refactor assertions and parsing code

This commit is contained in:
Alon Zakai 2011-04-18 17:43:43 -07:00
Родитель f89d9e2be6
Коммит 46e3b2a787
6 изменённых файлов: 287 добавлений и 265 удалений

Просмотреть файл

@ -385,7 +385,7 @@ function JSify(data, functionsOnly, givenFunctions, givenGlobalVariables) {
first = false;
});
}
if (GUARD_LABELS) {
if (ASSERTIONS) {
ret += indent + multipleIdent + 'else { throw "Bad multiple branching: " + __label__ + " : " + (new Error().stack); }\n';
}
if (!block.loopless) {
@ -654,258 +654,7 @@ function JSify(data, functionsOnly, givenFunctions, givenGlobalVariables) {
return makeOne(0);
});
function makeSignOp(value, type, op) { // TODO: If value isNumber, do this at compile time
if (!value) return value;
if (!correctSigns() && !CHECK_SIGNS) return value;
if (type in Runtime.INT_TYPES) {
var bits = parseInt(type.substr(1));
if (isNumber(value)) {
// Sign/unsign constants at compile time
return eval(op + 'Sign(' + value + ', ' + bits + ', 1)').toString();
}
// shortcuts for 32-bit case
if (bits === 32 && !CHECK_SIGNS) {
if (op === 're') {
return '((' + value + ')|0)';
} else {
// TODO: figure out something here along the lines of return '(' + Math.pow(2, 32) + '+((' + value + ')|0))';
}
}
return op + 'Sign(' + value + ', ' + bits + ', ' + Math.floor(correctSpecificSign()) + ')'; // If we are correcting a specific sign here, do not check for it
} else {
return value;
}
}
function handleOverflow(text, bits) {
if (!bits) return text;
if (bits <= 32 && correctOverflows()) text = '(' + text + ')&' + (Math.pow(2, bits) - 1);
if (!CHECK_OVERFLOWS || correctSpecificOverflow()) return text; // If we are correcting a specific overflow here, do not check for it
return 'CHECK_OVERFLOW(' + text + ', ' + bits + ')';
}
function makeRounding(value, bits, signed) {
// C rounds to 0 (-5.5 to -5, +5.5 to 5), while JS has no direct way to do that.
// With 32 bits and less, and a signed value, |0 will round it like C does.
if (bits && bits <= 32 && signed) return '('+value+'|0)';
// If the value may be negative, and we care about proper rounding, then use a slow but correct function
if (signed && correctRoundings()) return 'cRound(' + value + ')';
// Either this must be positive, so Math.Floor is correct, or we don't care
return 'Math.floor(' + value + ')';
}
var mathop = makeFuncLineActor('mathop', function(item) { with(item) {
for (var i = 1; i <= 4; i++) {
if (item['param'+i]) {
item['ident'+i] = indexizeFunctions(finalizeLLVMParameter(item['param'+i]));
if (!isNumber(item['ident'+i])) {
item['ident'+i] = '(' + item['ident'+i] + ')'; // we may have nested expressions. So enforce the order of operations we want
}
} else {
item['ident'+i] = null; // just so it exists for purposes of reading ident2 etc. later on, and no exception is thrown
}
}
if (op in set('udiv', 'urem', 'uitofp', 'zext', 'lshr') || (variant && variant[0] == 'u')) {
ident1 = makeSignOp(ident1, type, 'un');
ident2 = makeSignOp(ident2, type, 'un');
} else if (op in set('sdiv', 'srem', 'sitofp', 'sext', 'ashr') || (variant && variant[0] == 's')) {
ident1 = makeSignOp(ident1, type, 're');
ident2 = makeSignOp(ident2, type, 're');
}
var bits = null;
if (item.type[0] === 'i') {
bits = parseInt(item.type.substr(1));
}
var bitsLeft = ident2 ? ident2.substr(2, ident2.length-3) : null; // remove (i and ), to leave number. This value is important in float ops
switch (op) {
// basic integer ops
case 'add': return handleOverflow(ident1 + ' + ' + ident2, bits);
case 'sub': return handleOverflow(ident1 + ' - ' + ident2, bits);
case 'sdiv': case 'udiv': return makeRounding(ident1 + '/' + ident2, bits, op[0] === 's');
case 'mul': return handleOverflow(ident1 + ' * ' + ident2, bits);
case 'urem': case 'srem': return ident1 + ' % ' + ident2;
case 'or': return ident1 + ' | ' + ident2; // TODO this forces into a 32-bit int - add overflow-style checks? also other bitops below us
case 'and': return ident1 + ' & ' + ident2;
case 'xor': return ident1 + ' ^ ' + ident2;
case 'shl': {
// Note: Increases in size may reach the 32-bit limit... where our sign can flip. But this may be expected by the code...
