airline exp run
This commit is contained in:
Родитель
2eb40b4bea
Коммит
616dae3bdf
|
@ -15,7 +15,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 36,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -37,7 +37,7 @@
|
|||
"import os,sys\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from lightgbm.sklearn import LGBMRegressor\n",
|
||||
"from lightgbm.sklearn import LGBMRegressor, LGBMClassifier\n",
|
||||
"from xgboost import XGBRegressor\n",
|
||||
"from sklearn.metrics import (confusion_matrix, accuracy_score, roc_auc_score, f1_score, log_loss, precision_score,\n",
|
||||
" recall_score)\n",
|
||||
|
@ -45,7 +45,6 @@
|
|||
"from libs.conversion import convert_cols_categorical_to_numeric, convert_related_cols_categorical_to_numeric\n",
|
||||
"import pkg_resources\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"System version: {}\".format(sys.version))\n",
|
||||
"print(\"XGBoost version: {}\".format(pkg_resources.get_distribution('xgboost').version))\n",
|
||||
"print(\"LightGBM version: {}\".format(pkg_resources.get_distribution('lightgbm').version))\n"
|
||||
|
@ -1085,7 +1084,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1102,7 +1101,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1179,8 +1178,60 @@
|
|||
"[64]\tvalid_0's log_loss: 0.527862\n",
|
||||
"[65]\tvalid_0's log_loss: 0.527307\n",
|
||||
"[66]\tvalid_0's log_loss: 0.526442\n",
|
||||
"[67]\tvalid_0's log_loss: 0.526158\n"
|
||||
"[67]\tvalid_0's log_loss: 0.526158\n",
|
||||
"[68]\tvalid_0's log_loss: 0.52545\n",
|
||||
"[69]\tvalid_0's log_loss: 0.525063\n",
|
||||
"[70]\tvalid_0's log_loss: 0.524413\n",
|
||||
"[71]\tvalid_0's log_loss: 0.524119\n",
|
||||
"[72]\tvalid_0's log_loss: 0.523447\n",
|
||||
"[73]\tvalid_0's log_loss: 0.52282\n",
|
||||
"[74]\tvalid_0's log_loss: 0.522554\n",
|
||||
"[75]\tvalid_0's log_loss: 0.522167\n",
|
||||
"[76]\tvalid_0's log_loss: 0.521837\n",
|
||||
"[77]\tvalid_0's log_loss: 0.521335\n",
|
||||
"[78]\tvalid_0's log_loss: 0.521158\n",
|
||||
"[79]\tvalid_0's log_loss: 0.520606\n",
|
||||
"[80]\tvalid_0's log_loss: 0.520276\n",
|
||||
"[81]\tvalid_0's log_loss: 0.51986\n",
|
||||
"[82]\tvalid_0's log_loss: 0.519674\n",
|
||||
"[83]\tvalid_0's log_loss: 0.519353\n",
|
||||
"[84]\tvalid_0's log_loss: 0.519099\n",
|
||||
"[85]\tvalid_0's log_loss: 0.518659\n",
|
||||
"[86]\tvalid_0's log_loss: 0.518253\n",
|
||||
"[87]\tvalid_0's log_loss: 0.518062\n",
|
||||
"[88]\tvalid_0's log_loss: 0.517721\n",
|
||||
"[89]\tvalid_0's log_loss: 0.517529\n",
|
||||
"[90]\tvalid_0's log_loss: 0.517188\n",
|
||||
"[91]\tvalid_0's log_loss: 0.516802\n",
|
||||
"[92]\tvalid_0's log_loss: 0.516655\n",
|
||||
"[93]\tvalid_0's log_loss: 0.516295\n",
|
||||
"[94]\tvalid_0's log_loss: 0.515957\n",
|
||||
"[95]\tvalid_0's log_loss: 0.515669\n",
|
||||
"[96]\tvalid_0's log_loss: 0.515474\n",
|
||||
"[97]\tvalid_0's log_loss: 0.515313\n",
|
||||
"[98]\tvalid_0's log_loss: 0.51517\n",
|
||||
"[99]\tvalid_0's log_loss: 0.514818\n",
|
||||
"[100]\tvalid_0's log_loss: 0.514533\n",
|
||||
"CPU times: user 2h 43min 9s, sys: 8min 49s, total: 2h 51min 58s\n",
|
||||
"Wall time: 18min 45s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"LGBMRegressor(boosting_type='gbdt', colsample_bytree=0.8, drop_rate=0.1,\n",
|
||||
" fair_c=1.0, gaussian_eta=1.0, huber_delta=1.0, learning_rate=0.1,\n",
|
||||
" max_bin=255, max_depth=-1, max_drop=50, min_child_samples=10,\n",
|
||||
" min_child_weight=30, min_split_gain=0, n_estimators=100, nthread=-1,\n",
|
||||
" num_leaves=255, objective='regression', poisson_max_delta_step=0.7,\n",
|
||||
" reg_alpha=0, reg_lambda=0, seed=77, silent=False, skip_drop=0.5,\n",
|
||||
" subsample=0.8, subsample_for_bin=50000, subsample_freq=1,\n",
|
||||
" uniform_drop=False, xgboost_dart_mode=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
|
@ -1213,13 +1264,22 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 3min 33s, sys: 6.73 s, total: 3min 40s\n",
|
||||
"Wall time: 15 s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"y_prob_xgb = np.clip(xgb_clf_pipeline.predict(X_test), 0.0001, 0.9999)"
|
||||
|
@ -1227,16 +1287,25 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 22,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 1h 55min, sys: 14min 30s, total: 2h 9min 31s\n",
|
||||
