Коммит
9cc9dc0aa2
|
@ -22,7 +22,7 @@
|
|||
// "forwardPorts": [],
|
||||
|
||||
// Use 'postCreateCommand' to run commands after the container is created.
|
||||
// "postCreateCommand": "yarn install",
|
||||
// "postCreateCommand": "docsify serve .",
|
||||
|
||||
// Comment out connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root.
|
||||
"remoteUser": "node"
|
||||
|
|
|
@ -34,6 +34,8 @@ Azure Kubernetes Services (AKS) 利用時の構成です。<br>
|
|||
Private Endpoint / Private Link を利用した環境構築の手順ガイド
|
||||
- [Welcome to step-by-step guide to provision secure workspace](https://github.com/jhirono/amlsecurity)
|
||||
|
||||
Terraform を用いた環境構築テンプレート
|
||||
- [Terraform examples for provisioning Azure Machine Learning](https://github.com/microsoft/azureml-terraform-examples)
|
||||
<br>
|
||||
|
||||
## Data Ingestion Pattern
|
||||
|
|
|
@ -23,6 +23,10 @@
|
|||
|
||||
- [Udacity : Become a Machine Learning Engineer for Microsoft Azure](https://www.udacity.com/course/machine-learning-engineer-for-microsoft-azure-nanodegree--nd00333) - Azure Machine Learning の Nanodegree Program
|
||||
|
||||
- [Coursera - Microsoft](https://www.coursera.org/instructor/microsoft)
|
||||
- [Azure Machine Learning](https://www.coursera.org/learn/microsoft-azure-machine-learning)
|
||||
- [Artificial Intelligence on Microsoft Azure](https://www.coursera.org/learn/artificial-intelligence-microsoft-azure)
|
||||
- [Modern Data Warehouse Analytics in Microsoft Azure](https://www.coursera.org/learn/data-warehouse-analytics-microsoft-azure)
|
||||
|
||||
|
||||
## コミュニティ
|
||||
|
|
|
@ -8,7 +8,11 @@
|
|||
|
||||
- [Azure ML 2.0 Developer Experience](https://github.com/Azure/azureml-v2-preview) - Azure ML 2.0 API/CLI/SDK (private preview)
|
||||
|
||||
- [AutoML for Computer Vision](https://github.com/swatig007/automlForImages) - sample code of automl for computer vision tasks (classification, object detection, instance segmentation)
|
||||
- [AutoML for Image](https://github.com/swatig007/automlForImages) - sample code of automl for computer vision tasks (classification, object detection, instance segmentation)
|
||||
|
||||
## Tool
|
||||
|
||||
- [Feast on Azure](https://github.com/Azure/feast-azure) - Azure plugins for Feast (FEAture STore)
|
||||
|
||||
|
||||
## Solution Accelerators
|
||||
|
@ -20,6 +24,13 @@
|
|||
|
||||
- [Databricks Solution Accelerators](https://databricks.com/solutions/accelerators) - Databricks 社が提供するユースケースごとの Solution Accelerators
|
||||
|
||||
- [Purview Machine Learning Lineage Solution Accelerator](https://github.com/microsoft/Purview-Machine-Learning-Lineage-Solution-Accelerator) - Purview による Azure Machine Learning Lineage
|
||||
|
||||
- [Commodity Price Prediction Solution Accelerator](https://github.com/microsoft/Azure-Synapse-Solution-Accelerator-Commodity-Price-Prediction) - 商品価格予測 の Solution Accelerator
|
||||
|
||||
- [Content Recommendations Solution Accelerator](https://github.com/microsoft/Azure-Synapse-Content-Recommendations-Solution-Accelerator) - コンテンツ推薦システムの Solution Accelerator
|
||||
|
||||
- [Customer Complaint Management Solution Accelerator](https://github.com/microsoft/Azure-Solution-Accelerator-Customer-Complaint-Management) - 顧客クレーム管理システムの Solution Accelerator
|
||||
|
||||
## Recipes
|
||||
