Use shared source MathF and HashCode

This commit is contained in:
James Jackson-South 2019-09-01 19:27:45 +10:00
Родитель 2db3a31981
Коммит 570bad0ff2
3 изменённых файлов: 1 добавлений и 680 удалений

@ -1 +1 @@
Subproject commit 9b5a5b70b46bc23b9d8d8645cd691d5bc5a2d84f Subproject commit faf84e44ec90e8a42a7271bcd04fea76279efb08

Просмотреть файл

@ -1,448 +0,0 @@
#pragma warning disable SA1636, SA1600, SA1503, SA1202, SA1101, SA1132, SA1309, SA1520, SA1108, SA1203, SA1028, SA1512, SA1308
// SOURCE: https://github.com/dotnet/corefx/blob/master/src/Common/src/CoreLib/System/HashCode.cs
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*
The xxHash32 implementation is based on the code published by Yann Collet:
https://raw.githubusercontent.com/Cyan4973/xxHash/5c174cfa4e45a42f94082dc0d4539b39696afea1/xxhash.c
xxHash - Fast Hash algorithm
Copyright (C) 2012-2016, Yann Collet
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash homepage: http://www.xxhash.com
- xxHash source repository : https://github.com/Cyan4973/xxHash
*/
#if SUPPORTS_HASHCODE
using System.Runtime.CompilerServices;
[assembly: TypeForwardedTo(typeof(System.HashCode))]
#else
using System.Buffers.Binary;
using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using System.Security.Cryptography;
namespace System
{
// xxHash32 is used for the hash code.
// https://github.com/Cyan4973/xxHash
internal struct HashCode
{
#pragma warning disable SA1311 // Static readonly fields should begin with upper-case letter
private static readonly uint s_seed = GenerateGlobalSeed();
#pragma warning restore SA1311 // Static readonly fields should begin with upper-case letter
private const uint Prime1 = 2654435761U;
private const uint Prime2 = 2246822519U;
private const uint Prime3 = 3266489917U;
private const uint Prime4 = 668265263U;
private const uint Prime5 = 374761393U;
private uint _v1, _v2, _v3, _v4;
private uint _queue1, _queue2, _queue3;
private uint _length;
private static uint GenerateGlobalSeed()
{
byte[] data = new byte[4];
using (var rng = RandomNumberGenerator.Create())
{
rng.GetBytes(data);
}
return BinaryPrimitives.ReadUInt32LittleEndian(data);
}
public static int Combine<T1>(T1 value1)
{
// Provide a way of diffusing bits from something with a limited
// input hash space. For example, many enums only have a few
// possible hashes, only using the bottom few bits of the code. Some
// collections are built on the assumption that hashes are spread
// over a larger space, so diffusing the bits may help the
// collection work more efficiently.
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
uint hash = MixEmptyState();
hash += 4;
hash = QueueRound(hash, hc1);
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2>(T1 value1, T2 value2)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
uint hash = MixEmptyState();
hash += 8;
hash = QueueRound(hash, hc1);
hash = QueueRound(hash, hc2);
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2, T3>(T1 value1, T2 value2, T3 value3)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
var hc3 = (uint)(value3?.GetHashCode() ?? 0);
uint hash = MixEmptyState();
hash += 12;
hash = QueueRound(hash, hc1);
hash = QueueRound(hash, hc2);
hash = QueueRound(hash, hc3);
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2, T3, T4>(T1 value1, T2 value2, T3 value3, T4 value4)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
var hc3 = (uint)(value3?.GetHashCode() ?? 0);
var hc4 = (uint)(value4?.GetHashCode() ?? 0);
Initialize(out uint v1, out uint v2, out uint v3, out uint v4);
v1 = Round(v1, hc1);
v2 = Round(v2, hc2);
v3 = Round(v3, hc3);
v4 = Round(v4, hc4);
uint hash = MixState(v1, v2, v3, v4);
hash += 16;
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2, T3, T4, T5>(T1 value1, T2 value2, T3 value3, T4 value4, T5 value5)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
var hc3 = (uint)(value3?.GetHashCode() ?? 0);
var hc4 = (uint)(value4?.GetHashCode() ?? 0);
