// Copyright (c) AlphaSierraPapa for the SharpDevelop Team (for details please see \doc\copyright.txt)
// This code is distributed under the GNU LGPL (for details please see \doc\license.txt)
using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace ICSharpCode.TreeView
{
// This part of SharpTreeNode controls the 'flat list' data structure, which emulates
// a big flat list containing the whole tree; allowing access by visible index.
partial class SharpTreeNode
{
/// The parent in the flat list
internal SharpTreeNode listParent;
/// Left/right nodes in the flat list
SharpTreeNode left, right;
internal TreeFlattener treeFlattener;
/// Subtree height in the flat list tree
byte height = 1;
/// Length in the flat list, including children (children within the flat list). -1 = invalidated
int totalListLength = -1;
int Balance {
get { return Height(right) - Height(left); }
}
static int Height(SharpTreeNode node)
{
return node != null ? node.height : 0;
}
internal SharpTreeNode GetListRoot()
{
SharpTreeNode node = this;
while (node.listParent != null)
node = node.listParent;
return node;
}
#region Debugging
[Conditional("DEBUG")]
void CheckRootInvariants()
{
GetListRoot().CheckInvariants();
}
[Conditional("DATACONSISTENCYCHECK")]
void CheckInvariants()
{
Debug.Assert(left == null || left.listParent == this);
Debug.Assert(right == null || right.listParent == this);
Debug.Assert(height == 1 + Math.Max(Height(left), Height(right)));
Debug.Assert(Math.Abs(this.Balance) <= 1);
Debug.Assert(totalListLength == -1 || totalListLength == (left != null ? left.totalListLength : 0) + (isVisible ? 1 : 0) + (right != null ? right.totalListLength : 0));
if (left != null) left.CheckInvariants();
if (right != null) right.CheckInvariants();
}
[Conditional("DEBUG")]
static void DumpTree(SharpTreeNode node)
{
node.GetListRoot().DumpTree();
}
[Conditional("DEBUG")]
void DumpTree()
{
Debug.Indent();
if (left != null)
left.DumpTree();
Debug.Unindent();
Debug.WriteLine("{0}, totalListLength={1}, height={2}, Balance={3}, isVisible={4}", ToString(), totalListLength, height, Balance, isVisible);
Debug.Indent();
if (right != null)
right.DumpTree();
Debug.Unindent();
}
#endregion
#region GetNodeByVisibleIndex / GetVisibleIndexForNode
internal static SharpTreeNode GetNodeByVisibleIndex(SharpTreeNode root, int index)
{
root.GetTotalListLength(); // ensure all list lengths are calculated
Debug.Assert(index >= 0);
Debug.Assert(index < root.totalListLength);
SharpTreeNode node = root;
while (true) {
if (node.left != null && index < node.left.totalListLength) {
node = node.left;
} else {
if (node.left != null) {
index -= node.left.totalListLength;
}
if (node.isVisible) {
if (index == 0)
return node;
index--;
}
node = node.right;
}
}
}
internal static int GetVisibleIndexForNode(SharpTreeNode node)
{
int index = node.left != null ? node.left.GetTotalListLength() : 0;
while (node.listParent != null) {
if (node == node.listParent.right) {
if (node.listParent.left != null)
index += node.listParent.left.GetTotalListLength();
if (node.listParent.isVisible)
index++;
}
node = node.listParent;
}
return index;
}
#endregion
#region Balancing
///
/// Balances the subtree rooted in and recomputes the 'height' field.
/// This method assumes that the children of this node are already balanced and have an up-to-date 'height' value.
///
/// The new root node
static SharpTreeNode Rebalance(SharpTreeNode node)
{
Debug.Assert(node.left == null || Math.Abs(node.left.Balance) <= 1);
Debug.Assert(node.right == null || Math.Abs(node.right.Balance) <= 1);
// Keep looping until it's balanced. Not sure if this is stricly required; this is based on
// the Rope code where node merging made this necessary.
while (Math.Abs(node.Balance) > 1) {
// AVL balancing
// note: because we don't care about the identity of concat nodes, this works a little different than usual
// tree rotations: in our implementation, the "this" node will stay at the top, only its children are rearranged
if (node.Balance > 1) {
if (node.right.Balance < 0) {
node.right = node.right.RotateRight();
}
node = node.RotateLeft();
// If 'node' was unbalanced by more than 2, we've shifted some of the inbalance to the left node; so rebalance that.
node.left = Rebalance(node.left);
} else if (node.Balance < -1) {
if (node.left.Balance > 0) {
node.left = node.left.RotateLeft();
}
node = node.RotateRight();
// If 'node' was unbalanced by more than 2, we've shifted some of the inbalance to the right node; so rebalance that.