/*
if (bits >= 32) {
if (CHECK_SIGNS && !CORRECT_SIGNS) return 'shlSignCheck(' + ident1 + ', ' + ident2 + ')';
if (CORRECT_SIGNS) {
var mul = 'Math.pow(2, ' + ident2 + ')';
if (isNumber(ident2)) mul = eval(mul);
return ident1 + ' * ' + mul;
}
}
*/
return ident1 + ' << ' + ident2;
}
case 'ashr': return ident1 + ' >> ' + ident2;
case 'lshr': return ident1 + ' >>> ' + ident2;
// basic float ops
case 'fadd': return ident1 + ' + ' + ident2;
case 'fsub': return ident1 + ' - ' + ident2;
case 'fdiv': return ident1 + ' / ' + ident2;
case 'fmul': return ident1 + ' * ' + ident2;
case 'uitofp': case 'sitofp': return ident1;
case 'fptoui': case 'fptosi': return makeRounding(ident1, bitsLeft, op === 'fptosi');
// TODO: We sometimes generate false instead of 0, etc., in the *cmps. It seemed slightly faster before, but worth rechecking
// Note that with typed arrays, these become 0 when written. So that is a potential difference with non-typed array runs.
case 'icmp': {
switch (variant) {
case 'uge': case 'sge': return ident1 + ' >= ' + ident2;
case 'ule': case 'sle': return ident1 + ' <= ' + ident2;
case 'ugt': case 'sgt': return ident1 + ' > ' + ident2;
case 'ult': case 'slt': return ident1 + ' < ' + ident2;
// We use loose comparisons, which allows false == 0 to be true, etc. Ditto in fcmp
case 'ne': case 'eq': {
// We must sign them, so we do not compare -1 to 255 (could have unsigned them both too)
// since LLVM tells us if <=, >= etc. comparisons are signed, but not == and !=.
ident1 = makeSignOp(ident1, type, 're');
ident2 = makeSignOp(ident2, type, 're');
return ident1 + (variant === 'eq' ? '==' : '!=') + ident2;
}
default: throw 'Unknown icmp variant: ' + variant;
}
}
case 'fcmp': {
switch (variant) {
// TODO 'o' ones should be 'ordered (no NaN) and',
// 'u' ones should be 'unordered or'.
case 'uge': case 'oge': return ident1 + ' >= ' + ident2;
case 'ule': case 'ole': return ident1 + ' <= ' + ident2;
case 'ugt': case 'ogt': return ident1 + ' > ' + ident2;
case 'ult': case 'olt': return ident1 + ' < ' + ident2;
case 'une': case 'one': return ident1 + ' != ' + ident2;
case 'ueq': case 'oeq': return ident1 + ' == ' + ident2;
case 'ord': return '!isNaN(' + ident1 + ') && !isNaN(' + ident2 + ')';
case 'uno': return 'isNaN(' + ident1 + ') || isNaN(' + ident2 + ')';
case 'true': return '1';
default: throw 'Unknown fcmp variant: ' + variant;
}
}
// Note that zext has sign checking, see above. We must guard against -33 in i8 turning into -33 in i32
// then unsigning that i32... which would give something huge.
