Feature/mla 2394 update web docs (#37)

* Added mkdocs and refactored docs.

* Updated docs.

* Added gh action to manually public docs. Updated mkdocs.yml.
This commit is contained in:
Miguel Alonso Jr 2022-03-23 14:43:12 -04:00 коммит произвёл GitHub Enterprise
Родитель 21bba3a6fe
Коммит 734c9a3348
179 изменённых файлов: 325 добавлений и 265 удалений

24
.github/workflows/publish_docs.yaml поставляемый Normal file
Просмотреть файл

@ -0,0 +1,24 @@
name: Publish HTML Docs
on:
workflow_dispatch:
jobs:
publish:
name: Publish Docs to GH Pages
runs-on: [self-hosted, Linux, X64]
steps:
- name: Checkout
uses: actions/checkout@v2
with:
token: ${{ secrets.PUBLIC_GH_TOKEN }}
- name: Setup Python 3.7
uses: actions/setup-python@v2
with:
python-version: 3.7
- name: Publish docs
run: |
pip install mkdocs
git remote add public git@github.com:Unity-Technologies/ml-agents.git
mkdocs gh-deply --clean -r public

189
README.md
Просмотреть файл

@ -1,189 +0,0 @@
<img src="docs/images/image-banner.png" align="middle" width="3000"/>
# Unity ML-Agents Toolkit
[![docs badge](https://img.shields.io/badge/docs-reference-blue.svg)](https://github.com/Unity-Technologies/ml-agents/tree/release_19_docs/docs/)
[![license badge](https://img.shields.io/badge/license-Apache--2.0-green.svg)](LICENSE.md)
([latest release](https://github.com/Unity-Technologies/ml-agents/releases/tag/latest_release))
([all releases](https://github.com/Unity-Technologies/ml-agents/releases))
**The Unity Machine Learning Agents Toolkit** (ML-Agents) is an open-source
project that enables games and simulations to serve as environments for
training intelligent agents. We provide implementations (based on PyTorch)
of state-of-the-art algorithms to enable game developers and hobbyists to easily
train intelligent agents for 2D, 3D and VR/AR games. Researchers can also use the
provided simple-to-use Python API to train Agents using reinforcement learning,
imitation learning, neuroevolution, or any other methods. These trained agents can be
used for multiple purposes, including controlling NPC behavior (in a variety of
settings such as multi-agent and adversarial), automated testing of game builds
and evaluating different game design decisions pre-release. The ML-Agents
Toolkit is mutually beneficial for both game developers and AI researchers as it
provides a central platform where advances in AI can be evaluated on Unitys
rich environments and then made accessible to the wider research and game
developer communities.
## Features
- 18+ [example Unity environments](docs/Learning-Environment-Examples.md)
- Support for multiple environment configurations and training scenarios
- Flexible Unity SDK that can be integrated into your game or custom Unity scene
- Support for training single-agent, multi-agent cooperative, and multi-agent
competitive scenarios via several Deep Reinforcement Learning algorithms (PPO, SAC, MA-POCA, self-play).
- Support for learning from demonstrations through two Imitation Learning algorithms (BC and GAIL).
- Easily definable Curriculum Learning scenarios for complex tasks
- Train robust agents using environment randomization
- Flexible agent control with On Demand Decision Making
- Train using multiple concurrent Unity environment instances
- Utilizes the [Unity Inference Engine](docs/Unity-Inference-Engine.md) to
provide native cross-platform support
- Unity environment [control from Python](docs/Python-LLAPI.md)
- Wrap Unity learning environments as a [gym](docs/Python-Gym-API.md)
See our [ML-Agents Overview](docs/ML-Agents-Overview.md) page for detailed
descriptions of all these features.
## Releases & Documentation
**Our latest, stable release is `Release 19`. Click
[here](https://github.com/Unity-Technologies/ml-agents/tree/release_19_docs/docs/Readme.md)
to get started with the latest release of ML-Agents.**
The table below lists all our releases, including our `main` branch which is
under active development and may be unstable. A few helpful guidelines:
- The [Versioning page](docs/Versioning.md) overviews how we manage our GitHub
releases and the versioning process for each of the ML-Agents components.
- The [Releases page](https://github.com/Unity-Technologies/ml-agents/releases)
contains details of the changes between releases.
- The [Migration page](docs/Migrating.md) contains details on how to upgrade
from earlier releases of the ML-Agents Toolkit.
- The **Documentation** links in the table below include installation and usage
instructions specific to each release. Remember to always use the
documentation that corresponds to the release version you're using.
- The `com.unity.ml-agents` package is [verified](https://docs.unity3d.com/2020.1/Documentation/Manual/pack-safe.html)
for Unity 2020.1 and later. Verified packages releases are numbered 1.0.x.
| **Version** | **Release Date** | **Source** | **Documentation** | **Download** | **Python Package** | **Unity Package** |
|:--------------------------:|:--------------------:|:--------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|:-------------------------------------------------------:|:----------------------------------------------------------------------------------------:|
| **main (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/main) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/main/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/main.zip) | -- | -- |
| **Release 19** | **January 14, 2022** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_19)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_19_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_19.zip)** | **[0.28.0](https://pypi.org/project/mlagents/0.28.0/)** | -- |
| **Release 18** | **June 09, 2021** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_18)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_18_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_18.zip)** | **[0.27.0](https://pypi.org/project/mlagents/0.27.0/)** | **[2.1.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@2.1/manual/index.html)** |
| **Verified Package 1.0.8** | **May 26, 2021** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/com.unity.ml-agents_1.0.8)** | **[docs](https://github.com/Unity-Technologies/ml-agents/blob/release_2_verified_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/com.unity.ml-agents_1.0.8.zip)** | **[0.16.1](https://pypi.org/project/mlagents/0.16.1/)** | **[1.0.8](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.0/manual/index.html)** |
If you are a researcher interested in a discussion of Unity as an AI platform,
see a pre-print of our
[reference paper on Unity and the ML-Agents Toolkit](https://arxiv.org/abs/1809.02627).
