Changes some of the CPU Math implemenation from our current version to use the new TensorPrimitives package. (#6875)

* using tensor primitives

* added missing files

* some with indexes changed

* Initial swap for TensorPrimitives done

* Rebased and cleaned code

* more minor cleanup

* added system.numerics.tensors version to props

* build fixes

* added net6 again

* updates from PR comments

* fixed sumabsu

* fixed baseline tests

* test fixes

* fixed test failure for kmeans

* changed decimal comparison

* updated more baselines

* Test fixes.

* template update

* Test Fixes.

* fixed performance test csproj

* added baselines for linux arm/64

* fixed linux arm baselines

* fixed arm baselines

* removed extra files

* arm32 baselines updated

* fixed arm baselines
This commit is contained in:
Michael Sharp 2023-11-14 21:46:15 -08:00 коммит произвёл GitHub
Родитель d8ad1e65b5
Коммит d2cf997d90
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
523 изменённых файлов: 134266 добавлений и 18398 удалений

Просмотреть файл

@ -149,12 +149,12 @@ jobs:
_configuration: Debug
_config_short: DFX
_includeBenchmarkData: false
_targetFramework: net461
_targetFramework: net462
Release_Build:
_configuration: Release
_config_short: RFX
_includeBenchmarkData: false
_targetFramework: net461
_targetFramework: net462
innerLoop: true
vsTestConfiguration: "/Framework:.NETCoreApp,Version=v4.0"
pool:

Просмотреть файл

@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<configuration>
<solution>
<add key="disableSourceControlIntegration" value="true" />
@ -13,6 +13,7 @@
<add key="dotnet5-roslyn" value="https://pkgs.dev.azure.com/dnceng/public/_packaging/dotnet5/nuget/v3/index.json" />
<add key="mlnet-daily" value="https://pkgs.dev.azure.com/dnceng/public/_packaging/MachineLearning/nuget/v3/index.json" />
<add key="mlnet-assets" value="https://pkgs.dev.azure.com/dnceng/public/_packaging/machinelearning-assets/nuget/v3/index.json" />
<add key="dotnet8" value="https://pkgs.dev.azure.com/dnceng/public/_packaging/dotnet8/nuget/v3/index.json" />
</packageSources>
<disabledPackageSources>
<clear />

Просмотреть файл

@ -99,12 +99,12 @@ jobs:
_configuration: Debug
_config_short: DFX
_includeBenchmarkData: false
_targetFramework: net461
_targetFramework: net462
Release_Build:
_configuration: Release
_config_short: RFX
_includeBenchmarkData: false
_targetFramework: net461
_targetFramework: net462
nightlyBuild: true
pool:
vmImage: windows-2019

Просмотреть файл

@ -93,12 +93,12 @@ jobs:
_configuration: Debug
_config_short: DFX
_includeBenchmarkData: false
_targetFramework: net461
_targetFramework: net462
Release_Build:
_configuration: Release
_config_short: RFX
_includeBenchmarkData: false
_targetFramework: net461
_targetFramework: net462
pool:
vmImage: windows-2019

Просмотреть файл

@ -201,6 +201,14 @@ jobs:
contents: |
artifacts/TestResults/**
targetFolder: $(Build.ArtifactStagingDirectory)
- task: CopyFiles@2
displayName: Stage baseline files
condition: not(succeeded())
inputs:
sourceFolder: $(Build.SourcesDirectory)
contents: |
artifacts/bin/**/TestOutput/**
targetFolder: $(Build.ArtifactStagingDirectory)
- task: CopyFiles@2
displayName: Stage process dump and pdb if any
condition: not(succeeded())

Просмотреть файл

@ -24,6 +24,7 @@
<SystemConfigurationConfigurationManagerVersion>6.0.1</SystemConfigurationConfigurationManagerVersion>
<SystemIOFileSystemAccessControl>4.5.0</SystemIOFileSystemAccessControl>
<SystemMemoryVersion>4.5.5</SystemMemoryVersion>
<SystemNumericsTensorsVersion>8.0.0-rtm.23523.3</SystemNumericsTensorsVersion>
<SystemReflectionEmitLightweightVersion>4.3.0</SystemReflectionEmitLightweightVersion>
<SystemReflectionEmitVersion>4.3.0</SystemReflectionEmitVersion>
<SystemRuntimeCompilerServicesUnsafeVersion>6.0.0</SystemRuntimeCompilerServicesUnsafeVersion>

Просмотреть файл

@ -147,9 +147,9 @@
<ItemGroup>
<HelixWorkItem Include="%(ProjectsWithTargetFramework.Filename)">
<PayloadDirectory>$(BUILD_SOURCESDIRECTORY)\artifacts\bin\%(ProjectsWithTargetFramework.Filename)\$(BuildConfig)\%(ProjectsWithTargetFramework.TargetFrameworks)\</PayloadDirectory>
<PayloadDirectory Condition="%(ProjectsWithTargetFramework.TargetFrameworks) == 'net461'">$(BUILD_SOURCESDIRECTORY)\artifacts\bin\%(ProjectsWithTargetFramework.Filename)\$(BuildConfig)\%(ProjectsWithTargetFramework.TargetFrameworks)\win-x64</PayloadDirectory>
<PayloadDirectory Condition="%(ProjectsWithTargetFramework.TargetFrameworks) == 'net462'">$(BUILD_SOURCESDIRECTORY)\artifacts\bin\%(ProjectsWithTargetFramework.Filename)\$(BuildConfig)\%(ProjectsWithTargetFramework.TargetFrameworks)\win-x64</PayloadDirectory>
<Command>dotnet exec --roll-forward Major --runtimeconfig %(ProjectsWithTargetFramework.Filename).runtimeconfig.json --depsfile %(ProjectsWithTargetFramework.Filename).deps.json $(HelixCorrelationPayloadPath)/xunit-runner/tools/netcoreapp2.0/xunit.console.dll %(ProjectsWithTargetFramework.Filename).dll -notrait Category=SkipInCI -xml testResults.xml</Command>
<Command Condition="$(TestTargetFramework.EndsWith('net461')) And %(ProjectsWithTargetFramework.TargetFrameworks) != 'net6.0'">$(HelixCorrelationPayloadPath)/xunit-runner/tools/net461/xunit.console.exe %(ProjectsWithTargetFramework.Filename).dll -notrait Category=SkipInCI -xml testResults.xml</Command>
<Command Condition="$(TestTargetFramework.EndsWith('net462')) And %(ProjectsWithTargetFramework.TargetFrameworks) != 'net6.0'">$(HelixCorrelationPayloadPath)/xunit-runner/tools/net462/xunit.console.exe %(ProjectsWithTargetFramework.Filename).dll -notrait Category=SkipInCI -xml testResults.xml</Command>
<Timeout>01:00:00</Timeout>
<Timeout Condition="$(HelixTargetQueues.ToLowerInvariant().Contains('osx'))">00:30:00</Timeout>
<Timeout Condition="'$(WorkItemTimeout)' != ''">$(WorkItemTimeout)</Timeout>

Просмотреть файл

@ -15,7 +15,9 @@ using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
using Microsoft.ML.Internal.CpuMath.Core;
#pragma warning disable CS8981 // The type name only contains lower-cased ascii characters. Such names may become reserved for the language.
using nuint = System.UInt64;
#pragma warning restore CS8981 // The type name only contains lower-cased ascii characters. Such names may become reserved for the language.
namespace Microsoft.ML.Internal.CpuMath
{

Просмотреть файл

@ -0,0 +1,197 @@
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Runtime.CompilerServices;
using System.Numerics.Tensors;
using Microsoft.ML.Internal.CpuMath.Core;
namespace Microsoft.ML.Internal.CpuMath
{
[BestFriend]
internal static partial class CpuMathUtils
{
/// <summary>
/// Adds a value to a destination.
/// </summary>
/// <param name="value">The value to add.</param>
/// <param name="destination">The destination to add the value to.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Add(float value, Span<float> destination)
{
Contracts.AssertNonEmpty(destination);
TensorPrimitives.Add(destination, value, destination);
}
/// <summary>
/// Scales a value to a destination.
/// </summary>
/// <param name="value">The value to add.</param>
/// <param name="destination">The destination to add the value to.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Scale(float value, Span<float> destination)
{
Contracts.AssertNonEmpty(destination);
TensorPrimitives.Multiply(destination, value, destination);
}
/// <summary>
/// Scales a values by a source to a destination.
/// destination = value * source
/// </summary>
/// <param name="value">The value to scale by.</param>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Scale(float value, ReadOnlySpan<float> source, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
TensorPrimitives.Multiply(source.Slice(0, count), value, destination);
}
/// <summary>
/// Add to the destination from the source by scale.
/// </summary>
/// <param name="scale">The scale to add by.</param>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination values.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void AddScale(float scale, ReadOnlySpan<float> source, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
TensorPrimitives.MultiplyAdd(source.Slice(0, count), scale, destination.Slice(0, count), destination);
}
/// <summary>
/// Add to the destination by scale and source into a new result.
/// </summary>
/// <param name="scale">The scale to add by.</param>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination values.</param>
/// <param name="result">A new collection of values to be returned.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void AddScaleCopy(float scale, ReadOnlySpan<float> source, ReadOnlySpan<float> destination, Span<float> result, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.AssertNonEmpty(result);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
Contracts.Assert(count <= result.Length);
TensorPrimitives.MultiplyAdd(source.Slice(0, count), scale, destination.Slice(0, count), result.Slice(0, count));
}
/// <summary>
/// Add from a source to a destination.
/// </summary>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination values.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Add(ReadOnlySpan<float> source, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
TensorPrimitives.Add(source.Slice(0, count), destination.Slice(0, count), destination.Slice(0, count));
}
/// <summary>
/// Multiply each element with left and right elements.
/// </summary>
/// <param name="left">The left element.</param>
/// <param name="right">The right element.</param>
/// <param name="destination">The destination values.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void MulElementWise(ReadOnlySpan<float> left, ReadOnlySpan<float> right, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(left);
Contracts.AssertNonEmpty(right);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= left.Length);
Contracts.Assert(count <= right.Length);
Contracts.Assert(count <= destination.Length);
TensorPrimitives.Multiply(left.Slice(0, count), right.Slice(0, count), destination.Slice(0, count));
}
/// <summary>
/// Sum the values in the source.
/// </summary>
/// <param name="source">The source values.</param>
/// <returns>The sum of all items in <paramref name="source"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sum(ReadOnlySpan<float> source)
{
Contracts.AssertNonEmpty(source);
return TensorPrimitives.Sum(source);
}
/// <summary>
/// Sum the squares of each item in the source.
/// </summary>
/// <param name="source">The source values.</param>
/// <returns>The sum of the squares of all items in <paramref name="source"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float SumSq(ReadOnlySpan<float> source)
{
Contracts.AssertNonEmpty(source);
return TensorPrimitives.SumOfSquares(source);
}
/// <summary>
/// Sum the absolute value of each item in the source.
/// </summary>
/// <param name="source">The source values.</param>
/// <returns>The sum of all absolute value of the items in <paramref name="source"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float SumAbs(ReadOnlySpan<float> source)
{
Contracts.AssertNonEmpty(source);
return TensorPrimitives.SumOfMagnitudes(source);
}
/// <summary>
/// Returns the dot product of each item in the left and right spans.
/// </summary>
/// <param name="left">The left span.</param>
/// <param name="right">The right span.</param>
/// <param name="count">The count of items.</param>
/// <returns>The dot product.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float DotProductDense(ReadOnlySpan<float> left, ReadOnlySpan<float> right, int count)
{
Contracts.AssertNonEmpty(left);
Contracts.AssertNonEmpty(right);
Contracts.Assert(count > 0);
Contracts.Assert(left.Length >= count);
Contracts.Assert(right.Length >= count);
return TensorPrimitives.Dot(left.Slice(0, count), right.Slice(0, count));
}
}
}

Просмотреть файл

@ -5,11 +5,11 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics.X86;
using System.Numerics.Tensors;
using Microsoft.ML.Internal.CpuMath.Core;
namespace Microsoft.ML.Internal.CpuMath
{
[BestFriend]
internal static partial class CpuMathUtils
{
// The count of bytes in Vector128<T>, corresponding to _cbAlign in AlignedArray
@ -154,94 +154,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
/// <summary>
/// Adds a value to a destination.
/// </summary>
/// <param name="value">The value to add.</param>
/// <param name="destination">The destination to add the value to.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Add(float value, Span<float> destination)
{
Contracts.AssertNonEmpty(destination);
if (destination.Length < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < destination.Length; i++)
{
destination[i] += value;
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.AddScalarU(value, destination);
}
else
{
SseIntrinsics.AddScalarU(value, destination);
}
}
/// <summary>
/// Scales a value to a destination.
/// </summary>
/// <param name="value">The value to add.</param>
/// <param name="destination">The destination to add the value to.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Scale(float value, Span<float> destination)
{
Contracts.AssertNonEmpty(destination);
if (destination.Length < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < destination.Length; i++)
{
destination[i] *= value;
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.Scale(value, destination);
}
else
{
SseIntrinsics.Scale(value, destination);
}
}
/// <summary>
/// Scales a values by a source to a destination.
/// destination = value * source
/// </summary>
/// <param name="value">The value to scale by.</param>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Scale(float value, ReadOnlySpan<float> source, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
if (destination.Length < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < count; i++)
{
destination[i] = value * source[i];
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.ScaleSrcU(value, source, destination, count);
}
else
{
SseIntrinsics.ScaleSrcU(value, source, destination, count);
}
}
/// <summary>
/// Add to the destination by scale with an addend value.
/// </summary>
@ -273,39 +185,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
/// <summary>
/// Add to the destination from the source by scale.
/// </summary>
/// <param name="scale">The scale to add by.</param>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination values.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void AddScale(float scale, ReadOnlySpan<float> source, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
if (destination.Length < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < count; i++)
{
destination[i] += scale * source[i];
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.AddScaleU(scale, source, destination, count);
}
else
{
SseIntrinsics.AddScaleU(scale, source, destination, count);
}
}
/// <summary>
/// Add to the destination by scale and source with indices.
/// </summary>
@ -343,74 +222,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
/// <summary>
/// Add to the destination by scale and source into a new result.
/// </summary>
/// <param name="scale">The scale to add by.</param>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination values.</param>
/// <param name="result">A new collection of values to be returned.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void AddScaleCopy(float scale, ReadOnlySpan<float> source, ReadOnlySpan<float> destination, Span<float> result, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.AssertNonEmpty(result);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
Contracts.Assert(count <= result.Length);
if (count < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < count; i++)
{
result[i] = scale * source[i] + destination[i];
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.AddScaleCopyU(scale, source, destination, result, count);
}
else
{
SseIntrinsics.AddScaleCopyU(scale, source, destination, result, count);
}
}
/// <summary>
/// Add from a source to a destination.
/// </summary>
/// <param name="source">The source values.</param>
/// <param name="destination">The destination values.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Add(ReadOnlySpan<float> source, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(source);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= source.Length);
Contracts.Assert(count <= destination.Length);
if (count < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < count; i++)
{
destination[i] += source[i];
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.AddU(source, destination, count);
}
else
{
SseIntrinsics.AddU(source, destination, count);
}
}
/// <summary>
/// Add from a source to a destination with indices.
/// </summary>
@ -447,99 +258,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
/// <summary>
/// Multiply each element with left and right elements.
/// </summary>
/// <param name="left">The left element.</param>
/// <param name="right">The right element.</param>
/// <param name="destination">The destination values.</param>
/// <param name="count">The count of items.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void MulElementWise(ReadOnlySpan<float> left, ReadOnlySpan<float> right, Span<float> destination, int count)
{
Contracts.AssertNonEmpty(left);
Contracts.AssertNonEmpty(right);
Contracts.AssertNonEmpty(destination);
Contracts.Assert(count > 0);
Contracts.Assert(count <= left.Length);
Contracts.Assert(count <= right.Length);
Contracts.Assert(count <= destination.Length);
if (count < MinInputSize || !Sse.IsSupported)
{
for (int i = 0; i < count; i++)
{
destination[i] = left[i] * right[i];
}
}
else if (Avx.IsSupported)
{
AvxIntrinsics.MulElementWiseU(left, right, destination, count);
}
else
{
SseIntrinsics.MulElementWiseU(left, right, destination, count);
}
}
/// <summary>
/// Sum the values in the source.
/// </summary>
/// <param name="source">The source values.</param>
/// <returns>The sum of all items in <paramref name="source"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Sum(ReadOnlySpan<float> source)
{
Contracts.AssertNonEmpty(source);
if (source.Length < MinInputSize || !Sse.IsSupported)
{
float sum = 0;
for (int i = 0; i < source.Length; i++)
{
sum += source[i];
}
return sum;
}
else if (Avx.IsSupported)
{
return AvxIntrinsics.Sum(source);
}
else
{
return SseIntrinsics.Sum(source);
}
}
/// <summary>
/// Sum the squares of each item in the source.
/// </summary>
/// <param name="source">The source values.</param>
/// <returns>The sum of the squares of all items in <paramref name="source"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float SumSq(ReadOnlySpan<float> source)
{
Contracts.AssertNonEmpty(source);
if (source.Length < MinInputSize || !Sse.IsSupported)
{
float result = 0;
for (int i = 0; i < source.Length; i++)
{
result += source[i] * source[i];
}
return result;
}
else if (Avx.IsSupported)
{
return AvxIntrinsics.SumSqU(source);
}
else
{
return SseIntrinsics.SumSqU(source);
}
}
/// <summary>
/// Sum the square of each item in the source and subtract the mean.
/// </summary>
@ -570,35 +288,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
/// <summary>
/// Sum the absolute value of each item in the source.
/// </summary>
/// <param name="source">The source values.</param>
/// <returns>The sum of all absolute value of the items in <paramref name="source"/>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float SumAbs(ReadOnlySpan<float> source)
{
Contracts.AssertNonEmpty(source);
if (source.Length < MinInputSize || !Sse.IsSupported)
{
float sum = 0;
for (int i = 0; i < source.Length; i++)
{
sum += Math.Abs(source[i]);
}
return sum;
}
else if (Avx.IsSupported)
{
return AvxIntrinsics.SumAbsU(source);
}
else
{
return SseIntrinsics.SumAbsU(source);
}
}
/// <summary>
/// Sum the absolute value of each item in the source and subtract the mean.
/// </summary>
@ -696,41 +385,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
/// <summary>
/// Returns the dot product of each item in the left and right spans.
/// </summary>
/// <param name="left">The left span.</param>
/// <param name="right">The right span.</param>
/// <param name="count">The count of items.</param>
/// <returns>The dot product.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float DotProductDense(ReadOnlySpan<float> left, ReadOnlySpan<float> right, int count)
{
Contracts.AssertNonEmpty(left);
Contracts.AssertNonEmpty(right);
Contracts.Assert(count > 0);
Contracts.Assert(left.Length >= count);
Contracts.Assert(right.Length >= count);
if (count < MinInputSize || !Sse.IsSupported)
{
float result = 0;
for (int i = 0; i < count; i++)
{
result += left[i] * right[i];
}
return result;
}
else if (Avx.IsSupported)
{
return AvxIntrinsics.DotU(left, right, count);
}
else
{
return SseIntrinsics.DotU(left, right, count);
}
}
/// <summary>
/// Returns the dot product of each item by index in the left and right spans.
/// </summary>
@ -786,24 +440,8 @@ namespace Microsoft.ML.Internal.CpuMath
Contracts.Assert(count <= left.Length);
Contracts.Assert(count <= right.Length);
if (count < MinInputSize || !Sse.IsSupported)
{
float norm = 0;
for (int i = 0; i < count; i++)
{
float distance = left[i] - right[i];
norm += distance * distance;
}
return norm;
}
else if (Avx.IsSupported)
{
return AvxIntrinsics.Dist2(left, right, count);
}
else
{
return SseIntrinsics.Dist2(left, right, count);
}
var value = TensorPrimitives.Distance(left.Slice(0, count), right.Slice(0, count));
return value * value;
}
/// <summary>

Просмотреть файл

@ -3,13 +3,13 @@
// See the LICENSE file in the project root for more information.
using System;
using System.Numerics.Tensors;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using Microsoft.ML.Internal.CpuMath.Core;
namespace Microsoft.ML.Internal.CpuMath
{
[BestFriend]
internal static partial class CpuMathUtils
{
// The count of bytes in Vector128<T>, corresponding to _cbAlign in AlignedArray
@ -110,47 +110,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
// dst += a
public static void Add(float a, Span<float> dst)
{
Contracts.AssertNonEmpty(dst);
unsafe
{
fixed (float* pdst = &MemoryMarshal.GetReference(dst))
Thunk.AddScalarU(a, pdst, dst.Length);
}
}
public static void Scale(float a, Span<float> dst)
{
Contracts.AssertNonEmpty(dst);
unsafe
{
fixed (float* pd = &MemoryMarshal.GetReference(dst))
Thunk.Scale(a, pd, dst.Length);
}
}
// dst = a * src
public static void Scale(float a, ReadOnlySpan<float> src, Span<float> dst, int count)
{
Contracts.AssertNonEmpty(src);
Contracts.Assert(0 < count && count <= src.Length);
Contracts.AssertNonEmpty(dst);
Contracts.Assert(count <= dst.Length);
unsafe
{
fixed (float* psrc = &MemoryMarshal.GetReference(src))
fixed (float* pdst = &MemoryMarshal.GetReference(dst))
{
Thunk.ScaleSrcU(a, psrc, pdst, count);
}
}
}
// dst[i] = a * (dst[i] + b)
public static void ScaleAdd(float a, float b, Span<float> dst)
{
@ -163,21 +122,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
public static void AddScale(float a, ReadOnlySpan<float> src, Span<float> dst, int count)
{
Contracts.AssertNonEmpty(src);
Contracts.Assert(0 < count && count <= src.Length);
Contracts.AssertNonEmpty(dst);
Contracts.Assert(count <= dst.Length);
unsafe
{
fixed (float* psrc = &MemoryMarshal.GetReference(src))
fixed (float* pdst = &MemoryMarshal.GetReference(dst))
Thunk.AddScaleU(a, psrc, pdst, count);
}
}
public static void AddScale(float a, ReadOnlySpan<float> src, ReadOnlySpan<int> indices, Span<float> dst, int count)
{
Contracts.AssertNonEmpty(src);
@ -196,39 +140,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
public static void AddScaleCopy(float a, ReadOnlySpan<float> src, ReadOnlySpan<float> dst, Span<float> res, int count)
{
Contracts.AssertNonEmpty(dst);
Contracts.Assert(0 < count && count <= dst.Length);
Contracts.AssertNonEmpty(src);
Contracts.Assert(count <= src.Length);
Contracts.AssertNonEmpty(res);
Contracts.Assert(count <= res.Length);
unsafe
{
fixed (float* pdst = &MemoryMarshal.GetReference(dst))
fixed (float* psrc = &MemoryMarshal.GetReference(src))
fixed (float* pres = &MemoryMarshal.GetReference(res))
Thunk.AddScaleCopyU(a, psrc, pdst, pres, count);
}
}
public static void Add(ReadOnlySpan<float> src, Span<float> dst, int count)
{
Contracts.AssertNonEmpty(src);
Contracts.Assert(0 < count && count <= src.Length);
Contracts.AssertNonEmpty(dst);
Contracts.Assert(count <= dst.Length);
unsafe
{
fixed (float* ps = &MemoryMarshal.GetReference(src))
fixed (float* pd = &MemoryMarshal.GetReference(dst))
Thunk.AddU(ps, pd, count);
}
}
public static void Add(ReadOnlySpan<float> src, ReadOnlySpan<int> indices, Span<float> dst, int count)
{
Contracts.AssertNonEmpty(src);
@ -247,44 +158,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
public static void MulElementWise(ReadOnlySpan<float> src1, ReadOnlySpan<float> src2, Span<float> dst, int count)
{
Contracts.AssertNonEmpty(src1);
Contracts.Assert(0 < count && count <= src1.Length);
Contracts.AssertNonEmpty(src2);
Contracts.Assert(0 < count && count <= src2.Length);
Contracts.AssertNonEmpty(dst);
unsafe
{
fixed (float* ps1 = &MemoryMarshal.GetReference(src1))
fixed (float* ps2 = &MemoryMarshal.GetReference(src2))
fixed (float* pd = &MemoryMarshal.GetReference(dst))
Thunk.MulElementWiseU(ps1, ps2, pd, count);
}
}
public static float Sum(ReadOnlySpan<float> src)
{
Contracts.AssertNonEmpty(src);
unsafe
{
fixed (float* psrc = &MemoryMarshal.GetReference(src))
return Thunk.Sum(psrc, src.Length);
}
}
public static float SumSq(ReadOnlySpan<float> src)
{
Contracts.AssertNonEmpty(src);
unsafe
{
fixed (float* psrc = &MemoryMarshal.GetReference(src))
return Thunk.SumSqU(psrc, src.Length);
}
}
public static float SumSq(float mean, ReadOnlySpan<float> src)
{
Contracts.AssertNonEmpty(src);
@ -296,17 +169,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
public static float SumAbs(ReadOnlySpan<float> src)
{
Contracts.AssertNonEmpty(src);
unsafe
{
fixed (float* psrc = &MemoryMarshal.GetReference(src))
return Thunk.SumAbsU(psrc, src.Length);
}
}
public static float SumAbs(float mean, ReadOnlySpan<float> src)
{
Contracts.AssertNonEmpty(src);
@ -340,22 +202,6 @@ namespace Microsoft.ML.Internal.CpuMath
}
}
public static float DotProductDense(ReadOnlySpan<float> a, ReadOnlySpan<float> b, int count)
{
Contracts.AssertNonEmpty(a);
Contracts.AssertNonEmpty(b);
Contracts.Assert(0 < count);
Contracts.Assert(a.Length >= count);
Contracts.Assert(b.Length >= count);
unsafe
{
fixed (float* pa = &MemoryMarshal.GetReference(a))
fixed (float* pb = &MemoryMarshal.GetReference(b))
return Thunk.DotU(pa, pb, count);
}
}
public static float DotProductSparse(ReadOnlySpan<float> a, ReadOnlySpan<float> b, ReadOnlySpan<int> indices, int count)
{
Contracts.AssertNonEmpty(a);
@ -381,12 +227,8 @@ namespace Microsoft.ML.Internal.CpuMath
Contracts.Assert(0 < count && count <= a.Length);
Contracts.Assert(count <= b.Length);
unsafe
{
fixed (float* pa = &MemoryMarshal.GetReference(a))
fixed (float* pb = &MemoryMarshal.GetReference(b))
return Thunk.Dist2(pa, pb, count);
}
var value = TensorPrimitives.Distance(a.Slice(0, count), b.Slice(0, count));
return value * value;
}
public static void ZeroMatrixItems(AlignedArray dst, int ccol, int cfltRow, int[] indices)

Просмотреть файл

@ -1,5 +1,5 @@
<Project Sdk="Microsoft.NET.Sdk">
<Import Project="$(RepoRoot)eng/pkg/Pack.props"/>
<Import Project="$(RepoRoot)eng/pkg/Pack.props" />
<PropertyGroup>
<TargetFrameworks>netstandard2.0;net6.0</TargetFrameworks>
<IncludeInPackage>Microsoft.ML.CpuMath</IncludeInPackage>
@ -30,6 +30,9 @@
<ItemGroup>
<Content Include="build\**\*" Pack="true" PackagePath="build" />
</ItemGroup>
<ItemGroup>
<PackageReference Include="System.Numerics.Tensors" Version="$(SystemNumericsTensorsVersion)" />
</ItemGroup>
<Target DependsOnTargets="ResolveReferences" Name="CopyProjectReferencesToPackage">
<ItemGroup Condition="'$(TargetFramework)' != 'net6.0'">
<!--Include native PDBs-->

Просмотреть файл

@ -19,7 +19,9 @@ using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
using Microsoft.ML.Internal.CpuMath.Core;
#pragma warning disable CS8981 // The type name only contains lower-cased ascii characters. Such names may become reserved for the language.
using nuint = System.UInt64;
#pragma warning restore CS8981 // The type name only contains lower-cased ascii characters. Such names may become reserved for the language.
namespace Microsoft.ML.Internal.CpuMath
{

Просмотреть файл

@ -13,15 +13,15 @@ Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 133 | 1 | 0.9925
negative || 9 | 211 | 0.9591
positive || 131 | 3 | 0.9776
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9366 | 0.9953 |
OVERALL 0/1 ACCURACY: 0.971751
Precision || 0.9424 | 0.9860 |
OVERALL 0/1 ACCURACY: 0.968927
LOG LOSS/instance: Infinity
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): -Infinity
AUC: 0.994403
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
@ -40,16 +40,16 @@ AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996011 (0.0016)
Accuracy: 0.973718 (0.0020)
Positive precision: 0.953747 (0.0171)
Positive recall: 0.972459 (0.0201)
Negative precision: 0.986580 (0.0087)
Negative recall: 0.972849 (0.0138)
AUC: 0.996028 (0.0016)
Accuracy: 0.972305 (0.0034)
Positive precision: 0.956660 (0.0142)
Positive recall: 0.964996 (0.0126)
Negative precision: 0.981961 (0.0041)
Negative recall: 0.975122 (0.0115)
Log-loss: Infinity (NaN)
Log-loss reduction: -Infinity (NaN)
F1 Score: 0.962653 (0.0011)
AUPRC: 0.992269 (0.0025)
F1 Score: 0.960623 (0.0009)
AUPRC: 0.992280 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%

Просмотреть файл

@ -1,4 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996011 0.973718 0.953747 0.972459 0.98658 0.972849 Infinity -Infinity 0.962653 0.992269 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali=PAV dout=%Output% data=%Data% seed=1
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 Infinity -Infinity 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali=PAV dout=%Output% data=%Data% seed=1

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -11,15 +11,15 @@ Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 133 | 1 | 0.9925
negative || 9 | 211 | 0.9591
positive || 131 | 3 | 0.9776
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9366 | 0.9953 |
OVERALL 0/1 ACCURACY: 0.971751
LOG LOSS/instance: 0.139629
Precision || 0.9424 | 0.9860 |
OVERALL 0/1 ACCURACY: 0.968927
LOG LOSS/instance: 0.138699
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.854097
AUC: 0.994403
LOG-LOSS REDUCTION (RIG): 0.855069
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
@ -38,16 +38,16 @@ AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996011 (0.0016)
Accuracy: 0.973718 (0.0020)
Positive precision: 0.953747 (0.0171)
Positive recall: 0.972459 (0.0201)
Negative precision: 0.986580 (0.0087)
Negative recall: 0.972849 (0.0138)
Log-loss: 0.130315 (0.0093)
Log-loss reduction: 0.860083 (0.0060)
F1 Score: 0.962653 (0.0011)
AUPRC: 0.992269 (0.0025)
AUC: 0.996028 (0.0016)
Accuracy: 0.972305 (0.0034)
Positive precision: 0.956660 (0.0142)
Positive recall: 0.964996 (0.0126)
Negative precision: 0.981961 (0.0041)
Negative recall: 0.975122 (0.0115)
Log-loss: 0.129850 (0.0088)
Log-loss reduction: 0.860569 (0.0055)
F1 Score: 0.960623 (0.0009)
AUPRC: 0.992280 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%

Просмотреть файл

@ -1,4 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996011 0.973718 0.953747 0.972459 0.98658 0.972849 0.130315 0.860083 0.962653 0.992269 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- numcali=200 dout=%Output% data=%Data% seed=1
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 0.12985 0.860569 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- numcali=200 dout=%Output% data=%Data% seed=1

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -13,15 +13,15 @@ Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 133 | 1 | 0.9925
negative || 9 | 211 | 0.9591
positive || 131 | 3 | 0.9776
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9366 | 0.9953 |
OVERALL 0/1 ACCURACY: 0.971751
Precision || 0.9424 | 0.9860 |
OVERALL 0/1 ACCURACY: 0.968927
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.994403
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
@ -40,16 +40,16 @@ AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996011 (0.0016)
Accuracy: 0.973718 (0.0020)
Positive precision: 0.953747 (0.0171)
Positive recall: 0.972459 (0.0201)
Negative precision: 0.986580 (0.0087)
Negative recall: 0.972849 (0.0138)
AUC: 0.996028 (0.0016)
Accuracy: 0.972305 (0.0034)
Positive precision: 0.956660 (0.0142)
Positive recall: 0.964996 (0.0126)
Negative precision: 0.981961 (0.0041)
Negative recall: 0.975122 (0.0115)
Log-loss: NaN (NaN)
Log-loss reduction: 0.000000 (0.0000)
F1 Score: 0.962653 (0.0011)
AUPRC: 0.992269 (0.0025)
F1 Score: 0.960623 (0.0009)
AUPRC: 0.992280 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%

Просмотреть файл

@ -1,4 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996011 0.973718 0.953747 0.972459 0.98658 0.972849 NaN 0 0.962653 0.992269 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali={} dout=%Output% data=%Data% seed=1
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 NaN 0 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali={} dout=%Output% data=%Data% seed=1

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -9,28 +9,28 @@ Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 233 | 6 | 0.9749
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9510 | 0.9863 |
OVERALL 0/1 ACCURACY: 0.973646
LOG LOSS/instance: 0.083944
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: 0.084507
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.910125
LOG-LOSS REDUCTION (RIG): 0.909522
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.973646 (0.0000)
Positive precision: 0.951020 (0.0000)
Positive recall: 0.974895 (0.0000)
Negative precision: 0.986301 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.083944 (0.0000)
Log-loss reduction: 0.910125 (0.0000)
F1 Score: 0.962810 (0.0000)
AUPRC: 0.992010 (0.0000)
Log-loss: 0.084507 (0.0000)
Log-loss reduction: 0.909522 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%

Просмотреть файл

@ -1,4 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.973646 0.95102 0.974895 0.986301 0.972973 0.083944 0.910125 0.96281 0.99201 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali=PAV dout=%Output% data=%Data% out=%Output% seed=1
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 0.084507 0.909522 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali=PAV dout=%Output% data=%Data% out=%Output% seed=1

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -8,28 +8,28 @@ Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 233 | 6 | 0.9749
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9510 | 0.9863 |
OVERALL 0/1 ACCURACY: 0.973646
LOG LOSS/instance: 0.120727
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: 0.120617
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.870742
LOG-LOSS REDUCTION (RIG): 0.870860
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.973646 (0.0000)
Positive precision: 0.951020 (0.0000)
Positive recall: 0.974895 (0.0000)
Negative precision: 0.986301 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.120727 (0.0000)
Log-loss reduction: 0.870742 (0.0000)
F1 Score: 0.962810 (0.0000)
AUPRC: 0.992010 (0.0000)
Log-loss: 0.120617 (0.0000)
Log-loss reduction: 0.870860 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%

Просмотреть файл

@ -1,4 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.973646 0.95102 0.974895 0.986301 0.972973 0.120727 0.870742 0.96281 0.99201 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron numcali=200 dout=%Output% data=%Data% out=%Output% seed=1
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 0.120617 0.87086 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron numcali=200 dout=%Output% data=%Data% out=%Output% seed=1

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -8,11 +8,11 @@ Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 233 | 6 | 0.9749
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9510 | 0.9863 |
OVERALL 0/1 ACCURACY: 0.973646
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.000000
@ -21,15 +21,15 @@ AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.973646 (0.0000)
Positive precision: 0.951020 (0.0000)
Positive recall: 0.974895 (0.0000)
Negative precision: 0.986301 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: NaN (0.0000)
Log-loss reduction: 0.000000 (0.0000)
F1 Score: 0.962810 (0.0000)
AUPRC: 0.992010 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Warning: Data does not contain a probability column. Will not output the Log-loss column

Просмотреть файл

@ -1,4 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.973646 0.95102 0.974895 0.986301 0.972973 NaN 0 0.96281 0.99201 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali={} dout=%Output% data=%Data% out=%Output% seed=1
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 NaN 0 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali={} dout=%Output% data=%Data% out=%Output% seed=1

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,56 @@
maml.exe CV tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} threads=- dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 800 instances with missing features during training (over 100 iterations; 8 inst/iter)
Training calibrator.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 800 instances with missing features during training (over 100 iterations; 8 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 132 | 2 | 0.9851
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9429 | 0.9907 |
OVERALL 0/1 ACCURACY: 0.971751
LOG LOSS/instance: 0.136411
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.857460
AUC: 0.994199
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 98 | 7 | 0.9333
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9703 | 0.9693 |
OVERALL 0/1 ACCURACY: 0.969605
LOG LOSS/instance: 0.118826
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.868476
AUC: 0.997577
OVERALL RESULTS
---------------------------------------
AUC: 0.995888 (0.0017)
Accuracy: 0.970678 (0.0011)
Positive precision: 0.956577 (0.0137)
Positive recall: 0.959204 (0.0259)
Negative precision: 0.979976 (0.0107)
Negative recall: 0.975122 (0.0115)
Log-loss: 0.127618 (0.0088)
Log-loss reduction: 0.862968 (0.0055)
F1 Score: 0.957480 (0.0060)
AUPRC: 0.992003 (0.0026)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC /lr /iter Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.995888 0.970678 0.956577 0.959204 0.979976 0.975122 0.127618 0.862968 0.95748 0.992003 0.01 100 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} threads=- dout=%Output% data=%Data% seed=1 /lr:0.01;/iter:100