case 'zext': case 'fpext': case 'sext': return ident1;
case 'fptrunc': return ident1;
case 'trunc': {
// Unlike extending, which we just 'do' (by doing nothing),
// truncating can change the number, e.g. by truncating to an i1
// in order to get the first bit
assert(ident2[1] == 'i');
assert(bitsLeft <= 32, 'Cannot truncate to more than 32 bits, since we use a native & op');
return '((' + ident1 + ') & ' + (Math.pow(2, bitsLeft)-1) + ')';
}
case 'select': return ident1 + ' ? ' + ident2 + ' : ' + ident3;
case 'ptrtoint': return ident1;
case 'inttoptr': return ident1;
default: throw 'Unknown mathcmp op: ' + item.op;
}
} });
function getGetElementPtrIndexes(item) {
var type = item.params[0].type;
item.params = item.params.map(finalizeLLVMParameter);
var ident = item.params[0];
// struct pointer, struct*, and getting a ptr to an element in that struct. Param 1 is which struct, then we have items in that
// struct, and possibly further substructures, all embedded
// can also be to 'blocks': [8 x i32]*, not just structs
type = removePointing(type);
var indexes = [makeGetPos(ident)];
var offset = item.params[1];
if (offset != 0) {
if (isStructType(type)) {
indexes.push(getFastValue(Types.types[type].flatSize, '*', offset));
} else {
indexes.push(getFastValue(getNativeFieldSize(type, true), '*', offset));
}
}
item.params.slice(2, item.params.length).forEach(function(arg) {
var curr = arg;
// TODO: If index is constant, optimize
var typeData = Types.types[type];
if (isStructType(type) && typeData.needsFlattening) {
if (typeData.flatFactor) {
indexes.push(getFastValue(curr, '*', typeData.flatFactor));
} else {
if (isNumber(curr)) {
indexes.push(typeData.flatIndexes[curr]);
} else {
indexes.push(toNiceIdent(type) + '___FLATTENER[' + curr + ']'); // TODO: If curr is constant, optimize out the flattener struct
}
}
} else {
if (curr != 0) {
indexes.push(curr);
}
}
if (!isNumber(curr) || parseInt(curr) < 0) {
// We have a *variable* to index with, or a negative number. In both
// cases, in theory we might need to do something dynamic here. FIXME?
// But, most likely all the possible types are the same, so do that case here now...
for (var i = 1; i < typeData.fields.length; i++) {
assert(typeData.fields[0] === typeData.fields[i]);
}
curr = 0;
}
type = typeData ? typeData.fields[curr] : '';
});
var ret = indexes[0];
for (var i = 1; i < indexes.length; i++) {
ret = getFastValue(ret, '+', indexes[i]);
}
ret = handleOverflow(ret, 32); // XXX - we assume a 32-bit arch here. If you fail on this, change to 64
return ret;
}
function finalizeLLVMFunctionCall(item) {
switch(item.intertype) {
case 'getelementptr':
return makePointer(makeGetSlabs(item.ident, item.type)[0], getGetElementPtrIndexes(item), null, item.type);
case 'bitcast':
case 'inttoptr':
case 'ptrtoint':
return finalizeLLVMParameter(item.params[0]);
case 'icmp': case 'mul': case 'zext': case 'add': case 'sub': case 'div':
var temp = {
op: item.intertype,
variant: item.variant,
type: item.type
};
for (var i = 1; i <= 4; i++) {
if (item.params[i-1]) {
temp['param' + i] = finalizeLLVMParameter(item.params[i-1]);
}
}
mathop.processItem(temp);
return temp.JS;
default:
throw 'Invalid function to finalize: ' + dump(item.intertype);
}
}
// From parseLLVMSegment
