Merge branch 'master' of github.com:Unity-Technologies/Keras-GAN
This commit is contained in:
dom 2019-09-12 14:19:55 -04:00
Родитель 67a840b4df 539cdbbc6f
Коммит 295aebfdbc
2 изменённых файлов: 22 добавлений и 10 удалений

Просмотреть файл

@ -179,7 +179,7 @@ class INFOGAN():
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Sample noise and categorical labels
sampled_noise, sampled_labels = self.sample_generator_input(batch_size)
gen_input = np.concatenate((sampled_noise, sampled_labels), axis=1)
@ -220,6 +220,7 @@ class INFOGAN():
gen_input = np.concatenate((sampled_noise, label), axis=1)
gen_imgs = self.generator.predict(gen_input)
self.save_samples("generated_" + str(i), gen_imgs)
#gen_imgs = 0.5 * gen_imgs + 0.5
#for j in range(r):
# formatted = (gen_imgs[j,:,:] * 255 / np.max(gen_imgs[j,:,:])).astype('uint8')

Просмотреть файл

@ -26,17 +26,28 @@ def encode_word_presence(words, all_words):
array[i] = 1.0
return array.tolist()
def augment(x_train, y_train, resize):
images_to_augments = len(x_train)
for i in range(images_to_augments):
im = Image.fromarray(x_train[i].astype('uint8').reshape((resize,resize,3)))
f1 = im.transpose(Image.FLIP_LEFT_RIGHT)
f2 = im.transpose(Image.FLIP_TOP_BOTTOM)
x_train.append(np.asarray(f1, dtype="int32"))
x_train.append(np.asarray(f2, dtype="int32"))
y_train.append(y_train[i])
y_train.append(y_train[i])
def semantic_maps(resize=None):
seen_labels = list()
x_train = np.array([load_image(f, resize) for f in glob.glob("../data/semantic_maps/train/img/*.png")])
x_test = np.array([load_image(f, resize) for f in glob.glob("../data/semantic_maps/test/img/*.png")])
y_train = np.array([load_labels(f, seen_labels) for f in glob.glob("../data/semantic_maps/train/txt/*.txt")])
y_test = np.array([load_labels(f, seen_labels) for f in glob.glob("../data/semantic_maps/test/txt/*.txt")])
x_train = ([load_image(f, resize) for f in glob.glob("../data/semantic_maps/train/img/*.png")])
x_test = ([load_image(f, resize) for f in glob.glob("../data/semantic_maps/test/img/*.png")])
y_train = ([load_labels(f, seen_labels) for f in glob.glob("../data/semantic_maps/train/txt/*.txt")])
y_test = ([load_labels(f, seen_labels) for f in glob.glob("../data/semantic_maps/test/txt/*.txt")])
augment (x_train, y_train, resize)
seen_labels = sorted(list(set(seen_labels)))
y_train = np.array([encode_word_presence(a, seen_labels) for a in y_train])
y_test = np.array([encode_word_presence(a, seen_labels) for a in y_test])
return (x_train, y_train), (x_test, y_test)
y_train = ([encode_word_presence(a, seen_labels) for a in y_train])
y_test = ([encode_word_presence(a, seen_labels) for a in y_test])
return (np.array(x_train), np.array(y_train)), (np.array(x_test), np.array(y_test))
def get_number_of_unique_classes():
seen_labels = list()
@ -45,4 +56,4 @@ def get_number_of_unique_classes():
return unique_labels
def semantic_maps_shape():
return 256, 3, get_number_of_unique_classes()
return 64, 3, get_number_of_unique_classes()