Граф коммитов

3 Коммитов

Автор SHA1 Сообщение Дата
Miguel Alonso Jr fb24597b16
Develop sentis upgrade (#5979)
* Commiting changes.

* Initial barracuda 4 upgrade.

* Play mode tests passing.

* Edit mode tests passing.

* Training fixes.

* Fixed performance issue with stacking sensor.

* Fixed failing tests and issue with stacking sensor.

* Updated examples for barracuda 4 upgrade.

* Fixed issue with attention ONNX export w.r.t. dimensions.

* Fixed issue with Buffer Sensor and Recurrent In/Out.

* Retrained old policies and updated with ONNX policies. Deprecated old policy versions.

* Saving work.

* Saving work.

* Updating to Sentis 1.1.1-exp.2

* Fixed more errors with Sentis upgrade.

* Fixed tensor allocation issue in TensorUtils.ResizeTensor. Inference is working for 3DBall with Sentis.

* Fixed broken Sentis model links for some example environments.

* Fixed some broken edit mode tests.

* Fixed some failing tests.

* Fixing bugs with GPU inference on Sentis.

* Updated packages lock and onnx meta files.

* Refactoring all Barracuda related naming to Sentis.

* Python max version bump.

* Precommit fixes.

* Pinned tensorboard version

* Revert tensorboard version.

* Fixed rpc tests.

* Fixed failing python tests.

* Fixed some more failing tests. Added six as an explicit dependency due to tensorboard requirements.

* gha fix.

* Updated environment registry for Sentis.

* Fixed texture sensor test.

* Develop python 3.10 (#5981)

* Deprecated python 3.8.x and 3.9.x.

* Updated colab gha test to 3.10.12

* Updated colabs for Sentis and python 3.10.

* Test fix.

* Minor update to colabs.

* Develop torch 1.13.1 (#5982)

* Bumped PyTorch version to 1.13.1

* Added potential fixes to model overrider TBD at a later date.

* Updated changelog.

* Updated protobufs. (#5983)

* Updated training init tests to remove inference test temporarily. (#5984)
2023-10-05 18:28:39 -04:00
Maryam Honari df96d5c835 Develop custom trainers (#73)
* Make create_policy more generic (#54)

* add on/off policy classes and inherit from

* trainers as plugins


* remove swap files

* clean up registration debug

* clean up all pre-commit

* a2c plugin pass precommit

* move gae to trainer utils

* move lambda return to trainer util

* add validator for num_epoch

* add types for settings/type methods

* move create policy into highest level api

* move update_reward_signal into optimizer

* move get_policy into Trainer

* remove get settings type

* dummy_config settings

* move all stats from actor into dict, enables arbitrary actor data

* remove shared_critic flag, cleanups

* refactor create_policy

* remove sample_actions, evaluate_actions, update_norm from policy

* remove comments

* fix return type get stat

* update poca create_policy

* clean up policy init

* remove conftest

* add sharedecritic to settings

* fix test_networks

* fix test_policy

* fix test network

* fix some ppo/sac tests

* add back conftest.py

* improve specification of trainer type

* add defaults fpr trainer_type/hyperparam

* fix test_saver

* fix reward providers

* add settings check utility for tests

* fix some settings tests

* add trainer types to run_experiment

* type check for arbitary actor data

* cherrypick rename ml-agents/trainers/torch to torch_entities (#55)

* make all trainers types and setting visible at module level

* remove settings from run_experiment console script

* fix test_settings and upgrade config scripts

* remove need of trainer_type argument up to trainefactory

* fix gohst trainer behavior id in policy Queue

* fix torch shadow in tests

* update trainers, rl trainers tests

* update tests to match the refactors

* fixing behavior name in ghost trainer

* update ml-agents-envs test configs

* separating the plugin package changes

* bring get_policy back for sake of ghost trainer

* add return types and remove unused returns

* remove duplicate methods in poca (_update_policy, add_policy)

Co-authored-by: mahon94 <maryam.honari@unity3d.com>

* Online/offline custom trainer examples with plugin system (#52)

* add on/off policy classes and inherit from

* trainers as plugins

* a2c trains

* remove swap files

* clean up registration debug

* clean up all pre-commit

* a2c plugin pass precommit

* move gae to trainer utils

* move lambda return to trainer util

* add validator for num_epoch

* add types for settings/type methods

* move create policy into highest level api

* move update_reward_signal into optimizer

* move get_policy into Trainer

* remove get settings type

* dummy_config settings

* move all stats from actor into dict, enables arbitrary actor data

* remove shared_critic flag, cleanups

* refactor create_policy

* remove sample_actions, evaluate_actions, update_norm from policy

* remove comments

* fix return type get stat

* update poca create_policy

* clean up policy init

* remove conftest

* add sharedecritic to settings

* fix test_networks

* fix test_policy

* fix test network

* fix some ppo/sac tests

* add back conftest.py

* improve specification of trainer type

* add defaults fpr trainer_type/hyperparam

* fix test_saver

* fix reward providers

* add settings check utility for tests

* fix some settings tests

* add trainer types to run_experiment

* type check for arbitary actor data

* cherrypick rename ml-agents/trainers/torch to torch_entities (#55)

* make all trainers types and setting visible at module level

* remove settings from run_experiment console script

* fix test_settings and upgrade config scripts

* remove need of trainer_type argument up to trainefactory

* fix gohst trainer behavior id in policy Queue

* fix torch shadow in tests

* update trainers, rl trainers tests

* update tests to match the refactors

* fixing behavior name in ghost trainer

* update ml-agents-envs test configs

* fix precommit

* separating the plugin package changes

* bring get_policy back for sake of ghost trainer

* add return types and remove unused returns

* remove duplicate methods in poca (_update_policy, add_policy)

* add a2c trainer back

* Add DQN cleaned up trainer/optimizer

* nit naming

* fix logprob/entropy types in torch_policy.py

* clean up DQN/SAC

* add docs for custom trainers,TODO: refrence tutorial

* add docs for custom trainers,TODO: refrence tutorial

* add clipping to loss function

* set old importlim-metadata version

* bump precomit hook env to 3.8.x

* use smooth l1 loss

Co-authored-by: mahon94 <maryam.honari@unity3d.com>

* add tutorial for validation

* fix formatting errors

* clean up

* minor changes

Co-authored-by: Andrew Cohen <andrew.cohen@unity3d.com>
Co-authored-by: zhuo <zhuo@unity3d.com>
2022-10-20 16:06:58 -04:00
Henry Peteet 3959172f8a Speed up pytest GitHub check (#15) 2022-02-17 16:38:10 -05:00