function finalizeLLVMParameter(param) {
if (isNumber(param)) {
return param;
} else if (typeof param === 'string') {
return toNiceIdentCarefully(param);
} else if (param.intertype in PARSABLE_LLVM_FUNCTIONS) {
return finalizeLLVMFunctionCall(param);
} else if (param.intertype == 'value') {
return parseNumerical(param.ident);
} else if (param.intertype == 'structvalue') {
return param.values.map(finalizeLLVMParameter);
} else {
throw 'invalid llvm parameter: ' + param.intertype;
}
}
makeFuncLineActor('mathop', processMathop);
makeFuncLineActor('bitcast', function(item) {
var ident = toNiceIdent(item.ident);

Просмотреть файл

@ -307,6 +307,16 @@ function parseParamTokens(params) {
return ret;
}
function finalizeParam(param) {
if (param.intertype in PARSABLE_LLVM_FUNCTIONS) {
return finalizeLLVMFunctionCall(param);
} else if (param.intertype === 'jsvalue') {
return param.ident;
} else {
return toNiceIdent(param.ident);
}
}
// Segment ==> Parameter
function parseLLVMSegment(segment) {
var type;
@ -715,3 +725,255 @@ function makeGetSlabs(ptr, type, allowMultiple) {
}
}
function finalizeLLVMFunctionCall(item) {
switch(item.intertype) {
case 'getelementptr': // TODO finalizeLLVMParameter on the ident and the indexes?
return makePointer(makeGetSlabs(item.ident, item.type)[0], getGetElementPtrIndexes(item), null, item.type);
case 'bitcast':
case 'inttoptr':
case 'ptrtoint':
return finalizeLLVMParameter(item.params[0]);
case 'icmp': case 'mul': case 'zext': case 'add': case 'sub': case 'div':
var temp = {
op: item.intertype,
variant: item.variant,
type: item.type
};
for (var i = 1; i <= 4; i++) {
if (item.params[i-1]) {
temp['param' + i] = finalizeLLVMParameter(item.params[i-1]);
}
}
return processMathop(temp);
default:
throw 'Invalid function to finalize: ' + dump(item.intertype);
}
}
function getGetElementPtrIndexes(item) {
var type = item.params[0].type;
item.params = item.params.map(finalizeLLVMParameter);
var ident = item.params[0];
// struct pointer, struct*, and getting a ptr to an element in that struct. Param 1 is which struct, then we have items in that
// struct, and possibly further substructures, all embedded
// can also be to 'blocks': [8 x i32]*, not just structs
type = removePointing(type);
var indexes = [makeGetPos(ident)];
var offset = item.params[1];
if (offset != 0) {
if (isStructType(type)) {
indexes.push(getFastValue(Types.types[type].flatSize, '*', offset));
} else {
indexes.push(getFastValue(getNativeFieldSize(type, true), '*', offset));
}
}
item.params.slice(2, item.params.length).forEach(function(arg) {
var curr = arg;
// TODO: If index is constant, optimize
var typeData = Types.types[type];
if (isStructType(type) && typeData.needsFlattening) {
if (typeData.flatFactor) {
indexes.push(getFastValue(curr, '*', typeData.flatFactor));
} else {
if (isNumber(curr)) {
indexes.push(typeData.flatIndexes[curr]);
} else {
indexes.push(toNiceIdent(type) + '___FLATTENER[' + curr + ']'); // TODO: If curr is constant, optimize out the flattener struct
}
}
} else {
if (curr != 0) {
indexes.push(curr);
}
}
if (!isNumber(curr) || parseInt(curr) < 0) {
// We have a *variable* to index with, or a negative number. In both
// cases, in theory we might need to do something dynamic here. FIXME?
