emscripten/tools/js-optimizer.js

1049 строки
39 KiB
JavaScript

//==============================================================================
// Optimizer tool. This is meant to be run after the emscripten compiler has
// finished generating code. These optimizations are done on the generated
// code to further improve it. Some of the modifications also work in
// conjunction with closure compiler.
//==============================================================================
var uglify = require('../tools/eliminator/node_modules/uglify-js');
var fs = require('fs');
// Make node environment compatible with JS shells
function print(text) {
process.stdout.write(text + '\n');
}
function printErr(text) {
process.stderr.write(text + '\n');
}
function read(filename) {
if (filename[0] != '/') filename = __dirname.split('/').slice(0, -1).join('/') + '/src/' + filename;
return fs.readFileSync(filename).toString();
}
var arguments = process.argv.slice(2);
// Load some modules
eval(read('utility.js'));
// Utilities
var FUNCTION = set('defun', 'function');
var LOOP = set('do', 'while', 'for');
var LOOP_FLOW = set('break', 'continue');
var NULL_NODE = ['name', 'null'];
var UNDEFINED_NODE = ['unary-prefix', 'void', ['num', 0]];
var TRUE_NODE = ['unary-prefix', '!', ['num', 0]];
var FALSE_NODE = ['unary-prefix', '!', ['num', 1]];
var GENERATED_FUNCTIONS_MARKER = '// EMSCRIPTEN_GENERATED_FUNCTIONS:';
var generatedFunctions = null;
function setGeneratedFunctions(metadata) {
generatedFunctions = set(eval(metadata.replace(GENERATED_FUNCTIONS_MARKER, '')));
}
function isGenerated(ident) {
return ident in generatedFunctions;
}
function srcToAst(src) {
return uglify.parser.parse(src);
}
function astToSrc(ast) {
return uglify.uglify.gen_code(ast, {
ascii_only: true,
beautify: true,
indent_level: 2
});
}
// Traverses a JavaScript syntax tree rooted at the given node calling the given
// callback for each node.
// @arg node: The root of the AST.
// @arg pre: The pre to call for each node. This will be called with
// the node as the first argument and its type as the second. If true is
// returned, the traversal is stopped. If an object is returned,
// it replaces the passed node in the tree.
// @arg post: A callback to call after traversing all children.
// @arg stack: If true, a stack will be implemented: If pre does not push on
// the stack, we push a 0. We pop when we leave the node. The
// stack is passed as a third parameter to the callbacks.
// @returns: If the root node was replaced, the new root node. If the traversal
// was stopped, true. Otherwise undefined.
function traverse(node, pre, post, stack) {
var type = node[0], result, len;
var relevant = typeof type == 'string';
if (relevant) {
if (stack) len = stack.length;
var result = pre(node, type, stack);
if (result == true) return true;
if (typeof result == 'object') node = result; // Continue processing on this node
if (stack && len == stack.length) stack.push(0);
}
for (var i = 0; i < node.length; i++) {
var subnode = node[i];
if (typeof subnode == 'object' && subnode && subnode.length) {
var subresult = traverse(subnode, pre, post, stack);
if (subresult == true) return true;
if (typeof subresult == 'object') node[i] = subresult;
}
}
if (relevant) {
if (post) {
var postResult = post(node, type, stack);
result = result || postResult;
}
if (stack) stack.pop();
}
return result;
}
// Only walk through the generated functions
function traverseGenerated(ast, pre, post, stack) {
traverse(ast, function(node) {
if (node[0] == 'defun' && isGenerated(node[1])) {
traverse(node, pre, post, stack);
}
});
}
function traverseGeneratedFunctions(ast, callback) {
traverse(ast, function(node) {
if (node[0] == 'defun' && isGenerated(node[1])) {
callback(node);
}
});
}
// Walk the ast in a simple way, with an understanding of which JS variables are defined)
function traverseWithVariables(ast, callback) {
traverse(ast, function(node, type, stack) {
if (type in FUNCTION) {
stack.push({ type: 'function', vars: node[2] });
} else if (type == 'var') {
// Find our function, add our vars
var func = stack[stack.length-1];
if (func) {
func.vars = func.vars.concat(node[1].map(function(varItem) { return varItem[0] }));
}
}
}, function(node, type, stack) {
if (type == 'toplevel' || type in FUNCTION) {
// We know all of the variables that are seen here, proceed to do relevant replacements
var allVars = stack.map(function(item) { return item ? item.vars : [] }).reduce(concatenator, []); // FIXME dictionary for speed?
traverse(node, function(node2, type2, stack2) {
// Be careful not to look into our inner functions. They have already been processed.
