зеркало из https://github.com/CryptoPro/go.git
173 строки
3.6 KiB
Go
173 строки
3.6 KiB
Go
// +build darwin linux
|
|
// run
|
|
|
|
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Test that maps don't go quadratic for NaNs and other values.
|
|
|
|
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"time"
|
|
)
|
|
|
|
// checkLinear asserts that the running time of f(n) is in O(n).
|
|
// tries is the initial number of iterations.
|
|
func checkLinear(typ string, tries int, f func(n int)) {
|
|
// Depending on the machine and OS, this test might be too fast
|
|
// to measure with accurate enough granularity. On failure,
|
|
// make it run longer, hoping that the timing granularity
|
|
// is eventually sufficient.
|
|
|
|
timeF := func(n int) time.Duration {
|
|
t1 := time.Now()
|
|
f(n)
|
|
return time.Since(t1)
|
|
}
|
|
|
|
t0 := time.Now()
|
|
|
|
n := tries
|
|
fails := 0
|
|
for {
|
|
t1 := timeF(n)
|
|
t2 := timeF(2 * n)
|
|
|
|
// should be 2x (linear); allow up to 3x
|
|
if t2 < 3*t1 {
|
|
if false {
|
|
fmt.Println(typ, "\t", time.Since(t0))
|
|
}
|
|
return
|
|
}
|
|
// If n ops run in under a second and the ratio
|
|
// doesn't work out, make n bigger, trying to reduce
|
|
// the effect that a constant amount of overhead has
|
|
// on the computed ratio.
|
|
if t1 < 1*time.Second {
|
|
n *= 2
|
|
continue
|
|
}
|
|
// Once the test runs long enough for n ops,
|
|
// try to get the right ratio at least once.
|
|
// If five in a row all fail, give up.
|
|
if fails++; fails >= 5 {
|
|
panic(fmt.Sprintf("%s: too slow: %d inserts: %v; %d inserts: %v\n",
|
|
typ, n, t1, 2*n, t2))
|
|
}
|
|
}
|
|
}
|
|
|
|
type I interface {
|
|
f()
|
|
}
|
|
|
|
type C int
|
|
|
|
func (C) f() {}
|
|
|
|
func main() {
|
|
// NaNs. ~31ms on a 1.6GHz Zeon.
|
|
checkLinear("NaN", 30000, func(n int) {
|
|
m := map[float64]int{}
|
|
nan := math.NaN()
|
|
for i := 0; i < n; i++ {
|
|
m[nan] = 1
|
|
}
|
|
if len(m) != n {
|
|
panic("wrong size map after nan insertion")
|
|
}
|
|
})
|
|
|
|
// ~6ms on a 1.6GHz Zeon.
|
|
checkLinear("eface", 10000, func(n int) {
|
|
m := map[interface{}]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[i] = 1
|
|
}
|
|
})
|
|
|
|
// ~7ms on a 1.6GHz Zeon.
|
|
// Regression test for CL 119360043.
|
|
checkLinear("iface", 10000, func(n int) {
|
|
m := map[I]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[C(i)] = 1
|
|
}
|
|
})
|
|
|
|
// ~6ms on a 1.6GHz Zeon.
|
|
checkLinear("int", 10000, func(n int) {
|
|
m := map[int]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[i] = 1
|
|
}
|
|
})
|
|
|
|
// ~18ms on a 1.6GHz Zeon.
|
|
checkLinear("string", 10000, func(n int) {
|
|
m := map[string]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[fmt.Sprint(i)] = 1
|
|
}
|
|
})
|
|
|
|
// ~6ms on a 1.6GHz Zeon.
|
|
checkLinear("float32", 10000, func(n int) {
|
|
m := map[float32]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[float32(i)] = 1
|
|
}
|
|
})
|
|
|
|
// ~6ms on a 1.6GHz Zeon.
|
|
checkLinear("float64", 10000, func(n int) {
|
|
m := map[float64]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[float64(i)] = 1
|
|
}
|
|
})
|
|
|
|
// ~22ms on a 1.6GHz Zeon.
|
|
checkLinear("complex64", 10000, func(n int) {
|
|
m := map[complex64]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[complex(float32(i), float32(i))] = 1
|
|
}
|
|
})
|
|
|
|
// ~32ms on a 1.6GHz Zeon.
|
|
checkLinear("complex128", 10000, func(n int) {
|
|
m := map[complex128]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[complex(float64(i), float64(i))] = 1
|
|
}
|
|
})
|
|
|
|
// ~70ms on a 1.6GHz Zeon.
|
|
// The iterate/delete idiom currently takes expected
|
|
// O(n lg n) time. Fortunately, the checkLinear test
|
|
// leaves enough wiggle room to include n lg n time
|
|
// (it actually tests for O(n^log_2(3)).
|
|
// To prevent false positives, average away variation
|
|
// by doing multiple rounds within a single run.
|
|
checkLinear("iterdelete", 2500, func(n int) {
|
|
for round := 0; round < 4; round++ {
|
|
m := map[int]int{}
|
|
for i := 0; i < n; i++ {
|
|
m[i] = i
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
for k := range m {
|
|
delete(m, k)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|