fix some minor typos in docs (PL^5369)
* fix docs typos * Apply suggestions from code review Co-authored-by: Wansoo Kim <rladhkstn8@gmail.com> * flake8 Co-authored-by: Wansoo Kim <rladhkstn8@gmail.com> (cherry picked from commit a047323cc796dcf5d4709399083bfc4b3b411de9)
This commit is contained in:
Родитель
1cccdc73d9
Коммит
ee03bce7f0
|
@ -67,7 +67,7 @@ def average_precision(
|
||||||
which for binary problem is translate to 1. For multiclass problems
|
which for binary problem is translate to 1. For multiclass problems
|
||||||
this argument should not be set as we iteratively change it in the
|
this argument should not be set as we iteratively change it in the
|
||||||
range [0,num_classes-1]
|
range [0,num_classes-1]
|
||||||
sample_weight: sample weights for each data point
|
sample_weights: sample weights for each data point
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensor with average precision. If multiclass will return list
|
tensor with average precision. If multiclass will return list
|
||||||
|
|
|
@ -62,7 +62,7 @@ def explained_variance(
|
||||||
Computes explained variance.
|
Computes explained variance.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated labels
|
preds: estimated labels
|
||||||
target: ground truth labels
|
target: ground truth labels
|
||||||
multioutput: Defines aggregation in the case of multiple output scores. Can be one
|
multioutput: Defines aggregation in the case of multiple output scores. Can be one
|
||||||
of the following strings (default is `'uniform_average'`.):
|
of the following strings (default is `'uniform_average'`.):
|
||||||
|
|
|
@ -75,7 +75,7 @@ def fbeta(
|
||||||
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated probabilities
|
preds: estimated probabilities
|
||||||
target: ground-truth labels
|
target: ground-truth labels
|
||||||
num_classes: Number of classes in the dataset.
|
num_classes: Number of classes in the dataset.
|
||||||
beta: Beta coefficient in the F measure.
|
beta: Beta coefficient in the F measure.
|
||||||
|
@ -128,7 +128,7 @@ def f1(
|
||||||
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated probabilities
|
preds: estimated probabilities
|
||||||
target: ground-truth labels
|
target: ground-truth labels
|
||||||
num_classes: Number of classes in the dataset.
|
num_classes: Number of classes in the dataset.
|
||||||
threshold:
|
threshold:
|
||||||
|
|
|
@ -34,7 +34,7 @@ def mean_squared_error(preds: torch.Tensor, target: torch.Tensor) -> torch.Tenso
|
||||||
Computes mean squared error
|
Computes mean squared error
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated labels
|
preds: estimated labels
|
||||||
target: ground truth labels
|
target: ground truth labels
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
|
|
|
@ -34,7 +34,7 @@ def mean_squared_log_error(preds: torch.Tensor, target: torch.Tensor) -> torch.T
|
||||||
Computes mean squared log error
|
Computes mean squared log error
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated labels
|
preds: estimated labels
|
||||||
target: ground truth labels
|
target: ground truth labels
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
|
|
|
@ -173,7 +173,7 @@ def precision_recall_curve(
|
||||||
which for binary problem is translate to 1. For multiclass problems
|
which for binary problem is translate to 1. For multiclass problems
|
||||||
this argument should not be set as we iteratively change it in the
|
this argument should not be set as we iteratively change it in the
|
||||||
range [0,num_classes-1]
|
range [0,num_classes-1]
|
||||||
sample_weight: sample weights for each data point
|
sample_weights: sample weights for each data point
|
||||||
|
|
||||||
Returns: 3-element tuple containing
|
Returns: 3-element tuple containing
|
||||||
|
|
||||||
|
|
|
@ -46,8 +46,6 @@ def psnr(
|
||||||
- ``'elementwise_mean'``: takes the mean (default)
|
- ``'elementwise_mean'``: takes the mean (default)
|
||||||
- ``'sum'``: takes the sum
|
- ``'sum'``: takes the sum
|
||||||
- ``'none'``: no reduction will be applied
|
- ``'none'``: no reduction will be applied
|
||||||
return_state: returns a internal state that can be ddp reduced
|
|
||||||
before doing the final calculation
|
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
Tensor with PSNR score
|
Tensor with PSNR score
|
||||||
|
|
|
@ -98,7 +98,7 @@ def r2score(
|
||||||
be provided as the ``adjusted`` argument.
|
be provided as the ``adjusted`` argument.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated labels
|
preds: estimated labels
|
||||||
target: ground truth labels
|
target: ground truth labels
|
||||||
adjusted: number of independent regressors for calculating adjusted r2 score.
|
adjusted: number of independent regressors for calculating adjusted r2 score.
|
||||||
Default 0 (standard r2 score).
|
Default 0 (standard r2 score).
|
||||||
|
|
|
@ -98,7 +98,7 @@ def roc(
|
||||||
which for binary problem is translate to 1. For multiclass problems
|
which for binary problem is translate to 1. For multiclass problems
|
||||||
this argument should not be set as we iteratively change it in the
|
this argument should not be set as we iteratively change it in the
|
||||||
range [0,num_classes-1]
|
range [0,num_classes-1]
|
||||||
sample_weight: sample weights for each data point
|
sample_weights: sample weights for each data point
|
||||||
|
|
||||||
Returns: 3-element tuple containing
|
Returns: 3-element tuple containing
|
||||||
|
|
||||||
|
|
|
@ -125,7 +125,7 @@ def ssim(
|
||||||
Computes Structual Similarity Index Measure
|
Computes Structual Similarity Index Measure
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred: estimated image
|
preds: estimated image
|
||||||
target: ground truth image
|
target: ground truth image
|
||||||
kernel_size: size of the gaussian kernel (default: (11, 11))
|
kernel_size: size of the gaussian kernel (default: (11, 11))
|
||||||
sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5))
|
sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5))
|
||||||
|
|
|
@ -232,7 +232,7 @@ def class_reduce(
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
num: numerator tensor
|
num: numerator tensor
|
||||||
decom: denominator tensor
|
denom: denominator tensor
|
||||||
weights: weights for each class
|
weights: weights for each class
|
||||||
class_reduction: reduction method for multiclass problems
|
class_reduction: reduction method for multiclass problems
|
||||||
|
|
||||||
|
|
Загрузка…
Ссылка в новой задаче