merging football branch
This commit is contained in:
Коммит
763b6cca66
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -2,13 +2,14 @@ import os
|
|||
import pandas as pd
|
||||
import arff
|
||||
import numpy as np
|
||||
|
||||
from functools import reduce
|
||||
import sqlite3
|
||||
|
||||
|
||||
_FRAUD_PATH = 'fraud_detection', 'credit_card_fraud_kaggle', 'creditcard.csv'
|
||||
_IOT_PATH = 'iot', 'sensor_stream_berkeley', 'sensor.arff'
|
||||
_AIRLINE_PATH = 'airline', 'airline_14col.data'
|
||||
_FOOTBALL_PATH = 'football', 'database.sqlite'
|
||||
|
||||
|
||||
def _get_datapath():
|
||||
|
@ -94,4 +95,34 @@ def load_airline():
|
|||
"""
|
||||
cols = ['Year', 'Month', 'DayofMonth', 'DayofWeek', 'CRSDepTime', 'CRSArrTime', 'UniqueCarrier', 'FlightNum', 'ActualElapsedTime', 'Origin', 'Dest', 'Distance', 'Diverted', 'ArrDelay']
|
||||
return pd.read_csv(reduce(os.path.join, _AIRLINE_PATH, _get_datapath()), names=cols)
|
||||
|
||||
|
||||
|
||||
def load_football():
|
||||
""" Loads football data
|
||||
Dataset of football stats. +25,000 matches, +10,000 players from 11 European Countries with their lead championship
|
||||
Seasons 2008 to 2016. It also contains players and Ttams' attributes* sourced from EA Sports' FIFA video game series,
|
||||
including the weekly updates, team line up with squad formation (X, Y coordinates), betting odds from up to 10
|
||||
providers and detailed match events (goal types, possession, corner, cross, fouls, cards etc...) for +10,000 matches.
|
||||
The meaning of the columns can be found here: http://www.football-data.co.uk/notes.txt
|
||||
Number of attributes in each table (size of the dataframe):
|
||||
countries (11, 2)
|
||||
matches (25979, 115)
|
||||
leagues (11, 3)
|
||||
teams (299, 5)
|
||||
players (183978, 42)
|
||||
Link to the source: https://www.kaggle.com/hugomathien/soccer
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of pandas DataFrame
|
||||
"""
|
||||
database_path = reduce(os.path.join, _FOOTBALL_PATH, _get_datapath())
|
||||
with sqlite3.connect(database_path) as con:
|
||||
countries = pd.read_sql_query("SELECT * from Country", con)
|
||||
matches = pd.read_sql_query("SELECT * from Match", con)
|
||||
leagues = pd.read_sql_query("SELECT * from League", con)
|
||||
teams = pd.read_sql_query("SELECT * from Team", con)
|
||||
players = pd.read_sql("SELECT * FROM Player_Attributes;", con)
|
||||
return countries, matches, leagues, teams, players
|
||||
|
||||
|
Загрузка…
Ссылка в новой задаче