node.right = Rebalance(node.right);
}
}
Debug.Assert(Math.Abs(node.Balance) <= 1);
node.height = (byte)(1 + Math.Max(Height(node.left), Height(node.right)));
node.totalListLength = -1; // mark for recalculation
// since balancing checks the whole tree up to the root, the whole path will get marked as invalid
return node;
}
internal int GetTotalListLength()
{
if (totalListLength >= 0)
return totalListLength;
int length = (isVisible ? 1 : 0);
if (left != null) {
length += left.GetTotalListLength();
}
if (right != null) {
length += right.GetTotalListLength();
}
return totalListLength = length;
}
SharpTreeNode RotateLeft()
{
/* Rotate tree to the left
*
* this right
* / \ / \
* A right ===> this C
* / \ / \
* B C A B
*/
SharpTreeNode b = right.left;
SharpTreeNode newTop = right;
if (b != null) b.listParent = this;
this.right = b;
newTop.left = this;
newTop.listParent = this.listParent;
this.listParent = newTop;
// rebalance the 'this' node - this is necessary in some bulk insertion cases:
newTop.left = Rebalance(this);
return newTop;
}
SharpTreeNode RotateRight()
{
/* Rotate tree to the right
*
* this left
* / \ / \
* left C ===> A this
* / \ / \
* A B B C
*/
SharpTreeNode b = left.right;
SharpTreeNode newTop = left;
if (b != null) b.listParent = this;
this.left = b;
newTop.right = this;
newTop.listParent = this.listParent;
this.listParent = newTop;
newTop.right = Rebalance(this);
return newTop;
}
static void RebalanceUntilRoot(SharpTreeNode pos)
{
while (pos.listParent != null) {
if (pos == pos.listParent.left) {
pos = pos.listParent.left = Rebalance(pos);
} else {
Debug.Assert(pos == pos.listParent.right);
pos = pos.listParent.right = Rebalance(pos);
}
pos = pos.listParent;
}
SharpTreeNode newRoot = Rebalance(pos);
if (newRoot != pos && pos.treeFlattener != null) {
Debug.Assert(newRoot.treeFlattener == null);
newRoot.treeFlattener = pos.treeFlattener;
pos.treeFlattener = null;
newRoot.treeFlattener.root = newRoot;
}
Debug.Assert(newRoot.listParent == null);
newRoot.CheckInvariants();
}
#endregion
#region Insertion
static void InsertNodeAfter(SharpTreeNode pos, SharpTreeNode newNode)
{
// newNode might be the model root of a whole subtree, so go to the list root of that subtree:
newNode = newNode.GetListRoot();
if (pos.right == null) {
pos.right = newNode;
newNode.listParent = pos;
} else {
// insert before pos.right's leftmost:
pos = pos.right;
while (pos.left != null)
pos = pos.left;
Debug.Assert(pos.left == null);
pos.left = newNode;
newNode.listParent = pos;
}
RebalanceUntilRoot(pos);
}
#endregion
#region Removal
void RemoveNodes(SharpTreeNode start, SharpTreeNode end)
{
// Removes all nodes from start to end (inclusive)
// All removed nodes will be reorganized in a separate tree, do not delete
// regions that don't belong together in the tree model!
List removedSubtrees = new List();
SharpTreeNode oldPos;
SharpTreeNode pos = start;
do {
// recalculate the endAncestors every time, because the tree might have been rebalanced
HashSet endAncestors = new HashSet();
for (SharpTreeNode tmp = end; tmp != null; tmp = tmp.listParent)
endAncestors.Add(tmp);
removedSubtrees.Add(pos);
if (!endAncestors.Contains(pos)) {
// we can remove pos' right subtree in a single step:
if (pos.right != null) {
removedSubtrees.Add(pos.right);
pos.right.listParent = null;
pos.right = null;
}
}
SharpTreeNode succ = pos.Successor();
DeleteNode(pos); // this will also rebalance out the deletion of the right subtree
oldPos = pos;
pos = succ;
} while (oldPos != end);
// merge back together the removed subtrees:
SharpTreeNode removed = removedSubtrees[0];
for (int i = 1; i < removedSubtrees.Count; i++) {
removed = ConcatTrees(removed, removedSubtrees[i]);
}
}
static SharpTreeNode ConcatTrees(SharpTreeNode first, SharpTreeNode second)
{
SharpTreeNode tmp = first;
while (tmp.right != null)
tmp = tmp.right;
InsertNodeAfter(tmp, second);
return tmp.GetListRoot();
}
SharpTreeNode Successor()
{
if (right != null) {
SharpTreeNode node = right;
while (node.left != null)
node = node.left;
return node;
} else {
SharpTreeNode node = this;
SharpTreeNode oldNode;
do {
oldNode = node;
node = node.listParent;
// loop while we are on the way up from the right part
} while (node != null && node.right == oldNode);
return node;
}
}
static void DeleteNode(SharpTreeNode node)
{
SharpTreeNode balancingNode;
if (node.left == null) {
balancingNode = node.listParent;
node.ReplaceWith(node.right);
node.right = null;
} else if (node.right == null) {
balancingNode = node.listParent;
node.ReplaceWith(node.left);
node.left = null;
} else {
SharpTreeNode tmp = node.right;
while (tmp.left != null)
tmp = tmp.left;
// First replace tmp with tmp.right
balancingNode = tmp.listParent;
tmp.ReplaceWith(tmp.right);
tmp.right = null;
Debug.Assert(tmp.left == null);
Debug.Assert(tmp.listParent == null);
// Now move node's children to tmp:
tmp.left = node.left; node.left = null;
tmp.right = node.right; node.right = null;
if (tmp.left != null) tmp.left.listParent = tmp;
if (tmp.right != null) tmp.right.listParent = tmp;
// Then replace node with tmp
node.ReplaceWith(tmp);
if (balancingNode == node)
balancingNode = tmp;
}
Debug.Assert(node.listParent == null);
Debug.Assert(node.left == null);
Debug.Assert(node.right == null);
node.height = 1;
node.totalListLength = -1;
if (balancingNode != null)
RebalanceUntilRoot(balancingNode);
}
void ReplaceWith(SharpTreeNode node)
{
if (listParent != null) {
if (listParent.left == this) {
listParent.left = node;
} else {
Debug.Assert(listParent.right == this);
listParent.right = node;
}
if (node != null)
node.listParent = listParent;
listParent = null;
} else {
// this was a root node
Debug.Assert(node != null); // cannot delete the only node in the tree
node.listParent = null;
if (treeFlattener != null) {
Debug.Assert(node.treeFlattener == null);
node.treeFlattener = this.treeFlattener;
this.treeFlattener = null;
node.treeFlattener.root = node;
}
}
}
#endregion
}
}