if (sum(stack2) > 1 || (type == 'toplevel' && sum(stack2) == 1)) return;
if (type2 in FUNCTION) stack2.push(1);
return callback(node2, type2, allVars);
}, null, []);
}
}, []);
}
function emptyNode() {
return ['toplevel', []]
}
// Passes
// Dump the AST. Useful for debugging. For example,
// echo "HEAP[(a+b+c)>>2]" | node tools/js-optimizer.js dumpAst
function dumpAst(ast) {
printErr(JSON.stringify(ast));
}
function dumpSrc(ast) {
printErr(astToSrc(ast));
}
// Undos closure's creation of global variables with values true, false,
// undefined, null. These cut down on size, but do not affect gzip size
// and make JS engine's lives slightly harder (?)
function unGlobalize(ast) {
assert(ast[0] == 'toplevel');
var values = {};
// Find global renamings of the relevant values
ast[1].forEach(function(node, i) {
if (node[0] != 'var') return;
node[1] = node[1].filter(function(varItem, j) {
var ident = varItem[0];
var value = varItem[1];
if (!value) return true;
var possible = false;
if (jsonCompare(value, NULL_NODE) ||
jsonCompare(value, UNDEFINED_NODE) ||
jsonCompare(value, TRUE_NODE) ||
jsonCompare(value, FALSE_NODE)) {
possible = true;
}
if (!possible) return true;
// Make sure there are no assignments to this variable. (This isn't fast, we traverse many times..)
ast[1][i][1][j] = emptyNode();
var assigned = false;
traverseWithVariables(ast, function(node, type, allVars) {
if (type == 'assign' && node[2][0] == 'name' && node[2][1] == ident) assigned = true;
});
ast[1][i][1][j] = [ident, value];
if (!assigned) {
values[ident] = value;
return false;
}
return true;
});
if (node[1].length == 0) {
ast[1][i] = emptyNode();
}
});
traverseWithVariables(ast, function(node, type, allVars) {
if (type == 'name') {
var ident = node[1];
if (ident in values && allVars.indexOf(ident) < 0) {
return copy(values[ident]);
}
}
});
}
// Closure compiler, when inlining, will insert assignments to
// undefined for the shared variables. However, in compiled code
// - and in library/shell code too! - we should never rely on
// undefined being assigned. So we can simply remove those assignments.
//
// Note: An inlined function that kept a large value referenced, may
// keep that references when inlined, if we remove the setting to
// undefined. This is not dangerous in compiled code, but might be
// in supporting code (for example, holding on to the HEAP when copying).
//
// This pass assumes that unGlobalize has been run, so undefined
// is now explicit.
function removeAssignsToUndefined(ast) {
traverse(ast, function(node, type) {
if (type == 'assign' && jsonCompare(node[3], ['unary-prefix', 'void', ['num', 0]])) {
return emptyNode();
} else if (type == 'var') {
node[1] = node[1].map(function(varItem, j) {
var ident = varItem[0];
var value = varItem[1];
if (jsonCompare(value, UNDEFINED_NODE)) return [ident];
return [ident, value];
});
}
});
// cleanup (|x = y = void 0| leaves |x = ;| right now)
var modified = true;
while (modified) {
modified = false;
traverse(ast, function(node, type) {
if (type == 'assign' && jsonCompare(node[3], emptyNode())) {
modified = true;
return emptyNode();
} else if (type == 'var') {
node[1] = node[1].map(function(varItem, j) {
var ident = varItem[0];
var value = varItem[1];
if (value && jsonCompare(value, emptyNode())) return [ident];
return [ident, value];
});
}
});
}
}
// XXX This is an invalid optimization
// We sometimes leave some settings to __label__ that are not needed, if later in
// the relooper we realize that we have a single entry, so no checks on __label__
// are actually necessary. It's easy to clean those up now.
function removeUnneededLabelSettings(ast) {
traverse(ast, function(node, type) {
if (type == 'defun') { // all of our compiled code is in defun nodes
// Find all checks
var checked = {};
traverse(node, function(node, type) {
if (type == 'binary' && node[1] == '==' && node[2][0] == 'name' && node[2][1] == '__label__') {
assert(node[3][0] == 'num');
checked[node[3][1]] = 1;
}
});
// Remove unneeded sets
traverse(node, function(node, type) {
if (type == 'assign' && node[2][0] == 'name' && node[2][1] == '__label__') {
assert(node[3][0] == 'num');
if (!(node[3][1] in checked)) return emptyNode();
}
});
}
});
}
// Various expression simplifications. Pre run before closure (where we still have metadata), Post run after.
function simplifyExpressionsPre(ast) {
// When there is a bunch of math like (((8+5)|0)+12)|0, only the external |0 is needed, one correction is enough.
