Query Kusto like a pro from the comfort of your Jupyter notebook
Перейти к файлу
Ofri Kleinfeld 9c6e974cbf CR comments - refactor again summarize query compilation to KQL 2022-04-11 17:57:39 +03:00
.github/workflows Add option for installing without dependencies which are not needed in PySpark (#171) 2021-08-08 20:00:02 +03:00
.idea Add option for installing without dependencies which are not needed in PySpark (#171) 2021-08-08 20:00:02 +03:00
pykusto CR comments - refactor again summarize query compilation to KQL 2022-04-11 17:57:39 +03:00
test add tests for the shuffle functionality 2022-04-11 13:28:35 +03:00
.coveragerc Add option for installing without dependencies which are not needed in PySpark (#171) 2021-08-08 20:00:02 +03:00
.gitignore Fix race condition when executing a query before fetch is done (#63) 2020-03-29 16:22:42 +03:00
CODE_OF_CONDUCT.md move to github 2019-07-30 14:32:19 +03:00
LICENSE Add license 2019-07-23 08:46:28 +03:00
README.md Example do not run - jitter cannot be higher than sleep time (probably "redo" package upgrade) 2022-03-31 12:47:43 +03:00
pykusto.iml Add option for installing without dependencies which are not needed in PySpark (#171) 2021-08-08 20:00:02 +03:00
setup.py upgrade azure-kusto-data version 2022-03-08 12:48:20 +02:00

README.md

Introduction

pykusto is an advanced Python SDK for Azure Data Explorer (a.k.a. Kusto).
Started as a project in the 2019 Microsoft Hackathon.

PyPI version Downloads

Getting Started

Installation

Default installation:

pip install pykusto

With dependencies required for running the tests:

pip install pykusto[test]

Without dependencies which are not needed in PySpark:

pip install pykusto --global-option pyspark

Basic usage

from datetime import timedelta
from pykusto import PyKustoClient, Query

# Connect to cluster with AAD device authentication
# Databases, tables, and columns are auto-retrieved
client = PyKustoClient('https://help.kusto.windows.net')

# Show databases
print(tuple(client.get_databases_names()))

# Show tables in 'Samples' database
print(tuple(client.Samples.get_table_names()))

# Connect to 'StormEvents' table
t = client.Samples.StormEvents

# Build query
(
    Query(t)
        # Access columns using table variable 
        .project(t.StartTime, t.EndTime, t.EventType, t.Source)
        # Specify new column name using Python keyword argument   
        .extend(Duration=t.EndTime - t.StartTime)
        # Python types are implicitly converted to Kusto types
        .where(t.Duration > timedelta(hours=1))
        .take(5)
        # Output to pandas dataframe
        .to_dataframe()
) 

Retrying failed queries

# Turn on retrying for all queries
from pykusto import PyKustoClient, RetryConfig, Query

client = PyKustoClient(
    "https://help.kusto.windows.net",
    retry_config=RetryConfig()  # Use default retry config 
)

# Override retry config for specific query 
Query(client.Samples.StormEvents).take(5).to_dataframe(
    retry_config=RetryConfig(attempts=3, sleep_time=1, max_sleep_time=600, sleep_scale=2, jitter=1)
)

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.