If you use Unity or the ML-Agents Toolkit to conduct research, we ask that you
cite the following paper as a reference:
Juliani, A., Berges, V., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., Lange, D. (2020). Unity: A General Platform for
Intelligent Agents. _arXiv preprint
[arXiv:1809.02627](https://arxiv.org/abs/1809.02627)._
https://github.com/Unity-Technologies/ml-agents.
## Additional Resources
We have a Unity Learn course,
[ML-Agents: Hummingbirds](https://learn.unity.com/course/ml-agents-hummingbirds),
that provides a gentle introduction to Unity and the ML-Agents Toolkit.
We've also partnered with
[CodeMonkeyUnity](https://www.youtube.com/c/CodeMonkeyUnity) to create a
[series of tutorial videos](https://www.youtube.com/playlist?list=PLzDRvYVwl53vehwiN_odYJkPBzcqFw110)
on how to implement and use the ML-Agents Toolkit.
We have also published a series of blog posts that are relevant for ML-Agents:
- (July 12, 2021)
[ML-Agents plays Dodgeball](https://blog.unity.com/technology/ml-agents-plays-dodgeball)
- (May 5, 2021)
[ML-Agents v2.0 release: Now supports training complex cooperative behaviors](https://blogs.unity3d.com/2021/05/05/ml-agents-v2-0-release-now-supports-training-complex-cooperative-behaviors/)
- (December 28, 2020)
[Happy holidays from the Unity ML-Agents team!](https://blogs.unity3d.com/2020/12/28/happy-holidays-from-the-unity-ml-agents-team/)
- (November 20, 2020)
[How Eidos-Montréal created Grid Sensors to improve observations for training agents](https://blogs.unity3d.com/2020/11/20/how-eidos-montreal-created-grid-sensors-to-improve-observations-for-training-agents/)
- (November 11, 2020)
[2020 AI@Unity interns shoutout](https://blogs.unity3d.com/2020/11/11/2020-aiunity-interns-shoutout/)
- (May 12, 2020)
[Announcing ML-Agents Unity Package v1.0!](https://blogs.unity3d.com/2020/05/12/announcing-ml-agents-unity-package-v1-0/)
- (February 28, 2020)
[Training intelligent adversaries using self-play with ML-Agents](https://blogs.unity3d.com/2020/02/28/training-intelligent-adversaries-using-self-play-with-ml-agents/)
- (November 11, 2019)
[Training your agents 7 times faster with ML-Agents](https://blogs.unity3d.com/2019/11/11/training-your-agents-7-times-faster-with-ml-agents/)
- (October 21, 2019)
[The AI@Unity interns help shape the world](https://blogs.unity3d.com/2019/10/21/the-aiunity-interns-help-shape-the-world/)
- (April 15, 2019)
[Unity ML-Agents Toolkit v0.8: Faster training on real games](https://blogs.unity3d.com/2019/04/15/unity-ml-agents-toolkit-v0-8-faster-training-on-real-games/)
- (March 1, 2019)
[Unity ML-Agents Toolkit v0.7: A leap towards cross-platform inference](https://blogs.unity3d.com/2019/03/01/unity-ml-agents-toolkit-v0-7-a-leap-towards-cross-platform-inference/)
- (December 17, 2018)
[ML-Agents Toolkit v0.6: Improved usability of Brains and Imitation Learning](https://blogs.unity3d.com/2018/12/17/ml-agents-toolkit-v0-6-improved-usability-of-brains-and-imitation-learning/)
- (October 2, 2018)
[Puppo, The Corgi: Cuteness Overload with the Unity ML-Agents Toolkit](https://blogs.unity3d.com/2018/10/02/puppo-the-corgi-cuteness-overload-with-the-unity-ml-agents-toolkit/)
- (September 11, 2018)
[ML-Agents Toolkit v0.5, new resources for AI researchers available now](https://blogs.unity3d.com/2018/09/11/ml-agents-toolkit-v0-5-new-resources-for-ai-researchers-available-now/)
- (June 26, 2018)
[Solving sparse-reward tasks with Curiosity](https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/)
- (June 19, 2018)
[Unity ML-Agents Toolkit v0.4 and Udacity Deep Reinforcement Learning Nanodegree](https://blogs.unity3d.com/2018/06/19/unity-ml-agents-toolkit-v0-4-and-udacity-deep-reinforcement-learning-nanodegree/)
- (May 24, 2018)
[Imitation Learning in Unity: The Workflow](https://blogs.unity3d.com/2018/05/24/imitation-learning-in-unity-the-workflow/)
- (March 15, 2018)
[ML-Agents Toolkit v0.3 Beta released: Imitation Learning, feedback-driven features, and more](https://blogs.unity3d.com/2018/03/15/ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-features-and-more/)
- (December 11, 2017)
[Using Machine Learning Agents in a real game: a beginners guide](https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-beginners-guide/)
- (December 8, 2017)
[Introducing ML-Agents Toolkit v0.2: Curriculum Learning, new environments, and more](https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more/)
- (September 19, 2017)
[Introducing: Unity Machine Learning Agents Toolkit](https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/)
- Overviewing reinforcement learning concepts
([multi-armed bandit](https://blogs.unity3d.com/2017/06/26/unity-ai-themed-blog-entries/)
and
[Q-learning](https://blogs.unity3d.com/2017/08/22/unity-ai-reinforcement-learning-with-q-learning/))
### More from Unity
- [Unity Robotics](https://github.com/Unity-Technologies/Unity-Robotics-Hub)
- [Unity Computer Vision](https://unity.com/computer-vision)
- [Unity Game Simulation](https://unity.com/products/game-simulation)
## Community and Feedback
The ML-Agents Toolkit is an open-source project and we encourage and welcome
contributions. If you wish to contribute, be sure to review our
[contribution guidelines](com.unity.ml-agents/CONTRIBUTING.md) and
[code of conduct](CODE_OF_CONDUCT.md).
For problems with the installation and setup of the ML-Agents Toolkit, or
discussions about how to best setup or train your agents, please create a new
thread on the
[Unity ML-Agents forum](https://forum.unity.com/forums/ml-agents.453/) and make
sure to include as much detail as possible. If you run into any other problems
using the ML-Agents Toolkit or have a specific feature request, please
[submit a GitHub issue](https://github.com/Unity-Technologies/ml-agents/issues).
Please tell us which samples you would like to see shipped with the ML-Agents Unity
package by replying to
[this forum thread](https://forum.unity.com/threads/feedback-wanted-shipping-sample-s-with-the-ml-agents-package.1073468/).
Your opinion matters a great deal to us. Only by hearing your thoughts on the
Unity ML-Agents Toolkit can we continue to improve and grow. Please take a few
minutes to
[let us know about it](https://unitysoftware.co1.qualtrics.com/jfe/form/SV_55pQKCZ578t0kbc).
For any other questions or feedback, connect directly with the ML-Agents team at
ml-agents@unity3d.com.
## Privacy
In order to improve the developer experience for Unity ML-Agents Toolkit, we have added in-editor analytics.
Please refer to "Information that is passively collected by Unity" in the
[Unity Privacy Policy](https://unity3d.com/legal/privacy-policy).
## License
[Apache License 2.0](LICENSE.md)

