variables: ap_vm_image: ubuntu-20.04 # Training pipeline settings # Training dataset settings training_dataset_name: uci-credit training_dataset_description: uci_credit training_dataset_local_path: data/training/ training_dataset_path_on_datastore: data/training/ training_dataset_type: local training_dataset_storage_url: 'https://azureaidemostorage.blob.core.windows.net/data/' # Training AzureML Environment name training_env_name: credit-training # Training AzureML Environment conda yaml training_env_conda_yaml: mlops/environments/train.yml # Name for the training pipeline training_pipeline_name: credit-training # Compute target for pipeline training_target: cpu-cluster training_target_sku: STANDARD_D2_V2 training_target_min_nodes: 0 training_target_max_nodes: 4 # Training arguments specification; use azureml:dataset_name:version to reference an AML Dataset for --data_path training_arguments: --data_path azureml:uci-credit:1 # Name under which the model will be registered model_name: credit-ci # Batch pipeline settings # Batch scoring dataset settings scoring_dataset_name: credit-batch-input scoring_dataset_description: credit-batch-input scoring_dataset_local_path: data/scoring/ scoring_dataset_path_on_datastore: data/scoring/ scoring_dataset_type: local scoring_dataset_storage_url: 'https://azureaidemostorage.blob.core.windows.net/data/' # Batch AzureML Environment name batch_env_name: credit-batch # Batch AzureML Environment conda yaml batch_env_conda_yaml: mlops/environments/batch.yml # Name for the batch scoring pipeline batch_pipeline_name: credit-batch-scoring # Compute target for pipeline batch_target: cpu-cluster #not needed because batch uses the same target as training # batch_target_sku: STANDARD_D2_V2 # batch_target_min_nodes: 0 # batch_target_max_nodes: 4 # Input batch dataset batch_input_dataset_name: credit-batch-input # Output dataset with results batch_output_dataset_name: credit-batch-output batch_output_path_on_datastore: credit-batch-scoring-results/{run-id} batch_output_filename: results.csv # Parallelization settings batch_mini_batch_size: 8 batch_error_threshold: 1 batch_process_count_per_node: 1 batch_node_count: 1