- [Computer Vision](https://github.com/microsoft/computervision-recipes) - コンピュータービジョンのサンプル集
|
||||
|
@ -53,7 +64,7 @@
|
|||
||年収予測モデルの開発と公平性の評価と軽減| [Responsible AI Widgets - Samples](https://github.com/microsoft/responsible-ai-widgets/blob/main/notebooks/fairness-dashboard-loan-allocation.ipynb)|
|
||||
||後方互換性を考慮した年収予測モデルの開発|[Backward Compatibility ML - Samples](https://github.com/microsoft/BackwardCompatibilityML/blob/dev/examples/compatibility-analysis-adult.ipynb)|
|
||||
||患者のガン診断モデルと影響した変数の抽出|[InterpretML - Samples](https://github.com/interpretml/interpret-community/blob/master/notebooks/explain-binary-classification-local.ipynb)|
|
||||
|Text Analytics |Livedoor ニュース記事の分類|[AzureML-NLP (日本語)](https://github.com/konabuta/AzureML-NLP) |
|
||||
|Text Analytics |Livedoor ニュース記事の分類|[NLP Samples (日本語)](https://github.com/Azure/nlp-samples) |
|
||||
|Credit Analytics |住宅ローンの与信モデル構築と反実仮想サンプルの生成 | :runner: under construction ([DiCE](https://github.com/interpretml/DiCE)をベースに作成中) |
|
||||
|Demand Forecasting |時系列予測 (統計手法、機械学習、深層学習)|[Forecasting Best Practices](https://github.com/microsoft/forecasting)|
|
||||
||各商品ブランドの店舗ごとの大量モデル開発と推論| [Many Models Solution Accelerator](https://github.com/microsoft/solution-accelerator-many-models)|
|
||||
|
@ -83,6 +94,10 @@
|
|||
|
||||
- [Responsible AI Workshop](https://github.com/konabuta/responsible-ai) - モデル解釈・説明性のテクノジーについてのワークショップコンテンツ。`Explainable Boosting Machine` と `SHAP` の実装。
|
||||
|
||||
- [Azure Machine Learning Workshop 2021](https://github.com/konabuta/azureml-workshop-2021) - Azure Machine Learning 4 days ワークショップ
|
||||
|
||||
- [ONNX Runtime for model training](https://github.com/microsoft/onnxruntime-training-examples) - ONNX Runtime を用いた Transformer モデル学習の高速化サンプル
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
|
|
|
@ -1,10 +1,15 @@
|
|||
# :cloud: 技術情報
|
||||
## ドキュメント
|
||||
* [Microsoft Docs の網羅検索](https://docs.microsoft.com/ja-jp/search/)
|
||||
|
||||
|
||||
## サイト
|
||||
* Azure Machine Learning
|
||||
- [ホームページ](https://azure.microsoft.com/ja-jp/services/machine-learning/ )
|
||||
- [製品ドキュメント](https://docs.microsoft.com/ja-JP/azure/machine-learning/)
|
||||
- [Machine learning for data scientists](https://azure.microsoft.com/en-us/overview/ai-platform/data-scientist-resources/#overview) - Data Scientist 向けのポータルサイト
|
||||
- [Artificial intelligence for developers](https://azure.microsoft.com/en-us/overview/ai-platform/dev-resources/) - Developer 向けのポータルサイト
|
||||
|
||||
|
||||
## ドキュメント
|
||||
* [Microsoft Docs の網羅検索](https://docs.microsoft.com/ja-jp/search/)
|
||||
|
||||
|
||||
## ブログ
|
||||
|
|
|
@ -105,6 +105,16 @@ print(df.head())
|
|||
|
||||
|
||||
|
||||
* 重複行データを取り除く方法
|
||||
|
||||
Azure Synapse Pipeline (Azure Data Factory) の Data Flow で簡単に除外すること可能です。
|
||||
- 参考 : [Azure Data Factory - Data Flowで重複行を取り除く (最初の行だけ選択する)方法メモ](https://zenn.dev/shohei_aio/articles/5c9716ac817b79)
|
||||
|
||||
* Excel ファイル の各シートごとの処理の実行方法
|
||||
Azure Functions を用いてシート一覧を取得し、Azure Synapse Pipeline (Azure Data Factory) の DataFlow にて繰り返し処理することができます。
|
||||
- 参考 : [Excelのシート一覧をFunctionsで出力しForEach&DataFlowで加工する @Azure Synapse Pipeline](https://zenn.dev/shohei_aio/articles/a155ddfc8c9cab)
|
||||
|
||||
|
||||
## データ探索
|
||||
|
||||
:runner: _coming soon_
|
||||
|
|
Загрузка…
Ссылка в новой задаче