// But, most likely all the possible types are the same, so do that case here now...
for (var i = 1; i < typeData.fields.length; i++) {
assert(typeData.fields[0] === typeData.fields[i]);
}
curr = 0;
}
type = typeData ? typeData.fields[curr] : '';
});
var ret = indexes[0];
for (var i = 1; i < indexes.length; i++) {
ret = getFastValue(ret, '+', indexes[i]);
}
ret = handleOverflow(ret, 32); // XXX - we assume a 32-bit arch here. If you fail on this, change to 64
return ret;
}
function handleOverflow(text, bits) {
if (!bits) return text;
if (bits <= 32 && correctOverflows()) text = '(' + text + ')&' + (Math.pow(2, bits) - 1);
if (!CHECK_OVERFLOWS || correctSpecificOverflow()) return text; // If we are correcting a specific overflow here, do not check for it
return 'CHECK_OVERFLOW(' + text + ', ' + bits + ')';
}
// From parseLLVMSegment
function finalizeLLVMParameter(param) {
if (isNumber(param)) {
return param;
} else if (typeof param === 'string') {
return toNiceIdentCarefully(param);
} else if (param.intertype in PARSABLE_LLVM_FUNCTIONS) {
return finalizeLLVMFunctionCall(param);
} else if (param.intertype == 'value') {
return parseNumerical(param.ident);
} else if (param.intertype == 'structvalue') {
return param.values.map(finalizeLLVMParameter);
} else {
throw 'invalid llvm parameter: ' + param.intertype;
}
}
function makeSignOp(value, type, op) { // TODO: If value isNumber, do this at compile time
if (!value) return value;
if (!correctSigns() && !CHECK_SIGNS) return value;
if (type in Runtime.INT_TYPES) {
var bits = parseInt(type.substr(1));
if (isNumber(value)) {
// Sign/unsign constants at compile time
return eval(op + 'Sign(' + value + ', ' + bits + ', 1)').toString();
}
// shortcuts for 32-bit case
if (bits === 32 && !CHECK_SIGNS) {
if (op === 're') {
return '((' + value + ')|0)';
} else {
// TODO: figure out something here along the lines of return '(' + Math.pow(2, 32) + '+((' + value + ')|0))';
}
}
return op + 'Sign(' + value + ', ' + bits + ', ' + Math.floor(correctSpecificSign()) + ')'; // If we are correcting a specific sign here, do not check for it
} else {
return value;
}
}
function makeRounding(value, bits, signed) {
// C rounds to 0 (-5.5 to -5, +5.5 to 5), while JS has no direct way to do that.
// With 32 bits and less, and a signed value, |0 will round it like C does.
if (bits && bits <= 32 && signed) return '('+value+'|0)';
// If the value may be negative, and we care about proper rounding, then use a slow but correct function
if (signed && correctRoundings()) return 'cRound(' + value + ')';
// Either this must be positive, so Math.Floor is correct, or we don't care
return 'Math.floor(' + value + ')';
}
function processMathop(item) { with(item) {
for (var i = 1; i <= 4; i++) {
if (item['param'+i]) {
item['ident'+i] = indexizeFunctions(finalizeLLVMParameter(item['param'+i]));
if (!isNumber(item['ident'+i])) {
item['ident'+i] = '(' + item['ident'+i] + ')'; // we may have nested expressions. So enforce the order of operations we want
}
} else {
item['ident'+i] = null; // just so it exists for purposes of reading ident2 etc. later on, and no exception is thrown
}
}
if (op in set('udiv', 'urem', 'uitofp', 'zext', 'lshr') || (variant && variant[0] == 'u')) {
ident1 = makeSignOp(ident1, type, 'un');
ident2 = makeSignOp(ident2, type, 'un');
} else if (op in set('sdiv', 'srem', 'sitofp', 'sext', 'ashr') || (variant && variant[0] == 's')) {
ident1 = makeSignOp(ident1, type, 're');
ident2 = makeSignOp(ident2, type, 're');
}
var bits = null;
if (item.type[0] === 'i') {
bits = parseInt(item.type.substr(1));
}
var bitsLeft = ident2 ? ident2.substr(2, ident2.length-3) : null; // remove (i and ), to leave number. This value is important in float ops
switch (op) {
// basic integer ops
case 'add': return handleOverflow(ident1 + ' + ' + ident2, bits);
case 'sub': return handleOverflow(ident1 + ' - ' + ident2, bits);
case 'sdiv': case 'udiv': return makeRounding(ident1 + '/' + ident2, bits, op[0] === 's');
case 'mul': return handleOverflow(ident1 + ' * ' + ident2, bits);
case 'urem': case 'srem': return ident1 + ' % ' + ident2;
case 'or': return ident1 + ' | ' + ident2; // TODO this forces into a 32-bit int - add overflow-style checks? also other bitops below us
case 'and': return ident1 + ' & ' + ident2;
case 'xor': return ident1 + ' ^ ' + ident2;
case 'shl': {
// Note: Increases in size may reach the 32-bit limit... where our sign can flip. But this may be expected by the code...
