/* * Copyright 2011-2019 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include "bgfx_p.h" #if BGFX_CONFIG_RENDERER_DIRECT3D11 # include "renderer_d3d11.h" namespace bgfx { namespace d3d11 { static wchar_t s_viewNameW[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME]; static char s_viewName [BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME]; inline void setViewType(ViewId _view, const bx::StringView _str) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION | BGFX_CONFIG_PROFILER) ) { const uint32_t len = _str.getLength(); bx::memCopy(&s_viewName[_view][3], _str.getPtr(), len); wchar_t tmpW[16]; mbstowcs(tmpW, _str.getPtr(), len); bx::memCopy(&s_viewNameW[_view][3], tmpW, len*2); } } struct PrimInfo { D3D11_PRIMITIVE_TOPOLOGY m_type; uint32_t m_min; uint32_t m_div; uint32_t m_sub; }; static const PrimInfo s_primInfo[] = { { D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, 3, 3, 0 }, { D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP, 3, 1, 2 }, { D3D11_PRIMITIVE_TOPOLOGY_LINELIST, 2, 2, 0 }, { D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP, 2, 1, 1 }, { D3D11_PRIMITIVE_TOPOLOGY_POINTLIST, 1, 1, 0 }, { D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED, 0, 0, 0 }, }; BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo)-1); union Zero { Zero() { bx::memSet(this, 0, sizeof(Zero) ); } ID3D11Buffer* m_buffer[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT]; ID3D11UnorderedAccessView* m_uav[D3D11_1_UAV_SLOT_COUNT]; ID3D11ShaderResourceView* m_srv[D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT]; ID3D11SamplerState* m_sampler[D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT]; ID3D11RenderTargetView* m_rtv[BGFX_CONFIG_MAX_FRAME_BUFFERS]; uint32_t m_zero[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT]; float m_zerof[D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT]; }; BX_PRAGMA_DIAGNOSTIC_PUSH(); BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4268) // warning C4268: '' : 'const' static/global data initialized with compiler generated default constructor fills the object with zeros static const Zero s_zero; BX_PRAGMA_DIAGNOSTIC_POP(); static const uint32_t s_checkMsaa[] = { 0, 2, 4, 8, 16, }; static DXGI_SAMPLE_DESC s_msaa[] = { { 1, 0 }, { 2, 0 }, { 4, 0 }, { 8, 0 }, { 16, 0 }, }; static const D3D11_BLEND s_blendFactor[][2] = { { D3D11_BLEND(0), D3D11_BLEND(0) }, // ignored { D3D11_BLEND_ZERO, D3D11_BLEND_ZERO }, // ZERO { D3D11_BLEND_ONE, D3D11_BLEND_ONE }, // ONE { D3D11_BLEND_SRC_COLOR, D3D11_BLEND_SRC_ALPHA }, // SRC_COLOR { D3D11_BLEND_INV_SRC_COLOR, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_COLOR { D3D11_BLEND_SRC_ALPHA, D3D11_BLEND_SRC_ALPHA }, // SRC_ALPHA { D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_INV_SRC_ALPHA }, // INV_SRC_ALPHA { D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_DEST_ALPHA }, // DST_ALPHA { D3D11_BLEND_INV_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_ALPHA { D3D11_BLEND_DEST_COLOR, D3D11_BLEND_DEST_ALPHA }, // DST_COLOR { D3D11_BLEND_INV_DEST_COLOR, D3D11_BLEND_INV_DEST_ALPHA }, // INV_DST_COLOR { D3D11_BLEND_SRC_ALPHA_SAT, D3D11_BLEND_ONE }, // SRC_ALPHA_SAT { D3D11_BLEND_BLEND_FACTOR, D3D11_BLEND_BLEND_FACTOR }, // FACTOR { D3D11_BLEND_INV_BLEND_FACTOR, D3D11_BLEND_INV_BLEND_FACTOR }, // INV_FACTOR }; static const D3D11_BLEND_OP s_blendEquation[] = { D3D11_BLEND_OP_ADD, D3D11_BLEND_OP_SUBTRACT, D3D11_BLEND_OP_REV_SUBTRACT, D3D11_BLEND_OP_MIN, D3D11_BLEND_OP_MAX, }; static const D3D11_COMPARISON_FUNC s_cmpFunc[] = { D3D11_COMPARISON_FUNC(0), // ignored D3D11_COMPARISON_LESS, D3D11_COMPARISON_LESS_EQUAL, D3D11_COMPARISON_EQUAL, D3D11_COMPARISON_GREATER_EQUAL, D3D11_COMPARISON_GREATER, D3D11_COMPARISON_NOT_EQUAL, D3D11_COMPARISON_NEVER, D3D11_COMPARISON_ALWAYS, }; static const D3D11_STENCIL_OP s_stencilOp[] = { D3D11_STENCIL_OP_ZERO, D3D11_STENCIL_OP_KEEP, D3D11_STENCIL_OP_REPLACE, D3D11_STENCIL_OP_INCR, D3D11_STENCIL_OP_INCR_SAT, D3D11_STENCIL_OP_DECR, D3D11_STENCIL_OP_DECR_SAT, D3D11_STENCIL_OP_INVERT, }; static const D3D11_CULL_MODE s_cullMode[] = { D3D11_CULL_NONE, D3D11_CULL_FRONT, D3D11_CULL_BACK, }; static const D3D11_TEXTURE_ADDRESS_MODE s_textureAddress[] = { D3D11_TEXTURE_ADDRESS_WRAP, D3D11_TEXTURE_ADDRESS_MIRROR, D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_BORDER, }; /* * D3D11_FILTER_MIN_MAG_MIP_POINT = 0x00, * D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR = 0x01, * D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT = 0x04, * D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR = 0x05, * D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT = 0x10, * D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR = 0x11, * D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT = 0x14, * D3D11_FILTER_MIN_MAG_MIP_LINEAR = 0x15, * D3D11_FILTER_ANISOTROPIC = 0x55, * * D3D11_COMPARISON_FILTERING_BIT = 0x80, * D3D11_ANISOTROPIC_FILTERING_BIT = 0x40, * * According to D3D11_FILTER enum bits for mip, mag and mip are: * 0x10 // MIN_LINEAR * 0x04 // MAG_LINEAR * 0x01 // MIP_LINEAR */ static const uint8_t s_textureFilter[3][3] = { { 0x10, // min linear 0x00, // min point 0x55, // anisotropic }, { 0x04, // mag linear 0x00, // mag point 0x55, // anisotropic }, { 0x01, // mip linear 0x00, // mip point 0x55, // anisotropic }, }; struct TextureFormatInfo { DXGI_FORMAT m_fmt; DXGI_FORMAT m_fmtSrv; DXGI_FORMAT m_fmtDsv; DXGI_FORMAT m_fmtSrgb; }; static const TextureFormatInfo s_textureFormat[] = { { DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_BC1_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC1_UNORM_SRGB }, // BC1 { DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_BC2_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC2_UNORM_SRGB }, // BC2 { DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_BC3_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC3_UNORM_SRGB }, // BC3 { DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_BC4_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // BC4 { DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_BC5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // BC5 { DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_BC6H_SF16, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // BC6H { DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_BC7_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_BC7_UNORM_SRGB }, // BC7 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC1 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ETC2A1 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC12A { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC14A { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC22 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // PTC24 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ATC { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ATCE { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // ATCI { DXGI_FORMAT_ASTC_4X4_UNORM, DXGI_FORMAT_ASTC_4X4_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_4X4_UNORM_SRGB }, // ASTC4x4 { DXGI_FORMAT_ASTC_5X5_UNORM, DXGI_FORMAT_ASTC_5X5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_5X5_UNORM_SRGB }, // ASTC5x5 { DXGI_FORMAT_ASTC_6X6_UNORM, DXGI_FORMAT_ASTC_6X6_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_6X6_UNORM_SRGB }, // ASTC6x6 { DXGI_FORMAT_ASTC_8X5_UNORM, DXGI_FORMAT_ASTC_8X5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_8X5_UNORM_SRGB }, // ASTC8x5 { DXGI_FORMAT_ASTC_8X6_UNORM, DXGI_FORMAT_ASTC_8X6_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_8X6_UNORM_SRGB }, // ASTC8x6 { DXGI_FORMAT_ASTC_10X5_UNORM, DXGI_FORMAT_ASTC_10X5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_ASTC_10X5_UNORM_SRGB }, // ASTC10x5 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // Unknown { DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_R1_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R1 { DXGI_FORMAT_A8_UNORM, DXGI_FORMAT_A8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // A8 { DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_R8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8 { DXGI_FORMAT_R8_SINT, DXGI_FORMAT_R8_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8I { DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8U { DXGI_FORMAT_R8_SNORM, DXGI_FORMAT_R8_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R8S { DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16 { DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16I { DXGI_FORMAT_R16_UINT, DXGI_FORMAT_R16_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16U { DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16F { DXGI_FORMAT_R16_SNORM, DXGI_FORMAT_R16_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R16S { DXGI_FORMAT_R32_SINT, DXGI_FORMAT_R32_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R32I { DXGI_FORMAT_R32_UINT, DXGI_FORMAT_R32_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R32U { DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R32F { DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_R8G8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8 { DXGI_FORMAT_R8G8_SINT, DXGI_FORMAT_R8G8_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8I { DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8U { DXGI_FORMAT_R8G8_SNORM, DXGI_FORMAT_R8G8_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG8S { DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_R16G16_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16 { DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16I { DXGI_FORMAT_R16G16_UINT, DXGI_FORMAT_R16G16_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16U { DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16F { DXGI_FORMAT_R16G16_SNORM, DXGI_FORMAT_R16G16_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG16S { DXGI_FORMAT_R32G32_SINT, DXGI_FORMAT_R32G32_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG32I { DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG32U { DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG32F { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8 { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8I { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8U { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB8S { DXGI_FORMAT_R9G9B9E5_SHAREDEXP, DXGI_FORMAT_R9G9B9E5_SHAREDEXP, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB9E5F { DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_B8G8R8A8_UNORM_SRGB }, // BGRA8 { DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB }, // RGBA8 { DXGI_FORMAT_R8G8B8A8_SINT, DXGI_FORMAT_R8G8B8A8_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB }, // RGBA8I { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_R8G8B8A8_UNORM_SRGB }, // RGBA8U { DXGI_FORMAT_R8G8B8A8_SNORM, DXGI_FORMAT_R8G8B8A8_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA8S { DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_R16G16B16A16_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16 { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16I { DXGI_FORMAT_R16G16B16A16_UINT, DXGI_FORMAT_R16G16B16A16_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16U { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16F { DXGI_FORMAT_R16G16B16A16_SNORM, DXGI_FORMAT_R16G16B16A16_SNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA16S { DXGI_FORMAT_R32G32B32A32_SINT, DXGI_FORMAT_R32G32B32A32_SINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA32I { DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA32U { DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA32F { DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_B5G6R5_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // R5G6B5 { DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_B4G4R4A4_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGBA4 { DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_B5G5R5A1_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB5A1 { DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_R10G10B10A2_UNORM, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RGB10A2 { DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_R11G11B10_FLOAT, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // RG11B10F { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, // UnknownDepth { DXGI_FORMAT_R16_TYPELESS, DXGI_FORMAT_R16_UNORM, DXGI_FORMAT_D16_UNORM, DXGI_FORMAT_UNKNOWN }, // D16 { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D24 { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D24S8 { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D32 { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT, DXGI_FORMAT_UNKNOWN }, // D16F { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT, DXGI_FORMAT_UNKNOWN }, // D24F { DXGI_FORMAT_R32_TYPELESS, DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_D32_FLOAT, DXGI_FORMAT_UNKNOWN }, // D32F { DXGI_FORMAT_R24G8_TYPELESS, DXGI_FORMAT_R24_UNORM_X8_TYPELESS, DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_UNKNOWN }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) ); static const D3D11_INPUT_ELEMENT_DESC s_attrib[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BITANGENT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 1, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 2, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "COLOR", 3, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BLENDINDICES", 0, DXGI_FORMAT_R8G8B8A8_UINT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "BLENDWEIGHT", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 1, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 2, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 3, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 4, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 5, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 6, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "TEXCOORD", 7, DXGI_FORMAT_R32G32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attrib) ); static const DXGI_FORMAT s_attribType[][4][2] = { { // Uint8 { DXGI_FORMAT_R8_UINT, DXGI_FORMAT_R8_UNORM }, { DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_R8G8_UNORM }, { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM }, { DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_R8G8B8A8_UNORM }, }, { // Uint10 { DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM }, { DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM }, { DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM }, { DXGI_FORMAT_R10G10B10A2_UINT, DXGI_FORMAT_R10G10B10A2_UNORM }, }, { // Int16 { DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_SNORM }, { DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_SNORM }, { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM }, { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_SNORM }, }, { // Half { DXGI_FORMAT_R16_FLOAT, DXGI_FORMAT_R16_FLOAT }, { DXGI_FORMAT_R16G16_FLOAT, DXGI_FORMAT_R16G16_FLOAT }, { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT }, { DXGI_FORMAT_R16G16B16A16_FLOAT, DXGI_FORMAT_R16G16B16A16_FLOAT }, }, { // Float { DXGI_FORMAT_R32_FLOAT, DXGI_FORMAT_R32_FLOAT }, { DXGI_FORMAT_R32G32_FLOAT, DXGI_FORMAT_R32G32_FLOAT }, { DXGI_FORMAT_R32G32B32_FLOAT, DXGI_FORMAT_R32G32B32_FLOAT }, { DXGI_FORMAT_R32G32B32A32_FLOAT, DXGI_FORMAT_R32G32B32A32_FLOAT }, }, }; BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) ); static D3D11_INPUT_ELEMENT_DESC* fillVertexLayout(uint8_t _stream, D3D11_INPUT_ELEMENT_DESC* _out, const VertexLayout& _layout) { D3D11_INPUT_ELEMENT_DESC* elem = _out; for (uint32_t attr = 0; attr < Attrib::Count; ++attr) { if (UINT16_MAX != _layout.m_attributes[attr]) { bx::memCopy(elem, &s_attrib[attr], sizeof(D3D11_INPUT_ELEMENT_DESC) ); elem->InputSlot = _stream; if (0 == _layout.m_attributes[attr]) { elem->AlignedByteOffset = 0; } else { uint8_t num; AttribType::Enum type; bool normalized; bool asInt; _layout.decode(Attrib::Enum(attr), num, type, normalized, asInt); elem->Format = s_attribType[type][num-1][normalized]; elem->AlignedByteOffset = _layout.m_offset[attr]; } ++elem; } } return elem; } struct TextureStage { TextureStage() { clear(); } void clear() { bx::memSet(m_uav, 0, sizeof(m_uav) ); bx::memSet(m_srv, 0, sizeof(m_srv) ); bx::memSet(m_sampler, 0, sizeof(m_sampler) ); } ID3D11UnorderedAccessView* m_uav[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; ID3D11ShaderResourceView* m_srv[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; ID3D11SamplerState* m_sampler[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; }; BX_PRAGMA_DIAGNOSTIC_PUSH(); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunused-const-variable"); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG("-Wunneeded-internal-declaration"); static const GUID WKPDID_D3DDebugObjectName = { 0x429b8c22, 0x9188, 0x4b0c, { 0x87, 0x42, 0xac, 0xb0, 0xbf, 0x85, 0xc2, 0x00 } }; static const GUID IID_ID3D11Texture2D = { 0x6f15aaf2, 0xd208, 0x4e89, { 0x9a, 0xb4, 0x48, 0x95, 0x35, 0xd3, 0x4f, 0x9c } }; static const GUID IID_ID3D11Device1 = { 0xa04bfb29, 0x08ef, 0x43d6, { 0xa4, 0x9c, 0xa9, 0xbd, 0xbd, 0xcb, 0xe6, 0x86 } }; static const GUID IID_ID3D11Device2 = { 0x9d06dffa, 0xd1e5, 0x4d07, { 0x83, 0xa8, 0x1b, 0xb1, 0x23, 0xf2, 0xf8, 0x41 } }; static const GUID IID_ID3D11Device3 = { 0xa05c8c37, 0xd2c6, 0x4732, { 0xb3, 0xa0, 0x9c, 0xe0, 0xb0, 0xdc, 0x9a, 0xe6 } }; static const GUID IID_ID3D11InfoQueue = { 0x6543dbb6, 0x1b48, 0x42f5, { 0xab, 0x82, 0xe9, 0x7e, 0xc7, 0x43, 0x26, 0xf6 } }; static const GUID IID_IDXGIDeviceRenderDoc = { 0xa7aa6116, 0x9c8d, 0x4bba, { 0x90, 0x83, 0xb4, 0xd8, 0x16, 0xb7, 0x1b, 0x78 } }; static const GUID IID_ID3DUserDefinedAnnotation = { 0xb2daad8b, 0x03d4, 0x4dbf, { 0x95, 0xeb, 0x32, 0xab, 0x4b, 0x63, 0xd0, 0xab } }; enum D3D11_FORMAT_SUPPORT2 { D3D11_FORMAT_SUPPORT2_UAV_TYPED_LOAD = 0x40, D3D11_FORMAT_SUPPORT2_UAV_TYPED_STORE = 0x80, }; static const GUID s_d3dDeviceIIDs[] = { IID_ID3D11Device3, IID_ID3D11Device2, IID_ID3D11Device1, }; inline bool isLost(HRESULT _hr) { return false || _hr == DXGI_ERROR_DEVICE_REMOVED || _hr == DXGI_ERROR_DEVICE_HUNG || _hr == DXGI_ERROR_DEVICE_RESET || _hr == DXGI_ERROR_DRIVER_INTERNAL_ERROR || _hr == DXGI_ERROR_NOT_CURRENTLY_AVAILABLE ; } static const char* getLostReason(HRESULT _hr) { switch (_hr) { // The GPU device instance has been suspended. Use GetDeviceRemovedReason to determine the appropriate action. case DXGI_ERROR_DEVICE_REMOVED: return "DXGI_ERROR_DEVICE_REMOVED"; // The GPU will not respond to more commands, most likely because of an invalid command passed by the calling application. case DXGI_ERROR_DEVICE_HUNG: return "DXGI_ERROR_DEVICE_HUNG"; // The GPU will not respond to more commands, most likely because some other application submitted invalid commands. // The calling application should re-create the device and continue. case DXGI_ERROR_DEVICE_RESET: return "DXGI_ERROR_DEVICE_RESET"; // An internal issue prevented the driver from carrying out the specified operation. The driver's state is probably // suspect, and the application should not continue. case DXGI_ERROR_DRIVER_INTERNAL_ERROR: return "DXGI_ERROR_DRIVER_INTERNAL_ERROR"; // A resource is not available at the time of the call, but may become available later. case DXGI_ERROR_NOT_CURRENTLY_AVAILABLE: return "DXGI_ERROR_NOT_CURRENTLY_AVAILABLE"; case S_OK: return "S_OK"; default: break; } return "Unknown HRESULT?"; } template static BX_NO_INLINE void setDebugObjectName(Ty* _interface, const char* _format, ...) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_OBJECT_NAME) ) { char temp[2048]; va_list argList; va_start(argList, _format); int size = bx::uint32_min(sizeof(temp)-1, bx::vsnprintf(temp, sizeof(temp), _format, argList) ); va_end(argList); temp[size] = '\0'; _interface->SetPrivateData(WKPDID_D3DDebugObjectName, size, temp); } } BX_PRAGMA_DIAGNOSTIC_POP(); static HRESULT setIntelExtension(ID3D11Device* _device, const void* _data, uint32_t _size) { D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; desc.MiscFlags = 0; desc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA initData; initData.pSysMem = _data; initData.SysMemPitch = _size; initData.SysMemSlicePitch = 0; ID3D11Buffer* buffer; HRESULT hr = _device->CreateBuffer(&desc, &initData, &buffer); if (SUCCEEDED(hr) ) { buffer->Release(); } return hr; }; static const uint32_t kIntelExtensionInterfaceVersion = UINT32_C(0x10000); struct IntelExtension { char key[16]; uint32_t version; uint32_t type; uint32_t data[16]; }; static const IntelExtension s_intelDirectAccessResource = { { 'I', 'N', 'T', 'C', 'E', 'X', 'T', 'N', 'R', 'E', 'S', 'O', 'U', 'R', 'C', 'E' }, kIntelExtensionInterfaceVersion, 1, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, }; static HRESULT setIntelDirectAccessResource(ID3D11Device* _device) { return setIntelExtension(_device, &s_intelDirectAccessResource, sizeof(s_intelDirectAccessResource) ); } static BX_NO_INLINE bool getIntelExtensions(ID3D11Device* _device) { if (windowsVersionIs(Condition::GreaterEqual, 0x0604) ) { uint8_t temp[28]; bx::StaticMemoryBlockWriter writer(&temp, sizeof(temp) ); bx::write(&writer, "INTCEXTNCAPSFUNC", 16); bx::write(&writer, kIntelExtensionInterfaceVersion); bx::write(&writer, UINT32_C(0) ); bx::write(&writer, UINT32_C(0) ); if (SUCCEEDED(setIntelExtension(_device, temp, sizeof(temp) ) ) ) { bx::MemoryReader reader(&temp, sizeof(temp) ); bx::skip(&reader, 16); uint32_t version; bx::read(&reader, version); uint32_t driverVersion; bx::read(&reader, driverVersion); return version <= driverVersion; } } return false; } void resume(ID3D11Device* _device) { BX_UNUSED(_device); } void suspend(ID3D11Device* _device) { BX_UNUSED(_device); } /* * AMD GPU Services (AGS) library * * Reference(s): * - https://web.archive.org/web/20181126035805/https://github.com/GPUOpen-LibrariesAndSDKs/AGS_SDK */ enum AGS_RETURN_CODE { AGS_SUCCESS, AGS_INVALID_ARGS, AGS_OUT_OF_MEMORY, AGS_ERROR_MISSING_DLL, AGS_ERROR_LEGACY_DRIVER, AGS_EXTENSION_NOT_SUPPORTED, AGS_ADL_FAILURE, }; enum AGS_DRIVER_EXTENSION { AGS_EXTENSION_QUADLIST = 1 << 0, AGS_EXTENSION_UAV_OVERLAP = 1 << 1, AGS_EXTENSION_DEPTH_BOUNDS_TEST = 1 << 2, AGS_EXTENSION_MULTIDRAWINDIRECT = 1 << 3, }; struct AGSDriverVersionInfo { char strDriverVersion[256]; char strCatalystVersion[256]; char strCatalystWebLink[256]; }; struct AGSContext; typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_INIT)(AGSContext**); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DEINIT)(AGSContext*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_CROSSFIRE_GPU_COUNT)(AGSContext*, int32_t*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_TOTAL_GPU_COUNT)(AGSContext*, int32_t*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_GPU_MEMORY_SIZE)(AGSContext*, int32_t, int64_t*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_GET_DRIVER_VERSION_INFO)(AGSContext*, AGSDriverVersionInfo*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_INIT)(AGSContext*, ID3D11Device*, uint32_t*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_DEINIT)(AGSContext*); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INSTANCED_INDIRECT)(AGSContext*, uint32_t, ID3D11Buffer*, uint32_t, uint32_t); typedef AGS_RETURN_CODE (__cdecl* PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INDEXED_INSTANCED_INDIRECT)(AGSContext*, uint32_t, ID3D11Buffer*, uint32_t, uint32_t); static PFN_AGS_INIT agsInit; static PFN_AGS_DEINIT agsDeInit; static PFN_AGS_GET_CROSSFIRE_GPU_COUNT agsGetCrossfireGPUCount; static PFN_AGS_GET_TOTAL_GPU_COUNT agsGetTotalGPUCount; static PFN_AGS_GET_GPU_MEMORY_SIZE agsGetGPUMemorySize; static PFN_AGS_GET_DRIVER_VERSION_INFO agsGetDriverVersionInfo; static PFN_AGS_DRIVER_EXTENSIONS_INIT agsDriverExtensions_Init; static PFN_AGS_DRIVER_EXTENSIONS_DEINIT agsDriverExtensions_DeInit; static PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INSTANCED_INDIRECT agsDriverExtensions_MultiDrawInstancedIndirect; static PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INDEXED_INSTANCED_INDIRECT agsDriverExtensions_MultiDrawIndexedInstancedIndirect; typedef void (* MultiDrawIndirectFn)(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); void stubMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); void stubMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); void amdAgsMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); void amdAgsMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); void nvapiMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); void nvapiMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride); static MultiDrawIndirectFn multiDrawInstancedIndirect; static MultiDrawIndirectFn multiDrawIndexedInstancedIndirect; #if USE_D3D11_DYNAMIC_LIB static PFN_D3D11_CREATE_DEVICE D3D11CreateDevice; static PFN_D3DPERF_SET_MARKER D3DPERF_SetMarker; static PFN_D3DPERF_BEGIN_EVENT D3DPERF_BeginEvent; static PFN_D3DPERF_END_EVENT D3DPERF_EndEvent; #endif // USE_D3D11_DYNAMIC_LIB int WINAPI d3d11Annotation_BeginEvent(DWORD _color, LPCWSTR _name); int WINAPI d3d11Annotation_EndEvent(); void WINAPI d3d11Annotation_SetMarker(DWORD _color, LPCWSTR _name); struct RendererContextD3D11 : public RendererContextI { RendererContextD3D11() : m_d3d9Dll(NULL) , m_d3d11Dll(NULL) , m_renderDocDll(NULL) , m_agsDll(NULL) , m_ags(NULL) , m_featureLevel(D3D_FEATURE_LEVEL(0) ) , m_swapChain(NULL) , m_lost(false) , m_numWindows(0) , m_device(NULL) , m_deviceCtx(NULL) , m_annotation(NULL) , m_infoQueue(NULL) , m_backBufferColor(NULL) , m_backBufferDepthStencil(NULL) , m_currentColor(NULL) , m_currentDepthStencil(NULL) , m_captureTexture(NULL) , m_captureResolve(NULL) , m_maxAnisotropy(1) , m_depthClamp(false) , m_wireframe(false) , m_currentProgram(NULL) , m_vsChanges(0) , m_fsChanges(0) , m_rtMsaa(false) , m_timerQuerySupport(false) , m_directAccessSupport(false) { m_fbh.idx = kInvalidHandle; bx::memSet(&m_scd, 0, sizeof(m_scd) ); bx::memSet(&m_windows, 0xff, sizeof(m_windows) ); } ~RendererContextD3D11() { } bool init(const Init& _init) { struct ErrorState { enum Enum { Default, LoadedD3D11, LoadedDXGI, }; }; ErrorState::Enum errorState = ErrorState::Default; if (_init.debug || _init.profile) { m_renderDocDll = loadRenderDoc(); } m_fbh.idx = kInvalidHandle; bx::memSet(m_uniforms, 0, sizeof(m_uniforms) ); bx::memSet(&m_resolution, 0, sizeof(m_resolution) ); m_ags = NULL; m_agsDll = bx::dlopen( #if BX_ARCH_32BIT "amd_ags_x86.dll" #else "amd_ags_x64.dll" #endif // BX_ARCH_32BIT ); if (NULL != m_agsDll) { agsInit = (PFN_AGS_INIT )bx::dlsym(m_agsDll, "agsInit"); agsDeInit = (PFN_AGS_DEINIT)bx::dlsym(m_agsDll, "agsDeInit"); agsGetCrossfireGPUCount = (PFN_AGS_GET_CROSSFIRE_GPU_COUNT )bx::dlsym(m_agsDll, "agsGetCrossfireGPUCount"); agsGetTotalGPUCount = (PFN_AGS_GET_TOTAL_GPU_COUNT )bx::dlsym(m_agsDll, "agsGetTotalGPUCount"); agsGetGPUMemorySize = (PFN_AGS_GET_GPU_MEMORY_SIZE )bx::dlsym(m_agsDll, "agsGetGPUMemorySize"); agsGetDriverVersionInfo = (PFN_AGS_GET_DRIVER_VERSION_INFO )bx::dlsym(m_agsDll, "agsGetDriverVersionInfo"); agsDriverExtensions_Init = (PFN_AGS_DRIVER_EXTENSIONS_INIT )bx::dlsym(m_agsDll, "agsDriverExtensions_Init"); agsDriverExtensions_DeInit = (PFN_AGS_DRIVER_EXTENSIONS_DEINIT)bx::dlsym(m_agsDll, "agsDriverExtensions_DeInit"); agsDriverExtensions_MultiDrawInstancedIndirect = (PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INSTANCED_INDIRECT )bx::dlsym(m_agsDll, "agsDriverExtensions_MultiDrawInstancedIndirect"); agsDriverExtensions_MultiDrawIndexedInstancedIndirect = (PFN_AGS_DRIVER_EXTENSIONS_MULTIDRAW_INDEXED_INSTANCED_INDIRECT)bx::dlsym(m_agsDll, "agsDriverExtensions_MultiDrawIndexedInstancedIndirect"); bool agsSupported = true && NULL != agsInit && NULL != agsDeInit && NULL != agsGetCrossfireGPUCount && NULL != agsGetTotalGPUCount && NULL != agsGetGPUMemorySize && NULL != agsGetDriverVersionInfo && NULL != agsDriverExtensions_Init && NULL != agsDriverExtensions_DeInit && NULL != agsDriverExtensions_MultiDrawInstancedIndirect && NULL != agsDriverExtensions_MultiDrawIndexedInstancedIndirect ; if (agsSupported) { AGS_RETURN_CODE result = agsInit(&m_ags); agsSupported = AGS_SUCCESS == result; if (agsSupported) { AGSDriverVersionInfo vi; result = agsGetDriverVersionInfo(m_ags, &vi); BX_TRACE(" Driver version: %s", vi.strDriverVersion); BX_TRACE(" Catalyst version: %s", vi.strCatalystVersion); int32_t numCrossfireGPUs = 0; result = agsGetCrossfireGPUCount(m_ags, &numCrossfireGPUs); BX_TRACE(" Num crossfire GPUs: %d", numCrossfireGPUs); int32_t numGPUs = 0; result = agsGetTotalGPUCount(m_ags, &numGPUs); BX_TRACE(" Num GPUs: %d", numGPUs); for (int32_t ii = 0; ii < numGPUs; ++ii) { long long memSize; result = agsGetGPUMemorySize(m_ags, ii, &memSize); if (AGS_SUCCESS == result) { char memSizeStr[16]; bx::prettify(memSizeStr, BX_COUNTOF(memSizeStr), memSize); BX_TRACE(" GPU #%d mem size: %s", ii, memSizeStr); } } } } BX_WARN(!agsSupported, "AMD/AGS supported."); if (!agsSupported) { if (NULL != m_ags) { agsDeInit(m_ags); m_ags = NULL; } bx::dlclose(m_agsDll); m_agsDll = NULL; } } m_nvapi.init(); #if USE_D3D11_DYNAMIC_LIB m_d3d11Dll = bx::dlopen("d3d11.dll"); if (NULL == m_d3d11Dll) { BX_TRACE("Init error: Failed to load d3d11.dll."); goto error; } errorState = ErrorState::LoadedD3D11; m_d3d9Dll = NULL; if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) ) { // D3D11_1.h has ID3DUserDefinedAnnotation // https://web.archive.org/web/20190207230424/https://docs.microsoft.com/en-us/windows/desktop/api/d3d11_1/nn-d3d11_1-id3duserdefinedannotation m_d3d9Dll = bx::dlopen("d3d9.dll"); if (NULL != m_d3d9Dll) { D3DPERF_SetMarker = (PFN_D3DPERF_SET_MARKER )bx::dlsym(m_d3d9Dll, "D3DPERF_SetMarker" ); D3DPERF_BeginEvent = (PFN_D3DPERF_BEGIN_EVENT)bx::dlsym(m_d3d9Dll, "D3DPERF_BeginEvent"); D3DPERF_EndEvent = (PFN_D3DPERF_END_EVENT )bx::dlsym(m_d3d9Dll, "D3DPERF_EndEvent" ); if (NULL == D3DPERF_SetMarker || NULL == D3DPERF_BeginEvent || NULL == D3DPERF_EndEvent) { BX_TRACE("Failed to initialize PIX events."); D3DPERF_SetMarker = NULL; D3DPERF_BeginEvent = NULL; D3DPERF_EndEvent = NULL; bx::dlclose(m_d3d9Dll); m_d3d9Dll = NULL; } } } D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)bx::dlsym(m_d3d11Dll, "D3D11CreateDevice"); if (NULL == D3D11CreateDevice) { BX_TRACE("Init error: Function D3D11CreateDevice not found."); goto error; } #endif // USE_D3D11_DYNAMIC_LIB m_device = (ID3D11Device*)g_platformData.context; if (!m_dxgi.init(g_caps) ) { goto error; } errorState = ErrorState::LoadedDXGI; if (NULL == m_device) { if (NULL != m_renderDocDll) { setGraphicsDebuggerPresent(true); } D3D_FEATURE_LEVEL featureLevel[] = { D3D_FEATURE_LEVEL_12_1, D3D_FEATURE_LEVEL_12_0, D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, #if BX_PLATFORM_WINRT D3D_FEATURE_LEVEL_9_3, D3D_FEATURE_LEVEL_9_2, #endif // BX_PLATFORM_WINRT }; HRESULT hr = S_OK; for (;;) { uint32_t flags = 0 | D3D11_CREATE_DEVICE_SINGLETHREADED | D3D11_CREATE_DEVICE_BGRA_SUPPORT // | D3D11_CREATE_DEVICE_PREVENT_INTERNAL_THREADING_OPTIMIZATIONS | (_init.debug ? D3D11_CREATE_DEVICE_DEBUG : 0) ; hr = E_FAIL; for (uint32_t ii = 0; ii < BX_COUNTOF(featureLevel) && FAILED(hr);) { hr = D3D11CreateDevice(m_dxgi.m_adapter , m_dxgi.m_driverType , NULL , flags , &featureLevel[ii] , BX_COUNTOF(featureLevel)-ii , D3D11_SDK_VERSION , &m_device , &m_featureLevel , &m_deviceCtx ); BX_WARN(FAILED(hr), "Direct3D11 device feature level %d.%d." , (m_featureLevel >> 12) & 0xf , (m_featureLevel >> 8) & 0xf ); if (FAILED(hr) && 0 != (flags & D3D11_CREATE_DEVICE_DEBUG) ) { // Try without debug in case D3D11 SDK Layers // is not present? flags &= ~D3D11_CREATE_DEVICE_DEBUG; continue; } // Enable debug flags. flags |= (BX_ENABLED(BGFX_CONFIG_DEBUG) ? D3D11_CREATE_DEVICE_DEBUG : 0); ++ii; } if (FAILED(hr) && D3D_DRIVER_TYPE_WARP != m_dxgi.m_driverType) { // Try with WARP m_dxgi.m_driverType = D3D_DRIVER_TYPE_WARP; continue; } break; } if (FAILED(hr) ) { BX_TRACE("Init error: Unable to create Direct3D11 device."); goto error; } } else { m_device->GetImmediateContext(&m_deviceCtx); if (NULL == m_deviceCtx) { BX_TRACE("Init error: Unable to retrieve Direct3D11 ImmediateContext."); goto error; } m_featureLevel = m_device->GetFeatureLevel(); } m_dxgi.update(m_device); { m_deviceInterfaceVersion = 0; for (uint32_t ii = 0; ii < BX_COUNTOF(s_d3dDeviceIIDs); ++ii) { ID3D11Device* device; HRESULT hr = m_device->QueryInterface(s_d3dDeviceIIDs[ii], (void**)&device); if (SUCCEEDED(hr) ) { device->Release(); // BK - ignore ref count. m_deviceInterfaceVersion = BX_COUNTOF(s_d3dDeviceIIDs)-ii; break; } } { /// IDXGIDevice* renderdoc; HRESULT hr = m_device->QueryInterface(IID_IDXGIDeviceRenderDoc, (void**)&renderdoc); if (SUCCEEDED(hr) ) { setGraphicsDebuggerPresent(true); DX_RELEASE(renderdoc, 2); } else { IUnknown* device = m_device; setGraphicsDebuggerPresent(2 != getRefCount(device) ); } } if (BGFX_PCI_ID_NVIDIA != m_dxgi.m_adapterDesc.VendorId) { m_nvapi.shutdown(); } if (NULL == g_platformData.backBuffer) { HRESULT hr = S_OK; m_swapEffect = #if BX_PLATFORM_WINDOWS DXGI_SWAP_EFFECT_FLIP_DISCARD #else DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL #endif // !BX_PLATFORM_WINDOWS ; m_swapBufferCount = bx::clamp(_init.resolution.numBackBuffers, 2, BGFX_CONFIG_MAX_BACK_BUFFERS); bx::memSet(&m_scd, 0, sizeof(m_scd) ); m_scd.width = _init.resolution.width; m_scd.height = _init.resolution.height; m_scd.format = (_init.resolution.reset & BGFX_RESET_SRGB_BACKBUFFER) ? s_textureFormat[_init.resolution.format].m_fmtSrgb : s_textureFormat[_init.resolution.format].m_fmt ; updateMsaa(m_scd.format); m_scd.sampleDesc = s_msaa[(_init.resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT]; m_scd.bufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; m_scd.bufferCount = m_swapBufferCount; m_scd.scaling = 0 == g_platformData.ndt ? DXGI_SCALING_NONE : DXGI_SCALING_STRETCH ; m_scd.swapEffect = m_swapEffect; m_scd.alphaMode = DXGI_ALPHA_MODE_IGNORE; m_scd.flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; m_scd.maxFrameLatency = bx::min(_init.resolution.maxFrameLatency, 3); m_scd.nwh = g_platformData.nwh; m_scd.ndt = g_platformData.ndt; m_scd.windowed = true; m_msaaRt = NULL; if (NULL != m_scd.nwh) { hr = m_dxgi.createSwapChain(m_device , m_scd , &m_swapChain ); if (FAILED(hr) ) { // DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL is not available on win7 // Try again with DXGI_SWAP_EFFECT_DISCARD m_swapEffect = DXGI_SWAP_EFFECT_DISCARD; m_swapBufferCount = 1; m_scd.bufferCount = m_swapBufferCount; m_scd.swapEffect = m_swapEffect; hr = m_dxgi.createSwapChain(m_device , m_scd , &m_swapChain ); if (FAILED(hr) ) { BX_TRACE("Init error: Failed to create swap chain."); goto error; } } m_resolution = _init.resolution; m_resolution.reset = _init.resolution.reset & (~BGFX_RESET_INTERNAL_FORCE); m_textVideoMem.resize(false, _init.resolution.width, _init.resolution.height); m_textVideoMem.clear(); if (1 < m_scd.sampleDesc.Count) { D3D11_TEXTURE2D_DESC desc; desc.Width = m_scd.width; desc.Height = m_scd.height; desc.MipLevels = 1; desc.ArraySize = 1; desc.Format = m_scd.format; desc.SampleDesc = m_scd.sampleDesc; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_RENDER_TARGET; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; DX_CHECK(m_device->CreateTexture2D(&desc, NULL, &m_msaaRt) ); } } #if BX_PLATFORM_WINDOWS DX_CHECK(m_dxgi.m_factory->MakeWindowAssociation( (HWND)g_platformData.nwh, 0 | DXGI_MWA_NO_WINDOW_CHANGES | DXGI_MWA_NO_ALT_ENTER ) ); #endif // BX_PLATFORM_WINDOWS if (FAILED(hr) ) { BX_TRACE("Init error: Failed to create swap chain."); goto error; } } else { bx::memSet(&m_scd, 0, sizeof(m_scd) ); m_scd.sampleDesc.Count = 1; m_scd.sampleDesc.Quality = 0; m_scd.width = _init.resolution.width; m_scd.height = _init.resolution.height; m_backBufferColor = (ID3D11RenderTargetView*)g_platformData.backBuffer; m_backBufferDepthStencil = (ID3D11DepthStencilView*)g_platformData.backBufferDS; } } m_numWindows = 1; #if USE_D3D11_DYNAMIC_LIB if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) ) { HRESULT hr = m_deviceCtx->QueryInterface(IID_ID3DUserDefinedAnnotation, (void**)&m_annotation); if (SUCCEEDED(hr) ) { D3DPERF_BeginEvent = d3d11Annotation_BeginEvent; D3DPERF_EndEvent = d3d11Annotation_EndEvent; D3DPERF_SetMarker = d3d11Annotation_SetMarker; } } #endif // USE_D3D11_DYNAMIC_LIB if (_init.debug) { HRESULT hr = m_device->QueryInterface(IID_ID3D11InfoQueue, (void**)&m_infoQueue); if (SUCCEEDED(hr) ) { m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_CORRUPTION, true); m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, false); m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_WARNING, false); m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_INFO, false); m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_MESSAGE, false); D3D11_INFO_QUEUE_FILTER filter; bx::memSet(&filter, 0, sizeof(filter) ); D3D11_MESSAGE_CATEGORY catlist[] = { D3D11_MESSAGE_CATEGORY_STATE_CREATION, }; filter.DenyList.NumCategories = BX_COUNTOF(catlist); filter.DenyList.pCategoryList = catlist; D3D11_MESSAGE_ID idlist[] = { D3D11_MESSAGE_ID_DEVICE_DRAW_RENDERTARGETVIEW_NOT_SET, D3D11_MESSAGE_ID_QUERY_BEGIN_ABANDONING_PREVIOUS_RESULTS, }; filter.DenyList.NumIDs = BX_COUNTOF(idlist); filter.DenyList.pIDList = idlist; m_infoQueue->PushStorageFilter(&filter); } } { g_caps.supported |= (0 | BGFX_CAPS_TEXTURE_3D | BGFX_CAPS_VERTEX_ATTRIB_HALF | BGFX_CAPS_VERTEX_ATTRIB_UINT10 | BGFX_CAPS_VERTEX_ID | BGFX_CAPS_FRAGMENT_DEPTH | (getIntelExtensions(m_device) ? BGFX_CAPS_FRAGMENT_ORDERING | BGFX_CAPS_TEXTURE_DIRECT_ACCESS : 0) | BGFX_CAPS_SWAP_CHAIN | BGFX_CAPS_DRAW_INDIRECT | BGFX_CAPS_TEXTURE_BLIT | BGFX_CAPS_TEXTURE_READ_BACK | ( (m_featureLevel >= D3D_FEATURE_LEVEL_9_2) ? BGFX_CAPS_OCCLUSION_QUERY : 0) | BGFX_CAPS_ALPHA_TO_COVERAGE | ( (m_deviceInterfaceVersion >= 3) ? BGFX_CAPS_CONSERVATIVE_RASTER : 0) | BGFX_CAPS_TEXTURE_2D_ARRAY | BGFX_CAPS_TEXTURE_CUBE_ARRAY | ((m_featureLevel >= D3D_FEATURE_LEVEL_11_1) ? BGFX_CAPS_FRAMEBUFFER_RW : 0) ); m_timerQuerySupport = m_featureLevel >= D3D_FEATURE_LEVEL_10_0; m_directAccessSupport = 0 != (g_caps.supported & BGFX_CAPS_TEXTURE_DIRECT_ACCESS); if (m_featureLevel <= D3D_FEATURE_LEVEL_9_2) { g_caps.limits.maxTextureSize = D3D_FL9_1_REQ_TEXTURE2D_U_OR_V_DIMENSION; g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min( D3D_FL9_1_SIMULTANEOUS_RENDER_TARGET_COUNT , BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS ) ); g_caps.limits.maxVertexStreams = uint8_t(bx::uint32_min( 16 , BGFX_CONFIG_MAX_VERTEX_STREAMS ) ); } else if (m_featureLevel == D3D_FEATURE_LEVEL_9_3) { g_caps.limits.maxTextureSize = D3D_FL9_3_REQ_TEXTURE2D_U_OR_V_DIMENSION; g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min( D3D_FL9_3_SIMULTANEOUS_RENDER_TARGET_COUNT , BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS ) ); g_caps.limits.maxVertexStreams = uint8_t(bx::uint32_min( 16 , BGFX_CONFIG_MAX_VERTEX_STREAMS ) ); } else { g_caps.limits.maxComputeBindings = bx::min(BGFX_MAX_COMPUTE_BINDINGS , D3D_FEATURE_LEVEL_11_1 <= m_featureLevel ? D3D11_1_UAV_SLOT_COUNT : D3D11_PS_CS_UAV_REGISTER_COUNT ); g_caps.supported |= BGFX_CAPS_TEXTURE_COMPARE_ALL; g_caps.limits.maxTextureSize = D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; g_caps.limits.maxTextureLayers = D3D11_REQ_TEXTURE2D_ARRAY_AXIS_DIMENSION; g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min( D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT , BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS ) ); g_caps.limits.maxVertexStreams = uint8_t(bx::uint32_min( D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT , BGFX_CONFIG_MAX_VERTEX_STREAMS ) ); } // 32-bit indices only supported on 9_2+. if (m_featureLevel >= D3D_FEATURE_LEVEL_9_2) { g_caps.supported |= BGFX_CAPS_INDEX32; } // Independent blend only supported on 10_1+. if (m_featureLevel >= D3D_FEATURE_LEVEL_10_1) { g_caps.supported |= BGFX_CAPS_BLEND_INDEPENDENT; } // Compute support is optional on 10_0 and 10_1 targets. if (m_featureLevel == D3D_FEATURE_LEVEL_10_0 || m_featureLevel == D3D_FEATURE_LEVEL_10_1) { struct D3D11_FEATURE_DATA_D3D10_X_HARDWARE_OPTIONS { BOOL ComputeShaders_Plus_RawAndStructuredBuffers_Via_Shader_4_x; }; D3D11_FEATURE_DATA_D3D10_X_HARDWARE_OPTIONS data; HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE_D3D10_X_HARDWARE_OPTIONS, &data, sizeof(data) ); if (SUCCEEDED(hr) && data.ComputeShaders_Plus_RawAndStructuredBuffers_Via_Shader_4_x) { g_caps.supported |= BGFX_CAPS_COMPUTE; } } else if (m_featureLevel >= D3D_FEATURE_LEVEL_11_0) { g_caps.supported |= BGFX_CAPS_COMPUTE; } // Instancing fully supported on 9_3+, optionally partially supported at lower levels. if (m_featureLevel >= D3D_FEATURE_LEVEL_9_3) { g_caps.supported |= BGFX_CAPS_INSTANCING; } else { struct D3D11_FEATURE_DATA_D3D9_SIMPLE_INSTANCING_SUPPORT { BOOL SimpleInstancingSupported; }; D3D11_FEATURE_DATA_D3D9_SIMPLE_INSTANCING_SUPPORT data; HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE(11) /*D3D11_FEATURE_D3D9_SIMPLE_INSTANCING_SUPPORT*/, &data, sizeof(data) ); if (SUCCEEDED(hr) && data.SimpleInstancingSupported) { g_caps.supported |= BGFX_CAPS_INSTANCING; } } // shadow compare is optional on 9_1 through 9_3 targets if (m_featureLevel <= D3D_FEATURE_LEVEL_9_3) { struct D3D11_FEATURE_DATA_D3D9_SHADOW_SUPPORT { BOOL SupportsDepthAsTextureWithLessEqualComparisonFilter; }; D3D11_FEATURE_DATA_D3D9_SHADOW_SUPPORT data; HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE(9) /*D3D11_FEATURE_D3D9_SHADOW_SUPPORT*/, &data, sizeof(data) ); if (SUCCEEDED(hr) && data.SupportsDepthAsTextureWithLessEqualComparisonFilter) { g_caps.supported |= BGFX_CAPS_TEXTURE_COMPARE_LEQUAL; } } for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { uint16_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE; const DXGI_FORMAT fmt = bimg::isDepth(bimg::TextureFormat::Enum(ii) ) ? s_textureFormat[ii].m_fmtDsv : s_textureFormat[ii].m_fmt ; const DXGI_FORMAT fmtSrgb = s_textureFormat[ii].m_fmtSrgb; if (DXGI_FORMAT_UNKNOWN != fmt) { if (BX_ENABLED(BX_PLATFORM_WINDOWS || BX_PLATFORM_WINRT) ) { struct D3D11_FEATURE_DATA_FORMAT_SUPPORT { DXGI_FORMAT InFormat; UINT OutFormatSupport; }; D3D11_FEATURE_DATA_FORMAT_SUPPORT data; // D3D11_FEATURE_DATA_FORMAT_SUPPORT2 data.InFormat = fmt; HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT, &data, sizeof(data) ); if (SUCCEEDED(hr) ) { support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURE2D | D3D11_FORMAT_SUPPORT_TEXTURE3D | D3D11_FORMAT_SUPPORT_TEXTURECUBE ) ) ? BGFX_CAPS_FORMAT_TEXTURE_2D : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURE3D ) ) ? BGFX_CAPS_FORMAT_TEXTURE_3D : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURECUBE ) ) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_BUFFER | D3D11_FORMAT_SUPPORT_IA_VERTEX_BUFFER | D3D11_FORMAT_SUPPORT_IA_INDEX_BUFFER ) ) ? BGFX_CAPS_FORMAT_TEXTURE_VERTEX : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_SHADER_LOAD ) ) ? BGFX_CAPS_FORMAT_TEXTURE_IMAGE : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_RENDER_TARGET | D3D11_FORMAT_SUPPORT_DEPTH_STENCIL ) ) ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_MULTISAMPLE_RENDERTARGET ) ) ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_MULTISAMPLE_LOAD ) ) ? BGFX_CAPS_FORMAT_TEXTURE_MSAA : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_MIP_AUTOGEN ) ) ? BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN : BGFX_CAPS_FORMAT_TEXTURE_NONE ; } else { BX_TRACE("CheckFeatureSupport failed with %x for format %s.", hr, getName(TextureFormat::Enum(ii) ) ); } if (0 != (support & BGFX_CAPS_FORMAT_TEXTURE_IMAGE) ) { // clear image flag for additional testing support &= ~BGFX_CAPS_FORMAT_TEXTURE_IMAGE; data.InFormat = s_textureFormat[ii].m_fmt; hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT2, &data, sizeof(data) ); if (SUCCEEDED(hr) ) { support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT2_UAV_TYPED_LOAD | D3D11_FORMAT_SUPPORT2_UAV_TYPED_STORE ) ) ? BGFX_CAPS_FORMAT_TEXTURE_IMAGE : BGFX_CAPS_FORMAT_TEXTURE_NONE ; } } } else { support |= 0 | BGFX_CAPS_FORMAT_TEXTURE_2D | BGFX_CAPS_FORMAT_TEXTURE_3D | BGFX_CAPS_FORMAT_TEXTURE_CUBE | BGFX_CAPS_FORMAT_TEXTURE_IMAGE | BGFX_CAPS_FORMAT_TEXTURE_VERTEX | BGFX_CAPS_FORMAT_TEXTURE_IMAGE | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA | BGFX_CAPS_FORMAT_TEXTURE_MSAA ; } } if (DXGI_FORMAT_UNKNOWN != fmtSrgb) { if (BX_ENABLED(BX_PLATFORM_WINDOWS || BX_PLATFORM_WINRT) ) { struct D3D11_FEATURE_DATA_FORMAT_SUPPORT { DXGI_FORMAT InFormat; UINT OutFormatSupport; }; D3D11_FEATURE_DATA_FORMAT_SUPPORT data; // D3D11_FEATURE_DATA_FORMAT_SUPPORT2 data.InFormat = fmtSrgb; HRESULT hr = m_device->CheckFeatureSupport(D3D11_FEATURE_FORMAT_SUPPORT, &data, sizeof(data) ); if (SUCCEEDED(hr) ) { support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURE2D ) ) ? BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURE3D ) ) ? BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE ; support |= 0 != (data.OutFormatSupport & (0 | D3D11_FORMAT_SUPPORT_TEXTURECUBE ) ) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE ; } else { BX_TRACE("CheckFeatureSupport failed with %x for sRGB format %s.", hr, getName(TextureFormat::Enum(ii) ) ); } } else { support |= 0 | BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB | BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB | BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB ; } } g_caps.formats[ii] = support; } // Init reserved part of view name. for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED + 1, "%3d ", ii); mbstowcs(s_viewNameW[ii], s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED); } if (_init.debug && NULL != m_infoQueue) { m_infoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, true); } { // multiDrawInstancedIndirect = stubMultiDrawInstancedIndirect; multiDrawIndexedInstancedIndirect = stubMultiDrawIndexedInstancedIndirect; if (NULL != m_ags) { uint32_t flags; AGS_RETURN_CODE result = agsDriverExtensions_Init(m_ags, m_device, &flags); bool hasExtensions = AGS_SUCCESS == result; if (hasExtensions && 0 != (flags & AGS_EXTENSION_MULTIDRAWINDIRECT) ) { multiDrawInstancedIndirect = amdAgsMultiDrawInstancedIndirect; multiDrawIndexedInstancedIndirect = amdAgsMultiDrawIndexedInstancedIndirect; } else { if (hasExtensions) { agsDriverExtensions_DeInit(m_ags); } agsDeInit(m_ags); m_ags = NULL; } } else if (m_nvapi.isInitialized() && NULL != m_nvapi.nvApiD3D11MultiDrawInstancedIndirect && NULL != m_nvapi.nvApiD3D11MultiDrawIndexedInstancedIndirect) { multiDrawInstancedIndirect = nvapiMultiDrawInstancedIndirect; multiDrawIndexedInstancedIndirect = nvapiMultiDrawIndexedInstancedIndirect; } } // updateMsaa(m_scd.format); postReset(); } m_nvapi.initAftermath(m_device, m_deviceCtx); g_internalData.context = m_device; return true; error: switch (errorState) { case ErrorState::LoadedDXGI: DX_RELEASE(m_annotation, 1); DX_RELEASE_W(m_infoQueue, 0); DX_RELEASE(m_msaaRt, 0); DX_RELEASE(m_swapChain, 0); DX_RELEASE(m_deviceCtx, 0); DX_RELEASE(m_device, 0); #if USE_D3D11_DYNAMIC_LIB if (NULL != m_d3d9Dll) { bx::dlclose(m_d3d9Dll); m_d3d9Dll = NULL; } #endif // USE_D3D11_DYNAMIC_LIB m_dxgi.shutdown(); BX_FALLTHROUGH; #if USE_D3D11_DYNAMIC_LIB case ErrorState::LoadedD3D11: bx::dlclose(m_d3d11Dll); m_d3d11Dll = NULL; BX_FALLTHROUGH; #endif // USE_D3D11_DYNAMIC_LIB case ErrorState::Default: default: m_nvapi.shutdown(); if (NULL != m_ags) { agsDeInit(m_ags); m_ags = NULL; } bx::dlclose(m_agsDll); m_agsDll = NULL; unloadRenderDoc(m_renderDocDll); break; } return false; } void shutdown() { preReset(); if (NULL != m_ags) { agsDeInit(m_ags); m_ags = NULL; } bx::dlclose(m_agsDll); m_agsDll = NULL; m_deviceCtx->ClearState(); invalidateCache(); for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii) { m_frameBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii) { m_indexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii) { m_vertexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii) { m_shaders[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii) { m_textures[ii].destroy(); } DX_RELEASE(m_annotation, 1); DX_RELEASE_W(m_infoQueue, 0); DX_RELEASE(m_msaaRt, 0); DX_RELEASE(m_swapChain, 0); DX_RELEASE(m_deviceCtx, 0); DX_RELEASE(m_device, 0); m_nvapi.shutdown(); m_dxgi.shutdown(); unloadRenderDoc(m_renderDocDll); #if USE_D3D11_DYNAMIC_LIB if (NULL != m_d3d9Dll) { bx::dlclose(m_d3d9Dll); m_d3d9Dll = NULL; } bx::dlclose(m_d3d11Dll); m_d3d11Dll = NULL; #endif // USE_D3D11_DYNAMIC_LIB } RendererType::Enum getRendererType() const override { return RendererType::Direct3D11; } const char* getRendererName() const override { return BGFX_RENDERER_DIRECT3D11_NAME; } void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override { m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags); } void destroyIndexBuffer(IndexBufferHandle _handle) override { m_indexBuffers[_handle.idx].destroy(); } void createVertexLayout(VertexLayoutHandle _handle, const VertexLayout& _layout) override { VertexLayout& layout = m_vertexLayouts[_handle.idx]; bx::memCopy(&layout, &_layout, sizeof(VertexLayout) ); dump(layout); } void destroyVertexLayout(VertexLayoutHandle /*_handle*/) override { } void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexLayoutHandle _layoutHandle, uint16_t _flags) override { m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _layoutHandle, _flags); } void destroyVertexBuffer(VertexBufferHandle _handle) override { m_vertexBuffers[_handle.idx].destroy(); } void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override { m_indexBuffers[_handle.idx].create(_size, NULL, _flags); } void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override { m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override { m_indexBuffers[_handle.idx].destroy(); } void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) override { VertexLayoutHandle layoutHandle = BGFX_INVALID_HANDLE; m_vertexBuffers[_handle.idx].create(_size, NULL, layoutHandle, _flags); } void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override { m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override { m_vertexBuffers[_handle.idx].destroy(); } void createShader(ShaderHandle _handle, const Memory* _mem) override { m_shaders[_handle.idx].create(_mem); } void destroyShader(ShaderHandle _handle) override { m_shaders[_handle.idx].destroy(); } void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override { m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL); } void destroyProgram(ProgramHandle _handle) override { m_program[_handle.idx].destroy(); } void* createTexture(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip) override { return m_textures[_handle.idx].create(_mem, _flags, _skip); } void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) override { } void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) override { m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem); } void updateTextureEnd() override { } void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) override { const TextureD3D11& texture = m_textures[_handle.idx]; D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(texture.m_ptr, _mip, D3D11_MAP_READ, 0, &mapped) ); uint32_t srcWidth = bx::uint32_max(1, texture.m_width >>_mip); uint32_t srcHeight = bx::uint32_max(1, texture.m_height>>_mip); uint8_t* src = (uint8_t*)mapped.pData; uint32_t srcPitch = mapped.RowPitch; const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(texture.m_textureFormat) ); uint8_t* dst = (uint8_t*)_data; uint32_t dstPitch = srcWidth*bpp/8; uint32_t pitch = bx::uint32_min(srcPitch, dstPitch); for (uint32_t yy = 0, height = srcHeight; yy < height; ++yy) { bx::memCopy(dst, src, pitch); src += srcPitch; dst += dstPitch; } m_deviceCtx->Unmap(texture.m_ptr, _mip); } void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, uint16_t _numLayers) override { TextureD3D11& texture = m_textures[_handle.idx]; uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate); const Memory* mem = alloc(size); bx::StaticMemoryBlockWriter writer(mem->data, mem->size); uint32_t magic = BGFX_CHUNK_MAGIC_TEX; bx::write(&writer, magic); TextureCreate tc; tc.m_width = _width; tc.m_height = _height; tc.m_depth = 0; tc.m_numLayers = _numLayers; tc.m_numMips = _numMips; tc.m_format = TextureFormat::Enum(texture.m_requestedFormat); tc.m_cubeMap = false; tc.m_mem = NULL; bx::write(&writer, tc); texture.destroy(); texture.create(mem, texture.m_flags, 0); release(mem); } void overrideInternal(TextureHandle _handle, uintptr_t _ptr) override { // Resource ref. counts might be messed up outside of bgfx. // Disabling ref. count check once texture is overridden. setGraphicsDebuggerPresent(true); m_textures[_handle.idx].overrideInternal(_ptr); } uintptr_t getInternal(TextureHandle _handle) override { // Resource ref. counts might be messed up outside of bgfx. // Disabling ref. count check once texture is overridden. setGraphicsDebuggerPresent(true); return uintptr_t(m_textures[_handle.idx].m_ptr); } void destroyTexture(TextureHandle _handle) override { m_textures[_handle.idx].destroy(); } void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) override { m_frameBuffers[_handle.idx].create(_num, _attachment); } void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) override { for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii) { FrameBufferHandle handle = m_windows[ii]; if (isValid(handle) && m_frameBuffers[handle.idx].m_nwh == _nwh) { destroyFrameBuffer(handle); } } uint16_t denseIdx = m_numWindows++; m_windows[denseIdx] = _handle; m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _format, _depthFormat); } void destroyFrameBuffer(FrameBufferHandle _handle) override { uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy(); if (UINT16_MAX != denseIdx) { --m_numWindows; if (m_numWindows > 1) { FrameBufferHandle handle = m_windows[m_numWindows]; m_windows[m_numWindows] = {kInvalidHandle}; if (m_numWindows != denseIdx) { m_windows[denseIdx] = handle; m_frameBuffers[handle.idx].m_denseIdx = denseIdx; } } } } void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override { if (NULL != m_uniforms[_handle.idx]) { BX_FREE(g_allocator, m_uniforms[_handle.idx]); } uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num); void* data = BX_ALLOC(g_allocator, size); bx::memSet(data, 0, size); m_uniforms[_handle.idx] = data; m_uniformReg.add(_handle, _name); } void destroyUniform(UniformHandle _handle) override { BX_FREE(g_allocator, m_uniforms[_handle.idx]); m_uniforms[_handle.idx] = NULL; m_uniformReg.remove(_handle); } void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) override { IDXGISwapChain* swapChain = isValid(_handle) ? m_frameBuffers[_handle.idx].m_swapChain : m_swapChain ; if (NULL == swapChain) { BX_TRACE("Unable to capture screenshot %s.", _filePath); return; } ID3D11Texture2D* backBuffer; DX_CHECK(swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer) ); D3D11_TEXTURE2D_DESC backBufferDesc; backBuffer->GetDesc(&backBufferDesc); D3D11_TEXTURE2D_DESC desc; bx::memCopy(&desc, &backBufferDesc, sizeof(desc) ); desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; ID3D11Texture2D* texture; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &texture); if (SUCCEEDED(hr) ) { if (backBufferDesc.SampleDesc.Count == 1) { m_deviceCtx->CopyResource(texture, backBuffer); } else { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; ID3D11Texture2D* resolve; hr = m_device->CreateTexture2D(&desc, NULL, &resolve); if (SUCCEEDED(hr) ) { m_deviceCtx->ResolveSubresource(resolve, 0, backBuffer, 0, desc.Format); m_deviceCtx->CopyResource(texture, resolve); DX_RELEASE(resolve, 0); } } D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(texture, 0, D3D11_MAP_READ, 0, &mapped) ); bimg::imageSwizzleBgra8( mapped.pData , mapped.RowPitch , backBufferDesc.Width , backBufferDesc.Height , mapped.pData , mapped.RowPitch ); g_callback->screenShot(_filePath , backBufferDesc.Width , backBufferDesc.Height , mapped.RowPitch , mapped.pData , backBufferDesc.Height*mapped.RowPitch , false ); m_deviceCtx->Unmap(texture, 0); DX_RELEASE(texture, 0); } DX_RELEASE(backBuffer, 0); } void updateViewName(ViewId _id, const char* _name) override { if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) ) { mbstowcs(&s_viewNameW[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED] , _name , BX_COUNTOF(s_viewNameW[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED ); } bx::strCopy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED] , BX_COUNTOF(s_viewName[0]) - BGFX_CONFIG_MAX_VIEW_NAME_RESERVED , _name ); } void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override { bx::memCopy(m_uniforms[_loc], _data, _size); } void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override { m_occlusionQuery.invalidate(_handle); } void setMarker(const char* _marker, uint16_t _len) override { if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) ) { uint32_t size = _len*sizeof(wchar_t); wchar_t* name = (wchar_t*)alloca(size+2); name[_len] = L'\0'; mbstowcs(name, _marker, _len); PIX_SETMARKER(kColorMarker, name); } } virtual void setName(Handle _handle, const char* _name, uint16_t _len) override { switch (_handle.type) { case Handle::IndexBuffer: setDebugObjectName(m_indexBuffers[_handle.idx].m_ptr, "%.*s", _len, _name); break; case Handle::Shader: setDebugObjectName(m_shaders[_handle.idx].m_ptr, "%.*s", _len, _name); break; case Handle::Texture: setDebugObjectName(m_textures[_handle.idx].m_ptr, "%.*s", _len, _name); break; case Handle::VertexBuffer: setDebugObjectName(m_vertexBuffers[_handle.idx].m_ptr, "%.*s", _len, _name); break; default: BX_CHECK(false, "Invalid handle type?! %d", _handle.type); break; } } void submitBlit(BlitState& _bs, uint16_t _view); void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override; void blitSetup(TextVideoMemBlitter& _blitter) override { ID3D11DeviceContext* deviceCtx = m_deviceCtx; const uint32_t width = m_scd.width; const uint32_t height = m_scd.height; setFrameBuffer(BGFX_INVALID_HANDLE, false, false); D3D11_VIEWPORT vp; vp.TopLeftX = 0; vp.TopLeftY = 0; vp.Width = (float)width; vp.Height = (float)height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; deviceCtx->RSSetViewports(1, &vp); uint64_t state = BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ; setBlendState(state); setDepthStencilState(state); setRasterizerState(state); ProgramD3D11& program = m_program[_blitter.m_program.idx]; m_currentProgram = &program; deviceCtx->VSSetShader(program.m_vsh->m_vertexShader, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer); deviceCtx->PSSetShader(program.m_fsh->m_pixelShader, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &program.m_fsh->m_buffer); VertexBufferD3D11& vb = m_vertexBuffers[_blitter.m_vb->handle.idx]; VertexLayout& layout = m_vertexLayouts[_blitter.m_vb->layoutHandle.idx]; uint32_t stride = layout.m_stride; uint32_t offset = 0; deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); setInputLayout(layout, program, 0); IndexBufferD3D11& ib = m_indexBuffers[_blitter.m_ib->handle.idx]; deviceCtx->IASetIndexBuffer(ib.m_ptr, DXGI_FORMAT_R16_UINT, 0); float proj[16]; bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f, 0.0f, false); PredefinedUniform& predefined = program.m_predefined[0]; uint8_t flags = predefined.m_type; setShaderUniform(flags, predefined.m_loc, proj, 4); commitShaderConstants(); m_textures[_blitter.m_texture.idx].commit(0, BGFX_SAMPLER_INTERNAL_DEFAULT, NULL); commitTextureStage(); } void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) override { const uint32_t numVertices = _numIndices*4/6; if (0 < numVertices) { ID3D11DeviceContext* deviceCtx = m_deviceCtx; m_indexBuffers [_blitter.m_ib->handle.idx].update(0, _numIndices*2, _blitter.m_ib->data, true); m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_layout.m_stride, _blitter.m_vb->data, true); deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); deviceCtx->DrawIndexed(_numIndices, 0, 0); } } void preReset() { m_needPresent = false; if (m_timerQuerySupport) { m_gpuTimer.preReset(); } m_occlusionQuery.preReset(); if (NULL == g_platformData.backBufferDS) { DX_RELEASE(m_backBufferDepthStencil, 0); } if (NULL != m_swapChain) { DX_RELEASE(m_backBufferColor, 0); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii) { m_frameBuffers[ii].preReset(); } // invalidateCache(); capturePreReset(); } void postReset() { if (NULL != m_swapChain) { ID3D11Texture2D* backBufferColor = NULL; if (NULL == m_msaaRt) { DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBufferColor) ); } D3D11_RENDER_TARGET_VIEW_DESC desc; desc.ViewDimension = (m_resolution.reset & BGFX_RESET_MSAA_MASK) ? D3D11_RTV_DIMENSION_TEXTURE2DMS : D3D11_RTV_DIMENSION_TEXTURE2D ; desc.Texture2D.MipSlice = 0; desc.Format = (m_resolution.reset & BGFX_RESET_SRGB_BACKBUFFER) ? m_scd.format == DXGI_FORMAT_R8G8B8A8_UNORM ? DXGI_FORMAT_R8G8B8A8_UNORM_SRGB : m_scd.format : m_scd.format ; DX_CHECK(m_device->CreateRenderTargetView(NULL == m_msaaRt ? backBufferColor : m_msaaRt, &desc, &m_backBufferColor) ); DX_RELEASE(backBufferColor, 0); } if (m_timerQuerySupport) { m_gpuTimer.postReset(); } m_occlusionQuery.postReset(); if (NULL == m_backBufferDepthStencil) { D3D11_TEXTURE2D_DESC dsd; dsd.Width = m_scd.width; dsd.Height = m_scd.height; dsd.MipLevels = 1; dsd.ArraySize = 1; dsd.