This is required to avoid relying on complex sub-expression elimination
in compilers, and generates cleaner code.
The problem case is if a complex expression is used in an access chain,
like:
Composite comp = buffer[texture(...)];
vec4 a = comp.a + comp.b + comp.c;
Before, we did not have common subexpression tracking for
OpLoad/OpAccessChain, so we easily ended up with code like:
vec4 a = buffer[texture(...)].a + buffer[texture(...)].b + buffer[texture(...)].c;
A good compiler will optimize this, but we should not rely on it, and
forcing texture(...) to a temporary also looks better.
The solution is to add a vector "implied_expression_reads", which works
similarly to expression_dependencies. We also need an extra mechanism in
to_expression which lets us skip expression read checking and do it
later. E.g. for expr -> access chain -> load, we should only trigger
a read of expr when using the loaded expression.
Avoids certain cases of variance between translation units by forcing
every dependent expression of a store to be temporary.
Should avoid the major failure cases where invariance matters.
In GLSL, 8-bit types require GL_EXT_shader_8bit_storage. 16-bit types
can use either GL_AMD_gpu_shader_int16/GL_AMD_gpu_shader_half_float or
GL_EXT_shader_16bit_storage.
When trying to validate buffer sizes, we usually need to bail out when
using SpecConstantOps, but for some very specific cases where we allow
unsized arrays currently, we can safely allow "unknown" sized arrays as
well.
This is probably the best we can do, when we have even more difficult
cases than this, we throw a more sensible error message.
Previously, when generating non-Vulkan GLSL, each use of a spec constant
would be subsituted for its default value and the declaration of the constant
itself would be omitted completely.
This change slightly alters this behavior. The uses of the constant are kept,
as well as the declaration, although the latter is stripped of the layout
qualifier. The declaration is also prepended with the following code:
#ifndef <constant name>_value
#define <constant name> <default constant value>
#endif
and the constant itself now looks like
const <constant type> <constant name> = <constant name>_value;
The rationale for this change is that it gives the user a way to provide
custom values for specialization constants even when the target does not
support them.
This is a large refactor which splits out the SPIR-V parser from
Compiler and moves it into its more appropriately named Parser module.
The Parser is responsible for building a ParsedIR structure which is
then consumed by one or more compilers.
Compiler can take a ParsedIR by value or move reference. This should
allow for optimal case for both multiple compilations and single
compilation scenarios.
Even as of Metal 2.1, MSL still doesn't support arrays of buffers
directly. Therefore, we must manually expand them. In the prologue, we
define arrays holding the argument pointers; these arrays are what the
transpiled code ends up referencing. We might be able to do similar
things for textures and samplers prior to MSL 2.0.
Speaking of which, also enable texture arrays on iOS MSL 1.2.
Need some pretty hideous ladder variable system, but high level
languages do not support breaking out of a loop. break in switch blocks
and break in loops alias each other.
OSX 10.14 broke (?) how overload resolution works,
so overloading e.g. dot(float3, packed_float3) no longer works.
Fix this by unpacking expressions before various func ops.
This fix might need to be applied elsewhere, but do so later if needed.
Deal with various query functions which require dummy sampler.
In SPIR-V, separate images are used, but GLSL (even Vulkan GLSL)
requires combined sampler images ...
Replace with common/hlsl/msl instead. The old interface had some bad
interaction with overloading which meant you had to up-cast to base
class to be able to use set_options, which was awkward.
Support MSL typedefs to declare 3-row row-major matrices as 3-column matrices.
Allow those matrices to be decorated as packed.
Support transposing those matrices when used.
Modify how member alignments are calculated.
Certain patterns with OpVectorShuffle (and probably others) will cascade
to so large, that they can cause OOM. After we have observed
force_recompile, don't spend unnecessary memory emitting code which will
never be used.
HLSL UAVs are a bit annoying because they can share block types,
so reflection becomes rather awkward. Sometimes we will need to make
some nasty fallbacks, so add a reflection interface which lets you query
post-shader compile which names was actually declared in the shader.
We don't have a mechanism to move temporaries to their appropriate
scope, and Phi behavior is weird enough that it will be a heroic effort
to not do this rather ugly codegen :(
Support Workgroup (threadgroup) variables.
Mark if SPIRConstant is used as an array length, since it cannot be specialized.
Resolve specialized array length constants.
Support passing an array to MSL function.
Support emitting GLSL array assignments in MSL via an array copy function.
Support for memory and control barriers.
Struct packing enhancements, including packing nested structs.
Enhancements to replacing illegal MSL variable and function names.
Add Compiler::get_entry_point_name_map() function to retrieve entry point renamings.
Remove CompilerGLSL::clean_func_name() as obsolete.
Fixes to types in bitcast MSL functions.
Add Variant::get_id() member function.
Add CompilerMSL::Options::msl_version option.
Add numerous MSL compute tests.
They might potentially be used as part of OpStore in the SPIRV-Tools
inliner in some cases.
Implement these as declared variables but without any initializer.