// At each node, ((X|0)+Y)|0 can be transformed into (X+Y): The inner corrections are not needed
// TODO: Is the same is true for 0xff, 0xffff?
// Likewise, if we have |0 inside a block that will be >>'d, then the |0 is unnecessary because some
// 'useful' mathops already |0 anyhow.
function simplifyBitops(ast) {
var USEFUL_BINARY_OPS = set('<<', '>>', '|', '&', '^');
var SAFE_BINARY_OPS = set('+', '-', '*', '/', '%');
var ZERO = ['num', 0];
var rerun = true;
while (rerun) {
rerun = false;
traverseGenerated(ast, function(node, type, stack) {
if (type == 'binary' && node[1] == '|' && (jsonCompare(node[2], ZERO) || jsonCompare(node[3], ZERO))) {
stack.push(1); // From here on up, no need for this kind of correction, it's done at the top
// We might be able to remove this correction
for (var i = stack.length-2; i >= 0; i--) {
if (stack[i] == 1) {
// Great, we can eliminate
rerun = true;
return jsonCompare(node[2], ZERO) ? node[3] : node[2];
} else if (stack[i] == -1) {
break; // Too bad, we can't
}
}
} else if (type == 'binary' && node[1] in USEFUL_BINARY_OPS) {
stack.push(1);
} else if ((type == 'binary' && node[1] in SAFE_BINARY_OPS) || type == 'num' || type == 'name') {
stack.push(0); // This node is safe in that it does not interfere with this optimization
} else {
stack.push(-1); // This node is dangerous! Give up if you see this before you see '1'
}
}, null, []);
}
}
// The most common mathop is addition, e.g. in getelementptr done repeatedly. We can join all of those,
// by doing (num+num) ==> newnum, and (name+num)+num = name+newnum
function joinAdditions(ast) {
var rerun = true;
while (rerun) {
rerun = false;
traverseGenerated(ast, function(node, type) {
if (type == 'binary' && node[1] == '+') {
if (node[2][0] == 'num' && node[3][0] == 'num') {
rerun = true;
return ['num', node[2][1] + node[3][1]];
}
for (var i = 2; i <= 3; i++) {
var ii = 5-i;
for (var j = 2; j <= 3; j++) {
if (node[i][0] == 'num' && node[ii][0] == 'binary' && node[ii][1] == '+' && node[ii][j][0] == 'num') {
rerun = true;
node[ii][j][1] += node[i][1];
return node[ii];
}
}
}
}
});
}
}
simplifyBitops(ast);
joinAdditions(ast);
}
// In typed arrays mode 2, we can have
// HEAP[x >> 2]
// very often. We can in some cases do the shift on the variable itself when it is set,
// to greatly reduce the number of shift operations.
// TODO: when shifting a variable, if there are other uses, keep an unshifted version too, to prevent slowdowns?
function optimizeShiftsInternal(ast, conservative) {
var MAX_SHIFTS = 3;
traverseGeneratedFunctions(ast, function(fun) {
var funMore = true;
var funFinished = {};
while (funMore) {
funMore = false;
// Recognize variables and parameters
var vars = {};
function newVar(name, param, addUse) {
if (!vars[name]) {
vars[name] = {
param: param,
defs: addUse ? 1 : 0,
uses: 0,
timesShifted: [0, 0, 0, 0], // zero shifts of size 0, 1, 2, 3
benefit: 0,
primaryShift: -1
};
}
}
// params
if (fun[2]) {
fun[2].forEach(function(arg) {
newVar(arg, true, true);
});
}
// vars
// XXX if var has >>=, ignore it here? That means a previous pass already optimized it
traverse(fun, function(node, type) {
if (type == 'var') {
node[1].forEach(function(arg) {
newVar(arg[0], false, arg[1]);
});
}
});
// uses and defs TODO: weight uses by being inside a loop (powers). without that, we
// optimize for code size, not speed.
traverse(fun, function(node, type, stack) {
stack.push(node);
if (type == 'name' && vars[node[1]] && stack[stack.length-2][0] != 'assign') {
vars[node[1]].uses++;
} else if (type == 'assign' && node[2][0] == 'name' && vars[node[2][1]]) {
vars[node[2][1]].defs++;
}
}, null, []);
// First, break up elements inside a shift. This lets us see clearly what to do next.