"Wall time: 5min 44s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"y_prob_lgbm = np.clip(lgbm_clf_pipeline.predict_proba(X_test), 0.0001, 0.9999)"
|
||||
"y_prob_lgbm = np.clip(lgbm_clf_pipeline.predict(X_test), 0.0001, 0.9999)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1252,7 +1321,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1273,7 +1342,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 24,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1291,7 +1360,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 25,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1306,7 +1375,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1320,13 +1389,23 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'Recall': 0.63961308830403441, 'F1': 0.69233995199951537, 'Precision': 0.75454095919535258, 'Confusion Matrix': array([[9822644, 2271976],\n",
|
||||
" [3935131, 6984053]]), 'Accuracy': 0.73028765692103748}\n",
|
||||
"{'AUC': 0.80363587688230786, 'Log loss': 0.53966634712421813}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"report1_xgb = classification_metrics_binary(y_test, y_pred_xgb)\n",
|
||||
"print(report1_xgb)\n",
|
||||
|
@ -1336,13 +1415,23 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 28,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{'Recall': 0.65893742609337835, 'F1': 0.71517074946795001, 'Precision': 0.78189740329600466, 'Confusion Matrix': array([[10087629, 2006991],\n",
|
||||
" [ 3724125, 7195059]]), 'Accuracy': 0.75097050448504732}\n",
|
||||
"{'AUC': 0.82629988528878362, 'Log loss': 0.51120057686403264}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"report1_lgbm = classification_metrics_binary(y_test, y_pred_lgbm)\n",
|
||||
"print(report1_lgbm)\n",
|
||||
|
@ -1377,7 +1466,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 29,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1392,13 +1481,43 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 30,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(1287333, 15)\n",
|
||||
"(5126498, 15)\n",
|
||||
"(290827, 15)\n",
|
||||
"(5110527, 15)\n",
|
||||
"(4995005, 15)\n",
|
||||
"(5020651, 15)\n",
|
||||
"(4993587, 15)\n",
|
||||
"(5078411, 15)\n",
|
||||
"(5219140, 15)\n",
|
||||
"(5209326, 15)\n",
|
||||
"(5301999, 15)\n",
|
||||
"(5227051, 15)\n",
|
||||
"(5360018, 15)\n",
|
||||
"(5481303, 15)\n",
|
||||
"(5723673, 15)\n",
|
||||
"(5197860, 15)\n",
|
||||
"(6375689, 15)\n",
|
||||
"(6987729, 15)\n",
|
||||
"(6992838, 15)\n",
|
||||
"(7003802, 15)\n",
|
||||
"(7275288, 15)\n",
|
||||
"CPU times: user 7.08 s, sys: 2.18 s, total: 9.27 s\n",
|
||||
"Wall time: 9.44 s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"data_yearly_list = get_data_list_yearly(df_plane_numeric)\n",
|
||||
|
@ -1408,13 +1527,21 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 31,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of years: 21\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"total_subsets = len(data_yearly_list)\n",
|
||||
"print(\"Number of years: {}\".format(total_subsets))\n",
|
||||
|
@ -1423,7 +1550,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 32,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1451,13 +1578,23 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 33,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(16810190, 15)\n",
|
||||
"CPU times: user 620 ms, sys: 1.13 s, total: 1.75 s\n",
|
||||
"Wall time: 1.75 s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"subset_base = generate_subset(data_yearly_list, num_ini)\n",
|
||||
|
@ -1466,7 +1603,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 34,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1479,9 +1616,9 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 38,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
|
@ -1498,13 +1635,39 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 39,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 25min 38s, sys: 1min 34s, total: 27min 12s\n",
|
||||
"Wall time: 1min 15s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"LGBMClassifier(boosting_type='gbdt', colsample_bytree=0.8, drop_rate=0.1,\n",
|
||||
" is_unbalance=False, learning_rate=0.1, max_bin=255, max_depth=-1,\n",
|
||||
" max_drop=50, min_child_samples=10, min_child_weight=30,\n",
|
||||
" min_split_gain=0, n_estimators=100, nthread=-1, num_leaves=255,\n",