/*
if (bits >= 32) {
if (CHECK_SIGNS && !CORRECT_SIGNS) return 'shlSignCheck(' + ident1 + ', ' + ident2 + ')';
if (CORRECT_SIGNS) {
var mul = 'Math.pow(2, ' + ident2 + ')';
if (isNumber(ident2)) mul = eval(mul);
return ident1 + ' * ' + mul;
}
}
*/
return ident1 + ' << ' + ident2;
}
case 'ashr': return ident1 + ' >> ' + ident2;
case 'lshr': return ident1 + ' >>> ' + ident2;
// basic float ops
case 'fadd': return ident1 + ' + ' + ident2;
case 'fsub': return ident1 + ' - ' + ident2;
case 'fdiv': return ident1 + ' / ' + ident2;
case 'fmul': return ident1 + ' * ' + ident2;
case 'uitofp': case 'sitofp': return ident1;
case 'fptoui': case 'fptosi': return makeRounding(ident1, bitsLeft, op === 'fptosi');
// TODO: We sometimes generate false instead of 0, etc., in the *cmps. It seemed slightly faster before, but worth rechecking
// Note that with typed arrays, these become 0 when written. So that is a potential difference with non-typed array runs.
case 'icmp': {
switch (variant) {
case 'uge': case 'sge': return ident1 + ' >= ' + ident2;
case 'ule': case 'sle': return ident1 + ' <= ' + ident2;
case 'ugt': case 'sgt': return ident1 + ' > ' + ident2;
case 'ult': case 'slt': return ident1 + ' < ' + ident2;
// We use loose comparisons, which allows false == 0 to be true, etc. Ditto in fcmp
case 'ne': case 'eq': {
// We must sign them, so we do not compare -1 to 255 (could have unsigned them both too)
// since LLVM tells us if <=, >= etc. comparisons are signed, but not == and !=.
ident1 = makeSignOp(ident1, type, 're');
ident2 = makeSignOp(ident2, type, 're');
return ident1 + (variant === 'eq' ? '==' : '!=') + ident2;
}
default: throw 'Unknown icmp variant: ' + variant;
}
}
case 'fcmp': {
switch (variant) {
// TODO 'o' ones should be 'ordered (no NaN) and',
// 'u' ones should be 'unordered or'.
case 'uge': case 'oge': return ident1 + ' >= ' + ident2;
case 'ule': case 'ole': return ident1 + ' <= ' + ident2;
case 'ugt': case 'ogt': return ident1 + ' > ' + ident2;
case 'ult': case 'olt': return ident1 + ' < ' + ident2;
case 'une': case 'one': return ident1 + ' != ' + ident2;
case 'ueq': case 'oeq': return ident1 + ' == ' + ident2;
case 'ord': return '!isNaN(' + ident1 + ') && !isNaN(' + ident2 + ')';
case 'uno': return 'isNaN(' + ident1 + ') || isNaN(' + ident2 + ')';
case 'true': return '1';
default: throw 'Unknown fcmp variant: ' + variant;
}
}
// Note that zext has sign checking, see above. We must guard against -33 in i8 turning into -33 in i32
// then unsigning that i32... which would give something huge.
