2020-03-27 10:05:06 +03:00
|
|
|
library(ggplot2)
|
|
|
|
library(tidyr)
|
|
|
|
library(dplyr)
|
|
|
|
library(rstan)
|
|
|
|
library(data.table)
|
|
|
|
library(lubridate)
|
|
|
|
library(gdata)
|
|
|
|
library(EnvStats)
|
|
|
|
library(matrixStats)
|
|
|
|
library(scales)
|
|
|
|
library(gridExtra)
|
|
|
|
library(ggpubr)
|
|
|
|
library(bayesplot)
|
|
|
|
library(cowplot)
|
2020-04-09 14:23:38 +03:00
|
|
|
library(svglite)
|
2020-03-27 10:05:06 +03:00
|
|
|
|
2020-03-27 10:48:30 +03:00
|
|
|
source("utils/geom-stepribbon.r")
|
2020-03-27 10:05:06 +03:00
|
|
|
#---------------------------------------------------------------------------
|
|
|
|
make_three_pannel_plot <- function(){
|
|
|
|
|
|
|
|
args <- commandArgs(trailingOnly = TRUE)
|
|
|
|
|
2020-04-10 16:06:54 +03:00
|
|
|
if (length(args)==1){
|
|
|
|
filename2 = args[1]
|
|
|
|
percent_pop = FALSE
|
|
|
|
} else {
|
|
|
|
filename2 = args[1]
|
|
|
|
percent_pop = args[2]
|
|
|
|
}
|
|
|
|
|
2020-03-27 10:05:06 +03:00
|
|
|
load(paste0("results/", filename2))
|
|
|
|
print(sprintf("loading: %s",paste0("results/",filename2)))
|
2020-04-09 18:00:16 +03:00
|
|
|
covariates = read.csv('data/interventions.csv', stringsAsFactors = FALSE)
|
2020-04-10 16:06:54 +03:00
|
|
|
names_covariates = c('Schools + Universities','Self-isolating if ill', 'Public events',
|
|
|
|
'Lockdown', 'Social distancing encouraged')
|
2020-04-09 18:00:16 +03:00
|
|
|
covariates <- covariates %>%
|
|
|
|
filter((Type %in% names_covariates))
|
|
|
|
covariates <- covariates[,c(1,2,4)]
|
|
|
|
covariates <- spread(covariates, Type, Date.effective)
|
|
|
|
names(covariates) <- c('Country','lockdown', 'public_events', 'schools_universities','self_isolating_if_ill', 'social_distancing_encouraged')
|
|
|
|
covariates <- covariates[c('Country','schools_universities', 'self_isolating_if_ill', 'public_events', 'lockdown', 'social_distancing_encouraged')]
|
|
|
|
covariates$schools_universities <- as.Date(covariates$schools_universities, format = "%d.%m.%Y")
|
|
|
|
covariates$lockdown <- as.Date(covariates$lockdown, format = "%d.%m.%Y")
|
|
|
|
covariates$public_events <- as.Date(covariates$public_events, format = "%d.%m.%Y")
|
|
|
|
covariates$self_isolating_if_ill <- as.Date(covariates$self_isolating_if_ill, format = "%d.%m.%Y")
|
|
|
|
covariates$social_distancing_encouraged <- as.Date(covariates$social_distancing_encouraged, format = "%d.%m.%Y")
|
2020-03-27 10:05:06 +03:00
|
|
|
|
2020-04-09 18:18:13 +03:00
|
|
|
for(i in 1:14){
|
2020-03-27 10:05:06 +03:00
|
|
|
print(i)
|
|
|
|
N <- length(dates[[i]])
|
|
|
|
country <- countries[[i]]
|
|
|
|
|
|
|
|
predicted_cases <- colMeans(prediction[,1:N,i])
|
|
|
|
predicted_cases_li <- colQuantiles(prediction[,1:N,i], probs=.025)
|
|
|
|
predicted_cases_ui <- colQuantiles(prediction[,1:N,i], probs=.975)
|
|
|
|
predicted_cases_li2 <- colQuantiles(prediction[,1:N,i], probs=.25)
|
|
|
|
predicted_cases_ui2 <- colQuantiles(prediction[,1:N,i], probs=.75)
|
|
|
|
|
|
|
|
|
|
|
|
estimated_deaths <- colMeans(estimated.deaths[,1:N,i])
|
|
|
|
