fix some minor typos in docs (PL^5369)

* fix docs typos

* Apply suggestions from code review

Co-authored-by: Wansoo Kim <rladhkstn8@gmail.com>

* flake8

Co-authored-by: Wansoo Kim <rladhkstn8@gmail.com>
(cherry picked from commit a047323cc796dcf5d4709399083bfc4b3b411de9)
This commit is contained in:
Jirka Borovec 2021-01-07 14:01:52 +01:00 коммит произвёл Jirka Borovec
Родитель 1cccdc73d9
Коммит ee03bce7f0
11 изменённых файлов: 11 добавлений и 13 удалений

Просмотреть файл

@ -67,7 +67,7 @@ def average_precision(
which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the
range [0,num_classes-1]
sample_weight: sample weights for each data point
sample_weights: sample weights for each data point
Returns:
tensor with average precision. If multiclass will return list

Просмотреть файл

@ -62,7 +62,7 @@ def explained_variance(
Computes explained variance.
Args:
pred: estimated labels
preds: estimated labels
target: ground truth labels
multioutput: Defines aggregation in the case of multiple output scores. Can be one
of the following strings (default is `'uniform_average'`.):

Просмотреть файл

@ -75,7 +75,7 @@ def fbeta(
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
pred: estimated probabilities
preds: estimated probabilities
target: ground-truth labels
num_classes: Number of classes in the dataset.
beta: Beta coefficient in the F measure.
@ -128,7 +128,7 @@ def f1(
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
pred: estimated probabilities
preds: estimated probabilities
target: ground-truth labels
num_classes: Number of classes in the dataset.
threshold:

Просмотреть файл

@ -34,7 +34,7 @@ def mean_squared_error(preds: torch.Tensor, target: torch.Tensor) -> torch.Tenso
Computes mean squared error
Args:
pred: estimated labels
preds: estimated labels
target: ground truth labels
Return:

Просмотреть файл

@ -34,7 +34,7 @@ def mean_squared_log_error(preds: torch.Tensor, target: torch.Tensor) -> torch.T
Computes mean squared log error
Args:
pred: estimated labels
preds: estimated labels
target: ground truth labels
Return:

Просмотреть файл

@ -173,7 +173,7 @@ def precision_recall_curve(
which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the
range [0,num_classes-1]
sample_weight: sample weights for each data point
sample_weights: sample weights for each data point
Returns: 3-element tuple containing

Просмотреть файл

@ -46,8 +46,6 @@ def psnr(
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied
return_state: returns a internal state that can be ddp reduced
before doing the final calculation
Return:
Tensor with PSNR score

Просмотреть файл

@ -98,7 +98,7 @@ def r2score(
be provided as the ``adjusted`` argument.
Args:
pred: estimated labels
preds: estimated labels
target: ground truth labels
adjusted: number of independent regressors for calculating adjusted r2 score.
Default 0 (standard r2 score).

Просмотреть файл

@ -98,7 +98,7 @@ def roc(
which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the
range [0,num_classes-1]
sample_weight: sample weights for each data point
sample_weights: sample weights for each data point
Returns: 3-element tuple containing

Просмотреть файл

@ -125,7 +125,7 @@ def ssim(
Computes Structual Similarity Index Measure
Args:
pred: estimated image
preds: estimated image
target: ground truth image
kernel_size: size of the gaussian kernel (default: (11, 11))
sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5))

Просмотреть файл

@ -232,7 +232,7 @@ def class_reduce(
Args:
num: numerator tensor
decom: denominator tensor
denom: denominator tensor
weights: weights for each class
class_reduction: reduction method for multiclass problems