case 'zext': case 'fpext': case 'sext': return ident1;
case 'fptrunc': return ident1;
case 'trunc': {
// Unlike extending, which we just 'do' (by doing nothing),
// truncating can change the number, e.g. by truncating to an i1
// in order to get the first bit
assert(ident2[1] == 'i');
assert(bitsLeft <= 32, 'Cannot truncate to more than 32 bits, since we use a native & op');
return '((' + ident1 + ') & ' + (Math.pow(2, bitsLeft)-1) + ')';
}
case 'select': return ident1 + ' ? ' + ident2 + ' : ' + ident3;
case 'ptrtoint': return ident1;
case 'inttoptr': return ident1;
default: throw 'Unknown mathcmp op: ' + item.op;
}
} }

Просмотреть файл

@ -7,7 +7,7 @@
RuntimeGenerator = {
alloc: function(size, type, init) {
var ret = type + 'TOP';
if (GUARD_MEMORY) {
if (ASSERTIONS) {
ret += '; assert(' + size + ' > 0, "Trying to allocate 0")';
}
if (init) {
@ -23,7 +23,7 @@ RuntimeGenerator = {
// An allocation that lives as long as the current function call
stackAlloc: function(size) {
var ret = RuntimeGenerator.alloc(size, 'STACK', INIT_STACK);
if (GUARD_MEMORY) {
if (ASSERTIONS) {
ret += '; assert(STACKTOP < STACK_ROOT + STACK_MAX, "Ran out of stack")';
}
return ret;
@ -35,7 +35,7 @@ RuntimeGenerator = {
// until the parent unwinds its stack. So potentially if we are in
// a loop, we can use a lot of memory.
var ret = 'var __stackBase__ = STACKTOP; STACKTOP += ' + initial;
if (GUARD_MEMORY) {
if (ASSERTIONS) {
ret += '; assert(STACKTOP < STACK_MAX)';
}
if (INIT_STACK) {

Просмотреть файл

@ -23,11 +23,12 @@ CHECK_SIGNS = 0; // Runtime errors for signing issues that need correcting.
// order to find if your code needs CORRECT_SIGNS. If you can get your
// code to run without CORRECT_SIGNS, it will run much faster
GUARD_LABELS = 0; // Whether we should throw if we encounter a bad __label__, i.e.,
// if code flow runs into a fault
GUARD_MEMORY = 1; // Whether we should check that each allocation to the stack does not
// exceed it's size, whether all allocations (stack and static) are
// of positive size, etc.
ASSERTIONS = 1; // Whether we should add runtime assertions, for example to
// check that each allocation to the stack does not
// exceed it's size, whether all allocations (stack and static) are
// of positive size, etc., whether we should throw if we encounter a bad __label__, i.e.,
// if code flow runs into a fault
INVOKE_RUN = 1; // Whether we will call run(). Disable if you embed the generated
// code in your own, and will call run() yourself at the right time
INIT_STACK = 1; // Whether to initialize memory on the stack to 0.