estimated_deaths_li <- colQuantiles(estimated.deaths[,1:N,i], probs=.025)
|
|
|
|
estimated_deaths_ui <- colQuantiles(estimated.deaths[,1:N,i], probs=.975)
|
|
|
|
estimated_deaths_li2 <- colQuantiles(estimated.deaths[,1:N,i], probs=.25)
|
|
|
|
estimated_deaths_ui2 <- colQuantiles(estimated.deaths[,1:N,i], probs=.75)
|
|
|
|
|
2020-04-09 18:00:16 +03:00
|
|
|
rt <- colMeans(out$Rt_adj[,1:N,i])
|
|
|
|
rt_li <- colQuantiles(out$Rt_adj[,1:N,i],probs=.025)
|
|
|
|
rt_ui <- colQuantiles(out$Rt_adj[,1:N,i],probs=.975)
|
|
|
|
rt_li2 <- colQuantiles(out$Rt_adj[,1:N,i],probs=.25)
|
|
|
|
rt_ui2 <- colQuantiles(out$Rt_adj[,1:N,i],probs=.75)
|
2020-03-27 10:05:06 +03:00
|
|
|
|
|
|
|
|
|
|
|
# delete these 2 lines
|
2020-04-09 18:00:16 +03:00
|
|
|
covariates_country <- covariates[which(covariates$Country == country), 2:6]
|
|
|
|
covariates_country_long <- gather(covariates_country, key = "key",
|
2020-03-27 10:05:06 +03:00
|
|
|
value = "value")
|
|
|
|
covariates_country_long$x <- rep(NULL, length(covariates_country_long$key))
|
|
|
|
un_dates <- unique(covariates_country_long$value)
|
|
|
|
|
|
|
|
for (k in 1:length(un_dates)){
|
|
|
|
idxs <- which(covariates_country_long$value == un_dates[k])
|
|
|
|
max_val <- round(max(rt_ui)) + 0.3
|
|
|
|
for (j in idxs){
|
|
|
|
covariates_country_long$x[j] <- max_val
|
|
|
|
max_val <- max_val - 0.3
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
covariates_country_long$value <- as_date(covariates_country_long$value)
|
|
|
|
covariates_country_long$country <- rep(country,
|
|
|
|
length(covariates_country_long$value))
|
|
|
|
|
|
|
|
data_country <- data.frame("time" = as_date(as.character(dates[[i]])),
|
|
|
|
"country" = rep(country, length(dates[[i]])),
|
|
|
|
"reported_cases" = reported_cases[[i]],
|
|
|
|
"reported_cases_c" = cumsum(reported_cases[[i]]),
|
|
|
|
"predicted_cases_c" = cumsum(predicted_cases),
|
|
|
|
"predicted_min_c" = cumsum(predicted_cases_li),
|
|
|
|
"predicted_max_c" = cumsum(predicted_cases_ui),
|
|
|
|
"predicted_cases" = predicted_cases,
|
|
|
|
"predicted_min" = predicted_cases_li,
|
|
|
|
"predicted_max" = predicted_cases_ui,
|
|
|
|
"predicted_min2" = predicted_cases_li2,
|
|
|
|
"predicted_max2" = predicted_cases_ui2,
|
|
|
|
"deaths" = deaths_by_country[[i]],
|
|
|
|
"deaths_c" = cumsum(deaths_by_country[[i]]),
|
|
|
|
"estimated_deaths_c" = cumsum(estimated_deaths),
|
|
|
|
"death_min_c" = cumsum(estimated_deaths_li),
|
|
|
|
"death_max_c"= cumsum(estimated_deaths_ui),
|
|
|
|
"estimated_deaths" = estimated_deaths,
|
|
|
|
"death_min" = estimated_deaths_li,
|
|
|
|
"death_max"= estimated_deaths_ui,
|
|
|
|
"death_min2" = estimated_deaths_li2,
|
|
|
|
"death_max2"= estimated_deaths_ui2,
|
|
|
|
"rt" = rt,
|
|
|
|
"rt_min" = rt_li,
|
|
|
|
"rt_max" = rt_ui,
|
|
|
|
"rt_min2" = rt_li2,
|
|
|
|
"rt_max2" = rt_ui2)
|
|
|
|
|
|
|
|
make_plots(data_country = data_country,
|
|
|
|
covariates_country_long = covariates_country_long,
|
|
|
|
filename2 = filename2,
|
2020-04-10 16:06:54 +03:00
|
|
|
country = country,
|
|
|
|
percent_pop = percent_pop)
|
2020-03-27 10:05:06 +03:00
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#---------------------------------------------------------------------------
|
|
|
|
make_plots <- function(data_country, covariates_country_long,
|
2020-04-10 16:06:54 +03:00
|
|
|
filename2, country, percent_pop){
|
2020-03-27 10:05:06 +03:00
|
|
|
|
2020-04-10 16:06:54 +03:00
|
|
|
if (country == 'United_Kingdom')
|
|
|
|
country = 'United Kingdom'
|
2020-03-27 10:05:06 +03:00
|
|
|
data_cases_95 <- data.frame(data_country$time, data_country$predicted_min,
|
2020-03-29 17:05:35 +03:00
|
|
|
data_country$predicted_max)
|
2020-03-27 10:05:06 +03:00
|
|
|
names(data_cases_95) <- c("time", "cases_min", "cases_max")
|
|
|
|
data_cases_95$key <- rep("nintyfive", length(data_cases_95$time))
|
|
|
|
data_cases_50 <- data.frame(data_country$time, data_country$predicted_min2,
|
2020-03-29 17:05:35 +03:00
|
|
|
data_country$predicted_max2)
|
2020-03-27 10:05:06 +03:00
|
|
|
names(data_cases_50) <- c("time", "cases_min", "cases_max")
|
|
|
|
data_cases_50$key <- rep("fifty", length(data_cases_50$time))
|
|
|
|
data_cases <- rbind(data_cases_95, data_cases_50)
|
|
|
|
levels(data_cases$key) <- c("ninetyfive", "fifty")
|
|
|
|
|
|
|
|
p1 <- ggplot(data_country) +
|
|
|
|
geom_bar(data = data_country, aes(x = time, y = reported_cases),
|
|
|
|
fill = "coral4", stat='identity', alpha=0.5) +
|
|
|
|
geom_ribbon(data = data_cases,
|
|
|
|
aes(x = time, ymin = cases_min, ymax = cases_max, fill = key)) +
|
|
|
|
xlab("") +
|
2020-04-10 16:06:54 +03:00
|
|
|
ylab("Daily number of infections\n") +
|
2020-03-27 10:05:06 +03:00
|
|
|
scale_x_date(date_breaks = "weeks", labels = date_format("%e %b")) +
|
2020-04-10 16:06:54 +03:00
|
|
|
scale_y_continuous(expand = c(0, 0), labels = comma) +
|
2020-03-27 10:05:06 +03:00
|
|
|
scale_fill_manual(name = "", labels = c("50%", "95%"),
|
|
|
|
values = c(alpha("deepskyblue4", 0.55),
|
|
|
|
alpha("deepskyblue4", 0.45))) +
|
2020-04-09 14:23:38 +03:00
|
|
|
theme_pubr(base_family="sans") +
|
2020-03-27 10:05:06 +03:00
|
|
|
theme(axis.text.x = element_text(angle = 45, hjust = 1),
|
2020-04-10 16:06:54 +03:00
|
|
|
legend.position = "None") + ggtitle(country) +
|
2020-03-27 10:05:06 +03:00
|
|
|
guides(fill=guide_legend(ncol=1))
|
2020-03-29 17:05:35 +03:00
|
|
|
|
2020-03-27 10:05:06 +03:00
|
|
|
data_deaths_95 <- data.frame(data_country$time, data_country$death_min,
|
|
|
|
data_country$death_max)
|
|
|
|
names(data_deaths_95) <- c("time", "death_min", "death_max")
|
|
|
|
data_deaths_95$key <- rep("nintyfive", length(data_deaths_95$time))
|
|
|
|
data_deaths_50 <- data.frame(data_country$time, data_country$death_min2,
|
|
|
|
data_country$death_max2)
|
|
|
|
names(data_deaths_50) <- c("time", "death_min", "death_max")
|
|
|
|
data_deaths_50$key <- rep("fifty", length(data_deaths_50$time))
|
|
|
|
data_deaths <- rbind(data_deaths_95, data_deaths_50)
|
|
|
|
levels(data_deaths$key) <- c("ninetyfive", "fifty")
|
|
|
|
|
|
|
|
|
2020-03-29 17:05:35 +03:00
|
|
|
p2 <- ggplot(data_country, aes(x = time)) +
|
|
|
|
geom_bar(data = data_country, aes(y = deaths, fill = "reported"),
|
|
|
|
fill = "coral4", stat='identity', alpha=0.5) +
|
2020-03-27 10:05:06 +03:00
|
|
|
geom_ribbon(
|
2020-03-29 17:05:35 +03:00
|
|
|
data = data_deaths,
|
|
|
|
aes(ymin = death_min, ymax = death_max, fill = key)) +
|
2020-03-27 10:05:06 +03:00
|
|
|
scale_x_date(date_breaks = "weeks", labels = date_format("%e %b")) +
|
2020-04-10 16:06:54 +03:00
|
|
|
scale_y_continuous(expand = c(0, 0), labels = comma) +
|
2020-03-29 17:05:35 +03:00
|
|
|
scale_fill_manual(name = "", labels = c("50%", "95%"),
|
|
|
|
values = c(alpha("deepskyblue4", 0.55),
|
|
|
|
alpha("deepskyblue4", 0.45))) +
|
2020-04-10 16:06:54 +03:00
|
|
|
ylab("Daily number of deaths\n") +
|
|
|
|
xlab("") +
|
2020-03-29 17:05:35 +03:00
|
|
|
theme_pubr() +
|
2020-03-27 10:05:06 +03:00
|
|
|
theme(axis.text.x = element_text(angle = 45, hjust = 1),
|
2020-03-29 17:05:35 +03:00
|
|
|
legend.position = "None") +
|
|
|
|
guides(fill=guide_legend(ncol=1))
|
|
|
|
|
|
|
|
|
2020-03-27 10:05:06 +03:00
|
|
|
plot_labels <- c("Complete lockdown",
|
|
|
|
"Public events banned",
|
|
|
|
"School closure",
|
|
|
|
"Self isolation",
|
|
|
|
"Social distancing")
|
|
|
|
|
|
|
|
# Plotting interventions
|
|
|
|
data_rt_95 <- data.frame(data_country$time,
|
|
|
|
data_country$rt_min, data_country$rt_max)
|
|
|
|
names(data_rt_95) <- c("time", "rt_min", "rt_max")
|
|
|
|
data_rt_95$key <- rep("nintyfive", length(data_rt_95$time))
|
|
|
|
data_rt_50 <- data.frame(data_country$time, data_country$rt_min2,
|
|
|
|
data_country$rt_max2)
|
|
|
|
names(data_rt_50) <- c("time", "rt_min", "rt_max")
|
|
|
|
data_rt_50$key <- rep("fifty", length(data_rt_50$time))
|
|
|
|
data_rt <- rbind(data_rt_95, data_rt_50)
|
|
|
|
levels(data_rt$key) <- c("ninetyfive", "fifth")
|
2020-03-29 17:05:35 +03:00
|
|
|
|
2020-03-27 10:05:06 +03:00
|
|
|
p3 <- ggplot(data_country) +
|
|
|
|
geom_stepribbon(data = data_rt, aes(x = time, ymin = rt_min, ymax = rt_max,
|
|
|
|
group = key,
|
|
|
|
fill = key)) +
|
|
|
|
geom_hline(yintercept = 1, color = 'black', size = 0.1) +
|
|
|
|
geom_segment(data = covariates_country_long,
|
|
|
|
aes(x = value, y = 0, xend = value, yend = max(x)),
|
|
|
|
linetype = "dashed", colour = "grey", alpha = 0.75) +
|
|
|
|
geom_point(data = covariates_country_long, aes(x = value,
|
|
|
|
y = x,
|
|
|
|
group = key,
|
|
|
|
shape = key,
|
|
|
|
col = key), size = 2) +
|
|
|
|
xlab("") +
|
|
|
|
ylab(expression(R[t])) +
|
|
|
|
scale_fill_manual(name = "", labels = c("50%", "95%"),
|
2020-03-29 17:05:35 +03:00
|
|
|
values = c(alpha("seagreen", 0.75), alpha("seagreen", 0.5))) +
|
2020-03-27 10:05:06 +03:00
|
|
|
scale_shape_manual(name = "Interventions", labels = plot_labels,
|
|
|
|
values = c(21, 22, 23, 24, 25, 12)) +
|
|
|
|
scale_colour_discrete(name = "Interventions", labels = plot_labels) +
|
|
|
|
scale_x_date(date_breaks = "weeks", labels = date_format("%e %b"),
|
2020-03-29 17:05:35 +03:00
|
|
|
limits = c(data_country$time[1],
|
|
|
|
data_country$time[length(data_country$time)])) +
|
2020-04-10 16:06:54 +03:00
|
|
|
scale_y_continuous(expand = expansion(mult=c(0,0.1))) +
|
2020-03-27 10:05:06 +03:00
|
|
|
theme_pubr() +
|
|
|
|
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
|
|
|
|
theme(legend.position="right")
|
2020-04-10 16:06:54 +03:00
|
|
|
if (country == 'United Kingdom')
|
|
|
|
country = 'United_Kingdom'
|
|
|
|
# Special plot settings for mobile
|
|
|
|
p3_mobile <- p3 +
|
|
|
|
theme(legend.position="below")
|
|
|
|
|
|
|
|
# Plots for Web, Desktop version
|
|
|
|
dir.create("web/figures/desktop/", showWarnings = FALSE, recursive = TRUE)
|
|
|
|
save_plot(filename = paste0("web/figures/desktop/", country, "_infections", ".svg"),
|
|
|
|
p1, base_height = 4, base_asp = 1.618)
|
2020-04-10 20:10:15 +03:00
|
|
|
save_plot(filename = paste0("web/figures/desktop/", country, "_deaths", ".svg"),
|
|
|
|
p2, base_height = 4, base_asp = 1.618)
|
|
|
|
save_plot(filename = paste0("web/figures/desktop/", country, "_rt", ".svg"),
|
|
|
|
p3, base_height = 4, base_asp = 1.618 * 2)
|
|
|
|
|
|
|
|
# Plots for Web, Mobile version
|
|
|
|
dir.create("web/figures/mobile/", showWarnings = FALSE, recursive = TRUE)
|
|
|
|
save_plot(filename = paste0("web/figures/mobile/", country, "_infections", ".svg"),
|
|
|
|
p1, base_height = 4, base_asp = 1.1)
|
|
|
|
save_plot(filename = paste0("web/figures/mobile/", country, "_deaths", ".svg"),
|
|
|
|
p2, base_height = 4, base_asp = 1.1)
|
|
|
|
save_plot(filename = paste0("web/figures/mobile/", country, "_rt", ".svg"),
|
|
|
|
p3_mobile, base_height = 4, base_asp = 1.1)
|
2020-03-27 10:05:06 +03:00
|
|
|
|
2020-04-09 14:23:38 +03:00
|
|
|
# Special plot settings for mobile
|
|
|
|
p3_mobile <- p3 +
|
|
|
|
theme(legend.position="below")
|
|
|
|
|
|
|
|
# Plots for Web, Desktop version
|
|
|
|
dir.create("web/figures/desktop/", showWarnings = FALSE, recursive = TRUE)
|
|
|
|
save_plot(filename = paste0("web/figures/desktop/", country, "_infections", ".svg"),
|
|
|
|
p1, base_height = 4, base_asp = 1.618)
|
|
|
|
save_plot(filename = paste0("web/figures/desktop/", country, "_deaths", ".svg"),
|
|
|
|
p2, base_height = 4, base_asp = 1.618)
|
|
|
|
save_plot(filename = paste0("web/figures/desktop/", country, "_rt", ".svg"),
|
|
|
|
p3, base_height = 4, base_asp = 1.618 * 2)
|
|
|
|
|
|
|
|
# Plots for Web, Mobile version
|
|
|
|
dir.create("web/figures/mobile/", showWarnings = FALSE, recursive = TRUE)
|
|
|
|
save_plot(filename = paste0("web/figures/mobile/", country, "_infections", ".svg"),
|
|
|
|
p1, base_height = 4, base_asp = 1.1)
|
|
|
|
save_plot(filename = paste0("web/figures/mobile/", country, "_deaths", ".svg"),
|
|
|
|
p2, base_height = 4, base_asp = 1.1)
|
|
|
|
save_plot(filename = paste0("web/figures/mobile/", country, "_rt", ".svg"),
|
|
|
|
p3_mobile, base_height = 4, base_asp = 1.1)
|
|
|
|
|
2020-03-27 10:05:06 +03:00
|
|
|
p <- plot_grid(p1, p2, p3, ncol = 3, rel_widths = c(1, 1, 2))
|
2020-04-10 16:06:54 +03:00
|
|
|
save_plot(filename = paste0("figures/", country, "_three_pannel_", filename2, ".png"),
|
2020-03-27 10:05:06 +03:00
|
|
|
p, base_width = 14)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-04-10 16:06:54 +03:00
|
|
|
make_three_pannel_plot()
|