var hc5 = (uint)(value5?.GetHashCode() ?? 0);
Initialize(out uint v1, out uint v2, out uint v3, out uint v4);
v1 = Round(v1, hc1);
v2 = Round(v2, hc2);
v3 = Round(v3, hc3);
v4 = Round(v4, hc4);
uint hash = MixState(v1, v2, v3, v4);
hash += 20;
hash = QueueRound(hash, hc5);
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2, T3, T4, T5, T6>(T1 value1, T2 value2, T3 value3, T4 value4, T5 value5, T6 value6)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
var hc3 = (uint)(value3?.GetHashCode() ?? 0);
var hc4 = (uint)(value4?.GetHashCode() ?? 0);
var hc5 = (uint)(value5?.GetHashCode() ?? 0);
var hc6 = (uint)(value6?.GetHashCode() ?? 0);
Initialize(out uint v1, out uint v2, out uint v3, out uint v4);
v1 = Round(v1, hc1);
v2 = Round(v2, hc2);
v3 = Round(v3, hc3);
v4 = Round(v4, hc4);
uint hash = MixState(v1, v2, v3, v4);
hash += 24;
hash = QueueRound(hash, hc5);
hash = QueueRound(hash, hc6);
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2, T3, T4, T5, T6, T7>(T1 value1, T2 value2, T3 value3, T4 value4, T5 value5, T6 value6, T7 value7)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
var hc3 = (uint)(value3?.GetHashCode() ?? 0);
var hc4 = (uint)(value4?.GetHashCode() ?? 0);
var hc5 = (uint)(value5?.GetHashCode() ?? 0);
var hc6 = (uint)(value6?.GetHashCode() ?? 0);
var hc7 = (uint)(value7?.GetHashCode() ?? 0);
Initialize(out uint v1, out uint v2, out uint v3, out uint v4);
v1 = Round(v1, hc1);
v2 = Round(v2, hc2);
v3 = Round(v3, hc3);
v4 = Round(v4, hc4);
uint hash = MixState(v1, v2, v3, v4);
hash += 28;
hash = QueueRound(hash, hc5);
hash = QueueRound(hash, hc6);
hash = QueueRound(hash, hc7);
hash = MixFinal(hash);
return (int)hash;
}
public static int Combine<T1, T2, T3, T4, T5, T6, T7, T8>(T1 value1, T2 value2, T3 value3, T4 value4, T5 value5, T6 value6, T7 value7, T8 value8)
{
var hc1 = (uint)(value1?.GetHashCode() ?? 0);
var hc2 = (uint)(value2?.GetHashCode() ?? 0);
var hc3 = (uint)(value3?.GetHashCode() ?? 0);
var hc4 = (uint)(value4?.GetHashCode() ?? 0);
var hc5 = (uint)(value5?.GetHashCode() ?? 0);
var hc6 = (uint)(value6?.GetHashCode() ?? 0);
var hc7 = (uint)(value7?.GetHashCode() ?? 0);
var hc8 = (uint)(value8?.GetHashCode() ?? 0);
Initialize(out uint v1, out uint v2, out uint v3, out uint v4);
v1 = Round(v1, hc1);
v2 = Round(v2, hc2);
v3 = Round(v3, hc3);
v4 = Round(v4, hc4);
v1 = Round(v1, hc5);
v2 = Round(v2, hc6);
v3 = Round(v3, hc7);
v4 = Round(v4, hc8);
uint hash = MixState(v1, v2, v3, v4);
hash += 32;
hash = MixFinal(hash);
return (int)hash;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint Rol(uint value, int count)
=> (value << count) | (value >> (32 - count));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static void Initialize(out uint v1, out uint v2, out uint v3, out uint v4)
{
v1 = s_seed + Prime1 + Prime2;
v2 = s_seed + Prime2;
v3 = s_seed;
v4 = s_seed - Prime1;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint Round(uint hash, uint input)
{
hash += input * Prime2;
hash = Rol(hash, 13);
hash *= Prime1;
return hash;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint QueueRound(uint hash, uint queuedValue)
{
hash += queuedValue * Prime3;
return Rol(hash, 17) * Prime4;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint MixState(uint v1, uint v2, uint v3, uint v4)
{
return Rol(v1, 1) + Rol(v2, 7) + Rol(v3, 12) + Rol(v4, 18);
}
private static uint MixEmptyState()
{
return s_seed + Prime5;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint MixFinal(uint hash)
{
hash ^= hash >> 15;
hash *= Prime2;
hash ^= hash >> 13;
hash *= Prime3;
hash ^= hash >> 16;
return hash;
}
public void Add<T>(T value)
{
Add(value?.GetHashCode() ?? 0);
}
public void Add<T>(T value, IEqualityComparer<T> comparer)
{
Add(comparer != null ? comparer.GetHashCode(value) : (value?.GetHashCode() ?? 0));
}
private void Add(int value)
{
// The original xxHash works as follows:
// 0. Initialize immediately. We can't do this in a struct (no
// default ctor).