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; dsd.SampleDesc = m_scd.sampleDesc; dsd.Usage = D3D11_USAGE_DEFAULT; dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL; dsd.CPUAccessFlags = 0; dsd.MiscFlags = 0; ID3D11Texture2D* depthStencil; DX_CHECK(m_device->CreateTexture2D(&dsd, NULL, &depthStencil) ); DX_CHECK(m_device->CreateDepthStencilView(depthStencil, NULL, &m_backBufferDepthStencil) ); DX_RELEASE(depthStencil, 0); } m_deviceCtx->OMSetRenderTargets(1, &m_backBufferColor, m_backBufferDepthStencil); m_currentColor = m_backBufferColor; m_currentDepthStencil = m_backBufferDepthStencil; for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii) { m_frameBuffers[ii].postReset(); } capturePostReset(); } bool isDeviceRemoved() override { return m_lost; } void flip() override { if (!m_lost) { HRESULT hr = S_OK; uint32_t syncInterval = BX_ENABLED(!BX_PLATFORM_WINDOWS) ? 1 // sync interval of 0 is not supported on WinRT : !!(m_resolution.reset & BGFX_RESET_VSYNC) ; for (uint32_t ii = 1, num = m_numWindows; ii < num && SUCCEEDED(hr); ++ii) { hr = m_frameBuffers[m_windows[ii].idx].present(syncInterval); } if (SUCCEEDED(hr) ) { if (NULL != m_swapChain && m_needPresent) { hr = m_swapChain->Present(syncInterval, 0); m_needPresent = false; } else { m_deviceCtx->Flush(); } } m_lost = isLost(hr); BGFX_FATAL(!m_lost , bgfx::Fatal::DeviceLost , "Device is lost. FAILED 0x%08x %s (%s)" , hr , getLostReason(hr) , DXGI_ERROR_DEVICE_REMOVED == hr ? getLostReason(m_device->GetDeviceRemovedReason() ) : "no info" ); } } void invalidateCache() { m_inputLayoutCache.invalidate(); m_blendStateCache.invalidate(); m_depthStencilStateCache.invalidate(); m_rasterizerStateCache.invalidate(); m_samplerStateCache.invalidate(); m_srvUavLru.invalidate(); } void invalidateCompute() { const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings; const uint32_t maxTextureSamplers = g_caps.limits.maxTextureSamplers; m_deviceCtx->CSSetShader(NULL, NULL, 0); m_deviceCtx->CSSetUnorderedAccessViews(0, maxComputeBindings, s_zero.m_uav, NULL); m_deviceCtx->CSSetShaderResources(0, maxTextureSamplers, s_zero.m_srv); m_deviceCtx->CSSetSamplers(0, maxTextureSamplers, s_zero.m_sampler); } void updateMsaa(DXGI_FORMAT _format) const { for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_msaa); ++ii) { uint32_t msaa = s_checkMsaa[ii]; uint32_t quality = 0; HRESULT hr = m_device->CheckMultisampleQualityLevels(_format, msaa, &quality); if (SUCCEEDED(hr) && 0 < quality) { s_msaa[ii].Count = msaa; s_msaa[ii].Quality = quality - 1; last = ii; } else { s_msaa[ii] = s_msaa[last]; } } } bool updateResolution(const Resolution& _resolution) { const bool suspended = !!( _resolution.reset & BGFX_RESET_SUSPEND); const bool wasSuspended = !!(m_resolution.reset & BGFX_RESET_SUSPEND); if (suspended && wasSuspended) { return true; } else if (suspended) { m_deviceCtx->Flush(); m_deviceCtx->ClearState(); m_dxgi.trim(); suspend(m_device); m_resolution.reset |= BGFX_RESET_SUSPEND; return true; } else if (wasSuspended) { resume(m_device); m_resolution.reset &= ~BGFX_RESET_SUSPEND; } uint32_t maxAnisotropy = 1; if (!!(_resolution.reset & BGFX_RESET_MAXANISOTROPY) ) { maxAnisotropy = (m_featureLevel == D3D_FEATURE_LEVEL_9_1) ? D3D_FL9_1_DEFAULT_MAX_ANISOTROPY : D3D11_REQ_MAXANISOTROPY ; } if (m_maxAnisotropy != maxAnisotropy) { m_maxAnisotropy = maxAnisotropy; m_samplerStateCache.invalidate(); } bool depthClamp = true && !!(_resolution.reset & BGFX_RESET_DEPTH_CLAMP) && m_featureLevel > D3D_FEATURE_LEVEL_9_3 // disabling depth clamp is only supported on 10_0+ ; if (m_depthClamp != depthClamp) { m_depthClamp = depthClamp; m_rasterizerStateCache.invalidate(); } const uint32_t maskFlags = ~(0 | BGFX_RESET_MAXANISOTROPY | BGFX_RESET_DEPTH_CLAMP | BGFX_RESET_SUSPEND ); if (m_resolution.width != _resolution.width || m_resolution.height != _resolution.height || m_resolution.format != _resolution.format || (m_resolution.reset&maskFlags) != (_resolution.reset&maskFlags) ) { uint32_t flags = _resolution.reset & (~BGFX_RESET_INTERNAL_FORCE); bool resize = true && !BX_ENABLED(BX_PLATFORM_XBOXONE || BX_PLATFORM_WINRT) // can't use ResizeBuffers on Windows Phone && (m_resolution.reset&BGFX_RESET_MSAA_MASK) == (flags&BGFX_RESET_MSAA_MASK) ; m_resolution = _resolution; m_resolution.reset = flags; m_textVideoMem.resize(false, _resolution.width, _resolution.height); m_textVideoMem.clear(); m_scd.width = _resolution.width; m_scd.height = _resolution.height; m_scd.format = s_textureFormat[_resolution.format].m_fmt; preReset(); m_deviceCtx->Flush(); m_deviceCtx->ClearState(); if (NULL == m_swapChain) { // Updated backbuffer if it changed in PlatformData. m_backBufferColor = (ID3D11RenderTargetView*)g_platformData.backBuffer; m_backBufferDepthStencil = (ID3D11DepthStencilView*)g_platformData.backBufferDS; } else { DX_RELEASE(m_msaaRt, 0); if (resize) { m_deviceCtx->OMSetRenderTargets(1, s_zero.m_rtv, NULL); DX_CHECK(m_dxgi.resizeBuffers(m_swapChain, m_scd) ); } else { updateMsaa(m_scd.format); m_scd.sampleDesc = s_msaa[(m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT]; DX_RELEASE(m_swapChain, 0); HRESULT hr = m_dxgi.createSwapChain(m_device , m_scd , &m_swapChain ); BGFX_FATAL(SUCCEEDED(hr), bgfx::Fatal::UnableToInitialize, "Failed to create swap chain."); } if (1 < m_scd.sampleDesc.Count) { D3D11_TEXTURE2D_DESC desc; desc.Width = m_scd.width; desc.Height = m_scd.height; desc.MipLevels = 1; desc.ArraySize = 1; desc.Format = m_scd.format; desc.SampleDesc = m_scd.sampleDesc; desc.Usage = D3D11_USAGE_DEFAULT; desc.BindFlags = D3D11_BIND_RENDER_TARGET; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; DX_CHECK(m_device->CreateTexture2D(&desc, NULL, &m_msaaRt) ); } } postReset(); } return false; } void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { if (_flags&BGFX_UNIFORM_FRAGMENTBIT) { bx::memCopy(&m_fsScratch[_regIndex], _val, _numRegs*16); m_fsChanges += _numRegs; } else { bx::memCopy(&m_vsScratch[_regIndex], _val, _numRegs*16); m_vsChanges += _numRegs; } } void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { setShaderUniform(_flags, _regIndex, _val, _numRegs); } void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { setShaderUniform(_flags, _regIndex, _val, _numRegs); } void commitShaderConstants() { if (0 < m_vsChanges) { if (NULL != m_currentProgram->m_vsh->m_buffer) { m_deviceCtx->UpdateSubresource(m_currentProgram->m_vsh->m_buffer, 0, 0, m_vsScratch, 0, 0); } m_vsChanges = 0; } if (0 < m_fsChanges) { if (NULL != m_currentProgram->m_fsh->m_buffer) { m_deviceCtx->UpdateSubresource(m_currentProgram->m_fsh->m_buffer, 0, 0, m_fsScratch, 0, 0); } m_fsChanges = 0; } } void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true, bool _needPresent = true) { if (isValid(m_fbh) && m_fbh.idx != _fbh.idx && m_rtMsaa) { FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx]; frameBuffer.resolve(); } if (!isValid(_fbh) ) { m_currentColor = m_backBufferColor; m_currentDepthStencil = m_backBufferDepthStencil; m_deviceCtx->OMSetRenderTargetsAndUnorderedAccessViews( 1 , &m_currentColor , m_currentDepthStencil , 1 , 0 , NULL , NULL ); m_needPresent |= _needPresent; } else { invalidateTextureStage(); FrameBufferD3D11& frameBuffer = m_frameBuffers[_fbh.idx]; frameBuffer.set(); } m_fbh = _fbh; m_rtMsaa = _msaa; } void clear(const Clear& _clear, const float _palette[][4]) { if (isValid(m_fbh) ) { FrameBufferD3D11& frameBuffer = m_frameBuffers[m_fbh.idx]; frameBuffer.clear(_clear, _palette); } else { if (NULL != m_currentColor && BGFX_CLEAR_COLOR & _clear.m_flags) { if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { uint8_t index = _clear.m_index[0]; if (UINT8_MAX != index) { m_deviceCtx->ClearRenderTargetView(m_currentColor, _palette[index]); } } else { float frgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; m_deviceCtx->ClearRenderTargetView(m_currentColor, frgba); } } if (NULL != m_currentDepthStencil && (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags) { DWORD flags = 0; flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0; flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0; m_deviceCtx->ClearDepthStencilView(m_currentDepthStencil, flags, _clear.m_depth, _clear.m_stencil); } } } void setInputLayout(uint8_t _numStreams, const VertexLayout** _layouts, const ProgramD3D11& _program, uint16_t _numInstanceData) { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_numInstanceData); for (uint8_t stream = 0; stream < _numStreams; ++stream) { murmur.add(_layouts[stream]->m_hash); } uint64_t layoutHash = (uint64_t(_program.m_vsh->m_hash)<<32) | murmur.end(); ID3D11InputLayout* inputLayout = m_inputLayoutCache.find(layoutHash); if (NULL == inputLayout) { D3D11_INPUT_ELEMENT_DESC vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT]; D3D11_INPUT_ELEMENT_DESC* elem = vertexElements; uint16_t attrMask[Attrib::Count]; bx::memCopy(attrMask, _program.m_vsh->m_attrMask, sizeof(attrMask) ); for (uint8_t stream = 0; stream < _numStreams; ++stream) { VertexLayout layout; bx::memCopy(&layout, _layouts[stream], sizeof(VertexLayout) ); const bool last = stream == _numStreams-1; for (uint32_t ii = 0; ii < Attrib::Count; ++ii) { uint16_t mask = attrMask[ii]; uint16_t attr = (layout.m_attributes[ii] & mask); if (0 == attr || UINT16_MAX == attr) { layout.m_attributes[ii] = last ? ~attr : UINT16_MAX; } else { attrMask[ii] = 0; } } elem = fillVertexLayout(stream, elem, layout); } uint32_t num = uint32_t(elem-vertexElements); const D3D11_INPUT_ELEMENT_DESC inst = { "TEXCOORD", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D11_APPEND_ALIGNED_ELEMENT, D3D11_INPUT_PER_INSTANCE_DATA, 1 }; for (uint32_t ii = 0; ii < _numInstanceData; ++ii) { uint32_t index = 7-ii; // TEXCOORD7 = i_data0, TEXCOORD6 = i_data1, etc. uint32_t jj; D3D11_INPUT_ELEMENT_DESC* curr = vertexElements; for (jj = 0; jj < num; ++jj) { curr = &vertexElements[jj]; if (0 == bx::strCmp(curr->SemanticName, "TEXCOORD") && curr->SemanticIndex == index) { break; } } if (jj == num) { curr = elem; ++elem; } bx::memCopy(curr, &inst, sizeof(D3D11_INPUT_ELEMENT_DESC) ); curr->InputSlot = _numStreams; curr->SemanticIndex = index; curr->AlignedByteOffset = ii*16; } num = uint32_t(elem-vertexElements); DX_CHECK(m_device->CreateInputLayout(vertexElements , num , _program.m_vsh->m_code->data , _program.m_vsh->m_code->size , &inputLayout ) ); m_inputLayoutCache.add(layoutHash, inputLayout); } m_deviceCtx->IASetInputLayout(inputLayout); } void setInputLayout(const VertexLayout& _layout, const ProgramD3D11& _program, uint16_t _numInstanceData) { const VertexLayout* layouts[1] = { &_layout }; setInputLayout(BX_COUNTOF(layouts), layouts, _program, _numInstanceData); } void setBlendState(uint64_t _state, uint32_t _rgba = 0) { _state &= BGFX_D3D11_BLEND_STATE_MASK; bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_state); murmur.add(!!(BGFX_STATE_BLEND_INDEPENDENT & _state) ? _rgba : -1 ); const uint32_t hash = murmur.end(); ID3D11BlendState* bs = m_blendStateCache.find(hash); if (NULL == bs) { D3D11_BLEND_DESC desc; desc.AlphaToCoverageEnable = !!(BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & _state); desc.IndependentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state); D3D11_RENDER_TARGET_BLEND_DESC* drt = &desc.RenderTarget[0]; drt->BlendEnable = !!(BGFX_STATE_BLEND_MASK & _state); const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK )>>BGFX_STATE_BLEND_SHIFT); const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT); const uint32_t srcRGB = (blend ) & 0xf; const uint32_t dstRGB = (blend >> 4) & 0xf; const uint32_t srcA = (blend >> 8) & 0xf; const uint32_t dstA = (blend >> 12) & 0xf; const uint32_t equRGB = (equation ) & 0x7; const uint32_t equA = (equation >> 3) & 0x7; drt->SrcBlend = s_blendFactor[srcRGB][0]; drt->DestBlend = s_blendFactor[dstRGB][0]; drt->BlendOp = s_blendEquation[equRGB]; drt->SrcBlendAlpha = s_blendFactor[srcA][1]; drt->DestBlendAlpha = s_blendFactor[dstA][1]; drt->BlendOpAlpha = s_blendEquation[equA]; uint8_t writeMask = 0; writeMask |= (_state&BGFX_STATE_WRITE_R) ? D3D11_COLOR_WRITE_ENABLE_RED : 0; writeMask |= (_state&BGFX_STATE_WRITE_G) ? D3D11_COLOR_WRITE_ENABLE_GREEN : 0; writeMask |= (_state&BGFX_STATE_WRITE_B) ? D3D11_COLOR_WRITE_ENABLE_BLUE : 0; writeMask |= (_state&BGFX_STATE_WRITE_A) ? D3D11_COLOR_WRITE_ENABLE_ALPHA : 0; drt->RenderTargetWriteMask = writeMask; if (desc.IndependentBlendEnable) { for (uint32_t ii = 1, rgba = _rgba; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii, rgba >>= 11) { drt = &desc.RenderTarget[ii]; drt->BlendEnable = 0 != (rgba & 0x7ff); const uint32_t src = (rgba ) & 0xf; const uint32_t dst = (rgba >> 4) & 0xf; const uint32_t equ = (rgba >> 8) & 0x7; drt->SrcBlend = s_blendFactor[src][0]; drt->DestBlend = s_blendFactor[dst][0]; drt->BlendOp = s_blendEquation[equ]; drt->SrcBlendAlpha = s_blendFactor[src][1]; drt->DestBlendAlpha = s_blendFactor[dst][1]; drt->BlendOpAlpha = s_blendEquation[equ]; drt->RenderTargetWriteMask = writeMask; } } else { for (uint32_t ii = 1; ii < BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS; ++ii) { bx::memCopy(&desc.RenderTarget[ii], drt, sizeof(D3D11_RENDER_TARGET_BLEND_DESC) ); } } DX_CHECK(m_device->CreateBlendState(&desc, &bs) ); m_blendStateCache.add(hash, bs); } const uint64_t f0 = BGFX_STATE_BLEND_FACTOR; const uint64_t f1 = BGFX_STATE_BLEND_INV_FACTOR; const uint64_t f2 = BGFX_STATE_BLEND_FACTOR<<4; const uint64_t f3 = BGFX_STATE_BLEND_INV_FACTOR<<4; bool hasFactor = 0 || f0 == (_state & f0) || f1 == (_state & f1) || f2 == (_state & f2) || f3 == (_state & f3) ; float blendFactor[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; if (hasFactor) { blendFactor[0] = ( (_rgba>>24) )/255.0f; blendFactor[1] = ( (_rgba>>16)&0xff)/255.0f; blendFactor[2] = ( (_rgba>> 8)&0xff)/255.0f; blendFactor[3] = ( (_rgba )&0xff)/255.0f; } m_deviceCtx->OMSetBlendState(bs, blendFactor, 0xffffffff); } void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0) { uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT; _state &= 0 == func ? 0 : BGFX_D3D11_DEPTH_STENCIL_MASK; uint32_t fstencil = unpackStencil(0, _stencil); uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT; _stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, ~BGFX_STENCIL_FUNC_REF_MASK); bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_state); murmur.add(_stencil); uint32_t hash = murmur.end(); ID3D11DepthStencilState* dss = m_depthStencilStateCache.find(hash); if (NULL == dss) { D3D11_DEPTH_STENCIL_DESC desc; bx::memSet(&desc, 0, sizeof(desc) ); desc.DepthEnable = 0 != func; desc.DepthWriteMask = !!(BGFX_STATE_WRITE_Z & _state) ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO; desc.DepthFunc = s_cmpFunc[func]; uint32_t bstencil = unpackStencil(1, _stencil); uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil; bstencil = frontAndBack ? bstencil : fstencil; desc.StencilEnable = 0 != _stencil; desc.StencilReadMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; desc.StencilWriteMask = 0xff; desc.FrontFace.StencilFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT]; desc.FrontFace.StencilDepthFailOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT]; desc.FrontFace.StencilPassOp = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT]; desc.FrontFace.StencilFunc = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT]; desc.BackFace.StencilFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT]; desc.BackFace.StencilDepthFailOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT]; desc.BackFace.StencilPassOp = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT]; desc.BackFace.StencilFunc = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT]; DX_CHECK(m_device->CreateDepthStencilState(&desc, &dss) ); m_depthStencilStateCache.add(hash, dss); } m_deviceCtx->OMSetDepthStencilState(dss, ref); } void setDebugWireframe(bool _wireframe) { if (m_wireframe != _wireframe) { m_wireframe = _wireframe; m_rasterizerStateCache.invalidate(); } } void setRasterizerState(uint64_t _state, bool _wireframe = false, bool _scissor = false) { _state &= 0 | BGFX_STATE_CULL_MASK | BGFX_STATE_MSAA | BGFX_STATE_LINEAA | BGFX_STATE_CONSERVATIVE_RASTER ; _state |= _wireframe ? BGFX_STATE_PT_LINES : BGFX_STATE_NONE; _state |= _scissor ? BGFX_STATE_RESERVED_MASK : 0; _state &= ~(m_deviceInterfaceVersion >= 3 ? 0 : BGFX_STATE_CONSERVATIVE_RASTER); ID3D11RasterizerState* rs = m_rasterizerStateCache.find(_state); if (NULL == rs) { uint32_t cull = (_state&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT; #if BX_PLATFORM_WINDOWS if (m_deviceInterfaceVersion >= 3) { D3D11_RASTERIZER_DESC2 desc; desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID; desc.CullMode = s_cullMode[cull]; desc.FrontCounterClockwise = false; desc.DepthBias = 0; desc.DepthBiasClamp = 0.0f; desc.SlopeScaledDepthBias = 0.0f; desc.DepthClipEnable = !m_depthClamp; desc.ScissorEnable = _scissor; desc.MultisampleEnable = !!(_state&BGFX_STATE_MSAA); desc.AntialiasedLineEnable = !!(_state&BGFX_STATE_LINEAA); desc.ForcedSampleCount = 0; desc.ConservativeRaster = !!(_state&BGFX_STATE_CONSERVATIVE_RASTER) ? D3D11_CONSERVATIVE_RASTERIZATION_MODE_ON : D3D11_CONSERVATIVE_RASTERIZATION_MODE_OFF ; ID3D11Device3* device3 = reinterpret_cast(m_device); DX_CHECK(device3->CreateRasterizerState2(&desc, reinterpret_cast(&rs) ) ); } else #endif // BX_PLATFORM_WINDOWS { D3D11_RASTERIZER_DESC desc; desc.FillMode = _wireframe ? D3D11_FILL_WIREFRAME : D3D11_FILL_SOLID; desc.CullMode = s_cullMode[cull]; desc.FrontCounterClockwise = false; desc.DepthBias = 0; desc.DepthBiasClamp = 0.0f; desc.SlopeScaledDepthBias = 0.0f; desc.DepthClipEnable = !m_depthClamp; desc.ScissorEnable = _scissor; desc.MultisampleEnable = !!(_state&BGFX_STATE_MSAA); desc.AntialiasedLineEnable = !!(_state&BGFX_STATE_LINEAA); DX_CHECK(m_device->CreateRasterizerState(&desc, &rs) ); } m_rasterizerStateCache.add(_state, rs); } m_deviceCtx->RSSetState(rs); } ID3D11SamplerState* getSamplerState(uint32_t _flags, const float _rgba[4]) { const uint32_t index = (_flags & BGFX_SAMPLER_BORDER_COLOR_MASK) >> BGFX_SAMPLER_BORDER_COLOR_SHIFT; _flags &= BGFX_SAMPLER_BITS_MASK; // Force both min+max anisotropic, can't be set individually. _flags |= 0 != (_flags & (BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC) ) ? BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC : 0 ; uint32_t hash; ID3D11SamplerState* sampler; if (!needBorderColor(_flags) ) { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_flags); murmur.add(-1); hash = murmur.end(); _rgba = s_zero.m_zerof; sampler = m_samplerStateCache.find(hash); } else { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_flags); murmur.add(index); hash = murmur.end(); _rgba = NULL == _rgba ? s_zero.m_zerof : _rgba; sampler = m_samplerStateCache.find(hash); if (NULL != sampler) { D3D11_SAMPLER_DESC sd; sampler->GetDesc(&sd); if (0 != bx::memCmp(_rgba, sd.BorderColor, 16) ) { // Sampler will be released when updated sampler // is added to cache. sampler = NULL; } } } if (NULL == sampler) { const uint32_t cmpFunc = (_flags&BGFX_SAMPLER_COMPARE_MASK)>>BGFX_SAMPLER_COMPARE_SHIFT; const uint8_t minFilter = s_textureFilter[0][(_flags&BGFX_SAMPLER_MIN_MASK)>>BGFX_SAMPLER_MIN_SHIFT]; const uint8_t magFilter = s_textureFilter[1][(_flags&BGFX_SAMPLER_MAG_MASK)>>BGFX_SAMPLER_MAG_SHIFT]; const uint8_t mipFilter = s_textureFilter[2][(_flags&BGFX_SAMPLER_MIP_MASK)>>BGFX_SAMPLER_MIP_SHIFT]; const uint8_t filter = 0 == cmpFunc ? 0 : D3D11_COMPARISON_FILTERING_BIT; D3D11_SAMPLER_DESC sd; sd.Filter = (D3D11_FILTER)(filter|minFilter|magFilter|mipFilter); sd.AddressU = s_textureAddress[(_flags&BGFX_SAMPLER_U_MASK)>>BGFX_SAMPLER_U_SHIFT]; sd.AddressV = s_textureAddress[(_flags&BGFX_SAMPLER_V_MASK)>>BGFX_SAMPLER_V_SHIFT]; sd.AddressW = s_textureAddress[(_flags&BGFX_SAMPLER_W_MASK)>>BGFX_SAMPLER_W_SHIFT]; sd.MipLODBias = float(BGFX_CONFIG_MIP_LOD_BIAS); sd.MaxAnisotropy = m_maxAnisotropy; sd.ComparisonFunc = 0 == cmpFunc ? D3D11_COMPARISON_NEVER : s_cmpFunc[cmpFunc]; sd.BorderColor[0] = _rgba[0]; sd.BorderColor[1] = _rgba[1]; sd.BorderColor[2] = _rgba[2]; sd.BorderColor[3] = _rgba[3]; sd.MinLOD = 0; sd.MaxLOD = D3D11_FLOAT32_MAX; m_device->CreateSamplerState(&sd, &sampler); DX_CHECK_REFCOUNT(sampler, 1); m_samplerStateCache.add(hash, sampler); } return sampler; } bool isVisible(Frame* _render, OcclusionQueryHandle _handle, bool _visible) { m_occlusionQuery.resolve(_render); return _visible == (0 != _render->m_occlusion[_handle.idx]); } void commitTextureStage() { const uint32_t maxTextureSamplers = g_caps.limits.maxTextureSamplers; // vertex texture fetch not supported on 9_1 through 9_3 if (m_featureLevel > D3D_FEATURE_LEVEL_9_3) { m_deviceCtx->VSSetShaderResources(0, maxTextureSamplers, m_textureStage.m_srv); m_deviceCtx->VSSetSamplers(0, maxTextureSamplers, m_textureStage.m_sampler); } m_deviceCtx->PSSetShaderResources(0, maxTextureSamplers, m_textureStage.m_srv); m_deviceCtx->PSSetSamplers(0, maxTextureSamplers, m_textureStage.m_sampler); } void invalidateTextureStage() { m_textureStage.clear(); commitTextureStage(); } ID3D11UnorderedAccessView* getCachedUav(TextureHandle _handle, uint8_t _mip) { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_handle); murmur.add(_mip); murmur.add(1); uint32_t hash = murmur.end(); IUnknown** ptr = m_srvUavLru.find(hash); ID3D11UnorderedAccessView* uav; if (NULL == ptr) { TextureD3D11& texture = m_textures[_handle.idx]; D3D11_UNORDERED_ACCESS_VIEW_DESC desc; desc.Format = texture.getSrvFormat(); switch (texture.m_type) { case TextureD3D11::Texture2D: desc.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE2D; desc.Texture2D.MipSlice = _mip; break; case TextureD3D11::TextureCube: desc.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE2DARRAY; desc.Texture2DArray.ArraySize = 6; desc.Texture2DArray.FirstArraySlice = 0; desc.Texture2DArray.MipSlice = _mip; break; case TextureD3D11::Texture3D: desc.ViewDimension = D3D11_UAV_DIMENSION_TEXTURE3D; desc.Texture3D.MipSlice = _mip; desc.Texture3D.FirstWSlice = 0; desc.Texture3D.WSize = UINT32_MAX; break; } DX_CHECK(m_device->CreateUnorderedAccessView(texture.m_ptr, &desc, &uav) ); m_srvUavLru.add(hash, uav, _handle.idx); } else { uav = static_cast(*ptr); } return uav; } ID3D11ShaderResourceView* getCachedSrv(TextureHandle _handle, uint8_t _mip, bool _compute = false, bool _stencil = false) { bx::HashMurmur2A murmur; murmur.begin(); murmur.add(_handle); murmur.add(_mip); murmur.add(0); murmur.add(_compute); murmur.add(_stencil); uint32_t hash = murmur.end(); IUnknown** ptr = m_srvUavLru.find(hash); ID3D11ShaderResourceView* srv; if (NULL == ptr) { const TextureD3D11& texture = m_textures[_handle.idx]; const uint32_t msaaQuality = bx::uint32_satsub( (texture.m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1); const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality]; const bool msaaSample = 1 < msaa.Count && 0 != (texture.m_flags&BGFX_TEXTURE_MSAA_SAMPLE); D3D11_SHADER_RESOURCE_VIEW_DESC desc; desc.Format = _stencil ? DXGI_FORMAT_X24_TYPELESS_G8_UINT : texture.getSrvFormat(); switch (texture.m_type) { case TextureD3D11::Texture2D: if (1 < texture.m_numLayers) { desc.ViewDimension = msaaSample ? D3D11_SRV_DIMENSION_TEXTURE2DMSARRAY : D3D11_SRV_DIMENSION_TEXTURE2DARRAY ; desc.Texture2DArray.MostDetailedMip = _mip; desc.Texture2DArray.MipLevels = 1; desc.Texture2DArray.FirstArraySlice = 0; desc.Texture2DArray.ArraySize = texture.m_numLayers; } else { desc.ViewDimension = msaaSample ? D3D11_SRV_DIMENSION_TEXTURE2DMS : D3D11_SRV_DIMENSION_TEXTURE2D ; desc.Texture2D.MostDetailedMip = _mip; desc.Texture2D.MipLevels = 1; } break; case TextureD3D11::TextureCube: if (_compute) { desc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DARRAY; desc.Texture2DArray.MostDetailedMip = _mip; desc.Texture2DArray.MipLevels = 1; desc.Texture2DArray.FirstArraySlice = 0; desc.Texture2DArray.ArraySize = 6; } else { desc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; desc.TextureCube.MostDetailedMip = _mip; desc.TextureCube.MipLevels = 1; } break; case TextureD3D11::Texture3D: desc.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D; desc.Texture3D.MostDetailedMip = _mip; desc.Texture3D.MipLevels = 1; break; } DX_CHECK(m_device->CreateShaderResourceView(texture.m_ptr, &desc, &srv) ); m_srvUavLru.add(hash, srv, _handle.idx); } else { srv = static_cast(*ptr); } return srv; } void capturePostReset() { if (m_resolution.reset&BGFX_RESET_CAPTURE) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer) ); D3D11_TEXTURE2D_DESC backBufferDesc; backBuffer->GetDesc(&backBufferDesc); D3D11_TEXTURE2D_DESC desc; bx::memCopy(&desc, &backBufferDesc, sizeof(desc) ); desc.SampleDesc.Count = 1; desc.SampleDesc.Quality = 0; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; HRESULT hr = m_device->CreateTexture2D(&desc, NULL, &m_captureTexture); if (SUCCEEDED(hr) ) { if (backBufferDesc.SampleDesc.Count != 1) { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; m_device->CreateTexture2D(&desc, NULL, &m_captureResolve); } g_callback->captureBegin(backBufferDesc.Width, backBufferDesc.Height, backBufferDesc.Width*4, TextureFormat::BGRA8, false); } DX_RELEASE(backBuffer, 0); } } void capturePreReset() { if (NULL != m_captureTexture) { g_callback->captureEnd(); } DX_RELEASE(m_captureResolve, 0); DX_RELEASE(m_captureTexture, 0); } void capture() { if (NULL != m_captureTexture) { ID3D11Texture2D* backBuffer; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBuffer) ); if (NULL == m_captureResolve) { m_deviceCtx->CopyResource(m_captureTexture, backBuffer); } else { m_deviceCtx->ResolveSubresource(m_captureResolve, 0, backBuffer, 0, m_scd.format); m_deviceCtx->CopyResource(m_captureTexture, m_captureResolve); } D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(m_deviceCtx->Map(m_captureTexture, 0, D3D11_MAP_READ, 0, &mapped) ); bimg::imageSwizzleBgra8( mapped.pData , mapped.RowPitch , m_scd.width , m_scd.height , mapped.pData , mapped.RowPitch ); g_callback->captureFrame(mapped.pData, m_scd.height*mapped.RowPitch); m_deviceCtx->Unmap(m_captureTexture, 0); DX_RELEASE(backBuffer, 0); } } void commit(UniformBuffer& _uniformBuffer) { _uniformBuffer.reset(); for (;;) { uint32_t opcode = _uniformBuffer.read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t loc; uint16_t num; uint16_t copy; UniformBuffer::decodeOpcode(opcode, type, loc, num, copy); const char* data; if (copy) { data = _uniformBuffer.read(g_uniformTypeSize[type]*num); } else { UniformHandle handle; bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) ); data = (const char*)m_uniforms[handle.idx]; } #define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \ case UniformType::_uniform: \ case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \ { \ setShaderUniform(uint8_t(type), loc, data, num); \ } \ break; switch ( (uint32_t)type) { case UniformType::Mat3: case UniformType::Mat3|BGFX_UNIFORM_FRAGMENTBIT: \ { float* value = (float*)data; for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9) { Matrix4 mtx; mtx.un.val[ 0] = value[0]; mtx.un.val[ 1] = value[1]; mtx.un.val[ 2] = value[2]; mtx.un.val[ 3] = 0.0f; mtx.un.val[ 4] = value[3]; mtx.un.val[ 5] = value[4]; mtx.un.val[ 6] = value[5]; mtx.un.val[ 7] = 0.0f; mtx.un.val[ 8] = value[6]; mtx.un.val[ 9] = value[7]; mtx.un.val[10] = value[8]; mtx.un.val[11] = 0.0f; setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3); } } break; CASE_IMPLEMENT_UNIFORM(Sampler, I, int); CASE_IMPLEMENT_UNIFORM(Vec4, F, float); CASE_IMPLEMENT_UNIFORM(Mat4, F, float); case UniformType::End: break; default: BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy); break; } #undef CASE_IMPLEMENT_UNIFORM } } void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4]) { uint32_t width; uint32_t height; if (isValid(m_fbh) ) { const FrameBufferD3D11& fb = m_frameBuffers[m_fbh.idx]; width = fb.m_width; height = fb.m_height; } else { width = m_scd.width; height = m_scd.height; } if (0 == _rect.m_x && 0 == _rect.m_y && width == _rect.m_width && height == _rect.m_height) { clear(_clear, _palette); } else { ID3D11DeviceContext* deviceCtx = m_deviceCtx; uint64_t state = 0; state |= _clear.m_flags & BGFX_CLEAR_COLOR ? BGFX_STATE_WRITE_RGB|BGFX_STATE_WRITE_A : 0; state |= _clear.m_flags & BGFX_CLEAR_DEPTH ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_WRITE_Z : 0; uint64_t stencil = 0; stencil |= _clear.m_flags & BGFX_CLEAR_STENCIL ? 0 | BGFX_STENCIL_TEST_ALWAYS | BGFX_STENCIL_FUNC_REF(_clear.m_stencil) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_REPLACE | BGFX_STENCIL_OP_FAIL_Z_REPLACE | BGFX_STENCIL_OP_PASS_Z_REPLACE : 0 ; setBlendState(state); setDepthStencilState(state, stencil); setRasterizerState(state); uint32_t numMrt = 1; FrameBufferHandle fbh = m_fbh; if (isValid(fbh) ) { const FrameBufferD3D11& fb = m_frameBuffers[fbh.idx]; numMrt = bx::uint32_max(1, fb.m_num); } ProgramD3D11& program = m_program[_clearQuad.m_program[numMrt-1].idx]; m_currentProgram = &program; const ShaderD3D11* vsh = program.m_vsh; deviceCtx->VSSetShader(vsh->m_vertexShader, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &vsh->m_buffer); float mrtClearDepth[4] = { _clear.m_depth }; deviceCtx->UpdateSubresource(vsh->m_buffer, 0, 0, mrtClearDepth, 0, 0); if (NULL != m_currentColor) { const ShaderD3D11* fsh = program.m_fsh; deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer); float mrtClearColor[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4]; if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { for (uint32_t ii = 0; ii < numMrt; ++ii) { uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[ii]); bx::memCopy(mrtClearColor[ii], _palette[index], 16); } } else { float rgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; for (uint32_t ii = 0; ii < numMrt; ++ii) { bx::memCopy(mrtClearColor[ii], rgba, 16); } } deviceCtx->UpdateSubresource(fsh->m_buffer, 0, 0, mrtClearColor, 0, 0); } else { deviceCtx->PSSetShader(NULL, NULL, 0); } VertexBufferD3D11& vb = m_vertexBuffers[_clearQuad.m_vb.idx]; const VertexLayout& layout = _clearQuad.m_layout; const uint32_t stride = layout.m_stride; const uint32_t offset = 0; deviceCtx->IASetVertexBuffers(0, 1, &vb.m_ptr, &stride, &offset); setInputLayout(layout, program, 0); deviceCtx->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP); deviceCtx->Draw(4, 0); } } void* m_d3d9Dll; void* m_d3d11Dll; void* m_renderDocDll; void* m_agsDll; Dxgi m_dxgi; AGSContext* m_ags; NvApi m_nvapi; D3D_FEATURE_LEVEL m_featureLevel; Dxgi::SwapChainI* m_swapChain; ID3D11Texture2D* m_msaaRt; bool m_needPresent; bool m_lost; uint16_t m_numWindows; FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS]; ID3D11Device* m_device; ID3D11DeviceContext* m_deviceCtx; ID3DUserDefinedAnnotation* m_annotation; ID3D11InfoQueue* m_infoQueue; TimerQueryD3D11 m_gpuTimer; OcclusionQueryD3D11 m_occlusionQuery; uint32_t m_deviceInterfaceVersion; ID3D11RenderTargetView* m_backBufferColor; ID3D11DepthStencilView* m_backBufferDepthStencil; ID3D11RenderTargetView* m_currentColor; ID3D11DepthStencilView* m_currentDepthStencil; ID3D11Texture2D* m_captureTexture; ID3D11Texture2D* m_captureResolve; Resolution m_resolution; SwapChainDesc m_scd; DXGI_SWAP_EFFECT m_swapEffect; uint32_t m_swapBufferCount; uint32_t m_maxAnisotropy; bool m_depthClamp; bool m_wireframe; IndexBufferD3D11 m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBufferD3D11 m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; ShaderD3D11 m_shaders[BGFX_CONFIG_MAX_SHADERS]; ProgramD3D11 m_program[BGFX_CONFIG_MAX_PROGRAMS]; TextureD3D11 m_textures[BGFX_CONFIG_MAX_TEXTURES]; VertexLayout m_vertexLayouts[BGFX_CONFIG_MAX_VERTEX_LAYOUTS]; FrameBufferD3D11 m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS]; void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS]; Matrix4 m_predefinedUniforms[PredefinedUniform::Count]; UniformRegistry m_uniformReg; StateCacheT m_blendStateCache; StateCacheT m_depthStencilStateCache; StateCacheT m_inputLayoutCache; StateCacheT m_rasterizerStateCache; StateCacheT m_samplerStateCache; StateCacheLru m_srvUavLru; TextVideoMem m_textVideoMem; TextureStage m_textureStage; ProgramD3D11* m_currentProgram; uint8_t m_vsScratch[64<<10]; uint8_t m_fsScratch[64<<10]; uint32_t m_vsChanges; uint32_t m_fsChanges; FrameBufferHandle m_fbh; bool m_rtMsaa; bool m_timerQuerySupport; bool m_directAccessSupport; }; static RendererContextD3D11* s_renderD3D11; RendererContextI* rendererCreate(const Init& _init) { s_renderD3D11 = BX_NEW(g_allocator, RendererContextD3D11); if (!s_renderD3D11->init(_init) ) { BX_DELETE(g_allocator, s_renderD3D11); s_renderD3D11 = NULL; } return s_renderD3D11; } void rendererDestroy() { s_renderD3D11->shutdown(); BX_DELETE(g_allocator, s_renderD3D11); s_renderD3D11 = NULL; } void stubMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; for (uint32_t ii = 0; ii < _numDrawIndirect; ++ii) { deviceCtx->DrawInstancedIndirect(_ptr, _offset); _offset += _stride; } } void stubMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; for (uint32_t ii = 0; ii < _numDrawIndirect; ++ii) { deviceCtx->DrawIndexedInstancedIndirect(_ptr, _offset); _offset += _stride; } } void amdAgsMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride) { agsDriverExtensions_MultiDrawInstancedIndirect(s_renderD3D11->m_ags, _numDrawIndirect, _ptr, _offset, _stride); } void amdAgsMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride) { agsDriverExtensions_MultiDrawIndexedInstancedIndirect(s_renderD3D11->m_ags, _numDrawIndirect, _ptr, _offset, _stride); } void nvapiMultiDrawInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride) { s_renderD3D11->m_nvapi.nvApiD3D11MultiDrawInstancedIndirect(s_renderD3D11->m_deviceCtx, _numDrawIndirect, _ptr, _offset, _stride); } void nvapiMultiDrawIndexedInstancedIndirect(uint32_t _numDrawIndirect, ID3D11Buffer* _ptr, uint32_t _offset, uint32_t _stride) { s_renderD3D11->m_nvapi.nvApiD3D11MultiDrawIndexedInstancedIndirect(s_renderD3D11->m_deviceCtx, _numDrawIndirect, _ptr, _offset, _stride); } int WINAPI d3d11Annotation_BeginEvent(DWORD _color, LPCWSTR _name) { BX_UNUSED(_color); return s_renderD3D11->m_annotation->BeginEvent(_name); } int WINAPI d3d11Annotation_EndEvent() { return s_renderD3D11->m_annotation->EndEvent(); } void WINAPI d3d11Annotation_SetMarker(DWORD _color, LPCWSTR _name) { BX_UNUSED(_color); s_renderD3D11->m_annotation->SetMarker(_name); } struct UavFormat { DXGI_FORMAT format[3]; uint32_t stride; }; static const UavFormat s_uavFormat[] = { // BGFX_BUFFER_COMPUTE_TYPE_INT, BGFX_BUFFER_COMPUTE_TYPE_UINT, BGFX_BUFFER_COMPUTE_TYPE_FLOAT { { DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN, DXGI_FORMAT_UNKNOWN }, 0 }, // ignored { { DXGI_FORMAT_R8_SINT, DXGI_FORMAT_R8_UINT, DXGI_FORMAT_UNKNOWN }, 1 }, // BGFX_BUFFER_COMPUTE_FORMAT_8X1 { { DXGI_FORMAT_R8G8_SINT, DXGI_FORMAT_R8G8_UINT, DXGI_FORMAT_UNKNOWN }, 2 }, // BGFX_BUFFER_COMPUTE_FORMAT_8X2 { { DXGI_FORMAT_R8G8B8A8_SINT, DXGI_FORMAT_R8G8B8A8_UINT, DXGI_FORMAT_UNKNOWN }, 4 }, // BGFX_BUFFER_COMPUTE_FORMAT_8X4 { { DXGI_FORMAT_R16_SINT, DXGI_FORMAT_R16_UINT, DXGI_FORMAT_R16_FLOAT }, 2 }, // BGFX_BUFFER_COMPUTE_FORMAT_16X1 { { DXGI_FORMAT_R16G16_SINT, DXGI_FORMAT_R16G16_UINT, DXGI_FORMAT_R16G16_FLOAT }, 4 }, // BGFX_BUFFER_COMPUTE_FORMAT_16X2 { { DXGI_FORMAT_R16G16B16A16_SINT, DXGI_FORMAT_R16G16B16A16_UINT, DXGI_FORMAT_R16G16B16A16_FLOAT }, 8 }, // BGFX_BUFFER_COMPUTE_FORMAT_16X4 { { DXGI_FORMAT_R32_SINT, DXGI_FORMAT_R32_UINT, DXGI_FORMAT_R32_FLOAT }, 4 }, // BGFX_BUFFER_COMPUTE_FORMAT_32X1 { { DXGI_FORMAT_R32G32_SINT, DXGI_FORMAT_R32G32_UINT, DXGI_FORMAT_R32G32_FLOAT }, 8 }, // BGFX_BUFFER_COMPUTE_FORMAT_32X2 { { DXGI_FORMAT_R32G32B32A32_SINT, DXGI_FORMAT_R32G32B32A32_UINT, DXGI_FORMAT_R32G32B32A32_FLOAT }, 16 }, // BGFX_BUFFER_COMPUTE_FORMAT_32X4 }; void BufferD3D11::create(uint32_t _size, void* _data, uint16_t _flags, uint16_t _stride, bool _vertex) { m_uav = NULL; m_size = _size; m_flags = _flags; const bool needUav = 0 != (_flags & (BGFX_BUFFER_COMPUTE_WRITE|BGFX_BUFFER_DRAW_INDIRECT) ); const bool needSrv = 0 != (_flags & BGFX_BUFFER_COMPUTE_READ); const bool drawIndirect = 0 != (_flags & BGFX_BUFFER_DRAW_INDIRECT); m_dynamic = NULL == _data && !needUav; D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.BindFlags = 0 | (_vertex ? D3D11_BIND_VERTEX_BUFFER : D3D11_BIND_INDEX_BUFFER) | (needUav ? D3D11_BIND_UNORDERED_ACCESS : 0) | (needSrv ? D3D11_BIND_SHADER_RESOURCE : 0) ; desc.MiscFlags = 0 | (drawIndirect ? D3D11_RESOURCE_MISC_DRAWINDIRECT_ARGS : 0) ; desc.StructureByteStride = 0; DXGI_FORMAT format; uint32_t stride; if (drawIndirect) { format = DXGI_FORMAT_R32G32B32A32_UINT; stride = 16; } else { uint32_t uavFormat = (_flags & BGFX_BUFFER_COMPUTE_FORMAT_MASK) >> BGFX_BUFFER_COMPUTE_FORMAT_SHIFT; if (0 == uavFormat) { if (_vertex) { format = DXGI_FORMAT_R32G32B32A32_FLOAT; stride = 16; } else { if (0 == (_flags & BGFX_BUFFER_INDEX32) ) { format = DXGI_FORMAT_R16_UINT; stride = 2; } else { format = DXGI_FORMAT_R32_UINT; stride = 4; } } } else { const uint32_t uavType = bx::uint32_satsub( (_flags & BGFX_BUFFER_COMPUTE_TYPE_MASK ) >> BGFX_BUFFER_COMPUTE_TYPE_SHIFT, 1); format = s_uavFormat[uavFormat].format[uavType]; stride = s_uavFormat[uavFormat].stride; } } ID3D11Device* device = s_renderD3D11->m_device; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = _data; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; if (needUav) { desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; desc.StructureByteStride = _stride; DX_CHECK(device->CreateBuffer(&desc , NULL == _data ? NULL : &srd , &m_ptr ) ); D3D11_UNORDERED_ACCESS_VIEW_DESC uavd; uavd.Format = format; uavd.ViewDimension = D3D11_UAV_DIMENSION_BUFFER; uavd.Buffer.FirstElement = 0; uavd.Buffer.NumElements = m_size / stride; uavd.Buffer.Flags = 0; DX_CHECK(device->CreateUnorderedAccessView(m_ptr , &uavd , &m_uav ) ); } else if (m_dynamic) { #if USE_D3D11_STAGING_BUFFER desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; DX_CHECK(device->CreateBuffer(&desc , NULL , &m_ptr ) ); desc.BindFlags = 0; desc.Usage = D3D11_USAGE_STAGING; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; DX_CHECK(device->CreateBuffer(&desc , NULL , &m_staging ) ); #else desc.Usage = D3D11_USAGE_DYNAMIC; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; DX_CHECK(device->CreateBuffer(&desc , NULL , &m_ptr ) ); #endif // USE_D3D11_STAGING_BUFFER } else { desc.Usage = D3D11_USAGE_IMMUTABLE; desc.CPUAccessFlags = 0; DX_CHECK(device->CreateBuffer(&desc , &srd , &m_ptr ) ); } if (needSrv) { D3D11_SHADER_RESOURCE_VIEW_DESC srvd; srvd.Format = format; srvd.ViewDimension = D3D11_SRV_DIMENSION_BUFFER; srvd.Buffer.FirstElement = 0; srvd.Buffer.NumElements = m_size / stride; DX_CHECK(device->CreateShaderResourceView(m_ptr , &srvd , &m_srv ) ); } } void BufferD3D11::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; BX_CHECK(m_dynamic, "Must