traverse(fun, function(node, type) {
if (type == 'binary' && node[1] == '>>' && node[3][0] == 'num') {
var shifts = node[3][1];
if (shifts <= MAX_SHIFTS) {
// Push the >> inside the value elements
function addShift(subNode) {
if (subNode[0] == 'binary' && subNode[1] == '+') {
subNode[2] = addShift(subNode[2]);
subNode[3] = addShift(subNode[3]);
return subNode;
}
if (subNode[0] == 'name' && !subNode[2]) { // names are returned with a shift, but we also note their being shifted
var name = subNode[1];
if (vars[name]) {
vars[name].timesShifted[shifts]++;
subNode[2] = true;
}
}
return ['binary', '>>', subNode, ['num', shifts]];
}
return addShift(node[2]);
}
}
});
traverse(fun, function(node, type) {
if (node[0] == 'name' && node[2]) {
return node.slice(0, 2); // clean up our notes
}
});
// At this point, shifted expressions are split up, and we know who the vars are and their info, so we can decide
// TODO: vars that depend on other vars
for (var name in vars) {
var data = vars[name];
var totalTimesShifted = sum(data.timesShifted);
if (totalTimesShifted == 0) {
continue;
}
if (totalTimesShifted != Math.max.apply(null, data.timesShifted)) {
// TODO: Handle multiple different shifts
continue;
}
if (funFinished[name]) continue;
// We have one shift size (and possible unshifted uses). Consider replacing this variable with a shifted clone. If
// the estimated benefit is >0, we will do it
if (data.defs == 1) {
data.benefit = totalTimesShifted - 2*(data.defs + (data.param ? 1 : 0));
}
if (conservative) data.benefit = 0;
if (data.benefit > 0) {
funMore = true; // We will reprocess this function
for (var i = 0; i < 4; i++) {
if (data.timesShifted[i]) {
data.primaryShift = i;
}
}
}
}
//printErr(JSON.stringify(vars));
function cleanNotes() { // We need to mark 'name' nodes as 'processed' in some passes here; this cleans the notes up
traverse(fun, function(node, type) {
if (node[0] == 'name' && node[2]) {
return node.slice(0, 2);
}
});
}
cleanNotes();
// Apply changes
function needsShift(name) {
return vars[name] && vars[name].primaryShift >= 0;
}
for (var name in vars) { // add shifts for params and var's for all new variables
var data = vars[name];
if (needsShift(name)) {
if (data.param) {
fun[3].unshift(['var', [[name + '$s' + data.primaryShift, ['binary', '>>', ['name', name], ['num', data.primaryShift]]]]]);
} else {
fun[3].unshift(['var', [[name + '$s' + data.primaryShift]]]);
}
}
}
traverse(fun, function(node, type, stack) { // add shift to assignments
stack.push(node);
if (node[0] == 'assign' && node[1] === true && node[2][0] == 'name' && needsShift(node[2][1]) && !node[2][2]) {
var name = node[2][1];
var data = vars[name];
var parent = stack[stack.length-3];
var parentIndex;
if (parent[0] == 'defun') {
parentIndex = 3;
} else if (parent[0] == 'block') {
parentIndex = 1;
} else {
throw 'Invalid parent for assign-shift: ' + dump(parent);
}
var i = parent[parentIndex].indexOf(stack[stack.length-2]);
parent[parentIndex].splice(i+1, 0, ['stat', ['assign', true, ['name', name + '$s' + data.primaryShift], ['binary', '>>', ['name', name, true], ['num', data.primaryShift]]]]);
} else if (node[0] == 'var') {
var args = node[1];
for (var i = 0; i < args.length; i++) {
var arg = args[i];
var name = arg[0];
var data = vars[name];
if (arg[1] && needsShift(name)) {
args.splice(i+1, 0, [name + '$s' + data.primaryShift, ['binary', '>>', ['name', name, true], ['num', data.primaryShift]]]);
}
}
return node;
}
}, null, []);
cleanNotes();
traverse(fun, function(node, type, stack) { // replace shifted name with new variable
stack.push(node);
if (node[0] == 'binary' && node[1] == '>>' && node[2][0] == 'name' && needsShift(node[2][1]) && node[3][0] == 'num') {
var name = node[2][1];
var data = vars[name];
var parent = stack[stack.length-2];
// Don't modify in |x$sN = x >> 2|, in normal assigns and in var assigns
