azureml-sdk-for-r/vignettes
Diondra Peck 1a0cf2596f add section for C Stack Error 2021-01-19 12:55:50 -06:00
..
deploy-to-aks Make vignettes discoverable (#320) 2020-05-06 14:42:22 -07:00
experiments-deep-dive vignette updates (#338) 2020-05-06 18:08:35 -07:00
hyperparameter-tune-with-keras Add changes from 1.10 CRAN release (#393) 2020-09-29 20:21:32 -07:00
train-and-deploy-first-model Make vignettes discoverable (#320) 2020-05-06 14:42:22 -07:00
train-with-tensorflow updates to tf and keras vignettes (#369) 2020-07-31 10:09:35 -07:00
README.md Update README.md 2020-05-06 14:48:52 -07:00
building-custom-docker-images.Rmd documentation: add vignette on building custom Docker images for training and deployment (#379) 2020-08-24 17:15:27 -07:00
configuration.Rmd Add interactive authentication (#263) 2020-03-03 11:08:44 -08:00
deploy-to-aks.Rmd vignette updates (#338) 2020-05-06 18:08:35 -07:00
deploying-models.Rmd Add changes from 1.10 CRAN release (#393) 2020-09-29 20:21:32 -07:00
experiments-deep-dive.Rmd Add changes from 1.10 CRAN release (#393) 2020-09-29 20:21:32 -07:00
hyperparameter-tune-with-keras.Rmd Add changes from 1.10 CRAN release (#393) 2020-09-29 20:21:32 -07:00
installation.Rmd update install_azureml() (#353) 2020-07-09 10:28:04 -07:00
train-and-deploy-first-model.Rmd vignette updates (#338) 2020-05-06 18:08:35 -07:00
train-with-tensorflow.Rmd Add changes from 1.10 CRAN release (#393) 2020-09-29 20:21:32 -07:00
troubleshooting.Rmd add section for C Stack Error 2021-01-19 12:55:50 -06:00

README.md

Azure ML vignettes

These vignettes are end-to-end tutorials for using Azure Machine Learning with the R SDK.

Before running a vignette in RStudio, set the working directory to the folder that contains the vignette file (.Rmd file) in RStudio using setwd(dirname) or Session -> Set Working Directory -> To Source File Location. Each vignette assumes that the data and scripts are relative to vignette file location.

The following vignettes are included:

  1. installation: Install the Azure ML SDK for R.
  2. configuration: Set up an Azure ML workspace.
  3. train-and-deploy-first-model: Train a caret model and deploy as a web service to Azure Container Instances (ACI).
  4. train-with-tensorflow: Train a deep learning TensorFlow model with Azure ML.
  5. hyperparameter-tune-with-keras: Hyperparameter tune a Keras model using HyperDrive, Azure ML's hyperparameter tuning functionality.
  6. deploy-to-aks: Production deploy a model as a web service to Azure Kubernetes Service (AKS).

If you are running these examples on an Azure Machine Learning compute instance, skip the installation and configuration vignettes (#1 and #2), as the compute instance has the Azure ML SDK pre-installed and your workspace details pre-configured.

For additional examples on using the R SDK, see the samples folder.

Azure ML guides

In addition to the end-to-end vignettes, we also provide more detailed documentation for the following: