fix some minor typos in docs (PL^5369)

* fix docs typos

* Apply suggestions from code review

Co-authored-by: Wansoo Kim <rladhkstn8@gmail.com>

* flake8

Co-authored-by: Wansoo Kim <rladhkstn8@gmail.com>
(cherry picked from commit a047323cc796dcf5d4709399083bfc4b3b411de9)
This commit is contained in:
Jirka Borovec 2021-01-07 14:01:52 +01:00 коммит произвёл Jirka Borovec
Родитель 1cccdc73d9
Коммит ee03bce7f0
11 изменённых файлов: 11 добавлений и 13 удалений

Просмотреть файл

@ -67,7 +67,7 @@ def average_precision(
which for binary problem is translate to 1. For multiclass problems which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the this argument should not be set as we iteratively change it in the
range [0,num_classes-1] range [0,num_classes-1]
sample_weight: sample weights for each data point sample_weights: sample weights for each data point
Returns: Returns:
tensor with average precision. If multiclass will return list tensor with average precision. If multiclass will return list

Просмотреть файл

@ -62,7 +62,7 @@ def explained_variance(
Computes explained variance. Computes explained variance.
Args: Args:
pred: estimated labels preds: estimated labels
target: ground truth labels target: ground truth labels
multioutput: Defines aggregation in the case of multiple output scores. Can be one multioutput: Defines aggregation in the case of multiple output scores. Can be one
of the following strings (default is `'uniform_average'`.): of the following strings (default is `'uniform_average'`.):

Просмотреть файл

@ -75,7 +75,7 @@ def fbeta(
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``. If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args: Args:
pred: estimated probabilities preds: estimated probabilities
target: ground-truth labels target: ground-truth labels
num_classes: Number of classes in the dataset. num_classes: Number of classes in the dataset.
beta: Beta coefficient in the F measure. beta: Beta coefficient in the F measure.
@ -128,7 +128,7 @@ def f1(
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``. If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args: Args:
pred: estimated probabilities preds: estimated probabilities
target: ground-truth labels target: ground-truth labels
num_classes: Number of classes in the dataset. num_classes: Number of classes in the dataset.
threshold: threshold:

Просмотреть файл

@ -34,7 +34,7 @@ def mean_squared_error(preds: torch.Tensor, target: torch.Tensor) -> torch.Tenso
Computes mean squared error Computes mean squared error
Args: Args:
pred: estimated labels preds: estimated labels
target: ground truth labels target: ground truth labels
Return: Return:

Просмотреть файл

@ -34,7 +34,7 @@ def mean_squared_log_error(preds: torch.Tensor, target: torch.Tensor) -> torch.T
Computes mean squared log error Computes mean squared log error
Args: Args:
pred: estimated labels preds: estimated labels
target: ground truth labels target: ground truth labels
Return: Return:

Просмотреть файл

@ -173,7 +173,7 @@ def precision_recall_curve(
which for binary problem is translate to 1. For multiclass problems which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the this argument should not be set as we iteratively change it in the
range [0,num_classes-1] range [0,num_classes-1]
sample_weight: sample weights for each data point sample_weights: sample weights for each data point
Returns: 3-element tuple containing Returns: 3-element tuple containing

Просмотреть файл

@ -46,8 +46,6 @@ def psnr(
- ``'elementwise_mean'``: takes the mean (default) - ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum - ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied - ``'none'``: no reduction will be applied
return_state: returns a internal state that can be ddp reduced
before doing the final calculation
Return: Return:
Tensor with PSNR score Tensor with PSNR score

Просмотреть файл

@ -98,7 +98,7 @@ def r2score(
be provided as the ``adjusted`` argument. be provided as the ``adjusted`` argument.
Args: Args:
pred: estimated labels preds: estimated labels
target: ground truth labels target: ground truth labels
adjusted: number of independent regressors for calculating adjusted r2 score. adjusted: number of independent regressors for calculating adjusted r2 score.
Default 0 (standard r2 score). Default 0 (standard r2 score).

Просмотреть файл

@ -98,7 +98,7 @@ def roc(
which for binary problem is translate to 1. For multiclass problems which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the this argument should not be set as we iteratively change it in the
range [0,num_classes-1] range [0,num_classes-1]
sample_weight: sample weights for each data point sample_weights: sample weights for each data point
Returns: 3-element tuple containing Returns: 3-element tuple containing

Просмотреть файл

@ -125,7 +125,7 @@ def ssim(
Computes Structual Similarity Index Measure Computes Structual Similarity Index Measure
Args: Args:
pred: estimated image preds: estimated image
target: ground truth image target: ground truth image
kernel_size: size of the gaussian kernel (default: (11, 11)) kernel_size: size of the gaussian kernel (default: (11, 11))
sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5)) sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5))

Просмотреть файл

@ -232,7 +232,7 @@ def class_reduce(
Args: Args:
num: numerator tensor num: numerator tensor
decom: denominator tensor denom: denominator tensor
weights: weights for each class weights: weights for each class
class_reduction: reduction method for multiclass problems class_reduction: reduction method for multiclass problems