242 строки
9.7 KiB
Python
242 строки
9.7 KiB
Python
# Copyright (c) Microsoft Corporation
|
|
#
|
|
# All rights reserved.
|
|
#
|
|
# MIT License
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
# copy of this software and associated documentation files (the "Software"),
|
|
# to deal in the Software without restriction, including without limitation
|
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
# and/or sell copies of the Software, and to permit persons to whom the
|
|
# Software is furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in
|
|
# all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
# DEALINGS IN THE SOFTWARE.
|
|
|
|
# compat imports
|
|
from __future__ import (
|
|
absolute_import, division, print_function, unicode_literals
|
|
)
|
|
from builtins import ( # noqa
|
|
bytes, dict, int, list, object, range, str, ascii, chr, hex, input,
|
|
next, oct, open, pow, round, super, filter, map, zip)
|
|
# stdlib imports
|
|
import logging
|
|
try:
|
|
import pathlib2 as pathlib
|
|
except ImportError:
|
|
import pathlib
|
|
import os
|
|
import time
|
|
import uuid
|
|
# non-stdlib imports
|
|
import azure.batch.models as batchmodels
|
|
# local imports
|
|
from . import crypto
|
|
from . import settings
|
|
from . import util
|
|
|
|
# create logger
|
|
logger = logging.getLogger(__name__)
|
|
util.setup_logger(logger)
|
|
|
|
# global defines
|
|
_TENSORBOARD_LOG_ARGS = frozenset((
|
|
'--tensorboard_logdir', '-tensorboard_logdir', '--logdir', '--log_dir',
|
|
'--log-dir',
|
|
))
|
|
|
|
|
|
def tunnel_tensorboard(batch_client, config, jobid, taskid, logdir, image):
|
|
# type: (batchsc.BatchServiceClient, dict, str, str, str, str) -> None
|
|
"""Action: Misc Tensorboard
|
|
:param azure.batch.batch_service_client.BatchServiceClient batch_client:
|
|
batch client
|
|
:param dict config: configuration dict
|
|
:param str jobid: job id to list
|
|
:param str taskid: task id to list
|
|
:param str logdir: log dir
|
|
:param str image: tensorflow image to use
|
|
"""
|
|
# ensure pool ssh private key exists
|
|
pool = settings.pool_settings(config)
|
|
ssh_priv_key = pool.ssh.ssh_private_key
|
|
if ssh_priv_key is None:
|
|
ssh_priv_key = pathlib.Path(
|
|
pool.ssh.generated_file_export_path,
|
|
crypto.get_ssh_key_prefix())
|
|
if not ssh_priv_key.exists():
|
|
raise RuntimeError(
|
|
('cannot tunnel to remote Tensorboard with non-existant RSA '
|
|
'private key: {}').format(ssh_priv_key))
|
|
# populate jobid if empty
|
|
if util.is_none_or_empty(jobid):
|
|
jobspecs = settings.job_specifications(config)
|
|
jobid = settings.job_id(jobspecs[0])
|
|
# get the last task for this job
|
|
if util.is_none_or_empty(taskid):
|
|
tasks = batch_client.task.list(
|
|
jobid, task_list_options=batchmodels.TaskListOptions(select='id'))
|
|
taskid = sorted([x.id for x in tasks])[-1]
|
|
# wait for task to be running or completed
|
|
logger.debug('waiting for task {} in job {} to reach a valid state'.format(
|
|
taskid, jobid))
|
|
while True:
|
|
task = batch_client.task.get(jobid, taskid)
|
|
if (task.state == batchmodels.TaskState.running or
|
|
task.state == batchmodels.TaskState.completed):
|
|
break
|
|
logger.debug('waiting for task to enter running or completed state')
|
|
time.sleep(1)
|
|
# parse "--logdir" from task commandline
|
|
if util.is_none_or_empty(logdir):
|
|
for arg in _TENSORBOARD_LOG_ARGS:
|
|
try:
|
|
_tmp = task.command_line.index(arg)
|
|
except ValueError:
|
|
pass
|
|
else:
|
|
_tmp = task.command_line[_tmp + len(arg) + 1:]
|
|
logdir = _tmp.split()[0].rstrip(';').rstrip('"').rstrip('\'')
|
|
if not util.confirm_action(
|
|
config, 'use auto-detected logdir: {}'.format(logdir)):
|
|
logdir = None
|
|
else:
|
|
logger.debug(
|
|
'using auto-detected logdir: {}'.format(logdir))
|
|
break
|
|
if util.is_none_or_empty(logdir):
|
|
raise RuntimeError(
|
|
('cannot automatically determine logdir for task {} in '
|
|
'job {}, please retry command with explicit --logdir '
|
|
'parameter').format(taskid, jobid))
|
|
# construct absolute logpath
|
|
logpath = pathlib.Path(
|
|
settings.temp_disk_mountpoint(config)) / 'batch' / 'tasks'
|
|
if logdir.startswith('$AZ_BATCH'):
|
|
_tmp = logdir.index('/')
|
|
_var = logdir[:_tmp]
|
|
# shift off var
|
|
logdir = logdir[_tmp + 1:]