if (parent[0] == 'assign' && parent[2][0] == 'name' && parent[2][1] == name + '$s' + data.primaryShift) return;
if (parent[0] == name + '$s' + data.primaryShift) return;
if (node[3][1] == data.primaryShift) {
return ['name', name + '$s' + data.primaryShift];
}
}
}, null, []);
cleanNotes();
var SIMPLE_SHIFTS = set('<<', '>>');
var more = true;
while (more) { // combine shifts in the same direction as an optimization
more = false;
traverse(fun, function(node, type) {
if (node[0] == 'binary' && node[1] in SIMPLE_SHIFTS && node[2][0] == 'binary' && node[2][1] == node[1] &&
node[3][0] == 'num' && node[2][3][0] == 'num') { // do not turn a << b << c into a << b + c; while logically identical, it is slower
more = true;
return ['binary', node[1], node[2][2], ['num', node[3][1] + node[2][3][1]]];
}
});
}
// Before recombining, do some additional optimizations
traverse(fun, function(node, type) {
// Apply constant shifts onto constants
if (type == 'binary' && node[1] == '>>' && node[2][0] == 'num' && node[3][0] == 'num' && node[3][1] <= MAX_SHIFTS) {
var subNode = node[2];
var shifts = node[3][1];
var result = subNode[1] / Math.pow(2, shifts);
if (result % 1 == 0) {
subNode[1] = result;
return subNode;
}
}
// Optimize the case of ($a*80)>>2 into ($a*20)|0
if (type == 'binary' && node[1] in SIMPLE_SHIFTS &&
node[2][0] == 'binary' && node[2][1] == '*') {
var mulNode = node[2];
if (mulNode[2][0] == 'num') {
var temp = mulNode[2];
mulNode[2] = mulNode[3];
mulNode[3] = temp;
}
if (mulNode[3][0] == 'num') {
if (node[1] == '<<') {
mulNode[3][1] *= Math.pow(2, node[3][1]);
node[1] = '|';
node[3][1] = 0;
return node;
} else {
if (mulNode[3][1] % Math.pow(2, node[3][1]) == 0) {
mulNode[3][1] /= Math.pow(2, node[3][1]);
node[1] = '|';
node[3][1] = 0;
return node;
}
}
}
}
});
// Re-combine remaining shifts, to undo the breaking up we did before. may require reordering inside +'s
traverse(fun, function(node, type, stack) {
stack.push(node);
if (type == 'binary' && node[1] == '+' && (stack[stack.length-2][0] != 'binary' || stack[stack.length-2][1] != '+')) {
// 'Flatten' added items
var addedItems = [];
function flatten(node) {
if (node[0] == 'binary' && node[1] == '+') {
flatten(node[2]);
flatten(node[3]);
} else {
addedItems.push(node);
}
}
flatten(node);
var originalOrder = addedItems.slice();
function key(node) { // a unique value for all relevant shifts for recombining, non-unique for stuff we don't need to bother with
function originalOrderKey(item) {
return -originalOrder.indexOf(item);
}
if (node[0] == 'binary' && node[1] in SIMPLE_SHIFTS) {
if (node[3][0] == 'num' && node[3][1] <= MAX_SHIFTS) return 2*node[3][1] + (node[1] == '>>' ? 100 : 0); // 0-106
return (node[1] == '>>' ? 20000 : 10000) + originalOrderKey(node);
}
if (node[0] == 'num') return -20000 + node[1];
return -10000 + originalOrderKey(node); // Don't modify the original order if we don't modify anything
}
for (var i = 0; i < addedItems.length; i++) {
if (addedItems[i][0] == 'string') return; // this node is not relevant for us
}
addedItems.sort(function(node1, node2) {
return key(node1) - key(node2);
});
// Regenerate items, now sorted
var i = 0;
while (i < addedItems.length-1) { // re-combine inside addedItems
var k = key(addedItems[i]), k1 = key(addedItems[i+1]);
if (k == k1 && k >= 0 && k1 <= 106) {
addedItems[i] = ['binary', addedItems[i][1], ['binary', '+', addedItems[i][2], addedItems[i+1][2]], addedItems[i][3]];
addedItems.splice(i+1, 1);
} else {
i++;
}
}
var num = 0;
for (i = 0; i < addedItems.length; i++) { // combine all numbers into one
if (addedItems[i][0] == 'num') {
num += addedItems[i][1];
addedItems.splice(i, 1);
i--;
}
}
if (num != 0) { // add the numbers into an existing shift, we
// prefer (x+5)>>7 over (x>>7)+5 , since >>'s result is known to be 32-bit and is more easily optimized.
// Also, in the former we can avoid the parentheses, which saves a little space (the number will be bigger,
// so it might take more space, but normally at most one more digit).
var added = false;
for (i = 0; i < addedItems.length; i++) {
if (addedItems[i][0] == 'binary' && addedItems[i][1] == '>>' && addedItems[i][3][0] == 'num' && addedItems[i][3][1] <= MAX_SHIFTS) {
addedItems[i] = ['binary', '>>', ['binary', '+', addedItems[i][2], ['num', num << addedItems[i][3][1]]], addedItems[i][3]];
added = true;
}
}
if (!added) {
addedItems.unshift(['num', num]);
}
}
var ret = addedItems.pop();
while (addedItems.length > 0) { // re-create AST from addedItems
ret = ['binary', '+', ret, addedItems.pop()];
}
return ret;
}
}, null, []);
// Note finished variables
for (var name in vars) {
funFinished[name] = true;
}
}
});
}
function optimizeShiftsConservative(ast) {
optimizeShiftsInternal(ast, true);
}
function optimizeShiftsAggressive(ast) {
optimizeShiftsInternal(ast, false);
}
// We often have branchings that are simplified so one end vanishes, and
// we then get
// if (!(x < 5))
// or such. Simplifying these saves space and time.
function simplifyNotComps(ast) {
traverse(ast, function(node, type) {
if (type == 'unary-prefix' && node[1] == '!' && node[2][0] == 'binary') {
if (node[2][1] == '<') {
return ['binary', '>=', node[2][2], node[2][3]];
} else if (node[2][1] == '>') {
return ['binary', '<=', node[2][2], node[2][3]];
} else if (node[2][1] == '==') {
return ['binary', '!=', node[2][2], node[2][3]];
} else if (node[2][1] == '!=') {
return ['binary', '==', node[2][2], node[2][3]];
} else if (node[2][1] == '===') {
return ['binary', '!==', node[2][2], node[2][3]];
} else if (node[2][1] == '!==') {
return ['binary', '===', node[2][2], node[2][3]];
}
}
});
}
function simplifyExpressionsPost(ast) {
simplifyNotComps(ast);
}
function hasSideEffects(node) { // this is 99% incomplete and wrong! It just works on __label__ == X and number literals
if (node[0] == 'num') return false;
if (node[0] == 'binary' && (node[1] == '==' || node[1] == '!=') && node[2][0] == 'name' &&
node[3][0] == 'num') {
return false;
} else {
return true;
}
}
// Clear out empty ifs and blocks, and redundant blocks/stats and so forth
function vacuum(ast) {
function isEmpty(node) {
if (!node) return true;
if (jsonCompare(node, emptyNode())) return true;
if (node[0] == 'block' && (!node[1] || (typeof node[1] != 'object') || node[1].length == 0 || (node[1].length == 1 && isEmpty(node[1])))) return true;
return false;
}
var ret;
var more = true;
while (more) {
more = false;
function simplifyList(node, i) {
var changed = false;
var pre = node[i].length;
node[i] = node[i].filter(function(node) { return !isEmpty(node) });
if (node[i].length < pre) changed = true;
// Also, seek blocks with single items we can simplify
node[i] = node[i].map(function(subNode) {
if (subNode[0] == 'block' && typeof subNode[1] == 'object' && subNode[1].length == 1 && subNode[1][0][0] == 'if') {
return subNode[1][0];
}
return subNode;
});
if (changed) {
more = true;
return node;
}
}
traverseGeneratedFunctions(ast, function(node) {
simplifyNotComps(node);
traverse(node, function(node, type) {
if (type == 'block' && node[1] && node[1].length == 1 && node[1][0][0] == 'block') {
more = true;
return node[1][0];
} else if (type == 'stat' && node[1][0] == 'block') {
more = true;
return node[1];
} else if (type == 'block' && typeof node[1] == 'object') {
ret = simplifyList(node, 1);
if (ret) return ret;
} else if (type == 'defun' && node[3].length == 1 && node[3][0][0] == 'block') {
more = true;
node[3] = node[3][0][1];
return node;
} else if (type == 'defun') {
ret = simplifyList(node, 3);
if (ret) return ret;
} else if (type == 'do' && node[1][0] == 'num' && jsonCompare(node[2], emptyNode())) {
more = true;
return emptyNode();
} else if (type == 'label' && jsonCompare(node[2], emptyNode())) {
more = true;
return emptyNode();
} else if (type == 'if') {
var empty2 = isEmpty(node[2]), empty3 = isEmpty(node[3]), has3 = node.length == 4;
if (!empty2 && empty3 && has3) { // empty else clauses
more = true;
return node.slice(0, 3);
} else if (empty2 && !empty3) { // empty if blocks
more = true;
return ['if', ['unary-prefix', '!', node[1]], node[3]];
} else if (empty2 && empty3) {
more = true;
if (hasSideEffects(node[1])) {
return ['stat', node[1]];
} else {
return emptyNode();
}
}
} else if (type == 'do' && isEmpty(node[2]) && !hasSideEffects(node[1])) {
more = true;
return emptyNode();
}
});
});
}
}
function getStatements(node) {
if (node[0] == 'defun') {
return node[3];
} else if (node[0] == 'block') {
return node[1];
} else {
return null;
}
}
// Multiple blocks from the relooper are, in general, implemented by
// if (__label__ == x) { } else if ..
// and branching into them by
// if (condition) { __label__ == x } else ..
// We can hoist the multiple block into the condition, thus removing code and one 'if' check
function hoistMultiples(ast) {
traverseGeneratedFunctions(ast, function(node) {
traverse(node, function(node, type) {
var statements = getStatements(node);
if (!statements) return;
var modified = false;
for (var i = 0; i < statements.length-1; i++) {
var modifiedI = false;
var pre = statements[i];
if (pre[0] != 'if') continue;
var post = statements[i+1];
// Look into some block types. shell() will then recreate the shell that we looked into
var postInner = post;
var shell = function(x) { return x };
while (true) {
/*if (postInner[0] == 'block') {
postInner = postInner[1][0];
} else */if (postInner[0] == 'label') {
shell = (function(oldShell, oldPostInner) {
return function(x) {
return oldShell(['label', oldPostInner[1], x]);
};
})(shell, postInner);
postInner = postInner[2];
} else if (postInner[0] == 'do') {
shell = (function(oldShell, oldPostInner) {
return function(x) {
return oldShell(['do', copy(oldPostInner[1]), ['block', [x]]]);
}
})(shell, postInner);;
postInner = postInner[2][1][0];
} else {
break; // give up
}
}
if (postInner[0] != 'if') continue;
// Look into this if, and its elseifs
while (postInner && postInner[0] == 'if') {
var cond = postInner[1];
if (cond[0] == 'binary' && cond[1] == '==' && cond[2][0] == 'name' && cond[2][1] == '__label__') {
assert(cond[3][0] == 'num');
// We have a valid Multiple check here. Try to hoist it, look for the source in |pre| and its else's
var labelNum = cond[3][1];
var labelBlock = postInner[2];
assert(labelBlock[0] == 'block');
var found = false;
traverse(pre, function(preNode, preType) {
if (!found && preType == 'assign' && preNode[2][0] == 'name' && preNode[2][1] == '__label__') {
assert(preNode[3][0] == 'num');
if (preNode[3][1] == labelNum) {
// That's it! Hoist away. We can also throw away the __label__ setting as its goal has already been achieved
found = true;
modifiedI = true;
postInner[2] = ['block', []];
return labelBlock;
}
}
});
}
postInner = postInner[3]; // Proceed to look in the else clause
}
if (modifiedI) {
statements[i] = shell(pre);
}
}
if (modified) return node;
});
// After hoisting in this function, it is safe to remove { __label__ = x; } blocks, because
// if they were leading to the next code right after them, they would be hoisted, and if they
// are going to some other place entirely, they would break or continue. The only risky
// situation is if the code after us is a multiple, in which case we might be checking for
// this label inside it (or in a later multiple, even)
function tryEliminate(node) {
if (node[0] == 'if') {
var replaced;
if (replaced = tryEliminate(node[2])) node[2] = replaced;
if (node[3] && (replaced = tryEliminate(node[3]))) node[3] = replaced;
} else {
if (node[0] == 'block' && node[1] && node[1].length > 0) {
var subNode = node[1][node[1].length-1];
if (subNode[0] == 'stat' && subNode[1][0] == 'assign' && subNode[1][2][0] == 'name' &&
subNode[1][2][1] == '__label__' && subNode[1][3][0] == 'num') {
if (node[1].length == 1) {
return emptyNode();
} else {
node[1].splice(node[1].length-1, 1);
return node;
}
}
}
}
return false;
}
function getActualStatement(node) { // find the actual active statement, ignoring a label and one-time do loop
if (node[0] == 'label') node = node[2];
if (node[0] == 'do') node = node[2];
if (node[0] == 'block' && node[1].length == 1) node = node[1][0];
return node;
}
vacuum([0, [node]]);
traverse(node, function(node, type) {
var statements = getStatements(node);
if (!statements) return;
for (var i = 0; i < statements.length-1; i++) {
var curr = getActualStatement(statements[i]);
var next = statements[i+1];
if (curr[0] == 'if' && next[0] != 'if' && next[0] != 'label' && next[0] != 'do' && next[0] != 'while') {
tryEliminate(curr);
}
}
});
});
vacuum(ast);
}
// Simplifies loops
// WARNING: This assumes all loops and breaks/continues are labelled
function loopOptimizer(ast) {
// Remove unneeded labels and one-time (do while(0)) loops. It is convenient to do these both at once.
