From 1219f25418625daca0aa0c939712e1d9f53496dd Mon Sep 17 00:00:00 2001 From: Rita Zhang Date: Wed, 7 Feb 2018 16:14:38 -0800 Subject: [PATCH] Update apiVersion to kubeflow --- 5-tfjob/README.md | 12 ++++++------ 6-distributed-tensorflow/README.md | 2 +- .../solution-chart/templates/deployment.yaml | 2 +- 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/5-tfjob/README.md b/5-tfjob/README.md index e956e3b..3f3d574 100644 --- a/5-tfjob/README.md +++ b/5-tfjob/README.md @@ -66,7 +66,7 @@ Before going further, let's take a look at what the `TFJob` looks like: | Field | Type| Description | |-------|-----|-------------| -| apiVersion | `string` | Versioned schema of this representation of an object. In our case, it's `tensorflow.org/v1alpha1` | +| apiVersion | `string` | Versioned schema of this representation of an object. In our case, it's `kubeflow.org/v1alpha1` | | kind | `string` | Value representing the REST resource this object represents. In our case it's `TFJob` | | metadata | [`ObjectMeta`](https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md#metadata)| Standard object's metadata. | | spec | `TFJobSpec` | The actual specification of our TensorFlow job, defined below. | @@ -125,7 +125,7 @@ spec: Here is what the same thing looks like using the new `TFJob` resource: ```yaml -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob metadata: name: example-tfjob @@ -212,7 +212,7 @@ Depending on whether or not your cluster has GPU, choose the correct template: CPU Only ```yaml -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob metadata: name: module5-ex1 @@ -234,7 +234,7 @@ spec: When using GPU, we need to request for one (or multiple), and the image we are using also needs to be based on TensorFlow's GPU image. ```yaml -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob metadata: name: module5-ex1-gpu @@ -393,7 +393,7 @@ This means that when we run a training, all the important data is now stored in Solution ```yaml -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob metadata: name: module5-ex2 @@ -478,7 +478,7 @@ We will also set up the configuration for TensorBoard so that it reads the summa Solution ```yaml -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob metadata: name: module5-ex3 diff --git a/6-distributed-tensorflow/README.md b/6-distributed-tensorflow/README.md index 63c9fa4..3df7be1 100644 --- a/6-distributed-tensorflow/README.md +++ b/6-distributed-tensorflow/README.md @@ -260,7 +260,7 @@ A working code sample is available in [`solution-src/main.py`](./solution-src/ma TFJob's Template ```yaml -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob metadata: name: module6-ex1 diff --git a/7-hyperparam-sweep/solution-chart/templates/deployment.yaml b/7-hyperparam-sweep/solution-chart/templates/deployment.yaml index ca90a9e..1e71e26 100644 --- a/7-hyperparam-sweep/solution-chart/templates/deployment.yaml +++ b/7-hyperparam-sweep/solution-chart/templates/deployment.yaml @@ -12,7 +12,7 @@ # This will result in create 1 TFJob for every pair of learning rate and hidden layer depth {{- range $i, $lr := $lrlist }} {{- range $j, $nblayers := $nblayerslist }} -apiVersion: tensorflow.org/v1alpha1 +apiVersion: kubeflow.org/v1alpha1 kind: TFJob # Each one of our trainings will be a separate TFJob metadata: name: module7-tf-paint-{{ $i }}-{{ $j }} # We give a unique name to each training