Просмотреть файл

@ -62,6 +62,12 @@ function assertTrue(a, msg) {
}
assert = assertTrue;
function warn(a, msg) {
if (!a) {
dprint('Warning: ' + msg);
}
}
function dedup(items, ident) {
var seen = {};
if (ident) {
@ -226,3 +232,7 @@ function setIntersect(x, y) {
return ret;
}
function copy(x) {
return JSON.parse(JSON.stringify(x));
}

Просмотреть файл

@ -168,7 +168,7 @@ class RunnerCore(unittest.TestCase):
def do_emscripten(self, filename, output_processor=None):
# Run Emscripten
exported_settings = {}
for setting in ['QUANTUM_SIZE', 'RELOOP', 'OPTIMIZE', 'GUARD_MEMORY', 'USE_TYPED_ARRAYS', 'SAFE_HEAP', 'CHECK_OVERFLOWS', 'CORRECT_OVERFLOWS', 'CORRECT_SIGNS', 'CHECK_SIGNS', 'CORRECT_OVERFLOWS_LINES', 'CORRECT_SIGNS_LINES', 'CORRECT_ROUNDINGS', 'CORRECT_ROUNDINGS_LINES', 'INVOKE_RUN']:
for setting in ['QUANTUM_SIZE', 'RELOOP', 'OPTIMIZE', 'ASSERTIONS', 'USE_TYPED_ARRAYS', 'SAFE_HEAP', 'CHECK_OVERFLOWS', 'CORRECT_OVERFLOWS', 'CORRECT_SIGNS', 'CHECK_SIGNS', 'CORRECT_OVERFLOWS_LINES', 'CORRECT_SIGNS_LINES', 'CORRECT_ROUNDINGS', 'CORRECT_ROUNDINGS_LINES', 'INVOKE_RUN']:
value = eval(setting)
exported_settings[setting] = value
compiler_output = timeout_run(Popen([EMSCRIPTEN, filename + '.o.ll', COMPILER_ENGINE[0], str(exported_settings).replace("'", '"'), filename + '.o.js'], stdout=PIPE, stderr=STDOUT), TIMEOUT, 'Compiling')
@ -2174,7 +2174,7 @@ if 'benchmark' not in sys.argv:
exec('''
class %s(T):
def setUp(self):
global COMPILER, QUANTUM_SIZE, RELOOP, OPTIMIZE, GUARD_MEMORY, USE_TYPED_ARRAYS, LLVM_OPTS, SAFE_HEAP, CHECK_OVERFLOWS, CORRECT_OVERFLOWS, CORRECT_OVERFLOWS_LINES, CORRECT_SIGNS, CORRECT_SIGNS_LINES, CHECK_SIGNS, COMPILER_TEST_OPTS, CORRECT_ROUNDINGS, CORRECT_ROUNDINGS_LINES, INVOKE_RUN
global COMPILER, QUANTUM_SIZE, RELOOP, OPTIMIZE, ASSERTIONS, USE_TYPED_ARRAYS, LLVM_OPTS, SAFE_HEAP, CHECK_OVERFLOWS, CORRECT_OVERFLOWS, CORRECT_OVERFLOWS_LINES, CORRECT_SIGNS, CORRECT_SIGNS_LINES, CHECK_SIGNS, COMPILER_TEST_OPTS, CORRECT_ROUNDINGS, CORRECT_ROUNDINGS_LINES, INVOKE_RUN
COMPILER = '%s'
QUANTUM_SIZE = 4 # See settings.js
@ -2182,7 +2182,7 @@ class %s(T):
embetter = %d
INVOKE_RUN = 1
RELOOP = OPTIMIZE = USE_TYPED_ARRAYS = embetter
GUARD_MEMORY = 1-embetter
ASSERTIONS = 1-embetter
SAFE_HEAP = 1-(embetter and llvm_opts)
LLVM_OPTS = llvm_opts
CHECK_OVERFLOWS = 1-(embetter or llvm_opts)
@ -2225,7 +2225,7 @@ else:
QUANTUM_SIZE = 4
RELOOP = OPTIMIZE = 1
USE_TYPED_ARRAYS = 0
GUARD_MEMORY = SAFE_HEAP = CHECK_OVERFLOWS = CORRECT_OVERFLOWS = CHECK_SIGNS = 0
ASSERTIONS = SAFE_HEAP = CHECK_OVERFLOWS = CORRECT_OVERFLOWS = CHECK_SIGNS = 0
INVOKE_RUN = 1
CORRECT_SIGNS = 0
CORRECT_ROUNDINGS = 0