do not have an Azure ML Workspace, run `python setup-workspace.py --subscription-id $ID`, where `$ID` is your Azure subscription id. A resource group, Azure ML Workspace, and other necessary resources will be created in the subscription.
>
> If you have an Azure ML Workspace, [install the Azure ML CLI](https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli) and run `az ml folder attach -w $WS -g $RG`, where `$WS` and `$RG` are the workspace and resource group names.
>
> Run `python setup-workspace.py -h` to see other arguments.
If you do not have an Azure ML workspace, run `python setup-workspace.py --subscription-id $ID`, where `$ID` is your Azure subscription id. A resource group, Azure ML workspace, and other necessary resources will be created in the subscription.
If you have an Azure ML Workspace, [install the Azure ML CLI](https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli) and run `az ml folder attach -w $WS -g $RG`, where `$WS` and `$RG` are the workspace and resource group names.
Run `python setup-workspace.py -h` to see other arguments.
## Getting started
@ -49,18 +49,6 @@ To get started, see the [introductory tutorial](tutorials/an-introduction) which
These concepts are sufficient to understand all examples in this repository, which are listed below.
## Contents
A lightweight template repository for automating the ML lifecycle can be found [here](https://github.com/Azure/azureml-template).
|directory|description|
|-|-|
|`.cloud`|cloud templates|
|`.github`|GitHub specific files like Actions workflow yaml definitions and issue templates|
|`notebooks`|interactive jupyter notebooks for iterative ML development|
|`tutorials`|self-contained directories of tutorials|
|`workflows`|self-contained directories of job to be run, organized by scenario then tool then project|
## Examples
**Tutorials** ([tutorials](tutorials))
@ -113,6 +101,20 @@ path|status|description
[pytorch/mnist/job.py](workflows/deploy/pytorch/mnist/job.py)|[![deploy-pytorch-mnist-job](https://github.com/Azure/azureml-examples/workflows/deploy-pytorch-mnist-job/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Adeploy-pytorch-mnist-job)|deploy pytorch cnn model trained on mnist data to aks
[scikit-learn/diabetes/job.py](workflows/deploy/scikit-learn/diabetes/job.py)|[![deploy-scikit-learn-diabetes-job](https://github.com/Azure/azureml-examples/workflows/deploy-scikit-learn-diabetes-job/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Adeploy-scikit-learn-diabetes-job)|deploy sklearn ridge model trained on diabetes data to AKS
## Contents
A lightweight template repository for automating the ML lifecycle can be found [here](https://github.com/Azure/azureml-template). The contents of this repository are described below.
**Note**: It is not recommended to fork this repository and use it as a template directly. This repository is structured to host a large number of examples and CI for automation and testing, which will begin running in your fork.
|directory|description|
|-|-|
|`.cloud`|cloud templates (coming soon!)|
|`.github`|GitHub specific files like Actions workflow yaml definitions and issue templates|
|`notebooks`|interactive Jupyter notebooks for iterative ML development|
|`tutorials`|self-contained directories of tutorials|
|`workflows`|self-contained directories of job to be run, organized by scenario then tool then project|
## Contributing
We welcome contributions and suggestions! Please see the [contributing guidelines](CONTRIBUTING.md) for details.
@ -124,5 +126,5 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
## Reference
- [GitHub Template](https://github.com/Azure/azureml-template)
- [Open Source Azure ML Cheat Sheet](https://azure.github.io/azureml-web)
- [Azure Machine Learning Cheat Sheet](https://azure.github.io/azureml-web)
- [Azure Machine Learning Documentation](https://docs.microsoft.com/azure/machine-learning)

Просмотреть файл

@ -8,7 +8,7 @@ products:
description: Top-level directory for official Azure Machine Learning sample code and notebooks.
---
# Azure Machine Learning Examples
# Azure Machine Learning examples
[![smoke](https://github.com/Azure/azureml-examples/workflows/smoke/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Asmoke)
[![cleanup](https://github.com/Azure/azureml-examples/workflows/cleanup/badge.svg)](https://github.com/Azure/azureml-examples/actions?query=workflow%3Acleanup)
@ -34,11 +34,11 @@ pip install --upgrade -r requirements.txt
To create or setup a workspace with the assets used in these examples, run the [setup script](setup-workspace.py).
> If you do not have an Azure ML Workspace, run `python setup-workspace.py --subscription-id $ID`, where `$ID` is your Azure subscription id. A resource group, Azure ML Workspace, and other necessary resources will be created in the subscription.
>
> If you have an Azure ML Workspace, [install the Azure ML CLI](https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli) and run `az ml folder attach -w $WS -g $RG`, where `$WS` and `$RG` are the workspace and resource group names.
>
> Run `python setup-workspace.py -h` to see other arguments.
If you do not have an Azure ML workspace, run `python setup-workspace.py --subscription-id $ID`, where `$ID` is your Azure subscription id. A resource group, Azure ML workspace, and other necessary resources will be created in the subscription.
If you have an Azure ML Workspace, [install the Azure ML CLI](https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli) and run `az ml folder attach -w $WS -g $RG`, where `$WS` and `$RG` are the workspace and resource group names.
Run `python setup-workspace.py -h` to see other arguments.
## Getting started
@ -49,16 +49,4 @@ To get started, see the [introductory tutorial](tutorials/an-introduction) which
These concepts are sufficient to understand all examples in this repository, which are listed below.
## Contents
A lightweight template repository for automating the ML lifecycle can be found [here](https://github.com/Azure/azureml-template).
|directory|description|
|-|-|
|`.cloud`|cloud templates|
|`.github`|GitHub specific files like Actions workflow yaml definitions and issue templates|
|`notebooks`|interactive jupyter notebooks for iterative ML development|
|`tutorials`|self-contained directories of tutorials|
|`workflows`|self-contained directories of job to be run, organized by scenario then tool then project|
## Examples

Просмотреть файл

@ -1,11 +1,18 @@
# required for job submission
# pinned to version where required features added to SriptRunConfig
azureml-core>=1.20.0
azureml-mlflow>=1.20.0
azureml-train>=1.20.0
azureml-dataprep>=1.20.0
azureml-widgets>=1.20.0
# required in notebooks
numpy
pandas
matplotlib
black
black-nb
papermill
# required for repo contribution/testing
# pinned to avoid surprises
black==20.8b1
black-nb==0.4.0
papermill==2.3.3

Просмотреть файл

@ -1,4 +1,18 @@
## Contents
A lightweight template repository for automating the ML lifecycle can be found [here](https://github.com/Azure/azureml-template). The contents of this repository are described below.
**Note**: It is not recommended to fork this repository and use it as a template directly. This repository is structured to host a large number of examples and CI for automation and testing, which will begin running in your fork.
|directory|description|
|-|-|
|`.cloud`|cloud templates (coming soon!)|
|`.github`|GitHub specific files like Actions workflow yaml definitions and issue templates|
|`notebooks`|interactive Jupyter notebooks for iterative ML development|
|`tutorials`|self-contained directories of tutorials|
|`workflows`|self-contained directories of job to be run, organized by scenario then tool then project|
## Contributing
We welcome contributions and suggestions! Please see the [contributing guidelines](CONTRIBUTING.md) for details.
@ -10,5 +24,5 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
## Reference
- [GitHub Template](https://github.com/Azure/azureml-template)
- [Open Source Azure ML Cheat Sheet](https://azure.github.io/azureml-web)
- [Azure Machine Learning Cheat Sheet](https://azure.github.io/azureml-web)
- [Azure Machine Learning Documentation](https://docs.microsoft.com/azure/machine-learning)