be dynamic!"); #if USE_D3D11_STAGING_BUFFER BX_UNUSED(_discard); D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(deviceCtx->Map(m_staging, 0, D3D11_MAP_WRITE, 0, &mapped) ); bx::memCopy( (uint8_t*)mapped.pData + _offset, _data, _size); deviceCtx->Unmap(m_staging, 0); D3D11_BOX box; box.left = _offset; box.top = 0; box.front = 0; box.right = _offset + _size; box.bottom = 1; box.back = 1; deviceCtx->CopySubresourceRegion(m_ptr , 0 , _offset , 0 , 0 , m_staging , 0 , &box ); #else if (_discard) { D3D11_MAPPED_SUBRESOURCE mapped; DX_CHECK(deviceCtx->Map(m_ptr, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped) ); bx::memCopy( (uint8_t*)mapped.pData + _offset, _data, _size); deviceCtx->Unmap(m_ptr, 0); } else { D3D11_BUFFER_DESC desc; desc.ByteWidth = _size; desc.Usage = D3D11_USAGE_STAGING; desc.BindFlags = 0; desc.MiscFlags = 0; desc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; desc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA srd; srd.pSysMem = _data; srd.SysMemPitch = 0; srd.SysMemSlicePitch = 0; D3D11_BOX srcBox; srcBox.left = 0; srcBox.top = 0; srcBox.front = 0; srcBox.right = _size; srcBox.bottom = 1; srcBox.back = 1; ID3D11Device* device = s_renderD3D11->m_device; ID3D11Buffer* ptr; DX_CHECK(device->CreateBuffer(&desc, &srd, &ptr) ); deviceCtx->CopySubresourceRegion(m_ptr , 0 , _offset , 0 , 0 , ptr , 0 , &srcBox ); DX_RELEASE(ptr, 0); } #endif // 0 } void VertexBufferD3D11::create(uint32_t _size, void* _data, VertexLayoutHandle _layoutHandle, uint16_t _flags) { m_layoutHandle = _layoutHandle; uint16_t stride = isValid(_layoutHandle) ? s_renderD3D11->m_vertexLayouts[_layoutHandle.idx].m_stride : 0 ; BufferD3D11::create(_size, _data, _flags, stride, true); } static bool hasDepthOp(const void* _code, uint32_t _size) { bx::MemoryReader rd(_code, _size); bx::Error err; DxbcContext dxbc; read(&rd, dxbc, &err); struct FindDepthOp { FindDepthOp() : m_found(false) { } static bool find(uint32_t /*_offset*/, const DxbcInstruction& _instruction, void* _userData) { FindDepthOp& out = *reinterpret_cast(_userData); if (_instruction.opcode == DxbcOpcode::DISCARD || (0 != _instruction.numOperands && DxbcOperandType::OutputDepth == _instruction.operand[0].type) ) { out.m_found = true; return false; } return true; } bool m_found; } find; parse(dxbc.shader, FindDepthOp::find, &find); return find.m_found; } void ShaderD3D11::create(const Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); const bool fragment = isShaderType(magic, 'F'); uint32_t hashIn; bx::read(&reader, hashIn); uint32_t hashOut; if (isShaderVerLess(magic, 6) ) { hashOut = hashIn; } else { bx::read(&reader, hashOut); } uint16_t count; bx::read(&reader, count); m_numPredefined = 0; m_numUniforms = count; BX_TRACE("%s Shader consts %d" , getShaderTypeName(magic) , count ); const uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0; if (0 < count) { for (uint32_t ii = 0; ii < count; ++ii) { uint8_t nameSize = 0; bx::read(&reader, nameSize); char name[256] = { '\0' }; bx::read(&reader, &name, nameSize); name[nameSize] = '\0'; uint8_t type = 0; bx::read(&reader, type); uint8_t num = 0; bx::read(&reader, num); uint16_t regIndex = 0; bx::read(&reader, regIndex); uint16_t regCount = 0; bx::read(&reader, regCount); const char* kind = "invalid"; PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count != predefined) { kind = "predefined"; m_predefined[m_numPredefined].m_loc = regIndex; m_predefined[m_numPredefined].m_count = regCount; m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit); m_numPredefined++; } else if (0 == (BGFX_UNIFORM_SAMPLERBIT & type) ) { const UniformRegInfo* info = s_renderD3D11->m_uniformReg.find(name); BX_WARN(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name); if (NULL != info) { if (NULL == m_constantBuffer) { m_constantBuffer = UniformBuffer::create(1024); } kind = "user"; m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount); } } else { kind = "sampler"; } BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d" , kind , name , getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_MASK) ) , num , regIndex , regCount ); BX_UNUSED(kind); } if (NULL != m_constantBuffer) { m_constantBuffer->finish(); } } uint32_t shaderSize; bx::read(&reader, shaderSize); const void* code = reader.getDataPtr(); bx::skip(&reader, shaderSize+1); if (isShaderType(magic, 'F') ) { m_hasDepthOp = hasDepthOp(code, shaderSize); DX_CHECK(s_renderD3D11->m_device->CreatePixelShader(code, shaderSize, NULL, &m_pixelShader) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create fragment shader."); } else if (isShaderType(magic, 'V') ) { m_hash = bx::hash(code, shaderSize); m_code = copy(code, shaderSize); DX_CHECK(s_renderD3D11->m_device->CreateVertexShader(code, shaderSize, NULL, &m_vertexShader) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create vertex shader."); } else if (isShaderType(magic, 'C') ) { DX_CHECK(s_renderD3D11->m_device->CreateComputeShader(code, shaderSize, NULL, &m_computeShader) ); BGFX_FATAL(NULL != m_ptr, bgfx::Fatal::InvalidShader, "Failed to create compute shader."); } uint8_t numAttrs = 0; bx::read(&reader, numAttrs); bx::memSet(m_attrMask, 0, sizeof(m_attrMask) ); for (uint32_t ii = 0; ii < numAttrs; ++ii) { uint16_t id; bx::read(&reader, id); Attrib::Enum attr = idToAttrib(id); if (Attrib::Count != attr) { m_attrMask[attr] = UINT16_MAX; } } uint16_t size; bx::read(&reader, size); if (0 < size) { D3D11_BUFFER_DESC desc; desc.ByteWidth = (size + 0xf) & ~0xf; desc.Usage = D3D11_USAGE_DEFAULT; desc.CPUAccessFlags = 0; desc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; desc.MiscFlags = 0; desc.StructureByteStride = 0; DX_CHECK(s_renderD3D11->m_device->CreateBuffer(&desc, NULL, &m_buffer) ); BX_TRACE("\tCB size: %d", desc.ByteWidth); } } void* DirectAccessResourceD3D11::createTexture2D(const D3D11_TEXTURE2D_DESC* _gpuDesc, const D3D11_SUBRESOURCE_DATA* _srd, ID3D11Texture2D** _gpuTexture2d) { ID3D11Device* device = s_renderD3D11->m_device; DX_CHECK(setIntelDirectAccessResource(device) ); DX_CHECK(device->CreateTexture2D(_gpuDesc, _srd, _gpuTexture2d) ); D3D11_TEXTURE2D_DESC cpuDesc; bx::memCopy(&cpuDesc, _gpuDesc, sizeof(cpuDesc) ); cpuDesc.BindFlags = 0; cpuDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE; cpuDesc.Usage = D3D11_USAGE_STAGING; DX_CHECK(setIntelDirectAccessResource(s_renderD3D11->m_device) ); DX_CHECK(device->CreateTexture2D(&cpuDesc, NULL, &m_texture2d) ); ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; deviceCtx->CopyResource(m_texture2d, *_gpuTexture2d); D3D11_MAPPED_SUBRESOURCE mappedResource; deviceCtx->Map(m_texture2d, 0, D3D11_MAP_WRITE, 0, &mappedResource); m_descriptor = reinterpret_cast(mappedResource.pData); return m_descriptor->ptr; } void* DirectAccessResourceD3D11::createTexture3D(const D3D11_TEXTURE3D_DESC* _gpuDesc, const D3D11_SUBRESOURCE_DATA* _srd, ID3D11Texture3D** _gpuTexture3d) { ID3D11Device* device = s_renderD3D11->m_device; DX_CHECK(setIntelDirectAccessResource(device) ); DX_CHECK(device->CreateTexture3D(_gpuDesc, _srd, _gpuTexture3d) ); D3D11_TEXTURE3D_DESC cpuDesc; bx::memCopy(&cpuDesc, _gpuDesc, sizeof(cpuDesc) ); cpuDesc.BindFlags = 0; cpuDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE; cpuDesc.Usage = D3D11_USAGE_STAGING; DX_CHECK(setIntelDirectAccessResource(s_renderD3D11->m_device) ); DX_CHECK(device->CreateTexture3D(&cpuDesc, NULL, &m_texture3d) ); ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; deviceCtx->CopyResource(m_texture3d, *_gpuTexture3d); D3D11_MAPPED_SUBRESOURCE mappedResource; deviceCtx->Map(m_texture3d, 0, D3D11_MAP_WRITE, 0, &mappedResource); m_descriptor = reinterpret_cast(mappedResource.pData); return m_descriptor->ptr; } void DirectAccessResourceD3D11::destroy() { if (NULL != m_descriptor) { s_renderD3D11->m_deviceCtx->Unmap(m_ptr, 0); m_descriptor = NULL; DX_RELEASE(m_ptr, 0); } } void* TextureD3D11::create(const Memory* _mem, uint64_t _flags, uint8_t _skip) { void* directAccessPtr = NULL; bimg::ImageContainer imageContainer; if (bimg::imageParse(imageContainer, _mem->data, _mem->size) ) { const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(imageContainer.m_format) ); const uint8_t startLod = bx::min(_skip, imageContainer.m_numMips-1); bimg::TextureInfo ti; bimg::imageGetSize( &ti , uint16_t(imageContainer.m_width >>startLod) , uint16_t(imageContainer.m_height>>startLod) , uint16_t(imageContainer.m_depth >>startLod) , imageContainer.m_cubeMap , 1 < imageContainer.m_numMips , imageContainer.m_numLayers , imageContainer.m_format ); ti.numMips = bx::min(imageContainer.m_numMips-startLod, ti.numMips); m_flags = _flags; m_width = ti.width; m_height = ti.height; m_depth = ti.depth; m_numLayers = ti.numLayers; m_requestedFormat = uint8_t(imageContainer.m_format); m_textureFormat = uint8_t(getViableTextureFormat(imageContainer) ); const bool convert = m_textureFormat != m_requestedFormat; const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) ); if (imageContainer.m_cubeMap) { m_type = TextureCube; } else if (imageContainer.m_depth > 1) { m_type = Texture3D; } else { m_type = Texture2D; } m_numMips = ti.numMips; const uint16_t numSides = ti.numLayers * (imageContainer.m_cubeMap ? 6 : 1); const uint32_t numSrd = numSides * ti.numMips; D3D11_SUBRESOURCE_DATA* srd = (D3D11_SUBRESOURCE_DATA*)alloca(numSrd*sizeof(D3D11_SUBRESOURCE_DATA) ); uint32_t kk = 0; const bool compressed = bimg::isCompressed(bimg::TextureFormat::Enum(m_textureFormat) ); const bool swizzle = TextureFormat::BGRA8 == m_textureFormat && 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE); BX_TRACE("Texture %3d: %s (requested: %s), layers %d, %dx%d%s%s%s." , getHandle() , getName( (TextureFormat::Enum)m_textureFormat) , getName( (TextureFormat::Enum)m_requestedFormat) , ti.numLayers , ti.width , ti.height , imageContainer.m_cubeMap ? "x6" : "" , 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : "" , swizzle ? " (swizzle BGRA8 -> RGBA8)" : "" ); for (uint16_t side = 0; side < numSides; ++side) { for (uint8_t lod = 0, num = ti.numMips; lod < num; ++lod) { bimg::ImageMip mip; if (bimg::imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) ) { srd[kk].pSysMem = mip.m_data; if (convert) { uint32_t srcpitch = mip.m_width*bpp/8; uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, srcpitch*mip.m_height); bimg::imageDecodeToBgra8(g_allocator, temp, mip.m_data, mip.m_width, mip.m_height, srcpitch, mip.m_format); srd[kk].pSysMem = temp; srd[kk].SysMemPitch = srcpitch; } else if (compressed) { srd[kk].SysMemPitch = (mip.m_width /blockInfo.blockWidth )*mip.m_blockSize; srd[kk].SysMemSlicePitch = (mip.m_height/blockInfo.blockHeight)*srd[kk].SysMemPitch; } else { srd[kk].SysMemPitch = mip.m_width*mip.m_bpp/8; } srd[kk].SysMemSlicePitch = mip.m_height*srd[kk].SysMemPitch; ++kk; } } } const bool writeOnly = 0 != (m_flags&(BGFX_TEXTURE_RT_WRITE_ONLY|BGFX_TEXTURE_READ_BACK) ); const bool computeWrite = 0 != (m_flags&BGFX_TEXTURE_COMPUTE_WRITE); const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK); const bool srgb = 0 != (m_flags&BGFX_TEXTURE_SRGB); const bool blit = 0 != (m_flags&BGFX_TEXTURE_BLIT_DST); const bool readBack = 0 != (m_flags&BGFX_TEXTURE_READ_BACK); const uint32_t msaaQuality = bx::uint32_satsub( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1); const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality]; const bool msaaSample = true && 1 < msaa.Count && 0 != (m_flags&BGFX_TEXTURE_MSAA_SAMPLE) && !writeOnly ; const bool needResolve = true && 1 < msaa.Count && 0 == (m_flags&BGFX_TEXTURE_MSAA_SAMPLE) && !writeOnly ; D3D11_SHADER_RESOURCE_VIEW_DESC srvd; bx::memSet(&srvd, 0, sizeof(srvd) ); DXGI_FORMAT format = DXGI_FORMAT_UNKNOWN; if (swizzle) { format = srgb ? DXGI_FORMAT_R8G8B8A8_UNORM_SRGB : DXGI_FORMAT_R8G8B8A8_UNORM; srvd.Format = format; } else if (srgb) { format = s_textureFormat[m_textureFormat].m_fmtSrgb; srvd.Format = format; BX_WARN(format != DXGI_FORMAT_UNKNOWN, "sRGB not supported for texture format %d", m_textureFormat); } if (format == DXGI_FORMAT_UNKNOWN) { // not swizzled and not sRGB, or sRGB unsupported format = s_textureFormat[m_textureFormat].m_fmt; srvd.Format = getSrvFormat(); } const bool directAccess = s_renderD3D11->m_directAccessSupport && !renderTarget && !readBack && !blit && !writeOnly ; switch (m_type) { case Texture2D: case TextureCube: { D3D11_TEXTURE2D_DESC desc = {}; desc.Width = ti.width; desc.Height = ti.height; desc.MipLevels = ti.numMips; desc.ArraySize = numSides; desc.Format = format; desc.SampleDesc = msaa; desc.Usage = kk == 0 || blit ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE; desc.BindFlags = writeOnly ? 0 : D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; if (bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) ) ) { desc.BindFlags |= D3D11_BIND_DEPTH_STENCIL; desc.Usage = D3D11_USAGE_DEFAULT; } else if (renderTarget) { desc.BindFlags |= D3D11_BIND_RENDER_TARGET; desc.Usage = D3D11_USAGE_DEFAULT; desc.MiscFlags |= 0 | (1 < ti.numMips ? D3D11_RESOURCE_MISC_GENERATE_MIPS : 0) ; } if (computeWrite) { desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS; desc.Usage = D3D11_USAGE_DEFAULT; } if (readBack) { desc.BindFlags = 0; desc.Usage = D3D11_USAGE_STAGING; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; } if (imageContainer.m_cubeMap) { desc.MiscFlags |= D3D11_RESOURCE_MISC_TEXTURECUBE; if (1 < ti.numLayers) { srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBEARRAY; srvd.TextureCubeArray.MipLevels = ti.numMips; srvd.TextureCubeArray.NumCubes = ti.numLayers; } else { srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURECUBE; srvd.TextureCube.MipLevels = ti.numMips; } } else { if (msaaSample) { if (1 < ti.numLayers) { srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DMSARRAY; srvd.Texture2DMSArray.ArraySize = ti.numLayers; } else { srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DMS; } } else { if (1 < ti.numLayers) { srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2DARRAY; srvd.Texture2DArray.MipLevels = ti.numMips; srvd.Texture2DArray.ArraySize = ti.numLayers; } else { srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = ti.numMips; } } } if (needResolve) { DX_CHECK(s_renderD3D11->m_device->CreateTexture2D(&desc, NULL, &m_rt2d) ); desc.BindFlags &= ~(D3D11_BIND_RENDER_TARGET|D3D11_BIND_DEPTH_STENCIL); desc.SampleDesc = s_msaa[0]; } if (directAccess) { directAccessPtr = m_dar.createTexture2D(&desc, kk == 0 ? NULL : srd, &m_texture2d); } else { DX_CHECK(s_renderD3D11->m_device->CreateTexture2D(&desc, kk == 0 ? NULL : srd, &m_texture2d) ); } } break; case Texture3D: { D3D11_TEXTURE3D_DESC desc = {}; desc.Width = ti.width; desc.Height = ti.height; desc.Depth = ti.depth; desc.MipLevels = ti.numMips; desc.Format = format; desc.Usage = kk == 0 || blit ? D3D11_USAGE_DEFAULT : D3D11_USAGE_IMMUTABLE; desc.BindFlags = D3D11_BIND_SHADER_RESOURCE; desc.CPUAccessFlags = 0; desc.MiscFlags = 0; if (renderTarget) { desc.BindFlags |= D3D11_BIND_RENDER_TARGET; desc.Usage = D3D11_USAGE_DEFAULT; desc.MiscFlags |= 0 | (1 < ti.numMips ? D3D11_RESOURCE_MISC_GENERATE_MIPS : 0) ; } if (computeWrite) { desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS; desc.Usage = D3D11_USAGE_DEFAULT; } if (readBack) { desc.BindFlags = 0; desc.Usage = D3D11_USAGE_STAGING; desc.CPUAccessFlags = D3D11_CPU_ACCESS_READ; } srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE3D; srvd.Texture3D.MipLevels = ti.numMips; if (directAccess) { directAccessPtr = m_dar.createTexture3D(&desc, kk == 0 ? NULL : srd, &m_texture3d); } else { DX_CHECK(s_renderD3D11->m_device->CreateTexture3D(&desc, kk == 0 ? NULL : srd, &m_texture3d) ); } } break; } if (!writeOnly) { DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(m_ptr, &srvd, &m_srv) ); } if (computeWrite) { DX_CHECK(s_renderD3D11->m_device->CreateUnorderedAccessView(m_ptr, NULL, &m_uav) ); } if (convert && 0 != kk) { kk = 0; for (uint16_t side = 0; side < numSides; ++side) { for (uint32_t lod = 0, num = ti.numMips; lod < num; ++lod) { BX_FREE(g_allocator, const_cast(srd[kk].pSysMem) ); ++kk; } } } } return directAccessPtr; } void TextureD3D11::destroy() { m_dar.destroy(); s_renderD3D11->m_srvUavLru.invalidateWithParent(getHandle().idx); DX_RELEASE(m_rt, 0); DX_RELEASE(m_srv, 0); DX_RELEASE(m_uav, 0); if (0 == (m_flags & BGFX_SAMPLER_INTERNAL_SHARED) ) { DX_RELEASE(m_ptr, 0); } } void TextureD3D11::overrideInternal(uintptr_t _ptr) { destroy(); m_flags |= BGFX_SAMPLER_INTERNAL_SHARED; m_ptr = (ID3D11Resource*)_ptr; s_renderD3D11->m_device->CreateShaderResourceView(m_ptr, NULL, &m_srv); } void TextureD3D11::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; D3D11_BOX box; box.left = _rect.m_x; box.top = _rect.m_y; box.right = box.left + _rect.m_width; box.bottom = box.top + _rect.m_height; uint32_t layer = 0; if (TextureD3D11::Texture3D == m_type) { box.front = _z; box.back = box.front + _depth; } else { layer = _z * (TextureD3D11::TextureCube == m_type ? 6 : 1); box.front = 0; box.back = 1; } const uint32_t subres = _mip + ( (layer + _side) * m_numMips); const bool depth = bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) ); const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) ); const uint32_t rectpitch = _rect.m_width*bpp/8; const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch; const uint32_t slicepitch = rectpitch*_rect.m_height; const bool convert = m_textureFormat != m_requestedFormat; uint8_t* data = _mem->data; uint8_t* temp = NULL; if (convert) { temp = (uint8_t*)BX_ALLOC(g_allocator, slicepitch); bimg::imageDecodeToBgra8(g_allocator, temp, data, _rect.m_width, _rect.m_height, srcpitch, bimg::TextureFormat::Enum(m_requestedFormat) ); data = temp; } deviceCtx->UpdateSubresource( m_ptr , subres , depth ? NULL : &box , data , srcpitch , TextureD3D11::Texture3D == m_type ? slicepitch : 0 ); if (NULL != temp) { BX_FREE(g_allocator, temp); } } void TextureD3D11::commit(uint8_t _stage, uint32_t _flags, const float _palette[][4]) { TextureStage& ts = s_renderD3D11->m_textureStage; if (0 != (_flags & BGFX_SAMPLER_SAMPLE_STENCIL) ) { ts.m_srv[_stage] = s_renderD3D11->getCachedSrv( TextureHandle{ uint16_t(this - s_renderD3D11->m_textures) } , 0 , false , true ); } else { ts.m_srv[_stage] = m_srv; } const uint32_t flags = 0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & _flags) ? _flags : uint32_t(m_flags) ; uint32_t index = (flags & BGFX_SAMPLER_BORDER_COLOR_MASK) >> BGFX_SAMPLER_BORDER_COLOR_SHIFT; ts.m_sampler[_stage] = s_renderD3D11->getSamplerState(flags, _palette[index]); } void TextureD3D11::resolve(uint8_t _resolve) const { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; const bool needResolve = NULL != m_rt; if (needResolve) { deviceCtx->ResolveSubresource(m_texture2d, 0, m_rt, 0, s_textureFormat[m_textureFormat].m_fmt); } const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK); if (renderTarget && 1 < m_numMips && 0 != (_resolve & BGFX_RESOLVE_AUTO_GEN_MIPS) ) { deviceCtx->GenerateMips(m_srv); } } TextureHandle TextureD3D11::getHandle() const { TextureHandle handle = { (uint16_t)(this - s_renderD3D11->m_textures) }; return handle; } DXGI_FORMAT TextureD3D11::getSrvFormat() const { if (bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) ) ) { return s_textureFormat[m_textureFormat].m_fmtSrv; } return 0 != (m_flags&BGFX_TEXTURE_SRGB) ? s_textureFormat[m_textureFormat].m_fmtSrgb : s_textureFormat[m_textureFormat].m_fmt ; } void FrameBufferD3D11::create(uint8_t _num, const Attachment* _attachment) { for (uint32_t ii = 0; ii < BX_COUNTOF(m_rtv); ++ii) { m_rtv[ii] = NULL; } for (uint32_t ii = 0; ii < BX_COUNTOF(m_uav); ++ii) { m_uav[ii] = NULL; } m_dsv = NULL; m_swapChain = NULL; m_denseIdx = UINT16_MAX; m_numTh = _num; m_needPresent = false; bx::memCopy(m_attachment, _attachment, _num*sizeof(Attachment) ); postReset(); } void FrameBufferD3D11::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) { SwapChainDesc scd; bx::memCopy(&scd, &s_renderD3D11->m_scd, sizeof(SwapChainDesc) ); scd.format = TextureFormat::Count == _format ? scd.format : s_textureFormat[_format].m_fmt; scd.width = _width; scd.height = _height; scd.nwh = _nwh; scd.ndt = NULL; scd.sampleDesc = s_msaa[0]; ID3D11Device* device = s_renderD3D11->m_device; HRESULT hr = s_renderD3D11->m_dxgi.createSwapChain(device , scd , &m_swapChain ); BGFX_FATAL(SUCCEEDED(hr), Fatal::UnableToInitialize, "Failed to create swap chain."); #if BX_PLATFORM_WINDOWS DX_CHECK(s_renderD3D11->m_dxgi.m_factory->MakeWindowAssociation( (HWND)_nwh , 0 | DXGI_MWA_NO_WINDOW_CHANGES | DXGI_MWA_NO_ALT_ENTER ) ); #endif // BX_PLATFORM_WINDOWS ID3D11Resource* ptr; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&ptr) ); DX_CHECK(device->CreateRenderTargetView(ptr, NULL, &m_rtv[0]) ); DX_RELEASE(ptr, 0); DXGI_FORMAT fmtDsv = bimg::isDepth(bimg::TextureFormat::Enum(_depthFormat) ) ? s_textureFormat[_depthFormat].m_fmtDsv : DXGI_FORMAT_D24_UNORM_S8_UINT ; D3D11_TEXTURE2D_DESC dsd; dsd.Width = scd.width; dsd.Height = scd.height; dsd.MipLevels = 1; dsd.ArraySize = 1; dsd.Format = fmtDsv; dsd.SampleDesc = scd.sampleDesc; dsd.Usage = D3D11_USAGE_DEFAULT; dsd.BindFlags = D3D11_BIND_DEPTH_STENCIL; dsd.CPUAccessFlags = 0; dsd.MiscFlags = 0; ID3D11Texture2D* depthStencil; DX_CHECK(device->CreateTexture2D(&dsd, NULL, &depthStencil) ); DX_CHECK(device->CreateDepthStencilView(depthStencil, NULL, &m_dsv) ); DX_RELEASE(depthStencil, 0); m_srv[0] = NULL; m_nwh = _nwh; m_denseIdx = _denseIdx; m_num = 1; } uint16_t FrameBufferD3D11::destroy() { preReset(true); DX_RELEASE(m_swapChain, 0); m_num = 0; m_nwh = NULL; m_numTh = 0; m_needPresent = false; uint16_t denseIdx = m_denseIdx; m_denseIdx = UINT16_MAX; return denseIdx; } void FrameBufferD3D11::preReset(bool _force) { if (0 < m_numTh || _force) { for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { DX_RELEASE(m_srv[ii], 0); DX_RELEASE(m_rtv[ii], 0); } DX_RELEASE(m_dsv, 0); } } void FrameBufferD3D11::postReset() { m_width = 0; m_height = 0; if (0 < m_numTh) { m_num = 0; m_numUav = 0; for (uint32_t ii = 0; ii < m_numTh; ++ii) { const Attachment& at = m_attachment[ii]; if (isValid(at.handle) ) { const TextureD3D11& texture = s_renderD3D11->m_textures[at.handle.idx]; if (0 == m_width) { switch (texture.m_type) { case TextureD3D11::Texture2D: case TextureD3D11::TextureCube: { D3D11_TEXTURE2D_DESC desc; texture.m_texture2d->GetDesc(&desc); m_width = desc.Width; m_height = desc.Height; } break; case TextureD3D11::Texture3D: { D3D11_TEXTURE3D_DESC desc; texture.m_texture3d->GetDesc(&desc); m_width = desc.Width; m_height = desc.Height; } break; } } const uint32_t msaaQuality = bx::uint32_satsub( (texture.m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1); const DXGI_SAMPLE_DESC& msaa = s_msaa[msaaQuality]; if (bimg::isDepth(bimg::TextureFormat::Enum(texture.m_textureFormat) ) ) { BX_CHECK(NULL == m_dsv, "Frame buffer already has depth-stencil attached."); switch (texture.m_type) { default: case TextureD3D11::Texture2D: { D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc; dsvDesc.Format = s_textureFormat[texture.m_textureFormat].m_fmtDsv; dsvDesc.ViewDimension = 1 < msaa.Count ? D3D11_DSV_DIMENSION_TEXTURE2DMS : D3D11_DSV_DIMENSION_TEXTURE2D ; dsvDesc.Flags = 0; dsvDesc.Texture2D.MipSlice = at.mip; DX_CHECK(s_renderD3D11->m_device->CreateDepthStencilView( NULL == texture.m_rt ? texture.m_ptr : texture.m_rt , &dsvDesc , &m_dsv ) ); } break; case TextureD3D11::TextureCube: { D3D11_DEPTH_STENCIL_VIEW_DESC dsvDesc; dsvDesc.Format = s_textureFormat[texture.m_textureFormat].m_fmtDsv; if (1 < msaa.Count) { dsvDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2DMSARRAY; dsvDesc.Texture2DMSArray.ArraySize = 1; dsvDesc.Texture2DMSArray.FirstArraySlice = at.layer; } else { dsvDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2DARRAY; dsvDesc.Texture2DArray.ArraySize = 1; dsvDesc.Texture2DArray.FirstArraySlice = at.layer; dsvDesc.Texture2DArray.MipSlice = at.mip; } dsvDesc.Flags = 0; DX_CHECK(s_renderD3D11->m_device->CreateDepthStencilView(texture.m_ptr, &dsvDesc, &m_dsv) ); } break; } } else if (Access::Write == at.access) { D3D11_RENDER_TARGET_VIEW_DESC desc; desc.Format = texture.getSrvFormat(); switch (texture.m_type) { default: case TextureD3D11::Texture2D: if (1 < msaa.Count) { if (1 < texture.m_numLayers) { desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DMSARRAY; desc.Texture2DMSArray.FirstArraySlice = at.layer; desc.Texture2DMSArray.ArraySize = 1; } else { desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DMS; } } else { if (1 < texture.m_numLayers) { desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DARRAY; desc.Texture2DArray.FirstArraySlice = at.layer; desc.Texture2DArray.ArraySize = 1; desc.Texture2DArray.MipSlice = at.mip; } else { desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2D; desc.Texture2D.MipSlice = at.mip; } } DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView( NULL == texture.m_rt ? texture.m_ptr : texture.m_rt , &desc , &m_rtv[m_num] ) ); break; case TextureD3D11::TextureCube: if (1 < msaa.Count) { desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DMSARRAY; desc.Texture2DMSArray.ArraySize = 1; desc.Texture2DMSArray.FirstArraySlice = at.layer; } else { desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2DARRAY; desc.Texture2DArray.ArraySize = 1; desc.Texture2DArray.FirstArraySlice = at.layer; desc.Texture2DArray.MipSlice = at.mip; } DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(texture.m_ptr, &desc, &m_rtv[m_num]) ); break; case TextureD3D11::Texture3D: desc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE3D; desc.Texture3D.MipSlice = at.mip; desc.Texture3D.WSize = 1; desc.Texture3D.FirstWSlice = at.layer; DX_CHECK(s_renderD3D11->m_device->CreateRenderTargetView(texture.m_ptr, &desc, &m_rtv[m_num]) ); break; } DX_CHECK(s_renderD3D11->m_device->CreateShaderResourceView(texture.m_ptr, NULL, &m_srv[m_num]) ); m_num++; } else { m_uav[m_numUav++] = texture.m_uav; } } } } } void FrameBufferD3D11::resolve() { if (0 < m_numTh) { for (uint32_t ii = 0; ii < m_numTh; ++ii) { const Attachment& at = m_attachment[ii]; if (isValid(at.handle) ) { const TextureD3D11& texture = s_renderD3D11->m_textures[at.handle.idx]; texture.resolve(at.resolve); } } } } void FrameBufferD3D11::clear(const Clear& _clear, const float _palette[][4]) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; if (BGFX_CLEAR_COLOR & _clear.m_flags) { if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { uint8_t index = _clear.m_index[ii]; if (NULL != m_rtv[ii] && UINT8_MAX != index) { deviceCtx->ClearRenderTargetView(m_rtv[ii], _palette[index]); } } } else { float frgba[4] = { _clear.m_index[0]*1.0f/255.0f, _clear.m_index[1]*1.0f/255.0f, _clear.m_index[2]*1.0f/255.0f, _clear.m_index[3]*1.0f/255.0f, }; for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { if (NULL != m_rtv[ii]) { deviceCtx->ClearRenderTargetView(m_rtv[ii], frgba); } } } } if (NULL != m_dsv && (BGFX_CLEAR_DEPTH|BGFX_CLEAR_STENCIL) & _clear.m_flags) { DWORD flags = 0; flags |= (_clear.m_flags & BGFX_CLEAR_DEPTH) ? D3D11_CLEAR_DEPTH : 0; flags |= (_clear.m_flags & BGFX_CLEAR_STENCIL) ? D3D11_CLEAR_STENCIL : 0; deviceCtx->ClearDepthStencilView(m_dsv, flags, _clear.m_depth, _clear.m_stencil); } } void FrameBufferD3D11::set() { if (0 < m_numUav) { s_renderD3D11->m_deviceCtx->OMSetRenderTargetsAndUnorderedAccessViews( m_num , m_rtv , m_dsv , 16 , m_numUav , m_uav , NULL ); } else { s_renderD3D11->m_deviceCtx->OMSetRenderTargets(m_num, m_rtv, m_dsv); } m_needPresent = UINT16_MAX != m_denseIdx; s_renderD3D11->m_currentColor = m_rtv[0]; s_renderD3D11->m_currentDepthStencil = m_dsv; } HRESULT FrameBufferD3D11::present(uint32_t _syncInterval) { if (m_needPresent) { HRESULT hr = m_swapChain->Present(_syncInterval, 0); hr = !isLost(hr) ? S_OK : hr; m_needPresent = false; return hr; } return S_OK; } void TimerQueryD3D11::postReset() { ID3D11Device* device = s_renderD3D11->m_device; D3D11_QUERY_DESC qd; qd.MiscFlags = 0; for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii) { Query& query = m_query[ii]; query.m_ready = false; qd.Query = D3D11_QUERY_TIMESTAMP_DISJOINT; DX_CHECK(device->CreateQuery(&qd, &query.m_disjoint) ); qd.Query = D3D11_QUERY_TIMESTAMP; DX_CHECK(device->CreateQuery(&qd, &query.m_begin) ); DX_CHECK(device->CreateQuery(&qd, &query.m_end) ); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_result); ++ii) { Result& result = m_result[ii]; result.reset(); } m_control.reset(); } void TimerQueryD3D11::preReset() { for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii) { Query& query = m_query[ii]; DX_RELEASE(query.m_disjoint, 0); DX_RELEASE(query.m_begin, 0); DX_RELEASE(query.m_end, 0); } } uint32_t TimerQueryD3D11::begin(uint32_t _resultIdx) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; while (0 == m_control.reserve(1) ) { update(); } Result& result = m_result[_resultIdx]; ++result.m_pending; const uint32_t idx = m_control.m_current; Query& query = m_query[idx]; query.m_resultIdx = _resultIdx; query.m_ready = false; deviceCtx->Begin(query.m_disjoint); deviceCtx->End(query.m_begin); m_control.commit(1); return idx; } void TimerQueryD3D11::end(uint32_t _idx) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; Query& query = m_query[_idx]; query.m_ready = true; deviceCtx->End(query.m_end); deviceCtx->End(query.m_disjoint); while (update() ) { } } bool TimerQueryD3D11::update() { if (0 != m_control.available() ) { Query& query = m_query[m_control.m_read]; if (!query.m_ready) { return false; } uint64_t timeEnd; ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; HRESULT hr = deviceCtx->GetData(query.m_end, &timeEnd, sizeof(timeEnd), D3D11_ASYNC_GETDATA_DONOTFLUSH); if (S_OK == hr || isLost(hr) ) { m_control.consume(1); struct D3D11_QUERY_DATA_TIMESTAMP_DISJOINT { UINT64 Frequency; BOOL Disjoint; }; D3D11_QUERY_DATA_TIMESTAMP_DISJOINT disjoint; DX_CHECK(deviceCtx->GetData(query.m_disjoint, &disjoint, sizeof(disjoint), 0) ); uint64_t timeBegin; DX_CHECK(deviceCtx->GetData(query.m_begin, &timeBegin, sizeof(timeBegin), 0) ); Result& result = m_result[query.m_resultIdx]; --result.m_pending; result.m_frequency = disjoint.Frequency; result.m_begin = timeBegin; result.m_end = timeEnd; return true; } } return false; } void OcclusionQueryD3D11::postReset() { ID3D11Device* device = s_renderD3D11->m_device; D3D11_QUERY_DESC desc; desc.Query = D3D11_QUERY_OCCLUSION; desc.MiscFlags = 0; for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii) { Query& query = m_query[ii]; DX_CHECK(device->CreateQuery(&desc, &query.m_ptr) ); } } void OcclusionQueryD3D11::preReset() { for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii) { Query& query = m_query[ii]; DX_RELEASE(query.m_ptr, 0); } } void OcclusionQueryD3D11::begin(Frame* _render, OcclusionQueryHandle _handle) { while (0 == m_control.reserve(1) ) { resolve(_render, true); } ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; Query& query = m_query[m_control.m_current]; deviceCtx->Begin(query.m_ptr); query.m_handle = _handle; } void OcclusionQueryD3D11::end() { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; Query& query = m_query[m_control.m_current]; deviceCtx->End(query.m_ptr); m_control.commit(1); } void OcclusionQueryD3D11::resolve(Frame* _render, bool _wait) { ID3D11DeviceContext* deviceCtx = s_renderD3D11->m_deviceCtx; while (0 != m_control.available() ) { Query& query = m_query[m_control.m_read]; if (isValid(query.m_handle) ) { uint64_t result = 0; HRESULT hr = deviceCtx->GetData(query.m_ptr, &result, sizeof(result), _wait ? 0 : D3D11_ASYNC_GETDATA_DONOTFLUSH); if (S_FALSE == hr) { break; } _render->m_occlusion[query.m_handle.idx] = int32_t(result); } m_control.consume(1); } } void OcclusionQueryD3D11::invalidate(OcclusionQueryHandle _handle) { const uint32_t size = m_control.m_size; for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii) { Query& query = m_query[(m_control.m_read + ii) % size]; if (query.m_handle.idx == _handle.idx) { query.m_handle.idx = bgfx::kInvalidHandle; } } } void RendererContextD3D11::submitBlit(BlitState& _bs, uint16_t _view) { ID3D11DeviceContext* deviceCtx = m_deviceCtx; while (_bs.hasItem(_view) ) { const BlitItem& blit = _bs.advance(); const TextureD3D11& src = m_textures[blit.m_src.idx]; const TextureD3D11& dst = m_textures[blit.m_dst.idx]; uint32_t srcWidth = bx::uint32_min(src.m_width, blit.m_srcX + blit.m_width) - blit.m_srcX; uint32_t srcHeight = bx::uint32_min(src.m_height, blit.m_srcY + blit.m_height) - blit.m_srcY; uint32_t srcDepth = bx::uint32_min(src.m_depth, blit.m_srcZ + blit.m_depth) - blit.m_srcZ; uint32_t dstWidth = bx::uint32_min(dst.m_width, blit.m_dstX + blit.m_width) - blit.m_dstX; uint32_t dstHeight = bx::uint32_min(dst.m_height, blit.m_dstY + blit.m_height) - blit.m_dstY; uint32_t dstDepth = bx::uint32_min(dst.m_depth, blit.m_dstZ + blit.m_depth) - blit.m_dstZ; uint32_t width = bx::uint32_min(srcWidth, dstWidth); uint32_t height = bx::uint32_min(srcHeight, dstHeight); uint32_t depth = bx::uint32_min(srcDepth, dstDepth); if (TextureD3D11::Texture3D == src.m_type) { D3D11_BOX box; box.left = blit.m_srcX; box.top = blit.m_srcY; box.front = blit.m_srcZ; box.right = blit.m_srcX + width; box.bottom = blit.m_srcY + height;; box.back = blit.m_srcZ + bx::uint32_imax(1, depth); deviceCtx->CopySubresourceRegion(dst.m_ptr , blit.m_dstMip , blit.m_dstX , blit.m_dstY , blit.m_dstZ , src.m_ptr , blit.m_srcMip , &box ); } else { bool depthStencil = bimg::isDepth(bimg::TextureFormat::Enum(src.m_textureFormat) ); BX_CHECK(!depthStencil || (width == src.m_width && height == src.m_height) , "When blitting depthstencil surface, source resolution must match destination." ); D3D11_BOX box; box.left = blit.m_srcX; box.top = blit.m_srcY; box.front = 0; box.right = blit.m_srcX + width; box.bottom = blit.m_srcY + height; box.back = 1; const uint32_t srcZ = blit.m_srcZ; const uint32_t dstZ = blit.m_dstZ; deviceCtx->CopySubresourceRegion(dst.m_ptr , dstZ*dst.m_numMips+blit.m_dstMip , blit.m_dstX , blit.m_dstY , 0 , src.m_ptr , srcZ*src.m_numMips+blit.m_srcMip , depthStencil ? NULL : &box ); } } } void RendererContextD3D11::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) { if (m_lost || updateResolution(_render->m_resolution) ) { return; } if (_render->m_capture) { renderDocTriggerCapture(); } BGFX_D3D11_PROFILER_BEGIN_LITERAL("rendererSubmit", kColorView); ID3D11DeviceContext* deviceCtx = m_deviceCtx; int64_t timeBegin = bx::getHPCounter(); int64_t captureElapsed = 0; uint32_t frameQueryIdx = UINT32_MAX; if (m_timerQuerySupport) { frameQueryIdx = m_gpuTimer.begin(BGFX_CONFIG_MAX_VIEWS); } if (0 < _render->m_iboffset) { BGFX_PROFILER_SCOPE("bgfx/Update transient index buffer", kColorResource); TransientIndexBuffer* ib = _render->m_transientIb; m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data, true); } if (0 < _render->m_vboffset) { BGFX_PROFILER_SCOPE("bgfx/Update transient vertex buffer", kColorResource); TransientVertexBuffer* vb = _render->m_transientVb; m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data, true); } _render->sort(); RenderDraw currentState; currentState.clear(); currentState.m_stateFlags = BGFX_STATE_NONE; currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE); RenderBind currentBind; currentBind.clear(); static ViewState viewState; viewState.reset(_render); bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME); bool scissorEnabled = false; setDebugWireframe(wireframe); ProgramHandle currentProgram = BGFX_INVALID_HANDLE; SortKey key; uint16_t view = UINT16_MAX; FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS }; BlitState bs(_render); const uint64_t primType = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0; uint8_t primIndex = uint8_t(primType >> BGFX_STATE_PT_SHIFT); PrimInfo prim = s_primInfo[primIndex]; deviceCtx->IASetPrimitiveTopology(prim.m_type); bool wasCompute = false; bool viewHasScissor = false; Rect viewScissorRect; viewScissorRect.clear(); const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings; const uint32_t maxTextureSamplers = g_caps.limits.maxTextureSamplers; uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumDrawIndirect[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumIndices = 0; uint32_t statsKeyType[2] = {}; Profiler profiler( _render , m_gpuTimer , s_viewName , m_timerQuerySupport ); m_occlusionQuery.resolve(_render); if (0 == (_render->m_debug&BGFX_DEBUG_IFH) ) { // reset the framebuffer to be the backbuffer; depending on the swap effect, // if we don't do this we'll only see one frame of output and then nothing setFrameBuffer(BGFX_INVALID_HANDLE, true, false); viewState.m_rect = _render->m_view[0].m_rect; int32_t numItems = _render->m_numRenderItems; for (int32_t item = 0; item < numItems;) { const uint64_t encodedKey = _render->m_sortKeys[item]; const bool isCompute = key.decode(encodedKey, _render->m_viewRemap); statsKeyType[isCompute]++; const bool viewChanged = 0 || key.m_view != view || item == numItems ; const uint32_t itemIdx = _render->m_sortValues[item]; const RenderItem& renderItem = _render->m_renderItem[itemIdx]; const RenderBind& renderBind = _render->m_renderItemBind[itemIdx]; ++item; if (viewChanged) { view = key.m_view; currentProgram = BGFX_INVALID_HANDLE; if (item > 1) { profiler.end(); } BGFX_D3D11_PROFILER_END(); setViewType(view, " "); BGFX_D3D11_PROFILER_BEGIN(view, kColorView); profiler.begin(view); if (_render->m_view[view].m_fbh.idx != fbh.idx) { fbh = _render->m_view[view].m_fbh; setFrameBuffer(fbh); } viewState.m_rect = _render->m_view[view].m_rect; const Rect& scissorRect = _render->m_view[view].m_scissor; viewHasScissor = !scissorRect.isZero(); viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect; D3D11_VIEWPORT vp; vp.TopLeftX = viewState.m_rect.m_x; vp.TopLeftY = viewState.m_rect.m_y; vp.Width = viewState.m_rect.m_width; vp.Height = viewState.m_rect.m_height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; deviceCtx->RSSetViewports(1, &vp); Clear& clr = _render->m_view[view].m_clear; if (BGFX_CLEAR_NONE != (clr.m_flags & BGFX_CLEAR_MASK) ) { clearQuad(_clearQuad, viewState.m_rect, clr, _render->m_colorPalette); prim = s_primInfo[Topology::Count]; // Force primitive type update after clear quad. } submitBlit(bs, view); } if (isCompute) { if (!wasCompute) { wasCompute = true; setViewType(view, "C"); BGFX_D3D11_PROFILER_END(); BGFX_D3D11_PROFILER_BEGIN(view, kColorCompute); deviceCtx->IASetVertexBuffers(0, 2, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero); deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0); deviceCtx->VSSetShaderResources(0, maxTextureSamplers, s_zero.m_srv); deviceCtx->PSSetShaderResources(0, maxTextureSamplers, s_zero.m_srv); deviceCtx->VSSetSamplers(0, maxTextureSamplers, s_zero.m_sampler); deviceCtx->PSSetSamplers(0, maxTextureSamplers, s_zero.m_sampler); } const RenderCompute& compute = renderItem.compute; bool programChanged = false; bool constantsChanged = compute.m_uniformBegin < compute.m_uniformEnd; rendererUpdateUniforms(this, _render->m_uniformBuffer[compute.m_uniformIdx], compute.m_uniformBegin, compute.m_uniformEnd); if (key.m_program.idx != currentProgram.idx) { currentProgram = key.m_program; ProgramD3D11& program = m_program[currentProgram.idx]; m_currentProgram = &program; deviceCtx->CSSetShader(program.m_vsh->m_computeShader, NULL, 0); deviceCtx->CSSetConstantBuffers(0, 1, &program.m_vsh->m_buffer); programChanged = constantsChanged = true; } if (isValid(currentProgram) ) { ProgramD3D11& program = m_program[currentProgram.idx]; if (constantsChanged) { UniformBuffer* vcb = program.m_vsh->m_constantBuffer; if (NULL != vcb) { commit(*vcb); } } viewState.setPredefined<4>(this, view, program, _render, compute); if (constantsChanged || program.m_numPredefined > 0) { commitShaderConstants(); } } BX_UNUSED(programChanged); ID3D11UnorderedAccessView* uav[BGFX_MAX_COMPUTE_BINDINGS] = {}; for (uint8_t stage = 0; stage < maxComputeBindings; ++stage) { const Binding& bind = renderBind.m_bind[stage]; if (kInvalidHandle != bind.m_idx) { switch (bind.m_type) { case Binding::Image: { TextureD3D11& texture = m_textures[bind.m_idx]; if (Access::Read != bind.m_access) { uav[stage] = 0 == bind.m_mip ? texture.m_uav : s_renderD3D11->getCachedUav(texture.getHandle(), bind.m_mip) ; } else { m_textureStage.m_srv[stage] = s_renderD3D11->getCachedSrv(texture.getHandle(), bind.m_mip, true); m_textureStage.m_sampler[stage] = s_renderD3D11->getSamplerState(uint32_t(texture.m_flags), NULL); } } break; case Binding::Texture: { TextureD3D11& texture = m_textures[bind.m_idx]; texture.commit(stage, bind.m_samplerFlags, _render->m_colorPalette); } break; case Binding::IndexBuffer: case Binding::VertexBuffer: { const BufferD3D11& buffer = Binding::IndexBuffer == bind.m_type ? m_indexBuffers[bind.m_idx] : m_vertexBuffers[bind.m_idx] ; if (Access::Read != bind.m_access) { uav[stage] = buffer.m_uav; } else { m_textureStage.m_srv[stage] = buffer.m_srv; } } break; } } else { m_textureStage.m_srv[stage] = NULL; m_textureStage.m_sampler[stage] = NULL; } } if (BX_ENABLED(BGFX_CONFIG_DEBUG) ) { // Quiet validation: Resource being set to CS UnorderedAccessView slot 0 is still bound on input! deviceCtx->CSSetShaderResources(0, maxComputeBindings, s_zero.m_srv); } deviceCtx->CSSetUnorderedAccessViews(0, maxComputeBindings, uav, NULL); deviceCtx->CSSetShaderResources(0, maxTextureSamplers, m_textureStage.m_srv); deviceCtx->CSSetSamplers(0, maxTextureSamplers, m_textureStage.m_sampler); if (isValid(compute.m_indirectBuffer) ) { const VertexBufferD3D11& vb = m_vertexBuffers[compute.m_indirectBuffer.idx]; ID3D11Buffer* ptr = vb.m_ptr; uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect ? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE : compute.m_numIndirect ; uint32_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE; for (uint32_t ii = 0; ii < numDrawIndirect; ++ii) { deviceCtx->DispatchIndirect(ptr, args); args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE; } } else { deviceCtx->Dispatch(compute.m_numX, compute.m_numY, compute.m_numZ); } continue; } bool resetState = viewChanged || wasCompute; if (wasCompute) { setViewType(view, " "); BGFX_D3D11_PROFILER_END(); BGFX_D3D11_PROFILER_BEGIN(view, kColorDraw); currentProgram = BGFX_INVALID_HANDLE; m_currentProgram = NULL; invalidateCompute(); } const RenderDraw& draw = renderItem.draw; const bool hasOcclusionQuery = 0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY); { const bool occluded = true && isValid(draw.m_occlusionQuery) && !hasOcclusionQuery && !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags&BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) ) ; if (occluded || _render->m_frameCache.isZeroArea(viewScissorRect, draw.m_scissor) ) { if (resetState) { currentState.clear(); currentState.m_scissor = !draw.m_scissor; currentBind.clear(); } continue; } } const uint64_t newFlags = draw.m_stateFlags; uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags; changedFlags |= currentState.m_rgba != draw.m_rgba ? BGFX_D3D11_BLEND_STATE_MASK : 0; currentState.m_stateFlags = newFlags; const uint64_t newStencil = draw.m_stencil; uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil; changedFlags |= 0 != changedStencil ? BGFX_D3D11_DEPTH_STENCIL_MASK : 0; currentState.m_stencil = newStencil; if (resetState) { wasCompute = false; currentState.clear(); currentState.m_scissor = !draw.m_scissor; changedFlags = BGFX_STATE_MASK; changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK); currentState.m_stateFlags = newFlags; currentState.m_stencil = newStencil; currentBind.clear(); setBlendState(newFlags); setDepthStencilState(newFlags, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) ); const uint64_t pt = newFlags&BGFX_STATE_PT_MASK; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); } if (prim.m_type != s_primInfo[primIndex].m_type) { prim = s_primInfo[primIndex]; deviceCtx->IASetPrimitiveTopology(prim.m_type); } uint16_t scissor = draw.m_scissor; if (currentState.m_scissor != scissor) { currentState.m_scissor = scissor; if (UINT16_MAX == scissor) { scissorEnabled = viewHasScissor; if (viewHasScissor) { D3D11_RECT rc; rc.left = viewScissorRect.m_x; rc.top = viewScissorRect.m_y; rc.right = viewScissorRect.m_x + viewScissorRect.m_width; rc.bottom = viewScissorRect.m_y + viewScissorRect.m_height; deviceCtx->RSSetScissorRects(1, &rc); } } else { Rect scissorRect; scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]); scissorEnabled = true; D3D11_RECT rc; rc.left = scissorRect.m_x; rc.top = scissorRect.m_y; rc.right = scissorRect.m_x + scissorRect.m_width; rc.bottom = scissorRect.m_y + scissorRect.m_height; deviceCtx->RSSetScissorRects(1, &rc); } setRasterizerState(newFlags, wireframe, scissorEnabled); } if (BGFX_D3D11_DEPTH_STENCIL_MASK & changedFlags) { setDepthStencilState(newFlags, newStencil); } if (BGFX_D3D11_BLEND_STATE_MASK & changedFlags) { setBlendState(newFlags, draw.m_rgba); currentState.m_rgba = draw.m_rgba; } if ( (0 | BGFX_STATE_CULL_MASK | BGFX_STATE_ALPHA_REF_MASK | BGFX_STATE_PT_MASK | BGFX_STATE_POINT_SIZE_MASK | BGFX_STATE_MSAA | BGFX_STATE_LINEAA | BGFX_STATE_CONSERVATIVE_RASTER ) & changedFlags) { if ( (0 | BGFX_STATE_CULL_MASK | BGFX_STATE_MSAA | BGFX_STATE_LINEAA | BGFX_STATE_CONSERVATIVE_RASTER ) & changedFlags) { setRasterizerState(newFlags, wireframe, scissorEnabled); } if (BGFX_STATE_ALPHA_REF_MASK & changedFlags) { uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT; viewState.m_alphaRef = ref/255.0f; } const uint64_t pt = newFlags&BGFX_STATE_PT_MASK; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); if (prim.m_type != s_primInfo[primIndex].m_type) { prim = s_primInfo[primIndex]; deviceCtx->IASetPrimitiveTopology(prim.m_type); } } bool programChanged = false; bool constantsChanged = draw.m_uniformBegin < draw.m_uniformEnd; rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd); if (key.m_program.idx != currentProgram.idx) { currentProgram = key.m_program; if (!isValid(currentProgram) ) { m_currentProgram = NULL; deviceCtx->VSSetShader(NULL, NULL, 0); deviceCtx->PSSetShader(NULL, NULL, 0); } else { ProgramD3D11& program = m_program[currentProgram.idx]; m_currentProgram = &program; const ShaderD3D11* vsh = program.m_vsh; deviceCtx->VSSetShader(vsh->m_vertexShader, NULL, 0); deviceCtx->VSSetConstantBuffers(0, 1, &vsh->m_buffer); const ShaderD3D11* fsh = program.m_fsh; if (NULL != fsh && (NULL != m_currentColor || fsh->m_hasDepthOp) ) { deviceCtx->PSSetShader(fsh->m_pixelShader, NULL, 0); deviceCtx->PSSetConstantBuffers(0, 1, &fsh->m_buffer); } else { deviceCtx->PSSetShader(NULL, NULL, 0); } } programChanged = constantsChanged = true; } if (isValid(currentProgram) ) { ProgramD3D11& program = m_program[currentProgram.idx]; if (constantsChanged) { UniformBuffer* vcb = program.m_vsh->m_constantBuffer; if (NULL != vcb) { commit(*vcb); } if (NULL != program.m_fsh) { UniformBuffer* fcb = program.m_fsh->m_constantBuffer; if (NULL != fcb) { commit(*fcb); } } } viewState.setPredefined<4>(this, view, program, _render, draw); if (constantsChanged || program.m_numPredefined > 0) { commitShaderConstants(); } } { uint32_t changes = 0; for (uint8_t stage = 0; stage < maxTextureSamplers; ++stage) { const Binding& bind = renderBind.m_bind[stage]; Binding& current = currentBind.m_bind[stage]; if (current.m_idx != bind.m_idx || current.m_type != bind.m_type || current.m_samplerFlags != bind.m_samplerFlags || programChanged) { if (kInvalidHandle != bind.m_idx) { switch (bind.m_type) { case Binding::Texture: { TextureD3D11& texture = m_textures[bind.m_idx]; texture.commit(stage, bind.m_samplerFlags, _render->m_colorPalette); } break; case Binding::IndexBuffer: case Binding::VertexBuffer: { const BufferD3D11& buffer = Binding::IndexBuffer == bind.m_type ? m_indexBuffers[bind.m_idx] : m_vertexBuffers[bind.m_idx] ; m_textureStage.m_srv[stage] = buffer.m_srv; m_textureStage.m_sampler[stage] = NULL; } break; } } else { m_textureStage.m_srv[stage] = NULL; m_textureStage.m_sampler[stage] = NULL; } ++changes; } current = bind; } if (0 < changes) { commitTextureStage(); } } bool vertexStreamChanged = hasVertexStreamChanged(currentState, draw); if (programChanged || vertexStreamChanged) { currentState.m_streamMask = draw.m_streamMask; currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx; currentState.m_instanceDataOffset = draw.m_instanceDataOffset; currentState.m_instanceDataStride = draw.m_instanceDataStride; ID3D11Buffer* buffers[BGFX_CONFIG_MAX_VERTEX_STREAMS]; uint32_t strides[BGFX_CONFIG_MAX_VERTEX_STREAMS]; uint32_t offsets[BGFX_CONFIG_MAX_VERTEX_STREAMS]; const VertexLayout* layouts[BGFX_CONFIG_MAX_VERTEX_STREAMS]; uint32_t numVertices = draw.m_numVertices; uint8_t numStreams = 0; if (UINT8_MAX != draw.m_streamMask) { for (uint32_t idx = 0, streamMask = draw.m_streamMask ; 0 != streamMask ; streamMask >>= 1, idx += 1, ++numStreams ) { const uint32_t ntz = bx::uint32_cnttz(streamMask); streamMask >>= ntz; idx += ntz; currentState.m_stream[idx].m_layoutHandle = draw.m_stream[idx].m_layoutHandle; currentState.m_stream[idx].m_handle = draw.m_stream[idx].m_handle; currentState.m_stream[idx].m_startVertex = draw.m_stream[idx].m_startVertex; const uint16_t handle = draw.m_stream[idx].m_handle.idx; const VertexBufferD3D11& vb = m_vertexBuffers[handle]; const uint16_t layoutIdx = isValid(draw.m_stream[idx].m_layoutHandle) ? draw.m_stream[idx].m_layoutHandle.idx : vb.m_layoutHandle.idx; const VertexLayout& layout = m_vertexLayouts[layoutIdx]; const uint32_t stride = layout.m_stride; buffers[numStreams] = vb.m_ptr; strides[numStreams] = stride; offsets[numStreams] = draw.m_stream[idx].m_startVertex * stride; layouts[numStreams] = &layout; numVertices = bx::uint32_min(UINT32_MAX == draw.m_numVertices ? vb.m_size/stride : draw.m_numVertices , numVertices ); } } currentState.m_numVertices = numVertices; if (0 < numStreams) { deviceCtx->IASetVertexBuffers(0, numStreams, buffers, strides, offsets); if (isValid(draw.m_instanceDataBuffer) ) { const VertexBufferD3D11& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx]; const uint32_t instStride = draw.m_instanceDataStride; deviceCtx->IASetVertexBuffers(numStreams, 1, &inst.m_ptr, &instStride, &draw.m_instanceDataOffset); setInputLayout(numStreams, layouts, m_program[currentProgram.idx], uint16_t(instStride/16) ); } else { deviceCtx->IASetVertexBuffers(numStreams, 1, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero); setInputLayout(numStreams, layouts, m_program[currentProgram.idx], 0); } } else { deviceCtx->IASetVertexBuffers(0, 1, s_zero.m_buffer, s_zero.m_zero, s_zero.m_zero); if (isValid(draw.m_instanceDataBuffer) ) { const VertexBufferD3D11& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx]; const uint32_t instStride = draw.m_instanceDataStride; deviceCtx->IASetVertexBuffers(0, 1, &inst.m_ptr, &instStride, &draw.m_instanceDataOffset); setInputLayout(0, NULL, m_program[currentProgram.idx], uint16_t(instStride/16) ); } else { deviceCtx->IASetInputLayout(NULL); } } } if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx) { currentState.m_indexBuffer = draw.m_indexBuffer; uint16_t handle = draw.m_indexBuffer.idx; if (kInvalidHandle != handle) { const IndexBufferD3D11& ib = m_indexBuffers[handle]; deviceCtx->IASetIndexBuffer(ib.m_ptr , 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? DXGI_FORMAT_R16_UINT : DXGI_FORMAT_R32_UINT , 0 ); } else { deviceCtx->IASetIndexBuffer(NULL, DXGI_FORMAT_R16_UINT, 0); } } if (0 != currentState.m_streamMask) { uint32_t numVertices = currentState.m_numVertices; uint32_t numIndices = 0; uint32_t numPrimsSubmitted = 0; uint32_t numInstances = 0; uint32_t numPrimsRendered = 0; uint32_t numDrawIndirect = 0; if (hasOcclusionQuery) { m_occlusionQuery.begin(_render, draw.m_occlusionQuery); } if (isValid(draw.m_indirectBuffer) ) { const VertexBufferD3D11& vb = m_vertexBuffers[draw.m_indirectBuffer.idx]; ID3D11Buffer* ptr = vb.m_ptr; if (isValid(draw.m_indexBuffer) ) { numDrawIndirect = UINT16_MAX == draw.m_numIndirect ? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE : draw.m_numIndirect ; multiDrawIndexedInstancedIndirect( numDrawIndirect , ptr , draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE , BGFX_CONFIG_DRAW_INDIRECT_STRIDE ); } else { numDrawIndirect = UINT16_MAX == draw.m_numIndirect ? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE : draw.m_numIndirect ; multiDrawInstancedIndirect( numDrawIndirect , ptr , draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE , BGFX_CONFIG_DRAW_INDIRECT_STRIDE ); } } else { if (isValid(draw.m_indexBuffer) ) { if (UINT32_MAX == draw.m_numIndices) { const IndexBufferD3D11& ib = m_indexBuffers[draw.m_indexBuffer.idx]; const uint32_t indexSize = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4; numIndices = ib.m_size/indexSize; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; if (numInstances > 1) { deviceCtx->DrawIndexedInstanced(numIndices , draw.m_numInstances , 0 , 0 , 0 ); } else { deviceCtx->DrawIndexed(numIndices , 0 , 0 ); } } else if (prim.m_min <= draw.m_numIndices) { numIndices = draw.m_numIndices; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; if (numInstances > 1) { deviceCtx->DrawIndexedInstanced(numIndices , draw.m_numInstances , draw.m_startIndex , 0 , 0 ); } else { deviceCtx->DrawIndexed(numIndices , draw.m_startIndex , 0 ); } } } else { numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; if (numInstances > 1) { deviceCtx->DrawInstanced(numVertices , draw.m_numInstances , 0 , 0 ); } else { deviceCtx->Draw(numVertices , 0 ); } } if (hasOcclusionQuery) { m_occlusionQuery.end(); } } statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted; statsNumPrimsRendered[primIndex] += numPrimsRendered; statsNumInstances[primIndex] += numInstances; statsNumDrawIndirect[primIndex] += numDrawIndirect; statsNumIndices += numIndices; } } if (wasCompute) { setViewType(view, "C"); BGFX_D3D11_PROFILER_END(); BGFX_D3D11_PROFILER_BEGIN(view, kColorCompute); invalidateCompute(); } submitBlit(bs, BGFX_CONFIG_MAX_VIEWS); if (0 < _render->m_numRenderItems) { if (0 != (m_resolution.reset & BGFX_RESET_FLUSH_AFTER_RENDER) ) { deviceCtx->Flush(); } captureElapsed = -bx::getHPCounter(); capture(); captureElapsed += bx::getHPCounter(); profiler.end(); } } BGFX_D3D11_PROFILER_END(); int64_t timeEnd = bx::getHPCounter(); int64_t frameTime = timeEnd - timeBegin; static int64_t min = frameTime; static int64_t max = frameTime; min = min > frameTime ? frameTime : min; max = max < frameTime ? frameTime : max; static uint32_t maxGpuLatency = 0; static double maxGpuElapsed = 0.0f; double elapsedGpuMs = 0.0; if (UINT32_MAX != frameQueryIdx) { m_gpuTimer.end(frameQueryIdx); const TimerQueryD3D11::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS]; double toGpuMs = 1000.0 / double(result.m_frequency); elapsedGpuMs = (result.m_end - result.m_begin) * toGpuMs; maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed; maxGpuLatency = bx::uint32_imax(maxGpuLatency, result.m_pending-1); } const int64_t timerFreq = bx::getHPFrequency(); Stats& perfStats = _render->m_perfStats; perfStats.cpuTimeBegin = timeBegin; perfStats.cpuTimeEnd = timeEnd; perfStats.cpuTimerFreq = timerFreq; const TimerQueryD3D11::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS]; perfStats.gpuTimeBegin = result.m_begin; perfStats.gpuTimeEnd = result.m_end; perfStats.gpuTimerFreq = result.m_frequency; perfStats.numDraw = statsKeyType[0]; perfStats.numCompute = statsKeyType[1]; perfStats.numBlit = _render->m_numBlitItems; perfStats.maxGpuLatency = maxGpuLatency; bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) ); m_nvapi.getMemoryInfo(perfStats.gpuMemoryUsed, perfStats.gpuMemoryMax); if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { BGFX_D3D11_PROFILER_BEGIN_LITERAL("debugstats", kColorFrame); m_needPresent = true; TextVideoMem& tvm = m_textVideoMem; static int64_t next = timeEnd; if (timeEnd >= next) { next = timeEnd + timerFreq; double freq = double(timerFreq); double toMs = 1000.0/freq; tvm.clear(); uint16_t pos = 0; tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f , " %s.%d (FL %d.%d) / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " " , getRendererName() , m_deviceInterfaceVersion , (m_featureLevel >> 12) & 0xf , (m_featureLevel >> 8) & 0xf ); const DXGI_ADAPTER_DESC& desc = m_dxgi.m_adapterDesc; char description[BX_COUNTOF(desc.Description)]; wcstombs(description, desc.Description, BX_COUNTOF(desc.Description) ); tvm.printf(0, pos++, 0x8f, " Device: %s", description); char dedicatedVideo[16]; bx::prettify(dedicatedVideo, BX_COUNTOF(dedicatedVideo), desc.DedicatedVideoMemory); char dedicatedSystem[16]; bx::prettify(dedicatedSystem, BX_COUNTOF(dedicatedSystem), desc.DedicatedSystemMemory); char sharedSystem[16]; bx::prettify(sharedSystem, BX_COUNTOF(sharedSystem), desc.SharedSystemMemory); char processMemoryUsed[16]; bx::prettify(processMemoryUsed, BX_COUNTOF(processMemoryUsed), bx::getProcessMemoryUsed() ); tvm.printf(0, pos++, 0x8f, " Memory: %s (video), %s (system), %s (shared), %s (process) " , dedicatedVideo , dedicatedSystem , sharedSystem , processMemoryUsed ); pos = 10; tvm.printf(10, pos++, 0x8b, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS " , double(frameTime)*toMs , double(min)*toMs , double(max)*toMs , freq/frameTime ); const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT; tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy " , !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' ' , 0 != msaa ? '\xfe' : ' ' , 1<m_numRenderItems , statsKeyType[0] , statsKeyType[1] , elapsedCpuMs , elapsedCpuMs > maxGpuElapsed ? '>' : '<' , maxGpuElapsed , maxGpuLatency ); maxGpuLatency = 0; maxGpuElapsed = 0.0; for (uint32_t ii = 0; ii < Topology::Count; ++ii) { tvm.printf(10, pos++, 0x8b, " %10s: %7d (#inst: %5d), submitted: %7d, indirect %7d" , getName(Topology::Enum(ii) ) , statsNumPrimsRendered[ii] , statsNumInstances[ii] , statsNumPrimsSubmitted[ii] , statsNumDrawIndirect[ii] ); } if (NULL != m_renderDocDll) { tvm.printf(tvm.m_width-27, 0, 0x4f, " [F11 - RenderDoc capture] "); } tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices); // tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax); tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset); tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset); pos++; tvm.printf(10, pos++, 0x8b, " Occlusion queries: %3d ", m_occlusionQuery.m_control.available() ); pos++; tvm.printf(10, pos++, 0x8b, " State cache: "); tvm.printf(10, pos++, 0x8b, " Blend | DepthS | Input | Raster | Sampler "); tvm.printf(10, pos++, 0x8b, " %6d | %6d | %6d | %6d | %6d " , m_blendStateCache.getCount() , m_depthStencilStateCache.getCount() , m_inputLayoutCache.getCount() , m_rasterizerStateCache.getCount() , m_samplerStateCache.getCount() ); pos++; double captureMs = double(captureElapsed)*toMs; tvm.printf(10, pos++, 0x8b, " Capture: %7.4f [ms] ", captureMs); uint8_t attr[2] = { 0x8c, 0x8a }; uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender; tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %7.4f [ms] ", _render->m_waitSubmit*toMs); tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %7.4f [ms] ", _render->m_waitRender*toMs); min = frameTime; max = frameTime; } blit(this, _textVideoMemBlitter, tvm); BGFX_D3D11_PROFILER_END(); } else if (_render->m_debug & BGFX_DEBUG_TEXT) { BGFX_D3D11_PROFILER_BEGIN_LITERAL("debugtext", kColorFrame); blit(this, _textVideoMemBlitter, _render->m_textVideoMem); BGFX_D3D11_PROFILER_END(); } m_deviceCtx->OMSetRenderTargets(1, s_zero.m_rtv, NULL); if (NULL != m_msaaRt) { ID3D11Texture2D* backBufferColor; DX_CHECK(m_swapChain->GetBuffer(0, IID_ID3D11Texture2D, (void**)&backBufferColor) ); deviceCtx->ResolveSubresource(backBufferColor, 0, m_msaaRt, 0, m_scd.format); DX_RELEASE(backBufferColor, 0); } } } /* namespace d3d11 */ } // namespace bgfx #else namespace bgfx { namespace d3d11 { RendererContextI* rendererCreate(const Init& _init) { BX_UNUSED(_init); return NULL; } void rendererDestroy() { } } /* namespace d3d11 */ } // namespace bgfx #endif // BGFX_CONFIG_RENDERER_DIRECT3D11