metric tracker (#238)
* added initial code / definition for timeseries class * added base essential methods, some implementation * add proper typing, import * move typing imports to top of file * add implementation for best metric Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
This commit is contained in:
Родитель
b487ac3991
Коммит
cd34c84e97
|
@ -39,6 +39,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
- Added support for negative targets in `nDCG` metric ([#378](https://github.com/PyTorchLightning/metrics/pull/378))
|
||||
|
||||
|
||||
- Added `MetricTracker` wrapper metric for keeping track of the same metric over multiple epochs ([#238](https://github.com/PyTorchLightning/metrics/pull/238))
|
||||
|
||||
|
||||
### Changed
|
||||
|
||||
- Moved `psnr` and `ssim` from `functional.regression.*` to `functional.image.*` ([#382](https://github.com/PyTorchLightning/metrics/pull/382))
|
||||
|
|
|
@ -556,3 +556,9 @@ BootStrapper
|
|||
|
||||
.. autoclass:: torchmetrics.BootStrapper
|
||||
:noindex:
|
||||
|
||||
MetricTracker
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: torchmetrics.MetricTracker
|
||||
:noindex:
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.helpers import seed_all
|
||||
from torchmetrics import Accuracy, MeanAbsoluteError, MeanSquaredError, Precision, Recall
|
||||
from torchmetrics.wrappers import MetricTracker
|
||||
|
||||
seed_all(42)
|
||||
|
||||
|
||||
def test_raises_error_on_wrong_input():
|
||||
with pytest.raises(TypeError, match="metric arg need to be an instance of a torchmetrics metric .*"):
|
||||
MetricTracker([1, 2, 3])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"method, method_input",
|
||||
[
|
||||
("update", (torch.randint(10, (50,)), torch.randint(10, (50,)))),
|
||||
("forward", (torch.randint(10, (50,)), torch.randint(10, (50,)))),
|
||||
("compute", None),
|
||||
],
|
||||
)
|
||||
def test_raises_error_if_increment_not_called(method, method_input):
|
||||
tracker = MetricTracker(Accuracy(num_classes=10))
|
||||
with pytest.raises(ValueError, match=f"`{method}` cannot be called before .*"):
|
||||
if method_input is not None:
|
||||
getattr(tracker, method)(*method_input)
|
||||
else:
|
||||
getattr(tracker, method)()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"base_metric, metric_input, maximize",
|
||||
[
|
||||
(partial(Accuracy, num_classes=10), (torch.randint(10, (50,)), torch.randint(10, (50,))), True),
|
||||
(partial(Precision, num_classes=10), (torch.randint(10, (50,)), torch.randint(10, (50,))), True),
|
||||
(partial(Recall, num_classes=10), (torch.randint(10, (50,)), torch.randint(10, (50,))), True),
|
||||
(MeanSquaredError, (torch.randn(50), torch.randn(50)), False),
|
||||
(MeanAbsoluteError, (torch.randn(50), torch.randn(50)), False),
|
||||
],
|
||||
)
|
||||
def test_tracker(base_metric, metric_input, maximize):
|
||||
tracker = MetricTracker(base_metric(), maximize=maximize)
|
||||
for i in range(5):
|
||||
tracker.increment()
|
||||
# check both update and forward works
|
||||
for _ in range(5):
|
||||
tracker.update(*metric_input)
|
||||
for _ in range(5):
|
||||
tracker(*metric_input)
|
||||
|
||||
val = tracker.compute()
|
||||
assert val != 0.0
|
||||
assert tracker.n_steps == i + 1
|
||||
|
||||
assert tracker.n_steps == 5
|
||||
assert tracker.compute_all().shape[0] == 5
|
||||
val, idx = tracker.best_metric(return_step=True)
|
||||
assert val != 0.0
|
||||
assert idx in list(range(5))
|
|
@ -63,7 +63,7 @@ from torchmetrics.retrieval import ( # noqa: E402
|
|||
RetrievalRecall,
|
||||
)
|
||||
from torchmetrics.text import WER, BLEUScore, ROUGEScore # noqa: E402
|
||||
from torchmetrics.wrappers import BootStrapper # noqa: E402
|
||||
from torchmetrics.wrappers import BootStrapper, MetricTracker # noqa: E402
|
||||
|
||||
__all__ = [
|
||||
"functional",
|
||||
|
@ -98,6 +98,7 @@ __all__ = [
|
|||
"MeanSquaredLogError",
|
||||
"Metric",
|
||||
"MetricCollection",
|
||||
"MetricTracker",
|
||||
"PearsonCorrcoef",
|
||||
"PIT",
|
||||
"Precision",
|
||||
|
|
|
@ -12,3 +12,4 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from torchmetrics.wrappers.bootstrapping import BootStrapper # noqa: F401
|
||||
from torchmetrics.wrappers.tracker import MetricTracker # noqa: F401
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from copy import deepcopy
|
||||
from typing import Any, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from torchmetrics.metric import Metric
|
||||
|
||||
|
||||
class MetricTracker(nn.ModuleList):
|
||||
"""A wrapper class that can help keeping track of a metric over time and implement useful methods. The wrapper
|
||||
implements the standard `update`, `compute`, `reset` methods that just calls corresponding method of the
|
||||
currently tracked metric. However, the following additional methods are provided:
|
||||
|
||||
-``MetricTracker.n_steps``: number of metrics being tracked
|
||||
|
||||
-``MetricTracker.increment()``: initialize a new metric for being tracked
|
||||
|
||||
-``MetricTracker.compute_all()``: get the metric value for all steps
|
||||
|
||||
-``MetricTracker.best_metric()``: returns the best value
|
||||
|
||||
Args:
|
||||
metric: instance of a torchmetric modular to keep track of at each timestep.
|
||||
maximize: bool indicating if higher metric values are better (`True`) or lower
|
||||
is better (`False`)
|
||||
|
||||
Example:
|
||||
|
||||
>>> from torchmetrics import Accuracy, MetricTracker
|
||||
>>> _ = torch.manual_seed(42)
|
||||
>>> tracker = MetricTracker(Accuracy(num_classes=10))
|
||||
>>> for epoch in range(5):
|
||||
... tracker.increment()
|
||||
... for batch_idx in range(5):
|
||||
... preds, target = torch.randint(10, (100,)), torch.randint(10, (100,))
|
||||
... tracker.update(preds, target)
|
||||
... print(f"current acc={tracker.compute()}") # doctest: +NORMALIZE_WHITESPACE
|
||||
current acc=0.1120000034570694
|
||||
current acc=0.08799999952316284
|
||||
current acc=0.12600000202655792
|
||||
current acc=0.07999999821186066
|
||||
current acc=0.10199999809265137
|
||||
>>> best_acc, which_epoch = tracker.best_metric(return_step=True)
|
||||
>>> tracker.compute_all()
|
||||
tensor([0.1120, 0.0880, 0.1260, 0.0800, 0.1020])
|
||||
"""
|
||||
|
||||
def __init__(self, metric: Metric, maximize: bool = True) -> None:
|
||||
super().__init__()
|
||||
if not isinstance(metric, Metric):
|
||||
raise TypeError("metric arg need to be an instance of a torchmetrics metric" f" but got {metric}")
|
||||
self._base_metric = metric
|
||||
self.maximize = maximize
|
||||
|
||||
self._increment_called = False
|
||||
|
||||
@property
|
||||
def n_steps(self) -> int:
|
||||
"""Returns the number of times the tracker has been incremented."""
|
||||
return len(self) - 1 # subtract the base metric
|
||||
|
||||
def increment(self) -> None:
|
||||
"""Creates a new instace of the input metric that will be updated next."""
|
||||
self._increment_called = True
|
||||
self.append(deepcopy(self._base_metric))
|
||||
|
||||
def forward(self, *args, **kwargs) -> None: # type: ignore
|
||||
"""Calls forward of the current metric being tracked."""
|
||||
self._check_for_increment("forward")
|
||||
return self[-1](*args, **kwargs)
|
||||
|
||||
def update(self, *args, **kwargs) -> None: # type: ignore
|
||||
"""Updates the current metric being tracked."""
|
||||
self._check_for_increment("update")
|
||||
self[-1].update(*args, **kwargs)
|
||||
|
||||
def compute(self) -> Any:
|
||||
"""Call compute of the current metric being tracked."""
|
||||
self._check_for_increment("compute")
|
||||
return self[-1].compute()
|
||||
|
||||
def compute_all(self) -> Tensor:
|
||||
"""Compute the metric value for all tracked metrics."""
|
||||
self._check_for_increment("compute_all")
|
||||
return torch.stack([metric.compute() for i, metric in enumerate(self) if i != 0], dim=0)
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Resets the current metric being tracked."""
|
||||
self[-1].reset()
|
||||
|
||||
def reset_all(self) -> None:
|
||||
"""Resets all metrics being tracked."""
|
||||
for metric in self:
|
||||
metric.reset()
|
||||
|
||||
def best_metric(self, return_step: bool = False) -> Union[float, Tuple[int, float]]:
|
||||
"""Returns the highest metric out of all tracked.
|
||||
|
||||
Args:
|
||||
return_step: If `True` will also return the step with the highest metric value.
|
||||
|
||||
Returns:
|
||||
The best metric value, and optionally the timestep.
|
||||
"""
|
||||
fn = torch.max if self.maximize else torch.min
|
||||
idx, max = fn(self.compute_all(), 0)
|
||||
if return_step:
|
||||
return idx.item(), max.item()
|
||||
return max.item()
|
||||
|
||||
def _check_for_increment(self, method: str) -> None:
|
||||
if not self._increment_called:
|
||||
raise ValueError(f"`{method}` cannot be called before `.increment()` has been called")
|
Загрузка…
Ссылка в новой задаче