|
|
if _var == '$AZ_BATCH_NODE_ROOT_DIR':
|
|
pass
|
|
elif _var == '$AZ_BATCH_NODE_SHARED_DIR':
|
|
logpath = logpath / 'shared'
|
|
elif _var == '$AZ_BATCH_NODE_STARTUP_DIR':
|
|
logpath = logpath / 'startup'
|
|
elif _var == '$AZ_BATCH_TASK_WORKING_DIR':
|
|
logpath = logpath / 'workitems' / jobid / 'job-1' / taskid / 'wd'
|
|
else:
|
|
raise RuntimeError(
|
|
('cannot automatically translate variable {} to absolute '
|
|
'path, please retry with an absolute path for '
|
|
'--logdir').format(_var))
|
|
elif not logdir.startswith('/'):
|
|
# default to task working directory
|
|
logpath = logpath / 'workitems' / jobid / 'job-1' / taskid / 'wd'
|
|
logpath = logpath / logdir
|
|
if util.on_windows():
|
|
logpath = str(logpath).replace('\\', '/')
|
|
logger.debug('using logpath: {}'.format(logpath))
|
|
# if logdir still has vars raise error
|
|
if '$AZ_BATCH' in logdir:
|
|
raise RuntimeError(
|
|
('cannot determine absolute logdir path for task {} in job {}, '
|
|
'please retry with an absolute path for --logdir').format(
|
|
taskid, jobid))
|
|
# determine tensorflow image to use
|
|
tb = settings.get_tensorboard_docker_image()
|
|
if util.is_none_or_empty(image):
|
|
di = settings.global_resources_docker_images(config)
|
|
di = [x for x in di if 'tensorflow' in x]
|
|
if util.is_not_empty(di):
|
|
image = di[0]
|
|
if not util.confirm_action(
|
|
config,
|
|
'use auto-detected Docker image: {}'.format(image)):
|
|
image = None
|
|
else:
|
|
logger.debug(
|
|
'using auto-detected Docker image: {}'.format(image))
|
|
del di
|
|
if util.is_none_or_empty(image):
|
|
logger.warning(
|
|
'no pre-loaded tensorflow Docker image detected on pool, '
|
|
'using: {}'.format(tb[0]))
|
|
image = tb[0]
|
|
# get node remote login settings
|
|
rls = batch_client.compute_node.get_remote_login_settings(
|
|
pool.id, task.node_info.node_id)
|
|
# set up tensorboard command
|
|
if settings.is_gpu_pool(pool.vm_size):
|
|
exe = 'nvidia-docker'
|
|
else:
|
|
exe = 'docker'
|
|
name = str(uuid.uuid4()).split('-')[0]
|
|
# map both ports (jupyter and tensorboard) to different host ports
|
|
# to avoid conflicts
|
|
host_port = 56006
|
|
tb_ssh_args = [
|
|
'ssh', '-o', 'StrictHostKeyChecking=no',
|
|
'-o', 'UserKnownHostsFile={}'.format(os.devnull),
|
|
'-i', str(ssh_priv_key), '-p', str(rls.remote_login_port),
|
|
'-t', '{}@{}'.format(pool.ssh.username, rls.remote_login_ip_address),
|
|
('sudo /bin/bash -c "{exe} run --rm --name={name} -p 58888:8888 '
|
|
'-p {hostport}:{contport} -v {logdir}:/{jobid}.{taskid} {image} '
|
|
'python {tbpy} --port={contport} --logdir=/{jobid}.{taskid}"').format(
|
|
exe=exe, name=name, hostport=host_port, contport=tb[2],
|
|
image=image, tbpy=tb[1], logdir=str(logpath), jobid=jobid,
|
|
taskid=taskid)
|
|
]
|
|
# set up ssh tunnel command
|
|
tunnel_ssh_args = [
|
|
'ssh', '-o', 'StrictHostKeyChecking=no',
|
|
'-o', 'UserKnownHostsFile={}'.format(os.devnull),
|
|
'-i', str(ssh_priv_key), '-p', str(rls.remote_login_port), '-N',
|
|
'-L', '{port}:localhost:{hostport}'.format(
|
|
port=tb[2], hostport=host_port),
|
|
'{}@{}'.format(pool.ssh.username, rls.remote_login_ip_address)
|
|
]
|
|
# execute command and then tunnel
|
|
tb_proc = None
|
|
tunnel_proc = None
|
|
try:
|
|
tb_proc = util.subprocess_nowait_pipe_stdout(tb_ssh_args, shell=False)
|
|
tunnel_proc = util.subprocess_nowait_pipe_stdout(
|
|
tunnel_ssh_args, shell=False)
|
|
logger.info(
|
|
('\n\n>> Please connect to Tensorboard at http://localhost:{}/'
|
|
'\n\n>> Note that Tensorboard may take a while to start if the '
|
|
'Docker is'
|
|
'\n>> not present. Please keep retrying the URL every few '
|
|
'seconds.'
|
|
'\n\n>> Terminate your session with CTRL+C'
|
|
'\n\n>> If you cannot terminate your session cleanly, run:'
|
|
'\n shipyard pool ssh --nodeid {} '
|
|
'sudo docker kill {}\n').format(
|
|
tb[2], task.node_info.node_id, name))
|
|
tb_proc.wait()
|
|
finally:
|
|
logger.debug(
|
|
'attempting clean up of Tensorboard instance and SSH tunnel')
|
|
try:
|
|
if tunnel_proc is not None:
|
|
tunnel_proc.poll()
|
|
if tunnel_proc.returncode is None:
|
|
tunnel_proc.kill()
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
if tb_proc is not None:
|
|
tb_proc.poll()
|
|
if tb_proc.returncode is None:
|
|
tb_proc.kill()
|