// 1. Accumulate blocks of length 16 (4 uints) into 4 accumulators.
// 2. Accumulate remaining blocks of length 4 (1 uint) into the
// hash.
// 3. Accumulate remaining blocks of length 1 into the hash.
// There is no need for #3 as this type only accepts ints. _queue1,
// _queue2 and _queue3 are basically a buffer so that when
// ToHashCode is called we can execute #2 correctly.
// We need to initialize the xxHash32 state (_v1 to _v4) lazily (see
// #0) nd the last place that can be done if you look at the
// original code is just before the first block of 16 bytes is mixed
// in. The xxHash32 state is never used for streams containing fewer
// than 16 bytes.
// To see what's really going on here, have a look at the Combine
// methods.
var val = (uint)value;
// Storing the value of _length locally shaves of quite a few bytes
// in the resulting machine code.
uint previousLength = _length++;
uint position = previousLength % 4;
// Switch can't be inlined.
if (position == 0)
_queue1 = val;
else if (position == 1)
_queue2 = val;
else if (position == 2)
_queue3 = val;
else // position == 3
{
if (previousLength == 3)
Initialize(out _v1, out _v2, out _v3, out _v4);
_v1 = Round(_v1, _queue1);
_v2 = Round(_v2, _queue2);
_v3 = Round(_v3, _queue3);
_v4 = Round(_v4, val);
}
}
public int ToHashCode()
{
// Storing the value of _length locally shaves of quite a few bytes
// in the resulting machine code.
uint length = _length;
// position refers to the *next* queue position in this method, so
// position == 1 means that _queue1 is populated; _queue2 would have
// been populated on the next call to Add.
uint position = length % 4;
// If the length is less than 4, _v1 to _v4 don't contain anything
// yet. xxHash32 treats this differently.
uint hash = length < 4 ? MixEmptyState() : MixState(_v1, _v2, _v3, _v4);
// _length is incremented once per Add(Int32) and is therefore 4
// times too small (xxHash length is in bytes, not ints).
hash += length * 4;
// Mix what remains in the queue
// Switch can't be inlined right now, so use as few branches as
// possible by manually excluding impossible scenarios (position > 1
// is always false if position is not > 0).
if (position > 0)
{
hash = QueueRound(hash, _queue1);
if (position > 1)
{
hash = QueueRound(hash, _queue2);
if (position > 2)
hash = QueueRound(hash, _queue3);
}
}
hash = MixFinal(hash);
return (int)hash;
}
#pragma warning disable 0809
// Obsolete member 'memberA' overrides non-obsolete member 'memberB'.
// Disallowing GetHashCode and Equals is by design
// * We decided to not override GetHashCode() to produce the hash code
// as this would be weird, both naming-wise as well as from a
// behavioral standpoint (GetHashCode() should return the object's
// hash code, not the one being computed).
// * Even though ToHashCode() can be called safely multiple times on
// this implementation, it is not part of the contract. If the
// implementation has to change in the future we don't want to worry
// about people who might have incorrectly used this type.
[Obsolete("HashCode is a mutable struct and should not be compared with other HashCodes. Use ToHashCode to retrieve the computed hash code.", error: true)]
[EditorBrowsable(EditorBrowsableState.Never)]
public override int GetHashCode() => throw new NotSupportedException("Equality not supported");
[Obsolete("HashCode is a mutable struct and should not be compared with other HashCodes.", error: true)]
[EditorBrowsable(EditorBrowsableState.Never)]
public override bool Equals(object obj) => throw new NotSupportedException("Equality not supported");
#pragma warning restore 0809
}
}
#endif
#pragma warning restore SA1636, SA1600, SA1503, SA1202, SA1101, SA1132, SA1309, SA1520, SA1108, SA1203, SA1028, SA1512, SA1308

Просмотреть файл

@ -1,231 +0,0 @@
// Copyright (c) Six Labors and contributors.
// Licensed under the Apache License, Version 2.0.
using System.Runtime.CompilerServices;
#if SUPPORTS_MATHF
[assembly: TypeForwardedTo(typeof(System.MathF))]
#else
namespace System
{
/// <summary>
/// Provides single-precision floating point constants and static methods for trigonometric, logarithmic, and other common mathematical functions.
