Adds BCI results to staging
This commit is contained in:
Родитель
85edfe7c87
Коммит
55567a8bb4
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -1,235 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The autoreload extension is already loaded. To reload it, use:\n",
|
||||
" %reload_ext autoreload\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"\n",
|
||||
"from sklearn.pipeline import Pipeline, FeatureUnion\n",
|
||||
"\n",
|
||||
"from sklearn.model_selection import cross_val_score, cross_val_predict\n",
|
||||
"from xgboost import XGBClassifier\n",
|
||||
"import numpy as np\n",
|
||||
"import itertools\n",
|
||||
"import seaborn\n",
|
||||
"from sklearn.metrics import roc_auc_score\n",
|
||||
"from experiments.libs import loaders\n",
|
||||
"from sklearn.model_selection import StratifiedKFold\n",
|
||||
"\n",
|
||||
"from sklearn.svm import LinearSVC\n",
|
||||
"from sklearn.decomposition import PCA\n",
|
||||
"from sklearn.metrics import roc_auc_score\n",
|
||||
"from xgboost import XGBModel\n",
|
||||
"\n",
|
||||
"from lightgbm import LGBMClassifier\n",
|
||||
"\n",
|
||||
"import mne\n",
|
||||
"from scipy.io import loadmat\n",
|
||||
"from libs.loaders import load_bci\n",
|
||||
"from itertools import zip_longest\n",
|
||||
"from copy import deepcopy\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"%matplotlib inline\n",
|
||||
"%load_ext autoreload\n",
|
||||
"%autoreload 2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_steps = [('scale', StandardScaler())]\n",
|
||||
"continuous_pipeline = Pipeline(steps=pipeline_steps)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"featurisers = [('continuous', continuous_pipeline)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"xgb_clf_pipeline = Pipeline(steps=[('features', FeatureUnion(featurisers)),\n",
|
||||
" ('clf', XGBClassifier(max_depth=2, \n",
|
||||
" learning_rate=0.1, \n",
|
||||
" scale_pos_weight=2,\n",
|
||||
" n_estimators=100,\n",
|
||||
" gamma=0.1,\n",
|
||||
" subsample=1))]) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lgbm_clf_pipeline = Pipeline(steps=[('features', FeatureUnion(featurisers)),\n",
|
||||
" ('clf', LGBMClassifier(num_leaves=2**2,\n",
|
||||
" learning_rate=0.1, \n",
|
||||
" scale_pos_weight=2,\n",
|
||||
" n_estimators=100,\n",
|
||||
" subsample=1))]) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X, y, X_test, y_test = load_bci()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 1min 38s, sys: 688 ms, total: 1min 39s\n",
|
||||
"Wall time: 5.59 s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('features', FeatureUnion(n_jobs=1,\n",
|
||||
" transformer_list=[('continuous', Pipeline(steps=[('scale', StandardScaler(copy=True, with_mean=True, with_std=True))]))],\n",
|
||||
" transformer_weights=None)), ('clf', XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,\n",
|
||||
" gamma=0...logistic', reg_alpha=0, reg_lambda=1,\n",
|
||||
" scale_pos_weight=2, seed=0, silent=True, subsample=1))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"xgb_clf_pipeline.fit(X, y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0.68251896814231094"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"y_pred = xgb_clf_pipeline.predict_proba(X_test)\n",
|
||||
"roc_auc_score(y_test, y_pred[:, 1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 17.3 s, sys: 168 ms, total: 17.5 s\n",
|
||||
"Wall time: 2.4 s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('features', FeatureUnion(n_jobs=1,\n",
|
||||
" transformer_list=[('continuous', Pipeline(steps=[('scale', StandardScaler(copy=True, with_mean=True, with_std=True))]))],\n",
|
||||
" transformer_weights=None)), ('clf', LGBMClassifier(boosting_type='gbdt', colsample_bytree=1, drop_rate=0.1,\n",
|
||||
" is_un... subsample_for_bin=50000, subsample_freq=1, uniform_drop=False,\n",
|
||||
" xgboost_dart_mode=False))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"lgbm_clf_pipeline.fit(X, y)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
|
@ -1,95 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Playground\n",
|
||||
"\n",
|
||||
"Playground notebook to quickly test code."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"System version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06) \n",
|
||||
"[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import os,sys\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"from lightgbm.sklearn import LGBMRegressor\n",
|
||||
"import xgboost as xgb\n",
|
||||
"\n",
|
||||
"from libs.timer import Timer\n",
|
||||
"\n",
|
||||
"print(\"System version: {}\".format(sys.version))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.000576000000000132\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with Timer() as t:\n",
|
||||
" for i in range(10000):\n",
|
||||
" r = 1\n",
|
||||
"print(t.interval)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
Загрузка…
Ссылка в новой задаче