Просмотреть файл

@ -111,9 +111,7 @@ every step, but only when a robot arrives at a success or failure situation), is
a defining characteristic of reinforcement learning and precisely why learning
good policies can be difficult (and/or time-consuming) for complex environments.
<p align="center">
<img src="images/rl_cycle.png" alt="The reinforcement learning cycle."/>
</p>
<div style="text-align: center"><img src="../images/rl_cycle.png" alt="The reinforcement learning lifecycle."></div>
[Learning a policy](https://blogs.unity3d.com/2017/08/22/unity-ai-reinforcement-learning-with-q-learning/)
usually requires many trials and iterative policy updates. More specifically,

1
docs/CODE_OF_CONDUCT.md Normal file
Просмотреть файл

@ -0,0 +1 @@
{!../CODE_OF_CONDUCT.md!}

1
docs/CONTRIBUTING.md Normal file
Просмотреть файл

@ -0,0 +1 @@
{!../com.unity.ml-agents/CONTRIBUTING.md!}

Просмотреть файл

@ -10,11 +10,11 @@ The ML-Agents Toolkit contains several components:
contains experimental C#/Unity components that are not yet ready to be part
of the base `com.unity.ml-agents` package. `com.unity.ml-agents.extensions`
has a direct dependency on `com.unity.ml-agents`.
- Three Python packages:
- Two Python packages:
- [`mlagents`](../ml-agents/) contains the machine learning algorithms that
enables you to train behaviors in your Unity scene. Most users of ML-Agents
will only need to directly install `mlagents`.
- [`mlagents_envs`](../ml-agents-envs/) contains a Python API to interact with
- [`mlagents_envs`](../ml-agents-envs/) contains a set of Python APIs to interact with
a Unity scene. It is a foundational layer that facilitates data messaging
between Unity scene and the Python machine learning algorithms.
Consequently, `mlagents` depends on `mlagents_envs`.

1
docs/LICENSE.md Normal file
Просмотреть файл

@ -0,0 +1 @@
{!../LICENSE.md!}

Просмотреть файл

@ -1,6 +1,6 @@
# Example Learning Environments
<img src="images/example-envs.png" align="middle" width="3000"/>
<img src="../images/example-envs.png" align="middle" width="3000"/>
The Unity ML-Agents Toolkit includes an expanding set of example environments
that highlight the various features of the toolkit. These environments can also

Просмотреть файл

@ -194,5 +194,5 @@ graphics display in the Unity executable. There are two ways to achieve this:
If you want to train with graphics (for example, using camera and visual observations), you'll
need to set up display rendering support (e.g. xvfb) on you server machine. In our
[Colab Notebook Tutorials](Readme.md#python-tutorial-with-google-colab), the Setup section has
[Colab Notebook Tutorials](ML-Agents-Toolkit-Documentation.md#python-tutorial-with-google-colab), the Setup section has
examples of setting up xvfb on servers.

Просмотреть файл

@ -2,6 +2,6 @@
See the package-specific Limitations pages:
- [`com.unity.mlagents` Unity package](../com.unity.ml-agents/Documentation~/com.unity.ml-agents.md#known-limitations)
- [`mlagents` Python package](../ml-agents/README.md#limitations)
- [`mlagents_envs` Python package](../ml-agents-envs/README.md#limitations)
- [`com.unity.mlagents` Unity package](com.unity.ml-agents.md)
- [`mlagents` Python package](ML-Agents-README.md)
- [`mlagents_envs` Python package](ML-Agents-Envs-README.md)

Просмотреть файл

@ -0,0 +1 @@
{!../ml-agents-envs/README.md!}

Просмотреть файл

@ -179,9 +179,8 @@ The ML-Agents Toolkit contains five high-level components:
- **Gym Wrapper** (not pictured). A common way in which machine learning
researchers interact with simulation environments is via a wrapper provided by
OpenAI called [gym](https://github.com/openai/gym). We provide a gym wrapper
in the `ml-agents-envs` package and
[instructions](Python-Gym-API.md) for using it with existing machine
learning algorithms which utilize gym.
in the `ml-agents-envs` package and [instructions](Python-Gym-API.md) for using
it with existing machine learning algorithms which utilize gym.
- **PettingZoo Wrapper** (not pictured) PettingZoo is python API for
interacting with multi-agent simulation environments that provides a
gym-like interface. We provide a PettingZoo wrapper for Unity ML-Agents
@ -190,7 +189,7 @@ The ML-Agents Toolkit contains five high-level components:
algorithms.
<p align="center">
<img src="images/learning_environment_basic.png"
<img src="../images/learning_environment_basic.png"
alt="Simplified ML-Agents Scene Block Diagram"
width="600"
border="10" />
@ -225,7 +224,7 @@ can have the same Behavior. This does not mean that at each instance they will
have identical observation and action _values_.
<p align="center">
<img src="images/learning_environment_example.png"
<img src="../images/learning_environment_example.png"
alt="Example ML-Agents Scene Block Diagram"
width="700"
border="10" />
@ -247,7 +246,7 @@ Channels_ is to exchange data with Python about _Environment Parameters_. The
following diagram illustrates the above.
<p align="center">
<img src="images/learning_environment_full.png"
<img src="../images/learning_environment_full.png"
alt="More Complete Example ML-Agents Scene Block Diagram"
border="10" />
</p>
@ -467,7 +466,7 @@ episodes of demonstrations can reduce training steps by more than 4 times. See
Behavioral Cloning + GAIL + Curiosity + RL below.
<p align="center">
<img src="images/mlagents-ImitationAndRL.png"
<img src="../images/mlagents-ImitationAndRL.png"
alt="Using Demonstrations with Reinforcement Learning"
width="700" border="0" />
</p>

1
docs/ML-Agents-README.md Normal file
Просмотреть файл

@ -0,0 +1 @@
{!../ml-agents/README.md!}

Просмотреть файл

@ -0,0 +1,80 @@
# Unity ML-Agents Toolkit Documentation
## Installation & Set-up
- [Installation](Installation.md)
- [Using Virtual Environment](Using-Virtual-Environment.md)
## Getting Started
- [Getting Started Guide](Getting-Started.md)
- [ML-Agents Toolkit Overview](ML-Agents-Overview.md)
- [Background: Unity](Background-Unity.md)
- [Background: Machine Learning](Background-Machine-Learning.md)
- [Background: PyTorch](Background-PyTorch.md)
- [Example Environments](Learning-Environment-Examples.md)
## Creating Learning Environments
- [Making a New Learning Environment](Learning-Environment-Create-New.md)
- [Designing a Learning Environment](Learning-Environment-Design.md)
- [Designing Agents](Learning-Environment-Design-Agents.md)
- [Using an Executable Environment](Learning-Environment-Executable.md)
- [ML-Agents Package Settings](Package-Settings.md)
## Training & Inference
- [Training ML-Agents](Training-ML-Agents.md)
- [Training Configuration File](Training-Configuration-File.md)
- [Using TensorBoard to Observe Training](Using-Tensorboard.md)
- [Profiling Trainers](Profiling-Python.md)
- [Unity Inference Engine](Unity-Inference-Engine.md)
## Extending ML-Agents
- [Creating Custom Side Channels](Custom-SideChannels.md)
- [Creating Custom Samplers for Environment Parameter Randomization](Training-ML-Agents.md#defining-a-new-sampler-type)
## Python Tutorial with Google Colab
- [Using a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_1_Run.ipynb)
- [Q-Learning with a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_2_Train.ipynb)
- [Using Side Channels on a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_3_SideChannel.ipynb)
## Help
- [Migrating from earlier versions of ML-Agents](Migrating.md)
- [Frequently Asked Questions](FAQ.md)
- [ML-Agents Glossary](Glossary.md)
- [Limitations](Limitations.md)
## API Docs
- [API Reference](API-Reference.md)
- [Python API Documentation](Python-LLAPI-Documentation.md)
- [How to use the Python API](Python-LLAPI.md)
- [How to use the Unity Environment Registry](Unity-Environment-Registry.md)
- [Wrapping Learning Environment as a Gym (+Baselines/Dopamine Integration)](Python-Gym-API.md)
## Translations
To make the Unity ML-Agents Toolkit accessible to the global research and Unity
developer communities, we're attempting to create and maintain translations of
our documentation. We've started with translating a subset of the documentation
to one language (Chinese), but we hope to continue translating more pages and to
other languages. Consequently, we welcome any enhancements and improvements from
the community.
- [Chinese](../localized_docs/zh-CN/)
- [Korean](../localized_docs/KR/)
## Deprecated Docs
We no longer use them ourselves and so they may not be up-to-date. We've decided
to keep them up just in case they are helpful to you.
- [Windows Anaconda Installation](Installation-Anaconda-Windows.md)
- [Using Docker](Using-Docker.md)
- [Training on the Cloud with Amazon Web Services](Training-on-Amazon-Web-Service.md)
- [Training on the Cloud with Microsoft Azure](Training-on-Microsoft-Azure.md)
- [Using the Video Recorder](https://github.com/Unity-Technologies/video-recorder)

Просмотреть файл

@ -12,7 +12,7 @@ Unity environment via Python.
## Installation
The gym wrapper is part of the `mlgents_envs` package. Please refer to the
[mlagents_envs installation instructions](../ml-agents-envs/README.md).
[mlagents_envs installation instructions](ML-Agents-Envs-README.md).
## Using the Gym Wrapper

Просмотреть файл

@ -7,6 +7,9 @@ interfacing with a Unity environment via Python.
## Installation and Examples
The PettingZoo wrapper is part of the `mlgents_envs` package. Please refer to the
[mlagents_envs installation instructions](ML-Agents-Envs-README.md).
[[Colab] PettingZoo Wrapper Example](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/develop-python-api-ga/ml-agents-envs/colabs/Colab_PettingZoo.ipynb)
This colab notebook demonstrates the example usage of the wrapper, including installation,

Просмотреть файл

@ -1,80 +1,181 @@
# Unity ML-Agents Toolkit Documentation
# Unity ML-Agents Toolkit
## Installation & Set-up
[![docs badge](https://img.shields.io/badge/docs-reference-blue.svg)](https://github.com/Unity-Technologies/ml-agents/tree/release_19_docs/docs/)
- [Installation](Installation.md)
- [Using Virtual Environment](Using-Virtual-Environment.md)
[![license badge](https://img.shields.io/badge/license-Apache--2.0-green.svg)](../LICENSE.md)
## Getting Started
([latest release](https://github.com/Unity-Technologies/ml-agents/releases/tag/latest_release))
([all releases](https://github.com/Unity-Technologies/ml-agents/releases))
- [Getting Started Guide](Getting-Started.md)
- [ML-Agents Toolkit Overview](ML-Agents-Overview.md)
- [Background: Unity](Background-Unity.md)
- [Background: Machine Learning](Background-Machine-Learning.md)
- [Background: PyTorch](Background-PyTorch.md)
- [Example Environments](Learning-Environment-Examples.md)
**The Unity Machine Learning Agents Toolkit** (ML-Agents) is an open-source
project that enables games and simulations to serve as environments for
training intelligent agents. We provide implementations (based on PyTorch)
of state-of-the-art algorithms to enable game developers and hobbyists to easily
train intelligent agents for 2D, 3D and VR/AR games. Researchers can also use the
provided simple-to-use Python API to train Agents using reinforcement learning,
imitation learning, neuroevolution, or any other methods. These trained agents can be
used for multiple purposes, including controlling NPC behavior (in a variety of
settings such as multi-agent and adversarial), automated testing of game builds
and evaluating different game design decisions pre-release. The ML-Agents
Toolkit is mutually beneficial for both game developers and AI researchers as it
provides a central platform where advances in AI can be evaluated on Unitys
rich environments and then made accessible to the wider research and game
developer communities.
## Creating Learning Environments
## Features
- 18+ [example Unity environments](Learning-Environment-Examples.md)
- Support for multiple environment configurations and training scenarios
- Flexible Unity SDK that can be integrated into your game or custom Unity scene
- Support for training single-agent, multi-agent cooperative, and multi-agent
competitive scenarios via several Deep Reinforcement Learning algorithms (PPO, SAC, MA-POCA, self-play).
- Support for learning from demonstrations through two Imitation Learning algorithms (BC and GAIL).
- Easily definable Curriculum Learning scenarios for complex tasks
- Train robust agents using environment randomization
- Flexible agent control with On Demand Decision Making
- Train using multiple concurrent Unity environment instances
- Utilizes the [Unity Inference Engine](Unity-Inference-Engine.md) to
provide native cross-platform support
- Unity environment [control from Python](Python-LLAPI.md)
- Wrap Unity learning environments as a [gym](Python-Gym-API.md) environment
- Wrap Unity learning environments as a [PettingZoo](Python-PettingZoo-API.md) environment
- [Making a New Learning Environment](Learning-Environment-Create-New.md)
- [Designing a Learning Environment](Learning-Environment-Design.md)
- [Designing Agents](Learning-Environment-Design-Agents.md)
- [Using an Executable Environment](Learning-Environment-Executable.md)
- [ML-Agents Package Settings](Package-Settings.md)
See our [ML-Agents Overview](ML-Agents-Overview.md) page for detailed
descriptions of all these features.
## Releases & Documentation
## Training & Inference
**Our latest, stable release is `Release 19`. Click
[here](https://github.com/Unity-Technologies/ml-agents/tree/release_19_docs/docs/Readme.md)
to get started with the latest release of ML-Agents.**
- [Training ML-Agents](Training-ML-Agents.md)
- [Training Configuration File](Training-Configuration-File.md)
- [Using TensorBoard to Observe Training](Using-Tensorboard.md)
- [Profiling Trainers](Profiling-Python.md)
- [Unity Inference Engine](Unity-Inference-Engine.md)
The table below lists all our releases, including our `main` branch which is
under active development and may be unstable. A few helpful guidelines:
- The [Versioning page](Versioning.md) overviews how we manage our GitHub
releases and the versioning process for each of the ML-Agents components.
- The [Releases page](https://github.com/Unity-Technologies/ml-agents/releases)
