// Copyright (c) 2020 Vasyl Teliman // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_FUZZ_TRANSFORMATION_PROPAGATE_INSTRUCTION_DOWN_H_ #define SOURCE_FUZZ_TRANSFORMATION_PROPAGATE_INSTRUCTION_DOWN_H_ #include #include "source/fuzz/protobufs/spirvfuzz_protobufs.h" #include "source/fuzz/transformation.h" #include "source/fuzz/transformation_context.h" #include "source/opt/ir_context.h" namespace spvtools { namespace fuzz { class TransformationPropagateInstructionDown : public Transformation { public: explicit TransformationPropagateInstructionDown( protobufs::TransformationPropagateInstructionDown message); TransformationPropagateInstructionDown( uint32_t block_id, uint32_t phi_fresh_id, const std::map& successor_id_to_fresh_id); // - It should be possible to apply this transformation to |block_id| (see // IsApplicableToBlock method). // - Every acceptable successor of |block_id| (see GetAcceptableSuccessors // method) must have an entry in the |successor_id_to_fresh_id| map unless // overflow ids are available. // - All values in |successor_id_to_fresh_id| and |phi_fresh_id| must be // unique and fresh. bool IsApplicable( opt::IRContext* ir_context, const TransformationContext& transformation_context) const override; // - Adds a clone of the propagated instruction into every acceptable // successor of |block_id|. // - Removes the original instruction. // - Creates an OpPhi instruction if possible, that tries to group created // clones. // - If the original instruction's id was irrelevant - marks created // instructions as irrelevant. Otherwise, marks the created instructions as // synonymous to each other if possible (i.e. skips instructions, copied // into dead blocks). void Apply(opt::IRContext* ir_context, TransformationContext* transformation_context) const override; protobufs::Transformation ToMessage() const override; // Returns true if this transformation can be applied to the block with id // |block_id|. Concretely, returns true iff: // - |block_id| is a result id of some reachable basic block in the module. // - the block has an instruction to propagate (see // GetInstructionToPropagate method). // - the block has at least one acceptable successor (see // GetAcceptableSuccessors method). // - none of the acceptable successors have OpPhi instructions that use the // original instruction. // - it is possible to replace every use of the original instruction with some // of the propagated instructions (or an OpPhi if we can create it - see // GetOpPhiBlockId method). static bool IsApplicableToBlock(opt::IRContext* ir_context, uint32_t block_id); // Returns ids of successors of |block_id|, that can be used to propagate an // instruction into. Concretely, a successor block is acceptable if all // dependencies of the propagated instruction dominate it. Note that this // implies that an acceptable successor must be reachable in the CFG. // For example: // %1 = OpLabel // OpSelectionMerge %2 None // OpBranchConditional %cond %2 %3 // %3 = OpLabel // %4 = OpUndef %int // %5 = OpCopyObject %int %4 // OpBranch %2 // %2 = OpLabel // ... // In this example, %2 is not an acceptable successor of %3 since one of the // dependencies (%4) of the propagated instruction (%5) does not dominate it. static std::unordered_set GetAcceptableSuccessors( opt::IRContext* ir_context, uint32_t block_id); std::unordered_set GetFreshIds() const override; private: // Returns the last possible instruction in the |block_id| that satisfies the // following properties: // - has result id // - has type id // - has supported opcode (see IsOpcodeSupported method) // - has no users in its basic block. // Returns nullptr if no such an instruction exists. For example: // %1 = OpLabel // %2 = OpUndef %int // %3 = OpUndef %int // OpStore %var %3 // OpBranch %some_block // In this example: // - We cannot propagate OpBranch nor OpStore since they both have unsupported // opcodes and have neither result ids nor type ids. // - We cannot propagate %3 either since it is used by OpStore. // - We can propagate %2 since it satisfies all our conditions. // The basic idea behind this method it to make sure that the returned // instruction will not break domination rules in its original block when // propagated. static opt::Instruction* GetInstructionToPropagate(opt::IRContext* ir_context, uint32_t block_id); // Returns true if |opcode| is supported by this transformation. static bool IsOpcodeSupported(spv::Op opcode); // Returns the first instruction in the |block| that allows us to insert // |opcode| above itself. Returns nullptr is no such instruction exists. static opt::Instruction* GetFirstInsertBeforeInstruction( opt::IRContext* ir_context, uint32_t block_id, spv::Op opcode); // Returns a result id of a basic block, where an OpPhi instruction can be // inserted. Returns nullptr if it's not possible to create an OpPhi. The // created OpPhi instruction groups all the propagated clones of the original // instruction. |block_id| is a result id of the block we propagate the // instruction from. |successor_ids| contains result ids of the successors we // propagate the instruction into. Concretely, returns a non-null value if: // - |block_id| is in some construct. // - The merge block of that construct is reachable. // - |block_id| dominates that merge block. // - That merge block may not be an acceptable successor of |block_id|. // - There must be at least one |block_id|'s acceptable successor for every // predecessor of the merge block, dominating that predecessor. // - We can't create an OpPhi if the module has neither VariablePointers nor // VariablePointersStorageBuffer capabilities. // A simple example of when we can insert an OpPhi instruction is: // - This snippet of code: // %1 = OpLabel // %2 = OpUndef %int // OpSelectionMerge %5 None // OpBranchConditional %cond %3 %4 // %3 = OpLabel // OpBranch %5 // %4 = OpLabel // OpBranch %5 // %5 = OpLabel // ... // will be transformed into the following one (if %2 is propagated): // %1 = OpLabel // OpSelectionMerge %5 None // OpBranchConditional %cond %3 %4 // %3 = OpLabel // %6 = OpUndef %int // OpBranch %5 // %4 = OpLabel // %7 = OpUndef %int // OpBranch %5 // %5 = OpLabel // %8 = OpPhi %int %6 %3 %7 %4 // ... // The fact that we introduce an OpPhi allows us to increase the applicability // of the transformation. Concretely, we wouldn't be able to apply it in the // example above if %2 were used in %5. Some more complicated examples can be // found in unit tests. static uint32_t GetOpPhiBlockId( opt::IRContext* ir_context, uint32_t block_id, const opt::Instruction& inst_to_propagate, const std::unordered_set& successor_ids); protobufs::TransformationPropagateInstructionDown message_; }; } // namespace fuzz } // namespace spvtools #endif // SOURCE_FUZZ_TRANSFORMATION_PROPAGATE_INSTRUCTION_DOWN_H_