|
||||
" objective='binary', reg_alpha=0, reg_lambda=0, scale_pos_weight=1,\n",
|
||||
" seed=42, sigmoid=1.0, silent=True, skip_drop=0.5, subsample=0.8,\n",
|
||||
" subsample_for_bin=50000, subsample_freq=1, uniform_drop=False,\n",
|
||||
" xgboost_dart_mode=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"clf.fit(X_train, y_train)"
|
||||
|
@ -1512,7 +1675,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 40,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1535,13 +1698,39 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 41,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Predicting year 1992...\n",
|
||||
"Predicting year 1993...\n",
|
||||
"Predicting year 1994...\n",
|
||||
"Predicting year 1995...\n",
|
||||
"Predicting year 1996...\n",
|
||||
"Predicting year 1997...\n",
|
||||
"Predicting year 1998...\n",
|
||||
"Predicting year 1999...\n",
|
||||
"Predicting year 2000...\n",
|
||||
"Predicting year 2001...\n",
|
||||
"Predicting year 2002...\n",
|
||||
"Predicting year 2003...\n",
|
||||
"Predicting year 2004...\n",
|
||||
"Predicting year 2005...\n",
|
||||
"Predicting year 2006...\n",
|
||||
"Predicting year 2007...\n",
|
||||
"{1992: 0.75635888652686678, 1993: 0.75543231749041317, 1994: 0.74359046560036202, 1995: 0.73113386496625876, 1996: 0.72234411898967354, 1997: 0.71978342508174742, 1998: 0.70525617599675228, 1999: 0.69996761204906399, 2000: 0.68899913031627702, 2001: 0.67335170964518765, 2002: 0.67853347339097247, 2003: 0.68455330866985509, 2004: 0.68012640444413341, 2005: 0.67296453886104612, 2006: 0.66332086486739628, 2007: 0.65060764604782662}\n",
|
||||
"CPU times: user 7h 17min 43s, sys: 46min 34s, total: 8h 4min 18s\n",
|
||||
"Wall time: 21min 46s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"accuracy_dict = predict_accuracy_future_years(clf, data_yearly_list, num_ini)\n",
|
||||
|
@ -1571,7 +1760,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 42,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1584,13 +1773,23 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 43,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(69425349, 15)\n",
|
||||
"CPU times: user 8.86 s, sys: 43.2 s, total: 52.1 s\n",
|
||||
"Wall time: 53.1 s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"subset_retrain = generate_subset(data_yearly_list, new_init)\n",
|
||||
|
@ -1599,7 +1798,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 44,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1612,7 +1811,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 45,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1631,13 +1830,39 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 46,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 1h 53min 58s, sys: 12min 27s, total: 2h 6min 25s\n",
|
||||
"Wall time: 7min 7s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"LGBMClassifier(boosting_type='gbdt', colsample_bytree=0.8, drop_rate=0.1,\n",
|
||||
" is_unbalance=False, learning_rate=0.1, max_bin=255, max_depth=-1,\n",
|
||||
" max_drop=50, min_child_samples=10, min_child_weight=30,\n",
|
||||
" min_split_gain=0, n_estimators=100, nthread=-1, num_leaves=255,\n",
|
||||
" objective='binary', reg_alpha=0, reg_lambda=0, scale_pos_weight=1,\n",
|
||||
" seed=42, sigmoid=1.0, silent=True, skip_drop=0.5, subsample=0.8,\n",
|
||||
" subsample_for_bin=50000, subsample_freq=1, uniform_drop=False,\n",
|
||||
" xgboost_dart_mode=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"clf_retrain.fit(X_train, y_train)"
|
||||
|
@ -1645,13 +1870,29 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 47,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Predicting year 2002...\n",
|
||||
"Predicting year 2003...\n",
|
||||
"Predicting year 2004...\n",
|
||||
"Predicting year 2005...\n",
|
||||
"Predicting year 2006...\n",
|
||||
"Predicting year 2007...\n",
|
||||
"{2002: 0.75089709996036835, 2003: 0.74953483458807357, 2004: 0.72610099790647287, 2005: 0.72036803941404048, 2006: 0.70790022333583957, 2007: 0.6962276957283341}\n",
|
||||
"CPU times: user 3h 8min 36s, sys: 18min 9s, total: 3h 26min 45s\n",
|
||||
"Wall time: 9min 47s\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"accuracy_retrain = predict_accuracy_future_years(clf_retrain, data_yearly_list, new_init)\n",
|
||||
|
|
Загрузка…
Ссылка в новой задаче