contains details of the changes between releases.
- The [Migration page](Migrating.md) contains details on how to upgrade
from earlier releases of the ML-Agents Toolkit.
- The **Documentation** links in the table below include installation and usage
instructions specific to each release. Remember to always use the
documentation that corresponds to the release version you're using.
- The `com.unity.ml-agents` package is [verified](https://docs.unity3d.com/2020.1/Documentation/Manual/pack-safe.html)
for Unity 2020.1 and later. Verified packages releases are numbered 1.0.x.
## Extending ML-Agents
| **Version** | **Release Date** | **Source** | **Documentation** | **Download** | **Python Package** | **Unity Package** |
|:-------:|:------:|:-------------:|:-------:|:------------:|:------------:|:------------:|
| **main (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/main) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/main/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/main.zip) | -- | -- |
| **Release 19** | **January 14, 2022** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_19)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_19_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_19.zip)** | **[0.28.0](https://pypi.org/project/mlagents/0.28.0/)** | **[2.2.1](https://docs.unity3d.com/Packages/com.unity.ml-agents@2.2/manual/index.html)** |
| **Verified Package 1.0.8** | **May 26, 2021** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/com.unity.ml-agents_1.0.8)** | **[docs](https://github.com/Unity-Technologies/ml-agents/blob/release_2_verified_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/com.unity.ml-agents_1.0.8.zip)** | **[0.16.1](https://pypi.org/project/mlagents/0.16.1/)** | **[1.0.8](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.0/manual/index.html)** |
- [Creating Custom Side Channels](Custom-SideChannels.md)
- [Creating Custom Samplers for Environment Parameter Randomization](Training-ML-Agents.md#defining-a-new-sampler-type)
If you are a researcher interested in a discussion of Unity as an AI platform,
see a pre-print of our
[reference paper on Unity and the ML-Agents Toolkit](https://arxiv.org/abs/1809.02627).
## Python Tutorial with Google Colab
If you use Unity or the ML-Agents Toolkit to conduct research, we ask that you
cite the following paper as a reference:
- [Using a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_1_Run.ipynb)
- [Q-Learning with a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_2_Train.ipynb)
- [Using Side Channels on a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_3_SideChannel.ipynb)
Juliani, A., Berges, V., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., Lange, D. (2020). Unity: A General Platform for
Intelligent Agents. _arXiv preprint
[arXiv:1809.02627](https://arxiv.org/abs/1809.02627)._
https://github.com/Unity-Technologies/ml-agents.
## Help
## Additional Resources
- [Migrating from earlier versions of ML-Agents](Migrating.md)
- [Frequently Asked Questions](FAQ.md)
- [ML-Agents Glossary](Glossary.md)
- [Limitations](Limitations.md)
We have a Unity Learn course,
[ML-Agents: Hummingbirds](https://learn.unity.com/course/ml-agents-hummingbirds),
that provides a gentle introduction to Unity and the ML-Agents Toolkit.
## API Docs
We've also partnered with
[CodeMonkeyUnity](https://www.youtube.com/c/CodeMonkeyUnity) to create a
[series of tutorial videos](https://www.youtube.com/playlist?list=PLzDRvYVwl53vehwiN_odYJkPBzcqFw110)
on how to implement and use the ML-Agents Toolkit.
- [API Reference](API-Reference.md)
- [Python API Documentation](Python-LLAPI-Documentation.md)
- [How to use the Python API](Python-LLAPI.md)
- [How to use the Unity Environment Registry](Unity-Environment-Registry.md)
- [Wrapping Learning Environment as a Gym (+Baselines/Dopamine Integration)](Python-Gym-API.md)
We have also published a series of blog posts that are relevant for ML-Agents:
## Translations
- (July 12, 2021)
[ML-Agents plays Dodgeball](https://blog.unity.com/technology/ml-agents-plays-dodgeball)
- (May 5, 2021)
[ML-Agents v2.0 release: Now supports training complex cooperative behaviors](https://blogs.unity3d.com/2021/05/05/ml-agents-v2-0-release-now-supports-training-complex-cooperative-behaviors/)
- (December 28, 2020)
[Happy holidays from the Unity ML-Agents team!](https://blogs.unity3d.com/2020/12/28/happy-holidays-from-the-unity-ml-agents-team/)
- (November 20, 2020)
[How Eidos-Montréal created Grid Sensors to improve observations for training agents](https://blogs.unity3d.com/2020/11/20/how-eidos-montreal-created-grid-sensors-to-improve-observations-for-training-agents/)
- (November 11, 2020)
[2020 AI@Unity interns shoutout](https://blogs.unity3d.com/2020/11/11/2020-aiunity-interns-shoutout/)
- (May 12, 2020)
[Announcing ML-Agents Unity Package v1.0!](https://blogs.unity3d.com/2020/05/12/announcing-ml-agents-unity-package-v1-0/)
- (February 28, 2020)
[Training intelligent adversaries using self-play with ML-Agents](https://blogs.unity3d.com/2020/02/28/training-intelligent-adversaries-using-self-play-with-ml-agents/)
- (November 11, 2019)
[Training your agents 7 times faster with ML-Agents](https://blogs.unity3d.com/2019/11/11/training-your-agents-7-times-faster-with-ml-agents/)
- (October 21, 2019)
[The AI@Unity interns help shape the world](https://blogs.unity3d.com/2019/10/21/the-aiunity-interns-help-shape-the-world/)
- (April 15, 2019)
[Unity ML-Agents Toolkit v0.8: Faster training on real games](https://blogs.unity3d.com/2019/04/15/unity-ml-agents-toolkit-v0-8-faster-training-on-real-games/)
- (March 1, 2019)
[Unity ML-Agents Toolkit v0.7: A leap towards cross-platform inference](https://blogs.unity3d.com/2019/03/01/unity-ml-agents-toolkit-v0-7-a-leap-towards-cross-platform-inference/)
- (December 17, 2018)
[ML-Agents Toolkit v0.6: Improved usability of Brains and Imitation Learning](https://blogs.unity3d.com/2018/12/17/ml-agents-toolkit-v0-6-improved-usability-of-brains-and-imitation-learning/)
- (October 2, 2018)
[Puppo, The Corgi: Cuteness Overload with the Unity ML-Agents Toolkit](https://blogs.unity3d.com/2018/10/02/puppo-the-corgi-cuteness-overload-with-the-unity-ml-agents-toolkit/)
- (September 11, 2018)
[ML-Agents Toolkit v0.5, new resources for AI researchers available now](https://blogs.unity3d.com/2018/09/11/ml-agents-toolkit-v0-5-new-resources-for-ai-researchers-available-now/)
- (June 26, 2018)
[Solving sparse-reward tasks with Curiosity](https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/)
- (June 19, 2018)
[Unity ML-Agents Toolkit v0.4 and Udacity Deep Reinforcement Learning Nanodegree](https://blogs.unity3d.com/2018/06/19/unity-ml-agents-toolkit-v0-4-and-udacity-deep-reinforcement-learning-nanodegree/)
- (May 24, 2018)
[Imitation Learning in Unity: The Workflow](https://blogs.unity3d.com/2018/05/24/imitation-learning-in-unity-the-workflow/)
- (March 15, 2018)
[ML-Agents Toolkit v0.3 Beta released: Imitation Learning, feedback-driven features, and more](https://blogs.unity3d.com/2018/03/15/ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-features-and-more/)
- (December 11, 2017)
[Using Machine Learning Agents in a real game: a beginners guide](https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-beginners-guide/)
- (December 8, 2017)
[Introducing ML-Agents Toolkit v0.2: Curriculum Learning, new environments, and more](https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more/)
- (September 19, 2017)
[Introducing: Unity Machine Learning Agents Toolkit](https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/)
- Overviewing reinforcement learning concepts
([multi-armed bandit](https://blogs.unity3d.com/2017/06/26/unity-ai-themed-blog-entries/)
and
[Q-learning](https://blogs.unity3d.com/2017/08/22/unity-ai-reinforcement-learning-with-q-learning/))
To make the Unity ML-Agents Toolkit accessible to the global research and Unity
developer communities, we're attempting to create and maintain translations of
our documentation. We've started with translating a subset of the documentation
to one language (Chinese), but we hope to continue translating more pages and to
other languages. Consequently, we welcome any enhancements and improvements from
the community.
### More from Unity
- [Chinese](localized/zh-CN/)
- [Korean](localized/KR/)
- [Unity Simulation Pro](https://unity.com/products/unity-simulation-pro)
- [Unity Robotics](https://github.com/Unity-Technologies/Unity-Robotics-Hub)
- [Unity Computer Vision](https://unity.com/computer-vision)
## Deprecated Docs
## Community and Feedback
We no longer use them ourselves and so they may not be up-to-date. We've decided
to keep them up just in case they are helpful to you.
The ML-Agents Toolkit is an open-source project and we encourage and welcome
contributions. If you wish to contribute, be sure to review our
[contribution guidelines](CONTRIBUTING.md) and
[code of conduct](../CODE_OF_CONDUCT.md).
- [Windows Anaconda Installation](Installation-Anaconda-Windows.md)
- [Using Docker](Using-Docker.md)
- [Training on the Cloud with Amazon Web Services](Training-on-Amazon-Web-Service.md)
- [Training on the Cloud with Microsoft Azure](Training-on-Microsoft-Azure.md)
- [Using the Video Recorder](https://github.com/Unity-Technologies/video-recorder)
For problems with the installation and setup of the ML-Agents Toolkit, or
discussions about how to best setup or train your agents, please create a new
thread on the
[Unity ML-Agents forum](https://forum.unity.com/forums/ml-agents.453/) and make
sure to include as much detail as possible. If you run into any other problems
using the ML-Agents Toolkit or have a specific feature request, please
[submit a GitHub issue](https://github.com/Unity-Technologies/ml-agents/issues).
Please tell us which samples you would like to see shipped with the ML-Agents Unity
package by replying to
[this forum thread](https://forum.unity.com/threads/feedback-wanted-shipping-sample-s-with-the-ml-agents-package.1073468/).
Your opinion matters a great deal to us. Only by hearing your thoughts on the
Unity ML-Agents Toolkit can we continue to improve and grow. Please take a few
minutes to
[let us know about it](https://unitysoftware.co1.qualtrics.com/jfe/form/SV_55pQKCZ578t0kbc).
For any other questions or feedback, connect directly with the ML-Agents team at
ml-agents@unity3d.com.
## Privacy
In order to improve the developer experience for Unity ML-Agents Toolkit, we have added in-editor analytics.
Please refer to "Information that is passively collected by Unity" in the
[Unity Privacy Policy](https://unity3d.com/legal/privacy-policy).