function passTwo(ast) {
var neededDos = [];
// Find unneeded labels
traverseGenerated(ast, function(node, type, stack) {
if (type == 'label' && node[2][0] in LOOP) {
// this is a labelled loop. we don't know if it's needed yet. Mark its label for removal for now now.
stack.push(node);
node[1] = '+' + node[1];
} else if (type in LOOP) {
stack.push(node);
} else if (type in LOOP_FLOW) {
// Find topmost loop, and its label if there is one
var lastLabel = null, lastLoop = null, i = stack.length-1;
while (i >= 0 && !lastLoop) {
if (stack[i][0] in LOOP) lastLoop = stack[i];
i--;
}
assert(lastLoop, 'Cannot break/continue without a Label');
while (i >= 0 && !lastLabel) {
if (stack[i][0] in LOOP) break; // another loop in the middle - no label for lastLoop
if (stack[i][0] == 'label') lastLabel = stack[i];
i--;
}
var ident = node[1]; // there may not be a label ident if this is a simple break; or continue;
var plus = '+' + ident;
if (lastLabel && ident && (ident == lastLabel[1] || plus == lastLabel[1])) {
// If this is a 'do' loop, this break means we actually need it.
neededDos.push(lastLoop);
// We don't need the control flow command to have a label - it's referring to the current loop
return [node[0]];
} else {
if (!ident) {
// No label on the break/continue, so keep the last loop alive (no need for its label though)
neededDos.push(lastLoop);
} else {
// Find the label node that needs to stay alive
stack.forEach(function(label) {
if (!label) return;
if (label[1] == plus) label[1] = label[1].substr(1); // Remove '+', marking it as needed
});
}
}
}
}, null, []);
// We return whether another pass is necessary
var more = false;
// Remove unneeded labels
traverseGenerated(ast, function(node, type) {
if (type == 'label' && node[1][0] == '+') {
more = true;
var ident = node[1].substr(1);
// Remove label from loop flow commands
traverse(node[2], function(node2, type) {
if (type in LOOP_FLOW && node2[1] == ident) {
return [node2[0]];
}
});
return node[2]; // Remove the label itself on the loop
}
});
// Remove unneeded one-time loops. We need such loops if (1) they have a label, or (2) they have a direct break so they are in neededDos.
// First, add all labeled loops of this nature to neededDos
traverseGenerated(ast, function(node, type) {
if (type == 'label' && node[2][0] == 'do') {
neededDos.push(node[2]);
}
});
// Remove unneeded dos, we know who they are now
traverseGenerated(ast, function(node, type) {
if (type == 'do' && neededDos.indexOf(node) < 0) {
assert(jsonCompare(node[1], ['num', 0]), 'Trying to remove a one-time do loop that is not one of our generated ones.;');
more = true;
return node[2];
}
});
return more;
}
// Go
// TODO: pass 1: Removal of unneeded continues, breaks if they get us to where we are already going. That will
// help the next pass.
// Multiple pass two runs may be needed, as we remove one-time loops and so forth
do {
var more = passTwo(ast);
vacuum(ast);
} while (more);
vacuum(ast);
}
// Passes table
var passes = {
dumpAst: dumpAst,
dumpSrc: dumpSrc,
unGlobalize: unGlobalize,
removeAssignsToUndefined: removeAssignsToUndefined,
//removeUnneededLabelSettings: removeUnneededLabelSettings,
simplifyExpressionsPre: simplifyExpressionsPre,
optimizeShiftsConservative: optimizeShiftsConservative,
optimizeShiftsAggressive: optimizeShiftsAggressive,
simplifyExpressionsPost: simplifyExpressionsPost,
hoistMultiples: hoistMultiples,
loopOptimizer: loopOptimizer
};
// Main
var src = fs.readFileSync('/dev/stdin').toString();
var ast = srcToAst(src);
//printErr(JSON.stringify(ast)); throw 1;
var metadata = src.split('\n').filter(function(line) { return line.indexOf('EMSCRIPTEN_GENERATED_FUNCTIONS') >= 0 })[0];
//assert(metadata, 'Must have EMSCRIPTEN_GENERATED_FUNCTIONS metadata');
if (metadata) setGeneratedFunctions(metadata);
arguments.forEach(function(arg) {
passes[arg](ast);
});
//printErr('output: ' + dump(ast));
//printErr('output: ' + astToSrc(ast));
ast = srcToAst(astToSrc(ast)); // re-parse, to simplify a little
print(astToSrc(ast));
if (metadata) print(metadata + '\n');