/// </summary>
/// <remarks>MathF emulation on platforms that don't support it natively.</remarks>
// ReSharper disable InconsistentNaming
internal static class MathF
{
/// <summary>
/// Represents the ratio of the circumference of a circle to its diameter, specified by the constant, π.
/// </summary>
public const float PI = (float)Math.PI;
/// <summary>
/// Returns the absolute value of a single-precision floating-point number.
/// </summary>
/// <param name="f">
/// A number that is greater than or equal to <see cref="F:System.Single.MinValue" />, but less than or equal to <see cref="F:System.Single.MaxValue" />.
/// </param>
/// <returns>
/// A single-precision floating-point number, x, such that 0 ≤ x ≤<see cref="F:System.Single.MaxValue" />.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Abs(float f)
{
return Math.Abs(f);
}
/// <summary>
/// Returns the angle whose tangent is the quotient of two specified numbers.
/// </summary>
/// <param name="y">The y coordinate of a point.</param>
/// <param name="x">The x coordinate of a point.</param>
/// <returns>
/// An angle, θ, measured in radians, such that -π≤θ≤π, and tan(θ) = y / x, where
/// (x, y) is a point in the Cartesian plane. Observe the following: For (x, y) in
/// quadrant 1, 0 &lt; θ &lt; π/2.For (x, y) in quadrant 2, π/2 &lt; θ≤π.For (x, y) in quadrant
/// 3, -π &lt; θ &lt; -π/2.For (x, y) in quadrant 4, -π/2 &lt; θ &lt; 0.For points on the boundaries
/// of the quadrants, the return value is the following:If y is 0 and x is not negative,
/// θ = 0.If y is 0 and x is negative, θ = π.If y is positive and x is 0, θ = π/2.If
/// y is negative and x is 0, θ = -π/2.If y is 0 and x is 0, θ = 0. If x or y is
/// <see cref="F:System.Single.NaN"/>, or if x and y are either <see cref="F:System.Single.PositiveInfinity"/> or
/// <see cref="F:System.Single.NegativeInfinity"/>, the method returns <see cref="F:System.Single.NaN"/>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Atan2(float y, float x)
{
return (float)Math.Atan2(y, x);
}
/// <summary>
/// Returns the smallest integral value that is greater than or equal to the specified single-precision floating-point number.
/// </summary>
/// <param name="f">A single-precision floating-point number.</param>
/// <returns>
/// The smallest integral value that is greater than or equal to <paramref name="f" />.
/// If <paramref name="f" /> is equal to <see cref="F:System.Single.NaN" />, <see cref="F:System.Single.NegativeInfinity" />,
/// or <see cref="F:System.Single.PositiveInfinity" />, that value is returned.
/// Note that this method returns a <see cref="T:System.Single" /> instead of an integral type.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Ceiling(float f)
{
return (float)Math.Ceiling(f);
}
/// <summary>
/// Returns the cosine of the specified angle.
/// </summary>
/// <param name="f">An angle, measured in radians.</param>
/// <returns>
/// The cosine of <paramref name="f"/>. If <paramref name="f"/> is equal to <see cref="F:System.Float.NaN"/>, <see cref="F:System.Float.NegativeInfinity"/>,
/// or <see cref="F:System.Float.PositiveInfinity"/>, this method returns <see cref="F:System.Float.NaN"/>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Cos(float f)
{
return (float)Math.Cos(f);
}
/// <summary>
/// Returns e raised to the specified power.
/// </summary>
/// <param name="f">A number specifying a power.</param>
/// <returns>
/// The number e raised to the power <paramref name="f" />.
/// If <paramref name="f" /> equals <see cref="F:System.Single.NaN" /> or <see cref="F:System.Single.PositiveInfinity" />, that value is returned.
/// If <paramref name="f" /> equals <see cref="F:System.Single.NegativeInfinity" />, 0 is returned.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Exp(float f)
{
return (float)Math.Exp(f);
}
/// <summary>
/// Returns the largest integer less than or equal to the specified single-precision floating-point number.
/// </summary>
/// <param name="f">A single-precision floating-point number. </param>
/// <returns>
/// The largest integer less than or equal to <paramref name="f" />.
/// If <paramref name="f" /> is equal to <see cref="F:System.Single.NaN" />, <see cref="F:System.Single.NegativeInfinity" />,
/// or <see cref="F:System.Single.PositiveInfinity" />, that value is returned.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Floor(float f)
{
return (float)Math.Floor(f);
}
/// <summary>
/// Returns the larger of two single-precision floating-point numbers.
/// </summary>
/// <param name="val1">The first of two single-precision floating-point numbers to compare. </param>
/// <param name="val2">The second of two single-precision floating-point numbers to compare. </param>
/// <returns>
/// Parameter <paramref name="val1" /> or <paramref name="val2" />, whichever is larger.
/// If <paramref name="val1" />, or <paramref name="val2" />, or both <paramref name="val1" /> and <paramref name="val2" /> are
/// equal to <see cref="F:System.Single.NaN" />, <see cref="F:System.Single.NaN" /> is returned.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Max(float val1, float val2)
{
return Math.Max(val1, val2);
}
/// <summary>
/// Returns the smaller of two single-precision floating-point numbers.
/// </summary>
/// <param name="val1">The first of two single-precision floating-point numbers to compare. </param>
/// <param name="val2">The second of two single-precision floating-point numbers to compare. </param>
/// <returns>
/// Parameter <paramref name="val1" /> or <paramref name="val2" />, whichever is smaller.
/// If <paramref name="val1" />, <paramref name="val2" />, or both <paramref name="val1" /> and <paramref name="val2" /> are equal
/// to <see cref="F:System.Single.NaN" />, <see cref="F:System.Single.NaN" /> is returned.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Min(float val1, float val2)
{
return Math.Min(val1, val2);
}
/// <summary>
/// Returns a specified number raised to the specified power.
/// </summary>
/// <param name="x">A single-precision floating-point number to be raised to a power. </param>
/// <param name="y">A single-precision floating-point number that specifies a power. </param>
/// <returns>The number <paramref name="x" /> raised to the power <paramref name="y" />.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Pow(float x, float y)
{
return (float)Math.Pow(x, y);
}
/// <summary>
/// Rounds a single-precision floating-point value to the nearest integral value.
/// </summary>
/// <param name="f">A single-precision floating-point number to be rounded.</param>
/// <returns>
/// The integer nearest <paramref name="f" />.
/// If the fractional component of <paramref name="f" /> is halfway between two integers, one of which is even and the other odd, then the even number is returned.
/// Note that this method returns a <see cref="T:System.Single" /> instead of an integral type.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Round(float f)
{
return (float)Math.Round(f);
}
/// <summary>
/// Rounds a single-precision floating-point value to the nearest integer.
/// A parameter specifies how to round the value if it is midway between two numbers.
/// </summary>
/// <param name="f">A single-precision floating-point number to be rounded. </param>
/// <param name="mode">Specification for how to round <paramref name="f" /> if it is midway between two other numbers.</param>
/// <returns>
/// The integer nearest <paramref name="f" />. If <paramref name="f" /> is halfway between two integers, one of which is even
/// and the other odd, then <paramref name="mode" /> determines which of the two is returned.
/// Note that this method returns a <see cref="T:System.Single" /> instead of an integral type.
/// </returns>
/// <exception cref="T:System.ArgumentException">
/// <paramref name="mode" /> is not a valid value of <see cref="T:System.MidpointRounding" />.</exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Round(float f, MidpointRounding mode)
{
return (float)Math.Round(f, mode);
}
/// <summary>
/// Returns the sine of the specified angle.
/// </summary>
/// <param name="f">An angle, measured in radians.</param>
/// <returns>
/// The sine of <paramref name="f" />.
/// If <paramref name="f" /> is equal to <see cref="F:System.Single.NaN" />, <see cref="F:System.Single.NegativeInfinity" />,
/// or <see cref="F:System.Single.PositiveInfinity" />, this method returns <see cref="F:System.Single.NaN" />.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sin(float f)
{
return (float)Math.Sin(f);
}
/// <summary>
/// Returns the square root of a specified number.
/// </summary>
/// <param name="f">The number whose square root is to be found.</param>
/// <returns>
/// One of the values in the following table.
/// <paramref name="f" /> parameter Return value Zero or positive The positive square root of <paramref name="f" />.
/// Negative <see cref="F:System.Single.NaN" />Equals <see cref="F:System.Single.NaN" />
/// <see cref="F:System.Single.NaN" />Equals <see cref="F:System.Single.PositiveInfinity" />
/// <see cref="F:System.Single.PositiveInfinity" />.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sqrt(float f)
{
return (float)Math.Sqrt(f);
}
}
}
#endif