Просмотреть файл

@ -0,0 +1 @@
{!../com.unity.ml-agents/Documentation~/com.unity.ml-agents.md!}

3
docs/extra.css Normal file
Просмотреть файл

@ -0,0 +1,3 @@
.wy-nav-top, .wy-side-nav-search {
background: #439b47;
}

Двоичные данные
docs/images/U_MachineLearningAgents_Logo_Black_RGB.png Normal file

Двоичный файл не отображается.

После

Ширина:  |  Высота:  |  Размер: 65 KiB

2
docs/index.md Normal file
Просмотреть файл

@ -0,0 +1,2 @@
<img src="images/U_MachineLearningAgents_Logo_Black_RGB.png" align="middle" width="3000"/>
{!README.md!}

Просмотреть файл

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 256 KiB

После

Ширина:  |  Высота:  |  Размер: 256 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 43 KiB

После

Ширина:  |  Высота:  |  Размер: 43 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 165 KiB

После

Ширина:  |  Высота:  |  Размер: 165 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 46 KiB

После

Ширина:  |  Высота:  |  Размер: 46 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 174 KiB

После

Ширина:  |  Высота:  |  Размер: 174 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 159 KiB

После

Ширина:  |  Высота:  |  Размер: 159 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 313 KiB

После

Ширина:  |  Высота:  |  Размер: 313 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 167 KiB

После

Ширина:  |  Высота:  |  Размер: 167 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 102 KiB

После

Ширина:  |  Высота:  |  Размер: 102 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 511 KiB

После

Ширина:  |  Высота:  |  Размер: 511 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 113 KiB

После

Ширина:  |  Высота:  |  Размер: 113 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 295 KiB

После

Ширина:  |  Высота:  |  Размер: 295 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 79 KiB

После

Ширина:  |  Высота:  |  Размер: 79 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 30 KiB

После

Ширина:  |  Высота:  |  Размер: 30 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 20 KiB

После

Ширина:  |  Высота:  |  Размер: 20 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 152 KiB

После

Ширина:  |  Высота:  |  Размер: 152 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 17 KiB

После

Ширина:  |  Высота:  |  Размер: 17 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 13 KiB

После

Ширина:  |  Высота:  |  Размер: 13 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 185 KiB

После

Ширина:  |  Высота:  |  Размер: 185 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 40 KiB

После

Ширина:  |  Высота:  |  Размер: 40 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 328 KiB

После

Ширина:  |  Высота:  |  Размер: 328 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 282 KiB

После

Ширина:  |  Высота:  |  Размер: 282 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 84 KiB

После

Ширина:  |  Высота:  |  Размер: 84 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 267 KiB

После

Ширина:  |  Высота:  |  Размер: 267 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 1.7 MiB

После

Ширина:  |  Высота:  |  Размер: 1.7 MiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 17 KiB

После

Ширина:  |  Высота:  |  Размер: 17 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 46 KiB

После

Ширина:  |  Высота:  |  Размер: 46 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 69 KiB

После

Ширина:  |  Высота:  |  Размер: 69 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 465 KiB

После

Ширина:  |  Высота:  |  Размер: 465 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 74 KiB

После

Ширина:  |  Высота:  |  Размер: 74 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 320 KiB

После

Ширина:  |  Высота:  |  Размер: 320 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 242 KiB

После

Ширина:  |  Высота:  |  Размер: 242 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 72 KiB

После

Ширина:  |  Высота:  |  Размер: 72 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 23 KiB

После

Ширина:  |  Высота:  |  Размер: 23 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 88 KiB

После

Ширина:  |  Высота:  |  Размер: 88 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 252 KiB

После

Ширина:  |  Высота:  |  Размер: 252 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 97 KiB

После

Ширина:  |  Высота:  |  Размер: 97 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 158 KiB

После

Ширина:  |  Высота:  |  Размер: 158 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 36 KiB

После

Ширина:  |  Высота:  |  Размер: 36 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 19 KiB

После

Ширина:  |  Высота:  |  Размер: 19 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 8.8 KiB

После

Ширина:  |  Высота:  |  Размер: 8.8 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 189 KiB

После

Ширина:  |  Высота:  |  Размер: 189 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 640 KiB

После

Ширина:  |  Высота:  |  Размер: 640 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 129 KiB

После

Ширина:  |  Высота:  |  Размер: 129 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 594 KiB

После

Ширина:  |  Высота:  |  Размер: 594 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 32 KiB

После

Ширина:  |  Высота:  |  Размер: 32 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 231 KiB

После

Ширина:  |  Высота:  |  Размер: 231 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 193 KiB

После

Ширина:  |  Высота:  |  Размер: 193 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 35 KiB

После

Ширина:  |  Высота:  |  Размер: 35 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 52 KiB

После

Ширина:  |  Высота:  |  Размер: 52 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 173 KiB

После

Ширина:  |  Высота:  |  Размер: 173 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 402 KiB

После

Ширина:  |  Высота:  |  Размер: 402 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 340 KiB

После

Ширина:  |  Высота:  |  Размер: 340 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 6.2 KiB

После

Ширина:  |  Высота:  |  Размер: 6.2 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 27 KiB

После

Ширина:  |  Высота:  |  Размер: 27 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 199 KiB

После

Ширина:  |  Высота:  |  Размер: 199 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 27 KiB

После

Ширина:  |  Высота:  |  Размер: 27 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 205 KiB

После

Ширина:  |  Высота:  |  Размер: 205 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 128 KiB

После

Ширина:  |  Высота:  |  Размер: 128 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 43 KiB

После

Ширина:  |  Высота:  |  Размер: 43 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 150 KiB

После

Ширина:  |  Высота:  |  Размер: 150 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 59 KiB

После

Ширина:  |  Высота:  |  Размер: 59 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 14 KiB

После

Ширина:  |  Высота:  |  Размер: 14 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 18 KiB

После

Ширина:  |  Высота:  |  Размер: 18 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 238 KiB

После

Ширина:  |  Высота:  |  Размер: 238 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 139 KiB

После

Ширина:  |  Высота:  |  Размер: 139 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 162 KiB

После

Ширина:  |  Высота:  |  Размер: 162 KiB

Просмотреть файл

Просмотреть файл

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше