curl/lib/vtls/bearssl.c

878 строки
25 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) 2019 - 2020, Michael Forney, <mforney@mforney.org>
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.haxx.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
***************************************************************************/
#include "curl_setup.h"
#ifdef USE_BEARSSL
#include <bearssl.h>
#include "bearssl.h"
#include "urldata.h"
#include "sendf.h"
#include "inet_pton.h"
#include "vtls.h"
#include "connect.h"
#include "select.h"
#include "multiif.h"
#include "curl_printf.h"
#include "curl_memory.h"
struct x509_context {
const br_x509_class *vtable;
br_x509_minimal_context minimal;
bool verifyhost;
bool verifypeer;
};
struct ssl_backend_data {
br_ssl_client_context ctx;
struct x509_context x509;
unsigned char buf[BR_SSL_BUFSIZE_BIDI];
br_x509_trust_anchor *anchors;
size_t anchors_len;
const char *protocols[2];
/* SSL client context is active */
bool active;
/* size of pending write, yet to be flushed */
size_t pending_write;
};
struct cafile_parser {
CURLcode err;
bool in_cert;
br_x509_decoder_context xc;
/* array of trust anchors loaded from CAfile */
br_x509_trust_anchor *anchors;
size_t anchors_len;
/* buffer for DN data */
unsigned char dn[1024];
size_t dn_len;
};
static void append_dn(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->err != CURLE_OK || !ca->in_cert)
return;
if(sizeof(ca->dn) - ca->dn_len < len) {
ca->err = CURLE_FAILED_INIT;
return;
}
memcpy(ca->dn + ca->dn_len, buf, len);
ca->dn_len += len;
}
static void x509_push(void *ctx, const void *buf, size_t len)
{
struct cafile_parser *ca = ctx;
if(ca->in_cert)
br_x509_decoder_push(&ca->xc, buf, len);
}
static CURLcode load_cafile(const char *path, br_x509_trust_anchor **anchors,
size_t *anchors_len)
{
struct cafile_parser ca;
br_pem_decoder_context pc;
br_x509_trust_anchor *ta;
size_t ta_size;
br_x509_trust_anchor *new_anchors;
size_t new_anchors_len;
br_x509_pkey *pkey;
FILE *fp;
unsigned char buf[BUFSIZ], *p;
const char *name;
size_t n, i, pushed;
fp = fopen(path, "rb");
if(!fp)
return CURLE_SSL_CACERT_BADFILE;
ca.err = CURLE_OK;
ca.in_cert = FALSE;
ca.anchors = NULL;
ca.anchors_len = 0;
br_pem_decoder_init(&pc);
br_pem_decoder_setdest(&pc, x509_push, &ca);
for(;;) {
n = fread(buf, 1, sizeof(buf), fp);
if(n == 0)
break;
p = buf;
while(n) {
pushed = br_pem_decoder_push(&pc, p, n);
if(ca.err)
goto fail;
p += pushed;
n -= pushed;
switch(br_pem_decoder_event(&pc)) {
case 0:
break;
case BR_PEM_BEGIN_OBJ:
name = br_pem_decoder_name(&pc);
if(strcmp(name, "CERTIFICATE") && strcmp(name, "X509 CERTIFICATE"))
break;
br_x509_decoder_init(&ca.xc, append_dn, &ca);
if(ca.anchors_len == SIZE_MAX / sizeof(ca.anchors[0])) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
new_anchors_len = ca.anchors_len + 1;
new_anchors = realloc(ca.anchors,
new_anchors_len * sizeof(ca.anchors[0]));
if(!new_anchors) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
ca.anchors = new_anchors;
ca.anchors_len = new_anchors_len;
ca.in_cert = TRUE;
ca.dn_len = 0;
ta = &ca.anchors[ca.anchors_len - 1];
ta->dn.data = NULL;
break;
case BR_PEM_END_OBJ:
if(!ca.in_cert)
break;
ca.in_cert = FALSE;
if(br_x509_decoder_last_error(&ca.xc)) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
ta->flags = 0;
if(br_x509_decoder_isCA(&ca.xc))
ta->flags |= BR_X509_TA_CA;
pkey = br_x509_decoder_get_pkey(&ca.xc);
if(!pkey) {
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
ta->pkey = *pkey;
/* calculate space needed for trust anchor data */
ta_size = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta_size += pkey->key.rsa.nlen + pkey->key.rsa.elen;
break;
case BR_KEYTYPE_EC:
ta_size += pkey->key.ec.qlen;
break;
default:
ca.err = CURLE_FAILED_INIT;
goto fail;
}
/* fill in trust anchor DN and public key data */
ta->dn.data = malloc(ta_size);
if(!ta->dn.data) {
ca.err = CURLE_OUT_OF_MEMORY;
goto fail;
}
memcpy(ta->dn.data, ca.dn, ca.dn_len);
ta->dn.len = ca.dn_len;
switch(pkey->key_type) {
case BR_KEYTYPE_RSA:
ta->pkey.key.rsa.n = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.rsa.n, pkey->key.rsa.n, pkey->key.rsa.nlen);
ta->pkey.key.rsa.e = ta->pkey.key.rsa.n + ta->pkey.key.rsa.nlen;
memcpy(ta->pkey.key.rsa.e, pkey->key.rsa.e, pkey->key.rsa.elen);
break;
case BR_KEYTYPE_EC:
ta->pkey.key.ec.q = ta->dn.data + ta->dn.len;
memcpy(ta->pkey.key.ec.q, pkey->key.ec.q, pkey->key.ec.qlen);
break;
}
break;
default:
ca.err = CURLE_SSL_CACERT_BADFILE;
goto fail;
}
}
}
if(ferror(fp))
ca.err = CURLE_READ_ERROR;
fail:
fclose(fp);
if(ca.err == CURLE_OK) {
*anchors = ca.anchors;
*anchors_len = ca.anchors_len;
}
else {
for(i = 0; i < ca.anchors_len; ++i)
free(ca.anchors[i].dn.data);
free(ca.anchors);
}
return ca.err;
}
static void x509_start_chain(const br_x509_class **ctx,
const char *server_name)
{
struct x509_context *x509 = (struct x509_context *)ctx;
if(!x509->verifyhost)
server_name = NULL;
x509->minimal.vtable->start_chain(&x509->minimal.vtable, server_name);
}
static void x509_start_cert(const br_x509_class **ctx, uint32_t length)
{
struct x509_context *x509 = (struct x509_context *)ctx;
x509->minimal.vtable->start_cert(&x509->minimal.vtable, length);
}
static void x509_append(const br_x509_class **ctx, const unsigned char *buf,
size_t len)
{
struct x509_context *x509 = (struct x509_context *)ctx;
x509->minimal.vtable->append(&x509->minimal.vtable, buf, len);
}
static void x509_end_cert(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
x509->minimal.vtable->end_cert(&x509->minimal.vtable);
}
static unsigned x509_end_chain(const br_x509_class **ctx)
{
struct x509_context *x509 = (struct x509_context *)ctx;
unsigned err;
err = x509->minimal.vtable->end_chain(&x509->minimal.vtable);
if(err && !x509->verifypeer) {
/* ignore any X.509 errors */
err = BR_ERR_OK;
}
return err;
}
static const br_x509_pkey *x509_get_pkey(const br_x509_class *const *ctx,
unsigned *usages)
{
struct x509_context *x509 = (struct x509_context *)ctx;
return x509->minimal.vtable->get_pkey(&x509->minimal.vtable, usages);
}
static const br_x509_class x509_vtable = {
sizeof(struct x509_context),
x509_start_chain,
x509_start_cert,
x509_append,
x509_end_cert,
x509_end_chain,
x509_get_pkey
};
static CURLcode bearssl_connect_step1(struct connectdata *conn, int sockindex)
{
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
const char * const ssl_cafile = SSL_CONN_CONFIG(CAfile);
#ifndef CURL_DISABLE_PROXY
const char *hostname = SSL_IS_PROXY() ? conn->http_proxy.host.name :
conn->host.name;
#else
const char *hostname = conn->host.name;
#endif
const bool verifypeer = SSL_CONN_CONFIG(verifypeer);
const bool verifyhost = SSL_CONN_CONFIG(verifyhost);
CURLcode ret;
unsigned version_min, version_max;
#ifdef ENABLE_IPV6
struct in6_addr addr;
#else
struct in_addr addr;
#endif
switch(SSL_CONN_CONFIG(version)) {
case CURL_SSLVERSION_SSLv2:
failf(data, "BearSSL does not support SSLv2");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_SSLv3:
failf(data, "BearSSL does not support SSLv3");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_TLSv1_0:
version_min = BR_TLS10;
version_max = BR_TLS10;
break;
case CURL_SSLVERSION_TLSv1_1:
version_min = BR_TLS11;
version_max = BR_TLS11;
break;
case CURL_SSLVERSION_TLSv1_2:
version_min = BR_TLS12;
version_max = BR_TLS12;
break;
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
version_min = BR_TLS10;
version_max = BR_TLS12;
break;
default:
failf(data, "BearSSL: unknown CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
if(ssl_cafile) {
ret = load_cafile(ssl_cafile, &backend->anchors, &backend->anchors_len);
if(ret != CURLE_OK) {
if(verifypeer) {
failf(data, "error setting certificate verify locations:\n"
" CAfile: %s\n", ssl_cafile);
return ret;
}
infof(data, "error setting certificate verify locations,"
" continuing anyway:\n");
}
}
/* initialize SSL context */
br_ssl_client_init_full(&backend->ctx, &backend->x509.minimal,
backend->anchors, backend->anchors_len);
br_ssl_engine_set_versions(&backend->ctx.eng, version_min, version_max);
br_ssl_engine_set_buffer(&backend->ctx.eng, backend->buf,
sizeof(backend->buf), 1);
/* initialize X.509 context */
backend->x509.vtable = &x509_vtable;
backend->x509.verifypeer = verifypeer;
backend->x509.verifyhost = verifyhost;
br_ssl_engine_set_x509(&backend->ctx.eng, &backend->x509.vtable);
if(SSL_SET_OPTION(primary.sessionid)) {
void *session;
Curl_ssl_sessionid_lock(conn);
if(!Curl_ssl_getsessionid(conn, &session, NULL, sockindex)) {
br_ssl_engine_set_session_parameters(&backend->ctx.eng, session);
infof(data, "BearSSL: re-using session ID\n");
}
Curl_ssl_sessionid_unlock(conn);
}
if(conn->bits.tls_enable_alpn) {
int cur = 0;
/* NOTE: when adding more protocols here, increase the size of the
* protocols array in `struct ssl_backend_data`.
*/
#ifdef USE_NGHTTP2
if(data->set.httpversion >= CURL_HTTP_VERSION_2
#ifndef CURL_DISABLE_PROXY
&& (!SSL_IS_PROXY() || !conn->bits.tunnel_proxy)
#endif
) {
backend->protocols[cur++] = NGHTTP2_PROTO_VERSION_ID;
infof(data, "ALPN, offering %s\n", NGHTTP2_PROTO_VERSION_ID);
}
#endif
backend->protocols[cur++] = ALPN_HTTP_1_1;
infof(data, "ALPN, offering %s\n", ALPN_HTTP_1_1);
br_ssl_engine_set_protocol_names(&backend->ctx.eng,
backend->protocols, cur);
}
if((1 == Curl_inet_pton(AF_INET, hostname, &addr))
#ifdef ENABLE_IPV6
|| (1 == Curl_inet_pton(AF_INET6, hostname, &addr))
#endif
) {
if(verifyhost) {
failf(data, "BearSSL: "
"host verification of IP address is not supported");
return CURLE_PEER_FAILED_VERIFICATION;
}
hostname = NULL;
}
if(!br_ssl_client_reset(&backend->ctx, hostname, 0))
return CURLE_FAILED_INIT;
backend->active = TRUE;
connssl->connecting_state = ssl_connect_2;
return CURLE_OK;
}
static CURLcode bearssl_run_until(struct connectdata *conn, int sockindex,
unsigned target)
{
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
curl_socket_t sockfd = conn->sock[sockindex];
unsigned state;
unsigned char *buf;
size_t len;
ssize_t ret;
int err;
for(;;) {
state = br_ssl_engine_current_state(&backend->ctx.eng);
if(state & BR_SSL_CLOSED) {
err = br_ssl_engine_last_error(&backend->ctx.eng);
switch(err) {
case BR_ERR_OK:
/* TLS close notify */
if(connssl->state != ssl_connection_complete) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
return CURLE_OK;
case BR_ERR_X509_EXPIRED:
failf(data, "SSL: X.509 verification: "
"certificate is expired or not yet valid");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_BAD_SERVER_NAME:
failf(data, "SSL: X.509 verification: "
"expected server name was not found in the chain");
return CURLE_PEER_FAILED_VERIFICATION;
case BR_ERR_X509_NOT_TRUSTED:
failf(data, "SSL: X.509 verification: "
"chain could not be linked to a trust anchor");
return CURLE_PEER_FAILED_VERIFICATION;
}
/* X.509 errors are documented to have the range 32..63 */
if(err >= 32 && err < 64)
return CURLE_PEER_FAILED_VERIFICATION;
return CURLE_SSL_CONNECT_ERROR;
}
if(state & target)
return CURLE_OK;
if(state & BR_SSL_SENDREC) {
buf = br_ssl_engine_sendrec_buf(&backend->ctx.eng, &len);
ret = swrite(sockfd, buf, len);
if(ret == -1) {
if(SOCKERRNO == EAGAIN || SOCKERRNO == EWOULDBLOCK) {
if(connssl->state != ssl_connection_complete)
connssl->connecting_state = ssl_connect_2_writing;
return CURLE_AGAIN;
}
return CURLE_WRITE_ERROR;
}
br_ssl_engine_sendrec_ack(&backend->ctx.eng, ret);
}
else if(state & BR_SSL_RECVREC) {
buf = br_ssl_engine_recvrec_buf(&backend->ctx.eng, &len);
ret = sread(sockfd, buf, len);
if(ret == 0) {
failf(data, "SSL: EOF without close notify");
return CURLE_READ_ERROR;
}
if(ret == -1) {
if(SOCKERRNO == EAGAIN || SOCKERRNO == EWOULDBLOCK) {
if(connssl->state != ssl_connection_complete)
connssl->connecting_state = ssl_connect_2_reading;
return CURLE_AGAIN;
}
return CURLE_READ_ERROR;
}
br_ssl_engine_recvrec_ack(&backend->ctx.eng, ret);
}
}
}
static CURLcode bearssl_connect_step2(struct connectdata *conn, int sockindex)
{
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
CURLcode ret;
ret = bearssl_run_until(conn, sockindex, BR_SSL_SENDAPP | BR_SSL_RECVAPP);
if(ret == CURLE_AGAIN)
return CURLE_OK;
if(ret == CURLE_OK) {
if(br_ssl_engine_current_state(&backend->ctx.eng) == BR_SSL_CLOSED) {
failf(data, "SSL: connection closed during handshake");
return CURLE_SSL_CONNECT_ERROR;
}
connssl->connecting_state = ssl_connect_3;
}
return ret;
}
static CURLcode bearssl_connect_step3(struct connectdata *conn, int sockindex)
{
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
CURLcode ret;
DEBUGASSERT(ssl_connect_3 == connssl->connecting_state);
if(conn->bits.tls_enable_alpn) {
const char *protocol;
protocol = br_ssl_engine_get_selected_protocol(&backend->ctx.eng);
if(protocol) {
infof(data, "ALPN, server accepted to use %s\n", protocol);
#ifdef USE_NGHTTP2
if(!strcmp(protocol, NGHTTP2_PROTO_VERSION_ID))
conn->negnpn = CURL_HTTP_VERSION_2;
else
#endif
if(!strcmp(protocol, ALPN_HTTP_1_1))
conn->negnpn = CURL_HTTP_VERSION_1_1;
else
infof(data, "ALPN, unrecognized protocol %s\n", protocol);
Curl_multiuse_state(conn, conn->negnpn == CURL_HTTP_VERSION_2 ?
BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE);
}
else
infof(data, "ALPN, server did not agree to a protocol\n");
}
if(SSL_SET_OPTION(primary.sessionid)) {
bool incache;
void *oldsession;
br_ssl_session_parameters *session;
session = malloc(sizeof(*session));
if(!session)
return CURLE_OUT_OF_MEMORY;
br_ssl_engine_get_session_parameters(&backend->ctx.eng, session);
Curl_ssl_sessionid_lock(conn);
incache = !(Curl_ssl_getsessionid(conn, &oldsession, NULL, sockindex));
if(incache)
Curl_ssl_delsessionid(conn, oldsession);
ret = Curl_ssl_addsessionid(conn, session, 0, sockindex);
Curl_ssl_sessionid_unlock(conn);
if(ret) {
free(session);
return CURLE_OUT_OF_MEMORY;
}
}
connssl->connecting_state = ssl_connect_done;
return CURLE_OK;
}
static ssize_t bearssl_send(struct connectdata *conn, int sockindex,
const void *buf, size_t len, CURLcode *err)
{
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
unsigned char *app;
size_t applen;
for(;;) {
*err = bearssl_run_until(conn, sockindex, BR_SSL_SENDAPP);
if (*err != CURLE_OK)
return -1;
app = br_ssl_engine_sendapp_buf(&backend->ctx.eng, &applen);
if(!app) {
failf(data, "SSL: connection closed during write");
*err = CURLE_SEND_ERROR;
return -1;
}
if(backend->pending_write) {
applen = backend->pending_write;
backend->pending_write = 0;
return applen;
}
if(applen > len)
applen = len;
memcpy(app, buf, applen);
br_ssl_engine_sendapp_ack(&backend->ctx.eng, applen);
br_ssl_engine_flush(&backend->ctx.eng, 0);
backend->pending_write = applen;
}
}
static ssize_t bearssl_recv(struct connectdata *conn, int sockindex,
char *buf, size_t len, CURLcode *err)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
unsigned char *app;
size_t applen;
*err = bearssl_run_until(conn, sockindex, BR_SSL_RECVAPP);
if(*err != CURLE_OK)
return -1;
app = br_ssl_engine_recvapp_buf(&backend->ctx.eng, &applen);
if(!app)
return 0;
if(applen > len)
applen = len;
memcpy(buf, app, applen);
br_ssl_engine_recvapp_ack(&backend->ctx.eng, applen);
return applen;
}
static CURLcode bearssl_connect_common(struct connectdata *conn,
int sockindex,
bool nonblocking,
bool *done)
{
CURLcode ret;
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
curl_socket_t sockfd = conn->sock[sockindex];
timediff_t timeout_ms;
int what;
/* check if the connection has already been established */
if(ssl_connection_complete == connssl->state) {
*done = TRUE;
return CURLE_OK;
}
if(ssl_connect_1 == connssl->connecting_state) {
ret = bearssl_connect_step1(conn, sockindex);
if(ret)
return ret;
}
while(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
/* check allowed time left */
timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
/* if ssl is expecting something, check if it's available. */
if(ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
curl_socket_t writefd = ssl_connect_2_writing ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
curl_socket_t readfd = ssl_connect_2_reading ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd,
nonblocking?0:timeout_ms);
if(what < 0) {
/* fatal error */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
return CURLE_SSL_CONNECT_ERROR;
}
else if(0 == what) {
if(nonblocking) {
*done = FALSE;
return CURLE_OK;
}
else {
/* timeout */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
}
/* socket is readable or writable */
}
/* Run transaction, and return to the caller if it failed or if this
* connection is done nonblocking and this loop would execute again. This
* permits the owner of a multi handle to abort a connection attempt
* before step2 has completed while ensuring that a client using select()
* or epoll() will always have a valid fdset to wait on.
*/
ret = bearssl_connect_step2(conn, sockindex);
if(ret || (nonblocking &&
(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state)))
return ret;
}
if(ssl_connect_3 == connssl->connecting_state) {
ret = bearssl_connect_step3(conn, sockindex);
if(ret)
return ret;
}
if(ssl_connect_done == connssl->connecting_state) {
connssl->state = ssl_connection_complete;
conn->recv[sockindex] = bearssl_recv;
conn->send[sockindex] = bearssl_send;
*done = TRUE;
}
else
*done = FALSE;
/* Reset our connect state machine */
connssl->connecting_state = ssl_connect_1;
return CURLE_OK;
}
static size_t Curl_bearssl_version(char *buffer, size_t size)
{
return msnprintf(buffer, size, "BearSSL");
}
static bool Curl_bearssl_data_pending(const struct connectdata *conn,
int connindex)
{
const struct ssl_connect_data *connssl = &conn->ssl[connindex];
struct ssl_backend_data *backend = connssl->backend;
return br_ssl_engine_current_state(&backend->ctx.eng) & BR_SSL_RECVAPP;
}
static CURLcode Curl_bearssl_random(struct Curl_easy *data UNUSED_PARAM,
unsigned char *entropy, size_t length)
{
static br_hmac_drbg_context ctx;
static bool seeded = FALSE;
if(!seeded) {
br_prng_seeder seeder;
br_hmac_drbg_init(&ctx, &br_sha256_vtable, NULL, 0);
seeder = br_prng_seeder_system(NULL);
if(!seeder || !seeder(&ctx.vtable))
return CURLE_FAILED_INIT;
seeded = TRUE;
}
br_hmac_drbg_generate(&ctx, entropy, length);
return CURLE_OK;
}
static CURLcode Curl_bearssl_connect(struct connectdata *conn, int sockindex)
{
CURLcode ret;
bool done = FALSE;
ret = bearssl_connect_common(conn, sockindex, FALSE, &done);
if(ret)
return ret;
DEBUGASSERT(done);
return CURLE_OK;
}
static CURLcode Curl_bearssl_connect_nonblocking(struct connectdata *conn,
int sockindex, bool *done)
{
return bearssl_connect_common(conn, sockindex, TRUE, done);
}
static void *Curl_bearssl_get_internals(struct ssl_connect_data *connssl,
CURLINFO info UNUSED_PARAM)
{
struct ssl_backend_data *backend = connssl->backend;
return &backend->ctx;
}
static void Curl_bearssl_close(struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
size_t i;
if(backend->active) {
br_ssl_engine_close(&backend->ctx.eng);
(void)bearssl_run_until(conn, sockindex, BR_SSL_CLOSED);
}
for(i = 0; i < backend->anchors_len; ++i)
free(backend->anchors[i].dn.data);
free(backend->anchors);
}
static void Curl_bearssl_session_free(void *ptr)
{
free(ptr);
}
static CURLcode Curl_bearssl_md5sum(unsigned char *input,
size_t inputlen,
unsigned char *md5sum,
size_t md5len UNUSED_PARAM)
{
br_md5_context ctx;
br_md5_init(&ctx);
br_md5_update(&ctx, input, inputlen);
br_md5_out(&ctx, md5sum);
return CURLE_OK;
}
static CURLcode Curl_bearssl_sha256sum(const unsigned char *input,
size_t inputlen,
unsigned char *sha256sum,
size_t sha256len UNUSED_PARAM)
{
br_sha256_context ctx;
br_sha256_init(&ctx);
br_sha256_update(&ctx, input, inputlen);
br_sha256_out(&ctx, sha256sum);
return CURLE_OK;
}
const struct Curl_ssl Curl_ssl_bearssl = {
{ CURLSSLBACKEND_BEARSSL, "bearssl" },
0,
sizeof(struct ssl_backend_data),
Curl_none_init,
Curl_none_cleanup,
Curl_bearssl_version,
Curl_none_check_cxn,
Curl_none_shutdown,
Curl_bearssl_data_pending,
Curl_bearssl_random,
Curl_none_cert_status_request,
Curl_bearssl_connect,
Curl_bearssl_connect_nonblocking,
Curl_bearssl_get_internals,
Curl_bearssl_close,
Curl_none_close_all,
Curl_bearssl_session_free,
Curl_none_set_engine,
Curl_none_set_engine_default,
Curl_none_engines_list,
Curl_none_false_start,
Curl_bearssl_md5sum,
Curl_bearssl_sha256sum
};
#endif /* USE_BEARSSL */