Просмотреть файл

@ -0,0 +1,58 @@
maml.exe CV tr=AveragedPerceptron threads=- cali=PAV dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
PAV calibrator: piecewise function approximation has 5 components.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
PAV calibrator: piecewise function approximation has 6 components.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 131 | 3 | 0.9776
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9424 | 0.9860 |
OVERALL 0/1 ACCURACY: 0.968927
LOG LOSS/instance: Infinity
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): -Infinity
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 100 | 5 | 0.9524
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9709 | 0.9779 |
OVERALL 0/1 ACCURACY: 0.975684
LOG LOSS/instance: 0.227705
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.747961
AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996028 (0.0016)
Accuracy: 0.972305 (0.0034)
Positive precision: 0.956660 (0.0142)
Positive recall: 0.964996 (0.0126)
Negative precision: 0.981961 (0.0041)
Negative recall: 0.975122 (0.0115)
Log-loss: Infinity (NaN)
Log-loss reduction: -Infinity (NaN)
F1 Score: 0.960623 (0.0009)
AUPRC: 0.992280 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 Infinity -Infinity 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali=PAV dout=%Output% data=%Data% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
5 1 11.285979 1 -0 1
6 0 -0.9347124 0.09090909 0.13750352804950119 0
8 0 -3.7769966 1E-15 1.4415419267167138E-15 0
9 0 -3.7947202 1E-15 1.4415419267167138E-15 0
10 0 -4.7855167 1E-15 1.4415419267167138E-15 0
11 0 -4.6251884 1E-15 1.4415419267167138E-15 0
18 1 6.8803625 1 -0 1
20 1 5.573552 1 -0 1
21 1 6.7444105 1 -0 1
25 1 1.2789736 0.875 0.19264507794239591 1
28 0 -4.6251884 1E-15 1.4415419267167138E-15 0
31 0 -4.3083706 1E-15 1.4415419267167138E-15 0
32 1 6.9428854 1 -0 1
35 0 -4.6251884 1E-15 1.4415419267167138E-15 0
37 0 -1.814332 0.09090909 0.13750352804950119 0
40 0 ? ? ? 0
41 1 2.4075565 0.875 0.19264507794239591 1
44 1 8.039285 1 -0 1
45 0 -4.625085 1E-15 1.4415419267167138E-15 0
46 1 5.138131 1 -0 1
48 0 -3.4336782 1E-15 1.4415419267167138E-15 0
50 1 2.7120514 0.875 0.19264507794239591 1
51 1 -0.06207609 0.6666667 0.58496245772549416 0
52 1 4.4027233 1 -0 1
54 1 6.3079214 1 -0 1
56 1 6.356517 1 -0 1
60 1 1.9474735 0.875 0.19264507794239591 1
63 1 0.78555584 0.6666667 0.58496245772549416 1
64 0 -4.916337 1E-15 1.4415419267167138E-15 0
66 0 -3.7260728 1E-15 1.4415419267167138E-15 0
68 1 9.2772875 1 -0 1
69 0 -4.4157114 1E-15 1.4415419267167138E-15 0
70 0 -3.086855 1E-15 1.4415419267167138E-15 0
71 1 7.5159607 1 -0 1
72 0 -1.8410158 0.09090909 0.13750352804950119 0
73 1 7.1320066 1 -0 1
74 1 2.4329157 0.875 0.19264507794239591 1
76 0 -3.9190063 1E-15 1.4415419267167138E-15 0
77 0 -3.1092038 1E-15 1.4415419267167138E-15 0
79 0 -4.4391913 1E-15 1.4415419267167138E-15 0
82 0 -3.1867542 1E-15 1.4415419267167138E-15 0
88 0 -3.7260728 1E-15 1.4415419267167138E-15 0
90 0 -4.5995197 1E-15 1.4415419267167138E-15 0
91 0 -4.5046597 1E-15 1.4415419267167138E-15 0
92 0 -3.7260728 1E-15 1.4415419267167138E-15 0
93 0 -4.916337 1E-15 1.4415419267167138E-15 0
95 0 -4.5995197 1E-15 1.4415419267167138E-15 0
96 0 -4.7958083 1E-15 1.4415419267167138E-15 0
97 0 -3.4349241 1E-15 1.4415419267167138E-15 0
98 1 9.075171 1 -0 1
99 1 8.952344 1 -0 1
100 1 4.9092436 1 -0 1
102 0 -3.3936296 1E-15 1.4415419267167138E-15 0
104 1 10.959613 1 -0 1
105 1 2.0113592 0.875 0.19264507794239591 1
106 1 8.251353 1 -0 1
108 0 -4.5487204 1E-15 1.4415419267167138E-15 0
109 1 5.864868 1 -0 1
111 1 3.7846975 1 -0 1
112 1 6.380026 1 -0 1
113 1 9.461209 1 -0 1
115 0 -3.6043515 1E-15 1.4415419267167138E-15 0
117 1 7.9902315 1 -0 1
120 0 -4.120878 1E-15 1.4415419267167138E-15 0
121 0 -3.070702 1E-15 1.4415419267167138E-15 0
122 1 10.129083 1 -0 1
123 1 4.173232 1 -0 1
125 0 -4.916337 1E-15 1.4415419267167138E-15 0
128 1 4.5026884 1 -0 1
129 0 -3.7451797 1E-15 1.4415419267167138E-15 0
131 0 -4.3083706 1E-15 1.4415419267167138E-15 0
132 1 8.723828 1 -0 1
133 0 -4.150231 1E-15 1.4415419267167138E-15 0
137 0 -4.650857 1E-15 1.4415419267167138E-15 0
138 0 -3.7104468 1E-15 1.4415419267167138E-15 0
141 0 -4.942006 1E-15 1.4415419267167138E-15 0
144 0 -4.6251884 1E-15 1.4415419267167138E-15 0
145 0 ? ? ? 0
147 0 -4.3231397 1E-15 1.4415419267167138E-15 0
150 0 -4.7855167 1E-15 1.4415419267167138E-15 0
151 1 4.569236 1 -0 1
152 1 8.551608 1 -0 1
154 0 -5.233155 1E-15 1.4415419267167138E-15 0
156 0 -4.3357234 1E-15 1.4415419267167138E-15 0
161 0 -3.5422645 1E-15 1.4415419267167138E-15 0
164 0 ? ? ? 0
167 1 7.4310427 1 -0 1
169 0 -5.272954 1E-15 1.4415419267167138E-15 0
171 0 -4.5995197 1E-15 1.4415419267167138E-15 0
173 1 13.797832 1 -0 1
174 1 5.2489986 1 -0 1
176 0 -4.3083706 1E-15 1.4415419267167138E-15 0
177 1 6.069395 1 -0 1
179 1 2.427494 0.875 0.19264507794239591 1
180 0 -4.7855167 1E-15 1.4415419267167138E-15 0
181 0 -5.233155 1E-15 1.4415419267167138E-15 0
183 1 8.429484 1 -0 1
187 1 11.391686 1 -0 1
188 1 7.5789557 1 -0 1
189 0 -3.686462 1E-15 1.4415419267167138E-15 0
191 1 10.154206 1 -0 1
192 0 -3.7517414 1E-15 1.4415419267167138E-15 0
196 0 5.425535 1 Infinity 1
198 0 -5.233155 1E-15 1.4415419267167138E-15 0
199 0 -4.334039 1E-15 1.4415419267167138E-15 0
201 1 9.260581 1 -0 1
202 0 -4.5995197 1E-15 1.4415419267167138E-15 0
204 0 -4.5995197 1E-15 1.4415419267167138E-15 0
205 1 11.455531 1 -0 1
206 1 6.5003185 1 -0 1
207 0 -4.7855167 1E-15 1.4415419267167138E-15 0
209 0 -3.6209207 1E-15 1.4415419267167138E-15 0
210 1 12.89725 1 -0 1
211 1 8.615066 1 -0 1
212 0 -4.5995197 1E-15 1.4415419267167138E-15 0
216 0 -4.916337 1E-15 1.4415419267167138E-15 0
218 1 7.456811 1 -0 1
219 0 -2.478888 1E-15 1.4415419267167138E-15 0
223 1 4.949767 1 -0 1
226 1 8.538112 1 -0 1
228 0 -4.7855167 1E-15 1.4415419267167138E-15 0
233 1 5.219512 1 -0 1
237 1 6.3747997 1 -0 1
239 1 4.7197256 1 -0 1
240 0 -2.0196419 0.09090909 0.13750352804950119 0
241 0 -3.9108233 1E-15 1.4415419267167138E-15 0
242 0 -4.3083706 1E-15 1.4415419267167138E-15 0
244 0 -4.5995197 1E-15 1.4415419267167138E-15 0
246 1 10.46416 1 -0 1
247 1 2.8055887 0.875 0.19264507794239591 1
248 0 -2.8070307 1E-15 1.4415419267167138E-15 0
249 0 ? ? ? 0
250 0 -4.652541 1E-15 1.4415419267167138E-15 0
252 0 3.7707863 1 Infinity 1
254 1 7.661195 1 -0 1
257 0 -4.334039 1E-15 1.4415419267167138E-15 0
258 0 -4.0172215 1E-15 1.4415419267167138E-15 0
259 0 4.008581 1 Infinity 1
260 1 7.7233286 1 -0 1
262 1 9.050584 1 -0 1
267 1 3.073165 0.875 0.19264507794239591 1
268 1 8.364619 1 -0 1
269 0 -4.5995197 1E-15 1.4415419267167138E-15 0
271 0 -3.4349241 1E-15 1.4415419267167138E-15 0
272 1 3.073165 0.875 0.19264507794239591 1
275 0 ? ? ? 0
276 0 -4.334039 1E-15 1.4415419267167138E-15 0
277 0 -4.916337 1E-15 1.4415419267167138E-15 0
278 0 -4.5995197 1E-15 1.4415419267167138E-15 0
279 1 6.3361444 1 -0 1
280 0 -4.0172215 1E-15 1.4415419267167138E-15 0
283 1 5.09361 1 -0 1
284 1 5.780156 1 -0 1
285 1 12.663693 1 -0 1
288 1 1.8098211 0.875 0.19264507794239591 1
290 0 -5.233155 1E-15 1.4415419267167138E-15 0
291 0 -4.5995197 1E-15 1.4415419267167138E-15 0
293 1 4.209258 1 -0 1
296 0 1.7716074 0.875 3 1
297 0 ? ? ? 0
299 1 5.4912777 1 -0 1
300 1 6.2749596 1 -0 1
301 0 -4.5995197 1E-15 1.4415419267167138E-15 0
303 0 -4.5995197 1E-15 1.4415419267167138E-15 0
304 1 4.320197 1 -0 1
308 1 6.5411158 1 -0 1
309 0 -1.7547836 0.09090909 0.13750352804950119 0
311 0 -5.233155 1E-15 1.4415419267167138E-15 0
312 1 3.2156925 0.875 0.19264507794239591 1
314 0 -5.102334 1E-15 1.4415419267167138E-15 0
316 1 3.940961 1 -0 1
317 1 8.260409 1 -0 1
319 0 2.462039 0.875 3 1
321 0 ? ? ? 0
323 1 4.269208 1 -0 1
327 0 -4.916337 1E-15 1.4415419267167138E-15 0
328 1 4.1030073 1 -0 1
329 1 6.3562107 1 -0 1
331 0 -3.1436715 1E-15 1.4415419267167138E-15 0
332 0 -2.8411217 1E-15 1.4415419267167138E-15 0
333 1 4.4240274 1 -0 1
336 1 4.790291 1 -0 1
338 0 -5.102334 1E-15 1.4415419267167138E-15 0
343 0 -5.233155 1E-15 1.4415419267167138E-15 0
344 1 8.780366 1 -0 1
346 0 -2.788134 1E-15 1.4415419267167138E-15 0
347 0 -5.0515347 1E-15 1.4415419267167138E-15 0
348 1 -0.033994675 0.6666667 0.58496245772549416 0
349 1 2.9944906 0.875 0.19264507794239591 1
350 0 -3.776164 1E-15 1.4415419267167138E-15 0
352 0 1.3297043 0.875 3 1
353 1 8.744256 1 -0 1
354 0 -4.916337 1E-15 1.4415419267167138E-15 0
355 0 -3.6730852 1E-15 1.4415419267167138E-15 0
358 1 6.1854086 1 -0 1
360 1 14.4099455 1 -0 1
361 1 6.113164 1 -0 1
366 1 12.847377 1 -0 1
368 0 -4.568268 1E-15 1.4415419267167138E-15 0
370 0 -3.02811 1E-15 1.4415419267167138E-15 0
371 0 -4.568268 1E-15 1.4415419267167138E-15 0
373 0 -3.605544 1E-15 1.4415419267167138E-15 0
376 0 -4.916337 1E-15 1.4415419267167138E-15 0
377 0 -5.102334 1E-15 1.4415419267167138E-15 0
378 0 -3.5256414 1E-15 1.4415419267167138E-15 0
379 0 -1.5692587 0.09090909 0.13750352804950119 0
381 1 8.122036 1 -0 1
383 0 -4.942006 1E-15 1.4415419267167138E-15 0
384 0 -4.942006 1E-15 1.4415419267167138E-15 0
387 0 -1.9415021 0.09090909 0.13750352804950119 0
388 0 -4.44138 1E-15 1.4415419267167138E-15 0
389 0 -2.9747353 1E-15 1.4415419267167138E-15 0
391 1 8.779809 1 -0 1
392 0 -4.334039 1E-15 1.4415419267167138E-15 0
395 0 -4.334039 1E-15 1.4415419267167138E-15 0
396 0 -4.0172215 1E-15 1.4415419267167138E-15 0
398 0 -3.902061 1E-15 1.4415419267167138E-15 0
399 0 -4.320097 1E-15 1.4415419267167138E-15 0
404 0 -4.508781 1E-15 1.4415419267167138E-15 0
406 0 -3.462277 1E-15 1.4415419267167138E-15 0
409 0 -4.0015955 1E-15 1.4415419267167138E-15 0
413 0 -3.102481 1E-15 1.4415419267167138E-15 0
414 1 5.959919 1 -0 1
415 0 -0.721817 0.09090909 0.13750352804950119 0
416 1 8.443301 1 -0 1
418 0 -1.8258505 0.09090909 0.13750352804950119 0
419 0 -3.8876746 1E-15 1.4415419267167138E-15 0
422 0 -2.1972284 0.09090909 0.13750352804950119 0
423 0 -3.086855 1E-15 1.4415419267167138E-15 0
428 0 -4.916337 1E-15 1.4415419267167138E-15 0
429 0 -4.6251884 1E-15 1.4415419267167138E-15 0
430 0 -4.2361884 1E-15 1.4415419267167138E-15 0
434 0 5.330061 1 Infinity 1
436 1 4.9601746 1 -0 1
439 0 -4.0685587 1E-15 1.4415419267167138E-15 0
440 1 7.0005217 1 -0 1
441 0 -1.8277497 0.09090909 0.13750352804950119 0
442 0 -4.126358 1E-15 1.4415419267167138E-15 0
449 1 9.384189 1 -0 1
450 0 -3.936492 1E-15 1.4415419267167138E-15 0
451 0 -4.0685587 1E-15 1.4415419267167138E-15 0
452 0 -4.3584614 1E-15 1.4415419267167138E-15 0
453 1 7.3491344 1 -0 1
454 0 -4.2596684 1E-15 1.4415419267167138E-15 0
455 1 0.29505634 0.6666667 0.58496245772549416 1
456 1 8.340758 1 -0 1
457 1 7.996641 1 -0 1
464 0 -4.359708 1E-15 1.4415419267167138E-15 0
465 1 8.680116 1 -0 1
466 1 8.110646 1 -0 1
467 1 6.858451 1 -0 1
474 0 -4.0685587 1E-15 1.4415419267167138E-15 0
480 0 -4.2545557 1E-15 1.4415419267167138E-15 0
482 1 13.881022 1 -0 1
483 1 9.617421 1 -0 1
484 0 -3.736116 1E-15 1.4415419267167138E-15 0
487 1 11.720016 1 -0 1
489 1 -0.59057426 0.24775147 2.0130344519050776 0
492 0 -4.228887 1E-15 1.4415419267167138E-15 0
493 1 9.492114 1 -0 1
495 0 -4.520036 1E-15 1.4415419267167138E-15 0
497 0 -4.111538 1E-15 1.4415419267167138E-15 0
501 0 -4.0428905 1E-15 1.4415419267167138E-15 0
502 0 -3.8966928 1E-15 1.4415419267167138E-15 0
504 0 -5.233155 1E-15 1.4415419267167138E-15 0
507 0 -4.011552 1E-15 1.4415419267167138E-15 0
510 0 -5.233155 1E-15 1.4415419267167138E-15 0
513 0 -4.520036 1E-15 1.4415419267167138E-15 0
514 1 8.787938 1 -0 1
517 0 -5.102334 1E-15 1.4415419267167138E-15 0
519 1 6.320156 1 -0 1
520 0 -5.0471582 1E-15 1.4415419267167138E-15 0
521 0 -4.173711 1E-15 1.4415419267167138E-15 0
522 1 3.983386 1 -0 1
523 1 6.156104 1 -0 1
527 0 -3.7260728 1E-15 1.4415419267167138E-15 0
528 0 -2.9663253 1E-15 1.4415419267167138E-15 0
529 0 -4.228887 1E-15 1.4415419267167138E-15 0
531 0 -3.462277 1E-15 1.4415419267167138E-15 0
532 0 -4.7855167 1E-15 1.4415419267167138E-15 0
533 0 -4.334039 1E-15 1.4415419267167138E-15 0
534 0 -4.6251884 1E-15 1.4415419267167138E-15 0
535 0 -3.7884345 1E-15 1.4415419267167138E-15 0
538 0 -4.0428905 1E-15 1.4415419267167138E-15 0
539 0 -3.4605932 1E-15 1.4415419267167138E-15 0
540 0 -3.344541 1E-15 1.4415419267167138E-15 0
541 0 -4.650857 1E-15 1.4415419267167138E-15 0
544 0 -3.8141036 1E-15 1.4415419267167138E-15 0
546 1 10.355874 1 -0 1
547 0 -5.128003 1E-15 1.4415419267167138E-15 0
548 0 -4.836854 1E-15 1.4415419267167138E-15 0
549 1 5.2726173 1 -0 1
557 0 -3.776164 1E-15 1.4415419267167138E-15 0
558 0 -4.6251884 1E-15 1.4415419267167138E-15 0
559 0 -3.7517414 1E-15 1.4415419267167138E-15 0
560 0 -3.4349241 1E-15 1.4415419267167138E-15 0
561 0 -3.4349241 1E-15 1.4415419267167138E-15 0
563 0 -4.334039 1E-15 1.4415419267167138E-15 0
565 1 10.456666 1 -0 1
566 0 -3.6847782 1E-15 1.4415419267167138E-15 0
569 1 8.855367 1 -0 1
577 0 -4.916337 1E-15 1.4415419267167138E-15 0
578 0 -4.916337 1E-15 1.4415419267167138E-15 0
581 1 8.00238 1 -0 1
582 1 7.645852 1 -0 1
584 0 -3.1515746 1E-15 1.4415419267167138E-15 0
586 1 12.260621 1 -0 1
590 1 4.0090714 1 -0 1
593 0 -3.736116 1E-15 1.4415419267167138E-15 0
594 1 5.269803 1 -0 1
600 0 -4.334039 1E-15 1.4415419267167138E-15 0
602 0 -4.0428905 1E-15 1.4415419267167138E-15 0
604 1 4.515381 1 -0 1
606 0 -4.2135105 1E-15 1.4415419267167138E-15 0
607 0 -5.233155 1E-15 1.4415419267167138E-15 0
609 0 -4.0685587 1E-15 1.4415419267167138E-15 0
612 1 14.881892 1 -0 1
613 0 -4.128848 1E-15 1.4415419267167138E-15 0
614 0 -4.8111854 1E-15 1.4415419267167138E-15 0
617 0 ? ? ? 0
618 0 -4.0428905 1E-15 1.4415419267167138E-15 0
619 0 -3.7517414 1E-15 1.4415419267167138E-15 0
621 0 -0.14650202 0.6666667 1.5849625867124844 0
622 0 -2.5446057 1E-15 1.4415419267167138E-15 0
624 0 -3.7915406 1E-15 1.4415419267167138E-15 0
627 0 -3.3132029 1E-15 1.4415419267167138E-15 0
629 0 -4.359708 1E-15 1.4415419267167138E-15 0
633 1 4.0237722 1 -0 1
634 0 -4.650857 1E-15 1.4415419267167138E-15 0
638 0 -4.359708 1E-15 1.4415419267167138E-15 0
639 0 -3.776164 1E-15 1.4415419267167138E-15 0
641 0 -4.334039 1E-15 1.4415419267167138E-15 0
642 0 -4.334039 1E-15 1.4415419267167138E-15 0
644 0 -4.942006 1E-15 1.4415419267167138E-15 0
645 0 -4.334039 1E-15 1.4415419267167138E-15 0
649 0 -4.334039 1E-15 1.4415419267167138E-15 0
652 0 -3.567933 1E-15 1.4415419267167138E-15 0
653 0 -4.0428905 1E-15 1.4415419267167138E-15 0
654 0 -4.0172215 1E-15 1.4415419267167138E-15 0
656 0 -3.7517414 1E-15 1.4415419267167138E-15 0
657 0 0.674386 0.6666667 1.5849625867124844 1
660 0 -4.916337 1E-15 1.4415419267167138E-15 0
661 0 -3.7260728 1E-15 1.4415419267167138E-15 0
665 0 -5.233155 1E-15 1.4415419267167138E-15 0
668 1 3.299467 0.875 0.19264507794239591 1
670 1 6.4614477 1 -0 1
678 0 -5.233155 1E-15 1.4415419267167138E-15 0
679 0 -4.942006 1E-15 1.4415419267167138E-15 0
680 1 14.404437 1 -0 1
681 1 9.278363 1 -0 1
682 0 -3.2511153 1E-15 1.4415419267167138E-15 0
683 0 -5.233155 1E-15 1.4415419267167138E-15 0
685 0 -5.233155 1E-15 1.4415419267167138E-15 0
688 0 -4.359708 1E-15 1.4415419267167138E-15 0
689 0 -3.1943884 1E-15 1.4415419267167138E-15 0
691 1 5.2444315 1 -0 1
692 0 -4.650857 1E-15 1.4415419267167138E-15 0
693 0 -4.042787 1E-15 1.4415419267167138E-15 0
694 0 -4.057659 1E-15 1.4415419267167138E-15 0
696 1 7.3569994 1 -0 1
697 1 4.656295 1 -0 1
698 1 5.6929607 1 -0 1
0 0 -3.4721131 1E-15 1.4415419267167138E-15 0
1 0 2.4163914 0.9047619 3.3923175087700881 1
2 0 -4.045404 1E-15 1.4415419267167138E-15 0
3 0 2.9251795 0.9047619 3.3923175087700881 1
4 0 -3.5088277 1E-15 1.4415419267167138E-15 0
7 0 -4.670553 1E-15 1.4415419267167138E-15 0
12 1 -0.343431 0.51152515 0.96712290902641618 0
13 0 -4.6186943 1E-15 1.4415419267167138E-15 0
14 1 7.360214 1 -0 1
15 1 0.6494303 0.6 0.73696553683865695 1
16 0 -4.220706 1E-15 1.4415419267167138E-15 0
17 0 -3.9551725 1E-15 1.4415419267167138E-15 0
19 0 -2.9890537 1E-15 1.4415419267167138E-15 0
22 0 -4.7037654 1E-15 1.4415419267167138E-15 0
23 1 ? ? ? 0
24 0 -5.4043503 1E-15 1.4415419267167138E-15 0
26 0 -4.390918 1E-15 1.4415419267167138E-15 0
27 0 -3.7376466 1E-15 1.4415419267167138E-15 0
29 0 -5.4339433 1E-15 1.4415419267167138E-15 0
30 0 -4.649441 1E-15 1.4415419267167138E-15 0
33 0 -4.698118 1E-15 1.4415419267167138E-15 0
34 0 -4.4530277 1E-15 1.4415419267167138E-15 0
36 1 7.832773 1 -0 1
38 1 4.92861 0.93333334 0.09953566740867692 1
39 1 1.079258 0.6 0.73696553683865695 1
42 1 6.8985863 1 -0 1
43 1 -0.49528694 0.5 1 0
47 0 -5.669884 1E-15 1.4415419267167138E-15 0
49 1 5.3024054 0.93333334 0.09953566740867692 1
53 1 5.116103 0.93333334 0.09953566740867692 1
55 1 4.4195347 0.93333334 0.09953566740867692 1
57 1 0.5701313 0.6 0.73696553683865695 1
58 1 1.1371031 0.6 0.73696553683865695 1
59 1 1.6442327 0.9047619 0.14438990028345636 1
61 0 -5.2770567 1E-15 1.4415419267167138E-15 0
62 1 5.7670774 1 -0 1
65 1 2.7867746 0.9047619 0.14438990028345636 1
67 1 2.9058514 0.9047619 0.14438990028345636 1
75 0 -4.291042 1E-15 1.4415419267167138E-15 0
78 0 -3.652576 1E-15 1.4415419267167138E-15 0
80 0 -3.2955709 1E-15 1.4415419267167138E-15 0
81 0 -3.9975338 1E-15 1.4415419267167138E-15 0
83 0 -2.9832687 1E-15 1.4415419267167138E-15 0
84 1 6.5824003 1 -0 1
85 1 4.7604074 0.93333334 0.09953566740867692 1
86 1 1.466999 0.9047619 0.14438990028345636 1
87 1 5.223544 0.93333334 0.09953566740867692 1
89 0 -5.017977 1E-15 1.4415419267167138E-15 0
94 0 -4.9212914 1E-15 1.4415419267167138E-15 0
101 1 -0.85990286 0.41515666 1.2682722439451406 0
103 1 0.36755466 0.6 0.73696553683865695 1
107 1 4.617798 0.93333334 0.09953566740867692 1
110 0 -3.1312823 1E-15 1.4415419267167138E-15 0
114 0 -2.8847933 1E-15 1.4415419267167138E-15 0
116 0 -0.40737772 0.5 1 0
118 0 -5.2584124 1E-15 1.4415419267167138E-15 0
119 0 -3.786881 1E-15 1.4415419267167138E-15 0
124 1 5.0384197 0.93333334 0.09953566740867692 1
126 1 6.4765244 1 -0 1
127 0 -4.4382315 1E-15 1.4415419267167138E-15 0
130 0 -3.2361722 1E-15 1.4415419267167138E-15 0
134 0 -4.75809 1E-15 1.4415419267167138E-15 0
135 0 -2.670867 1E-15 1.4415419267167138E-15 0
136 0 -4.220706 1E-15 1.4415419267167138E-15 0
139 0 ? ? ? 0
140 0 -4.9692993 1E-15 1.4415419267167138E-15 0
142 1 3.7043686 0.93333334 0.09953566740867692 1
143 0 -4.364107 1E-15 1.4415419267167138E-15 0
146 1 0.36148834 0.6 0.73696553683865695 1
148 0 -2.357305 1E-15 1.4415419267167138E-15 0
149 1 8.756336 1 -0 1
153 0 -3.7005844 1E-15 1.4415419267167138E-15 0
155 1 3.1619148 0.9047619 0.14438990028345636 1
157 0 -4.9212914 1E-15 1.4415419267167138E-15 0
158 0 ? ? ? 0
159 1 10.452139 1 -0 1
160 1 7.997595 1 -0 1
162 0 -4.4382315 1E-15 1.4415419267167138E-15 0
163 0 -3.669045 1E-15 1.4415419267167138E-15 0
165 0 -3.3581352 1E-15 1.4415419267167138E-15 0
166 1 6.3355865 1 -0 1
168 0 -4.4382315 1E-15 1.4415419267167138E-15 0
170 0 -4.9692993 1E-15 1.4415419267167138E-15 0
172 0 -5.669884 1E-15 1.4415419267167138E-15 0
175 1 6.0381765 1 -0 1
178 0 -3.9551725 1E-15 1.4415419267167138E-15 0
182 0 -2.9890537 1E-15 1.4415419267167138E-15 0
184 1 5.409273 1 -0 1
185 0 -4.8669662 1E-15 1.4415419267167138E-15 0
186 1 3.9876003 0.93333334 0.09953566740867692 1
190 1 10.521244 1 -0 1
193 0 -5.4043503 1E-15 1.4415419267167138E-15 0
194 0 -4.4382315 1E-15 1.4415419267167138E-15 0
195 0 -3.9551725 1E-15 1.4415419267167138E-15 0
197 0 -2.8025956 1E-15 1.4415419267167138E-15 0
200 1 8.673521 1 -0 1
203 0 -3.4721131 1E-15 1.4415419267167138E-15 0
208 0 -5.350025 1E-15 1.4415419267167138E-15 0
213 1 12.300528 1 -0 1
214 1 11.895983 1 -0 1
215 1 6.600219 1 -0 1
217 0 -5.4043503 1E-15 1.4415419267167138E-15 0
220 0 -5.181178 1E-15 1.4415419267167138E-15 0
221 1 7.9662895 1 -0 1
222 1 -2.1487255 1E-15 49.828921418077073 0
224 1 8.4735565 1 -0 1
225 0 -5.669884 1E-15 1.4415419267167138E-15 0
227 1 6.748211 1 -0 1
229 1 10.5048065 1 -0 1
230 1 4.829337 0.93333334 0.09953566740867692 1
231 1 6.912092 1 -0 1
232 0 1.0722923 0.6 1.3219281808786905 1
234 0 -2.7037287 1E-15 1.4415419267167138E-15 0
235 0 ? ? ? 0
236 1 9.440506 1 -0 1
238 1 10.690645 1 -0 1
243 0 -3.301972 1E-15 1.4415419267167138E-15 0
245 0 -2.856113 1E-15 1.4415419267167138E-15 0
251 1 7.355525 1 -0 1
253 1 6.8985863 1 -0 1
255 1 3.745204 0.93333334 0.09953566740867692 1
256 0 -4.9692993 1E-15 1.4415419267167138E-15 0
261 1 9.009869 1 -0 1
263 1 7.1455708 1 -0 1
264 1 4.0145664 0.93333334 0.09953566740867692 1
265 0 -2.5156913 1E-15 1.4415419267167138E-15 0
266 1 7.325534 1 -0 1
270 1 5.5723915 1 -0 1
273 1 0.037317276 0.6 0.73696553683865695 1
274 0 -4.2340226 1E-15 1.4415419267167138E-15 0
281 0 -4.698118 1E-15 1.4415419267167138E-15 0
282 1 2.860156 0.9047619 0.14438990028345636 1
286 1 12.544172 1 -0 1
287 0 -4.75809 1E-15 1.4415419267167138E-15 0
289 1 6.6595697 1 -0 1
292 1 ? ? ? 0
294 0 ? ? ? 0
295 1 5.621522 1 -0 1
298 0 -2.4584546 1E-15 1.4415419267167138E-15 0
302 1 12.725584 1 -0 1
305 1 8.040863 1 -0 1
306 0 -5.4043503 1E-15 1.4415419267167138E-15 0
307 0 -5.4043503 1E-15 1.4415419267167138E-15 0
310 0 -5.24115 1E-15 1.4415419267167138E-15 0
313 0 -5.935418 1E-15 1.4415419267167138E-15 0
315 0 ? ? ? 0
318 0 -5.5673246 1E-15 1.4415419267167138E-15 0
320 1 5.5611877 1 -0 1
322 0 -4.4382315 1E-15 1.4415419267167138E-15 0
324 0 -5.4043503 1E-15 1.4415419267167138E-15 0
325 0 -3.7860875 1E-15 1.4415419267167138E-15 0
326 1 3.6223288 0.90666085 0.14136509713640041 1
330 1 4.9927454 0.93333334 0.09953566740867692 1
334 1 5.514736 1 -0 1
335 0 -5.935418 1E-15 1.4415419267167138E-15 0
337 0 -5.4043503 1E-15 1.4415419267167138E-15 0
339 1 5.1161976 0.93333334 0.09953566740867692 1
340 1 5.5803347 1 -0 1
341 0 -5.4043503 1E-15 1.4415419267167138E-15 0
342 0 -5.4523587 1E-15 1.4415419267167138E-15 0
345 0 -5.935418 1E-15 1.4415419267167138E-15 0
351 0 -4.9212914 1E-15 1.4415419267167138E-15 0
356 1 -0.9127703 0.25679532 1.9613092019943366 0
357 1 9.874601 1 -0 1
359 1 4.653248 0.93333334 0.09953566740867692 1
362 0 -3.5174994 1E-15 1.4415419267167138E-15 0
363 0 -1.6840982 1E-15 1.4415419267167138E-15 0
364 0 -4.9212914 1E-15 1.4415419267167138E-15 0
365 0 -5.186825 1E-15 1.4415419267167138E-15 0
367 1 9.040358 1 -0 1
369 0 -5.1140842 1E-15 1.4415419267167138E-15 0
372 0 -3.9699688 1E-15 1.4415419267167138E-15 0
374 0 -4.4530277 1E-15 1.4415419267167138E-15 0
375 0 -5.935418 1E-15 1.4415419267167138E-15 0
380 0 -5.935418 1E-15 1.4415419267167138E-15 0
382 0 -3.5015903 1E-15 1.4415419267167138E-15 0
385 0 -3.4273872 1E-15 1.4415419267167138E-15 0
386 1 5.084236 0.93333334 0.09953566740867692 1
390 0 -5.4467115 1E-15 1.4415419267167138E-15 0
393 0 -5.881093 1E-15 1.4415419267167138E-15 0
394 0 -4.909887 1E-15 1.4415419267167138E-15 0
397 0 -4.48624 1E-15 1.4415419267167138E-15 0
400 1 7.313369 1 -0 1
401 0 -4.9692993 1E-15 1.4415419267167138E-15 0
402 0 -2.7191267 1E-15 1.4415419267167138E-15 0
403 0 -3.7908158 1E-15 1.4415419267167138E-15 0
405 0 -5.669884 1E-15 1.4415419267167138E-15 0
407 0 -5.669884 1E-15 1.4415419267167138E-15 0
408 0 -3.5375085 1E-15 1.4415419267167138E-15 0
410 0 -5.669884 1E-15 1.4415419267167138E-15 0
411 0 ? ? ? 0
412 1 7.6394253 1 -0 1
417 0 -5.669884 1E-15 1.4415419267167138E-15 0
420 0 -2.6969714 1E-15 1.4415419267167138E-15 0
421 1 9.498289 1 -0 1
424 0 -4.9692993 1E-15 1.4415419267167138E-15 0
425 1 11.849487 1 -0 1
426 0 -2.2324486 1E-15 1.4415419267167138E-15 0
427 1 4.1596622 0.93333334 0.09953566740867692 1
431 0 -2.9302087 1E-15 1.4415419267167138E-15 0
432 0 -3.5334377 1E-15 1.4415419267167138E-15 0
433 0 -4.013695 1E-15 1.4415419267167138E-15 0
435 1 7.0216722 1 -0 1
437 0 -4.48624 1E-15 1.4415419267167138E-15 0
438 0 -3.5384212 1E-15 1.4415419267167138E-15 0
443 0 -5.54259 1E-15 1.4415419267167138E-15 0
444 0 -2.6761093 1E-15 1.4415419267167138E-15 0
445 0 -5.4523587 1E-15 1.4415419267167138E-15 0
446 0 -5.935418 1E-15 1.4415419267167138E-15 0
447 0 -4.0031805 1E-15 1.4415419267167138E-15 0
448 0 -5.881093 1E-15 1.4415419267167138E-15 0
458 0 -3.7524433 1E-15 1.4415419267167138E-15 0
459 0 -3.5017061 1E-15 1.4415419267167138E-15 0
460 0 -3.5568361 1E-15 1.4415419267167138E-15 0
461 0 -3.3979883 1E-15 1.4415419267167138E-15 0
462 0 -3.0737762 1E-15 1.4415419267167138E-15 0
463 0 -4.282031 1E-15 1.4415419267167138E-15 0
468 0 -4.48624 1E-15 1.4415419267167138E-15 0
469 0 -5.4191465 1E-15 1.4415419267167138E-15 0
470 0 -4.649441 1E-15 1.4415419267167138E-15 0
471 0 -3.0737762 1E-15 1.4415419267167138E-15 0
472 0 -3.4657965 1E-15 1.4415419267167138E-15 0
473 0 -4.48624 1E-15 1.4415419267167138E-15 0
475 0 -4.9692993 1E-15 1.4415419267167138E-15 0
476 0 -4.2355022 1E-15 1.4415419267167138E-15 0
477 0 -4.48624 1E-15 1.4415419267167138E-15 0
478 0 -3.744658 1E-15 1.4415419267167138E-15 0
479 1 6.673233 1 -0 1
481 0 -2.5658813 1E-15 1.4415419267167138E-15 0
485 0 -4.6490927 1E-15 1.4415419267167138E-15 0
486 0 -4.649441 1E-15 1.4415419267167138E-15 0
488 1 0.9591036 0.6 0.73696553683865695 1
490 0 -5.935418 1E-15 1.4415419267167138E-15 0
491 1 5.556223 1 -0 1
494 0 -0.01569748 0.5942614 1.3013775627342616 0
496 0 -5.881093 1E-15 1.4415419267167138E-15 0
498 0 -4.220706 1E-15 1.4415419267167138E-15 0
499 0 -4.220706 1E-15 1.4415419267167138E-15 0
500 0 -2.9890537 1E-15 1.4415419267167138E-15 0
503 0 -3.9551725 1E-15 1.4415419267167138E-15 0
505 0 -4.4522543 1E-15 1.4415419267167138E-15 0
506 1 8.766861 1 -0 1
508 0 -4.0031805 1E-15 1.4415419267167138E-15 0
509 0 -5.4523587 1E-15 1.4415419267167138E-15 0
511 0 -3.7376466 1E-15 1.4415419267167138E-15 0
512 0 -4.0031805 1E-15 1.4415419267167138E-15 0
515 1 7.3749876 1 -0 1
516 0 -5.881093 1E-15 1.4415419267167138E-15 0
518 0 -4.49539 1E-15 1.4415419267167138E-15 0
524 0 -4.7037654 1E-15 1.4415419267167138E-15 0
525 0 -4.746127 1E-15 1.4415419267167138E-15 0
526 0 -4.48624 1E-15 1.4415419267167138E-15 0
530 1 5.325206 0.93333334 0.09953566740867692 1
536 0 -3.4721131 1E-15 1.4415419267167138E-15 0
537 0 -3.2213755 1E-15 1.4415419267167138E-15 0
542 0 -3.4861355 1E-15 1.4415419267167138E-15 0
543 0 -4.220706 1E-15 1.4415419267167138E-15 0
545 0 -3.7376466 1E-15 1.4415419267167138E-15 0
550 0 -4.7037654 1E-15 1.4415419267167138E-15 0
551 0 -5.4043503 1E-15 1.4415419267167138E-15 0
552 0 -3.2360563 1E-15 1.4415419267167138E-15 0
553 0 -1.4225526 1E-15 1.4415419267167138E-15 0
554 0 -4.9692993 1E-15 1.4415419267167138E-15 0
555 0 -1.7431297 1E-15 1.4415419267167138E-15 0
556 0 -2.9508896 1E-15 1.4415419267167138E-15 0
562 0 -5.4043503 1E-15 1.4415419267167138E-15 0
564 0 -3.7509632 1E-15 1.4415419267167138E-15 0
567 0 -3.4350505 1E-15 1.4415419267167138E-15 0
568 1 3.5748348 0.9047619 0.14438990028345636 1
570 1 6.466878 1 -0 1
571 1 9.048693 1 -0 1
572 0 -4.7037654 1E-15 1.4415419267167138E-15 0
573 0 -5.669884 1E-15 1.4415419267167138E-15 0
574 1 5.533702 1 -0 1
575 0 -3.2213755 1E-15 1.4415419267167138E-15 0
576 0 -3.7376466 1E-15 1.4415419267167138E-15 0
579 0 -5.4043503 1E-15 1.4415419267167138E-15 0
580 0 -3.4869094 1E-15 1.4415419267167138E-15 0
583 0 -4.9692993 1E-15 1.4415419267167138E-15 0
585 0 -5.935418 1E-15 1.4415419267167138E-15 0
587 0 -3.5334377 1E-15 1.4415419267167138E-15 0
588 1 4.6442137 0.93333334 0.09953566740867692 1
589 0 -4.0031805 1E-15 1.4415419267167138E-15 0
591 1 4.243066 0.93333334 0.09953566740867692 1
592 1 4.8517914 0.93333334 0.09953566740867692 1
595 0 -3.7376466 1E-15 1.4415419267167138E-15 0
596 0 -3.9699688 1E-15 1.4415419267167138E-15 0
597 0 -2.9706383 1E-15 1.4415419267167138E-15 0
598 0 -4.7037654 1E-15 1.4415419267167138E-15 0
599 0 -2.9381208 1E-15 1.4415419267167138E-15 0
601 0 -5.6155596 1E-15 1.4415419267167138E-15 0
603 1 3.1762495 0.9047619 0.14438990028345636 1
605 1 8.159748 1 -0 1
608 1 8.079367 1 -0 1
610 1 6.972576 1 -0 1
611 1 5.494137 1 -0 1
615 0 -3.7192316 1E-15 1.4415419267167138E-15 0
616 0 -4.7037654 1E-15 1.4415419267167138E-15 0
620 0 -4.7037654 1E-15 1.4415419267167138E-15 0
623 0 -5.935418 1E-15 1.4415419267167138E-15 0
625 0 -3.343666 1E-15 1.4415419267167138E-15 0
626 1 3.8647957 0.93333334 0.09953566740867692 1
628 0 -5.4523587 1E-15 1.4415419267167138E-15 0
630 0 -2.7601237 1E-15 1.4415419267167138E-15 0
631 0 -3.7376466 1E-15 1.4415419267167138E-15 0
632 0 -5.935418 1E-15 1.4415419267167138E-15 0
635 0 -4.217087 1E-15 1.4415419267167138E-15 0
636 1 8.162584 1 -0 1
637 0 -2.370799 1E-15 1.4415419267167138E-15 0
640 0 -4.0398955 1E-15 1.4415419267167138E-15 0
643 0 -5.935418 1E-15 1.4415419267167138E-15 0
646 0 -5.426158 1E-15 1.4415419267167138E-15 0
647 0 -5.4890733 1E-15 1.4415419267167138E-15 0
648 1 8.579456 1 -0 1
650 0 -3.6219687 1E-15 1.4415419267167138E-15 0
651 0 -4.965017 1E-15 1.4415419267167138E-15 0
655 0 -4.7037654 1E-15 1.4415419267167138E-15 0
658 1 7.546403 1 -0 1
659 0 -5.935418 1E-15 1.4415419267167138E-15 0
662 0 -5.1684093 1E-15 1.4415419267167138E-15 0
663 0 -5.1684093 1E-15 1.4415419267167138E-15 0
664 0 -4.2574205 1E-15 1.4415419267167138E-15 0
666 0 -3.070212 1E-15 1.4415419267167138E-15 0
667 0 -4.4382315 1E-15 1.4415419267167138E-15 0
669 1 6.981786 1 -0 1
671 0 -3.9565368 1E-15 1.4415419267167138E-15 0
672 0 -4.9212914 1E-15 1.4415419267167138E-15 0
673 0 -3.289723 1E-15 1.4415419267167138E-15 0
674 0 -5.669884 1E-15 1.4415419267167138E-15 0
675 0 -3.7340279 1E-15 1.4415419267167138E-15 0
676 0 -5.4191465 1E-15 1.4415419267167138E-15 0
677 0 -4.0031805 1E-15 1.4415419267167138E-15 0
684 0 -5.935418 1E-15 1.4415419267167138E-15 0
686 0 -5.935418 1E-15 1.4415419267167138E-15 0
687 0 -4.295347 1E-15 1.4415419267167138E-15 0
690 0 -5.4890733 1E-15 1.4415419267167138E-15 0
695 0 -5.4523587 1E-15 1.4415419267167138E-15 0

Просмотреть файл

@ -0,0 +1,56 @@
maml.exe CV tr=AveragedPerceptron threads=- numcali=200 dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 131 | 3 | 0.9776
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9424 | 0.9860 |
OVERALL 0/1 ACCURACY: 0.968927
LOG LOSS/instance: 0.138699
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.855069
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 100 | 5 | 0.9524
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9709 | 0.9779 |
OVERALL 0/1 ACCURACY: 0.975684
LOG LOSS/instance: 0.121001
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.866069
AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996028 (0.0016)
Accuracy: 0.972305 (0.0034)
Positive precision: 0.956660 (0.0142)
Positive recall: 0.964996 (0.0126)
Negative precision: 0.981961 (0.0041)
Negative recall: 0.975122 (0.0115)
Log-loss: 0.129850 (0.0088)
Log-loss reduction: 0.860569 (0.0055)
F1 Score: 0.960623 (0.0009)
AUPRC: 0.992280 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 0.12985 0.860569 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- numcali=200 dout=%Output% data=%Data% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
5 1 11.285979 0.999881 0.00017164889637290732 1
6 0 -0.9347124 0.23396648 0.38452058087215002 0
8 0 -3.7769966 0.027554926 0.040311328623184935 0
9 0 -3.7947202 0.027160428 0.03972618138440237 0
10 0 -4.7855167 0.012041708 0.01747795778447921 0
11 0 -4.6251884 0.0137462355 0.019969193057315846 0
18 1 6.8803625 0.9952804 0.0068250837128981312 1
20 1 5.573552 0.9860489 0.020268933879564289 1
21 1 6.7444105 0.994715 0.0076448984232590942 1
25 1 1.2789736 0.6605421 0.59827764318621834 1
28 0 -4.6251884 0.0137462355 0.019969193057315846 0
31 0 -4.3083706 0.017843189 0.025974711082661295 0
32 1 6.9428854 0.9955198 0.0064780602842336027 1
35 0 -4.6251884 0.0137462355 0.019969193057315846 0
37 0 -1.814332 0.12765497 0.19702923160397912 0
40 0 ? ? ? 0
41 1 2.4075565 0.8333803 0.26295312912247087 1
44 1 8.039285 0.99820465 0.0025924726101035612 1
45 0 -4.625085 0.013747409 0.019970909608661516 0
46 1 5.138131 0.980041 0.029085949424629401 1
48 0 -3.4336782 0.036388174 0.053475995166770388 0
50 1 2.7120514 0.8658191 0.20786247380562253 1
51 1 -0.06207609 0.3879153 1.3661863664402512 0
52 1 4.4027233 0.9636923 0.053355505841607219 1
54 1 6.3079214 0.99240357 0.011001174399811285 1
56 1 6.356517 0.992704 0.010564526737643879 1
60 1 1.9474735 0.7729272 0.37159551204292307 1
63 1 0.78555584 0.562906 0.82903400016193718 1
64 0 -4.916337 0.0108069945 0.015676056316435264 0
66 0 -3.7260728 0.028719632 0.042040293369108923 0
68 1 9.2772875 0.9993619 0.00092091699247825402 1
69 0 -4.4157114 0.016335886 0.023762323784119653 0
70 0 -3.086855 0.04804748 0.071038474899592405 0
71 1 7.5159607 0.9972213 0.0040144096248406758 1
72 0 -1.8410158 0.12518989 0.1929581940500214 0
73 1 7.1320066 0.99617285 0.0055320097082099612 1
74 1 2.4329157 0.8363051 0.25789876529273503 1
76 0 -3.9190063 0.024544325 0.035851776655881802 0
77 0 -3.1092038 0.04719958 0.069754046975993148 0
79 0 -4.4391913 0.016023252 0.023303870960396014 0
82 0 -3.1867542 0.04436642 0.065470544320387833 0
88 0 -3.7260728 0.028719632 0.042040293369108923 0
90 0 -4.5995197 0.014040397 0.020399556899321523 0
91 0 -4.5046597 0.015182306 0.022071412337899179 0
92 0 -3.7260728 0.028719632 0.042040293369108923 0
93 0 -4.916337 0.0108069945 0.015676056316435264 0
95 0 -4.5995197 0.014040397 0.020399556899321523 0
96 0 -4.7958083 0.011939719 0.017329032848551324 0
97 0 -3.4349241 0.036351644 0.053421304124999819 0
98 1 9.075171 0.9992444 0.0010905240888066275 1
99 1 8.952344 0.99916273 0.0012084261062733697 1
100 1 4.9092436 0.9759306 0.035149577872267759 1
102 0 -3.3936296 0.03758127 0.055263373306914068 0
104 1 10.959613 0.9998437 0.00022548687566550783 1
105 1 2.0113592 0.7821696 0.35444666591631291 1
106 1 8.251353 0.99849606 0.002171366339988838 1
108 0 -4.5487204 0.014640963 0.021278596770587802 0
109 1 5.864868 0.989033 0.015909459906802714 1
111 1 3.7846975 0.9405741 0.088386474079630892 1
112 1 6.380026 0.992845 0.01035959049172811 1
113 1 9.461209 0.9994528 0.00078961641462542323 1
115 0 -3.6043515 0.03170035 0.046474522412928862 0
117 1 7.9902315 0.99812955 0.0027010206381427706 1
120 0 -4.120878 0.020810025 0.03033930689537127 0
121 0 -3.070702 0.04866929 0.071981143885538362 0
122 1 10.129083 0.99968696 0.00045169714530399755 1
123 1 4.173232 0.95634377 0.064398788225312462 1
125 0 -4.916337 0.0108069945 0.015676056316435264 0
128 1 4.5026884 0.9665074 0.049147353467874917 1
129 0 -3.7451797 0.028277133 0.041383175009523307 0
131 0 -4.3083706 0.017843189 0.025974711082661295 0
132 1 8.723828 0.99898654 0.001462851900897584 1
133 0 -4.150231 0.02031554 0.029610937481310409 0
137 0 -4.650857 0.013458154 0.019547848298052593 0
138 0 -3.7104468 0.029086504 0.042585331313926451 0
141 0 -4.942006 0.010579846 0.015344807913488721 0
144 0 -4.6251884 0.0137462355 0.019969193057315846 0
145 0 ? ? ? 0
147 0 -4.3231397 0.017627966 0.0256586034908362 0
150 0 -4.7855167 0.012041708 0.01747795778447921 0
151 1 4.569236 0.9682633 0.046528639903083813 1
152 1 8.551608 0.99882966 0.001689428468282927 1
154 0 -5.233155 0.00831194 0.012041709738050741 0
156 0 -4.3357234 0.0174466 0.02539227737375193 0
161 0 -3.5422645 0.033333916 0.048910470402074142 0
164 0 ? ? ? 0
167 1 7.4310427 0.9970173 0.00430952206969425 1
169 0 -5.272954 0.008041962 0.011649002220510503 0
171 0 -4.5995197 0.014040397 0.020399556899321523 0
173 1 13.797832 0.99998546 2.0982035982102257E-05 1
174 1 5.2489986 0.9817766 0.026533320639140424 1
176 0 -4.3083706 0.017843189 0.025974711082661295 0
177 1 6.069395 0.9907416 0.013419249199056257 1
179 1 2.427494 0.8356832 0.25897191578675427 1
180 0 -4.7855167 0.012041708 0.01747795778447921 0
181 0 -5.233155 0.00831194 0.012041709738050741 0
183 1 8.429484 0.99870396 0.0018710080960925083 1
187 1 11.391686 0.9998911 0.00015711470643243279 1
188 1 7.5789557 0.9973635 0.0038086772809973425 1
189 0 -3.686462 0.029658493 0.043435508161482769 0
191 1 10.154206 0.99969345 0.00044232118620536842 1
192 0 -3.7517414 0.0281267 0.041159848092843968 0
196 0 5.425535 0.984239 5.9874954870425023 1
198 0 -5.233155 0.00831194 0.012041709738050741 0
199 0 -4.334039 0.017470768 0.025427763713777321 0
201 1 9.260581 0.9993529 0.00093391003230289336 1
202 0 -4.5995197 0.014040397 0.020399556899321523 0
204 0 -4.5995197 0.014040397 0.020399556899321523 0
205 1 11.455531 0.99989676 0.00014894466394889936 1
206 1 6.5003185 0.9935255 0.0093710911166817908 1
207 0 -4.7855167 0.012041708 0.01747795778447921 0
209 0 -3.6209207 0.031277657 0.045844877272022612 0
210 1 12.89725 0.99996907 4.4630188215668621E-05 1
211 1 8.615066 0.9988901 0.0016021337380065527 1
212 0 -4.5995197 0.014040397 0.020399556899321523 0
216 0 -4.916337 0.0108069945 0.015676056316435264 0
218 1 7.456811 0.99708074 0.0042177565023021743 1
219 0 -2.478888 0.07743219 0.1162731442274911 0
223 1 4.949767 0.97671413 0.033991720509423423 1
226 1 8.538112 0.99881643 0.0017085410371302549 1
228 0 -4.7855167 0.012041708 0.01747795778447921 0
233 1 5.219512 0.98133 0.027189762853290386 1
237 1 6.3747997 0.9928139 0.01040480215647019 1
239 1 4.7197256 0.97191185 0.041102627568687017 1
240 0 -2.0196419 0.10972075 0.16767016663972723 0
241 0 -3.9108233 0.024708744 0.036094972806010969 0
242 0 -4.3083706 0.017843189 0.025974711082661295 0
244 0 -4.5995197 0.014040397 0.020399556899321523 0
246 1 10.46416 0.9997635 0.00034125393609690753 1
247 1 2.8055887 0.8746519 0.19321912280766068 1
248 0 -2.8070307 0.05995964 0.089205393883281928 0
249 0 ? ? ? 0
250 0 -4.652541 0.013439462 0.019520512984852346 0
252 0 3.7707863 0.93992037 4.0569801611177532 1
254 1 7.661195 0.9975384 0.0035557339658115286 1
257 0 -4.334039 0.017470768 0.025427763713777321 0
258 0 -4.0172215 0.02265229 0.033056176347726125 0
259 0 4.008581 0.95021814 4.3282360862916729 1
260 1 7.7233286 0.9976628 0.0033758384253855024 1
262 1 9.050584 0.9992287 0.0011131570864691799 1
267 1 3.073165 0.8972062 0.15648852541997652 1
268 1 8.364619 0.9986318 0.0019752824987132106 1
269 0 -4.5995197 0.014040397 0.020399556899321523 0
271 0 -3.4349241 0.036351644 0.053421304124999819 0
272 1 3.073165 0.8972062 0.15648852541997652 1
275 0 ? ? ? 0
276 0 -4.334039 0.017470768 0.025427763713777321 0
277 0 -4.916337 0.0108069945 0.015676056316435264 0
278 0 -4.5995197 0.014040397 0.020399556899321523 0
279 1 6.3361444 0.99257946 0.010745494226668283 1
280 0 -4.0172215 0.02265229 0.033056176347726125 0
283 1 5.09361 0.97929937 0.030178143631386233 1
284 1 5.780156 0.9882371 0.017070901886648178 1
285 1 12.663693 0.99996245 5.4175552199232265E-05 1
288 1 1.8098211 0.75208575 0.41103094187141187 1
290 0 -5.233155 0.00831194 0.012041709738050741 0
291 0 -4.5995197 0.014040397 0.020399556899321523 0
293 1 4.209258 0.9575848 0.062527845215913494 1
296 0 1.7716074 0.74607766 1.977540748016817 1
297 0 ? ? ? 0
299 1 5.4912777 0.98506975 0.021702211002795221 1
300 1 6.2749596 0.99219286 0.01130751309089708 1
301 0 -4.5995197 0.014040397 0.020399556899321523 0
303 0 -4.5995197 0.014040397 0.020399556899321523 0
304 1 4.320197 0.96119803 0.057094400401771557 1
308 1 6.5411158 0.9937414 0.0090576348997771245 1
309 0 -1.7547836 0.13330568 0.2064048513446799 0
311 0 -5.233155 0.00831194 0.012041709738050741 0
312 1 3.2156925 0.9076929 0.1397238075599897 1
314 0 -5.102334 0.009264265 0.013427805303568128 0
316 1 3.940961 0.9474732 0.077842916151820901 1
317 1 8.260409 0.9985074 0.002155003471966795 1
319 0 2.462039 0.8396129 2.6403699958711941 1
321 0 ? ? ? 0
323 1 4.269208 0.95957553 0.059531720935566447 1
327 0 -4.916337 0.0108069945 0.015676056316435264 0
328 1 4.1030073 0.9538244 0.068204404407426977 1
329 1 6.3562107 0.9927021 0.010567212063419162 1
331 0 -3.1436715 0.045919735 0.067817452274445744 0
332 0 -2.8411217 0.058372304 0.08677133980412273 0
333 1 4.4240274 0.9643107 0.052430030076405967 1
336 1 4.790291 0.97347915 0.038778012730613723 1
338 0 -5.102334 0.009264265 0.013427805303568128 0
343 0 -5.233155 0.00831194 0.012041709738050741 0
344 1 8.780366 0.99903333 0.0013952818117796901 1
346 0 -2.788134 0.06085682 0.090582968370493872 0
347 0 -5.0515347 0.009662538 0.014007880773231238 0
348 1 -0.033994675 0.39350724 1.3455379072007043 0
349 1 2.9944906 0.89097595 0.16654160161871584 1
350 0 -3.776164 0.027573595 0.040339026181347708 0
352 0 1.3297043 0.6699917 1.5994256626696386 1
353 1 8.744256 0.9990037 0.0014380614879137648 1
354 0 -4.916337 0.0108069945 0.015676056316435264 0
355 0 -3.6730852 0.02998222 0.043916903945985644 0
358 1 6.1854086 0.9915907 0.012183385249969293 1
360 1 14.4099455 0.9999913 1.2554788140693439E-05 1
361 1 6.113164 0.99107146 0.012939006126914966 1
366 1 12.847377 0.99996775 4.6522057140172645E-05 1
368 0 -4.568268 0.014406928 0.020935979709083539 0
370 0 -3.02811 0.05034569 0.074525649497197949 0
371 0 -4.568268 0.014406928 0.020935979709083539 0
373 0 -3.605544 0.031669743 0.046428920983900904 0
376 0 -4.916337 0.0108069945 0.015676056316435264 0
377 0 -5.102334 0.009264265 0.013427805303568128 0
378 0 -3.5256414 0.033784904 0.04958370087167166 0
379 0 -1.5692587 0.15227747 0.23833596402744087 0
381 1 8.122036 0.9983245 0.0024192434292353501 1
383 0 -4.942006 0.010579846 0.015344807913488721 0
384 0 -4.942006 0.010579846 0.015344807913488721 0
387 0 -1.9415021 0.11627042 0.17832312517262383 0
388 0 -4.44138 0.015994413 0.023261587689223422 0
389 0 -2.9747353 0.05252373 0.077838281799236866 0
391 1 8.779809 0.99903286 0.0013959704081915206 1
392 0 -4.334039 0.017470768 0.025427763713777321 0
395 0 -4.334039 0.017470768 0.025427763713777321 0
396 0 -4.0172215 0.02265229 0.033056176347726125 0
398 0 -3.902061 0.024885995 0.036357194608943051 0
399 0 -4.320097 0.017672095 0.025723413211971372 0
404 0 -4.508781 0.015130846 0.021996028357884331 0
406 0 -3.462277 0.035558574 0.052234473869084079 0
409 0 -4.0015955 0.02294349 0.033486088050953149 0
413 0 -3.102481 0.04745314 0.070138026426191213 0
414 1 5.959919 0.9898627 0.014699694943656067 1
415 0 -0.721817 0.26737925 0.44886153992419614 0
416 1 8.443301 0.99871886 0.0018494825270406309 1
418 0 -1.8258505 0.12658583 0.1952621515950389 0
419 0 -3.8876746 0.025179703 0.036791804452507598 0
422 0 -2.1972284 0.09602886 0.14565137580750645 0
423 0 -3.086855 0.04804748 0.071038474899592405 0
428 0 -4.916337 0.0108069945 0.015676056316435264 0
429 0 -4.6251884 0.0137462355 0.019969193057315846 0
430 0 -4.2361884 0.01893274 0.027576045709648108 0
434 0 5.330061 0.9829509 5.8741627920106341 1
436 1 4.9601746 0.9769113 0.03370050879649044 1
439 0 -4.0685587 0.02172079 0.031681811409482522 0
440 1 7.0005217 0.9957298 0.0061737815665520758 1
441 0 -1.8277497 0.12641029 0.19497223300161831 0
442 0 -4.126358 0.020716824 0.030201994955759835 0
449 1 9.384189 0.9994164 0.00084218683672760905 1
450 0 -3.936492 0.024196556 0.035337519528029167 0
451 0 -4.0685587 0.02172079 0.031681811409482522 0
452 0 -4.3584614 0.017123524 0.024917979240791661 0
453 1 7.3491344 0.99680644 0.0046147018108436385 1
454 0 -4.2596684 0.018571347 0.027044703102021492 0
455 1 0.29505634 0.46074578 1.1179571375087314 1
456 1 8.340758 0.99860424 0.0020150654708657578 1
457 1 7.996641 0.99813956 0.0026865470958503841 1
464 0 -4.359708 0.017105984 0.024892232964879479 0
465 1 8.680116 0.9989488 0.001517340659881941 1
466 1 8.110646 0.9983085 0.0024424141036858663 1
467 1 6.858451 0.9951935 0.0069510590946110862 1
474 0 -4.0685587 0.02172079 0.031681811409482522 0
480 0 -4.2545557 0.018649457 0.027159529003008488 0
482 1 13.881022 0.9999864 1.9606155421105871E-05 1
483 1 9.617421 0.9995198 0.00069291249062615099 1
484 0 -3.736116 0.028486209 0.041693619323571157 0
487 1 11.720016 0.99991727 0.00011936089720480338 1
489 1 -0.59057426 0.2894257 1.788735056504644 0
492 0 -4.228887 0.019046517 0.027743369823879937 0
493 1 9.492114 0.9994668 0.0007694835687733193 1
495 0 -4.520036 0.014991182 0.021791454817371551 0
497 0 -4.111538 0.02096983 0.030574776647125358 0
501 0 -4.0428905 0.022181753 0.032361767357830772 0
502 0 -3.8966928 0.024995198 0.036518771284957598 0
504 0 -5.233155 0.00831194 0.012041709738050741 0
507 0 -4.011552 0.022757528 0.033211529370950225 0
510 0 -5.233155 0.00831194 0.012041709738050741 0
513 0 -4.520036 0.014991182 0.021791454817371551 0
514 1 8.787938 0.9990394 0.001386502236338372 1
517 0 -5.102334 0.009264265 0.013427805303568128 0
519 1 6.320156 0.99248034 0.010889574092143747 1
520 0 -5.0471582 0.009697633 0.014059007104174813 0
521 0 -4.173711 0.019928286 0.029040776414398672 0
522 1 3.983386 0.94921166 0.075198276844941334 1
523 1 6.156104 0.9913838 0.012484423812211912 1
527 0 -3.7260728 0.028719632 0.042040293369108923 0
528 0 -2.9663253 0.05287493 0.078373145791533289 0
529 0 -4.228887 0.019046517 0.027743369823879937 0
531 0 -3.462277 0.035558574 0.052234473869084079 0
532 0 -4.7855167 0.012041708 0.01747795778447921 0
533 0 -4.334039 0.017470768 0.025427763713777321 0
534 0 -4.6251884 0.0137462355 0.019969193057315846 0
535 0 -3.7884345 0.027299706 0.03993274086862128 0
538 0 -4.0428905 0.022181753 0.032361767357830772 0
539 0 -3.4605932 0.03560691 0.052306780321382716 0
540 0 -3.344541 0.039094992 0.057534277036094934 0
541 0 -4.650857 0.013458154 0.019547848298052593 0
544 0 -3.8141036 0.02673527 0.03909582108308416 0
546 1 10.355874 0.999741 0.00037368069940970906 1
547 0 -5.128003 0.009069245 0.013143848125194471 0
548 0 -4.836854 0.01154138 0.016747522879121811 0
549 1 5.2726173 0.9821267 0.026018923571932827 1
557 0 -3.776164 0.027573595 0.040339026181347708 0
558 0 -4.6251884 0.0137462355 0.019969193057315846 0
559 0 -3.7517414 0.0281267 0.041159848092843968 0
560 0 -3.4349241 0.036351644 0.053421304124999819 0
561 0 -3.4349241 0.036351644 0.053421304124999819 0
563 0 -4.334039 0.017470768 0.025427763713777321 0
565 1 10.456666 0.999762 0.00034340422940330219 1
566 0 -3.6847782 0.029699052 0.043495812324742769 0
569 1 8.855367 0.99909204 0.0013105008899586513 1
577 0 -4.916337 0.0108069945 0.015676056316435264 0
578 0 -4.916337 0.0108069945 0.015676056316435264 0
581 1 8.00238 0.99814844 0.0026737105637673411 1
582 1 7.645852 0.9975067 0.0036015949700722869 1
584 0 -3.1515746 0.04563097 0.067380866294929856 0
586 1 12.260621 0.99994737 7.5932338567167971E-05 1
590 1 4.0090714 0.9502375 0.073639933647810851 1
593 0 -3.736116 0.028486209 0.041693619323571157 0
594 1 5.269803 0.98208535 0.02607968888447142 1
600 0 -4.334039 0.017470768 0.025427763713777321 0
602 0 -4.0428905 0.022181753 0.032361767357830772 0
604 1 4.515381 0.9668494 0.048636927001133007 1
606 0 -4.2135105 0.019288331 0.028099051446221591 0
607 0 -5.233155 0.00831194 0.012041709738050741 0
609 0 -4.0685587 0.02172079 0.031681811409482522 0
612 1 14.881892 0.9999941 8.5131663352343685E-06 1
613 0 -4.128848 0.020674609 0.030139804523990933 0
614 0 -4.8111854 0.011788921 0.017108865344208874 0
617 0 ? ? ? 0
618 0 -4.0428905 0.022181753 0.032361767357830772 0
619 0 -3.7517414 0.0281267 0.041159848092843968 0
621 0 -0.14650202 0.3712854 0.66952284918631932 0
622 0 -2.5446057 0.0735952 0.11028537186286762 0
624 0 -3.7915406 0.027230794 0.039830534785863896 0
627 0 -3.3132029 0.04009177 0.05903161072831304 0
629 0 -4.359708 0.017105984 0.024892232964879479 0
633 1 4.0237722 0.9508158 0.072762222474825514 1
634 0 -4.650857 0.013458154 0.019547848298052593 0
638 0 -4.359708 0.017105984 0.024892232964879479 0
639 0 -3.776164 0.027573595 0.040339026181347708 0
641 0 -4.334039 0.017470768 0.025427763713777321 0
642 0 -4.334039 0.017470768 0.025427763713777321 0
644 0 -4.942006 0.010579846 0.015344807913488721 0
645 0 -4.334039 0.017470768 0.025427763713777321 0
649 0 -4.334039 0.017470768 0.025427763713777321 0
652 0 -3.567933 0.03264892 0.04788851543239353 0
653 0 -4.0428905 0.022181753 0.032361767357830772 0
654 0 -4.0172215 0.02265229 0.033056176347726125 0
656 0 -3.7517414 0.0281267 0.041159848092843968 0
657 0 0.674386 0.5399075 1.1200042029157564 1
660 0 -4.916337 0.0108069945 0.015676056316435264 0
661 0 -3.7260728 0.028719632 0.042040293369108923 0
665 0 -5.233155 0.00831194 0.012041709738050741 0
668 1 3.299467 0.91339916 0.13068263207792086 1
670 1 6.4614477 0.99331295 0.0096797675127115335 1
678 0 -5.233155 0.00831194 0.012041709738050741 0
679 0 -4.942006 0.010579846 0.015344807913488721 0
680 1 14.404437 0.99999124 1.2640780217014572E-05 1
681 1 9.278363 0.99936247 0.00092005653039600916 1
682 0 -3.2511153 0.042138956 0.062111714891909184 0
683 0 -5.233155 0.00831194 0.012041709738050741 0
685 0 -5.233155 0.00831194 0.012041709738050741 0
688 0 -4.359708 0.017105984 0.024892232964879479 0
689 0 -3.1943884 0.04409645 0.065063038149818897 0
691 1 5.2444315 0.9817081 0.026633962149343771 1
692 0 -4.650857 0.013458154 0.019547848298052593 0
693 0 -4.042787 0.02218363 0.032364537534558556 0
694 0 -4.057659 0.021915374 0.031968799687709694 0
696 1 7.3569994 0.99682736 0.004584422473559115 1
697 1 4.656295 0.9704265 0.043309147612224416 1
698 1 5.6929607 0.9873583 0.018354419974050573 1
0 0 -3.4721131 0.04114935 0.060621978083022686 0
1 0 2.4163914 0.8102447 2.3977877569564514 1
2 0 -4.045404 0.026690753 0.039029833587134327 0
3 0 2.9251795 0.86401767 2.8785088509147978 1
4 0 -3.5088277 0.040032465 0.05894247853500708 0
7 0 -4.670553 0.016548803 0.024074633337174248 0
12 1 -0.343431 0.33084056 1.5957919892477812 0
13 0 -4.6186943 0.017221218 0.025061384315673198 0
14 1 7.360214 0.9951006 0.0070856869219221227 1
15 1 0.6494303 0.517803 0.94952473394442127 1
16 0 -4.220706 0.023354558 0.03409318909369452 0
17 0 -3.9551725 0.028584339 0.041839349042302909 0
19 0 -2.9890537 0.05890274 0.087584266111585152 0
22 0 -4.7037654 0.016131794 0.023463022615813851 0
23 1 ? ? ? 0
24 0 -5.4043503 0.009396286 0.013620064546924614 0
26 0 -4.390918 0.02050634 0.029891939287328514 0
27 0 -3.7376466 0.033700433 0.049457579363906538 0
29 0 -5.4339433 0.009183525 0.013310237558971186 0
30 0 -4.649441 0.016819378 0.024471614226605987 0
33 0 -4.698118 0.016201964 0.023565919423953592 0
34 0 -4.4530277 0.019554103 0.028490072817904191 0
36 1 7.832773 0.9966079 0.004902085221172487 1
38 1 4.92861 0.96814406 0.046706359368045791 1
39 1 1.079258 0.60037446 0.73606548851031739 1
42 1 6.8985863 0.9929881 0.010151652400815765 1
43 1 -0.49528694 0.30512375 1.7125336322001359 0
47 0 -5.669884 0.0076494976 0.011078318257674191 0
49 1 5.3024054 0.9760178 0.035020675578791655 1
53 1 5.116103 0.9723645 0.040430893694146056 1
55 1 4.4195347 0.95331246 0.068978947156115675 1
57 1 0.5701313 0.5023233 0.99331181510286393 1
58 1 1.1371031 0.61116564 0.71036465171693308 1
59 1 1.6442327 0.7002286 0.51410216467535697 1
61 0 -5.2770567 0.010368527 0.01503671205066421 0
62 1 5.7670774 0.98319566 0.024449543808342401 1
65 1 2.7867746 0.8508072 0.23309586971174173 1
67 1 2.9058514 0.8622339 0.21384884774751767 1
75 0 -4.291042 0.022133557 0.032290659731254154 0
78 0 -3.652576 0.03593297 0.05279463567932257 0
80 0 -3.2955709 0.046948776 0.069374337067975425 0
81 0 -3.9975338 0.027679637 0.040496359395409458 0
83 0 -2.9832687 0.059153758 0.087969125401985163 0
84 1 6.5824003 0.99104106 0.012983257475290413 1
85 1 4.7604074 0.9638325 0.053145649556241237 1
86 1 1.466999 0.6703859 0.5769362953607623 1
87 1 5.223544 0.97453266 0.037217553175852479 1
89 0 -5.017977 0.0126650445 0.018388489804391093 0
94 0 -4.9212914 0.013645149 0.019821330723085586 0
101 1 -0.85990286 0.24827081 2.0100134477430442 0
103 1 0.36755466 0.4628286 1.1114500580380418 1
107 1 4.617798 0.9597418 0.059281809358577985 1
110 0 -3.1312823 0.053037085 0.078620166419129056 0
114 0 -2.8847933 0.06358328 0.094777396090560642 0
116 0 -0.40737772 0.3198761 0.55613051468995855 0
118 0 -5.2584124 0.01051905 0.015256162949702744 0
119 0 -3.786881 0.032470144 0.047621914808210222 0
124 1 5.0384197 0.97068614 0.042923205850192866 1
126 1 6.4765244 0.9902761 0.014097276720975665 1
127 0 -4.4382315 0.019776942 0.028818011218321758 0
130 0 -3.2361722 0.049069237 0.072587792141063825 0
134 0 -4.75809 0.0154718775 0.022495678432216563 0
135 0 -2.670867 0.07428964 0.1113672306008736 0
136 0 -4.220706 0.023354558 0.03409318909369452 0
139 0 ? ? ? 0
140 0 -4.9692993 0.013149482 0.019096524449102446 0
142 1 3.7043686 0.92112815 0.11852620676711542 1
143 0 -4.364107 0.02093128 0.030517968916693023 0
146 1 0.36148834 0.4616506 1.1151267020337663 1
148 0 -2.357305 0.09299234 0.14081336479838222 0
149 1 8.756336 0.9983485 0.0023846173156615046 1
153 0 -3.7005844 0.034656122 0.050885139822468339 0
155 1 3.1619148 0.88432163 0.17735691801298636 1
157 0 -4.9212914 0.013645149 0.019821330723085586 0
158 0 ? ? ? 0
159 1 10.452139 0.99956036 0.00063441148415971371 1
160 1 7.997595 0.9970165 0.0043107295502774808 1
162 0 -4.4382315 0.019776942 0.028818011218321758 0
163 0 -3.669045 0.03548993 0.052131796574730688 0
165 0 -3.3581352 0.04480965 0.066139834275042608 0
166 1 6.3355865 0.9891566 0.015729147554240097 1
168 0 -4.4382315 0.019776942 0.028818011218321758 0
170 0 -4.9692993 0.013149482 0.019096524449102446 0
172 0 -5.669884 0.0076494976 0.011078318257674191 0
175 1 6.0381765 0.98635924 0.019814913404171304 1
178 0 -3.9551725 0.028584339 0.041839349042302909 0
182 0 -2.9890537 0.05890274 0.087584266111585152 0
184 1 5.409273 0.9778962 0.032246738266973496 1
185 0 -4.8669662 0.0142282825 0.020674505238060623 0
186 1 3.9876003 0.93577826 0.095761382134015888 1
190 1 10.521244 0.9995835 0.00060103256102277266 1
193 0 -5.4043503 0.009396286 0.013620064546924614 0
194 0 -4.4382315 0.019776942 0.028818011218321758 0
195 0 -3.9551725 0.028584339 0.041839349042302909 0
197 0 -2.8025956 0.0675154 0.10084820014881718 0
200 1 8.673521 0.99823827 0.002543887091121199 1
203 0 -3.4721131 0.04114935 0.060621978083022686 0
208 0 -5.350025 0.009799646 0.014207630130087622 0
213 1 12.300528 0.9998962 0.00014971866598967564 1
214 1 11.895983 0.99985766 0.00020536190066155745 1
215 1 6.600219 0.99116385 0.012804525065380799 1
217 0 -5.4043503 0.009396286 0.013620064546924614 0
220 0 -5.181178 0.011165958 0.016199683839163134 0
221 1 7.9662895 0.9969428 0.0044173368194155311 1
222 1 -2.1487255 0.10767717 3.2152157080896453 0
224 1 8.4735565 0.997941 0.0029735466380567798 1
225 0 -5.669884 0.0076494976 0.011078318257674191 0
227 1 6.748211 0.992121 0.011412038429712602 1
229 1 10.5048065 0.9995781 0.00060877502594878564 1
230 1 4.829337 0.9656635 0.050407558021295686 1
231 1 6.912092 0.9930612 0.010045486491117618 1
232 0 1.0722923 0.59906816 1.3185711185935187 1
234 0 -2.7037287 0.07254336 0.10864826020710561 0
235 0 ? ? ? 0
236 1 9.440506 0.9990316 0.0013977779753363091 1
238 1 10.690645 0.9996351 0.00052653496634314379 1
243 0 -3.301972 0.046725538 0.06903644686406632 0
245 0 -2.856113 0.06493041 0.096854356008988451 0
251 1 7.355525 0.99508274 0.0071116115660869242 1
253 1 6.8985863 0.9929881 0.010151652400815765 1
255 1 3.745204 0.9234148 0.11494919833274581 1
256 0 -4.9692993 0.013149482 0.019096524449102446 0
261 1 9.009869 0.9986448 0.0019564247198453513 1
263 1 7.1455708 0.9942114 0.0083754842729617477 1
264 1 4.0145664 0.9370327 0.093828700465107676 1
265 0 -2.5156913 0.0830686 0.12511429472057489 0
266 1 7.325534 0.99496675 0.0072797874039680641 1
270 1 5.5723915 0.9804892 0.028426363787945077 1
273 1 0.037317276 0.39964527 1.3232080844718339 1
274 0 -4.2340226 0.023118448 0.033744449784985975 0
281 0 -4.698118 0.016201964 0.023565919423953592 0
282 1 2.860156 0.8579384 0.2210540141016637 1
286 1 12.544172 0.9999142 0.00012374682432127928 1
287 0 -4.75809 0.0154718775 0.022495678432216563 0
289 1 6.6595697 0.9915608 0.012226832918130892 1
292 1 ? ? ? 0
294 0 ? ? ? 0
295 1 5.621522 0.98121005 0.027366079814265764 1
298 0 -2.4584546 0.086538464 0.13058411343083171 0
302 1 12.725584 0.99992555 0.0001074071635410925 1
305 1 8.040863 0.9971154 0.0041676501364772073 1
306 0 -5.4043503 0.009396286 0.013620064546924614 0
307 0 -5.4043503 0.009396286 0.013620064546924614 0
310 0 -5.24115 0.010660343 0.015462187120417019 0
313 0 -5.935418 0.0062253997 0.0090094260628730445 0
315 0 ? ? ? 0
318 0 -5.5673246 0.008282311 0.011998606353416295 0
320 1 5.5611877 0.98032105 0.028673793676042177 1
322 0 -4.4382315 0.019776942 0.028818011218321758 0
324 0 -5.4043503 0.009396286 0.013620064546924614 0
325 0 -3.7860875 0.03248962 0.047650955719163814 0
326 1 3.6223288 0.91634446 0.12603806988928137 1
330 1 4.9927454 0.9696536 0.044458635792904468 1
334 1 5.514736 0.97960865 0.029722574521978982 1
335 0 -5.935418 0.0062253997 0.0090094260628730445 0
337 0 -5.4043503 0.009396286 0.013620064546924614 0
339 1 5.1161976 0.97236645 0.040427975332860647 1
340 1 5.5803347 0.98060757 0.028252197193330195 1
341 0 -5.4043503 0.009396286 0.013620064546924614 0
342 0 -5.4523587 0.009053541 0.013120984925728642 0
345 0 -5.935418 0.0062253997 0.0090094260628730445 0
351 0 -4.9212914 0.013645149 0.019821330723085586 0
356 1 -0.9127703 0.24064322 2.0550323292420534 0
357 1 9.874601 0.9993099 0.0009959512596500891 1
359 1 4.653248 0.96079826 0.057694551223446147 1
362 0 -3.5174994 0.03977293 0.0585524891762653 0
363 0 -1.6840982 0.1478302 0.23078717543384142 0
364 0 -4.9212914 0.013645149 0.019821330723085586 0
365 0 -5.186825 0.011117357 0.016128777302221484 0
367 1 9.040358 0.99867666 0.0019104437717653883 1
369 0 -5.1140842 0.011759753 0.017066283307672573 0
372 0 -3.9699688 0.028265122 0.041365343644659221 0
374 0 -4.4530277 0.019554103 0.028490072817904191 0
375 0 -5.935418 0.0062253997 0.0090094260628730445 0
380 0 -5.935418 0.0062253997 0.0090094260628730445 0
382 0 -3.5015903 0.04025031 0.059269904020533483 0
385 0 -3.4273872 0.042550266 0.062731346866081117 0
386 1 5.084236 0.97168756 0.041435602932387204 1
390 0 -5.4467115 0.009093206 0.013178733439436791 0
393 0 -5.881093 0.0064935335 0.0093987372129596888 0
394 0 -4.909887 0.013765579 0.01999748916832832 0
397 0 -4.48624 0.019062834 0.027767367211653592 0
400 1 7.313369 0.99491894 0.0073491029866983746 1
401 0 -4.9692993 0.013149482 0.019096524449102446 0
402 0 -2.7191267 0.07173819 0.10739633118386252 0
403 0 -3.7908158 0.03237371 0.047478129805470948 0
405 0 -5.669884 0.0076494976 0.011078318257674191 0
407 0 -5.669884 0.0076494976 0.011078318257674191 0
408 0 -3.5375085 0.039180238 0.057662270098084903 0
410 0 -5.669884 0.0076494976 0.011078318257674191 0
411 0 ? ? ? 0
412 1 7.6394253 0.996057 0.0056998288375171091 1
417 0 -5.669884 0.0076494976 0.011078318257674191 0
420 0 -2.6969714 0.07289933 0.10920208612242448 0
421 1 9.498289 0.9990743 0.0013361498208689703 1
424 0 -4.9692993 0.013149482 0.019096524449102446 0
425 1 11.849487 0.99985236 0.00021301623841437668 1
426 0 -2.2324486 0.10155223 0.15449346274336148 0
427 1 4.1596622 0.9433984 0.084060916290148127 1
431 0 -2.9302087 0.06150328 0.091576391900387383 0
432 0 -3.5334377 0.03930013 0.057842300709135597 0
433 0 -4.013695 0.027341872 0.039995283058911028 0
435 1 7.0216722 0.99362683 0.009223960722536808 1
437 0 -4.48624 0.019062834 0.027767367211653592 0
438 0 -3.5384212 0.03915341 0.057621985430267364 0
443 0 -5.54259 0.00844254 0.012231716526506063 0
444 0 -2.6761093 0.074008495 0.11092913595470864 0
445 0 -5.4523587 0.009053541 0.013120984925728642 0
446 0 -5.935418 0.0062253997 0.0090094260628730445 0
447 0 -4.0031805 0.027561164 0.040320583190618597 0
448 0 -5.881093 0.0064935335 0.0093987372129596888 0
458 0 -3.7524433 0.033326034 0.048898705940062702 0
459 0 -3.5017061 0.04024681 0.059264645767511073 0
460 0 -3.5568361 0.038615778 0.056814968504256366 0
461 0 -3.3979883 0.04349581 0.064156808821778086 0
462 0 -3.0737762 0.055339195 0.082131694177837 0
463 0 -4.282031 0.022286426 0.032516212828799247 0
468 0 -4.48624 0.019062834 0.027767367211653592 0
469 0 -5.4191465 0.009289304 0.013464266622117978 0
470 0 -4.649441 0.016819378 0.024471614226605987 0
471 0 -3.0737762 0.055339195 0.082131694177837 0
472 0 -3.4657965 0.041344494 0.060915620140230387 0
473 0 -4.48624 0.019062834 0.027767367211653592 0
475 0 -4.9692993 0.013149482 0.019096524449102446 0
476 0 -4.2355022 0.023092357 0.033705919512041112 0
477 0 -4.48624 0.019062834 0.027767367211653592 0
478 0 -3.744658 0.03352252 0.049191978777848748 0
479 1 6.673233 0.9916496 0.012097621138980599 1
481 0 -2.5658813 0.080130555 0.120498977234164 0
485 0 -4.6490927 0.016823877 0.02447821491883307 0
486 0 -4.649441 0.016819378 0.024471614226605987 0
488 1 0.9591036 0.5776565 0.79171621850183493 1
490 0 -5.935418 0.0062253997 0.0090094260628730445 0
491 1 5.556223 0.98024607 0.028784146529073261 1
494 0 -0.01569748 0.38975105 0.71253017985501821 0
496 0 -5.881093 0.0064935335 0.0093987372129596888 0
498 0 -4.220706 0.023354558 0.03409318909369452 0
499 0 -4.220706 0.023354558 0.03409318909369452 0
500 0 -2.9890537 0.05890274 0.087584266111585152 0
503 0 -3.9551725 0.028584339 0.041839349042302909 0
505 0 -4.4522543 0.01956569 0.02850712358015987 0
506 1 8.766861 0.99836195 0.0023651512585342507 1
508 0 -4.0031805 0.027561164 0.040320583190618597 0
509 0 -5.4523587 0.009053541 0.013120984925728642 0
511 0 -3.7376466 0.033700433 0.049457579363906538 0
512 0 -4.0031805 0.027561164 0.040320583190618597 0
515 1 7.3749876 0.9951566 0.0070045457965879953 1
516 0 -5.881093 0.0064935335 0.0093987372129596888 0
518 0 -4.49539 0.018929629 0.027571471441031472 0
524 0 -4.7037654 0.016131794 0.023463022615813851 0
525 0 -4.746127 0.015614878 0.022705242390239841 0
526 0 -4.48624 0.019062834 0.027767367211653592 0
530 1 5.325206 0.9764312 0.034409713804049308 1
536 0 -3.4721131 0.04114935 0.060621978083022686 0
537 0 -3.2213755 0.049611427 0.073410604725632031 0
542 0 -3.4861355 0.0407193 0.059975064305642013 0
543 0 -4.220706 0.023354558 0.03409318909369452 0
545 0 -3.7376466 0.033700433 0.049457579363906538 0
550 0 -4.7037654 0.016131794 0.023463022615813851 0
551 0 -5.4043503 0.009396286 0.013620064546924614 0
552 0 -3.2360563 0.049073458 0.072594195629606423 0
553 0 -1.4225526 0.17546201 0.27834212421314986 0
554 0 -4.9692993 0.013149482 0.019096524449102446 0
555 0 -1.7431297 0.14211456 0.22114309642880975 0
556 0 -2.9508896 0.060577326 0.090153679106350249 0
562 0 -5.4043503 0.009396286 0.013620064546924614 0
564 0 -3.7509632 0.0333633 0.048954326671071656 0
567 0 -3.4350505 0.04230704 0.062364900694131351 0
568 1 3.5748348 0.913456 0.13059282121029733 1
570 1 6.466878 0.99020326 0.014203393857934222 1
571 1 9.048693 0.99868524 0.0018980446658527542 1
572 0 -4.7037654 0.016131794 0.023463022615813851 0
573 0 -5.669884 0.0076494976 0.011078318257674191 0
574 1 5.533702 0.9799025 0.029289877586105746 1
575 0 -3.2213755 0.049611427 0.073410604725632031 0
576 0 -3.7376466 0.033700433 0.049457579363906538 0
579 0 -5.4043503 0.009396286 0.013620064546924614 0
580 0 -3.4869094 0.040695693 0.059939561120512068 0
583 0 -4.9692993 0.013149482 0.019096524449102446 0
585 0 -5.935418 0.0062253997 0.0090094260628730445 0
587 0 -3.5334377 0.03930013 0.057842300709135597 0
588 1 4.6442137 0.9605316 0.058095029247836778 1
589 0 -4.0031805 0.027561164 0.040320583190618597 0
591 1 4.243066 0.9467787 0.078900822913083493 1
592 1 4.8517914 0.96624035 0.049545999536437443 1
595 0 -3.7376466 0.033700433 0.049457579363906538 0
596 0 -3.9699688 0.028265122 0.041365343644659221 0
597 0 -2.9706383 0.059705295 0.08881510055974505 0
598 0 -4.7037654 0.016131794 0.023463022615813851 0
599 0 -2.9381208 0.061147474 0.091029535901308245 0
601 0 -5.6155596 0.007978473 0.011556667054376319 0
603 1 3.1762495 0.8854623 0.17549723761975466 1
605 1 8.159748 0.99737054 0.0037985035173251067 1
608 1 8.079367 0.9972006 0.0040443320699722306 1
610 1 6.972576 0.9933793 0.0095834180703139316 1
611 1 5.494137 0.9792847 0.030199744813973507 1
615 0 -3.7192316 0.03417206 0.050161898434935133 0
616 0 -4.7037654 0.016131794 0.023463022615813851 0
620 0 -4.7037654 0.016131794 0.023463022615813851 0
623 0 -5.935418 0.0062253997 0.0090094260628730445 0
625 0 -3.343666 0.045295954 0.066874521090808312 0
626 1 3.8647957 0.92976606 0.10506033360236412 1
628 0 -5.4523587 0.009053541 0.013120984925728642 0
630 0 -2.7601237 0.06963448 0.10413046788911323 0
631 0 -3.7376466 0.033700433 0.049457579363906538 0
632 0 -5.935418 0.0062253997 0.0090094260628730445 0
635 0 -4.217087 0.023419134 0.034188583610037883 0
636 1 8.162584 0.9973763 0.0037901403924413767 1
637 0 -2.370799 0.09210702 0.13940584889369284 0
640 0 -4.0398955 0.02680277 0.039195882107570544 0
643 0 -5.935418 0.0062253997 0.0090094260628730445 0
646 0 -5.426158 0.009239031 0.013391060116233715 0
647 0 -5.4890733 0.008799813 0.012751634875278457 0
648 1 8.579456 0.9981042 0.0027376359023654488 1
650 0 -3.6219687 0.036770526 0.054048557356001725 0
651 0 -4.965017 0.013192967 0.019160096473253153 0
655 0 -4.7037654 0.016131794 0.023463022615813851 0
658 1 7.546403 0.99576104 0.006128529583862446 1
659 0 -5.935418 0.0062253997 0.0090094260628730445 0
662 0 -5.1684093 0.0112766335 0.016361167001206874 0
663 0 -5.1684093 0.0112766335 0.016361167001206874 0
664 0 -4.2574205 0.022709224 0.03314022036898092 0
666 0 -3.070212 0.05548494 0.082354293797361033 0
667 0 -4.4382315 0.019776942 0.028818011218321758 0
669 1 6.981786 0.99342644 0.0095149472206866505 1
671 0 -3.9565368 0.02855476 0.04179542083805643 0
672 0 -4.9212914 0.013645149 0.019821330723085586 0
673 0 -3.289723 0.047153614 0.069684448102655505 0
674 0 -5.669884 0.0076494976 0.011078318257674191 0
675 0 -3.7340279 0.033792615 0.049595215049171026 0
676 0 -5.4191465 0.009289304 0.013464266622117978 0
677 0 -4.0031805 0.027561164 0.040320583190618597 0
684 0 -5.935418 0.0062253997 0.0090094260628730445 0
686 0 -5.935418 0.0062253997 0.0090094260628730445 0
687 0 -4.295347 0.022060879 0.03218343743147014 0
690 0 -5.4890733 0.008799813 0.012751634875278457 0
695 0 -5.4523587 0.009053541 0.013120984925728642 0

Просмотреть файл

@ -0,0 +1,58 @@
maml.exe CV tr=AveragedPerceptron threads=- cali={} dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Not training a calibrator because a valid calibrator trainer was not provided.
Warning: Data does not contain a probability column. Will not output the Log-loss column
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Not training a calibrator because a valid calibrator trainer was not provided.
Warning: Data does not contain a probability column. Will not output the Log-loss column
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 131 | 3 | 0.9776
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9424 | 0.9860 |
OVERALL 0/1 ACCURACY: 0.968927
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.994437
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 100 | 5 | 0.9524
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9709 | 0.9779 |
OVERALL 0/1 ACCURACY: 0.975684
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996028 (0.0016)
Accuracy: 0.972305 (0.0034)
Positive precision: 0.956660 (0.0142)
Positive recall: 0.964996 (0.0126)
Negative precision: 0.981961 (0.0041)
Negative recall: 0.975122 (0.0115)
Log-loss: NaN (NaN)
Log-loss reduction: 0.000000 (0.0000)
F1 Score: 0.960623 (0.0009)
AUPRC: 0.992280 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 NaN 0 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali={} dout=%Output% data=%Data% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Assigned
5 1 11.285979 1
6 0 -0.9347124 0
8 0 -3.7769966 0
9 0 -3.7947202 0
10 0 -4.7855167 0
11 0 -4.6251884 0
18 1 6.8803625 1
20 1 5.573552 1
21 1 6.7444105 1
25 1 1.2789736 1
28 0 -4.6251884 0
31 0 -4.3083706 0
32 1 6.9428854 1
35 0 -4.6251884 0
37 0 -1.814332 0
40 0 ? 0
41 1 2.4075565 1
44 1 8.039285 1
45 0 -4.625085 0
46 1 5.138131 1
48 0 -3.4336782 0
50 1 2.7120514 1
51 1 -0.06207609 0
52 1 4.4027233 1
54 1 6.3079214 1
56 1 6.356517 1
60 1 1.9474735 1
63 1 0.78555584 1
64 0 -4.916337 0
66 0 -3.7260728 0
68 1 9.2772875 1
69 0 -4.4157114 0
70 0 -3.086855 0
71 1 7.5159607 1
72 0 -1.8410158 0
73 1 7.1320066 1
74 1 2.4329157 1
76 0 -3.9190063 0
77 0 -3.1092038 0
79 0 -4.4391913 0
82 0 -3.1867542 0
88 0 -3.7260728 0
90 0 -4.5995197 0
91 0 -4.5046597 0
92 0 -3.7260728 0
93 0 -4.916337 0
95 0 -4.5995197 0
96 0 -4.7958083 0
97 0 -3.4349241 0
98 1 9.075171 1
99 1 8.952344 1
100 1 4.9092436 1
102 0 -3.3936296 0
104 1 10.959613 1
105 1 2.0113592 1
106 1 8.251353 1
108 0 -4.5487204 0
109 1 5.864868 1
111 1 3.7846975 1
112 1 6.380026 1
113 1 9.461209 1
115 0 -3.6043515 0
117 1 7.9902315 1
120 0 -4.120878 0
121 0 -3.070702 0
122 1 10.129083 1
123 1 4.173232 1
125 0 -4.916337 0
128 1 4.5026884 1
129 0 -3.7451797 0
131 0 -4.3083706 0
132 1 8.723828 1
133 0 -4.150231 0
137 0 -4.650857 0
138 0 -3.7104468 0
141 0 -4.942006 0
144 0 -4.6251884 0
145 0 ? 0
147 0 -4.3231397 0
150 0 -4.7855167 0
151 1 4.569236 1
152 1 8.551608 1
154 0 -5.233155 0
156 0 -4.3357234 0
161 0 -3.5422645 0
164 0 ? 0
167 1 7.4310427 1
169 0 -5.272954 0
171 0 -4.5995197 0
173 1 13.797832 1
174 1 5.2489986 1
176 0 -4.3083706 0
177 1 6.069395 1
179 1 2.427494 1
180 0 -4.7855167 0
181 0 -5.233155 0
183 1 8.429484 1
187 1 11.391686 1
188 1 7.5789557 1
189 0 -3.686462 0
191 1 10.154206 1
192 0 -3.7517414 0
196 0 5.425535 1
198 0 -5.233155 0
199 0 -4.334039 0
201 1 9.260581 1
202 0 -4.5995197 0
204 0 -4.5995197 0
205 1 11.455531 1
206 1 6.5003185 1
207 0 -4.7855167 0
209 0 -3.6209207 0
210 1 12.89725 1
211 1 8.615066 1
212 0 -4.5995197 0
216 0 -4.916337 0
218 1 7.456811 1
219 0 -2.478888 0
223 1 4.949767 1
226 1 8.538112 1
228 0 -4.7855167 0
233 1 5.219512 1
237 1 6.3747997 1
239 1 4.7197256 1
240 0 -2.0196419 0
241 0 -3.9108233 0
242 0 -4.3083706 0
244 0 -4.5995197 0
246 1 10.46416 1
247 1 2.8055887 1
248 0 -2.8070307 0
249 0 ? 0
250 0 -4.652541 0
252 0 3.7707863 1
254 1 7.661195 1
257 0 -4.334039 0
258 0 -4.0172215 0
259 0 4.008581 1
260 1 7.7233286 1
262 1 9.050584 1
267 1 3.073165 1
268 1 8.364619 1
269 0 -4.5995197 0
271 0 -3.4349241 0
272 1 3.073165 1
275 0 ? 0
276 0 -4.334039 0
277 0 -4.916337 0
278 0 -4.5995197 0
279 1 6.3361444 1
280 0 -4.0172215 0
283 1 5.09361 1
284 1 5.780156 1
285 1 12.663693 1
288 1 1.8098211 1
290 0 -5.233155 0
291 0 -4.5995197 0
293 1 4.209258 1
296 0 1.7716074 1
297 0 ? 0
299 1 5.4912777 1
300 1 6.2749596 1
301 0 -4.5995197 0
303 0 -4.5995197 0
304 1 4.320197 1
308 1 6.5411158 1
309 0 -1.7547836 0
311 0 -5.233155 0
312 1 3.2156925 1
314 0 -5.102334 0
316 1 3.940961 1
317 1 8.260409 1
319 0 2.462039 1
321 0 ? 0
323 1 4.269208 1
327 0 -4.916337 0
328 1 4.1030073 1
329 1 6.3562107 1
331 0 -3.1436715 0
332 0 -2.8411217 0
333 1 4.4240274 1
336 1 4.790291 1
338 0 -5.102334 0
343 0 -5.233155 0
344 1 8.780366 1
346 0 -2.788134 0
347 0 -5.0515347 0
348 1 -0.033994675 0
349 1 2.9944906 1
350 0 -3.776164 0
352 0 1.3297043 1
353 1 8.744256 1
354 0 -4.916337 0
355 0 -3.6730852 0
358 1 6.1854086 1
360 1 14.4099455 1
361 1 6.113164 1
366 1 12.847377 1
368 0 -4.568268 0
370 0 -3.02811 0
371 0 -4.568268 0
373 0 -3.605544 0
376 0 -4.916337 0
377 0 -5.102334 0
378 0 -3.5256414 0
379 0 -1.5692587 0
381 1 8.122036 1
383 0 -4.942006 0
384 0 -4.942006 0
387 0 -1.9415021 0
388 0 -4.44138 0
389 0 -2.9747353 0
391 1 8.779809 1
392 0 -4.334039 0
395 0 -4.334039 0
396 0 -4.0172215 0
398 0 -3.902061 0
399 0 -4.320097 0
404 0 -4.508781 0
406 0 -3.462277 0
409 0 -4.0015955 0
413 0 -3.102481 0
414 1 5.959919 1
415 0 -0.721817 0
416 1 8.443301 1
418 0 -1.8258505 0
419 0 -3.8876746 0
422 0 -2.1972284 0
423 0 -3.086855 0
428 0 -4.916337 0
429 0 -4.6251884 0
430 0 -4.2361884 0
434 0 5.330061 1
436 1 4.9601746 1
439 0 -4.0685587 0
440 1 7.0005217 1
441 0 -1.8277497 0
442 0 -4.126358 0
449 1 9.384189 1
450 0 -3.936492 0
451 0 -4.0685587 0
452 0 -4.3584614 0
453 1 7.3491344 1
454 0 -4.2596684 0
455 1 0.29505634 1
456 1 8.340758 1
457 1 7.996641 1
464 0 -4.359708 0
465 1 8.680116 1
466 1 8.110646 1
467 1 6.858451 1
474 0 -4.0685587 0
480 0 -4.2545557 0
482 1 13.881022 1
483 1 9.617421 1
484 0 -3.736116 0
487 1 11.720016 1
489 1 -0.59057426 0
492 0 -4.228887 0
493 1 9.492114 1
495 0 -4.520036 0
497 0 -4.111538 0
501 0 -4.0428905 0
502 0 -3.8966928 0
504 0 -5.233155 0
507 0 -4.011552 0
510 0 -5.233155 0
513 0 -4.520036 0
514 1 8.787938 1
517 0 -5.102334 0
519 1 6.320156 1
520 0 -5.0471582 0
521 0 -4.173711 0
522 1 3.983386 1
523 1 6.156104 1
527 0 -3.7260728 0
528 0 -2.9663253 0
529 0 -4.228887 0
531 0 -3.462277 0
532 0 -4.7855167 0
533 0 -4.334039 0
534 0 -4.6251884 0
535 0 -3.7884345 0
538 0 -4.0428905 0
539 0 -3.4605932 0
540 0 -3.344541 0
541 0 -4.650857 0
544 0 -3.8141036 0
546 1 10.355874 1
547 0 -5.128003 0
548 0 -4.836854 0
549 1 5.2726173 1
557 0 -3.776164 0
558 0 -4.6251884 0
559 0 -3.7517414 0
560 0 -3.4349241 0
561 0 -3.4349241 0
563 0 -4.334039 0
565 1 10.456666 1
566 0 -3.6847782 0
569 1 8.855367 1
577 0 -4.916337 0
578 0 -4.916337 0
581 1 8.00238 1
582 1 7.645852 1
584 0 -3.1515746 0
586 1 12.260621 1
590 1 4.0090714 1
593 0 -3.736116 0
594 1 5.269803 1
600 0 -4.334039 0
602 0 -4.0428905 0
604 1 4.515381 1
606 0 -4.2135105 0
607 0 -5.233155 0
609 0 -4.0685587 0
612 1 14.881892 1
613 0 -4.128848 0
614 0 -4.8111854 0
617 0 ? 0
618 0 -4.0428905 0
619 0 -3.7517414 0
621 0 -0.14650202 0
622 0 -2.5446057 0
624 0 -3.7915406 0
627 0 -3.3132029 0
629 0 -4.359708 0
633 1 4.0237722 1
634 0 -4.650857 0
638 0 -4.359708 0
639 0 -3.776164 0
641 0 -4.334039 0
642 0 -4.334039 0
644 0 -4.942006 0
645 0 -4.334039 0
649 0 -4.334039 0
652 0 -3.567933 0
653 0 -4.0428905 0
654 0 -4.0172215 0
656 0 -3.7517414 0
657 0 0.674386 1
660 0 -4.916337 0
661 0 -3.7260728 0
665 0 -5.233155 0
668 1 3.299467 1
670 1 6.4614477 1
678 0 -5.233155 0
679 0 -4.942006 0
680 1 14.404437 1
681 1 9.278363 1
682 0 -3.2511153 0
683 0 -5.233155 0
685 0 -5.233155 0
688 0 -4.359708 0
689 0 -3.1943884 0
691 1 5.2444315 1
692 0 -4.650857 0
693 0 -4.042787 0
694 0 -4.057659 0
696 1 7.3569994 1
697 1 4.656295 1
698 1 5.6929607 1
0 0 -3.4721131 0
1 0 2.4163914 1
2 0 -4.045404 0
3 0 2.9251795 1
4 0 -3.5088277 0
7 0 -4.670553 0
12 1 -0.343431 0
13 0 -4.6186943 0
14 1 7.360214 1
15 1 0.6494303 1
16 0 -4.220706 0
17 0 -3.9551725 0
19 0 -2.9890537 0
22 0 -4.7037654 0
23 1 ? 0
24 0 -5.4043503 0
26 0 -4.390918 0
27 0 -3.7376466 0
29 0 -5.4339433 0
30 0 -4.649441 0
33 0 -4.698118 0
34 0 -4.4530277 0
36 1 7.832773 1
38 1 4.92861 1
39 1 1.079258 1
42 1 6.8985863 1
43 1 -0.49528694 0
47 0 -5.669884 0
49 1 5.3024054 1
53 1 5.116103 1
55 1 4.4195347 1
57 1 0.5701313 1
58 1 1.1371031 1
59 1 1.6442327 1
61 0 -5.2770567 0
62 1 5.7670774 1
65 1 2.7867746 1
67 1 2.9058514 1
75 0 -4.291042 0
78 0 -3.652576 0
80 0 -3.2955709 0
81 0 -3.9975338 0
83 0 -2.9832687 0
84 1 6.5824003 1
85 1 4.7604074 1
86 1 1.466999 1
87 1 5.223544 1
89 0 -5.017977 0
94 0 -4.9212914 0
101 1 -0.85990286 0
103 1 0.36755466 1
107 1 4.617798 1
110 0 -3.1312823 0
114 0 -2.8847933 0
116 0 -0.40737772 0
118 0 -5.2584124 0
119 0 -3.786881 0
124 1 5.0384197 1
126 1 6.4765244 1
127 0 -4.4382315 0
130 0 -3.2361722 0
134 0 -4.75809 0
135 0 -2.670867 0
136 0 -4.220706 0
139 0 ? 0
140 0 -4.9692993 0
142 1 3.7043686 1
143 0 -4.364107 0
146 1 0.36148834 1
148 0 -2.357305 0
149 1 8.756336 1
153 0 -3.7005844 0
155 1 3.1619148 1
157 0 -4.9212914 0
158 0 ? 0
159 1 10.452139 1
160 1 7.997595 1
162 0 -4.4382315 0
163 0 -3.669045 0
165 0 -3.3581352 0
166 1 6.3355865 1
168 0 -4.4382315 0
170 0 -4.9692993 0
172 0 -5.669884 0
175 1 6.0381765 1
178 0 -3.9551725 0
182 0 -2.9890537 0
184 1 5.409273 1
185 0 -4.8669662 0
186 1 3.9876003 1
190 1 10.521244 1
193 0 -5.4043503 0
194 0 -4.4382315 0
195 0 -3.9551725 0
197 0 -2.8025956 0
200 1 8.673521 1
203 0 -3.4721131 0
208 0 -5.350025 0
213 1 12.300528 1
214 1 11.895983 1
215 1 6.600219 1
217 0 -5.4043503 0
220 0 -5.181178 0
221 1 7.9662895 1
222 1 -2.1487255 0
224 1 8.4735565 1
225 0 -5.669884 0
227 1 6.748211 1
229 1 10.5048065 1
230 1 4.829337 1
231 1 6.912092 1
232 0 1.0722923 1
234 0 -2.7037287 0
235 0 ? 0
236 1 9.440506 1
238 1 10.690645 1
243 0 -3.301972 0
245 0 -2.856113 0
251 1 7.355525 1
253 1 6.8985863 1
255 1 3.745204 1
256 0 -4.9692993 0
261 1 9.009869 1
263 1 7.1455708 1
264 1 4.0145664 1
265 0 -2.5156913 0
266 1 7.325534 1
270 1 5.5723915 1
273 1 0.037317276 1
274 0 -4.2340226 0
281 0 -4.698118 0
282 1 2.860156 1
286 1 12.544172 1
287 0 -4.75809 0
289 1 6.6595697 1
292 1 ? 0
294 0 ? 0
295 1 5.621522 1
298 0 -2.4584546 0
302 1 12.725584 1
305 1 8.040863 1
306 0 -5.4043503 0
307 0 -5.4043503 0
310 0 -5.24115 0
313 0 -5.935418 0
315 0 ? 0
318 0 -5.5673246 0
320 1 5.5611877 1
322 0 -4.4382315 0
324 0 -5.4043503 0
325 0 -3.7860875 0
326 1 3.6223288 1
330 1 4.9927454 1
334 1 5.514736 1
335 0 -5.935418 0
337 0 -5.4043503 0
339 1 5.1161976 1
340 1 5.5803347 1
341 0 -5.4043503 0
342 0 -5.4523587 0
345 0 -5.935418 0
351 0 -4.9212914 0
356 1 -0.9127703 0
357 1 9.874601 1
359 1 4.653248 1
362 0 -3.5174994 0
363 0 -1.6840982 0
364 0 -4.9212914 0
365 0 -5.186825 0
367 1 9.040358 1
369 0 -5.1140842 0
372 0 -3.9699688 0
374 0 -4.4530277 0
375 0 -5.935418 0
380 0 -5.935418 0
382 0 -3.5015903 0
385 0 -3.4273872 0
386 1 5.084236 1
390 0 -5.4467115 0
393 0 -5.881093 0
394 0 -4.909887 0
397 0 -4.48624 0
400 1 7.313369 1
401 0 -4.9692993 0
402 0 -2.7191267 0
403 0 -3.7908158 0
405 0 -5.669884 0
407 0 -5.669884 0
408 0 -3.5375085 0
410 0 -5.669884 0
411 0 ? 0
412 1 7.6394253 1
417 0 -5.669884 0
420 0 -2.6969714 0
421 1 9.498289 1
424 0 -4.9692993 0
425 1 11.849487 1
426 0 -2.2324486 0
427 1 4.1596622 1
431 0 -2.9302087 0
432 0 -3.5334377 0
433 0 -4.013695 0
435 1 7.0216722 1
437 0 -4.48624 0
438 0 -3.5384212 0
443 0 -5.54259 0
444 0 -2.6761093 0
445 0 -5.4523587 0
446 0 -5.935418 0
447 0 -4.0031805 0
448 0 -5.881093 0
458 0 -3.7524433 0
459 0 -3.5017061 0
460 0 -3.5568361 0
461 0 -3.3979883 0
462 0 -3.0737762 0
463 0 -4.282031 0
468 0 -4.48624 0
469 0 -5.4191465 0
470 0 -4.649441 0
471 0 -3.0737762 0
472 0 -3.4657965 0
473 0 -4.48624 0
475 0 -4.9692993 0
476 0 -4.2355022 0
477 0 -4.48624 0
478 0 -3.744658 0
479 1 6.673233 1
481 0 -2.5658813 0
485 0 -4.6490927 0
486 0 -4.649441 0
488 1 0.9591036 1
490 0 -5.935418 0
491 1 5.556223 1
494 0 -0.01569748 0
496 0 -5.881093 0
498 0 -4.220706 0
499 0 -4.220706 0
500 0 -2.9890537 0
503 0 -3.9551725 0
505 0 -4.4522543 0
506 1 8.766861 1
508 0 -4.0031805 0
509 0 -5.4523587 0
511 0 -3.7376466 0
512 0 -4.0031805 0
515 1 7.3749876 1
516 0 -5.881093 0
518 0 -4.49539 0
524 0 -4.7037654 0
525 0 -4.746127 0
526 0 -4.48624 0
530 1 5.325206 1
536 0 -3.4721131 0
537 0 -3.2213755 0
542 0 -3.4861355 0
543 0 -4.220706 0
545 0 -3.7376466 0
550 0 -4.7037654 0
551 0 -5.4043503 0
552 0 -3.2360563 0
553 0 -1.4225526 0
554 0 -4.9692993 0
555 0 -1.7431297 0
556 0 -2.9508896 0
562 0 -5.4043503 0
564 0 -3.7509632 0
567 0 -3.4350505 0
568 1 3.5748348 1
570 1 6.466878 1
571 1 9.048693 1
572 0 -4.7037654 0
573 0 -5.669884 0
574 1 5.533702 1
575 0 -3.2213755 0
576 0 -3.7376466 0
579 0 -5.4043503 0
580 0 -3.4869094 0
583 0 -4.9692993 0
585 0 -5.935418 0
587 0 -3.5334377 0
588 1 4.6442137 1
589 0 -4.0031805 0
591 1 4.243066 1
592 1 4.8517914 1
595 0 -3.7376466 0
596 0 -3.9699688 0
597 0 -2.9706383 0
598 0 -4.7037654 0
599 0 -2.9381208 0
601 0 -5.6155596 0
603 1 3.1762495 1
605 1 8.159748 1
608 1 8.079367 1
610 1 6.972576 1
611 1 5.494137 1
615 0 -3.7192316 0
616 0 -4.7037654 0
620 0 -4.7037654 0
623 0 -5.935418 0
625 0 -3.343666 0
626 1 3.8647957 1
628 0 -5.4523587 0
630 0 -2.7601237 0
631 0 -3.7376466 0
632 0 -5.935418 0
635 0 -4.217087 0
636 1 8.162584 1
637 0 -2.370799 0
640 0 -4.0398955 0
643 0 -5.935418 0
646 0 -5.426158 0
647 0 -5.4890733 0
648 1 8.579456 1
650 0 -3.6219687 0
651 0 -4.965017 0
655 0 -4.7037654 0
658 1 7.546403 1
659 0 -5.935418 0
662 0 -5.1684093 0
663 0 -5.1684093 0
664 0 -4.2574205 0
666 0 -3.070212 0
667 0 -4.4382315 0
669 1 6.981786 1
671 0 -3.9565368 0
672 0 -4.9212914 0
673 0 -3.289723 0
674 0 -5.669884 0
675 0 -3.7340279 0
676 0 -5.4191465 0
677 0 -4.0031805 0
684 0 -5.935418 0
686 0 -5.935418 0
687 0 -4.295347 0
690 0 -5.4890733 0
695 0 -5.4523587 0

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
5 1 4.200075 0.9999651 5.0391796758373727E-05 1
6 0 -0.3085327 0.253645 0.42206609601583689 0
8 0 -1.70133 0.0101235835 0.014679675164585746 0
9 0 -1.5288422 0.015537549 0.022591914169782349 0
10 0 -1.9129735 0.0059696385 0.0086381769438633477 0
11 0 -1.8355699 0.007243507 0.010488203450342017 0
18 1 2.5823843 0.99795955 0.0029467484071289771 1
20 1 2.1148145 0.9934155 0.0095308744102067192 1
21 1 2.3608449 0.9964431 0.0051406802358066545 1
25 1 0.44596648 0.69394 0.52711719974035876 1
28 0 -1.8355699 0.007243507 0.010488203450342017 0
31 0 -1.7324893 0.00936756 0.01357822961037264 0
32 1 2.35438 0.996385 0.0052248235129257635 1
35 0 -1.8355699 0.007243507 0.010488203450342017 0
37 0 -0.8828192 0.074204564 0.11123464460665607 0
40 0 ? ? ? 0
41 1 0.6366718 0.7855496 0.34822575879653411 1
44 1 2.7207205 0.99855834 0.002081372862402793 1
45 0 -1.8799416 0.0064834836 0.0093841435784006184 0
46 1 1.8880312 0.9884103 0.016818058819898705 1
48 0 -1.3694949 0.023022009 0.03360203291791887 0
50 1 0.63059354 0.7829627 0.3529845521983469 1
51 1 -0.082849026 0.37482318 1.4157179084138636 0
52 1 1.3741138 0.95903736 0.060341072002409277 1
54 1 2.382396 0.99663013 0.004869901644625689 1
56 1 2.1698558 0.9942619 0.0083021409254577568 1
60 1 0.5807309 0.7608947 0.39423125156800948 1
63 1 0.08508468 0.47772497 1.0657478103548359 1
64 0 -1.9392717 0.005589658 0.0080867940950614132 0
66 0 -1.5250859 0.015682738 0.022804699905881552 0
68 1 2.9279916 0.9991436 0.001236052716862961 1
69 0 -1.7767313 0.00838927 0.012154212197556026 0
70 0 -1.3055631 0.026930418 0.039385122140910424 0
71 1 2.376764 0.9965822 0.0049392741085566528 1
72 0 -0.86906457 0.076616704 0.11499846133623003 0
73 1 2.7834451 0.9987685 0.0017777616487900717 1
74 1 0.68621945 0.8057985 0.31150902695404759 1
76 0 -1.6109196 0.012675923 0.018404385977097384 0
77 0 -1.2480209 0.030994598 0.045423386240743178 0
79 0 -1.7587875 0.008773203 0.012712904821001687 0
82 0 -1.32206 0.025864085 0.037805018726200908 0
88 0 -1.5250859 0.015682738 0.022804699905881552 0
90 0 -1.8361912 0.007232277 0.010471884028973255 0
91 0 -1.7571532 0.008809026 0.012765045324349893 0
92 0 -1.5250859 0.015682738 0.022804699905881552 0
93 0 -1.9392717 0.005589658 0.0080867940950614132 0
95 0 -1.8361912 0.007232277 0.010471884028973255 0
96 0 -1.8608549 0.006800186 0.0098441033898978292 0
97 0 -1.4213841 0.020262046 0.029532164750357328 0
98 1 2.8129728 0.99885654 0.0016506014616887051 1
99 1 3.2547257 0.99962336 0.00054348154074645777 1
100 1 1.6212637 0.97757614 0.032719026634192926 1
102 0 -1.4156351 0.020551119 0.029957896985515434 0
104 1 3.6374485 0.9998561 0.00020759799513193585 1
105 1 0.37810874 0.6565404 0.60704431882705245 1
106 1 3.1514046 0.9995116 0.00070478504326742424 1
108 0 -1.8203516 0.0075240377 0.010895934232901324 0
109 1 2.0232556 0.9917243 0.011988970794591214 1
111 1 1.4585507 0.96661395 0.048988281724005323 1
112 1 2.3923938 0.9967135 0.0047491980576946837 1
113 1 3.449529 0.9997692 0.00033299683958315626 1
115 0 -1.3633927 0.02336979 0.034115688192424207 0
117 1 2.7568676 0.9986835 0.0019005416994463959 1
120 0 -1.6489451 0.011532993 0.016735282410341491 0
121 0 -1.256022 0.030395808 0.044532158246777462 0
122 1 3.6395524 0.9998569 0.0002064799474635194 1
123 1 1.5285003 0.9718489 0.041196061742169734 1
125 0 -1.9392717 0.005589658 0.0080867940950614132 0
128 1 1.6680329 0.98001516 0.029124030205691952 1
129 0 -1.4280933 0.019929722 0.029042890397472713 0
131 0 -1.7324893 0.00936756 0.01357822961037264 0
132 1 3.3431594 0.99969846 0.00043509571801397302 1
133 0 -1.6724082 0.010879212 0.015781386316613948 0
137 0 -1.8349485 0.007254754 0.010504548094829827 0
138 0 -1.5187155 0.01593203 0.023170127011200393 0
141 0 -1.9386504 0.005598352 0.0080994072943426313 0
144 0 -1.8355699 0.007243507 0.010488203450342017 0
145 0 ? ? ? 0
147 0 -1.6927494 0.010342177 0.014998299390129487 0
150 0 -1.9129735 0.0059696385 0.0086381769438633477 0
151 1 1.5516851 0.97340125 0.038893469912665984 1
152 1 3.0292404 0.999336 0.00095826154131685372 1
154 0 -2.0423522 0.004318493 0.0062437599081359638 0
156 0 -1.7304969 0.009414184 0.013646131293487658 0
161 0 -1.465626 0.018166868 0.026450243581314245 0
164 0 ? ? ? 0
167 1 2.3187091 0.99604696 0.0057143326416850991 1
169 0 -2.041339 0.0043294663 0.0062596597963016712 0
171 0 -1.8361912 0.007232277 0.010471884028973255 0
173 1 4.862487 0.9999934 9.5450686985595153E-06 1
174 1 1.9712131 0.99057776 0.013657868129433039 1
176 0 -1.7324893 0.00936756 0.01357822961037264 0
177 1 1.9338353 0.9896585 0.014997349031540621 1
179 1 0.98654413 0.8982907 0.15474570718058153 1
180 0 -1.9129735 0.0059696385 0.0086381769438633477 0
181 0 -2.0423522 0.004318493 0.0062437599081359638 0
183 1 3.1711543 0.99953526 0.00067063020993693814 1
187 1 3.8796742 0.99992174 0.00011291102860834543 1
188 1 2.874544 0.99902046 0.0014138740302619024 1
189 0 -1.5179658 0.015961623 0.023213513582380177 0
191 1 3.767329 0.9998962 0.00014971866598967564 1
192 0 -1.5244645 0.015706887 0.022840095353758548 0
196 0 1.8871024 0.9883835 6.4276772515227742 1
198 0 -2.0423522 0.004318493 0.0062437599081359638 0
199 0 -1.7318681 0.009382072 0.013599363941350218 0
201 1 3.4492543 0.99976903 0.00033325487313387326 1
202 0 -1.8361912 0.007232277 0.010471884028973255 0
204 0 -1.8361912 0.007232277 0.010471884028973255 0
205 1 4.0995226 0.999955 6.4924911571092269E-05 1
206 1 2.3229492 0.99608874 0.005653814757257427 1
207 0 -1.9129735 0.0059696385 0.0086381769438633477 0
209 0 -1.4981664 0.016763031 0.024388934573535366 0
210 1 4.574052 0.99998635 1.9692147917725957E-05 1
211 1 3.2051861 0.99957335 0.00061565725187682347 1
212 0 -1.8361912 0.007232277 0.010471884028973255 0
216 0 -1.9392717 0.005589658 0.0080867940950614132 0
218 1 2.6259325 0.9981709 0.0026412320631398097 1
219 0 -1.098781 0.044486687 0.065652120103656134 0
223 1 1.741823 0.98334426 0.024231519884600778 1
226 1 3.0568168 0.99938047 0.00089407081728932005 1
228 0 -1.9129735 0.0059696385 0.0086381769438633477 0
233 1 2.0051672 0.9913424 0.01254462171484411 1
237 1 2.0591085 0.9924326 0.010958976684646626 1
239 1 1.6806457 0.9806272 0.028223346851889448 1
240 0 -0.8613126 0.078007646 0.11717330817525451 0
241 0 -1.5499791 0.014744891 0.021430769254699032 0
242 0 -1.7324893 0.00936756 0.01357822961037264 0
244 0 -1.8361912 0.007232277 0.010471884028973255 0
246 1 3.8998091 0.9999256 0.00010732116581602008 1
247 1 0.99288416 0.89973855 0.15242225694242206 1
248 0 -1.227786 0.032560334 0.047756403359998027 0
249 0 ? ? ? 0
250 0 -1.8335773 0.0072796387 0.010540711608751351 0
252 0 1.37199 0.95882696 4.6021561858199664 1
254 1 2.7937539 0.9988 0.0017323029622904203 1
257 0 -1.7318681 0.009382072 0.013599363941350218 0
258 0 -1.6287876 0.012125568 0.017600422018504175 0
259 0 1.4281709 0.964058 4.7981847758314107 1
260 1 2.8899972 0.99905777 0.0013599916857192891 1
262 1 3.2805288 0.999647 0.00050933052590907497 1
267 1 1.1022213 0.921965 0.11721610663727763 1
268 1 2.5098188 0.997552 0.0035360796959713393 1
269 0 -1.8361912 0.007232277 0.010471884028973255 0
271 0 -1.4213841 0.020262046 0.029532164750357328 0
272 1 1.1022213 0.921965 0.11721610663727763 1
275 0 ? ? ? 0
276 0 -1.7318681 0.009382072 0.013599363941350218 0
277 0 -1.9392717 0.005589658 0.0080867940950614132 0
278 0 -1.8361912 0.007232277 0.010471884028973255 0
279 1 1.9361684 0.9897184 0.014910027325241739 1
280 0 -1.6287876 0.012125568 0.017600422018504175 0
283 1 1.79509 0.9854024 0.021215101768506751 1
284 1 2.2251618 0.99500346 0.0072265497662589986 1
285 1 4.654189 0.99998885 1.6080467472835657E-05 1
288 1 0.47504377 0.7092502 0.49563341873402017 1
290 0 -2.0423522 0.004318493 0.0062437599081359638 0
291 0 -1.8361912 0.007232277 0.010471884028973255 0
293 1 1.6559246 0.9794098 0.030015442677317709 1
296 0 0.55357146 0.748245 1.9899076684215853 1
297 0 ? ? ? 0
299 1 2.001486 0.99126256 0.012660861084033199 1
300 1 2.0941775 0.9930671 0.010036913891508983 1
301 0 -1.8361912 0.007232277 0.010471884028973255 0
303 0 -1.8361912 0.007232277 0.010471884028973255 0
304 1 1.7624457 0.98417294 0.023016244643388774 1
308 1 2.1296265 0.9936548 0.0091833726838673919 1
309 0 -0.7436676 0.10212756 0.15541759703163019 0
311 0 -2.0423522 0.004318493 0.0062437599081359638 0
312 1 1.2669513 0.9470354 0.078509782787093155 1
314 0 -2.016054 0.004612463 0.0066697714735211976 0
316 1 1.4715164 0.9676506 0.047441894201880302 1
317 1 3.0652492 0.99939346 0.00087531320929783803 1
319 0 0.8519554 0.8629286 2.8670008156452607 1
321 0 ? ? ? 0
323 1 1.7547395 0.9838681 0.023463145523847481 1
327 0 -1.9392717 0.005589658 0.0080867940950614132 0
328 1 1.4318235 0.96437496 0.052333903838185522 1
329 1 2.3460639 0.99630886 0.0053350370543586998 1
331 0 -1.362054 0.02344677 0.034229410725370862 0
332 0 -1.1784344 0.036705974 0.053951876878949478 0
333 1 1.7160423 0.9822482 0.025840494982293748 1
336 1 1.9215882 0.9893384 0.01546402326222397 1
338 0 -2.016054 0.004612463 0.0066697714735211976 0
343 0 -2.0423522 0.004318493 0.0062437599081359638 0
344 1 3.2724602 0.99963975 0.00051982521016927393 1
346 0 -1.1452725 0.039772153 0.058551319389170256 0
347 0 -2.0002143 0.0047990475 0.0069402286029123664 0
348 1 0.0469625 0.45386863 1.1396533255911534 1
349 1 1.0789044 0.9176395 0.12400061058625531 1
350 0 -1.4719541 0.017885111 0.026036292646255864 0
352 0 0.38635015 0.6611997 1.5614928955250442 1
353 1 3.2169917 0.99958587 0.00059759147883748926 1
354 0 -1.9392717 0.005589658 0.0080867940950614132 0
355 0 -1.4919239 0.017023813 0.024771627745211435 0
358 1 2.1038263 0.9932322 0.0097970749358899187 1
360 1 4.9878807 0.9999952 6.9653141741429021E-06 1
361 1 2.4031289 0.99680084 0.0046228109150398015 1
366 1 4.5532446 0.99998564 2.0724058276965695E-05 1
368 0 -1.8234507 0.007466049 0.010811642306895904 0
370 0 -1.2432851 0.031354383 0.045959148113657804 0
371 0 -1.8234507 0.007466049 0.010811642306895904 0
373 0 -1.446669 0.019037241 0.027729727651257807 0
376 0 -1.9392717 0.005589658 0.0080867940950614132 0
377 0 -2.016054 0.004612463 0.0066697714735211976 0
378 0 -1.3622395 0.023436088 0.034213629533831086 0
379 0 -0.7408192 0.10278644 0.15647666484329839 0
381 1 2.8893788 0.99905634 0.0013620574254095477 1
383 0 -1.9386504 0.005598352 0.0080994072943426313 0
384 0 -1.9386504 0.005598352 0.0080994072943426313 0
387 0 -0.849257 0.08021678 0.12063421711244401 0
388 0 -1.7761099 0.008402281 0.012173142772032002 0
389 0 -1.2184824 0.033305626 0.048868249994928496 0
391 1 3.1749265 0.9995396 0.00066434993816633352 1
392 0 -1.7318681 0.009382072 0.013599363941350218 0
395 0 -1.7318681 0.009382072 0.013599363941350218 0
396 0 -1.6287876 0.012125568 0.017600422018504175 0
398 0 -1.573084 0.0139239635 0.020229197568128091 0
399 0 -1.7241267 0.009564794 0.013865496917527722 0
404 0 -1.7279772 0.009473475 0.013732485333686782 0
406 0 -1.4193915 0.020361783 0.029679038395115178 0
409 0 -1.6224173 0.01231902 0.017882966931212465 0
413 0 -1.3119334 0.026513677 0.038767385083153312 0
414 1 2.123049 0.9935496 0.0093361246520084814 1
415 0 -0.2776096 0.26865023 0.45136655826070221 0
416 1 3.1767008 0.9995417 0.00066133885865735131 1
418 0 -0.8462839 0.0807703 0.12150268133983121 0
419 0 -1.5096551 0.016293315 0.023699888561428378 0
422 0 -0.9886162 0.057869684 0.08600146677513755 0
423 0 -1.3055631 0.026930418 0.039385122140910424 0
428 0 -1.9392717 0.005589658 0.0080867940950614132 0
429 0 -1.8355699 0.007243507 0.010488203450342017 0
430 0 -1.6811635 0.010644759 0.015439462342808047 0
434 0 2.0258625 0.99177796 6.9262872774368329 1
436 1 1.5963666 0.9761615 0.034808271840087598 1
439 0 -1.627545 0.012163068 0.017655187747179005 0
440 1 2.7169435 0.99854463 0.0021011795574893714 1
441 0 -0.6761644 0.118782796 0.18243043378782547 0
442 0 -1.5472815 0.014843793 0.021575597023897306 0
449 1 3.4800646 0.99978626 0.0003083978529977051 1
450 0 -1.5493578 0.014767612 0.021464040373680267 0
451 0 -1.627545 0.012163068 0.017655187747179005 0
452 0 -1.6793576 0.010692705 0.015509380237743254 0
453 1 2.7676923 0.9987188 0.0018495686286770713 1
454 0 -1.6632198 0.011130756 0.016148325336894087 0
455 1 0.0077679157 0.42956114 1.2190646144361519 1
456 1 3.1468241 0.99950594 0.0007129582341136991 1
457 1 2.7528846 0.9986702 0.001919743171132295 1
464 0 -1.7312468 0.009396608 0.013620533847283617 0
465 1 3.007116 0.99929804 0.0010130754524185037 1
466 1 2.87526 0.99902225 0.0014112917633669164 1
467 1 2.487548 0.9974113 0.0037395315885890151 1
474 0 -1.627545 0.012163068 0.017655187747179005 0
480 0 -1.7043273 0.010048307 0.014569966984297009 0
482 1 4.6564474 0.9999889 1.5994475191491157E-05 1
483 1 3.474631 0.99978334 0.00031261233491118568 1
484 0 -1.5180943 0.015956547 0.023206072124718809 0
487 1 4.263768 0.99997026 4.291030952804639E-05 1
489 1 -0.3205011 0.2479882 2.0116566538528589 0
492 0 -1.7049487 0.010032772 0.014547328189395701 0
493 1 3.5989468 0.9998415 0.00022866905553723773 1
495 0 -1.8086505 0.007747043 0.011220138189052079 0
497 0 -1.6319227 0.012031469 0.017463004760091338 0
501 0 -1.6281663 0.012144304 0.017627783540922228 0
502 0 -1.5503708 0.014730583 0.021409818539625137 0
504 0 -2.0423522 0.004318493 0.0062437599081359638 0
507 0 -1.5331326 0.015373333 0.022351282277564236 0
510 0 -2.0423522 0.004318493 0.0062437599081359638 0
513 0 -1.8086505 0.007747043 0.011220138189052079 0
514 1 3.2501147 0.99961895 0.00054984731048193683 1
517 0 -2.016054 0.004612463 0.0066697714735211976 0
519 1 2.2923105 0.9957767 0.0061058177687421267 1
520 0 -1.9655697 0.005233738 0.0075705163868627825 0
521 0 -1.6544644 0.011375793 0.016505863179890824 0
522 1 1.3532693 0.95692724 0.063518861538107568 1
523 1 2.4370325 0.99706155 0.0042455270449299996 1
527 0 -1.5250859 0.015682738 0.022804699905881552 0
528 0 -1.2271464 0.03261105 0.047832035763211905 0
529 0 -1.7049487 0.010032772 0.014547328189395701 0
531 0 -1.4193915 0.020361783 0.029679038395115178 0
532 0 -1.9129735 0.0059696385 0.0086381769438633477 0
533 0 -1.7318681 0.009382072 0.013599363941350218 0
534 0 -1.8355699 0.007243507 0.010488203450342017 0
535 0 -1.5394944 0.015132972 0.021999142959565208 0
538 0 -1.6281663 0.012144304 0.017627783540922228 0
539 0 -1.4207627 0.0202931 0.029577893498939061 0
540 0 -1.3547246 0.023872634 0.034858691221197086 0
541 0 -1.8349485 0.007254754 0.010504548094829827 0
544 0 -1.538873 0.015156287 0.022033296242772157 0
546 1 3.890135 0.9999238 0.00010990109979811221 1
547 0 -2.0154326 0.004619644 0.0066801794566212934 0
548 0 -1.9117309 0.0059882156 0.008665139227018245 0
549 1 1.8873575 0.98839086 0.01684642097660051 1
557 0 -1.4719541 0.017885111 0.026036292646255864 0
558 0 -1.8355699 0.007243507 0.010488203450342017 0
559 0 -1.5244645 0.015706887 0.022840095353758548 0
560 0 -1.4213841 0.020262046 0.029532164750357328 0
561 0 -1.4213841 0.020262046 0.029532164750357328 0
563 0 -1.7318681 0.009382072 0.013599363941350218 0
565 1 3.8744848 0.9999207 0.00011437299629627494 1
566 0 -1.5193369 0.01590754 0.023134226483914534 0
569 1 3.2839272 0.99965 0.00050502944785764078 1
577 0 -1.9392717 0.005589658 0.0080867940950614132 0
578 0 -1.9392717 0.005589658 0.0080867940950614132 0
581 1 2.9567606 0.9992033 0.0011498181326279645 1
582 1 2.8508236 0.9989603 0.0015007269655248547 1
584 0 -1.1617854 0.03821583 0.056214915170740364 0
586 1 4.5603447 0.9999859 2.0380088075209094E-05 1
590 1 1.3212955 0.9534877 0.068713775688235765 1
593 0 -1.5180943 0.015956547 0.023206072124718809 0
594 1 1.966572 0.99046814 0.013817519198081184 1
600 0 -1.7318681 0.009382072 0.013599363941350218 0
602 0 -1.6281663 0.012144304 0.017627783540922228 0
604 1 1.7640207 0.9842345 0.022925989915786975 1
606 0 -1.6534513 0.011404487 0.016547736888820951 0
607 0 -2.0423522 0.004318493 0.0062437599081359638 0
609 0 -1.627545 0.012163068 0.017655187747179005 0
612 1 5.0943155 0.9999963 5.3314720279485219E-06 1
613 0 -1.6369216 0.011882915 0.01724609385916397 0
614 0 -1.9123522 0.00597892 0.0086516478847329954 0
617 0 ? ? ? 0
618 0 -1.6281663 0.012144304 0.017627783540922228 0
619 0 -1.5244645 0.015706887 0.022840095353758548 0
621 0 -0.18877864 0.31474337 0.54528371301135603 0
622 0 -1.0520192 0.049763266 0.073641115733482851 0
624 0 -1.5234514 0.01574633 0.022897909331197303 0
627 0 -1.2596909 0.030124994 0.044129264944309604 0
629 0 -1.7312468 0.009396608 0.013620533847283617 0
633 1 1.3585322 0.9574696 0.062701439484481342 1
634 0 -1.8349485 0.007254754 0.010504548094829827 0
638 0 -1.7312468 0.009396608 0.013620533847283617 0
639 0 -1.4719541 0.017885111 0.026036292646255864 0
641 0 -1.7318681 0.009382072 0.013599363941350218 0
642 0 -1.7318681 0.009382072 0.013599363941350218 0
644 0 -1.9386504 0.005598352 0.0080994072943426313 0
645 0 -1.7318681 0.009382072 0.013599363941350218 0
649 0 -1.7318681 0.009382072 0.013599363941350218 0
652 0 -1.4650046 0.01819477 0.02649124368602665 0
653 0 -1.6281663 0.012144304 0.017627783540922228 0
654 0 -1.6287876 0.012125568 0.017600422018504175 0
656 0 -1.5244645 0.015706887 0.022840095353758548 0
657 0 0.07238507 0.469761 0.91528534610203083 1
660 0 -1.9392717 0.005589658 0.0080867940950614132 0
661 0 -1.5250859 0.015682738 0.022804699905881552 0
665 0 -2.0423522 0.004318493 0.0062437599081359638 0
668 1 0.8761635 0.86997336 0.20095686844500382 1
670 1 2.475629 0.9973327 0.003853253006618053 1
678 0 -2.0423522 0.004318493 0.0062437599081359638 0
679 0 -1.9386504 0.005598352 0.0080994072943426313 0
680 1 5.0469456 0.9999958 6.0194053376651264E-06 1
681 1 3.4610922 0.9997758 0.00032344963065038983 1
682 0 -1.3619242 0.023454247 0.034240456286276998 0
683 0 -2.0423522 0.004318493 0.0062437599081359638 0
685 0 -2.0423522 0.004318493 0.0062437599081359638 0
688 0 -1.7312468 0.009396608 0.013620533847283617 0
689 0 -1.6270413 0.012178299 0.017677431945151374 0
691 1 1.882755 0.9882572 0.017041491158961135 1
692 0 -1.8349485 0.007254754 0.010504548094829827 0
693 0 -1.672538 0.010875699 0.015776262468440397 0
694 0 -1.5884264 0.013403909 0.019468524067561912 0
696 1 2.4464438 0.9971301 0.0041463489900476049 1
697 1 1.5556872 0.97366065 0.038509060715199682 1
698 1 1.9799869 0.99078155 0.01336109778369928 1
0 0 -1.4523872 0.019146144 0.027889899822551058 0
1 0 1.1117091 0.8593498 2.8298163598358652 1
2 0 -1.5442423 0.015639812 0.022741784695779619 0
3 0 1.3794641 0.91758275 3.6009098690810446 1
4 0 -1.44707 0.01937121 0.028220976479993332 0
7 0 -1.7196726 0.010609732 0.015388386204302574 0
12 1 -0.16168332 0.2604149 1.9411161071114835 0
13 0 -1.6360978 0.0127672395 0.018537824929473656 0
14 1 2.7137089 0.9955039 0.0065011234789790892 1
15 1 0.2239623 0.455228 1.1353387949597598 1
16 0 -1.642553 0.012586182 0.018273260376911748 0
17 0 -1.5797056 0.014462235 0.021016940228645885 0
19 0 -1.3250686 0.025308099 0.036981837697027814 0
22 0 -1.7698716 0.009491566 0.013758834904910918 0
23 1 ? ? ? 0
24 0 -1.9616613 0.006196088 0.008966874206290271 0
26 0 -1.6749529 0.011715026 0.017000988488892345 0
27 0 -1.5152346 0.016672771 0.024256502854015347 0
29 0 -1.8580157 0.007803503 0.011302231095032259 0
30 0 -1.7818981 0.0092415 0.013394655258233299 0
33 0 -1.7680248 0.009530555 0.01381562546271423 0
34 0 -1.6552013 0.012238736 0.017765702109799365 0
36 1 2.8757834 0.99686897 0.0045242107510443958 1
38 1 1.8777761 0.97143745 0.041806983673957396 1
39 1 0.66683674 0.6927329 0.52962896270878623 1
42 1 2.8510656 0.99669117 0.0047815514952653957 1
43 1 -0.031175852 0.320529 1.6414731412416859 0
47 0 -2.0245087 0.005386466 0.0077920326684556718 0
49 1 2.2849293 0.9883315 0.016933076909576631 1
53 1 1.9302115 0.9745234 0.037231230212155041 1
55 1 1.6441426 0.952714 0.069884866295843728 1
57 1 0.03233409 0.35228416 1.505188474251304 1
58 1 0.5227361 0.6201047 0.68941633922432721 1
59 1 0.29814363 0.4966685 1.009644880134096 1
61 0 -1.8617268 0.007739373 0.011208986502338352 0
62 1 2.5047297 0.9928375 0.010370503522459541 1
65 1 0.5658133 0.6425686 0.63807763800230932 1
67 1 1.5760264 0.94534194 0.081091826206322645 1
75 0 -1.5125535 0.016771566 0.024401457430937582 0
78 0 -1.3814605 0.022370817 0.032640743712534996 0
80 0 -1.3733643 0.022771088 0.03323154811024074 0
81 0 -1.5762352 0.014573505 0.021179833428755276 0
83 0 -1.292853 0.027151376 0.039712756897806817 0
84 1 2.8053036 0.99633515 0.0052969748874191315 1
85 1 2.2009845 0.98595023 0.02041327029743915 1
86 1 0.843997 0.77028984 0.37652670152166534 1
87 1 2.2930346 0.9885391 0.016630064878214851 1
89 0 -1.8188454 0.008513378 0.012334788368430324 0
94 0 -1.8343427 0.008225174 0.011915488227056287 0
101 1 -0.053973675 0.30950543 1.6919633611552889 0
103 1 -0.1090858 0.283749 1.8173127149912758 0
107 1 2.28836 0.98841983 0.016804138946970682 1
110 0 -1.1208224 0.03941959 0.058021710362202897 0
114 0 -1.0528995 0.04560513 0.067341807258273739 0
116 0 -0.35561013 0.18566778 0.29631061488262839 0
118 0 -1.737739 0.010193042 0.014780911666731157 0
119 0 -1.437297 0.019791663 0.02883967703147506 0
124 1 2.194099 0.9857349 0.020728418652725122 1
126 1 2.2511382 0.9874251 0.018256792783391419 1
127 0 -1.7070242 0.010911443 0.015828398337213719 0
130 0 -1.2858943 0.02756635 0.040328276492221926 0
134 0 -1.7578448 0.009748338 0.014132877086598956 0
135 0 -1.0719882 0.04377896 0.064583944318119896 0
136 0 -1.642553 0.012586182 0.018273260376911748 0
139 0 ? ? ? 0
140 0 -1.8327188 0.008254914 0.011958750349382813 0
142 1 1.2070212 0.8832422 0.17911900782229345 1
143 0 -1.4362289 0.019838152 0.028908103441077037 0
146 1 0.3892374 0.5475602 0.86891046880406364 1
148 0 -0.6148732 0.113103375 0.17316213811595407 0
149 1 3.4666786 0.9991652 0.0012048975118685592 1
153 0 -1.3798369 0.022450533 0.032758385480089913 0
155 1 1.2427273 0.8912445 0.166106873210319 1
157 0 -1.8343427 0.008225174 0.011915488227056287 0
158 0 ? ? ? 0
159 1 4.0936093 0.999795 0.00029575448112624953 1
160 1 3.047052 0.99786484 0.0030836744978663621 1
162 0 -1.7070242 0.010911443 0.015828398337213719 0
163 0 -1.3802824 0.022428634 0.032726066505356692 0
165 0 -1.3081154 0.026262384 0.038395019663059589 0
166 1 2.8601327 0.9967575 0.004685528611449833 1
168 0 -1.7070242 0.010911443 0.015828398337213719 0
170 0 -1.8327188 0.008254914 0.011958750349382813 0
172 0 -2.0245087 0.005386466 0.0077920326684556718 0
175 1 2.7219548 0.99558586 0.0063823562844149409 1
178 0 -1.5797056 0.014462235 0.021016940228645885 0
182 0 -1.3250686 0.025308099 0.036981837697027814 0
184 1 1.9583292 0.976042 0.034984905691930093 1
185 0 -1.8463694 0.008008201 0.011599900809906092 0
186 1 2.00662 0.9784464 0.031435238347935837 1
190 1 4.061217 0.9997796 0.00031803097260478248 1
193 0 -1.9616613 0.006196088 0.008966874206290271 0
194 0 -1.7070242 0.010911443 0.015828398337213719 0
195 0 -1.5797056 0.014462235 0.021016940228645885 0
197 0 -1.2534336 0.029584877 0.04332606150571304 0
200 1 3.2750907 0.9987181 0.0018506018487151699 1
203 0 -1.4523872 0.019146144 0.027889899822551058 0
208 0 -1.973688 0.0060323146 0.0087291454094415161 0
213 1 4.695052 0.9999467 7.6878293243468792E-05 1
214 1 4.2366443 0.9998512 0.00021465031577919458 1
215 1 2.618555 0.99444115 0.0080420961556741631 1
217 0 -1.9616613 0.006196088 0.008966874206290271 0
220 0 -1.8953433 0.0071817758 0.010398496960519024 0
221 1 3.1131892 0.9981584 0.0026593234454307781 1
222 1 -0.87081695 0.06704428 3.8987419283439433 0
224 1 3.0557146 0.9979058 0.0030244732654238038 1
225 0 -2.0245087 0.005386466 0.0077920326684556718 0
227 1 2.535159 0.99330646 0.0096892036980333902 1
229 1 4.228992 0.99984866 0.00021834849770230094 1
230 1 1.7942104 0.96575624 0.050269004499880442 1
231 1 2.8036633 0.99632174 0.0053163942348769758 1
232 0 0.24888253 0.4691089 0.9135121644063674 1
234 0 -0.8223934 0.07415936 0.11116420563397059 0
235 0 ? ? ? 0
236 1 3.654365 0.99945164 0.00079133718371403176 1
238 1 4.2088003 0.99984163 0.00022849704563499302 1
243 0 -1.1848396 0.034332097 0.050400968413634589 0
245 0 -1.2232875 0.031587332 0.046306143970066403 0
251 1 2.3633332 0.99019325 0.014217983403619341 1
253 1 2.8510656 0.99669117 0.0047815514952653957 1
255 1 1.7551408 0.9627396 0.054782481237746296 1
256 0 -1.8327188 0.008254914 0.011958750349382813 0
261 1 3.637113 0.99943006 0.00082248345899775727 1
263 1 2.5199847 0.9930765 0.010023232474421741 1
264 1 1.4728475 0.9320885 0.10146116122224128 1
265 0 -0.9995682 0.05109897 0.075670470540090448 0
266 1 2.6647644 0.9949853 0.0072529090653585277 1
270 1 2.3404932 0.98968357 0.014960768847605985 1
273 1 -0.028805017 0.32168725 1.6362693326867892 0
274 0 -1.5982156 0.013882751 0.020168901625013343 0
281 0 -1.7680248 0.009530555 0.01381562546271423 0
282 1 1.3442035 0.9114063 0.13383378567288379 1
286 1 4.8698096 0.999964 5.1939695512002597E-05 1
287 0 -1.7578448 0.009748338 0.014132877086598956 0
289 1 2.8387923 0.99659926 0.0049145964567919058 1
292 1 ? ? ? 0
294 0 ? ? ? 0
295 1 2.2185984 0.9864867 0.019628533461458434 1
298 0 -1.053101 0.045585483 0.067312108231381534 0
302 1 4.847371 0.99996215 5.4605525036338512E-05 1
305 1 3.1077633 0.9981359 0.0026918023533455417 1
306 0 -1.9616613 0.006196088 0.008966874206290271 0
307 0 -1.9616613 0.006196088 0.008966874206290271 0
310 0 -1.8851633 0.0073462846 0.010637569650484586 0
313 0 -2.087356 0.0046821362 0.0067707579292392971 0
315 0 ? ? ? 0
318 0 -1.9255811 0.0067143934 0.0097194889132810602 0
320 1 1.9842496 0.9773634 0.03303300364958086 1
322 0 -1.7070242 0.010911443 0.015828398337213719 0
324 0 -1.9616613 0.006196088 0.008966874206290271 0
325 0 -1.3306388 0.025001993 0.036528825640836864 0
326 1 1.1013618 0.8565236 0.2234351419146503 1
330 1 1.5873947 0.94664353 0.079106829076604532 1
334 1 2.1429768 0.98403096 0.02322438500658925 1
335 0 -2.087356 0.0046821362 0.0067707579292392971 0
337 0 -1.9616613 0.006196088 0.008966874206290271 0
339 1 1.8268023 0.96809125 0.046785056739187467 1
340 1 1.8879046 0.97206056 0.040881895673108862 1
341 0 -1.9616613 0.006196088 0.008966874206290271 0
342 0 -1.9600375 0.006218537 0.0089994636539313857 0
345 0 -2.087356 0.0046821362 0.0067707579292392971 0
351 0 -1.8343427 0.008225174 0.011915488227056287 0
356 1 -0.34487557 0.18933254 2.4010056743835446 0
357 1 3.734027 0.9995413 0.00066194107405638893 1
359 1 1.5887551 0.9467973 0.078872485742388879 1
362 0 -1.1986388 0.03332148 0.048891911951351612 0
363 0 -0.5858247 0.11979976 0.18409633464063729 0
364 0 -1.8343427 0.008225174 0.011915488227056287 0
365 0 -1.89719 0.007152328 0.010355705857047924 0
367 1 3.5994864 0.99937993 0.00089484521919164879 1
369 0 -1.8071951 0.008736611 0.012659647949904635 0
372 0 -1.5278829 0.016214365 0.023584105761245956 0
374 0 -1.6552013 0.012238736 0.017765702109799365 0
375 0 -2.087356 0.0046821362 0.0067707579292392971 0
380 0 -2.087356 0.0046821362 0.0067707579292392971 0
382 0 -1.3102821 0.026138494 0.03821147505643846 0
385 0 -1.2079316 0.032657146 0.047900782802141328 0
386 1 1.7593884 0.9630796 0.054273093299447184 1
390 0 -1.9581907 0.0062441663 0.0090366704287561019 0
393 0 -2.0993826 0.0045581968 0.00659112110828228 0
394 0 -1.6882228 0.011375675 0.016505690577374079 0
397 0 -1.7054003 0.010950788 0.015885788006805096 0
400 1 2.7829003 0.9961472 0.0055691285132316755 1
401 0 -1.8327188 0.008254914 0.011958750349382813 0
402 0 -1.0720032 0.04377755 0.064581819763773404 0
403 0 -1.3443736 0.024262538 0.035435075666357639 0
405 0 -2.0245087 0.005386466 0.0077920326684556718 0
407 0 -2.0245087 0.005386466 0.0077920326684556718 0
408 0 -1.276682 0.028125199 0.041157619505191562 0
410 0 -2.0245087 0.005386466 0.0077920326684556718 0
411 0 ? ? ? 0
412 1 2.820312 0.99645597 0.0051220399276606741 1
417 0 -2.0245087 0.005386466 0.0077920326684556718 0
420 0 -1.0272092 0.048177592 0.071235676455785449 0
421 1 3.5609484 0.9993241 0.00097547133621225465 1
424 0 -1.8327188 0.008254914 0.011958750349382813 0
425 1 4.6287465 0.9999382 8.9175760478377495E-05 1
426 0 -0.79084015 0.07916301 0.1189823032140485 0
427 1 1.7320571 0.9608388 0.057633692591426401 1
431 0 -1.1868894 0.034180127 0.050173945870451819 0
432 0 -1.406426 0.021179358 0.030883567994507369 0
433 0 -1.4784676 0.018078836 0.026320895613975836 0
435 1 2.5676117 0.99377304 0.0090116866611377085 1
437 0 -1.7054003 0.010950788 0.015885788006805096 0
438 0 -1.3434244 0.024312943 0.035509604915242132 0
443 0 -1.9245741 0.0067294603 0.009741373011319443 0
444 0 -1.1716186 0.03532806 0.051889692987167661 0
445 0 -1.9600375 0.006218537 0.0089994636539313857 0
446 0 -2.087356 0.0046821362 0.0067707579292392971 0
447 0 -1.578082 0.014514188 0.021092994305265209 0
448 0 -2.0993826 0.0045581968 0.00659112110828228 0
458 0 -1.4634119 0.018687634 0.027215654223175588 0
459 0 -1.3487417 0.02403187 0.035094057282082605 0
460 0 -1.4454461 0.019440461 0.028322862140387421 0
461 0 -1.1815919 0.034574218 0.050762740105295363 0
462 0 -1.3181275 0.025694653 0.037554112106965389 0
463 0 -1.5965918 0.013932656 0.020241914649325572 0
468 0 -1.7054003 0.010950788 0.015885788006805096 0
469 0 -1.9098383 0.006953829 0.010067298412455503 0
470 0 -1.7818981 0.0092415 0.013394655258233299 0
471 0 -1.3181275 0.025694653 0.037554112106965389 0
472 0 -1.4627901 0.018713204 0.027253247512040887 0
473 0 -1.7054003 0.010950788 0.015885788006805096 0
475 0 -1.8327188 0.008254914 0.011958750349382813 0
476 0 -1.5907303 0.01411428 0.020507670473063597 0
477 0 -1.7054003 0.010950788 0.015885788006805096 0
478 0 -1.4711365 0.01837281 0.026752883544007289 0
479 1 2.629507 0.9945752 0.0078476337111689238 1
481 0 -1.0505673 0.04583316 0.067686544280510713 0
485 0 -1.6411833 0.012624388 0.018329083134665858 0
486 0 -1.7818981 0.0092415 0.013394655258233299 0
488 1 0.43259072 0.57150006 0.80717443755550966 1
490 0 -2.087356 0.0046821362 0.0067707579292392971 0
491 1 2.1409974 0.9839611 0.023326805981877335 1
494 0 -0.12852287 0.27498025 0.46390779336387228 0
496 0 -2.0993826 0.0045581968 0.00659112110828228 0
498 0 -1.642553 0.012586182 0.018273260376911748 0
499 0 -1.642553 0.012586182 0.018273260376911748 0
500 0 -1.3250686 0.025308099 0.036981837697027814 0
503 0 -1.5797056 0.014462235 0.021016940228645885 0
505 0 -1.6188279 0.013264365 0.019264482881519964 0
506 1 3.3839564 0.9989953 0.0014501984077122476 1
508 0 -1.578082 0.014514188 0.021092994305265209 0
509 0 -1.9600375 0.006218537 0.0089994636539313857 0
511 0 -1.5152346 0.016672771 0.024256502854015347 0
512 0 -1.578082 0.014514188 0.021092994305265209 0
515 1 2.9581447 0.9973953 0.0037627234776515654 1
516 0 -2.0993826 0.0045581968 0.00659112110828228 0
518 0 -1.6517309 0.012333114 0.017903553601508197 0
524 0 -1.7698716 0.009491566 0.013758834904910918 0
525 0 -1.7664009 0.009564969 0.013865751956463302 0
526 0 -1.7054003 0.010950788 0.015885788006805096 0
530 1 2.1478324 0.984201 0.022975091981118946 1
536 0 -1.4523872 0.019146144 0.027889899822551058 0
537 0 -1.3377172 0.024618203 0.035961046200063976 0
542 0 -1.3641909 0.02323307 0.033913737154366873 0
543 0 -1.642553 0.012586182 0.018273260376911748 0
545 0 -1.5152346 0.016672771 0.024256502854015347 0
550 0 -1.7698716 0.009491566 0.013758834904910918 0
551 0 -1.9616613 0.006196088 0.008966874206290271 0
552 0 -1.2474349 0.029973282 0.043903609393619751 0
553 0 -0.50138307 0.14123245 0.21966041036400469 0
554 0 -1.8327188 0.008254914 0.011958750349382813 0
555 0 -0.5413072 0.13072513 0.20211565749085023 0
556 0 -1.2393278 0.030506054 0.044696205338903269 0
562 0 -1.9616613 0.006196088 0.008966874206290271 0
564 0 -1.4708971 0.018382488 0.026767107793738431 0
567 0 -1.3169895 0.025758576 0.037648767594300685 0
568 1 1.5344815 0.9403269 0.088765660460296075 1
570 1 2.3952832 0.9908647 0.013240028849557042 1
571 1 3.5222402 0.99926287 0.0010638468668610122 1
572 0 -1.7698716 0.009491566 0.013758834904910918 0
573 0 -2.0245087 0.005386466 0.0077920326684556718 0
574 1 1.9515014 0.97568154 0.035517757344877311 1
575 0 -1.3377172 0.024618203 0.035961046200063976 0
576 0 -1.5152346 0.016672771 0.024256502854015347 0
579 0 -1.9616613 0.006196088 0.008966874206290271 0
580 0 -1.4005646 0.021453388 0.03128752124664428 0
583 0 -1.8327188 0.008254914 0.011958750349382813 0
585 0 -2.087356 0.0046821362 0.0067707579292392971 0
587 0 -1.406426 0.021179358 0.030883567994507369 0
588 1 1.5752568 0.9452528 0.081227913567112037 1
589 0 -1.578082 0.014514188 0.021092994305265209 0
591 1 1.8975711 0.97264296 0.040017783218380933 1
592 1 1.547288 0.9419171 0.086327971132609774 1
595 0 -1.5152346 0.016672771 0.024256502854015347 0
596 0 -1.5278829 0.016214365 0.023584105761245956 0
597 0 -1.2230469 0.031603828 0.046330718516432674 0
598 0 -1.7698716 0.009491566 0.013758834904910918 0
599 0 -1.1391529 0.037893195 0.055731035698705723 0
601 0 -2.0365353 0.005243981 0.0075853712813971049 0
603 1 1.2235923 0.8870177 0.17296515805824852 1
605 1 3.074329 0.99799114 0.0029010805431795806 1
608 1 3.1401954 0.9982664 0.00250322812715321 1
610 1 2.1142316 0.98298645 0.024756564761747188 1
611 1 2.0873475 0.981949 0.026280039918063384 1
615 0 -1.4132129 0.020866333 0.030422270638950994 0
616 0 -1.7698716 0.009491566 0.013758834904910918 0
620 0 -1.7698716 0.009491566 0.013758834904910918 0
623 0 -2.087356 0.0046821362 0.0067707579292392971 0
625 0 -1.1030065 0.040959533 0.060336403867144145 0
626 1 1.6810002 0.956299 0.064466317286346234 1
628 0 -1.9600375 0.006218537 0.0089994636539313857 0
630 0 -1.1144775 0.03996155 0.058835907846895803 0
631 0 -1.5152346 0.016672771 0.024256502854015347 0
632 0 -2.087356 0.0046821362 0.0067707579292392971 0
635 0 -1.4887084 0.017675903 0.025729004732410354 0
636 1 2.8873758 0.996949 0.0044083663249413997 1
637 0 -0.89617944 0.06357539 0.094765240120392474 0
640 0 -1.5727648 0.01468562 0.021343981844323338 0
643 0 -2.087356 0.0046821362 0.0067707579292392971 0
646 0 -1.8657403 0.007670605 0.01110900499779861 0
647 0 -1.9547201 0.0062926137 0.0091070061446696399 0
648 1 3.3080468 0.9988092 0.0017189583546918133 1
650 0 -1.266029 0.028785171 0.042137645307943838 0
651 0 -1.7849272 0.009179551 0.013304451228658526 0
655 0 -1.7698716 0.009491566 0.013758834904910918 0
658 1 2.6977997 0.9953414 0.0067366137513617651 1
659 0 -2.087356 0.0046821362 0.0067707579292392971 0
662 0 -1.7951683 0.008973145 0.01300394246354388 0
663 0 -1.7951683 0.008973145 0.01300394246354388 0
664 0 -1.6372358 0.012735136 0.018490910986938239 0
666 0 -1.2356119 0.030753305 0.045064184567971469 0
667 0 -1.7070242 0.010911443 0.015828398337213719 0
669 1 2.924252 0.9971903 0.0040592504084616312 1
671 0 -1.5337609 0.016005576 0.023277954114855396 0
672 0 -1.8343427 0.008225174 0.011915488227056287 0
673 0 -1.2374941 0.030627824 0.044877422173725146 0
674 0 -2.0245087 0.005386466 0.0077920326684556718 0
675 0 -1.36139 0.023375943 0.034124779281585735 0
676 0 -1.9098383 0.006953829 0.010067298412455503 0
677 0 -1.578082 0.014514188 0.021092994305265209 0
684 0 -2.087356 0.0046821362 0.0067707579292392971 0
686 0 -2.087356 0.0046821362 0.0067707579292392971 0
687 0 -1.5522543 0.015365777 0.022340210014074352 0
690 0 -1.9547201 0.0062926137 0.0091070061446696399 0
695 0 -1.9600375 0.006218537 0.0089994636539313857 0

Просмотреть файл

@ -0,0 +1,38 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 1600 instances with missing features during training (over 100 iterations; 16 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 232 | 7 | 0.9707
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9508 | 0.9841 |
OVERALL 0/1 ACCURACY: 0.972182
LOG LOSS/instance: 0.115962
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.875844
AUC: 0.995995
OVERALL RESULTS
---------------------------------------
AUC: 0.995995 (0.0000)
Accuracy: 0.972182 (0.0000)
Positive precision: 0.950820 (0.0000)
Positive recall: 0.970711 (0.0000)
Negative precision: 0.984055 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.115962 (0.0000)
Log-loss reduction: 0.875844 (0.0000)
F1 Score: 0.960663 (0.0000)
AUPRC: 0.991840 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC /lr /iter Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.995995 0.972182 0.95082 0.970711 0.984055 0.972973 0.115962 0.875844 0.960663 0.99184 0.01 100 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} dout=%Output% data=%Data% out=%Output% seed=1 /lr:0.01;/iter:100

Просмотреть файл

@ -0,0 +1,39 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali=PAV dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 160 instances with missing features during training (over 10 iterations; 16 inst/iter)
Training calibrator.
PAV calibrator: piecewise function approximation has 9 components.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: 0.084507
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.909522
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.084507 (0.0000)
Log-loss reduction: 0.909522 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 0.084507 0.909522 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali=PAV dout=%Output% data=%Data% out=%Output% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
0 0 -3.5726995 1E-15 1.4415419267167138E-15 0
1 0 3.6101456 0.8333333 2.5849623287385155 1
2 0 -4.070944 1E-15 1.4415419267167138E-15 0
3 0 2.470542 0.8095238 2.3923175087700885 1
4 0 -3.4358397 1E-15 1.4415419267167138E-15 0
5 1 12.382593 1 -0 1
6 0 -1.4209604 0.071428575 0.10691520887754996 0
7 0 -4.701088 1E-15 1.4415419267167138E-15 0
8 0 -4.6745405 1E-15 1.4415419267167138E-15 0
9 0 -4.406417 1E-15 1.4415419267167138E-15 0
10 0 -5.559344 1E-15 1.4415419267167138E-15 0
11 0 -5.4818344 1E-15 1.4415419267167138E-15 0
12 1 -0.14206886 0.6363636 0.65207672114864346 0
13 0 -4.5691886 1E-15 1.4415419267167138E-15 0
14 1 9.321613 1 -0 1
15 1 1.3856993 0.8095238 0.30485456129516797 1
16 0 -4.533843 1E-15 1.4415419267167138E-15 0
17 0 -4.046695 1E-15 1.4415419267167138E-15 0
18 1 7.8903694 1 -0 1
19 0 -3.0987039 1E-15 1.4415419267167138E-15 0
20 1 7.528511 1 -0 1
21 1 7.875204 1 -0 1
22 0 -5.0078387 1E-15 1.4415419267167138E-15 0
23 1 ? ? ? 0
24 0 -5.4686823 1E-15 1.4415419267167138E-15 0
25 1 1.741828 0.8095238 0.30485456129516797 1
26 0 -4.9710746 1E-15 1.4415419267167138E-15 0
27 0 -4.0598474 1E-15 1.4415419267167138E-15 0
28 0 -5.4818344 1E-15 1.4415419267167138E-15 0
29 0 -5.8557806 1E-15 1.4415419267167138E-15 0
30 0 -5.0985007 1E-15 1.4415419267167138E-15 0
31 0 -4.9946866 1E-15 1.4415419267167138E-15 0
32 1 7.46414 1 -0 1
33 0 -4.689259 1E-15 1.4415419267167138E-15 0
34 0 -4.71424 1E-15 1.4415419267167138E-15 0
35 0 -5.4818344 1E-15 1.4415419267167138E-15 0
36 1 9.099108 1 -0 1
37 0 -1.113348 0.071428575 0.10691520887754996 0
38 1 6.140953 0.98 0.029146317580716615 1
39 1 2.5109024 0.8095238 0.30485456129516797 1
40 0 ? ? ? 0
41 1 3.3300762 0.8333333 0.26303444023032446 1
42 1 8.577511 1 -0 1
43 1 0.49126053 0.6363636 0.65207672114864346 1
44 1 8.255751 1 -0 1
45 0 -5.6322193 1E-15 1.4415419267167138E-15 0
46 1 4.5673847 0.9285714 0.10691524360481655 1
47 0 -5.95583 1E-15 1.4415419267167138E-15 0
48 0 -3.4358397 1E-15 1.4415419267167138E-15 0
49 1 5.3666544 0.98 0.029146317580716615 1
50 1 2.5949678 0.8095238 0.30485456129516797 1
51 1 0.12595749 0.6363636 0.65207672114864346 1
52 1 5.2992125 0.98 0.029146317580716615 1
53 1 8.407228 1 -0 1
54 1 7.649309 1 -0 1
55 1 4.478709 0.9285714 0.10691524360481655 1
56 1 5.5541325 0.98 0.029146317580716615 1
57 1 1.6657066 0.8095238 0.30485456129516797 1
58 1 2.5265894 0.8095238 0.30485456129516797 1
59 1 1.7368536 0.8095238 0.30485456129516797 1
60 1 2.3288136 0.8095238 0.30485456129516797 1
61 0 -5.5060835 1E-15 1.4415419267167138E-15 0
62 1 6.380088 0.98 0.029146317580716615 1
63 1 0.3348999 0.6363636 0.65207672114864346 1
64 0 -5.95583 1E-15 1.4415419267167138E-15 0
65 1 3.8072634 0.9285714 0.10691524360481655 1
66 0 -4.046695 1E-15 1.4415419267167138E-15 0
67 1 4.218013 0.9285714 0.10691524360481655 1
68 1 10.826723 1 -0 1
69 0 -5.271654 1E-15 1.4415419267167138E-15 0
70 0 -3.4726496 1E-15 1.4415419267167138E-15 0
71 1 7.895048 1 -0 1
72 0 -2.1755843 0.071428575 0.10691520887754996 0
73 1 8.9055195 1 -0 1
74 1 2.5993576 0.8095238 0.30485456129516797 1
75 0 -4.04116 1E-15 1.4415419267167138E-15 0
76 0 -5.075033 1E-15 1.4415419267167138E-15 0
77 0 -3.4995675 1E-15 1.4415419267167138E-15 0
78 0 -3.6211967 1E-15 1.4415419267167138E-15 0
79 0 -5.3911724 1E-15 1.4415419267167138E-15 0
80 0 -2.7157316 1E-15 1.4415419267167138E-15 0
81 0 -4.2284155 1E-15 1.4415419267167138E-15 0
82 0 -3.4452734 1E-15 1.4415419267167138E-15 0
83 0 -2.1223516 0.071428575 0.10691520887754996 0
84 1 9.694054 1 -0 1
85 1 6.2895613 0.98 0.029146317580716615 1
86 1 2.6168842 0.8095238 0.30485456129516797 1
87 1 6.91914 1 -0 1
88 0 -4.046695 1E-15 1.4415419267167138E-15 0
89 0 -5.085745 1E-15 1.4415419267167138E-15 0
90 0 -5.4686823 1E-15 1.4415419267167138E-15 0
91 0 -5.189559 1E-15 1.4415419267167138E-15 0
92 0 -4.046695 1E-15 1.4415419267167138E-15 0
93 0 -5.95583 1E-15 1.4415419267167138E-15 0
94 0 -4.9946866 1E-15 1.4415419267167138E-15 0
95 0 -5.4686823 1E-15 1.4415419267167138E-15 0
96 0 -5.663555 1E-15 1.4415419267167138E-15 0
97 0 -3.5726995 1E-15 1.4415419267167138E-15 0
98 1 8.590231 1 -0 1
99 1 10.917194 1 -0 1
100 1 4.8476706 0.9285714 0.10691524360481655 1
101 1 -0.84280396 0.5 1 0
102 0 -3.7530966 1E-15 1.4415419267167138E-15 0
103 1 1.7746449 0.8095238 0.30485456129516797 1
104 1 12.140858 1 -0 1
105 1 2.5560703 0.8095238 0.30485456129516797 1
106 1 9.259367 1 -0 1
107 1 6.720646 0.98 0.029146317580716615 1
108 0 -5.5617743 1E-15 1.4415419267167138E-15 0
109 1 6.871725 1 -0 1
110 0 -2.766693 1E-15 1.4415419267167138E-15 0
111 1 3.848031 0.9285714 0.10691524360481655 1
112 1 9.425768 1 -0 1
113 1 9.506622 1 -0 1
114 0 -3.0727453 1E-15 1.4415419267167138E-15 0
115 0 -4.643991 1E-15 1.4415419267167138E-15 0
116 0 -0.6618881 0.5 1 0
117 1 9.617277 1 -0 1
118 0 -5.3621607 1E-15 1.4415419267167138E-15 0
119 0 -3.9435177 1E-15 1.4415419267167138E-15 0
120 0 -4.8696556 1E-15 1.4415419267167138E-15 0
121 0 -3.469522 1E-15 1.4415419267167138E-15 0
122 1 9.680521 1 -0 1
123 1 3.8165932 0.9285714 0.10691524360481655 1
124 1 7.6522446 1 -0 1
125 0 -5.95583 1E-15 1.4415419267167138E-15 0
126 1 8.564953 1 -0 1
127 0 -4.520691 1E-15 1.4415419267167138E-15 0
128 1 4.848981 0.9285714 0.10691524360481655 1
129 0 -5.717684 1E-15 1.4415419267167138E-15 0
130 0 -3.4726496 1E-15 1.4415419267167138E-15 0
131 0 -4.9946866 1E-15 1.4415419267167138E-15 0
132 1 8.60223 1 -0 1
133 0 -4.8108106 1E-15 1.4415419267167138E-15 0
134 0 -4.9171767 1E-15 1.4415419267167138E-15 0
135 0 -2.7288966 1E-15 1.4415419267167138E-15 0
136 0 -4.533843 1E-15 1.4415419267167138E-15 0
137 0 -5.4949865 1E-15 1.4415419267167138E-15 0
138 0 -4.2402444 1E-15 1.4415419267167138E-15 0
139 0 ? ? ? 0
140 0 -5.4949865 1E-15 1.4415419267167138E-15 0
141 0 -5.9689827 1E-15 1.4415419267167138E-15 0
142 1 4.4324036 0.9285714 0.10691524360481655 1
143 0 -4.643991 1E-15 1.4415419267167138E-15 0
144 0 -5.4818344 1E-15 1.4415419267167138E-15 0
145 0 ? ? ? 0
146 1 1.3394356 0.8095238 0.30485456129516797 1
147 0 -5.4154215 1E-15 1.4415419267167138E-15 0
148 0 -1.012373 0.071428575 0.10691520887754996 0
149 1 11.461615 1 -0 1
150 0 -5.559344 1E-15 1.4415419267167138E-15 0
151 1 5.006485 0.9285714 0.10691524360481655 1
152 1 9.715746 1 -0 1
153 0 -4.1214976 1E-15 1.4415419267167138E-15 0
154 0 -6.442978 1E-15 1.4415419267167138E-15 0
155 1 3.7769232 0.9285714 0.10691524360481655 1
156 0 -5.5348053 1E-15 1.4415419267167138E-15 0
157 0 -4.9946866 1E-15 1.4415419267167138E-15 0
158 0 ? ? ? 0
159 1 12.346203 1 -0 1
160 1 9.039492 1 -0 1
161 0 -3.849667 1E-15 1.4415419267167138E-15 0
162 0 -4.520691 1E-15 1.4415419267167138E-15 0
163 0 -3.387055 1E-15 1.4415419267167138E-15 0
164 0 ? ? ? 0
165 0 -3.39992 1E-15 1.4415419267167138E-15 0
166 1 7.976183 1 -0 1
167 1 8.355644 1 -0 1
168 0 -4.520691 1E-15 1.4415419267167138E-15 0
169 0 -6.2282124 1E-15 1.4415419267167138E-15 0
170 0 -5.4949865 1E-15 1.4415419267167138E-15 0
171 0 -5.4686823 1E-15 1.4415419267167138E-15 0
172 0 -5.95583 1E-15 1.4415419267167138E-15 0
173 1 15.1560135 1 -0 1
174 1 6.1769247 0.98 0.029146317580716615 1
175 1 7.842922 1 -0 1
176 0 -4.9946866 1E-15 1.4415419267167138E-15 0
177 1 4.766121 0.9285714 0.10691524360481655 1
178 0 -4.046695 1E-15 1.4415419267167138E-15 0
179 1 2.290575 0.8095238 0.30485456129516797 1
180 0 -5.559344 1E-15 1.4415419267167138E-15 0
181 0 -6.442978 1E-15 1.4415419267167138E-15 0
182 0 -3.0987039 1E-15 1.4415419267167138E-15 0
183 1 9.159964 1 -0 1
184 1 6.2014647 0.98 0.029146317580716615 1
185 0 -5.0853486 1E-15 1.4415419267167138E-15 0
186 1 5.7654104 0.98 0.029146317580716615 1
187 1 13.977449 1 -0 1
188 1 9.065281 1 -0 1
189 0 -4.7540584 1E-15 1.4415419267167138E-15 0
190 1 11.957216 1 -0 1
191 1 10.956871 1 -0 1
192 0 -4.0598474 1E-15 1.4415419267167138E-15 0
193 0 -5.4686823 1E-15 1.4415419267167138E-15 0
194 0 -4.520691 1E-15 1.4415419267167138E-15 0
195 0 -4.046695 1E-15 1.4415419267167138E-15 0
196 0 6.8652763 0.98 5.6438575656365879 1
197 0 -2.6564164 1E-15 1.4415419267167138E-15 0
198 0 -6.442978 1E-15 1.4415419267167138E-15 0
199 0 -5.0078387 1E-15 1.4415419267167138E-15 0
200 1 10.36586 1 -0 1
201 1 9.8694935 1 -0 1
202 0 -5.4686823 1E-15 1.4415419267167138E-15 0
203 0 -3.5726995 1E-15 1.4415419267167138E-15 0
204 0 -5.4686823 1E-15 1.4415419267167138E-15 0
205 1 12.086601 1 -0 1
206 1 5.944168 0.98 0.029146317580716615 1
207 0 -5.559344 1E-15 1.4415419267167138E-15 0
208 0 -5.559344 1E-15 1.4415419267167138E-15 0
209 0 -3.6633615 1E-15 1.4415419267167138E-15 0
210 1 14.534113 1 -0 1
211 1 9.64962 1 -0 1
212 0 -5.4686823 1E-15 1.4415419267167138E-15 0
213 1 14.529058 1 -0 1
214 1 13.868914 1 -0 1
215 1 7.643732 1 -0 1
216 0 -5.95583 1E-15 1.4415419267167138E-15 0
217 0 -5.4686823 1E-15 1.4415419267167138E-15 0
218 1 7.88678 1 -0 1
219 0 -2.511506 1E-15 1.4415419267167138E-15 0
220 0 -5.1632547 1E-15 1.4415419267167138E-15 0
221 1 10.395216 1 -0 1
222 1 -2.214662 0.071428575 3.8073548575641118 0
223 1 5.7424126 0.98 0.029146317580716615 1
224 1 9.995327 1 -0 1
225 0 -5.95583 1E-15 1.4415419267167138E-15 0
226 1 10.225868 1 -0 1
227 1 7.459608 1 -0 1
228 0 -5.559344 1E-15 1.4415419267167138E-15 0
229 1 12.666513 1 -0 1
230 1 6.1583214 0.98 0.029146317580716615 1
231 1 8.623034 1 -0 1
232 0 1.2822819 0.6363636 1.4594315756416352 1
233 1 6.3825197 0.98 0.029146317580716615 1
234 0 -2.8964381 1E-15 1.4415419267167138E-15 0
235 0 ? ? ? 0
236 1 11.420414 1 -0 1
237 1 6.535795 0.98 0.029146317580716615 1
238 1 12.422874 1 -0 1
239 1 5.9025297 0.98 0.029146317580716615 1
240 0 -2.0179915 0.071428575 0.10691520887754996 0
241 0 -4.0004973 1E-15 1.4415419267167138E-15 0
242 0 -4.9946866 1E-15 1.4415419267167138E-15 0
243 0 -2.6953988 1E-15 1.4415419267167138E-15 0
244 0 -5.4686823 1E-15 1.4415419267167138E-15 0
245 0 -2.817525 1E-15 1.4415419267167138E-15 0
246 1 11.424002 1 -0 1
247 1 3.104393 0.8333333 0.26303444023032446 1
248 0 -3.0615559 1E-15 1.4415419267167138E-15 0
249 0 ? ? ? 0
250 0 -6.021953 1E-15 1.4415419267167138E-15 0
251 1 8.872498 1 -0 1
252 0 4.5387735 0.9285714 3.8073544061097437 1
253 1 8.577511 1 -0 1
254 1 6.380088 0.98 0.029146317580716615 1
255 1 4.052039 0.9285714 0.10691524360481655 1
256 0 -5.4949865 1E-15 1.4415419267167138E-15 0
257 0 -5.0078387 1E-15 1.4415419267167138E-15 0
258 0 -4.520691 1E-15 1.4415419267167138E-15 0
259 0 2.9647484 0.8095238 2.3923175087700885 1
260 1 9.870924 1 -0 1
261 1 12.206299 1 -0 1
262 1 9.653839 1 -0 1
263 1 8.981979 1 -0 1
264 1 5.664708 0.98 0.029146317580716615 1
265 0 -2.494875 1E-15 1.4415419267167138E-15 0
266 1 7.3661633 1 -0 1
267 1 3.3009605 0.8333333 0.26303444023032446 1
268 1 9.372967 1 -0 1
269 0 -5.4686823 1E-15 1.4415419267167138E-15 0
270 1 6.031377 0.98 0.029146317580716615 1
271 0 -3.5726995 1E-15 1.4415419267167138E-15 0
272 1 3.3009605 0.8333333 0.26303444023032446 1
273 1 0.21747208 0.6363636 0.65207672114864346 1
274 0 -4.3236628 1E-15 1.4415419267167138E-15 0
275 0 ? ? ? 0
276 0 -5.0078387 1E-15 1.4415419267167138E-15 0
277 0 -5.95583 1E-15 1.4415419267167138E-15 0
278 0 -5.4686823 1E-15 1.4415419267167138E-15 0
279 1 7.127905 1 -0 1
280 0 -4.520691 1E-15 1.4415419267167138E-15 0
281 0 -4.689259 1E-15 1.4415419267167138E-15 0
282 1 4.4381237 0.9285714 0.10691524360481655 1
283 1 6.0636253 0.98 0.029146317580716615 1
284 1 7.431343 1 -0 1
285 1 14.218479 1 -0 1
286 1 15.281261 1 -0 1
287 0 -4.9171767 1E-15 1.4415419267167138E-15 0
288 1 2.2163515 0.8095238 0.30485456129516797 1
289 1 8.312021 1 -0 1
290 0 -6.442978 1E-15 1.4415419267167138E-15 0
291 0 -5.4686823 1E-15 1.4415419267167138E-15 0
292 1 ? ? ? 0
293 1 5.542122 0.98 0.029146317580716615 1
294 0 ? ? ? 0
295 1 7.7866364 1 -0 1
296 0 1.823431 0.8095238 2.3923175087700885 1
297 0 ? ? ? 0
298 0 -2.725597 1E-15 1.4415419267167138E-15 0
299 1 7.8274345 1 -0 1
300 1 7.348074 1 -0 1
301 0 -5.4686823 1E-15 1.4415419267167138E-15 0
302 1 15.735762 1 -0 1
303 0 -5.4686823 1E-15 1.4415419267167138E-15 0
304 1 5.9607973 0.98 0.029146317580716615 1
305 1 8.459471 1 -0 1
306 0 -5.4686823 1E-15 1.4415419267167138E-15 0
307 0 -5.4686823 1E-15 1.4415419267167138E-15 0
308 1 7.422592 1 -0 1
309 0 -1.7474074 0.071428575 0.10691520887754996 0
310 0 -5.3911724 1E-15 1.4415419267167138E-15 0
311 0 -6.442978 1E-15 1.4415419267167138E-15 0
312 1 3.629469 0.9285714 0.10691524360481655 1
313 0 -6.442978 1E-15 1.4415419267167138E-15 0
314 0 -6.0464916 1E-15 1.4415419267167138E-15 0
315 0 ? ? ? 0
316 1 3.6177397 0.9285714 0.10691524360481655 1
317 1 9.215706 1 -0 1
318 0 -5.1966968 1E-15 1.4415419267167138E-15 0
319 0 2.6369457 0.8095238 2.3923175087700885 1
320 1 7.3824844 1 -0 1
321 0 ? ? ? 0
322 0 -4.520691 1E-15 1.4415419267167138E-15 0
323 1 5.5612926 0.98 0.029146317580716615 1
324 0 -5.4686823 1E-15 1.4415419267167138E-15 0
325 0 -4.1927576 1E-15 1.4415419267167138E-15 0
326 1 4.4103804 0.9285714 0.10691524360481655 1
327 0 -5.95583 1E-15 1.4415419267167138E-15 0
328 1 3.373887 0.8333333 0.26303444023032446 1
329 1 7.8321323 1 -0 1
330 1 5.8562517 0.98 0.029146317580716615 1
331 0 -3.2490892 1E-15 1.4415419267167138E-15 0
332 0 -3.1363664 1E-15 1.4415419267167138E-15 0
333 1 4.914962 0.9285714 0.10691524360481655 1
334 1 5.9119463 0.98 0.029146317580716615 1
335 0 -6.442978 1E-15 1.4415419267167138E-15 0
336 1 5.54352 0.98 0.029146317580716615 1
337 0 -5.4686823 1E-15 1.4415419267167138E-15 0
338 0 -6.0464916 1E-15 1.4415419267167138E-15 0
339 1 5.684024 0.98 0.029146317580716615 1
340 1 6.620782 0.98 0.029146317580716615 1
341 0 -5.4686823 1E-15 1.4415419267167138E-15 0
342 0 -5.9689827 1E-15 1.4415419267167138E-15 0
343 0 -6.442978 1E-15 1.4415419267167138E-15 0
344 1 10.162451 1 -0 1
345 0 -6.442978 1E-15 1.4415419267167138E-15 0
346 0 -3.335825 1E-15 1.4415419267167138E-15 0
347 0 -6.1395845 1E-15 1.4415419267167138E-15 0
348 1 0.15727425 0.6363636 0.65207672114864346 1
349 1 4.0622606 0.9285714 0.10691524360481655 1
350 0 -3.93614 1E-15 1.4415419267167138E-15 0
351 0 -4.9946866 1E-15 1.4415419267167138E-15 0
352 0 0.4719286 0.6363636 1.4594315756416352 1
353 1 8.696344 1 -0 1
354 0 -5.95583 1E-15 1.4415419267167138E-15 0
355 0 -4.2461534 1E-15 1.4415419267167138E-15 0
356 1 -0.69921684 0.5 1 0
357 1 12.852016 1 -0 1
358 1 5.5822067 0.98 0.029146317580716615 1
359 1 5.3672857 0.98 0.029146317580716615 1
360 1 15.333872 1 -0 1
361 1 6.31769 0.98 0.029146317580716615 1
362 0 -3.5059962 1E-15 1.4415419267167138E-15 0
363 0 -2.065846 0.071428575 0.10691520887754996 0
364 0 -4.9946866 1E-15 1.4415419267167138E-15 0
365 0 -5.4818344 1E-15 1.4415419267167138E-15 0
366 1 13.694569 1 -0 1
367 1 11.299242 1 -0 1
368 0 -5.8557806 1E-15 1.4415419267167138E-15 0
369 0 -5.4592943 1E-15 1.4415419267167138E-15 0
370 0 -3.8947306 1E-15 1.4415419267167138E-15 0
371 0 -5.8557806 1E-15 1.4415419267167138E-15 0
372 0 -4.2402444 1E-15 1.4415419267167138E-15 0
373 0 -3.7544198 1E-15 1.4415419267167138E-15 0
374 0 -4.71424 1E-15 1.4415419267167138E-15 0
375 0 -6.442978 1E-15 1.4415419267167138E-15 0
376 0 -5.95583 1E-15 1.4415419267167138E-15 0
377 0 -6.0464916 1E-15 1.4415419267167138E-15 0
378 0 -3.803866 1E-15 1.4415419267167138E-15 0
379 0 -2.2557268 1E-15 1.4415419267167138E-15 0
380 0 -6.442978 1E-15 1.4415419267167138E-15 0
381 1 10.07641 1 -0 1
382 0 -3.59721 1E-15 1.4415419267167138E-15 0
383 0 -5.9689827 1E-15 1.4415419267167138E-15 0
384 0 -5.9689827 1E-15 1.4415419267167138E-15 0
385 0 -3.7061968 1E-15 1.4415419267167138E-15 0
386 1 6.0875874 0.98 0.029146317580716615 1
387 0 -2.33456 1E-15 1.4415419267167138E-15 0
388 0 -5.284807 1E-15 1.4415419267167138E-15 0
389 0 -3.3224106 1E-15 1.4415419267167138E-15 0
390 0 -5.6504025 1E-15 1.4415419267167138E-15 0
391 1 10.030338 1 -0 1
392 0 -5.0078387 1E-15 1.4415419267167138E-15 0
393 0 -6.53364 1E-15 1.4415419267167138E-15 0
394 0 -5.241206 1E-15 1.4415419267167138E-15 0
395 0 -5.0078387 1E-15 1.4415419267167138E-15 0
396 0 -4.520691 1E-15 1.4415419267167138E-15 0
397 0 -5.020991 1E-15 1.4415419267167138E-15 0
398 0 -4.6833844 1E-15 1.4415419267167138E-15 0
399 0 -5.7283545 1E-15 1.4415419267167138E-15 0
400 1 10.056744 1 -0 1
401 0 -5.4949865 1E-15 1.4415419267167138E-15 0
402 0 -3.2177973 1E-15 1.4415419267167138E-15 0
403 0 -4.145746 1E-15 1.4415419267167138E-15 0
404 0 -5.5076685 1E-15 1.4415419267167138E-15 0
405 0 -5.95583 1E-15 1.4415419267167138E-15 0
406 0 -4.1128182 1E-15 1.4415419267167138E-15 0
407 0 -5.95583 1E-15 1.4415419267167138E-15 0
408 0 -3.6910605 1E-15 1.4415419267167138E-15 0
409 0 -4.71424 1E-15 1.4415419267167138E-15 0
410 0 -5.95583 1E-15 1.4415419267167138E-15 0
411 0 ? ? ? 0
412 1 9.230707 1 -0 1
413 0 -3.279101 1E-15 1.4415419267167138E-15 0
414 1 6.7173805 0.98 0.029146317580716615 1
415 0 -0.66683483 0.5 1 0
416 1 8.809383 1 -0 1
417 0 -5.95583 1E-15 1.4415419267167138E-15 0
418 0 -1.8758616 0.071428575 0.10691520887754996 0
419 0 -5.4421444 1E-15 1.4415419267167138E-15 0
420 0 -2.5893164 1E-15 1.4415419267167138E-15 0
421 1 11.824856 1 -0 1
422 0 -2.8105893 1E-15 1.4415419267167138E-15 0
423 0 -3.4726496 1E-15 1.4415419267167138E-15 0
424 0 -5.4949865 1E-15 1.4415419267167138E-15 0
425 1 14.817661 1 -0 1
426 0 -2.8241491 1E-15 1.4415419267167138E-15 0
427 1 4.3530817 0.9285714 0.10691524360481655 1
428 0 -5.95583 1E-15 1.4415419267167138E-15 0
429 0 -5.4818344 1E-15 1.4415419267167138E-15 0
430 0 -5.50395 1E-15 1.4415419267167138E-15 0
431 0 -2.5834923 1E-15 1.4415419267167138E-15 0
432 0 -3.8628192 1E-15 1.4415419267167138E-15 0
433 0 -4.463106 1E-15 1.4415419267167138E-15 0
434 0 5.0084 0.9285714 3.8073544061097437 1
435 1 7.44433 1 -0 1
436 1 3.841198 0.9285714 0.10691524360481655 1
437 0 -5.020991 1E-15 1.4415419267167138E-15 0
438 0 -3.822938 1E-15 1.4415419267167138E-15 0
439 0 -4.5469956 1E-15 1.4415419267167138E-15 0
440 1 10.154686 1 -0 1
441 0 -1.8604474 0.071428575 0.10691520887754996 0
442 0 -4.9326286 1E-15 1.4415419267167138E-15 0
443 0 -5.9932313 1E-15 1.4415419267167138E-15 0
444 0 -2.442047 1E-15 1.4415419267167138E-15 0
445 0 -5.9689827 1E-15 1.4415419267167138E-15 0
446 0 -6.442978 1E-15 1.4415419267167138E-15 0
447 0 -4.5469956 1E-15 1.4415419267167138E-15 0
448 0 -6.53364 1E-15 1.4415419267167138E-15 0
449 1 10.298002 1 -0 1
450 0 -4.01365 1E-15 1.4415419267167138E-15 0
451 0 -4.5469956 1E-15 1.4415419267167138E-15 0
452 0 -4.8841314 1E-15 1.4415419267167138E-15 0
453 1 8.777969 1 -0 1
454 0 -5.6234684 1E-15 1.4415419267167138E-15 0
455 1 0.8163538 0.6363636 0.65207672114864346 1
456 1 10.487385 1 -0 1
457 1 9.062626 1 -0 1
458 0 -4.253397 1E-15 1.4415419267167138E-15 0
459 0 -3.9597979 1E-15 1.4415419267167138E-15 0
460 0 -3.93614 1E-15 1.4415419267167138E-15 0
461 0 -3.6959996 1E-15 1.4415419267167138E-15 0
462 0 -3.4621449 1E-15 1.4415419267167138E-15 0
463 0 -4.823963 1E-15 1.4415419267167138E-15 0
464 0 -5.020991 1E-15 1.4415419267167138E-15 0
465 1 9.785397 1 -0 1
466 1 9.541931 1 -0 1
467 1 7.7145195 1 -0 1
468 0 -5.020991 1E-15 1.4415419267167138E-15 0
469 0 -5.6622314 1E-15 1.4415419267167138E-15 0
470 0 -5.0985007 1E-15 1.4415419267167138E-15 0
471 0 -3.4621449 1E-15 1.4415419267167138E-15 0
472 0 -4.163662 1E-15 1.4415419267167138E-15 0
473 0 -5.020991 1E-15 1.4415419267167138E-15 0
474 0 -4.5469956 1E-15 1.4415419267167138E-15 0
475 0 -5.4949865 1E-15 1.4415419267167138E-15 0
476 0 -4.7273927 1E-15 1.4415419267167138E-15 0
477 0 -5.020991 1E-15 1.4415419267167138E-15 0
478 0 -4.4195695 1E-15 1.4415419267167138E-15 0
479 1 8.32148 1 -0 1
480 0 -4.6376576 1E-15 1.4415419267167138E-15 0
481 0 -3.0822616 1E-15 1.4415419267167138E-15 0
482 1 15.4814205 1 -0 1
483 1 10.906593 1 -0 1
484 0 -4.253397 1E-15 1.4415419267167138E-15 0
485 0 -5.0232906 1E-15 1.4415419267167138E-15 0
486 0 -5.0985007 1E-15 1.4415419267167138E-15 0
487 1 13.475906 1 -0 1
488 1 1.3273249 0.8095238 0.30485456129516797 1
489 1 -0.6232023 0.5 1 0
490 0 -6.442978 1E-15 1.4415419267167138E-15 0
491 1 6.6713343 0.98 0.029146317580716615 1
492 0 -4.624505 1E-15 1.4415419267167138E-15 0
493 1 9.948912 1 -0 1
494 0 0.9629116 0.6363636 1.4594315756416352 1
495 0 -5.0985007 1E-15 1.4415419267167138E-15 0
496 0 -6.53364 1E-15 1.4415419267167138E-15 0
497 0 -4.8935647 1E-15 1.4415419267167138E-15 0
498 0 -4.533843 1E-15 1.4415419267167138E-15 0
499 0 -4.533843 1E-15 1.4415419267167138E-15 0
500 0 -3.0987039 1E-15 1.4415419267167138E-15 0
501 0 -4.533843 1E-15 1.4415419267167138E-15 0
502 0 -4.2284155 1E-15 1.4415419267167138E-15 0
503 0 -4.046695 1E-15 1.4415419267167138E-15 0
504 0 -6.442978 1E-15 1.4415419267167138E-15 0
505 0 -5.2401342 1E-15 1.4415419267167138E-15 0
506 1 10.447666 1 -0 1
507 0 -5.093737 1E-15 1.4415419267167138E-15 0
508 0 -4.5469956 1E-15 1.4415419267167138E-15 0
509 0 -5.9689827 1E-15 1.4415419267167138E-15 0
510 0 -6.442978 1E-15 1.4415419267167138E-15 0
511 0 -4.0598474 1E-15 1.4415419267167138E-15 0
512 0 -4.5469956 1E-15 1.4415419267167138E-15 0
513 0 -5.0985007 1E-15 1.4415419267167138E-15 0
514 1 10.719854 1 -0 1
515 1 8.6480255 1 -0 1
516 0 -6.53364 1E-15 1.4415419267167138E-15 0
517 0 -6.0464916 1E-15 1.4415419267167138E-15 0
518 0 -4.8959603 1E-15 1.4415419267167138E-15 0
519 1 6.535844 0.98 0.029146317580716615 1
520 0 -6.3523164 1E-15 1.4415419267167138E-15 0
521 0 -4.9303293 1E-15 1.4415419267167138E-15 0
522 1 5.502533 0.98 0.029146317580716615 1
523 1 7.699238 1 -0 1
524 0 -5.0078387 1E-15 1.4415419267167138E-15 0
525 0 -5.189559 1E-15 1.4415419267167138E-15 0
526 0 -5.020991 1E-15 1.4415419267167138E-15 0
527 0 -4.046695 1E-15 1.4415419267167138E-15 0
528 0 -3.1803741 1E-15 1.4415419267167138E-15 0
529 0 -4.624505 1E-15 1.4415419267167138E-15 0
530 1 6.515935 0.98 0.029146317580716615 1
531 0 -4.1128182 1E-15 1.4415419267167138E-15 0
532 0 -5.559344 1E-15 1.4415419267167138E-15 0
533 0 -5.0078387 1E-15 1.4415419267167138E-15 0
534 0 -5.4818344 1E-15 1.4415419267167138E-15 0
535 0 -4.5760565 1E-15 1.4415419267167138E-15 0
536 0 -3.5726995 1E-15 1.4415419267167138E-15 0
537 0 -3.279101 1E-15 1.4415419267167138E-15 0
538 0 -4.533843 1E-15 1.4415419267167138E-15 0
539 0 -3.5858517 1E-15 1.4415419267167138E-15 0
540 0 -3.6101003 1E-15 1.4415419267167138E-15 0
541 0 -5.4949865 1E-15 1.4415419267167138E-15 0
542 0 -4.2921433 1E-15 1.4415419267167138E-15 0
543 0 -4.533843 1E-15 1.4415419267167138E-15 0
544 0 -4.589209 1E-15 1.4415419267167138E-15 0
545 0 -4.0598474 1E-15 1.4415419267167138E-15 0
546 1 11.390257 1 -0 1
547 0 -6.0596447 1E-15 1.4415419267167138E-15 0
548 0 -5.5856485 1E-15 1.4415419267167138E-15 0
549 1 6.3187494 0.98 0.029146317580716615 1
550 0 -5.0078387 1E-15 1.4415419267167138E-15 0
551 0 -5.4686823 1E-15 1.4415419267167138E-15 0
552 0 -3.1100616 1E-15 1.4415419267167138E-15 0
553 0 -1.7353673 0.071428575 0.10691520887754996 0
554 0 -5.4949865 1E-15 1.4415419267167138E-15 0
555 0 -1.9254994 0.071428575 0.10691520887754996 0
556 0 -3.4240565 1E-15 1.4415419267167138E-15 0
557 0 -3.93614 1E-15 1.4415419267167138E-15 0
558 0 -5.4818344 1E-15 1.4415419267167138E-15 0
559 0 -4.0598474 1E-15 1.4415419267167138E-15 0
560 0 -3.5726995 1E-15 1.4415419267167138E-15 0
561 0 -3.5726995 1E-15 1.4415419267167138E-15 0
562 0 -5.4686823 1E-15 1.4415419267167138E-15 0
563 0 -5.0078387 1E-15 1.4415419267167138E-15 0
564 0 -3.849667 1E-15 1.4415419267167138E-15 0
565 1 12.08609 1 -0 1
566 0 -4.2270923 1E-15 1.4415419267167138E-15 0
567 0 -3.6343493 1E-15 1.4415419267167138E-15 0
568 1 4.1473055 0.9285714 0.10691524360481655 1
569 1 10.713882 1 -0 1
570 1 8.017664 1 -0 1
571 1 11.034657 1 -0 1
572 0 -5.0078387 1E-15 1.4415419267167138E-15 0
573 0 -5.95583 1E-15 1.4415419267167138E-15 0
574 1 5.950967 0.98 0.029146317580716615 1
575 0 -3.279101 1E-15 1.4415419267167138E-15 0
576 0 -4.0598474 1E-15 1.4415419267167138E-15 0
577 0 -5.95583 1E-15 1.4415419267167138E-15 0
578 0 -5.95583 1E-15 1.4415419267167138E-15 0
579 0 -5.4686823 1E-15 1.4415419267167138E-15 0
580 0 -3.7662487 1E-15 1.4415419267167138E-15 0
581 1 8.417797 1 -0 1
582 1 7.907978 1 -0 1
583 0 -5.4949865 1E-15 1.4415419267167138E-15 0
584 0 -2.9291954 1E-15 1.4415419267167138E-15 0
585 0 -6.442978 1E-15 1.4415419267167138E-15 0
586 1 13.981018 1 -0 1
587 0 -3.8628192 1E-15 1.4415419267167138E-15 0
588 1 5.463169 0.98 0.029146317580716615 1
589 0 -4.5469956 1E-15 1.4415419267167138E-15 0
590 1 3.9684038 0.9285714 0.10691524360481655 1
591 1 5.966527 0.98 0.029146317580716615 1
592 1 5.7801704 0.98 0.029146317580716615 1
593 0 -4.253397 1E-15 1.4415419267167138E-15 0
594 1 5.101776 0.98 0.029146317580716615 1
595 0 -4.0598474 1E-15 1.4415419267167138E-15 0
596 0 -4.2402444 1E-15 1.4415419267167138E-15 0
597 0 -2.9855018 1E-15 1.4415419267167138E-15 0
598 0 -5.0078387 1E-15 1.4415419267167138E-15 0
599 0 -3.6294346 1E-15 1.4415419267167138E-15 0
600 0 -5.0078387 1E-15 1.4415419267167138E-15 0
601 0 -6.0464916 1E-15 1.4415419267167138E-15 0
602 0 -4.533843 1E-15 1.4415419267167138E-15 0
603 1 4.8058825 0.9285714 0.10691524360481655 1
604 1 6.1928043 0.98 0.029146317580716615 1
605 1 9.95545 1 -0 1
606 0 -4.715564 1E-15 1.4415419267167138E-15 0
607 0 -6.442978 1E-15 1.4415419267167138E-15 0
608 1 11.148426 1 -0 1
609 0 -4.5469956 1E-15 1.4415419267167138E-15 0
610 1 8.926189 1 -0 1
611 1 6.9109592 1 -0 1
612 1 16.893513 1 -0 1
613 0 -5.226982 1E-15 1.4415419267167138E-15 0
614 0 -5.5724964 1E-15 1.4415419267167138E-15 0
615 0 -3.9466453 1E-15 1.4415419267167138E-15 0
616 0 -5.0078387 1E-15 1.4415419267167138E-15 0
617 0 ? ? ? 0
618 0 -4.533843 1E-15 1.4415419267167138E-15 0
619 0 -4.0598474 1E-15 1.4415419267167138E-15 0
620 0 -5.0078387 1E-15 1.4415419267167138E-15 0
621 0 0.3560543 0.6363636 1.4594315756416352 1
622 0 -2.2074018 0.071428575 0.10691520887754996 0
623 0 -6.442978 1E-15 1.4415419267167138E-15 0
624 0 -3.8450818 1E-15 1.4415419267167138E-15 0
625 0 -3.4678864 1E-15 1.4415419267167138E-15 0
626 1 5.760166 0.98 0.029146317580716615 1
627 0 -4.1699953 1E-15 1.4415419267167138E-15 0
628 0 -5.9689827 1E-15 1.4415419267167138E-15 0
629 0 -5.020991 1E-15 1.4415419267167138E-15 0
630 0 -3.358376 1E-15 1.4415419267167138E-15 0
631 0 -4.0598474 1E-15 1.4415419267167138E-15 0
632 0 -6.442978 1E-15 1.4415419267167138E-15 0
633 1 4.3299494 0.9285714 0.10691524360481655 1
634 0 -5.4949865 1E-15 1.4415419267167138E-15 0
635 0 -4.6141906 1E-15 1.4415419267167138E-15 0
636 1 10.127518 1 -0 1
637 0 -2.4650183 1E-15 1.4415419267167138E-15 0
638 0 -5.020991 1E-15 1.4415419267167138E-15 0
639 0 -3.93614 1E-15 1.4415419267167138E-15 0
640 0 -4.4101357 1E-15 1.4415419267167138E-15 0
641 0 -5.0078387 1E-15 1.4415419267167138E-15 0
642 0 -5.0078387 1E-15 1.4415419267167138E-15 0
643 0 -6.442978 1E-15 1.4415419267167138E-15 0
644 0 -5.9689827 1E-15 1.4415419267167138E-15 0
645 0 -5.0078387 1E-15 1.4415419267167138E-15 0
646 0 -6.021953 1E-15 1.4415419267167138E-15 0
647 0 -5.832123 1E-15 1.4415419267167138E-15 0
648 1 12.236198 1 -0 1
649 0 -5.0078387 1E-15 1.4415419267167138E-15 0
650 0 -3.7496572 1E-15 1.4415419267167138E-15 0
651 0 -5.2175484 1E-15 1.4415419267167138E-15 0
652 0 -3.8628192 1E-15 1.4415419267167138E-15 0
653 0 -4.533843 1E-15 1.4415419267167138E-15 0
654 0 -4.520691 1E-15 1.4415419267167138E-15 0
655 0 -5.0078387 1E-15 1.4415419267167138E-15 0
656 0 -4.0598474 1E-15 1.4415419267167138E-15 0
657 0 -0.4869156 0.5 1 0
658 1 9.086258 1 -0 1
659 0 -6.442978 1E-15 1.4415419267167138E-15 0
660 0 -5.95583 1E-15 1.4415419267167138E-15 0
661 0 -4.046695 1E-15 1.4415419267167138E-15 0
662 0 -5.3686323 1E-15 1.4415419267167138E-15 0
663 0 -5.3686323 1E-15 1.4415419267167138E-15 0
664 0 -4.3969836 1E-15 1.4415419267167138E-15 0
665 0 -6.442978 1E-15 1.4415419267167138E-15 0
666 0 -3.4969325 1E-15 1.4415419267167138E-15 0
667 0 -4.520691 1E-15 1.4415419267167138E-15 0
668 1 2.804366 0.8095238 0.30485456129516797 1
669 1 8.147335 1 -0 1
670 1 6.4856215 0.98 0.029146317580716615 1
671 0 -4.087837 1E-15 1.4415419267167138E-15 0
672 0 -4.9946866 1E-15 1.4415419267167138E-15 0
673 0 -3.9078827 1E-15 1.4415419267167138E-15 0
674 0 -5.95583 1E-15 1.4415419267167138E-15 0
675 0 -4.140195 1E-15 1.4415419267167138E-15 0
676 0 -5.6622314 1E-15 1.4415419267167138E-15 0
677 0 -4.5469956 1E-15 1.4415419267167138E-15 0
678 0 -6.442978 1E-15 1.4415419267167138E-15 0
679 0 -5.9689827 1E-15 1.4415419267167138E-15 0
680 1 16.780008 1 -0 1
681 1 9.801077 1 -0 1
682 0 -3.3756714 1E-15 1.4415419267167138E-15 0
683 0 -6.442978 1E-15 1.4415419267167138E-15 0
684 0 -6.442978 1E-15 1.4415419267167138E-15 0
685 0 -6.442978 1E-15 1.4415419267167138E-15 0
686 0 -6.442978 1E-15 1.4415419267167138E-15 0
687 0 -4.613783 1E-15 1.4415419267167138E-15 0
688 0 -5.020991 1E-15 1.4415419267167138E-15 0
689 0 -4.177704 1E-15 1.4415419267167138E-15 0
690 0 -5.832123 1E-15 1.4415419267167138E-15 0
691 1 4.4967804 0.9285714 0.10691524360481655 1
692 0 -5.4949865 1E-15 1.4415419267167138E-15 0
693 0 -4.684228 1E-15 1.4415419267167138E-15 0
694 0 -4.954578 1E-15 1.4415419267167138E-15 0
695 0 -5.9689827 1E-15 1.4415419267167138E-15 0
696 1 6.7127876 0.98 0.029146317580716615 1
697 1 5.064643 0.98 0.029146317580716615 1
698 1 6.1036224 0.98 0.029146317580716615 1

Просмотреть файл

@ -0,0 +1,38 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron numcali=200 dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 160 instances with missing features during training (over 10 iterations; 16 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: 0.120617
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.870860
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.120617 (0.0000)
Log-loss reduction: 0.870860 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 0.120617 0.87086 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron numcali=200 dout=%Output% data=%Data% out=%Output% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
0 0 -3.5726995 0.047724232 0.070548673242470078 0
1 0 3.6101456 0.9209522 3.6611308948912158 1
2 0 -4.070944 0.033202175 0.04871386747975371 0
3 0 2.470542 0.83073896 2.5626781731328263 1
4 0 -3.4358397 0.05267027 0.078061433982946932 0
5 1 12.382593 0.99988943 0.0001595227277818751 1
6 0 -1.4209604 0.20405398 0.32925750806385767 0
7 0 -4.701088 0.020848805 0.03039644515807061 0
8 0 -4.6745405 0.021263903 0.031008185910590607 0
9 0 -4.406417 0.025935683 0.037911059564125327 0
10 0 -5.559344 0.010982096 0.015931457121809788 0
11 0 -5.4818344 0.011639432 0.016890641442649377 0
12 1 -0.14206886 0.40347567 1.3094464075888503 0
13 0 -4.5691886 0.022992346 0.033558231039772665 0
14 1 9.321613 0.998874 0.0016253773809814112 1
15 1 1.3856993 0.6830734 0.54988747944718552 1
16 0 -4.533843 0.02360242 0.034459376167277234 0
17 0 -4.046695 0.03379773 0.049602852281362811 0
18 1 7.8903694 0.9966727 0.0048082975514731332 1
19 0 -3.0987039 0.06699134 0.10003761775121778 0
20 1 7.528511 0.9956263 0.0063237968594455725 1
21 1 7.875204 0.9966343 0.0048638619113426269 1
22 0 -5.0078387 0.016592305 0.02413845106369562 0
23 1 ? ? ? 0
24 0 -5.4686823 0.011754767 0.017059004011272673 0
25 1 1.741828 0.73848027 0.43736871808798289 1
26 0 -4.9710746 0.01705355 0.024815273012732428 0
27 0 -4.0598474 0.03347344 0.049118716145619364 0
28 0 -5.4818344 0.011639432 0.016890641442649377 0
29 0 -5.8557806 0.00878995 0.012737279746493163 0
30 0 -5.0985007 0.015506634 0.022546609667162744 0
31 0 -4.9946866 0.016755886 0.024378450658658433 0
32 1 7.46414 0.9954084 0.0066395103905325147 1
33 0 -4.689259 0.021032775 0.030667534203555599 0
34 0 -4.71424 0.020646105 0.030097814327393193 0
35 0 -5.4818344 0.011639432 0.016890641442649377 0
36 1 9.099108 0.99866724 0.0019240484689165348 1
37 0 -1.113348 0.24456774 0.40462569514389818 0
38 1 6.140953 0.9875705 0.018044317542393044 1
39 1 2.5109024 0.8350005 0.2601510075224418 1
40 0 ? ? ? 0
41 1 3.3300762 0.90403634 0.14554732340521623 1
42 1 8.577511 0.99802166 0.0028569650360322531 1
43 1 0.49126053 0.5223421 0.93693314652059867 1
44 1 8.255751 0.9974761 0.0036458194620463992 1
45 0 -5.6322193 0.010397601 0.015079097093484478 0
46 1 4.5673847 0.96013206 0.058695238307073898 1
47 0 -5.95583 0.008152756 0.011810148833251818 0
48 0 -3.4358397 0.05267027 0.078061433982946932 0
49 1 5.3666544 0.9778563 0.032305655935016012 1
50 1 2.5949678 0.84359986 0.2453692461908529 1
51 1 0.12595749 0.45321622 1.141728585060551 1
52 1 5.2992125 0.976721 0.033981595778575298 1
53 1 8.407228 0.99774945 0.0032505195711204126 1
54 1 7.649309 0.9960077 0.0057712269479890379 1
55 1 4.478709 0.95747596 0.062691829736720397 1
56 1 5.5541325 0.9807353 0.02806428572372743 1
57 1 1.6657066 0.7271758 0.45962396180677062 1
58 1 2.5265894 0.8366335 0.25733232225246744 1
59 1 1.7368536 0.7377509 0.43879434296981179 1
60 1 2.3288136 0.8150797 0.29498697868205404 1
61 0 -5.5060835 0.0114297075 0.016584542177967555 0
62 1 6.380088 0.98961115 0.015066341261387473 1
63 1 0.3348999 0.49270445 1.021205589894451 1
64 0 -5.95583 0.008152756 0.011810148833251818 0
65 1 3.8072634 0.9311753 0.1028753176207461 1
66 0 -4.046695 0.03379773 0.049602852281362811 0
67 1 4.218013 0.9486547 0.076045020305197497 1
68 1 10.826723 0.9996402 0.00051913703181331893 1
69 0 -5.271654 0.013623926 0.019790289199966723 0
70 0 -3.4726496 0.051294282 0.075967452463448076 0
71 1 7.895048 0.99668443 0.0047913008067115544 1
72 0 -2.1755843 0.12635374 0.19487884633663133 0
73 1 8.9055195 0.9984568 0.0022281210940979582 1
74 1 2.5993576 0.8440387 0.2446189028997863 1
75 0 -4.04116 0.033935115 0.049808004690470989 0
76 0 -5.075033 0.01578076 0.022948375597840527 0
77 0 -3.4995675 0.050309666 0.074470924297704952 0
78 0 -3.6211967 0.04607984 0.068059573236894252 0
79 0 -5.3911724 0.012457773 0.018085656328473053 0
80 0 -2.7157316 0.087596945 0.13225681838671866 0
81 0 -4.2284155 0.029574301 0.043310338334976231 0
82 0 -3.4452734 0.052314345 0.077519494497433533 0
83 0 -2.1223516 0.13087903 0.20237109943076298 0
84 1 9.694054 0.99915093 0.0012254667568283894 1
85 1 6.2895613 0.9888809 0.016131360230936344 1
86 1 2.6168842 0.84578085 0.24164420028856959 1
87 1 6.91914 0.9930738 0.010027129067340199 1
88 0 -4.046695 0.03379773 0.049602852281362811 0
89 0 -5.085745 0.015655048 0.022764115650391988 0
90 0 -5.4686823 0.011754767 0.017059004011272673 0
91 0 -5.189559 0.014486661 0.021052696761167319 0
92 0 -4.046695 0.03379773 0.049602852281362811 0
93 0 -5.95583 0.008152756 0.011810148833251818 0
94 0 -4.9946866 0.016755886 0.024378450658658433 0
95 0 -5.4686823 0.011754767 0.017059004011272673 0
96 0 -5.663555 0.010155837 0.014726683875270435 0
97 0 -3.5726995 0.047724232 0.070548673242470078 0
98 1 8.590231 0.9980406 0.0028295658493644239 1
99 1 10.917194 0.99966407 0.00048472853254951715 1
100 1 4.8476706 0.96752024 0.047636257434475471 1
101 1 -0.84280396 0.2844349 1.8138295272133309 0
102 0 -3.7530966 0.04187613 0.06171590932041901 0
103 1 1.7746449 0.74325943 0.42806223277958716 1
104 1 12.140858 0.9998672 0.00019160139559387039 1
105 1 2.5560703 0.83966714 0.25211056290937062 1
106 1 9.259367 0.99881965 0.0017038920105930569 1
107 1 6.720646 0.99195737 0.011649978820645172 1
108 0 -5.5617743 0.010962089 0.015902272030853013 0
109 1 6.871725 0.992822 0.010393022735684912 1
110 0 -2.766693 0.08455608 0.12745658613888911 0
111 1 3.848031 0.93313104 0.099848402613633994 1
112 1 9.425768 0.9989595 0.0015019320975399703 1
113 1 9.506622 0.9990213 0.0014126689718023965 1
114 0 -3.0727453 0.06823268 0.10195836010283554 0
115 0 -4.643991 0.02175159 0.031727234757411307 0
116 0 -0.6618881 0.31317255 0.54198039303031509 0
117 1 9.617277 0.9991 0.0012989676266954972 1
118 0 -5.3621607 0.012731451 0.018485525732496611 0
119 0 -3.9435177 0.036449015 0.053567088295960068 0
120 0 -4.8696556 0.018392263 0.026781474537826103 0
121 0 -3.469522 0.051409863 0.076143226767382041 0
122 1 9.680521 0.99914217 0.0012381182790972595 1
123 1 3.8165932 0.9316275 0.10217485034891999 1
124 1 7.6522446 0.99601656 0.0057583629403995997 1
125 0 -5.95583 0.008152756 0.011810148833251818 0
126 1 8.564953 0.9980027 0.0028843647430662487 1
127 0 -4.520691 0.023833439 0.034800762077037174 0
128 1 4.848981 0.9675514 0.04758977495588574 1
129 0 -5.717684 0.009751258 0.014137132147530099 0
130 0 -3.4726496 0.051294282 0.075967452463448076 0
131 0 -4.9946866 0.016755886 0.024378450658658433 0
132 1 8.60223 0.9980583 0.0028039765128859018 1
133 0 -4.8108106 0.019215737 0.027992263501116436 0
134 0 -4.9171767 0.017752616 0.025841674110087472 0
135 0 -2.7288966 0.08680205 0.13100047471163517 0
136 0 -4.533843 0.02360242 0.034459376167277234 0
137 0 -5.4949865 0.011525215 0.016723929655280523 0
138 0 -4.2402444 0.029317858 0.04292914403934768 0
139 0 ? ? ? 0
140 0 -5.4949865 0.011525215 0.016723929655280523 0
141 0 -5.9689827 0.008072471 0.011693375209389432 0
142 1 4.4324036 0.95602256 0.064883430994521443 1
143 0 -4.643991 0.02175159 0.031727234757411307 0
144 0 -5.4818344 0.011639432 0.016890641442649377 0
145 0 ? ? ? 0
146 1 1.3394356 0.6754276 0.56612692807369991 1
147 0 -5.4154215 0.012233486 0.017758034331297672 0
148 0 -1.012373 0.25899473 0.43244428867240287 0
149 1 11.461615 0.99977773 0.00032069729386163213 1
150 0 -5.559344 0.010982096 0.015931457121809788 0
151 1 5.006485 0.9711001 0.042308092038938809 1
152 1 9.715746 0.99916476 0.0012054999542047689 1
153 0 -4.1214976 0.03199297 0.046910567277187794 0
154 0 -6.442978 0.0056481995 0.008171728927378108 0
155 1 3.7769232 0.9296856 0.10518519653096636 1
156 0 -5.5348053 0.0111861285 0.016229112739800475 0
157 0 -4.9946866 0.016755886 0.024378450658658433 0
158 0 ? ? ? 0
159 1 12.346203 0.99988633 0.0001639947780942108 1
160 1 9.039492 0.99860567 0.002012998795947356 1
161 0 -3.849667 0.039033562 0.057442049421200084 0
162 0 -4.520691 0.023833439 0.034800762077037174 0
163 0 -3.387055 0.05454765 0.080923343778042084 0
164 0 ? ? ? 0
165 0 -3.39992 0.05404653 0.080158873955017459 0
166 1 7.976183 0.9968817 0.004505750926832852 1
167 1 8.355644 0.99765986 0.0033800618776249807 1
168 0 -4.520691 0.023833439 0.034800762077037174 0
169 0 -6.2282124 0.00664095 0.0096128205240473656 0
170 0 -5.4949865 0.011525215 0.016723929655280523 0
171 0 -5.4686823 0.011754767 0.017059004011272673 0
172 0 -5.95583 0.008152756 0.011810148833251818 0
173 1 15.1560135 0.9999865 1.9434170443242565E-05 1
174 1 6.1769247 0.9879011 0.017561488134486943 1
175 1 7.842922 0.99655116 0.004984229936716684 1
176 0 -4.9946866 0.016755886 0.024378450658658433 0
177 1 4.766121 0.96551895 0.050623517901417933 1
178 0 -4.046695 0.03379773 0.049602852281362811 0
179 1 2.290575 0.8106676 0.30281765649168213 1
180 0 -5.559344 0.010982096 0.015931457121809788 0
181 0 -6.442978 0.0056481995 0.008171728927378108 0
182 0 -3.0987039 0.06699134 0.10003761775121778 0
183 1 9.159964 0.9987273 0.0018372561468384253 1
184 1 6.2014647 0.98812157 0.017239546569330137 1
185 0 -5.0853486 0.015659682 0.022770907823479652 0
186 1 5.7654104 0.9835412 0.023942621168576837 1
187 1 13.977449 0.99996704 4.7553986690113E-05 1
188 1 9.065281 0.99863267 0.0019739908621602127 1
189 0 -4.7540584 0.020044118 0.029211295141143595 0
190 1 11.957216 0.99984735 0.0002202405944450654 1
191 1 10.956871 0.999674 0.00047036322693564959 1
192 0 -4.0598474 0.03347344 0.049118716145619364 0
193 0 -5.4686823 0.011754767 0.017059004011272673 0
194 0 -4.520691 0.023833439 0.034800762077037174 0
195 0 -4.046695 0.03379773 0.049602852281362811 0
196 0 6.8652763 0.992787 7.1151855643261381 1
197 0 -2.6564164 0.09126051 0.13806131755901335 0
198 0 -6.442978 0.0056481995 0.008171728927378108 0
199 0 -5.0078387 0.016592305 0.02413845106369562 0
200 1 10.36586 0.9994898 0.00073627359086373204 1
201 1 9.8694935 0.9992566 0.0010728826448553252 1
202 0 -5.4686823 0.011754767 0.017059004011272673 0
203 0 -3.5726995 0.047724232 0.070548673242470078 0
204 0 -5.4686823 0.011754767 0.017059004011272673 0
205 1 12.086601 0.99986166 0.00019959967319162043 1
206 1 5.944168 0.98559827 0.020928376857247459 1
207 0 -5.559344 0.010982096 0.015931457121809788 0
208 0 -5.559344 0.010982096 0.015931457121809788 0
209 0 -3.6633615 0.04469411 0.065965336354842946 0
210 1 14.534113 0.99997836 3.1215188826316377E-05 1
211 1 9.64962 0.99912184 0.0012674667953664828 1
212 0 -5.4686823 0.011754767 0.017059004011272673 0
213 1 14.529058 0.9999783 3.1301182014901005E-05 1
214 1 13.868914 0.9999642 5.1681712271066226E-05 1
215 1 7.643732 0.9959909 0.0057955739072098177 1
216 0 -5.95583 0.008152756 0.011810148833251818 0
217 0 -5.4686823 0.011754767 0.017059004011272673 0
218 1 7.88678 0.99666363 0.0048214119279433977 1
219 0 -2.511506 0.100795746 0.15327923389796996 0
220 0 -5.1632547 0.014774316 0.021473856707274121 0
221 1 10.395216 0.999501 0.00072009905980506843 1
222 1 -2.214662 0.1231175 3.0218922639873447 0
223 1 5.7424126 0.9832564 0.024360423750620218 1
224 1 9.995327 0.99932426 0.00097521318777220637 1
225 0 -5.95583 0.008152756 0.011810148833251818 0
226 1 10.225868 0.9994326 0.00081878372812222485 1
227 1 7.459608 0.9953927 0.0066623169983452231 1
228 0 -5.559344 0.010982096 0.015931457121809788 0
229 1 12.666513 0.9999109 0.00012856275965089447 1
230 1 6.1583214 0.9877312 0.017809586200967932 1
231 1 8.623034 0.99808866 0.0027601224428665879 1
232 0 1.2822819 0.66585165 1.5814393559263284 1
233 1 6.3825197 0.9896301 0.015038709216571163 1
234 0 -2.8964381 0.07724253 0.115976584697302 0
235 0 ? ? ? 0
236 1 11.420414 0.99977064 0.00033093257283884215 1
237 1 6.535795 0.9907579 0.01339555438417007 1
238 1 12.422874 0.9998928 0.00015470668910224405 1
239 1 5.9025297 0.985143 0.021594929859074165 1
240 0 -2.0179915 0.14015017 0.21784338265744002 0
241 0 -4.0004973 0.034961022 0.051340881416726061 0
242 0 -4.9946866 0.016755886 0.024378450658658433 0
243 0 -2.6953988 0.088837564 0.13421982380863931 0
244 0 -5.4686823 0.011754767 0.017059004011272673 0
245 0 -2.817525 0.08161871 0.12283484643891715 0
246 1 11.424002 0.9997713 0.00032998645156814019 1
247 1 3.104393 0.8881221 0.17117009101578401 1
248 0 -3.0615559 0.068774305 0.10279722872890984 0
249 0 ? ? ? 0
250 0 -6.021953 0.007756997 0.011234610933401622 0
251 1 8.872498 0.9984177 0.0022846196981478615 1
252 0 4.5387735 0.95929295 4.6185774530404009 1
253 1 8.577511 0.99802166 0.0028569650360322531 1
254 1 6.380088 0.98961115 0.015066341261387473 1
255 1 4.052039 0.94216394 0.085949972449708326 1
256 0 -5.4949865 0.011525215 0.016723929655280523 0
257 0 -5.0078387 0.016592305 0.02413845106369562 0
258 0 -4.520691 0.023833439 0.034800762077037174 0
259 0 2.9647484 0.87715596 3.0251002258142448 1
260 1 9.870924 0.99925745 0.0010716778711863072 1
261 1 12.206299 0.99987364 0.00018231312886902128 1
262 1 9.653839 0.99912465 0.0012634216564773898 1
263 1 8.981979 0.9985436 0.002102643541396716 1
264 1 5.664708 0.9822578 0.025826400239286989 1
265 0 -2.494875 0.10194499 0.15512427623997485 0
266 1 7.3661633 0.99505585 0.0071505858244227481 1
267 1 3.3009605 0.90210307 0.14863582221193838 1
268 1 9.372967 0.998917 0.0015633090806578933 1
269 0 -5.4686823 0.011754767 0.017059004011272673 0
270 1 6.031377 0.9865078 0.01959767586907752 1
271 0 -3.5726995 0.047724232 0.070548673242470078 0
272 1 3.3009605 0.90210307 0.14863582221193838 1
273 1 0.21747208 0.4704687 1.0878293505835543 1
274 0 -4.3236628 0.02756968 0.040333217470490158 0
275 0 ? ? ? 0
276 0 -5.0078387 0.016592305 0.02413845106369562 0
277 0 -5.95583 0.008152756 0.011810148833251818 0
278 0 -5.4686823 0.011754767 0.017059004011272673 0
279 1 7.127905 0.9940822 0.0085629246022787941 1
280 0 -4.520691 0.023833439 0.034800762077037174 0
281 0 -4.689259 0.021032775 0.030667534203555599 0
282 1 4.4381237 0.95620465 0.064608669189911136 1
283 1 6.0636253 0.9868295 0.019127222915579972 1
284 1 7.431343 0.99529326 0.006806421628886848 1
285 1 14.218479 0.9999725 3.9642545670177728E-05 1
286 1 15.281261 0.9999877 1.7714321792245208E-05 1
287 0 -4.9171767 0.017752616 0.025841674110087472 0
288 1 2.2163515 0.80187416 0.31855224459431192 1
289 1 8.312021 0.9975813 0.0034936687628036997 1
290 0 -6.442978 0.0056481995 0.008171728927378108 0
291 0 -5.4686823 0.011754767 0.017059004011272673 0
292 1 ? ? ? 0
293 1 5.542122 0.9805624 0.028318669172894068 1
294 0 ? ? ? 0
295 1 7.7866364 0.99640125 0.0052012629006476284 1
296 0 1.823431 0.75025773 2.0014880731401443 1
297 0 ? ? ? 0
298 0 -2.725597 0.087000675 0.13131430208208369 0
299 1 7.8274345 0.9965105 0.0050430801821242759 1
300 1 7.348074 0.9949879 0.0072491063826461647 1
301 0 -5.4686823 0.011754767 0.017059004011272673 0
302 1 15.735762 0.9999913 1.2554788140693439E-05 1
303 0 -5.4686823 0.011754767 0.017059004011272673 0
304 1 5.9607973 0.98577625 0.020667878309752356 1
305 1 8.459471 0.9978367 0.003124349823870973 1
306 0 -5.4686823 0.011754767 0.017059004011272673 0
307 0 -5.4686823 0.011754767 0.017059004011272673 0
308 1 7.422592 0.9952621 0.0068516084791740307 1
309 0 -1.7474074 0.16675761 0.26319186454303012 0
310 0 -5.3911724 0.012457773 0.018085656328473053 0
311 0 -6.442978 0.0056481995 0.008171728927378108 0
312 1 3.629469 0.92201275 0.11714139960601294 1
313 0 -6.442978 0.0056481995 0.008171728927378108 0
314 0 -6.0464916 0.0076150293 0.011028208636679729 0
315 0 ? ? ? 0
316 1 3.6177397 0.92137057 0.11814658455212051 1
317 1 9.215706 0.99877995 0.0017612310516048875 1
318 0 -5.1966968 0.014409562 0.020939834998732896 0
319 0 2.6369457 0.84775543 2.7155373416013662 1
320 1 7.3824844 0.9951164 0.0070627872070711771 1
321 0 ? ? ? 0
322 0 -4.520691 0.023833439 0.034800762077037174 0
323 1 5.5612926 0.98083764 0.027913746222999549 1
324 0 -5.4686823 0.011754767 0.017059004011272673 0
325 0 -4.1927576 0.030360566 0.044479722987494717 0
326 1 4.4103804 0.95531476 0.065951946768905437 1
327 0 -5.95583 0.008152756 0.011810148833251818 0
328 1 3.373887 0.9068811 0.141014691181642 1
329 1 7.8321323 0.9965229 0.0050251314657524084 1
330 1 5.8562517 0.98462033 0.022360562903046506 1
331 0 -3.2490892 0.060203623 0.089579888898278004 0
332 0 -3.1363664 0.065227546 0.097312873359097038 0
333 1 4.914962 0.9690866 0.04530251936714582 1
334 1 5.9119463 0.9852472 0.021442358214181414 1
335 0 -6.442978 0.0056481995 0.008171728927378108 0
336 1 5.54352 0.9805826 0.028288940560717461 1
337 0 -5.4686823 0.011754767 0.017059004011272673 0
338 0 -6.0464916 0.0076150293 0.011028208636679729 0
339 1 5.684024 0.98251134 0.025454033740074194 1
340 1 6.620782 0.9913299 0.012562837713558307 1
341 0 -5.4686823 0.011754767 0.017059004011272673 0
342 0 -5.9689827 0.008072471 0.011693375209389432 0
343 0 -6.442978 0.0056481995 0.008171728927378108 0
344 1 10.162451 0.99940467 0.00085913711935366719 1
345 0 -6.442978 0.0056481995 0.008171728927378108 0
346 0 -3.335825 0.0565869 0.084038459237484736 0
347 0 -6.1395845 0.0070995023 0.010278947729356253 0
348 1 0.15727425 0.45910957 1.1230895756645052 1
349 1 4.0622606 0.94258505 0.085305293794040227 1
350 0 -3.93614 0.03664608 0.053862176491974861 0
351 0 -4.9946866 0.016755886 0.024378450658658433 0
352 0 0.4719286 0.51868206 1.0549379053712531 1
353 1 8.696344 0.9981919 0.0026109079692710987 1
354 0 -5.95583 0.008152756 0.011810148833251818 0
355 0 -4.2461534 0.029190565 0.042739964517025851 0
356 1 -0.69921684 0.30711415 1.7031530909424435 0
357 1 12.852016 0.9999226 0.00011170705633068974 1
358 1 5.5822067 0.9811336 0.027478523800853215 1
359 1 5.3672857 0.97786665 0.032290354697391166 1
360 1 15.333872 0.9999882 1.7026382905914664E-05 1
361 1 6.31769 0.9891131 0.0157926107591757 1
362 0 -3.5059962 0.050077174 0.074117784460681763 0
363 0 -2.065846 0.13583243 0.21061700181839857 0
364 0 -4.9946866 0.016755886 0.024378450658658433 0
365 0 -5.4818344 0.011639432 0.016890641442649377 0
366 1 13.694569 0.9999591 5.899125529457858E-05 1
367 1 11.299242 0.9997486 0.00036275701338483524 1
368 0 -5.8557806 0.00878995 0.012737279746493163 0
369 0 -5.4592943 0.011837783 0.017180200787587779 0
370 0 -3.8947306 0.03777132 0.055548296888384752 0
371 0 -5.8557806 0.00878995 0.012737279746493163 0
372 0 -4.2402444 0.029317858 0.04292914403934768 0
373 0 -3.7544198 0.041835874 0.061655295893265259 0
374 0 -4.71424 0.020646105 0.030097814327393193 0
375 0 -6.442978 0.0056481995 0.008171728927378108 0
376 0 -5.95583 0.008152756 0.011810148833251818 0
377 0 -6.0464916 0.0076150293 0.011028208636679729 0
378 0 -3.803866 0.04035788 0.059431614458031419 0
379 0 -2.2557268 0.11979375 0.18408647967245978 0
380 0 -6.442978 0.0056481995 0.008171728927378108 0
381 1 10.07641 0.99936455 0.00091704491714961699 1
382 0 -3.59721 0.04688631 0.069279781860915407 0
383 0 -5.9689827 0.008072471 0.011693375209389432 0
384 0 -5.9689827 0.008072471 0.011693375209389432 0
385 0 -3.7061968 0.043327074 0.063902325254427392 0
386 1 6.0875874 0.9870637 0.018784894450298191 1
387 0 -2.33456 0.113630086 0.17401918227784446 0
388 0 -5.284807 0.013490492 0.019595138482545987 0
389 0 -3.3224106 0.057132594 0.084873194157620097 0
390 0 -5.6504025 0.010256628 0.014873593254337859 0
391 1 10.030338 0.99934196 0.00094965672085389622 1
392 0 -5.0078387 0.016592305 0.02413845106369562 0
393 0 -6.53364 0.0052747843 0.0076300462926347243 0
394 0 -5.241206 0.013937826 0.020249479819272553 0
395 0 -5.0078387 0.016592305 0.02413845106369562 0
396 0 -4.520691 0.023833439 0.034800762077037174 0
397 0 -5.020991 0.016430292 0.023900791829114004 0
398 0 -4.6833844 0.021124728 0.030803051162014403 0
399 0 -5.7283545 0.009673405 0.014023712470766305 0
400 1 10.056744 0.999355 0.00093081234331069047 1
401 0 -5.4949865 0.011525215 0.016723929655280523 0
402 0 -3.2177973 0.061560776 0.091664779980531616 0
403 0 -4.145746 0.03142818 0.046069066605854456 0
404 0 -5.5076685 0.01141613 0.016564727278775459 0
405 0 -5.95583 0.008152756 0.011810148833251818 0
406 0 -4.1128182 0.0321975 0.047215431190392593 0
407 0 -5.95583 0.008152756 0.011810148833251818 0
408 0 -3.6910605 0.04380551 0.064624002308041828 0
409 0 -4.71424 0.020646105 0.030097814327393193 0
410 0 -5.95583 0.008152756 0.011810148833251818 0
411 0 ? ? ? 0
412 1 9.230707 0.9987937 0.0017413429278913565 1
413 0 -3.279101 0.05892835 0.087623528685202179 0
414 1 6.7173805 0.9919376 0.011678759699519599 1
415 0 -0.66683483 0.31236595 0.54028710770594346 0
416 1 8.809383 0.9983402 0.0023965899325754819 1
417 0 -5.95583 0.008152756 0.011810148833251818 0
418 0 -1.8758616 0.15365383 0.24068022447923637 0
419 0 -5.4421444 0.011990936 0.017403817056089083 0
420 0 -2.5893164 0.09557056 0.14492013592578398 0
421 1 11.824856 0.99983126 0.00024346198385283565 1
422 0 -2.8105893 0.08201394 0.12345585262262933 0
423 0 -3.4726496 0.051294282 0.075967452463448076 0
424 0 -5.4949865 0.011525215 0.016723929655280523 0
425 1 14.817661 0.9999826 2.5109685538071405E-05 1
426 0 -2.8241491 0.08124284 0.12224450219548814 0
427 1 4.3530817 0.9534221 0.068812983796401356 1
428 0 -5.95583 0.008152756 0.011810148833251818 0
429 0 -5.4818344 0.011639432 0.016890641442649377 0
430 0 -5.50395 0.011448008 0.01661124970571581 0
431 0 -2.5834923 0.09595312 0.14553051116273649 0
432 0 -3.8628192 0.038661044 0.056882898238471563 0
433 0 -4.463106 0.024871154 0.036335236482012728 0
434 0 5.0084 0.97114086 5.1148279570464927 1
435 1 7.44433 0.9953392 0.0067398103254229808 1
436 1 3.841198 0.93280685 0.10034971278754636 1
437 0 -5.020991 0.016430292 0.023900791829114004 0
438 0 -3.822938 0.03980127 0.058595066713824417 0
439 0 -4.5469956 0.023373578 0.034121284818622755 0
440 1 10.154686 0.99940115 0.00086421363869066531 1
441 0 -1.8604474 0.1551806 0.2432851360775424 0
442 0 -4.9326286 0.017549373 0.02554318855864653 0
443 0 -5.9932313 0.007926505 0.011481092360580692 0
444 0 -2.442047 0.10567284 0.16112539871549494 0
445 0 -5.9689827 0.008072471 0.011693375209389432 0
446 0 -6.442978 0.0056481995 0.008171728927378108 0
447 0 -4.5469956 0.023373578 0.034121284818622755 0
448 0 -6.53364 0.0052747843 0.0076300462926347243 0
449 1 10.298002 0.99946284 0.00077516203531090419 1
450 0 -4.01365 0.03462596 0.050840061269355086 0
451 0 -4.5469956 0.023373578 0.034121284818622755 0
452 0 -4.8841314 0.018195055 0.026491662451451816 0
453 1 8.777969 0.99830025 0.0024543010625143486 1
454 0 -5.6234684 0.010466129 0.015179003802371546 0
455 1 0.8163538 0.5832277 0.77786886853914494 1
456 1 10.487385 0.99953467 0.00067149052326743921 1
457 1 9.062626 0.9986299 0.0019779518845872311 1
458 0 -4.253397 0.02903525 0.042509173626544897 0
459 0 -3.9597979 0.036017757 0.052921523163131159 0
460 0 -3.93614 0.03664608 0.053862176491974861 0
461 0 -3.6959996 0.04364884 0.064387638591170013 0
462 0 -3.4621449 0.051683456 0.076559389501439229 0
463 0 -4.823963 0.019028598 0.027717016988036743 0
464 0 -5.020991 0.016430292 0.023900791829114004 0
465 1 9.785397 0.9992077 0.001143535774537252 1
466 1 9.541931 0.99904716 0.0013753126588050381 1
467 1 7.7145195 0.99619967 0.0054931654697981886 1
468 0 -5.020991 0.016430292 0.023900791829114004 0
469 0 -5.6622314 0.010165936 0.014741403595886524 0
470 0 -5.0985007 0.015506634 0.022546609667162744 0
471 0 -3.4621449 0.051683456 0.076559389501439229 0
472 0 -4.163662 0.0310171 0.04545688944873634 0
473 0 -5.020991 0.016430292 0.023900791829114004 0
474 0 -4.5469956 0.023373578 0.034121284818622755 0
475 0 -5.4949865 0.011525215 0.016723929655280523 0
476 0 -4.7273927 0.020445326 0.02980207639934088 0
477 0 -5.020991 0.016430292 0.023900791829114004 0
478 0 -4.4195695 0.025684815 0.03753954391072279 0
479 1 8.32148 0.9975986 0.0034686710325429922 1
480 0 -4.6376576 0.021854054 0.031878354047421072 0
481 0 -3.0822616 0.06777515 0.10125012812840116 0
482 1 15.4814205 0.99998945 1.5220544890042414E-05 1
483 1 10.906593 0.9996614 0.0004885994477486597 1
484 0 -4.253397 0.02903525 0.042509173626544897 0
485 0 -5.0232906 0.016402123 0.023859474593834452 0
486 0 -5.0985007 0.015506634 0.022546609667162744 0
487 1 13.475906 0.9999518 6.9568659593352019E-05 1
488 1 1.3273249 0.67341036 0.57044218705778627 1
489 1 -0.6232023 0.31951913 1.6460257744908038 0
490 0 -6.442978 0.0056481995 0.008171728927378108 0
491 1 6.6713343 0.9916534 0.012092158077135179 1
492 0 -4.624505 0.022068355 0.032194467339038989 0
493 1 9.948912 0.99930006 0.0010101496965434329 1
494 0 0.9629116 0.60997653 1.3583671531547612 1
495 0 -5.0985007 0.015506634 0.022546609667162744 0
496 0 -6.53364 0.0052747843 0.0076300462926347243 0
497 0 -4.8935647 0.018067662 0.026304478211895771 0
498 0 -4.533843 0.02360242 0.034459376167277234 0
499 0 -4.533843 0.02360242 0.034459376167277234 0
500 0 -3.0987039 0.06699134 0.10003761775121778 0
501 0 -4.533843 0.02360242 0.034459376167277234 0
502 0 -4.2284155 0.029574301 0.043310338334976231 0
503 0 -4.046695 0.03379773 0.049602852281362811 0
504 0 -6.442978 0.0056481995 0.008171728927378108 0
505 0 -5.2401342 0.013949007 0.020265837999788049 0
506 1 10.447666 0.9995204 0.00069205216452113084 1
507 0 -5.093737 0.015561895 0.022627593746497501 0
508 0 -4.5469956 0.023373578 0.034121284818622755 0
509 0 -5.9689827 0.008072471 0.011693375209389432 0
510 0 -6.442978 0.0056481995 0.008171728927378108 0
511 0 -4.0598474 0.03347344 0.049118716145619364 0
512 0 -4.5469956 0.023373578 0.034121284818622755 0
513 0 -5.0985007 0.015506634 0.022546609667162744 0
514 1 10.719854 0.9996099 0.00056292303371696174 1
515 1 8.6480255 0.9981245 0.0027083436166447333 1
516 0 -6.53364 0.0052747843 0.0076300462926347243 0
517 0 -6.0464916 0.0076150293 0.011028208636679729 0
518 0 -4.8959603 0.01803545 0.026257150944159223 0
519 1 6.535844 0.9907582 0.013395120416830476 1
520 0 -6.3523164 0.006047887 0.0087517478359504901 0
521 0 -4.9303293 0.017579472 0.02558738782535638 0
522 1 5.502533 0.97998166 0.029173343678465424 1
523 1 7.699238 0.9961555 0.0055571295392400502 1
524 0 -5.0078387 0.016592305 0.02413845106369562 0
525 0 -5.189559 0.014486661 0.021052696761167319 0
526 0 -5.020991 0.016430292 0.023900791829114004 0
527 0 -4.046695 0.03379773 0.049602852281362811 0
528 0 -3.1803741 0.063221365 0.094219922377553209 0
529 0 -4.624505 0.022068355 0.032194467339038989 0
530 1 6.515935 0.9906189 0.013597970981112992 1
531 0 -4.1128182 0.0321975 0.047215431190392593 0
532 0 -5.559344 0.010982096 0.015931457121809788 0
533 0 -5.0078387 0.016592305 0.02413845106369562 0
534 0 -5.4818344 0.011639432 0.016890641442649377 0
535 0 -4.5760565 0.022875603 0.03338585296537417 0
536 0 -3.5726995 0.047724232 0.070548673242470078 0
537 0 -3.279101 0.05892835 0.087623528685202179 0
538 0 -4.533843 0.02360242 0.034459376167277234 0
539 0 -3.5858517 0.047272857 0.069865003739744969 0
540 0 -3.6101003 0.046451267 0.068621422453170058 0
541 0 -5.4949865 0.011525215 0.016723929655280523 0
542 0 -4.2921433 0.02821799 0.041295369834781166 0
543 0 -4.533843 0.02360242 0.034459376167277234 0
544 0 -4.589209 0.022653647 0.033058177993601175 0
545 0 -4.0598474 0.03347344 0.049118716145619364 0
546 1 11.390257 0.99976534 0.00033858757684800106 1
547 0 -6.0596447 0.0075399973 0.010919133821803805 0
548 0 -5.5856485 0.0107674645 0.015618404699454138 0
549 1 6.3187494 0.98912174 0.015780004831897315 1
550 0 -5.0078387 0.016592305 0.02413845106369562 0
551 0 -5.4686823 0.011754767 0.017059004011272673 0
552 0 -3.1100616 0.06645482 0.099208250366772804 0
553 0 -1.7353673 0.16803056 0.26539755882168281 0
554 0 -5.4949865 0.011525215 0.016723929655280523 0
555 0 -1.9254994 0.14882071 0.23246505112097871 0
556 0 -3.4240565 0.053118054 0.078743527992808426 0
557 0 -3.93614 0.03664608 0.053862176491974861 0
558 0 -5.4818344 0.011639432 0.016890641442649377 0
559 0 -4.0598474 0.03347344 0.049118716145619364 0
560 0 -3.5726995 0.047724232 0.070548673242470078 0
561 0 -3.5726995 0.047724232 0.070548673242470078 0
562 0 -5.4686823 0.011754767 0.017059004011272673 0
563 0 -5.0078387 0.016592305 0.02413845106369562 0
564 0 -3.849667 0.039033562 0.057442049421200084 0
565 1 12.08609 0.9998616 0.00019968567641750592 1
566 0 -4.2270923 0.029603122 0.043353185624129376 0
567 0 -3.6343493 0.045643255 0.067399438854885543 0
568 1 4.1473055 0.94597834 0.080120938914498979 1
569 1 10.713882 0.9996081 0.00056550378256940248 1
570 1 8.017664 0.99697804 0.0043663610015818432 1
571 1 11.034657 0.99969274 0.00044335339890107668 1
572 0 -5.0078387 0.016592305 0.02413845106369562 0
573 0 -5.95583 0.008152756 0.011810148833251818 0
574 1 5.950967 0.9856713 0.020821502205009505 1
575 0 -3.279101 0.05892835 0.087623528685202179 0
576 0 -4.0598474 0.03347344 0.049118716145619364 0
577 0 -5.95583 0.008152756 0.011810148833251818 0
578 0 -5.95583 0.008152756 0.011810148833251818 0
579 0 -5.4686823 0.011754767 0.017059004011272673 0
580 0 -3.7662487 0.041477654 0.061116029294295819 0
581 1 8.417797 0.9977674 0.0032245780320862543 1
582 1 7.907978 0.9967167 0.0047446254970359954 1
583 0 -5.4949865 0.011525215 0.016723929655280523 0
584 0 -2.9291954 0.075489886 0.11323899247123828 0
585 0 -6.442978 0.0056481995 0.008171728927378108 0
586 1 13.981018 0.9999671 4.7467992532759307E-05 1
587 0 -3.8628192 0.038661044 0.056882898238471563 0
588 1 5.463169 0.9793874 0.030048455526317758 1
589 0 -4.5469956 0.023373578 0.034121284818622755 0
590 1 3.9684038 0.9386083 0.0914048941554364 1
591 1 5.966527 0.98583704 0.020578904318245012 1
592 1 5.7801704 0.98372144 0.023678256090487241 1
593 0 -4.253397 0.02903525 0.042509173626544897 0
594 1 5.101776 0.97306114 0.039397632242971693 1
595 0 -4.0598474 0.03347344 0.049118716145619364 0
596 0 -4.2402444 0.029317858 0.04292914403934768 0
597 0 -2.9855018 0.07256243 0.10867791847551245 0
598 0 -5.0078387 0.016592305 0.02413845106369562 0
599 0 -3.6294346 0.04580593 0.067645376058973333 0
600 0 -5.0078387 0.016592305 0.02413845106369562 0
601 0 -6.0464916 0.0076150293 0.011028208636679729 0
602 0 -4.533843 0.02360242 0.034459376167277234 0
603 1 4.8058825 0.96650916 0.049144684334205956 1
604 1 6.1928043 0.9880442 0.01735250950197232 1
605 1 9.95545 0.9993035 0.0010051587149210726 1
606 0 -4.715564 0.020625811 0.030067920071712086 0
607 0 -6.442978 0.0056481995 0.008171728927378108 0
608 1 11.148426 0.9997181 0.00040671030044872971 1
609 0 -4.5469956 0.023373578 0.034121284818622755 0
610 1 8.926189 0.99848074 0.0021934995672910755 1
611 1 6.9109592 0.993031 0.010089302795775161 1
612 1 16.893513 0.99999636 5.2454803872987944E-06 1
613 0 -5.226982 0.014086901 0.020467605961895518 0
614 0 -5.5724964 0.010874255 0.015774155610380477 0
615 0 -3.9466453 0.03636578 0.053442469747270488 0
616 0 -5.0078387 0.016592305 0.02413845106369562 0
617 0 ? ? ? 0
618 0 -4.533843 0.02360242 0.034459376167277234 0
619 0 -4.0598474 0.03347344 0.049118716145619364 0
620 0 -5.0078387 0.016592305 0.02413845106369562 0
621 0 0.3560543 0.4967158 0.99055482778522197 1
622 0 -2.2074018 0.12371333 0.19052518105806376 0
623 0 -6.442978 0.0056481995 0.008171728927378108 0
624 0 -3.8450818 0.03916424 0.057638251306253135 0
625 0 -3.4678864 0.0514704 0.076235297856163745 0
626 1 5.760166 0.98347664 0.024037311317372478 1
627 0 -4.1699953 0.03087303 0.045242403057694114 0
628 0 -5.9689827 0.008072471 0.011693375209389432 0
629 0 -5.020991 0.016430292 0.023900791829114004 0
630 0 -3.358376 0.05568055 0.082653110243383579 0
631 0 -4.0598474 0.03347344 0.049118716145619364 0
632 0 -6.442978 0.0056481995 0.008171728927378108 0
633 1 4.3299494 0.95263666 0.070002027657626642 1
634 0 -5.4949865 0.011525215 0.016723929655280523 0
635 0 -4.6141906 0.022237848 0.032444534178600062 0
636 1 10.127518 0.9993887 0.00088219670683892097 1
637 0 -2.4650183 0.1040373 0.1584894220773467 0
638 0 -5.020991 0.016430292 0.023900791829114004 0
639 0 -3.93614 0.03664608 0.053862176491974861 0
640 0 -4.4101357 0.02586451 0.037805647681891714 0
641 0 -5.0078387 0.016592305 0.02413845106369562 0
642 0 -5.0078387 0.016592305 0.02413845106369562 0
643 0 -6.442978 0.0056481995 0.008171728927378108 0
644 0 -5.9689827 0.008072471 0.011693375209389432 0
645 0 -5.0078387 0.016592305 0.02413845106369562 0
646 0 -6.021953 0.007756997 0.011234610933401622 0
647 0 -5.832123 0.0089476975 0.012966897604500274 0
648 1 12.236198 0.9998765 0.00017818502951934642 1
649 0 -5.0078387 0.016592305 0.02413845106369562 0
650 0 -3.7496572 0.041980937 0.061873731573025101 0
651 0 -5.2175484 0.0141866375 0.020613558272286822 0
652 0 -3.8628192 0.038661044 0.056882898238471563 0
653 0 -4.533843 0.02360242 0.034459376167277234 0
654 0 -4.520691 0.023833439 0.034800762077037174 0
655 0 -5.0078387 0.016592305 0.02413845106369562 0
656 0 -4.0598474 0.03347344 0.049118716145619364 0
657 0 -0.4869156 0.34240434 0.60472730798336727 0
658 1 9.086258 0.9986542 0.0019429058245893991 1
659 0 -6.442978 0.0056481995 0.008171728927378108 0
660 0 -5.95583 0.008152756 0.011810148833251818 0
661 0 -4.046695 0.03379773 0.049602852281362811 0
662 0 -5.3686323 0.012669892 0.018395573044372514 0
663 0 -5.3686323 0.012669892 0.018395573044372514 0
664 0 -4.3969836 0.026117079 0.038179751109026085 0
665 0 -6.442978 0.0056481995 0.008171728927378108 0
666 0 -3.4969325 0.050405253 0.074616140216202456 0
667 0 -4.520691 0.023833439 0.034800762077037174 0
668 1 2.804366 0.8634336 0.21184286026666635 1
669 1 8.147335 0.99726033 0.0039579294672795707 1
670 1 6.4856215 0.99040276 0.013912762642680866 1
671 0 -4.087837 0.03279327 0.048103809585535576 0
672 0 -4.9946866 0.016755886 0.024378450658658433 0
673 0 -3.9078827 0.037410382 0.055007231944439391 0
674 0 -5.95583 0.008152756 0.011810148833251818 0
675 0 -4.140195 0.03155662 0.046260392474474922 0
676 0 -5.6622314 0.010165936 0.014741403595886524 0
677 0 -4.5469956 0.023373578 0.034121284818622755 0
678 0 -6.442978 0.0056481995 0.008171728927378108 0
679 0 -5.9689827 0.008072471 0.011693375209389432 0
680 1 16.780008 0.99999607 5.6754386418026423E-06 1
681 1 9.801077 0.9992171 0.0011299384356403619 1
682 0 -3.3756714 0.05499471 0.08160568921637594 0
683 0 -6.442978 0.0056481995 0.008171728927378108 0
684 0 -6.442978 0.0056481995 0.008171728927378108 0
685 0 -6.442978 0.0056481995 0.008171728927378108 0
686 0 -6.442978 0.0056481995 0.008171728927378108 0
687 0 -4.613783 0.022244573 0.032454455742594257 0
688 0 -5.020991 0.016430292 0.023900791829114004 0
689 0 -4.177704 0.03069855 0.044982686688651997 0
690 0 -5.832123 0.0089476975 0.012966897604500274 0
691 1 4.4967804 0.95803064 0.061856295892801602 1
692 0 -5.4949865 0.011525215 0.016723929655280523 0
693 0 -4.684228 0.021111501 0.03078355747963463 0
694 0 -4.954578 0.017264593 0.025125059765309599 0
695 0 -5.9689827 0.008072471 0.011693375209389432 0
696 1 6.7127876 0.9919097 0.011719331311161625 1
697 1 5.064643 0.97231287 0.040507480679364792 1
698 1 6.1036224 0.9872181 0.018559275661035816 1

Просмотреть файл

@ -0,0 +1,39 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali={} dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 160 instances with missing features during training (over 10 iterations; 16 inst/iter)
Not training a calibrator because a valid calibrator trainer was not provided.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: NaN (0.0000)
Log-loss reduction: 0.000000 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Warning: Data does not contain a probability column. Will not output the Log-loss column
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 NaN 0 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali={} dout=%Output% data=%Data% out=%Output% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Assigned
0 0 -3.5726995 0
1 0 3.6101456 1
2 0 -4.070944 0
3 0 2.470542 1
4 0 -3.4358397 0
5 1 12.382593 1
6 0 -1.4209604 0
7 0 -4.701088 0
8 0 -4.6745405 0
9 0 -4.406417 0
10 0 -5.559344 0
11 0 -5.4818344 0
12 1 -0.14206886 0
13 0 -4.5691886 0
14 1 9.321613 1
15 1 1.3856993 1
16 0 -4.533843 0
17 0 -4.046695 0
18 1 7.8903694 1
19 0 -3.0987039 0
20 1 7.528511 1
21 1 7.875204 1
22 0 -5.0078387 0
23 1 ? 0
24 0 -5.4686823 0
25 1 1.741828 1
26 0 -4.9710746 0
27 0 -4.0598474 0
28 0 -5.4818344 0
29 0 -5.8557806 0
30 0 -5.0985007 0
31 0 -4.9946866 0
32 1 7.46414 1
33 0 -4.689259 0
34 0 -4.71424 0
35 0 -5.4818344 0
36 1 9.099108 1
37 0 -1.113348 0
38 1 6.140953 1
39 1 2.5109024 1
40 0 ? 0
41 1 3.3300762 1
42 1 8.577511 1
43 1 0.49126053 1
44 1 8.255751 1
45 0 -5.6322193 0
46 1 4.5673847 1
47 0 -5.95583 0
48 0 -3.4358397 0
49 1 5.3666544 1
50 1 2.5949678 1
51 1 0.12595749 1
52 1 5.2992125 1
53 1 8.407228 1
54 1 7.649309 1
55 1 4.478709 1
56 1 5.5541325 1
57 1 1.6657066 1
58 1 2.5265894 1
59 1 1.7368536 1
60 1 2.3288136 1
61 0 -5.5060835 0
62 1 6.380088 1
63 1 0.3348999 1
64 0 -5.95583 0
65 1 3.8072634 1
66 0 -4.046695 0
67 1 4.218013 1
68 1 10.826723 1
69 0 -5.271654 0
70 0 -3.4726496 0
71 1 7.895048 1
72 0 -2.1755843 0
73 1 8.9055195 1
74 1 2.5993576 1
75 0 -4.04116 0
76 0 -5.075033 0
77 0 -3.4995675 0
78 0 -3.6211967 0
79 0 -5.3911724 0
80 0 -2.7157316 0
81 0 -4.2284155 0
82 0 -3.4452734 0
83 0 -2.1223516 0
84 1 9.694054 1
85 1 6.2895613 1
86 1 2.6168842 1
87 1 6.91914 1
88 0 -4.046695 0
89 0 -5.085745 0
90 0 -5.4686823 0
91 0 -5.189559 0
92 0 -4.046695 0
93 0 -5.95583 0
94 0 -4.9946866 0
95 0 -5.4686823 0
96 0 -5.663555 0
97 0 -3.5726995 0
98 1 8.590231 1
99 1 10.917194 1
100 1 4.8476706 1
101 1 -0.84280396 0
102 0 -3.7530966 0
103 1 1.7746449 1
104 1 12.140858 1
105 1 2.5560703 1
106 1 9.259367 1
107 1 6.720646 1
108 0 -5.5617743 0
109 1 6.871725 1
110 0 -2.766693 0
111 1 3.848031 1
112 1 9.425768 1
113 1 9.506622 1
114 0 -3.0727453 0
115 0 -4.643991 0
116 0 -0.6618881 0
117 1 9.617277 1
118 0 -5.3621607 0
119 0 -3.9435177 0
120 0 -4.8696556 0
121 0 -3.469522 0
122 1 9.680521 1
123 1 3.8165932 1
124 1 7.6522446 1
125 0 -5.95583 0
126 1 8.564953 1
127 0 -4.520691 0
128 1 4.848981 1
129 0 -5.717684 0
130 0 -3.4726496 0
131 0 -4.9946866 0
132 1 8.60223 1
133 0 -4.8108106 0
134 0 -4.9171767 0
135 0 -2.7288966 0
136 0 -4.533843 0
137 0 -5.4949865 0
138 0 -4.2402444 0
139 0 ? 0
140 0 -5.4949865 0
141 0 -5.9689827 0
142 1 4.4324036 1
143 0 -4.643991 0
144 0 -5.4818344 0
145 0 ? 0
146 1 1.3394356 1
147 0 -5.4154215 0
148 0 -1.012373 0
149 1 11.461615 1
150 0 -5.559344 0
151 1 5.006485 1
152 1 9.715746 1
153 0 -4.1214976 0
154 0 -6.442978 0
155 1 3.7769232 1
156 0 -5.5348053 0
157 0 -4.9946866 0
158 0 ? 0
159 1 12.346203 1
160 1 9.039492 1
161 0 -3.849667 0
162 0 -4.520691 0
163 0 -3.387055 0
164 0 ? 0
165 0 -3.39992 0
166 1 7.976183 1
167 1 8.355644 1
168 0 -4.520691 0
169 0 -6.2282124 0
170 0 -5.4949865 0
171 0 -5.4686823 0
172 0 -5.95583 0
173 1 15.1560135 1
174 1 6.1769247 1
175 1 7.842922 1
176 0 -4.9946866 0
177 1 4.766121 1
178 0 -4.046695 0
179 1 2.290575 1
180 0 -5.559344 0
181 0 -6.442978 0
182 0 -3.0987039 0
183 1 9.159964 1
184 1 6.2014647 1
185 0 -5.0853486 0
186 1 5.7654104 1
187 1 13.977449 1
188 1 9.065281 1
189 0 -4.7540584 0
190 1 11.957216 1
191 1 10.956871 1
192 0 -4.0598474 0
193 0 -5.4686823 0
194 0 -4.520691 0
195 0 -4.046695 0
196 0 6.8652763 1
197 0 -2.6564164 0
198 0 -6.442978 0
199 0 -5.0078387 0
200 1 10.36586 1
201 1 9.8694935 1
202 0 -5.4686823 0
203 0 -3.5726995 0
204 0 -5.4686823 0
205 1 12.086601 1
206 1 5.944168 1
207 0 -5.559344 0
208 0 -5.559344 0
209 0 -3.6633615 0
210 1 14.534113 1
211 1 9.64962 1
212 0 -5.4686823 0
213 1 14.529058 1
214 1 13.868914 1
215 1 7.643732 1
216 0 -5.95583 0
217 0 -5.4686823 0
218 1 7.88678 1
219 0 -2.511506 0
220 0 -5.1632547 0
221 1 10.395216 1
222 1 -2.214662 0
223 1 5.7424126 1
224 1 9.995327 1
225 0 -5.95583 0
226 1 10.225868 1
227 1 7.459608 1
228 0 -5.559344 0
229 1 12.666513 1
230 1 6.1583214 1
231 1 8.623034 1
232 0 1.2822819 1
233 1 6.3825197 1
234 0 -2.8964381 0
235 0 ? 0
236 1 11.420414 1
237 1 6.535795 1
238 1 12.422874 1
239 1 5.9025297 1
240 0 -2.0179915 0
241 0 -4.0004973 0
242 0 -4.9946866 0
243 0 -2.6953988 0
244 0 -5.4686823 0
245 0 -2.817525 0
246 1 11.424002 1
247 1 3.104393 1
248 0 -3.0615559 0
249 0 ? 0
250 0 -6.021953 0
251 1 8.872498 1
252 0 4.5387735 1
253 1 8.577511 1
254 1 6.380088 1
255 1 4.052039 1
256 0 -5.4949865 0
257 0 -5.0078387 0
258 0 -4.520691 0
259 0 2.9647484 1
260 1 9.870924 1
261 1 12.206299 1
262 1 9.653839 1
263 1 8.981979 1
264 1 5.664708 1
265 0 -2.494875 0
266 1 7.3661633 1
267 1 3.3009605 1
268 1 9.372967 1
269 0 -5.4686823 0
270 1 6.031377 1
271 0 -3.5726995 0
272 1 3.3009605 1
273 1 0.21747208 1
274 0 -4.3236628 0
275 0 ? 0
276 0 -5.0078387 0
277 0 -5.95583 0
278 0 -5.4686823 0
279 1 7.127905 1
280 0 -4.520691 0
281 0 -4.689259 0
282 1 4.4381237 1
283 1 6.0636253 1
284 1 7.431343 1
285 1 14.218479 1
286 1 15.281261 1
287 0 -4.9171767 0
288 1 2.2163515 1
289 1 8.312021 1
290 0 -6.442978 0
291 0 -5.4686823 0
292 1 ? 0
293 1 5.542122 1
294 0 ? 0
295 1 7.7866364 1
296 0 1.823431 1
297 0 ? 0
298 0 -2.725597 0
299 1 7.8274345 1
300 1 7.348074 1
301 0 -5.4686823 0
302 1 15.735762 1
303 0 -5.4686823 0
304 1 5.9607973 1
305 1 8.459471 1
306 0 -5.4686823 0
307 0 -5.4686823 0
308 1 7.422592 1
309 0 -1.7474074 0
310 0 -5.3911724 0
311 0 -6.442978 0
312 1 3.629469 1
313 0 -6.442978 0
314 0 -6.0464916 0
315 0 ? 0
316 1 3.6177397 1
317 1 9.215706 1
318 0 -5.1966968 0
319 0 2.6369457 1
320 1 7.3824844 1
321 0 ? 0
322 0 -4.520691 0
323 1 5.5612926 1
324 0 -5.4686823 0
325 0 -4.1927576 0
326 1 4.4103804 1
327 0 -5.95583 0
328 1 3.373887 1
329 1 7.8321323 1
330 1 5.8562517 1
331 0 -3.2490892 0
332 0 -3.1363664 0
333 1 4.914962 1
334 1 5.9119463 1
335 0 -6.442978 0
336 1 5.54352 1
337 0 -5.4686823 0
338 0 -6.0464916 0
339 1 5.684024 1
340 1 6.620782 1
341 0 -5.4686823 0
342 0 -5.9689827 0
343 0 -6.442978 0
344 1 10.162451 1
345 0 -6.442978 0
346 0 -3.335825 0
347 0 -6.1395845 0
348 1 0.15727425 1
349 1 4.0622606 1
350 0 -3.93614 0
351 0 -4.9946866 0
352 0 0.4719286 1
353 1 8.696344 1
354 0 -5.95583 0
355 0 -4.2461534 0
356 1 -0.69921684 0
357 1 12.852016 1
358 1 5.5822067 1
359 1 5.3672857 1
360 1 15.333872 1
361 1 6.31769 1
362 0 -3.5059962 0
363 0 -2.065846 0
364 0 -4.9946866 0
365 0 -5.4818344 0
366 1 13.694569 1
367 1 11.299242 1
368 0 -5.8557806 0
369 0 -5.4592943 0
370 0 -3.8947306 0
371 0 -5.8557806 0
372 0 -4.2402444 0
373 0 -3.7544198 0
374 0 -4.71424 0
375 0 -6.442978 0
376 0 -5.95583 0
377 0 -6.0464916 0
378 0 -3.803866 0
379 0 -2.2557268 0
380 0 -6.442978 0
381 1 10.07641 1
382 0 -3.59721 0
383 0 -5.9689827 0
384 0 -5.9689827 0
385 0 -3.7061968 0
386 1 6.0875874 1
387 0 -2.33456 0
388 0 -5.284807 0
389 0 -3.3224106 0
390 0 -5.6504025 0
391 1 10.030338 1
392 0 -5.0078387 0
393 0 -6.53364 0
394 0 -5.241206 0
395 0 -5.0078387 0
396 0 -4.520691 0
397 0 -5.020991 0
398 0 -4.6833844 0
399 0 -5.7283545 0
400 1 10.056744 1
401 0 -5.4949865 0
402 0 -3.2177973 0
403 0 -4.145746 0
404 0 -5.5076685 0
405 0 -5.95583 0
406 0 -4.1128182 0
407 0 -5.95583 0
408 0 -3.6910605 0
409 0 -4.71424 0
410 0 -5.95583 0
411 0 ? 0
412 1 9.230707 1
413 0 -3.279101 0
414 1 6.7173805 1
415 0 -0.66683483 0
416 1 8.809383 1
417 0 -5.95583 0
418 0 -1.8758616 0
419 0 -5.4421444 0
420 0 -2.5893164 0
421 1 11.824856 1
422 0 -2.8105893 0
423 0 -3.4726496 0
424 0 -5.4949865 0
425 1 14.817661 1
426 0 -2.8241491 0
427 1 4.3530817 1
428 0 -5.95583 0
429 0 -5.4818344 0
430 0 -5.50395 0
431 0 -2.5834923 0
432 0 -3.8628192 0
433 0 -4.463106 0
434 0 5.0084 1
435 1 7.44433 1
436 1 3.841198 1
437 0 -5.020991 0
438 0 -3.822938 0
439 0 -4.5469956 0
440 1 10.154686 1
441 0 -1.8604474 0
442 0 -4.9326286 0
443 0 -5.9932313 0
444 0 -2.442047 0
445 0 -5.9689827 0
446 0 -6.442978 0
447 0 -4.5469956 0
448 0 -6.53364 0
449 1 10.298002 1
450 0 -4.01365 0
451 0 -4.5469956 0
452 0 -4.8841314 0
453 1 8.777969 1
454 0 -5.6234684 0
455 1 0.8163538 1
456 1 10.487385 1
457 1 9.062626 1
458 0 -4.253397 0
459 0 -3.9597979 0
460 0 -3.93614 0
461 0 -3.6959996 0
462 0 -3.4621449 0
463 0 -4.823963 0
464 0 -5.020991 0
465 1 9.785397 1
466 1 9.541931 1
467 1 7.7145195 1
468 0 -5.020991 0
469 0 -5.6622314 0
470 0 -5.0985007 0
471 0 -3.4621449 0
472 0 -4.163662 0
473 0 -5.020991 0
474 0 -4.5469956 0
475 0 -5.4949865 0
476 0 -4.7273927 0
477 0 -5.020991 0
478 0 -4.4195695 0
479 1 8.32148 1
480 0 -4.6376576 0
481 0 -3.0822616 0
482 1 15.4814205 1
483 1 10.906593 1
484 0 -4.253397 0
485 0 -5.0232906 0
486 0 -5.0985007 0
487 1 13.475906 1
488 1 1.3273249 1
489 1 -0.6232023 0
490 0 -6.442978 0
491 1 6.6713343 1
492 0 -4.624505 0
493 1 9.948912 1
494 0 0.9629116 1
495 0 -5.0985007 0
496 0 -6.53364 0
497 0 -4.8935647 0
498 0 -4.533843 0
499 0 -4.533843 0
500 0 -3.0987039 0
501 0 -4.533843 0
502 0 -4.2284155 0
503 0 -4.046695 0
504 0 -6.442978 0
505 0 -5.2401342 0
506 1 10.447666 1
507 0 -5.093737 0
508 0 -4.5469956 0
509 0 -5.9689827 0
510 0 -6.442978 0
511 0 -4.0598474 0
512 0 -4.5469956 0
513 0 -5.0985007 0
514 1 10.719854 1
515 1 8.6480255 1
516 0 -6.53364 0
517 0 -6.0464916 0
518 0 -4.8959603 0
519 1 6.535844 1
520 0 -6.3523164 0
521 0 -4.9303293 0
522 1 5.502533 1
523 1 7.699238 1
524 0 -5.0078387 0
525 0 -5.189559 0
526 0 -5.020991 0
527 0 -4.046695 0
528 0 -3.1803741 0
529 0 -4.624505 0
530 1 6.515935 1
531 0 -4.1128182 0
532 0 -5.559344 0
533 0 -5.0078387 0
534 0 -5.4818344 0
535 0 -4.5760565 0
536 0 -3.5726995 0
537 0 -3.279101 0
538 0 -4.533843 0
539 0 -3.5858517 0
540 0 -3.6101003 0
541 0 -5.4949865 0
542 0 -4.2921433 0
543 0 -4.533843 0
544 0 -4.589209 0
545 0 -4.0598474 0
546 1 11.390257 1
547 0 -6.0596447 0
548 0 -5.5856485 0
549 1 6.3187494 1
550 0 -5.0078387 0
551 0 -5.4686823 0
552 0 -3.1100616 0
553 0 -1.7353673 0
554 0 -5.4949865 0
555 0 -1.9254994 0
556 0 -3.4240565 0
557 0 -3.93614 0
558 0 -5.4818344 0
559 0 -4.0598474 0
560 0 -3.5726995 0
561 0 -3.5726995 0
562 0 -5.4686823 0
563 0 -5.0078387 0
564 0 -3.849667 0
565 1 12.08609 1
566 0 -4.2270923 0
567 0 -3.6343493 0
568 1 4.1473055 1
569 1 10.713882 1
570 1 8.017664 1
571 1 11.034657 1
572 0 -5.0078387 0
573 0 -5.95583 0
574 1 5.950967 1
575 0 -3.279101 0
576 0 -4.0598474 0
577 0 -5.95583 0
578 0 -5.95583 0
579 0 -5.4686823 0
580 0 -3.7662487 0
581 1 8.417797 1
582 1 7.907978 1
583 0 -5.4949865 0
584 0 -2.9291954 0
585 0 -6.442978 0
586 1 13.981018 1
587 0 -3.8628192 0
588 1 5.463169 1
589 0 -4.5469956 0
590 1 3.9684038 1
591 1 5.966527 1
592 1 5.7801704 1
593 0 -4.253397 0
594 1 5.101776 1
595 0 -4.0598474 0
596 0 -4.2402444 0
597 0 -2.9855018 0
598 0 -5.0078387 0
599 0 -3.6294346 0
600 0 -5.0078387 0
601 0 -6.0464916 0
602 0 -4.533843 0
603 1 4.8058825 1
604 1 6.1928043 1
605 1 9.95545 1
606 0 -4.715564 0
607 0 -6.442978 0
608 1 11.148426 1
609 0 -4.5469956 0
610 1 8.926189 1
611 1 6.9109592 1
612 1 16.893513 1
613 0 -5.226982 0
614 0 -5.5724964 0
615 0 -3.9466453 0
616 0 -5.0078387 0
617 0 ? 0
618 0 -4.533843 0
619 0 -4.0598474 0
620 0 -5.0078387 0
621 0 0.3560543 1
622 0 -2.2074018 0
623 0 -6.442978 0
624 0 -3.8450818 0
625 0 -3.4678864 0
626 1 5.760166 1
627 0 -4.1699953 0
628 0 -5.9689827 0
629 0 -5.020991 0
630 0 -3.358376 0
631 0 -4.0598474 0
632 0 -6.442978 0
633 1 4.3299494 1
634 0 -5.4949865 0
635 0 -4.6141906 0
636 1 10.127518 1
637 0 -2.4650183 0
638 0 -5.020991 0
639 0 -3.93614 0
640 0 -4.4101357 0
641 0 -5.0078387 0
642 0 -5.0078387 0
643 0 -6.442978 0
644 0 -5.9689827 0
645 0 -5.0078387 0
646 0 -6.021953 0
647 0 -5.832123 0
648 1 12.236198 1
649 0 -5.0078387 0
650 0 -3.7496572 0
651 0 -5.2175484 0
652 0 -3.8628192 0
653 0 -4.533843 0
654 0 -4.520691 0
655 0 -5.0078387 0
656 0 -4.0598474 0
657 0 -0.4869156 0
658 1 9.086258 1
659 0 -6.442978 0
660 0 -5.95583 0
661 0 -4.046695 0
662 0 -5.3686323 0
663 0 -5.3686323 0
664 0 -4.3969836 0
665 0 -6.442978 0
666 0 -3.4969325 0
667 0 -4.520691 0
668 1 2.804366 1
669 1 8.147335 1
670 1 6.4856215 1
671 0 -4.087837 0
672 0 -4.9946866 0
673 0 -3.9078827 0
674 0 -5.95583 0
675 0 -4.140195 0
676 0 -5.6622314 0
677 0 -4.5469956 0
678 0 -6.442978 0
679 0 -5.9689827 0
680 1 16.780008 1
681 1 9.801077 1
682 0 -3.3756714 0
683 0 -6.442978 0
684 0 -6.442978 0
685 0 -6.442978 0
686 0 -6.442978 0
687 0 -4.613783 0
688 0 -5.020991 0
689 0 -4.177704 0
690 0 -5.832123 0
691 1 4.4967804 1
692 0 -5.4949865 0
693 0 -4.684228 0
694 0 -4.954578 0
695 0 -5.9689827 0
696 1 6.7127876 1
697 1 5.064643 1
698 1 6.1036224 1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
0 0 -1.5274918 0.017604087 0.025623535456678427 0
1 0 1.4144671 0.9358385 3.9621487810879379 1
2 0 -1.640791 0.013654148 0.019834493740168012 0
3 0 1.2451694 0.9084099 3.4486644221579308 1
4 0 -1.5296701 0.017518474 0.025497814533406011 0
5 1 4.3474264 0.99991405 0.00012400482044924764 1
6 0 -0.47047806 0.16604196 0.26195328951545699 0
7 0 -1.853452 0.008455775 0.012250973335401686 0
8 0 -1.7931807 0.009688178 0.014045233221232831 0
9 0 -1.6770772 0.012584501 0.01827080424150896 0
10 0 -2.1765046 0.004068755 0.005881947007105706 0
11 0 -2.064441 0.0052458644 0.0075881030696601593 0
12 1 -0.22798824 0.2570151 1.9600749217391069 0
13 0 -1.7540904 0.010580934 0.015346394036982618 0
14 1 3.16408 0.9987278 0.0018365673397693367 1
15 1 0.3537979 0.5655682 0.82222706817692115 1
16 0 -1.7677684 0.010259657 0.014878009332938816 0
17 0 -1.6758281 0.012619908 0.018322537732074994 0
18 1 2.782459 0.99697065 0.0043770562861335516 1
19 0 -1.3791555 0.024507886 0.035797884635145612 0
20 1 2.2761447 0.99046284 0.01382524609823586 1
21 1 2.7155144 0.9964734 0.0050968413754289565 1
22 0 -1.9161046 0.007339346 0.010627485678010177 0
23 1 ? ? ? 0
24 0 -2.120837 0.0046163313 0.0066753780471377712 0
25 1 0.57940435 0.6851912 0.54542144241146051 1
26 0 -1.881081 0.007944068 0.011506632913671636 0
27 0 -1.6194321 0.0143251885 0.020816335888632999 0
28 0 -2.064441 0.0052458644 0.0075881030696601593 0
29 0 -2.06662 0.0052200234 0.0075506263575144186 0
30 0 -1.9717722 0.0064708735 0.0093658324340626428 0
31 0 -1.9725007 0.006460213 0.0093503526660372888 0
32 1 2.5108254 0.9943901 0.0081162045718068156 1
33 0 -1.8994216 0.007621476 0.011037580533448379 0
34 0 -1.7970558 0.009603847 0.013922383925987339 0
35 0 -2.064441 0.0052458644 0.0075881030696601593 0
36 1 3.0295842 0.9982725 0.0024944418066934052 1
37 0 -0.9763706 0.059167847 0.087990729730975201 0
38 1 1.9792316 0.9814142 0.027065950749429996 1
39 1 0.8320954 0.79468054 0.33155308613045453 1
40 0 ? ? ? 0
41 1 0.88030076 0.81201965 0.30041346219868831 1
42 1 3.2987616 0.9990636 0.0013515566126819322 1
43 1 0.21289492 0.48570618 1.0418442509374701 1
44 1 2.9403288 0.9978838 0.0030562710053100568 1
45 0 -2.121977 0.0046044122 0.0066581028240793932 0
46 1 1.9658577 0.9808503 0.02789516002406054 1
47 0 -2.2127771 0.0037472774 0.0054163331628947556 0
48 0 -1.5296701 0.017518474 0.025497814533406011 0
49 1 2.3192222 0.9913466 0.012538549766383886 1
50 1 0.8999665 0.8187626 0.28848289069181726 1
51 1 -0.063476324 0.33475065 1.5788412280214255 0
52 1 1.8613317 0.9758262 0.035303870469453338 1
53 1 2.647989 0.99588937 0.0059426141002280079 1
54 1 2.4039237 0.99285424 0.010346165844936006 1
55 1 1.712507 0.9663979 0.049310802829332187 1
56 1 2.511521 0.9943989 0.0081034061136448163 1
57 1 0.26381683 0.51469857 0.95820033461072918 1
58 1 0.8582065 0.8042159 0.31434522077516569 1
59 1 0.3451457 0.5607193 0.8346493376449744 1
60 1 0.76229215 0.76751965 0.38172440278002573 1
61 0 -2.0294042 0.005679252 0.0082167835696487744 0
62 1 2.8659194 0.99749386 0.0036201294361900668 1
63 1 0.24355888 0.50316566 0.99089462365618441 1
64 0 -2.2127771 0.0037472774 0.0054163331628947556 0
65 1 0.9369471 0.8309296 0.26720188349008961 1
66 0 -1.6758281 0.012619908 0.018322537732074994 0
67 1 1.8211515 0.97357035 0.038642868012306673 1
68 1 3.485832 0.99938834 0.00088271297047849088 1
69 0 -2.0291107 0.005683029 0.0082222637316615669 0
70 0 -1.3813348 0.02438948 0.03562277907959642 0
71 1 2.5234277 0.99454796 0.0078871466346560996 1
72 0 -1.1687908 0.038988195 0.057373942357210272 0
73 1 3.0788863 0.9984557 0.0022296713311501402 1
74 1 0.9039061 0.82009053 0.28614491284583687 1
75 0 -1.6347485 0.013840782 0.02010750323647071 0
76 0 -1.8556311 0.008414255 0.012190564106398785 0
77 0 -1.3649706 0.025292408 0.036958612887034559 0
78 0 -1.4574178 0.020588243 0.030012580977400276 0
79 0 -2.0087733 0.0059509105 0.0086109961959708881 0
80 0 -1.4506671 0.020900635 0.030472814171791717 0
81 0 -1.6946894 0.012095575 0.017556620452812748 0
82 0 -1.4368006 0.021556934 0.031440190159234195 0
83 0 -1.27303 0.031002657 0.045435385851752615 0
84 1 3.3035357 0.99907374 0.0013369244601044573 1
85 1 2.6141107 0.995561 0.0064183741024694194 1
86 1 0.98943305 0.84706897 0.23944866129130113 1
87 1 2.506797 0.99433863 0.0081908356804006321 1
88 0 -1.6758281 0.012619908 0.018322537732074994 0
89 0 -1.9356943 0.007021268 0.010165276851851385 0
90 0 -2.120837 0.0046163313 0.0066753780471377712 0
91 0 -1.9349658 0.0070328475 0.010182100905836383 0
92 0 -1.6758281 0.012619908 0.018322537732074994 0
93 0 -2.2127771 0.0037472774 0.0054163331628947556 0
94 0 -1.9725007 0.006460213 0.0093503526660372888 0
95 0 -2.120837 0.0046163313 0.0066753780471377712 0
96 0 -2.083302 0.005026352 0.0072697788644126978 0
97 0 -1.5274918 0.017604087 0.025623535456678427 0
98 1 3.3660557 0.9991966 0.0011595429326632949 1
99 1 3.5762336 0.9995021 0.00071846440984066307 1
100 1 1.9669359 0.98089635 0.027827392562706721 1
101 1 -0.20627737 0.26657248 1.9074002702212256 0
102 0 -1.5567794 0.016486628 0.023983427117411252 0
103 1 0.20348358 0.48035255 1.0578344463120524 1
104 1 3.9422872 0.9997837 0.00031209627523989933 1
105 1 0.58588743 0.68836814 0.53874776529753121 1
106 1 3.3557022 0.99917746 0.0011871686071808722 1
107 1 2.5422742 0.9947759 0.0075565510615385034 1
108 0 -2.0293248 0.0056802738 0.008218265934190408 0
109 1 2.2740915 0.99041855 0.013889754306585319 1
110 0 -1.224869 0.034473717 0.050612563281773847 0
111 1 1.5082662 0.94753504 0.077748802573421025 1
112 1 2.6745536 0.9961298 0.0055943353159972516 1
113 1 3.436662 0.99931586 0.00098734621438804427 1
114 0 -1.1569867 0.040008307 0.058906172181649528 0
115 0 -1.5712246 0.015961455 0.023213267808853671 0
116 0 -0.38790393 0.19374841 0.31069800241975792 0
117 1 2.9528039 0.997943 0.0029707030722609194 1
118 0 -1.826636 0.008983639 0.013019219474268625 0
119 0 -1.5500998 0.016735181 0.024348070693248149 0
120 0 -1.9287091 0.0071330843 0.010327743697785224 0
121 0 -1.4017636 0.023306305 0.034021910787654173 0
122 1 3.8195608 0.9997139 0.00041281741889252245 1
123 1 1.4817832 0.94445366 0.08244808803311246 1
124 1 2.553449 0.99490654 0.0073670806393172483 1
125 0 -2.2127771 0.0037472774 0.0054163331628947556 0
126 1 2.6680782 0.99607253 0.0056772964309789609 1
127 0 -1.8241643 0.009033907 0.013092400334523423 0
128 1 1.9772437 0.9813314 0.027187659798911711 1
129 0 -1.8593773 0.008343351 0.012087406368289432 0
130 0 -1.3813348 0.02438948 0.03562277907959642 0
131 0 -1.9725007 0.006460213 0.0093503526660372888 0
132 1 3.4043772 0.9992637 0.0010626421007376144 1
133 0 -1.8243783 0.009029544 0.013086048129405477 0
134 0 -1.860437 0.0083234 0.012058381584905322 0
135 0 -1.160666 0.03968763 0.058424333166336474 0
136 0 -1.7677684 0.010259657 0.014878009332938816 0
137 0 -2.0080447 0.005960737 0.0086252576106082991 0
138 0 -1.6487197 0.013413023 0.019481851377450999 0
139 0 ? ? ? 0
140 0 -2.0080447 0.005960737 0.0086252576106082991 0
141 0 -2.1563811 0.004258804 0.0061572760868608065 0
142 1 1.4258711 0.93738085 0.093292772480968233 1
143 0 -1.5712246 0.015961455 0.023213267808853671 0
144 0 -2.064441 0.0052458644 0.0075881030696601593 0
145 0 ? ? ? 0
146 1 0.59540653 0.69300085 0.52907096661276354 1
147 0 -1.9737365 0.0064421683 0.0093241504284383957 0
148 0 -0.51803684 0.15157728 0.23714483767287148 0
149 1 4.1362305 0.99986094 0.00020063171224062208 1
150 0 -2.1765046 0.004068755 0.005881947007105706 0
151 1 1.7307069 0.9677185 0.047340679274965436 1
152 1 3.359213 0.99918395 0.0011777878671093308 1
153 0 -1.4929621 0.019017346 0.027700468639353475 0
154 0 -2.3047175 0.0030413268 0.0043943928288848718 0
155 1 1.38289 0.93138146 0.10255592440494538 1
156 0 -2.0030372 0.00602871 0.0087239133979651676 0
157 0 -1.9725007 0.006460213 0.0093503526660372888 0
158 0 ? ? ? 0
159 1 4.5293064 0.9999432 8.1952060728897203E-05 1
160 1 3.334266 0.9991363 0.0012465526889135054 1
161 0 -1.5841018 0.015507184 0.022547416250929403 0
162 0 -1.8241643 0.009033907 0.013092400334523423 0
163 0 -1.3757586 0.024693567 0.036072522721745132 0
164 0 ? ? ? 0
165 0 -1.4007286 0.023360033 0.034101275741716536 0
166 1 3.1433103 0.9986662 0.0019255122730899305 1
167 1 2.6180499 0.99560046 0.0063611951559849299 1
168 0 -1.8241643 0.009033907 0.013092400334523423 0
169 0 -2.287306 0.0031639931 0.0045719137639408216 0
170 0 -2.0080447 0.005960737 0.0086252576106082991 0
171 0 -2.120837 0.0046163313 0.0066753780471377712 0
172 0 -2.2127771 0.0037472774 0.0054163331628947556 0
173 1 5.1644983 0.99998665 1.926218548588174E-05 1
174 1 2.0482533 0.9840753 0.023159370685856349 1
175 1 3.090051 0.99849445 0.0021736916047153973 1
176 0 -1.9725007 0.006460213 0.0093503526660372888 0
177 1 2.031348 0.9834604 0.024061094122559881 1
178 0 -1.6758281 0.012619908 0.018322537732074994 0
179 1 0.91117597 0.82252103 0.2818755275393402 1
180 0 -2.1765046 0.004068755 0.005881947007105706 0
181 0 -2.3047175 0.0030413268 0.0043943928288848718 0
182 0 -1.3791555 0.024507886 0.035797884635145612 0
183 1 3.2794478 0.99902153 0.0014123246695702737 1
184 1 2.22172 0.9892176 0.015640216828503601 1
185 0 -2.0281682 0.005695174 0.0082398853874143061 0
186 1 2.0845768 0.9853214 0.021333700032620535 1
187 1 4.438259 0.9999301 0.00010087135104534345 1
188 1 2.9499981 0.9979298 0.002989746453144395 1
189 0 -1.7920482 0.009712961 0.014081337029506752 0
190 1 4.3129826 0.999907 0.00013415270474661438 1
191 1 4.055872 0.999833 0.00024096781670331766 1
192 0 -1.6194321 0.0143251885 0.020816335888632999 0
193 0 -2.120837 0.0046163313 0.0066753780471377712 0
194 0 -1.8241643 0.009033907 0.013092400334523423 0
195 0 -1.6758281 0.012619908 0.018322537732074994 0
196 0 2.151272 0.9873643 6.3063497031242317 1
197 0 -1.3082548 0.028680654 0.041982398835322773 0
198 0 -2.3047175 0.0030413268 0.0043943928288848718 0
199 0 -1.9161046 0.007339346 0.010627485678010177 0
200 1 3.625416 0.9995549 0.00064232618745076891 1
201 1 3.4570076 0.99934685 0.0009426008063710327 1
202 0 -2.120837 0.0046163313 0.0066753780471377712 0
203 0 -1.5274918 0.017604087 0.025623535456678427 0
204 0 -2.120837 0.0046163313 0.0066753780471377712 0
205 1 4.3743277 0.9999191 0.0001166949480221247 1
206 1 2.507694 0.99435014 0.008174144958268334 1
207 0 -2.1765046 0.004068755 0.005881947007105706 0
208 0 -2.1765046 0.004068755 0.005881947007105706 0
209 0 -1.5831593 0.015539995 0.022595499557490916 0
210 1 5.0194874 0.9999814 2.6829543005170701E-05 1
211 1 3.391699 0.9992421 0.0010937942338244272 1
212 0 -2.120837 0.0046163313 0.0066753780471377712 0
213 1 5.1539545 0.9999863 1.9778140419471667E-05 1
214 1 4.5677996 0.99994797 7.5072380308763176E-05 1
215 1 2.7341917 0.99661976 0.0048849148054705294 1
216 0 -2.2127771 0.0037472774 0.0054163331628947556 0
217 0 -2.120837 0.0046163313 0.0066753780471377712 0
218 1 2.7386596 0.9966539 0.0048354755035983493 1
219 0 -1.1410582 0.04142546 0.061037471419285505 0
220 0 -2.0477579 0.0054479623 0.0078812361090319534 0
221 1 3.6438277 0.9995731 0.00061600136403503912 1
222 1 -0.94378495 0.06343786 3.9785121597755877 0
223 1 1.8555672 0.97551453 0.035764731698298684 1
224 1 3.3169425 0.9991016 0.0012967298400261944 1
225 0 -2.2127771 0.0037472774 0.0054163331628947556 0
226 1 3.4656894 0.9993596 0.00092418675307120123 1
227 1 2.595032 0.9953647 0.0067028341718725773 1
228 0 -2.1765046 0.004068755 0.005881947007105706 0
229 1 4.7208843 0.9999633 5.2971628937074883E-05 1
230 1 1.957083 0.9804712 0.028452850177407608 1
231 1 3.0528862 0.99836165 0.0023655819206737871 1
232 0 0.26205277 0.51369476 1.0400659674514465 1
233 1 2.1640766 0.98772305 0.017821513393369265 1
234 0 -1.0094345 0.055111557 0.081784085749331173 0
235 0 ? ? ? 0
236 1 4.2910385 0.99990225 0.00014103266690546063 1
237 1 2.4222696 0.9931447 0.0099241759578403005 1
238 1 4.649123 0.9999568 6.2345058017421014E-05 1
239 1 1.9616001 0.98066723 0.028164420287548755 1
240 0 -0.868351 0.07444634 0.1116114650193972 0
241 0 -1.7336738 0.011079094 0.016072956736514082 0
242 0 -1.9725007 0.006460213 0.0093503526660372888 0
243 0 -1.2034636 0.036134154 0.053095732880498257 0
244 0 -2.120837 0.0046163313 0.0066753780471377712 0
245 0 -1.2710397 0.031139156 0.045638626224424696 0
246 1 4.143936 0.9998633 0.00019719158494834585 1
247 1 1.1971757 0.8988981 0.15377047561688309 1
248 0 -1.217197 0.03506021 0.051489167959956395 0
249 0 ? ? ? 0
250 0 -2.0949774 0.0048950743 0.0070794407726107117 0
251 1 2.7004135 0.9963504 0.0052748803033137396 1
252 0 1.5871723 0.95578504 4.4993214783146023 1
253 1 3.2987616 0.9990636 0.0013515566126819322 1
254 1 2.8659194 0.99749386 0.0036201294361900668 1
255 1 1.8146122 0.97318435 0.039214978954185679 1
256 0 -2.0080447 0.005960737 0.0086252576106082991 0
257 0 -1.9161046 0.007339346 0.010627485678010177 0
258 0 -1.8241643 0.009033907 0.013092400334523423 0
259 0 1.456742 0.941384 4.0925620989062192 1
260 1 3.1395147 0.99865466 0.0019422169670765994 1
261 1 4.2866764 0.9999013 0.00014240866327436006 1
262 1 3.5511892 0.9994729 0.00076062176413699766 1
263 1 2.924936 0.99780846 0.0031651986570834165 1
264 1 1.8705885 0.9763187 0.034575905727148304 1
265 0 -1.0786197 0.04745686 0.070143662992841888 0
266 1 2.8440325 0.9973661 0.0038049698842319707 1
267 1 0.98028016 0.8443483 0.2440898311411345 1
268 1 3.0068958 0.99818105 0.002626586824588707 1
269 0 -2.120837 0.0046163313 0.0066753780471377712 0
270 1 2.43452 0.9933321 0.0096519787383020968 1
271 0 -1.5274918 0.017604087 0.025623535456678427 0
272 1 0.98028016 0.8443483 0.2440898311411345 1
273 1 0.0062577724 0.37100244 1.4304994365103201 1
274 0 -1.732438 0.011109983 0.016118018998696058 0
275 0 ? ? ? 0
276 0 -1.9161046 0.007339346 0.010627485678010177 0
277 0 -2.2127771 0.0037472774 0.0054163331628947556 0
278 0 -2.120837 0.0046163313 0.0066753780471377712 0
279 1 2.4123657 0.99298936 0.010149833832518246 1
280 0 -1.8241643 0.009033907 0.013092400334523423 0
281 0 -1.8994216 0.007621476 0.011037580533448379 0
282 1 1.4512517 0.94069004 0.088208664782448348 1
283 1 2.0991995 0.9857955 0.020639702618751546 1
284 1 2.5584033 0.9949634 0.0072846272866314461 1
285 1 4.822792 0.9999709 4.1964377123801209E-05 1
286 1 5.589938 0.99999493 7.3092811775370979E-06 1
287 0 -1.860437 0.0083234 0.012058381584905322 0
288 1 0.7131865 0.74696565 0.42088620048335751 1
289 1 3.0956676 0.9985136 0.002146047033326764 1
290 0 -2.3047175 0.0030413268 0.0043943928288848718 0
291 0 -2.120837 0.0046163313 0.0066753780471377712 0
292 1 ? ? ? 0
293 1 1.9506762 0.98018974 0.028867048302480647 1
294 0 ? ? ? 0
295 1 2.5770876 0.99517226 0.0069818201865888847 1
296 0 0.6443207 0.7161848 1.8169762125688609 1
297 0 ? ? ? 0
298 0 -1.0086696 0.05520236 0.081922735667130958 0
299 1 2.3209097 0.9913795 0.012490669010981763 1
300 1 2.4080975 0.99292135 0.010248646031556275 1
301 0 -2.120837 0.0046163313 0.0066753780471377712 0
302 1 5.5908546 0.99999493 7.3092811775370979E-06 1
303 0 -2.120837 0.0046163313 0.0066753780471377712 0
304 1 1.930157 0.9792614 0.030234079066519436 1
305 1 3.2850425 0.9990339 0.0013944210667270886 1
306 0 -2.120837 0.0046163313 0.0066753780471377712 0
307 0 -2.120837 0.0046163313 0.0066753780471377712 0
308 1 2.3359745 0.99166787 0.012071086460940244 1
309 0 -0.906791 0.06863291 0.10257818683889552 0
310 0 -2.0087733 0.0059509105 0.0086109961959708881 0
311 0 -2.3047175 0.0030413268 0.0043943928288848718 0
312 1 1.198076 0.8990844 0.15347155959199818 1
313 0 -2.3047175 0.0030413268 0.0043943928288848718 0
314 0 -2.2684448 0.003302444 0.0047723040673220791 0
315 0 ? ? ? 0
316 1 1.4773018 0.94391567 0.083270128208594502 1
317 1 3.1813228 0.99877673 0.0017658802629188005 1
318 0 -1.9538343 0.006738953 0.009755160650512221 0
319 0 0.6800053 0.7324142 1.901926461028808 1
320 1 2.4481156 0.99353415 0.009358541174187586 1
321 0 ? ? ? 0
322 0 -1.8241643 0.009033907 0.013092400334523423 0
323 1 1.7398365 0.9683619 0.046381755881038968 1
324 0 -2.120837 0.0046163313 0.0066753780471377712 0
325 0 -1.5229123 0.017785417 0.025889852290237967 0
326 1 1.3236082 0.9222315 0.11679915842268698 1
327 0 -2.2127771 0.0037472774 0.0054163331628947556 0
328 1 1.6432412 0.96087927 0.057572926018886535 1
329 1 2.4858673 0.9940638 0.0085896543489520204 1
330 1 1.8330681 0.97426 0.037621300921065824 1
331 0 -1.4366916 0.02156217 0.031447910404764787 0
332 0 -1.2448869 0.03298766 0.048393797378857406 0
333 1 1.7423079 0.96853393 0.046125499494108477 1
334 1 2.303429 0.9910324 0.012995838988818179 1
335 0 -2.3047175 0.0030413268 0.0043943928288848718 0
336 1 2.00823 0.9825816 0.025350849030806699 1
337 0 -2.120837 0.0046163313 0.0066753780471377712 0
338 0 -2.2684448 0.003302444 0.0047723040673220791 0
339 1 1.9745452 0.98121846 0.027353722903608435 1
340 1 2.110421 0.986149 0.020122431920951738 1
341 0 -2.120837 0.0046163313 0.0066753780471377712 0
342 0 -2.1563811 0.004258804 0.0061572760868608065 0
343 0 -2.3047175 0.0030413268 0.0043943928288848718 0
344 1 3.2871826 0.9990386 0.0013877072729414413 1
345 0 -2.3047175 0.0030413268 0.0043943928288848718 0
346 0 -1.1894333 0.037263975 0.054787818081964694 0
347 0 -2.1769326 0.0040648067 0.005876227493594747 0
348 1 -0.1867783 0.27534658 1.8606794204249024 0
349 1 1.1109493 0.8795964 0.18508637534432562 1
350 0 -1.5652144 0.016177934 0.023530680974978804 0
351 0 -1.9725007 0.006460213 0.0093503526660372888 0
352 0 0.26591778 0.515894 1.0466051072144058 1
353 1 3.327644 0.99912316 0.0012655733246872652 1
354 0 -2.2127771 0.0037472774 0.0054163331628947556 0
355 0 -1.6203746 0.014294905 0.020772011290170138 0
356 1 -0.3205452 0.2188485 2.1919956211057996 0
357 1 4.526165 0.9999428 8.2554034326541117E-05 1
358 1 2.3392932 0.99173015 0.011980473347296782 1
359 1 1.7954156 0.9720192 0.040943290252885338 1
360 1 5.364354 0.99999154 1.2210819886664613E-05 1
361 1 2.2171762 0.9891066 0.01580208701151431 1
362 0 -1.2282832 0.03421577 0.050227189506198734 0
363 0 -0.6987231 0.105845876 0.16140456693396582 0
364 0 -1.9725007 0.006460213 0.0093503526660372888 0
365 0 -2.064441 0.0052458644 0.0075881030696601593 0
366 1 4.8886776 0.99997497 3.6116808756282869E-05 1
367 1 3.8825986 0.99975216 0.00035759624560614735 1
368 0 -2.06662 0.0052200234 0.0075506263575144186 0
369 0 -2.0303473 0.005667132 0.0081991980047823754 0
370 0 -1.4116697 0.022798104 0.033271432426540966 0
371 0 -2.06662 0.0052200234 0.0075506263575144186 0
372 0 -1.6487197 0.013413023 0.019481851377450999 0
373 0 -1.5463531 0.01687621 0.024555009291060637 0
374 0 -1.7970558 0.009603847 0.013922383925987339 0
375 0 -2.3047175 0.0030413268 0.0043943928288848718 0
376 0 -2.2127771 0.0037472774 0.0054163331628947556 0
377 0 -2.2684448 0.003302444 0.0047723040673220791 0
378 0 -1.5494738 0.016758665 0.02438252833495342 0
379 0 -0.87762785 0.07300322 0.10936376357893551 0
380 0 -2.3047175 0.0030413268 0.0043943928288848718 0
381 1 3.315078 0.99909776 0.0013022382442252245 1
382 0 -1.4496192 0.020949544 0.030544883485638784 0
383 0 -2.1563811 0.004258804 0.0061572760868608065 0
384 0 -2.1563811 0.004258804 0.0061572760868608065 0
385 0 -1.3055404 0.028853416 0.042239024361083378 0
386 1 1.9821594 0.98153543 0.026887743063245765 1
387 0 -0.9792652 0.058801837 0.087429590534672086 0
388 0 -1.9727147 0.0064570853 0.0093458108025710786 0
389 0 -1.288665 0.029950352 0.043869507861760471 0
390 0 -2.139698 0.004423044 0.0063952575723805151 0
391 1 3.5901558 0.9995176 0.00069609570167562026 1
392 0 -1.9161046 0.007339346 0.010627485678010177 0
393 0 -2.360385 0.0026800716 0.0038717166087343358 0
394 0 -1.8839885 0.007892039 0.011430971456790735 0
395 0 -1.9161046 0.007339346 0.010627485678010177 0
396 0 -1.8241643 0.009033907 0.013092400334523423 0
397 0 -1.8597087 0.008337107 0.012078321664830442 0
398 0 -1.733687 0.011078765 0.016072475768383263 0
399 0 -1.9759288 0.0064102816 0.0092778502210093625 0
400 1 3.3242238 0.9991163 0.0012754710397854261 1
401 0 -2.0080447 0.005960737 0.0086252576106082991 0
402 0 -1.1999521 0.03641379 0.053514345944829678 0
403 0 -1.4579252 0.020564951 0.029978271201315226 0
404 0 -1.9761419 0.0064071896 0.0092733606485193611 0
405 0 -2.2127771 0.0037472774 0.0054163331628947556 0
406 0 -1.5580285 0.016440554 0.023915843148024963 0
407 0 -2.2127771 0.0037472774 0.0054163331628947556 0
408 0 -1.4156171 0.022598628 0.032976965091470092 0
409 0 -1.7970558 0.009603847 0.013922383925987339 0
410 0 -2.2127771 0.0037472774 0.0054163331628947556 0
411 0 ? ? ? 0
412 1 3.1779754 0.9987674 0.0017793974994358322 1
413 0 -1.4084432 0.022962429 0.033514053688745861 0
414 1 2.3890836 0.99261034 0.010700618410080708 1
415 0 -0.3690195 0.20055714 0.32293317830743429 0
416 1 3.1425087 0.9986638 0.0019290426304421442 1
417 0 -2.2127771 0.0037472774 0.0054163331628947556 0
418 0 -0.87877345 0.07282681 0.10908924497372885 0
419 0 -1.8079962 0.009369669 0.013581300321820941 0
420 0 -1.1015198 0.04515355 0.066659345816583171 0
421 1 4.1874504 0.99987626 0.0001785290373473312 1
422 0 -1.0728958 0.048049796 0.071041986542002847 0
423 0 -1.3813348 0.02438948 0.03562277907959642 0
424 0 -2.0080447 0.005960737 0.0086252576106082991 0
425 1 5.1760416 0.999987 1.8746230736814112E-05 1
426 0 -0.93474627 0.06467226 0.0964561214446336 0
427 1 1.6722095 0.96328586 0.053964101066686629 1
428 0 -2.2127771 0.0037472774 0.0054163331628947556 0
429 0 -2.064441 0.0052458644 0.0075881030696601593 0
430 0 -1.9396684 0.0069584306 0.010073983715336306 0
431 0 -1.1782725 0.03818691 0.05617153611512319 0
432 0 -1.5277058 0.017595658 0.025611157902442457 0
433 0 -1.6521469 0.013310098 0.019331350904082042 0
434 0 1.9872653 0.98174506 5.7755695993744993 1
435 1 2.8103745 0.9971568 0.0041077145148413997 1
436 1 1.8746631 0.97653234 0.034260271915278799 1
437 0 -1.8597087 0.008337107 0.012078321664830442 0
438 0 -1.4754533 0.019775897 0.028816473267741578 0
439 0 -1.7113724 0.011649769 0.016905729918815539 0
440 1 2.787348 0.99700415 0.0043285831311280177 1
441 0 -0.7322757 0.09882682 0.1501237140857779 0
442 0 -1.791813 0.009718115 0.014088846897954452 0
443 0 -2.1213443 0.0046110237 0.0066676852964602223 0
444 0 -1.1983695 0.0365405 0.053704073472547159 0
445 0 -2.1563811 0.004258804 0.0061572760868608065 0
446 0 -2.3047175 0.0030413268 0.0043943928288848718 0
447 0 -1.7113724 0.011649769 0.016905729918815539 0
448 0 -2.360385 0.0026800716 0.0038717166087343358 0
449 1 3.6388657 0.9995683 0.00062296965289850557 1
450 0 -1.6772779 0.01257882 0.018262503759457326 0
451 0 -1.7113724 0.011649769 0.016905729918815539 0
452 0 -1.8618869 0.008296183 0.012018786771270237 0
453 1 2.7416537 0.99667656 0.0048026894663455886 1
454 0 -1.9193312 0.0072859884 0.010549939577716119 0
455 1 0.24771547 0.5055327 0.98412373163838862 1
456 1 3.3910882 0.9992411 0.0010952571958374505 1
457 1 2.928676 0.997827 0.003138396865993306 1
458 0 -1.5923238 0.015223818 0.022132225816309081 0
459 0 -1.4732751 0.019872313 0.028958385583111163 0
460 0 -1.5652144 0.016177934 0.023530680974978804 0
461 0 -1.2745521 0.030898662 0.045280560541028206 0
462 0 -1.416878 0.022535272 0.032883451367432474 0
463 0 -1.7679824 0.010254708 0.014870795370771546 0
464 0 -1.8597087 0.008337107 0.012078321664830442 0
465 1 3.3592222 0.999184 0.0011777018055561753 1
466 1 3.1996624 0.99882674 0.0016936469864782023 1
467 1 2.6407468 0.99582124 0.006041311255172788 1
468 0 -1.8597087 0.008337107 0.012078321664830442 0
469 0 -2.0937285 0.0049089515 0.0070995599242105224 0
470 0 -1.9717722 0.0064708735 0.0093658324340626428 0
471 0 -1.416878 0.022535272 0.032883451367432474 0
472 0 -1.6187036 0.01434864 0.020850661568681261 0
473 0 -1.8597087 0.008337107 0.012078321664830442 0
474 0 -1.7113724 0.011649769 0.016905729918815539 0
475 0 -2.0080447 0.005960737 0.0086252576106082991 0
476 0 -1.74066 0.010906077 0.015820571044638784 0
477 0 -1.8597087 0.008337107 0.012078321664830442 0
478 0 -1.6206812 0.014285067 0.020757612938386832 0
479 1 2.8273742 0.9972645 0.0039518935506843694 1
480 0 -1.7670399 0.0102765225 0.014902593277342556 0
481 0 -1.191704 0.037078843 0.054510417659937159 0
482 1 5.076377 0.99998367 2.3561815570658182E-05 1
483 1 3.7818615 0.99968827 0.00044980474498146177 1
484 0 -1.5923238 0.015223818 0.022132225816309081 0
485 0 -1.8474805 0.008570594 0.012418044495456609 0
486 0 -1.9717722 0.0064708735 0.0093658324340626428 0
487 1 4.455492 0.99993277 9.700147602369178E-05 1
488 1 0.3417418 0.55880845 0.83957426882513719 1
489 1 -0.3809967 0.19621822 2.3494690670098843 0
490 0 -2.3047175 0.0030413268 0.0043943928288848718 0
491 1 2.352762 0.991978 0.011619984901228139 1
492 0 -1.8234359 0.009048773 0.01311404278528997 0
493 1 3.6244338 0.99955386 0.00064378869172491786 1
494 0 0.0021555424 0.3688243 0.66388643882188125 1
495 0 -1.9717722 0.0064708735 0.0093658324340626428 0
496 0 -2.360385 0.0026800716 0.0038717166087343358 0
497 0 -1.7690175 0.010230804 0.014835951925520926 0
498 0 -1.7677684 0.010259657 0.014878009332938816 0
499 0 -1.7677684 0.010259657 0.014878009332938816 0
500 0 -1.3791555 0.024507886 0.035797884635145612 0
501 0 -1.7677684 0.010259657 0.014878009332938816 0
502 0 -1.6946894 0.012095575 0.017556620452812748 0
503 0 -1.6758281 0.012619908 0.018322537732074994 0
504 0 -2.3047175 0.0030413268 0.0043943928288848718 0
505 0 -1.8266624 0.008983103 0.013018438536889656 0
506 1 3.7535436 0.9996675 0.00047973936827961055 1
507 0 -1.7545978 0.010568841 0.015328762090990109 0
508 0 -1.7113724 0.011649769 0.016905729918815539 0
509 0 -2.1563811 0.004258804 0.0061572760868608065 0
510 0 -2.3047175 0.0030413268 0.0043943928288848718 0
511 0 -1.6194321 0.0143251885 0.020816335888632999 0
512 0 -1.7113724 0.011649769 0.016905729918815539 0
513 0 -1.9717722 0.0064708735 0.0093658324340626428 0
514 1 3.5283687 0.9994448 0.00080123164580390874 1
515 1 3.0192187 0.9982313 0.0025539658674679773 1
516 0 -2.360385 0.0026800716 0.0038717166087343358 0
517 0 -2.2684448 0.003302444 0.0047723040673220791 0
518 0 -1.8159171 0.0092036575 0.013339551977534803 0
519 1 2.1611545 0.9876421 0.017939745933108028 1
520 0 -2.2490501 0.0034511082 0.0049875079082958226 0
521 0 -1.8040411 0.009453665 0.013703633613851881 0
522 1 1.5220697 0.9490764 0.075403845557823992 1
523 1 2.5139282 0.99442935 0.0080592177152956877 1
524 0 -1.9161046 0.007339346 0.010627485678010177 0
525 0 -1.9349658 0.0070328475 0.010182100905836383 0
526 0 -1.8597087 0.008337107 0.012078321664830442 0
527 0 -1.6758281 0.012619908 0.018322537732074994 0
528 0 -1.2518597 0.032484703 0.0476436232228232 0
529 0 -1.8234359 0.009048773 0.01311404278528997 0
530 1 2.3158834 0.9912811 0.012633882306293287 1
531 0 -1.5580285 0.016440554 0.023915843148024963 0
532 0 -2.1765046 0.004068755 0.005881947007105706 0
533 0 -1.9161046 0.007339346 0.010627485678010177 0
534 0 -2.064441 0.0052458644 0.0075881030696601593 0
535 0 -1.8096606 0.009334541 0.013530143447168583 0
536 0 -1.5274918 0.017604087 0.025623535456678427 0
537 0 -1.4084432 0.022962429 0.033514053688745861 0
538 0 -1.7677684 0.010259657 0.014878009332938816 0
539 0 -1.4710958 0.01996924 0.02910106316270995 0
540 0 -1.4360588 0.021592608 0.031492790814606361 0
541 0 -2.0080447 0.005960737 0.0086252576106082991 0
542 0 -1.5299898 0.017505942 0.025479412598728886 0
543 0 -1.7677684 0.010259657 0.014878009332938816 0
544 0 -1.7532645 0.010600648 0.015375140111531023 0
545 0 -1.6194321 0.0143251885 0.020816335888632999 0
546 1 4.121207 0.99985605 0.00020768399883462581 1
547 0 -2.2120488 0.0037534768 0.005425310601326408 0
548 0 -2.0637126 0.0052545303 0.0076006713883630837 0
549 1 2.0260637 0.98326343 0.024350104021083115 1
550 0 -1.9161046 0.007339346 0.010627485678010177 0
551 0 -2.120837 0.0046163313 0.0066753780471377712 0
552 0 -1.3576789 0.025705153 0.037569659585069221 0
553 0 -0.55235267 0.14179553 0.22060668097234842 0
554 0 -2.0080447 0.005960737 0.0086252576106082991 0
555 0 -0.76042175 0.09326154 0.14124161555695863 0
556 0 -1.3922807 0.023803137 0.034755979594910905 0
557 0 -1.5652144 0.016177934 0.023530680974978804 0
558 0 -2.064441 0.0052458644 0.0075881030696601593 0
559 0 -1.6194321 0.0143251885 0.020816335888632999 0
560 0 -1.5274918 0.017604087 0.025623535456678427 0
561 0 -1.5274918 0.017604087 0.025623535456678427 0
562 0 -2.120837 0.0046163313 0.0066753780471377712 0
563 0 -1.9161046 0.007339346 0.010627485678010177 0
564 0 -1.5841018 0.015507184 0.022547416250929403 0
565 1 4.0322847 0.99982375 0.0002542987601560963 1
566 0 -1.7051156 0.011815029 0.017146980725149405 0
567 0 -1.4010218 0.023344798 0.034078771364826378 0
568 1 1.7855308 0.9714002 0.041862309530184084 1
569 1 3.304661 0.99907607 0.0013335676930879765 1
570 1 2.8459141 0.99737734 0.0037886746951349393 1
571 1 3.7603967 0.99967265 0.00047234167370643557 1
572 0 -1.9161046 0.007339346 0.010627485678010177 0
573 0 -2.2127771 0.0037472774 0.0054163331628947556 0
574 1 2.012997 0.9827665 0.025079400844147698 1
575 0 -1.4084432 0.022962429 0.033514053688745861 0
576 0 -1.6194321 0.0143251885 0.020816335888632999 0
577 0 -2.2127771 0.0037472774 0.0054163331628947556 0
578 0 -2.2127771 0.0037472774 0.0054163331628947556 0
579 0 -2.120837 0.0046163313 0.0066753780471377712 0
580 0 -1.5003835 0.0187045 0.027240450677208417 0
581 1 3.0055172 0.9981753 0.0026348570586746576 1
582 1 3.0686276 0.9984193 0.002282294254626142 1
583 0 -2.0080447 0.005960737 0.0086252576106082991 0
584 0 -1.2903099 0.02984168 0.04370789529274597 0
585 0 -2.3047175 0.0030413268 0.0043943928288848718 0
586 1 4.8050356 0.99996966 4.3770248615567833E-05 1
587 0 -1.5277058 0.017595658 0.025611157902442457 0
588 1 1.8000228 0.9723032 0.040521808026410894 1
589 0 -1.7113724 0.011649769 0.016905729918815539 0
590 1 1.0209672 0.85614467 0.22407349889692693 1
591 1 2.058038 0.98442084 0.022652901094629613 1
592 1 1.8430016 0.9748214 0.036790189062194265 1
593 0 -1.5923238 0.015223818 0.022132225816309081 0
594 1 1.8298681 0.9740765 0.037893000704854643 1
595 0 -1.6194321 0.0143251885 0.020816335888632999 0
596 0 -1.6487197 0.013413023 0.019481851377450999 0
597 0 -1.2893946 0.029902104 0.043797753225406556 0
598 0 -1.9161046 0.007339346 0.010627485678010177 0
599 0 -1.3192025 0.027994 0.040962874700355992 0
600 0 -1.9161046 0.007339346 0.010627485678010177 0
601 0 -2.2684448 0.003302444 0.0047723040673220791 0
602 0 -1.7677684 0.010259657 0.014878009332938816 0
603 1 1.2479513 0.90893584 0.13774962611543426 1
604 1 1.6523559 0.9616524 0.056412587738932075 1
605 1 3.436612 0.9993158 0.00098743226458660469 1
606 0 -1.7866297 0.009832411 0.014255368430932957 0
607 0 -2.3047175 0.0030413268 0.0043943928288848718 0
608 1 3.757161 0.9996702 0.00047586847685296608 1
609 0 -1.7113724 0.011649769 0.016905729918815539 0
610 1 2.5466597 0.99482757 0.0074816070029149083 1
611 1 2.1948617 0.98854506 0.016621366075485262 1
612 1 5.622237 0.9999953 6.7933307031989985E-06 1
613 0 -1.8830584 0.007908645 0.011455120229787808 0
614 0 -2.1201086 0.004623962 0.0066864380510553894 0
615 0 -1.5296711 0.017518437 0.025497759830517518 0
616 0 -1.9161046 0.007339346 0.010627485678010177 0
617 0 ? ? ? 0
618 0 -1.7677684 0.010259657 0.014878009332938816 0
619 0 -1.6194321 0.0143251885 0.020816335888632999 0
620 0 -1.9161046 0.007339346 0.010627485678010177 0
621 0 -0.29865575 0.22749253 0.37237920407082026 0
622 0 -1.0575528 0.04967402 0.073505623349513619 0
623 0 -2.3047175 0.0030413268 0.0043943928288848718 0
624 0 -1.6020206 0.014896168 0.021652299782433843 0
625 0 -1.1641603 0.039385363 0.05797030431807447 0
626 1 1.9601104 0.9806028 0.028259212561125038 1
627 0 -1.4228883 0.022235643 0.032441280140337411 0
628 0 -2.1563811 0.004258804 0.0061572760868608065 0
629 0 -1.8597087 0.008337107 0.012078321664830442 0
630 0 -1.2342474 0.033769622 0.049560884159526447 0
631 0 -1.6194321 0.0143251885 0.020816335888632999 0
632 0 -2.3047175 0.0030413268 0.0043943928288848718 0
633 1 1.5812137 0.9552078 0.066113440215345806 1
634 0 -2.0080447 0.005960737 0.0086252576106082991 0
635 0 -1.6508988 0.013347491 0.019386025774761693 0
636 1 3.185312 0.99878776 0.0017499524716030278 1
637 0 -0.9903996 0.057413664 0.08530332666472025 0
638 0 -1.8597087 0.008337107 0.012078321664830442 0
639 0 -1.5652144 0.016177934 0.023530680974978804 0
640 0 -1.7135507 0.011592771 0.016822532510702922 0
641 0 -1.9161046 0.007339346 0.010627485678010177 0
642 0 -1.9161046 0.007339346 0.010627485678010177 0
643 0 -2.3047175 0.0030413268 0.0043943928288848718 0
644 0 -2.1563811 0.004258804 0.0061572760868608065 0
645 0 -1.9161046 0.007339346 0.010627485678010177 0
646 0 -2.0949774 0.0048950743 0.0070794407726107117 0
647 0 -2.1585593 0.0042378134 0.0061268638317073494 0
648 1 3.9329116 0.999779 0.00031889107569761047 1
649 0 -1.9161046 0.007339346 0.010627485678010177 0
650 0 -1.3291786 0.027382212 0.040055117570047129 0
651 0 -1.975928 0.0064102937 0.0092778678006881395 0
652 0 -1.5277058 0.017595658 0.025611157902442457 0
653 0 -1.7677684 0.010259657 0.014878009332938816 0
654 0 -1.8241643 0.009033907 0.013092400334523423 0
655 0 -1.9161046 0.007339346 0.010627485678010177 0
656 0 -1.6194321 0.0143251885 0.020816335888632999 0
657 0 0.013412952 0.37481406 0.67764276903969234 1
658 1 3.022949 0.9982462 0.002532430106085276 1
659 0 -2.3047175 0.0030413268 0.0043943928288848718 0
660 0 -2.2127771 0.0037472774 0.0054163331628947556 0
661 0 -1.6758281 0.012619908 0.018322537732074994 0
662 0 -1.9746798 0.0064284285 0.0093041996953920104 0
663 0 -1.9746798 0.0064284285 0.0093041996953920104 0
664 0 -1.7699466 0.010209393 0.014804743273596646 0
665 0 -2.3047175 0.0030413268 0.0043943928288848718 0
666 0 -1.3377533 0.02686676 0.039290744787682949 0
667 0 -1.8241643 0.009033907 0.013092400334523423 0
668 1 0.9713695 0.8416619 0.2486873339914186 1
669 1 2.9655144 0.9980016 0.0028860018489550105 1
670 1 2.3114574 0.99119353 0.012761320262412217 1
671 0 -1.6603941 0.013065608 0.018973912735813583 0
672 0 -1.9725007 0.006460213 0.0093503526660372888 0
673 0 -1.3552736 0.025842737 0.037773403021739829 0
674 0 -2.2127771 0.0037472774 0.0054163331628947556 0
675 0 -1.5025626 0.018613603 0.027106820493348133 0
676 0 -2.0937285 0.0049089515 0.0070995599242105224 0
677 0 -1.7113724 0.011649769 0.016905729918815539 0
678 0 -2.3047175 0.0030413268 0.0043943928288848718 0
679 0 -2.1563811 0.004258804 0.0061572760868608065 0
680 1 5.5908403 0.99999493 7.3092811775370979E-06 1
681 1 3.6036856 0.9995323 0.00067493178171970517 1
682 0 -1.4357655 0.021606727 0.031513609690610338 0
683 0 -2.3047175 0.0030413268 0.0043943928288848718 0
684 0 -2.3047175 0.0030413268 0.0043943928288848718 0
685 0 -2.3047175 0.0030413268 0.0043943928288848718 0
686 0 -2.3047175 0.0030413268 0.0043943928288848718 0
687 0 -1.7326521 0.011104626 0.016110203721664006 0
688 0 -1.8597087 0.008337107 0.012078321664830442 0
689 0 -1.6691165 0.01281185 0.018603017849878518 0
690 0 -2.1585593 0.0042378134 0.0061268638317073494 0
691 1 1.8644311 0.9759922 0.035058472802235646 1
692 0 -2.0080447 0.005960737 0.0086252576106082991 0
693 0 -1.8253044 0.009010686 0.013058593637538885 0
694 0 -1.7690041 0.010231111 0.014836399901516065 0
695 0 -2.1563811 0.004258804 0.0061572760868608065 0
696 1 2.5274475 0.9945974 0.00781547081749355 1
697 1 1.4814918 0.9444188 0.082501352535462646 1
698 1 1.8482563 0.9751135 0.036357924898776386 1

Просмотреть файл

@ -0,0 +1,56 @@
maml.exe CV tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} threads=- dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 800 instances with missing features during training (over 100 iterations; 8 inst/iter)
Training calibrator.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 800 instances with missing features during training (over 100 iterations; 8 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 132 | 2 | 0.9851
negative || 8 | 212 | 0.9636
||======================
Precision || 0.9429 | 0.9907 |
OVERALL 0/1 ACCURACY: 0.971751
LOG LOSS/instance: 0.136411
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.857460
AUC: 0.994199
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 98 | 7 | 0.9333
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9703 | 0.9693 |
OVERALL 0/1 ACCURACY: 0.969605
LOG LOSS/instance: 0.118826
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.868476
AUC: 0.997577
OVERALL RESULTS
---------------------------------------
AUC: 0.995888 (0.0017)
Accuracy: 0.970678 (0.0011)
Positive precision: 0.956577 (0.0137)
Positive recall: 0.959204 (0.0259)
Negative precision: 0.979976 (0.0107)
Negative recall: 0.975122 (0.0115)
Log-loss: 0.127618 (0.0088)
Log-loss reduction: 0.862968 (0.0055)
F1 Score: 0.957480 (0.0060)
AUPRC: 0.992003 (0.0026)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC /lr /iter Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.995888 0.970678 0.956577 0.959204 0.979976 0.975122 0.127618 0.862968 0.95748 0.992003 0.01 100 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} threads=- dout=%Output% data=%Data% seed=1 /lr:0.01;/iter:100

Просмотреть файл

@ -0,0 +1,58 @@
maml.exe CV tr=AveragedPerceptron threads=- cali=PAV dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
PAV calibrator: piecewise function approximation has 5 components.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
PAV calibrator: piecewise function approximation has 6 components.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 133 | 1 | 0.9925
negative || 9 | 211 | 0.9591
||======================
Precision || 0.9366 | 0.9953 |
OVERALL 0/1 ACCURACY: 0.971751
LOG LOSS/instance: Infinity
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): -Infinity
AUC: 0.994403
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 100 | 5 | 0.9524
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9709 | 0.9779 |
OVERALL 0/1 ACCURACY: 0.975684
LOG LOSS/instance: 0.227705
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.747961
AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996011 (0.0016)
Accuracy: 0.973718 (0.0020)
Positive precision: 0.953747 (0.0171)
Positive recall: 0.972459 (0.0201)
Negative precision: 0.986580 (0.0087)
Negative recall: 0.972849 (0.0138)
Log-loss: Infinity (NaN)
Log-loss reduction: -Infinity (NaN)
F1 Score: 0.962653 (0.0011)
AUPRC: 0.992269 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 Infinity -Infinity 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali=PAV dout=%Output% data=%Data% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
5 1 11.925824 1 -0 1
6 0 -0.4527979 0.29372627 0.50170064939900283 0
8 0 -3.796255 1E-15 1.4415419267167138E-15 0
9 0 -3.8130417 1E-15 1.4415419267167138E-15 0
10 0 -4.7285223 1E-15 1.4415419267167138E-15 0
11 0 -4.606969 1E-15 1.4415419267167138E-15 0
18 1 7.3475924 1 -0 1
20 1 6.1389017 1 -0 1
21 1 7.1486177 1 -0 1
25 1 1.6632223 0.88235295 0.18057223417631088 1
28 0 -4.606969 1E-15 1.4415419267167138E-15 0
31 0 -4.2645645 1E-15 1.4415419267167138E-15 0
32 1 7.198575 1 -0 1
35 0 -4.606969 1E-15 1.4415419267167138E-15 0
37 0 -1.714282 0.1 0.15200309583369792 0
40 0 ? ? ? 0
41 1 2.5451746 0.88235295 0.18057223417631088 1
44 1 8.165841 1 -0 1
45 0 -4.602255 1E-15 1.4415419267167138E-15 0
46 1 5.6216097 1 -0 1
48 0 -3.379683 1E-15 1.4415419267167138E-15 0
50 1 2.8003244 0.88235295 0.18057223417631088 1
51 1 0.14775276 0.6666667 0.58496245772549416 1
52 1 4.696246 1 -0 1
54 1 6.743868 1 -0 1
56 1 6.5947094 1 -0 1
60 1 2.2064123 0.88235295 0.18057223417631088 1
63 1 0.8789625 0.6666667 0.58496245772549416 1
64 0 -4.8905344 1E-15 1.4415419267167138E-15 0
66 0 -3.697434 1E-15 1.4415419267167138E-15 0
68 1 9.899808 1 -0 1
69 0 -4.3595524 1E-15 1.4415419267167138E-15 0
70 0 -3.0557137 1E-15 1.4415419267167138E-15 0
71 1 7.555621 1 -0 1
72 0 -1.6769085 0.1 0.15200309583369792 0
73 1 7.7111273 1 -0 1
74 1 2.4994192 0.88235295 0.18057223417631088 1
76 0 -3.8396955 1E-15 1.4415419267167138E-15 0
77 0 -3.1438046 1E-15 1.4415419267167138E-15 0
79 0 -4.4265766 1E-15 1.4415419267167138E-15 0
82 0 -3.1870723 1E-15 1.4415419267167138E-15 0
88 0 -3.697434 1E-15 1.4415419267167138E-15 0
90 0 -4.54813 1E-15 1.4415419267167138E-15 0
91 0 -4.5069323 1E-15 1.4415419267167138E-15 0
92 0 -3.697434 1E-15 1.4415419267167138E-15 0
93 0 -4.8905344 1E-15 1.4415419267167138E-15 0
95 0 -4.54813 1E-15 1.4415419267167138E-15 0
96 0 -4.790498 1E-15 1.4415419267167138E-15 0
97 0 -3.413869 1E-15 1.4415419267167138E-15 0
98 1 9.294541 1 -0 1
99 1 9.621308 1 -0 1
100 1 5.1074314 1 -0 1
102 0 -3.3471546 1E-15 1.4415419267167138E-15 0
104 1 11.120679 1 -0 1
105 1 2.1430416 0.88235295 0.18057223417631088 1
106 1 8.747506 1 -0 1
108 0 -4.5133796 1E-15 1.4415419267167138E-15 0
109 1 6.3912544 1 -0 1
111 1 4.1208715 0.88235295 0.18057223417631088 1
112 1 7.006652 1 -0 1
113 1 9.855811 1 -0 1
115 0 -3.4127908 1E-15 1.4415419267167138E-15 0
117 1 8.638749 1 -0 1
120 0 -4.0389752 1E-15 1.4415419267167138E-15 0
121 0 -3.0156007 1E-15 1.4415419267167138E-15 0
122 1 10.533509 1 -0 1
123 1 4.6804914 1 -0 1
125 0 -4.8905344 1E-15 1.4415419267167138E-15 0
128 1 4.9510326 1 -0 1
129 0 -3.789802 1E-15 1.4415419267167138E-15 0
131 0 -4.2645645 1E-15 1.4415419267167138E-15 0
132 1 9.206267 1 -0 1
133 0 -4.1348257 1E-15 1.4415419267167138E-15 0
137 0 -4.6658077 1E-15 1.4415419267167138E-15 0
138 0 -3.6895585 1E-15 1.4415419267167138E-15 0
141 0 -4.9493732 1E-15 1.4415419267167138E-15 0
144 0 -4.606969 1E-15 1.4415419267167138E-15 0
145 0 ? ? ? 0
147 0 -4.2551055 1E-15 1.4415419267167138E-15 0
150 0 -4.7285223 1E-15 1.4415419267167138E-15 0
151 1 5.0748987 1 -0 1
152 1 8.881612 1 -0 1
154 0 -5.232939 1E-15 1.4415419267167138E-15 0
156 0 -4.3134584 1E-15 1.4415419267167138E-15 0
161 0 -3.5088568 1E-15 1.4415419267167138E-15 0
164 0 ? ? ? 0
167 1 7.490014 1 -0 1
169 0 -5.254455 1E-15 1.4415419267167138E-15 0
171 0 -4.54813 1E-15 1.4415419267167138E-15 0
173 1 14.494651 1 -0 1
174 1 5.7514915 1 -0 1
176 0 -4.2645645 1E-15 1.4415419267167138E-15 0
177 1 6.138485 1 -0 1
179 1 2.8749352 0.88235295 0.18057223417631088 1
180 0 -4.7285223 1E-15 1.4415419267167138E-15 0
181 0 -5.232939 1E-15 1.4415419267167138E-15 0
183 1 9.06396 1 -0 1
187 1 12.00492 1 -0 1
188 1 8.1324835 1 -0 1
189 0 -3.6207743 1E-15 1.4415419267167138E-15 0
191 1 10.797473 1 -0 1
192 0 -3.7562728 1E-15 1.4415419267167138E-15 0
196 0 5.8725023 1 Infinity 1
198 0 -5.232939 1E-15 1.4415419267167138E-15 0
199 0 -4.3234034 1E-15 1.4415419267167138E-15 0
201 1 9.770606 1 -0 1
202 0 -4.54813 1E-15 1.4415419267167138E-15 0
204 0 -4.54813 1E-15 1.4415419267167138E-15 0
205 1 12.087651 1 -0 1
206 1 6.641531 1 -0 1
207 0 -4.7285223 1E-15 1.4415419267167138E-15 0
209 0 -3.5942607 1E-15 1.4415419267167138E-15 0
210 1 13.547517 1 -0 1
211 1 9.089206 1 -0 1
212 0 -4.54813 1E-15 1.4415419267167138E-15 0
216 0 -4.8905344 1E-15 1.4415419267167138E-15 0
218 1 7.7499733 1 -0 1
219 0 -2.4297438 1E-15 1.4415419267167138E-15 0
223 1 5.4305964 1 -0 1
226 1 9.166205 1 -0 1
228 0 -4.7285223 1E-15 1.4415419267167138E-15 0
233 1 5.6998806 1 -0 1
237 1 6.476473 1 -0 1
239 1 5.16975 1 -0 1
240 0 -1.9057708 0.1 0.15200309583369792 0
241 0 -3.8436408 1E-15 1.4415419267167138E-15 0
242 0 -4.2645645 1E-15 1.4415419267167138E-15 0
244 0 -4.54813 1E-15 1.4415419267167138E-15 0
246 1 11.068809 1 -0 1
247 1 3.1855068 0.88235295 0.18057223417631088 1
248 0 -2.7545462 1E-15 1.4415419267167138E-15 0
249 0 ? ? ? 0
250 0 -4.655863 1E-15 1.4415419267167138E-15 0
252 0 4.2659445 0.96023005 4.6521775310747371 1
254 1 7.919628 1 -0 1
257 0 -4.3234034 1E-15 1.4415419267167138E-15 0
258 0 -3.9809995 1E-15 1.4415419267167138E-15 0
259 0 4.3407545 1 Infinity 1
260 1 8.330071 1 -0 1
262 1 9.629434 1 -0 1
267 1 3.677929 0.88235295 0.18057223417631088 1
268 1 8.609313 1 -0 1
269 0 -4.54813 1E-15 1.4415419267167138E-15 0
271 0 -3.413869 1E-15 1.4415419267167138E-15 0
272 1 3.677929 0.88235295 0.18057223417631088 1
275 0 ? ? ? 0
276 0 -4.3234034 1E-15 1.4415419267167138E-15 0
277 0 -4.8905344 1E-15 1.4415419267167138E-15 0
278 0 -4.54813 1E-15 1.4415419267167138E-15 0
279 1 6.636299 1 -0 1
280 0 -3.9809995 1E-15 1.4415419267167138E-15 0
283 1 5.5930414 1 -0 1
284 1 6.3683033 1 -0 1
285 1 13.342931 1 -0 1
288 1 2.133194 0.88235295 0.18057223417631088 1
290 0 -5.232939 1E-15 1.4415419267167138E-15 0
291 0 -4.54813 1E-15 1.4415419267167138E-15 0
293 1 4.659646 1 -0 1
296 0 2.0631151 0.88235295 3.0874629272416674 1
297 0 ? ? ? 0
299 1 6.110528 1 -0 1
300 1 6.6979437 1 -0 1
301 0 -4.54813 1E-15 1.4415419267167138E-15 0
303 0 -4.54813 1E-15 1.4415419267167138E-15 0
304 1 4.865142 1 -0 1
308 1 6.804653 1 -0 1
309 0 -1.4760427 0.1 0.15200309583369792 0
311 0 -5.232939 1E-15 1.4415419267167138E-15 0
312 1 3.2489738 0.88235295 0.18057223417631088 1
314 0 -5.070926 1E-15 1.4415419267167138E-15 0
316 1 4.409379 1 -0 1
317 1 8.798545 1 -0 1
319 0 2.7989082 0.88235295 3.0874629272416674 1
321 0 ? ? ? 0
323 1 4.8855352 1 -0 1
327 0 -4.8905344 1E-15 1.4415419267167138E-15 0
328 1 4.1213074 0.88235295 0.18057223417631088 1
329 1 6.918497 1 -0 1
331 0 -3.1255894 1E-15 1.4415419267167138E-15 0
332 0 -2.8317442 1E-15 1.4415419267167138E-15 0
333 1 4.9879713 1 -0 1
336 1 5.3119774 1 -0 1
338 0 -5.070926 1E-15 1.4415419267167138E-15 0
343 0 -5.232939 1E-15 1.4415419267167138E-15 0
344 1 9.373975 1 -0 1
346 0 -2.8051786 1E-15 1.4415419267167138E-15 0
347 0 -5.0361757 1E-15 1.4415419267167138E-15 0
348 1 0.09843826 0.6666667 0.58496245772549416 1
349 1 3.543579 0.88235295 0.18057223417631088 1
350 0 -3.7809262 1E-15 1.4415419267167138E-15 0
352 0 1.515585 0.88235295 3.0874629272416674 1
353 1 9.391767 1 -0 1
354 0 -4.8905344 1E-15 1.4415419267167138E-15 0
355 0 -3.6708689 1E-15 1.4415419267167138E-15 0
358 1 6.2604895 1 -0 1
360 1 15.035466 1 -0 1
361 1 6.5571547 1 -0 1
366 1 13.467437 1 -0 1
368 0 -4.532379 1E-15 1.4415419267167138E-15 0
370 0 -3.0555735 1E-15 1.4415419267167138E-15 0
371 0 -4.532379 1E-15 1.4415419267167138E-15 0
373 0 -3.5973973 1E-15 1.4415419267167138E-15 0
376 0 -4.8905344 1E-15 1.4415419267167138E-15 0
377 0 -5.070926 1E-15 1.4415419267167138E-15 0
378 0 -3.477808 1E-15 1.4415419267167138E-15 0
379 0 -1.5486526 0.1 0.15200309583369792 0
381 1 8.643491 1 -0 1
383 0 -4.9493732 1E-15 1.4415419267167138E-15 0
384 0 -4.9493732 1E-15 1.4415419267167138E-15 0
387 0 -1.9204493 0.1 0.15200309583369792 0
388 0 -4.418391 1E-15 1.4415419267167138E-15 0
389 0 -2.9322662 1E-15 1.4415419267167138E-15 0
391 1 9.323798 1 -0 1
392 0 -4.3234034 1E-15 1.4415419267167138E-15 0
395 0 -4.3234034 1E-15 1.4415419267167138E-15 0
396 0 -3.9809995 1E-15 1.4415419267167138E-15 0
398 0 -3.9080298 1E-15 1.4415419267167138E-15 0
399 0 -4.305583 1E-15 1.4415419267167138E-15 0
404 0 -4.499814 1E-15 1.4415419267167138E-15 0
406 0 -3.4627624 1E-15 1.4415419267167138E-15 0
409 0 -3.973124 1E-15 1.4415419267167138E-15 0
413 0 -3.063589 1E-15 1.4415419267167138E-15 0
414 1 6.5001116 1 -0 1
415 0 -0.5379734 0.15984297 0.25126909064706171 0
416 1 8.981729 1 -0 1
418 0 -1.7460232 0.1 0.15200309583369792 0
419 0 -3.9546041 1E-15 1.4415419267167138E-15 0
422 0 -2.1661267 1E-15 1.4415419267167138E-15 0
423 0 -3.0557137 1E-15 1.4415419267167138E-15 0
428 0 -4.8905344 1E-15 1.4415419267167138E-15 0
429 0 -4.606969 1E-15 1.4415419267167138E-15 0
430 0 -4.2483644 1E-15 1.4415419267167138E-15 0
434 0 5.678664 1 Infinity 1
436 1 4.8968487 1 -0 1
439 0 -4.098677 1E-15 1.4415419267167138E-15 0
440 1 7.6677313 1 -0 1
441 0 -1.6798639 0.1 0.15200309583369792 0
442 0 -4.0051136 1E-15 1.4415419267167138E-15 0
449 1 10.087396 1 -0 1
450 0 -3.9024792 1E-15 1.4415419267167138E-15 0
451 0 -4.098677 1E-15 1.4415419267167138E-15 0
452 0 -4.348057 1E-15 1.4415419267167138E-15 0
453 1 8.068193 1 -0 1
454 0 -4.3153887 1E-15 1.4415419267167138E-15 0
455 1 0.4596901 0.6666667 0.58496245772549416 1
456 1 8.942605 1 -0 1
457 1 8.346686 1 -0 1
464 0 -4.3822427 1E-15 1.4415419267167138E-15 0
465 1 8.953591 1 -0 1
466 1 8.690221 1 -0 1
467 1 7.4474792 1 -0 1
474 0 -4.098677 1E-15 1.4415419267167138E-15 0
480 0 -4.2790694 1E-15 1.4415419267167138E-15 0
482 1 14.295785 1 -0 1
483 1 10.273198 1 -0 1
484 0 -3.7483978 1E-15 1.4415419267167138E-15 0
487 1 12.309564 1 -0 1
489 1 -0.4385233 0.31616384 1.6612557298850197 0
492 0 -4.22023 1E-15 1.4415419267167138E-15 0
493 1 10.096398 1 -0 1
495 0 -4.5037956 1E-15 1.4415419267167138E-15 0
497 0 -4.155446 1E-15 1.4415419267167138E-15 0
501 0 -4.0398383 1E-15 1.4415419267167138E-15 0
502 0 -3.8809628 1E-15 1.4415419267167138E-15 0
504 0 -5.232939 1E-15 1.4415419267167138E-15 0
507 0 -3.867828 1E-15 1.4415419267167138E-15 0
510 0 -5.232939 1E-15 1.4415419267167138E-15 0
513 0 -4.5037956 1E-15 1.4415419267167138E-15 0
514 1 9.508458 1 -0 1
517 0 -5.070926 1E-15 1.4415419267167138E-15 0
519 1 6.943595 1 -0 1
520 0 -5.0525465 1E-15 1.4415419267167138E-15 0
521 0 -4.2018504 1E-15 1.4415419267167138E-15 0
522 1 4.3094044 0.9868354 0.019118596181580929 1
523 1 6.7598047 1 -0 1
527 0 -3.697434 1E-15 1.4415419267167138E-15 0
528 0 -2.955677 1E-15 1.4415419267167138E-15 0
529 0 -4.22023 1E-15 1.4415419267167138E-15 0
531 0 -3.4627624 1E-15 1.4415419267167138E-15 0
532 0 -4.7285223 1E-15 1.4415419267167138E-15 0
533 0 -4.3234034 1E-15 1.4415419267167138E-15 0
534 0 -4.606969 1E-15 1.4415419267167138E-15 0
535 0 -3.6886954 1E-15 1.4415419267167138E-15 0
538 0 -4.0398383 1E-15 1.4415419267167138E-15 0
539 0 -3.4727077 1E-15 1.4415419267167138E-15 0
540 0 -3.3012362 1E-15 1.4415419267167138E-15 0
541 0 -4.6658077 1E-15 1.4415419267167138E-15 0
544 0 -3.7475343 1E-15 1.4415419267167138E-15 0
546 1 11.016192 1 -0 1
547 0 -5.1297655 1E-15 1.4415419267167138E-15 0
548 0 -4.8462 1E-15 1.4415419267167138E-15 0
549 1 5.5535192 1 -0 1
557 0 -3.7809262 1E-15 1.4415419267167138E-15 0
558 0 -4.606969 1E-15 1.4415419267167138E-15 0
559 0 -3.7562728 1E-15 1.4415419267167138E-15 0
560 0 -3.413869 1E-15 1.4415419267167138E-15 0
561 0 -3.413869 1E-15 1.4415419267167138E-15 0
563 0 -4.3234034 1E-15 1.4415419267167138E-15 0
565 1 11.259841 1 -0 1
566 0 -3.6307197 1E-15 1.4415419267167138E-15 0
569 1 9.242663 1 -0 1
577 0 -4.8905344 1E-15 1.4415419267167138E-15 0
578 0 -4.8905344 1E-15 1.4415419267167138E-15 0
581 1 8.654239 1 -0 1
582 1 8.128011 1 -0 1
584 0 -3.123908 1E-15 1.4415419267167138E-15 0
586 1 12.971318 1 -0 1
590 1 4.1888075 0.9130083 0.13130016254865498 1
593 0 -3.7483978 1E-15 1.4415419267167138E-15 0
594 1 5.7850237 1 -0 1
600 0 -4.3234034 1E-15 1.4415419267167138E-15 0
602 0 -4.0398383 1E-15 1.4415419267167138E-15 0
604 1 5.138942 1 -0 1
606 0 -4.223367 1E-15 1.4415419267167138E-15 0
607 0 -5.232939 1E-15 1.4415419267167138E-15 0
609 0 -4.098677 1E-15 1.4415419267167138E-15 0
612 1 15.565835 1 -0 1
613 0 -4.153376 1E-15 1.4415419267167138E-15 0
614 0 -4.787361 1E-15 1.4415419267167138E-15 0
617 0 ? ? ? 0
618 0 -4.0398383 1E-15 1.4415419267167138E-15 0
619 0 -3.7562728 1E-15 1.4415419267167138E-15 0
621 0 0.0042419434 0.6666667 1.5849625867124844 1
622 0 -2.5211115 1E-15 1.4415419267167138E-15 0
624 0 -3.7777896 1E-15 1.4415419267167138E-15 0
627 0 -3.1292257 1E-15 1.4415419267167138E-15 0
629 0 -4.3822427 1E-15 1.4415419267167138E-15 0
633 1 4.158328 0.89434934 0.16108963062321399 1
634 0 -4.6658077 1E-15 1.4415419267167138E-15 0
638 0 -4.3822427 1E-15 1.4415419267167138E-15 0
639 0 -3.7809262 1E-15 1.4415419267167138E-15 0
641 0 -4.3234034 1E-15 1.4415419267167138E-15 0
642 0 -4.3234034 1E-15 1.4415419267167138E-15 0
644 0 -4.9493732 1E-15 1.4415419267167138E-15 0
645 0 -4.3234034 1E-15 1.4415419267167138E-15 0
649 0 -4.3234034 1E-15 1.4415419267167138E-15 0
652 0 -3.5676956 1E-15 1.4415419267167138E-15 0
653 0 -4.0398383 1E-15 1.4415419267167138E-15 0
654 0 -3.9809995 1E-15 1.4415419267167138E-15 0
656 0 -3.7562728 1E-15 1.4415419267167138E-15 0
657 0 0.6928787 0.6666667 1.5849625867124844 1
660 0 -4.8905344 1E-15 1.4415419267167138E-15 0
661 0 -3.697434 1E-15 1.4415419267167138E-15 0
665 0 -5.232939 1E-15 1.4415419267167138E-15 0
668 1 3.362691 0.88235295 0.18057223417631088 1
670 1 6.9357576 1 -0 1
678 0 -5.232939 1E-15 1.4415419267167138E-15 0
679 0 -4.9493732 1E-15 1.4415419267167138E-15 0
680 1 15.087735 1 -0 1
681 1 9.870067 1 -0 1
682 0 -3.2252913 1E-15 1.4415419267167138E-15 0
683 0 -5.232939 1E-15 1.4415419267167138E-15 0
685 0 -5.232939 1E-15 1.4415419267167138E-15 0
688 0 -4.3822427 1E-15 1.4415419267167138E-15 0
689 0 -3.214981 1E-15 1.4415419267167138E-15 0
691 1 5.504386 1 -0 1
692 0 -4.6658077 1E-15 1.4415419267167138E-15 0
693 0 -4.035124 1E-15 1.4415419267167138E-15 0
694 0 -4.030379 1E-15 1.4415419267167138E-15 0
696 1 7.6071005 1 -0 1
697 1 5.0033855 1 -0 1
698 1 6.1210938 1 -0 1
0 0 -3.4721127 1E-15 1.4415419267167138E-15 0
1 0 2.4163914 0.9047619 3.3923175087700881 1
2 0 -4.045404 1E-15 1.4415419267167138E-15 0
3 0 2.9251795 0.9047619 3.3923175087700881 1
4 0 -3.5088272 1E-15 1.4415419267167138E-15 0
7 0 -4.6705537 1E-15 1.4415419267167138E-15 0
12 1 -0.34343147 0.51152515 0.96712290902641618 0
13 0 -4.618695 1E-15 1.4415419267167138E-15 0
14 1 7.3602133 1 -0 1
15 1 0.6494303 0.6 0.73696553683865695 1
16 0 -4.220706 1E-15 1.4415419267167138E-15 0
17 0 -3.955172 1E-15 1.4415419267167138E-15 0
19 0 -2.9890532 1E-15 1.4415419267167138E-15 0
22 0 -4.7037654 1E-15 1.4415419267167138E-15 0
23 1 ? ? ? 0
24 0 -5.4043503 1E-15 1.4415419267167138E-15 0
26 0 -4.390918 1E-15 1.4415419267167138E-15 0
27 0 -3.7376466 1E-15 1.4415419267167138E-15 0
29 0 -5.4339433 1E-15 1.4415419267167138E-15 0
30 0 -4.649441 1E-15 1.4415419267167138E-15 0
33 0 -4.6981187 1E-15 1.4415419267167138E-15 0
34 0 -4.453028 1E-15 1.4415419267167138E-15 0
36 1 7.832773 1 -0 1
38 1 4.928609 0.93333334 0.09953566740867692 1
39 1 1.079258 0.6 0.73696553683865695 1
42 1 6.8985863 1 -0 1
43 1 -0.49528694 0.5 1 0
47 0 -5.669884 1E-15 1.4415419267167138E-15 0
49 1 5.3024063 0.93333334 0.09953566740867692 1
53 1 5.116103 0.93333334 0.09953566740867692 1
55 1 4.4195347 0.93333334 0.09953566740867692 1
57 1 0.5701313 0.6 0.73696553683865695 1
58 1 1.1371031 0.6 0.73696553683865695 1
59 1 1.6442327 0.9047619 0.14438990028345636 1
61 0 -5.277056 1E-15 1.4415419267167138E-15 0
62 1 5.7670774 1 -0 1
65 1 2.7867746 0.9047619 0.14438990028345636 1
67 1 2.9058533 0.9047619 0.14438990028345636 1
75 0 -4.2910423 1E-15 1.4415419267167138E-15 0
78 0 -3.652576 1E-15 1.4415419267167138E-15 0
80 0 -3.2955704 1E-15 1.4415419267167138E-15 0
81 0 -3.9975338 1E-15 1.4415419267167138E-15 0
83 0 -2.9832683 1E-15 1.4415419267167138E-15 0
84 1 6.5823994 1 -0 1
85 1 4.7604074 0.93333334 0.09953566740867692 1
86 1 1.466999 0.9047619 0.14438990028345636 1
87 1 5.223544 0.93333334 0.09953566740867692 1
89 0 -5.017977 1E-15 1.4415419267167138E-15 0
94 0 -4.921291 1E-15 1.4415419267167138E-15 0
101 1 -0.85990334 0.4151543 1.2682804255962932 0
103 1 0.36755466 0.6 0.73696553683865695 1
107 1 4.617798 0.93333334 0.09953566740867692 1
110 0 -3.1312823 1E-15 1.4415419267167138E-15 0
114 0 -2.8847933 1E-15 1.4415419267167138E-15 0
116 0 -0.40737772 0.5 1 0
118 0 -5.258412 1E-15 1.4415419267167138E-15 0
119 0 -3.7868814 1E-15 1.4415419267167138E-15 0
124 1 5.0384197 0.93333334 0.09953566740867692 1
126 1 6.4765244 1 -0 1
127 0 -4.4382315 1E-15 1.4415419267167138E-15 0
130 0 -3.2361717 1E-15 1.4415419267167138E-15 0
134 0 -4.75809 1E-15 1.4415419267167138E-15 0
135 0 -2.670867 1E-15 1.4415419267167138E-15 0
136 0 -4.220706 1E-15 1.4415419267167138E-15 0
139 0 ? ? ? 0
140 0 -4.9692993 1E-15 1.4415419267167138E-15 0
142 1 3.7043686 0.93333334 0.09953566740867692 1
143 0 -4.364107 1E-15 1.4415419267167138E-15 0
146 1 0.3614874 0.6 0.73696553683865695 1
148 0 -2.3573046 1E-15 1.4415419267167138E-15 0
149 1 8.756336 1 -0 1
153 0 -3.7005844 1E-15 1.4415419267167138E-15 0
155 1 3.1619139 0.9047619 0.14438990028345636 1
157 0 -4.921291 1E-15 1.4415419267167138E-15 0
158 0 ? ? ? 0
159 1 10.452137 1 -0 1
160 1 7.997595 1 -0 1
162 0 -4.4382315 1E-15 1.4415419267167138E-15 0
163 0 -3.6690454 1E-15 1.4415419267167138E-15 0
165 0 -3.3581352 1E-15 1.4415419267167138E-15 0
166 1 6.3355865 1 -0 1
168 0 -4.4382315 1E-15 1.4415419267167138E-15 0
170 0 -4.9692993 1E-15 1.4415419267167138E-15 0
172 0 -5.669884 1E-15 1.4415419267167138E-15 0
175 1 6.0381765 1 -0 1
178 0 -3.955172 1E-15 1.4415419267167138E-15 0
182 0 -2.9890532 1E-15 1.4415419267167138E-15 0
184 1 5.409272 1 -0 1
185 0 -4.8669662 1E-15 1.4415419267167138E-15 0
186 1 3.9876003 0.93333334 0.09953566740867692 1
190 1 10.521242 1 -0 1
193 0 -5.4043503 1E-15 1.4415419267167138E-15 0
194 0 -4.4382315 1E-15 1.4415419267167138E-15 0
195 0 -3.955172 1E-15 1.4415419267167138E-15 0
197 0 -2.8025956 1E-15 1.4415419267167138E-15 0
200 1 8.673523 1 -0 1
203 0 -3.4721127 1E-15 1.4415419267167138E-15 0
208 0 -5.3500257 1E-15 1.4415419267167138E-15 0
213 1 12.300528 1 -0 1
214 1 11.895983 1 -0 1
215 1 6.600219 1 -0 1
217 0 -5.4043503 1E-15 1.4415419267167138E-15 0
220 0 -5.181178 1E-15 1.4415419267167138E-15 0
221 1 7.9662914 1 -0 1
222 1 -2.1487255 1E-15 49.828921418077073 0
224 1 8.4735565 1 -0 1
225 0 -5.669884 1E-15 1.4415419267167138E-15 0
227 1 6.748211 1 -0 1
229 1 10.504805 1 -0 1
230 1 4.829337 0.93333334 0.09953566740867692 1
231 1 6.912092 1 -0 1
232 0 1.0722923 0.6 1.3219281808786905 1
234 0 -2.7037287 1E-15 1.4415419267167138E-15 0
235 0 ? ? ? 0
236 1 9.440506 1 -0 1
238 1 10.690645 1 -0 1
243 0 -3.3019714 1E-15 1.4415419267167138E-15 0
245 0 -2.8561125 1E-15 1.4415419267167138E-15 0
251 1 7.355525 1 -0 1
253 1 6.8985863 1 -0 1
255 1 3.7452059 0.93333334 0.09953566740867692 1
256 0 -4.9692993 1E-15 1.4415419267167138E-15 0
261 1 9.009869 1 -0 1
263 1 7.14557 1 -0 1
264 1 4.0145664 0.93333334 0.09953566740867692 1
265 0 -2.5156918 1E-15 1.4415419267167138E-15 0
266 1 7.325534 1 -0 1
270 1 5.5723915 1 -0 1
273 1 0.037317276 0.6 0.73696553683865695 1
274 0 -4.2340226 1E-15 1.4415419267167138E-15 0
281 0 -4.6981187 1E-15 1.4415419267167138E-15 0
282 1 2.860157 0.9047619 0.14438990028345636 1
286 1 12.544172 1 -0 1
287 0 -4.75809 1E-15 1.4415419267167138E-15 0
289 1 6.6595707 1 -0 1
292 1 ? ? ? 0
294 0 ? ? ? 0
295 1 5.621521 1 -0 1
298 0 -2.4584541 1E-15 1.4415419267167138E-15 0
302 1 12.725582 1 -0 1
305 1 8.040863 1 -0 1
306 0 -5.4043503 1E-15 1.4415419267167138E-15 0
307 0 -5.4043503 1E-15 1.4415419267167138E-15 0
310 0 -5.2411494 1E-15 1.4415419267167138E-15 0
313 0 -5.935418 1E-15 1.4415419267167138E-15 0
315 0 ? ? ? 0
318 0 -5.567325 1E-15 1.4415419267167138E-15 0
320 1 5.5611877 1 -0 1
322 0 -4.4382315 1E-15 1.4415419267167138E-15 0
324 0 -5.4043503 1E-15 1.4415419267167138E-15 0
325 0 -3.7860875 1E-15 1.4415419267167138E-15 0
326 1 3.6223297 0.9066624 0.14136263119498629 1
330 1 4.9927444 0.93333334 0.09953566740867692 1
334 1 5.514736 1 -0 1
335 0 -5.935418 1E-15 1.4415419267167138E-15 0
337 0 -5.4043503 1E-15 1.4415419267167138E-15 0
339 1 5.1161976 0.93333334 0.09953566740867692 1
340 1 5.5803356 1 -0 1
341 0 -5.4043503 1E-15 1.4415419267167138E-15 0
342 0 -5.4523587 1E-15 1.4415419267167138E-15 0
345 0 -5.935418 1E-15 1.4415419267167138E-15 0
351 0 -4.921291 1E-15 1.4415419267167138E-15 0
356 1 -0.9127703 0.2567953 1.9613093694259927 0
357 1 9.874601 1 -0 1
359 1 4.653247 0.93333334 0.09953566740867692 1
362 0 -3.5174994 1E-15 1.4415419267167138E-15 0
363 0 -1.6840982 1E-15 1.4415419267167138E-15 0
364 0 -4.921291 1E-15 1.4415419267167138E-15 0
365 0 -5.186825 1E-15 1.4415419267167138E-15 0
367 1 9.040358 1 -0 1
369 0 -5.1140847 1E-15 1.4415419267167138E-15 0
372 0 -3.9699688 1E-15 1.4415419267167138E-15 0
374 0 -4.453028 1E-15 1.4415419267167138E-15 0
375 0 -5.935418 1E-15 1.4415419267167138E-15 0
380 0 -5.935418 1E-15 1.4415419267167138E-15 0
382 0 -3.5015903 1E-15 1.4415419267167138E-15 0
385 0 -3.4273863 1E-15 1.4415419267167138E-15 0
386 1 5.084236 0.93333334 0.09953566740867692 1
390 0 -5.4467115 1E-15 1.4415419267167138E-15 0
393 0 -5.8810935 1E-15 1.4415419267167138E-15 0
394 0 -4.909887 1E-15 1.4415419267167138E-15 0
397 0 -4.48624 1E-15 1.4415419267167138E-15 0
400 1 7.3133698 1 -0 1
401 0 -4.9692993 1E-15 1.4415419267167138E-15 0
402 0 -2.7191267 1E-15 1.4415419267167138E-15 0
403 0 -3.7908158 1E-15 1.4415419267167138E-15 0
405 0 -5.669884 1E-15 1.4415419267167138E-15 0
407 0 -5.669884 1E-15 1.4415419267167138E-15 0
408 0 -3.537508 1E-15 1.4415419267167138E-15 0
410 0 -5.669884 1E-15 1.4415419267167138E-15 0
411 0 ? ? ? 0
412 1 7.6394253 1 -0 1
417 0 -5.669884 1E-15 1.4415419267167138E-15 0
420 0 -2.696971 1E-15 1.4415419267167138E-15 0
421 1 9.498289 1 -0 1
424 0 -4.9692993 1E-15 1.4415419267167138E-15 0
425 1 11.849485 1 -0 1
426 0 -2.2324486 1E-15 1.4415419267167138E-15 0
427 1 4.1596613 0.93333334 0.09953566740867692 1
431 0 -2.9302087 1E-15 1.4415419267167138E-15 0
432 0 -3.5334377 1E-15 1.4415419267167138E-15 0
433 0 -4.013695 1E-15 1.4415419267167138E-15 0
435 1 7.0216722 1 -0 1
437 0 -4.48624 1E-15 1.4415419267167138E-15 0
438 0 -3.5384207 1E-15 1.4415419267167138E-15 0
443 0 -5.54259 1E-15 1.4415419267167138E-15 0
444 0 -2.6761098 1E-15 1.4415419267167138E-15 0
445 0 -5.4523587 1E-15 1.4415419267167138E-15 0
446 0 -5.935418 1E-15 1.4415419267167138E-15 0
447 0 -4.0031805 1E-15 1.4415419267167138E-15 0
448 0 -5.8810935 1E-15 1.4415419267167138E-15 0
458 0 -3.7524428 1E-15 1.4415419267167138E-15 0
459 0 -3.5017056 1E-15 1.4415419267167138E-15 0
460 0 -3.5568361 1E-15 1.4415419267167138E-15 0
461 0 -3.3979883 1E-15 1.4415419267167138E-15 0
462 0 -3.0737762 1E-15 1.4415419267167138E-15 0
463 0 -4.282031 1E-15 1.4415419267167138E-15 0
468 0 -4.48624 1E-15 1.4415419267167138E-15 0
469 0 -5.419147 1E-15 1.4415419267167138E-15 0
470 0 -4.649441 1E-15 1.4415419267167138E-15 0
471 0 -3.0737762 1E-15 1.4415419267167138E-15 0
472 0 -3.4657965 1E-15 1.4415419267167138E-15 0
473 0 -4.48624 1E-15 1.4415419267167138E-15 0
475 0 -4.9692993 1E-15 1.4415419267167138E-15 0
476 0 -4.2355022 1E-15 1.4415419267167138E-15 0
477 0 -4.48624 1E-15 1.4415419267167138E-15 0
478 0 -3.744658 1E-15 1.4415419267167138E-15 0
479 1 6.673234 1 -0 1
481 0 -2.5658808 1E-15 1.4415419267167138E-15 0
485 0 -4.6490927 1E-15 1.4415419267167138E-15 0
486 0 -4.649441 1E-15 1.4415419267167138E-15 0
488 1 0.95910263 0.6 0.73696553683865695 1
490 0 -5.935418 1E-15 1.4415419267167138E-15 0
491 1 5.556222 1 -0 1
494 0 -0.01569748 0.5942614 1.3013775627342616 0
496 0 -5.8810935 1E-15 1.4415419267167138E-15 0
498 0 -4.220706 1E-15 1.4415419267167138E-15 0
499 0 -4.220706 1E-15 1.4415419267167138E-15 0
500 0 -2.9890532 1E-15 1.4415419267167138E-15 0
503 0 -3.955172 1E-15 1.4415419267167138E-15 0
505 0 -4.4522543 1E-15 1.4415419267167138E-15 0
506 1 8.766859 1 -0 1
508 0 -4.0031805 1E-15 1.4415419267167138E-15 0
509 0 -5.4523587 1E-15 1.4415419267167138E-15 0
511 0 -3.7376466 1E-15 1.4415419267167138E-15 0
512 0 -4.0031805 1E-15 1.4415419267167138E-15 0
515 1 7.3749876 1 -0 1
516 0 -5.8810935 1E-15 1.4415419267167138E-15 0
518 0 -4.49539 1E-15 1.4415419267167138E-15 0
524 0 -4.7037654 1E-15 1.4415419267167138E-15 0
525 0 -4.746127 1E-15 1.4415419267167138E-15 0
526 0 -4.48624 1E-15 1.4415419267167138E-15 0
530 1 5.325205 0.93333334 0.09953566740867692 1
536 0 -3.4721127 1E-15 1.4415419267167138E-15 0
537 0 -3.2213755 1E-15 1.4415419267167138E-15 0
542 0 -3.4861355 1E-15 1.4415419267167138E-15 0
543 0 -4.220706 1E-15 1.4415419267167138E-15 0
545 0 -3.7376466 1E-15 1.4415419267167138E-15 0
550 0 -4.7037654 1E-15 1.4415419267167138E-15 0
551 0 -5.4043503 1E-15 1.4415419267167138E-15 0
552 0 -3.2360563 1E-15 1.4415419267167138E-15 0
553 0 -1.4225531 1E-15 1.4415419267167138E-15 0
554 0 -4.9692993 1E-15 1.4415419267167138E-15 0
555 0 -1.7431297 1E-15 1.4415419267167138E-15 0
556 0 -2.9508896 1E-15 1.4415419267167138E-15 0
562 0 -5.4043503 1E-15 1.4415419267167138E-15 0
564 0 -3.7509632 1E-15 1.4415419267167138E-15 0
567 0 -3.4350505 1E-15 1.4415419267167138E-15 0
568 1 3.5748358 0.9047619 0.14438990028345636 1
570 1 6.466877 1 -0 1
571 1 9.048693 1 -0 1
572 0 -4.7037654 1E-15 1.4415419267167138E-15 0
573 0 -5.669884 1E-15 1.4415419267167138E-15 0
574 1 5.533701 1 -0 1
575 0 -3.2213755 1E-15 1.4415419267167138E-15 0
576 0 -3.7376466 1E-15 1.4415419267167138E-15 0
579 0 -5.4043503 1E-15 1.4415419267167138E-15 0
580 0 -3.4869094 1E-15 1.4415419267167138E-15 0
583 0 -4.9692993 1E-15 1.4415419267167138E-15 0
585 0 -5.935418 1E-15 1.4415419267167138E-15 0
587 0 -3.5334377 1E-15 1.4415419267167138E-15 0
588 1 4.6442146 0.93333334 0.09953566740867692 1
589 0 -4.0031805 1E-15 1.4415419267167138E-15 0
591 1 4.243067 0.93333334 0.09953566740867692 1
592 1 4.8517904 0.93333334 0.09953566740867692 1
595 0 -3.7376466 1E-15 1.4415419267167138E-15 0
596 0 -3.9699688 1E-15 1.4415419267167138E-15 0
597 0 -2.9706378 1E-15 1.4415419267167138E-15 0
598 0 -4.7037654 1E-15 1.4415419267167138E-15 0
599 0 -2.9381208 1E-15 1.4415419267167138E-15 0
601 0 -5.6155596 1E-15 1.4415419267167138E-15 0
603 1 3.1762505 0.9047619 0.14438990028345636 1
605 1 8.159748 1 -0 1
608 1 8.079367 1 -0 1
610 1 6.972576 1 -0 1
611 1 5.494137 1 -0 1
615 0 -3.7192311 1E-15 1.4415419267167138E-15 0
616 0 -4.7037654 1E-15 1.4415419267167138E-15 0
620 0 -4.7037654 1E-15 1.4415419267167138E-15 0
623 0 -5.935418 1E-15 1.4415419267167138E-15 0
625 0 -3.343666 1E-15 1.4415419267167138E-15 0
626 1 3.8647957 0.93333334 0.09953566740867692 1
628 0 -5.4523587 1E-15 1.4415419267167138E-15 0
630 0 -2.7601237 1E-15 1.4415419267167138E-15 0
631 0 -3.7376466 1E-15 1.4415419267167138E-15 0
632 0 -5.935418 1E-15 1.4415419267167138E-15 0
635 0 -4.2170873 1E-15 1.4415419267167138E-15 0
636 1 8.162586 1 -0 1
637 0 -2.370799 1E-15 1.4415419267167138E-15 0
640 0 -4.039895 1E-15 1.4415419267167138E-15 0
643 0 -5.935418 1E-15 1.4415419267167138E-15 0
646 0 -5.426158 1E-15 1.4415419267167138E-15 0
647 0 -5.4890733 1E-15 1.4415419267167138E-15 0
648 1 8.579456 1 -0 1
650 0 -3.6219683 1E-15 1.4415419267167138E-15 0
651 0 -4.9650173 1E-15 1.4415419267167138E-15 0
655 0 -4.7037654 1E-15 1.4415419267167138E-15 0
658 1 7.546404 1 -0 1
659 0 -5.935418 1E-15 1.4415419267167138E-15 0
662 0 -5.1684093 1E-15 1.4415419267167138E-15 0
663 0 -5.1684093 1E-15 1.4415419267167138E-15 0
664 0 -4.2574205 1E-15 1.4415419267167138E-15 0
666 0 -3.0702114 1E-15 1.4415419267167138E-15 0
667 0 -4.4382315 1E-15 1.4415419267167138E-15 0
669 1 6.9817867 1 -0 1
671 0 -3.9565368 1E-15 1.4415419267167138E-15 0
672 0 -4.921291 1E-15 1.4415419267167138E-15 0
673 0 -3.289723 1E-15 1.4415419267167138E-15 0
674 0 -5.669884 1E-15 1.4415419267167138E-15 0
675 0 -3.7340279 1E-15 1.4415419267167138E-15 0
676 0 -5.419147 1E-15 1.4415419267167138E-15 0
677 0 -4.0031805 1E-15 1.4415419267167138E-15 0
684 0 -5.935418 1E-15 1.4415419267167138E-15 0
686 0 -5.935418 1E-15 1.4415419267167138E-15 0
687 0 -4.295347 1E-15 1.4415419267167138E-15 0
690 0 -5.4890733 1E-15 1.4415419267167138E-15 0
695 0 -5.4523587 1E-15 1.4415419267167138E-15 0

Просмотреть файл

@ -0,0 +1,56 @@
maml.exe CV tr=AveragedPerceptron threads=- numcali=200 dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 133 | 1 | 0.9925
negative || 9 | 211 | 0.9591
||======================
Precision || 0.9366 | 0.9953 |
OVERALL 0/1 ACCURACY: 0.971751
LOG LOSS/instance: 0.139629
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.854097
AUC: 0.994403
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 100 | 5 | 0.9524
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9709 | 0.9779 |
OVERALL 0/1 ACCURACY: 0.975684
LOG LOSS/instance: 0.121001
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.866069
AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996011 (0.0016)
Accuracy: 0.973718 (0.0020)
Positive precision: 0.953747 (0.0171)
Positive recall: 0.972459 (0.0201)
Negative precision: 0.986580 (0.0087)
Negative recall: 0.972849 (0.0138)
Log-loss: 0.130315 (0.0093)
Log-loss reduction: 0.860083 (0.0060)
F1 Score: 0.962653 (0.0011)
AUPRC: 0.992269 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 0.12985 0.860569 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- numcali=200 dout=%Output% data=%Data% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
5 1 11.925824 0.99988866 0.00016064073906035849 1
6 0 -0.4527979 0.28799012 0.49003084056125074 0
8 0 -3.796255 0.026382547 0.038573064761285226 0
9 0 -3.8130417 0.026036168 0.038059895132779242 0
10 0 -4.7285223 0.0125917215 0.018281354087045291 0
11 0 -4.606969 0.013873976 0.02015606392328537 0
18 1 7.3475924 0.99550986 0.006492485535140746 1
20 1 6.1389017 0.9881576 0.017186984398807038 1
21 1 7.1486177 0.9947303 0.0076226814052998944 1
25 1 1.6632223 0.6911742 0.53287870995530984 1
28 0 -4.606969 0.013873976 0.02015606392328537 0
31 0 -4.2645645 0.01821836 0.026525908568759592 0
32 1 7.198575 0.99493784 0.0073217047835288053 1
35 0 -4.606969 0.013873976 0.02015606392328537 0
37 0 -1.714282 0.12729812 0.19643918434677948 0
40 0 ? ? ? 0
41 1 2.5451746 0.8203416 0.28570332741079429 1
44 1 8.165841 0.9976778 0.0033541180091675089 1
45 0 -4.602255 0.0139262155 0.020232492307431734 0
46 1 5.6216097 0.9821182 0.026031444169057363 1
48 0 -3.379683 0.03656119 0.053735055635659848 0
50 1 2.8003244 0.8487653 0.2365623958486662 1
51 1 0.14775276 0.39660606 1.3342213809867165 1
52 1 4.696246 0.9629518 0.054464539198696107 1
54 1 6.743868 0.9927051 0.01056288089528439 1
56 1 6.5947094 0.9917779 0.011911021598241851 1
60 1 2.2064123 0.7763946 0.36513800059720591 1
63 1 0.8789625 0.5427823 0.88155440156950038 1
64 0 -4.8905344 0.011062949 0.016049403073119514 0
66 0 -3.697434 0.028514326 0.041735373036084926 0
68 1 9.899808 0.99942744 0.00082626923994757486 1
69 0 -4.3595524 0.016894378 0.024581670707795066 0
70 0 -3.0557137 0.046994247 0.069443170930934078 0
71 1 7.555621 0.9962023 0.0054893674226172791 1
72 0 -1.6769085 0.13069288 0.20206214111088219 0
73 1 7.7111273 0.9966495 0.0048418602396339801 1
74 1 2.4994192 0.8148248 0.29543816942188406 1
76 0 -3.8396955 0.02549526 0.037258890759872848 0
77 0 -3.1438046 0.043905534 0.064774925308085776 0
79 0 -4.4265766 0.016017534 0.023295486850883066 0
82 0 -3.1870723 0.042460293 0.062595780681733368 0
88 0 -3.697434 0.028514326 0.041735373036084926 0
90 0 -4.54813 0.01454009 0.021130913771998817 0
91 0 -4.5069323 0.015025148 0.021841204430750202 0
92 0 -3.697434 0.028514326 0.041735373036084926 0
93 0 -4.8905344 0.011062949 0.016049403073119514 0
95 0 -4.54813 0.01454009 0.021130913771998817 0
96 0 -4.790498 0.011983715 0.017393273625651583 0
97 0 -3.413869 0.0356 0.052296442645105176 0
98 1 9.294541 0.99906635 0.0013475973096922743 1
99 1 9.621308 0.99928296 0.001034846704541113 1
100 1 5.1074314 0.97314864 0.039267908030735391 1
102 0 -3.3471546 0.037498932 0.055139953861279192 0
104 1 11.120679 0.99978656 0.00030796780451509731 1
105 1 2.1430416 0.7673742 0.38199780127191252 1
106 1 8.747506 0.99854773 0.0020967014982888315 1
108 0 -4.5133796 0.0149481995 0.021728501937672035 0
109 1 6.3912544 0.99032205 0.014030327944048709 1
111 1 4.1208715 0.9422745 0.085780676489496735 1
112 1 7.006652 0.9940932 0.0085470080951718218 1
113 1 9.855811 0.9994067 0.00085621167564539895 1
115 0 -3.4127908 0.03562994 0.05234123234660417 0
117 1 8.638749 0.99841446 0.0022892705964363013 1
120 0 -4.0389752 0.021784049 0.031775104426885928 0
121 0 -3.0156007 0.048468217 0.071676249166093706 0
122 1 10.533509 0.9996569 0.00049505099616089013 1
123 1 4.6804914 0.9624947 0.055149541356901512 1
125 0 -4.8905344 0.011062949 0.016049403073119514 0
128 1 4.9510326 0.9696393 0.044479919754725615 1
129 0 -3.789802 0.02651689 0.038772146811620695 0
131 0 -4.2645645 0.01821836 0.026525908568759592 0
132 1 9.206267 0.99899733 0.0014472717652274012 1
133 0 -4.1348257 0.020192467 0.029429710954844902 0
137 0 -4.6658077 0.013237966 0.019225886685070071 0
138 0 -3.6895585 0.028691236 0.041998115839947503 0
141 0 -4.9493732 0.010554424 0.015307739563326032 0
144 0 -4.606969 0.013873976 0.02015606392328537 0
145 0 ? ? ? 0
147 0 -4.2551055 0.018355653 0.026727668422101055 0
150 0 -4.7285223 0.0125917215 0.018281354087045291 0
151 1 5.0748987 0.97245276 0.040299926989301821 1
152 1 8.881612 0.99869674 0.0018814265868558253 1
154 0 -5.232939 0.0084102405 0.012184722644637337 0
156 0 -4.3134584 0.017524607 0.025506821392282504 0
161 0 -3.5088568 0.03305537 0.048494813867653343 0
164 0 ? ? ? 0
167 1 7.490014 0.99599624 0.0057878035564347926 1
169 0 -5.254455 0.008266402 0.011975463236807289 0
171 0 -4.54813 0.01454009 0.021130913771998817 0
173 1 14.494651 0.99998605 2.0122110477710732E-05 1
174 1 5.7514915 0.983872 0.023457464452347754 1
176 0 -4.2645645 0.01821836 0.026525908568759592 0
177 1 6.138485 0.98815364 0.017192727854047185 1
179 1 2.8749352 0.8563466 0.22373324768939593 1
180 0 -4.7285223 0.0125917215 0.018281354087045291 0
181 0 -5.232939 0.0084102405 0.012184722644637337 0
183 1 9.06396 0.9988752 0.0016236556168074772 1
187 1 12.00492 0.9998956 0.00015066466904787792 1
188 1 8.1324835 0.99761444 0.0034457424608055095 1
189 0 -3.6207743 0.030282307 0.044363288606634702 0
191 1 10.797473 0.99972284 0.00039991508636870194 1
192 0 -3.7562728 0.027225707 0.039822990547268275 0
196 0 5.8725023 0.9853531 6.0932620413355663 1
198 0 -5.232939 0.0084102405 0.012184722644637337 0
199 0 -4.3234034 0.017386708 0.025304340651562268 0
201 1 9.770606 0.99936444 0.00091721700916576874 1
202 0 -4.54813 0.01454009 0.021130913771998817 0
204 0 -4.54813 0.01454009 0.021130913771998817 0
205 1 12.087651 0.9999023 0.00014094666717597959 1
206 1 6.641531 0.99208087 0.01147037136803414 1
207 0 -4.7285223 0.0125917215 0.018281354087045291 0
209 0 -3.5942607 0.030918159 0.045309584861749505 0
210 1 13.547517 0.99997 4.3254285101545484E-05 1
211 1 9.089206 0.9988979 0.0015908564017088566 1
212 0 -4.54813 0.01454009 0.021130913771998817 0
216 0 -4.8905344 0.011062949 0.016049403073119514 0
218 1 7.7499733 0.99675274 0.0046924303126549046 1
219 0 -2.4297438 0.07561278 0.11343078610029891 0
223 1 5.4305964 0.97919416 0.030333134890891962 1
226 1 9.166205 0.99896437 0.0014948734814852957 1
228 0 -4.7285223 0.0125917215 0.018281354087045291 0
233 1 5.6998806 0.9831963 0.02444858173710833 1
237 1 6.476473 0.99096054 0.01310048672532375 1
239 1 5.16975 0.9744343 0.037363154090121094 1
240 0 -1.9057708 0.11106791 0.16985489199973464 0
241 0 -3.8436408 0.025416128 0.037141747244156482 0
242 0 -4.2645645 0.01821836 0.026525908568759592 0
244 0 -4.54813 0.01454009 0.021130913771998817 0
246 1 11.068809 0.9997774 0.00032121335660955822 1
247 1 3.1855068 0.8845627 0.17696373353849706 1
248 0 -2.7545462 0.05918352 0.088014762213689604 0
249 0 ? ? ? 0
250 0 -4.655863 0.013343408 0.01938005569558102 0
252 0 4.2659445 0.9483331 4.2746154342457627 1
254 1 7.919628 0.99716777 0.0040918470836742334 1
257 0 -4.3234034 0.017386708 0.025304340651562268 0
258 0 -3.9809995 0.022805596 0.033282492654924653 0
259 0 4.3407545 0.95121753 4.3574934457139323 1
260 1 8.330071 0.99796593 0.0029375285520939812 1
262 1 9.629434 0.99928766 0.0010280485312489948 1
267 1 3.677929 0.91941935 0.1212050683714937 1
268 1 8.609313 0.99837637 0.002344307364667635 1
269 0 -4.54813 0.01454009 0.021130913771998817 0
271 0 -3.413869 0.0356 0.052296442645105176 0
272 1 3.677929 0.91941935 0.1212050683714937 1
275 0 ? ? ? 0
276 0 -4.3234034 0.017386708 0.025304340651562268 0
277 0 -4.8905344 0.011062949 0.016049403073119514 0
278 0 -4.54813 0.01454009 0.021130913771998817 0
279 1 6.636299 0.9920476 0.011518738356558554 1
280 0 -3.9809995 0.022805596 0.033282492654924653 0
283 1 5.5930414 0.98170805 0.026634049742924003 1
284 1 6.3683033 0.9901426 0.01429180181912721 1
285 1 13.342931 0.9999646 5.1079751554952729E-05 1
288 1 2.133194 0.7659499 0.38467805559449236 1
290 0 -5.232939 0.0084102405 0.012184722644637337 0
291 0 -4.54813 0.01454009 0.021130913771998817 0
293 1 4.659646 0.9618815 0.056068896729700848 1
296 0 2.0631151 0.7556402 2.0329211816413606 1
297 0 ? ? ? 0
299 1 6.110528 0.98788613 0.017583336461512396 1
300 1 6.6979437 0.9924313 0.010960882920314604 1
301 0 -4.54813 0.01454009 0.021130913771998817 0
303 0 -4.54813 0.01454009 0.021130913771998817 0
304 1 4.865142 0.967527 0.047626214248213887 1
308 1 6.804653 0.99305254 0.010058042410768688 1
309 0 -1.4760427 0.15027466 0.23493151324004821 0
311 0 -5.232939 0.0084102405 0.012184722644637337 0
312 1 3.2489738 0.88969976 0.16860953636335851 1
314 0 -5.070926 0.009575992 0.013881808647455651 0
316 1 4.409379 0.9537285 0.068349469891991879 1
317 1 8.798545 0.9986064 0.0020119654595983538 1
319 0 2.7989082 0.84861827 2.7237369855870539 1
321 0 ? ? ? 0
323 1 4.8855352 0.968041 0.046859938697557786 1
327 0 -4.8905344 0.011062949 0.016049403073119514 0
328 1 4.1213074 0.9422937 0.085751291289663634 1
329 1 6.918497 0.99365956 0.0091764494650447715 1
331 0 -3.1255894 0.044527903 0.065714352919487407 0
332 0 -2.8317442 0.05580239 0.082839263730817278 0
333 1 4.9879713 0.97050625 0.043190589776101178 1
336 1 5.3119774 0.9771479 0.033351185116665787 1
338 0 -5.070926 0.009575992 0.013881808647455651 0
343 0 -5.232939 0.0084102405 0.012184722644637337 0
344 1 9.373975 0.99912435 0.0012638519898626412 1
346 0 -2.8051786 0.056944888 0.084586010770688697 0
347 0 -5.0361757 0.009846162 0.014275404034477916 0
348 1 0.09843826 0.38710517 1.3692025306601752 1
349 1 3.543579 0.9109965 0.13448258886866615 1
350 0 -3.7809262 0.026702762 0.039047633347874554 0
352 0 1.515585 0.66513246 1.5783375708819707 1
353 1 9.391767 0.99913687 0.001245778098200614 1
354 0 -4.8905344 0.011062949 0.016049403073119514 0
355 0 -3.6708689 0.029115345 0.042628187521802252 0
358 1 6.2604895 0.9892544 0.015586495937560322 1
360 1 15.035466 0.999991 1.2984748573554836E-05 1
361 1 6.5571547 0.99152654 0.012276699619017499 1
366 1 13.467437 0.999968 4.6178080787551932E-05 1
368 0 -4.532379 0.01472369 0.021399725812029809 0
370 0 -3.0555735 0.046999324 0.069450857564014035 0
371 0 -4.532379 0.01472369 0.021399725812029809 0
373 0 -3.5973973 0.030842267 0.045196607646129962 0
376 0 -4.8905344 0.011062949 0.016049403073119514 0
377 0 -5.070926 0.009575992 0.013881808647455651 0
378 0 -3.477808 0.03386719 0.049706573568650478 0
379 0 -1.5486526 0.14293145 0.22251749039141275 0
381 1 8.643491 0.99842054 0.0022804855789229006 1
383 0 -4.9493732 0.010554424 0.015307739563326032 0
384 0 -4.9493732 0.010554424 0.015307739563326032 0
387 0 -1.9204493 0.10990162 0.16796329622532433 0
388 0 -4.418391 0.016122172 0.023448912843152432 0
389 0 -2.9322662 0.051671732 0.076541554407895826 0
391 1 9.323798 0.9990881 0.001316181486351004 1
392 0 -4.3234034 0.017386708 0.025304340651562268 0
395 0 -4.3234034 0.017386708 0.025304340651562268 0
396 0 -3.9809995 0.022805596 0.033282492654924653 0
398 0 -3.9080298 0.024158016 0.03528054047560631 0
399 0 -4.305583 0.017634572 0.025668306162224368 0
404 0 -4.499814 0.015110557 0.021966308329195765 0
406 0 -3.4627624 0.03426747 0.050304420755228868 0
409 0 -3.973124 0.022947924 0.033492636604193209 0
413 0 -3.063589 0.046709906 0.069012790465941026 0
414 1 6.5001116 0.9911302 0.01285354412946392 1
415 0 -0.5379734 0.27407813 0.46211381508363975 0
416 1 8.981729 0.99879795 0.0017352301830455481 1
418 0 -1.7460232 0.124474354 0.1917786561625977 0
419 0 -3.9546041 0.02328605 0.033991992887674995 0
422 0 -2.1661267 0.09192332 0.13911396597120457 0
423 0 -3.0557137 0.046994247 0.069443170930934078 0
428 0 -4.8905344 0.011062949 0.016049403073119514 0
429 0 -4.606969 0.013873976 0.02015606392328537 0
430 0 -4.2483644 0.018454114 0.026872381456663909 0
434 0 5.678664 0.9829106 5.8707522055318933 1
436 1 4.8968487 0.96832275 0.046440099194999938 1
439 0 -4.098677 0.020778872 0.030293408561140194 0
440 1 7.6677313 0.99653023 0.0050145176664260493 1
441 0 -1.6798639 0.13042165 0.20161207865646949 0
442 0 -4.0051136 0.022375137 0.032647118008373256 0
449 1 10.087396 0.99950796 0.00071003308680625738 1
450 0 -3.9024792 0.024264036 0.035437289923567192 0
451 0 -4.098677 0.020778872 0.030293408561140194 0
452 0 -4.348057 0.017049437 0.024809236682836164 0
453 1 8.068193 0.9974875 0.0036293536545799203 1
454 0 -4.3153887 0.01749776 0.02546739731233694 0
455 1 0.4596901 0.45824033 1.1258236575305995 1
456 1 8.942605 0.9987594 0.0017909346040298939 1
457 1 8.346686 0.99799305 0.0028983232844613941 1
464 0 -4.3822427 0.016592372 0.024138549436166074 0
465 1 8.953591 0.99877036 0.0017750926332974581 1
466 1 8.690221 0.998479 0.0021959971123143552 1
467 1 7.4474792 0.99585676 0.0059898462794332257 1
474 0 -4.098677 0.020778872 0.030293408561140194 0
480 0 -4.2790694 0.018009786 0.02621944677631239 0
482 1 14.295785 0.9999836 2.3647808303057529E-05 1
483 1 10.273198 0.99957657 0.00061101174577425621 1
484 0 -3.7483978 0.027394837 0.040073844510940371 0
487 1 12.309564 0.99991834 0.00011781292611185561 1
489 1 -0.4385233 0.29036236 1.784073657091122 0
492 0 -4.22023 0.018870676 0.027484782205950953 0
493 1 10.096398 0.99951154 0.00070487107661414573 1
495 0 -4.5037956 0.015062724 0.02189624324376066 0
497 0 -4.155446 0.019865254 0.028947994527876966 0
501 0 -4.0398383 0.021769185 0.031753182964832191 0
502 0 -3.8809628 0.02467931 0.036051434067825343 0
504 0 -5.232939 0.0084102405 0.012184722644637337 0
507 0 -3.867828 0.024936218 0.036431501427394673 0
510 0 -5.232939 0.0084102405 0.012184722644637337 0
513 0 -4.5037956 0.015062724 0.02189624324376066 0
514 1 9.508458 0.99921453 0.0011336389645461593 1
517 0 -5.070926 0.009575992 0.013881808647455651 0
519 1 6.943595 0.99378616 0.0089926501548524794 1
520 0 -5.0525465 0.009717959 0.014088618955572644 0
521 0 -4.2018504 0.019147774 0.027892297047422871 0
522 1 4.3094044 0.9500278 0.073958328640719051 1
523 1 6.7598047 0.99279785 0.010428101441132083 1
527 0 -3.697434 0.028514326 0.041735373036084926 0
528 0 -2.955677 0.05075209 0.07514317509343231 0
529 0 -4.22023 0.018870676 0.027484782205950953 0
531 0 -3.4627624 0.03426747 0.050304420755228868 0
532 0 -4.7285223 0.0125917215 0.018281354087045291 0
533 0 -4.3234034 0.017386708 0.025304340651562268 0
534 0 -4.606969 0.013873976 0.02015606392328537 0
535 0 -3.6886954 0.02871069 0.042027010565217231 0
538 0 -4.0398383 0.021769185 0.031753182964832191 0
539 0 -3.4727077 0.03400237 0.049908447053141368 0
540 0 -3.3012362 0.03886211 0.057184671042155688 0
541 0 -4.6658077 0.013237966 0.019225886685070071 0
544 0 -3.7475343 0.027413445 0.040101446332037709 0
546 1 11.016192 0.9997677 0.00033514712058262439 1
547 0 -5.1297655 0.009135182 0.013239848501308635 0
548 0 -4.8462 0.011462053 0.016631747558922043 0
549 1 5.5535192 0.9811253 0.027490706489269167 1
557 0 -3.7809262 0.026702762 0.039047633347874554 0
558 0 -4.606969 0.013873976 0.02015606392328537 0
559 0 -3.7562728 0.027225707 0.039822990547268275 0
560 0 -3.413869 0.0356 0.052296442645105176 0
561 0 -3.413869 0.0356 0.052296442645105176 0
563 0 -4.3234034 0.017386708 0.025304340651562268 0
565 1 11.259841 0.99980927 0.00027519848718779308 1
566 0 -3.6307197 0.03004708 0.044013371380514872 0
569 1 9.242663 0.99902636 0.0014053525670487904 1
577 0 -4.8905344 0.011062949 0.016049403073119514 0
578 0 -4.8905344 0.011062949 0.016049403073119514 0
581 1 8.654239 0.9984342 0.0022607625481964131 1
582 1 8.128011 0.99760586 0.0034581548754549166 1
584 0 -3.123908 0.04458577 0.065801733133594345 0
586 1 12.971318 0.9999522 6.8966691413912035E-05 1
590 1 4.1888075 0.94519055 0.081322891229328675 1
593 0 -3.7483978 0.027394837 0.040073844510940371 0
594 1 5.7850237 0.98429656 0.022835041928152281 1
600 0 -4.3234034 0.017386708 0.025304340651562268 0
602 0 -4.0398383 0.021769185 0.031753182964832191 0
604 1 5.138942 0.9738064 0.038293140457828272 1
606 0 -4.223367 0.018823775 0.027415817997774653 0
607 0 -5.232939 0.0084102405 0.012184722644637337 0
609 0 -4.098677 0.020778872 0.030293408561140194 0
612 1 15.565835 0.99999416 8.427174504939984E-06 1
613 0 -4.153376 0.019897865 0.028995996893701973 0
614 0 -4.787361 0.012013778 0.017437172228630178 0
617 0 ? ? ? 0
618 0 -4.0398383 0.021769185 0.031753182964832191 0
619 0 -3.7562728 0.027225707 0.039822990547268275 0
621 0 0.0042419434 0.36919922 0.66474364251979601 1
622 0 -2.5211115 0.070608765 0.10564205571811729 0
624 0 -3.7777896 0.02676875 0.039145448981732486 0
627 0 -3.1292257 0.04440299 0.065525755923725629 0
629 0 -4.3822427 0.016592372 0.024138549436166074 0
633 1 4.158328 0.9438998 0.083294361183546328 1
634 0 -4.6658077 0.013237966 0.019225886685070071 0
638 0 -4.3822427 0.016592372 0.024138549436166074 0
639 0 -3.7809262 0.026702762 0.039047633347874554 0
641 0 -4.3234034 0.017386708 0.025304340651562268 0
642 0 -4.3234034 0.017386708 0.025304340651562268 0
644 0 -4.9493732 0.010554424 0.015307739563326032 0
645 0 -4.3234034 0.017386708 0.025304340651562268 0
649 0 -4.3234034 0.017386708 0.025304340651562268 0
652 0 -3.5676956 0.0315682 0.046277640684522559 0
653 0 -4.0398383 0.021769185 0.031753182964832191 0
654 0 -3.9809995 0.022805596 0.033282492654924653 0
656 0 -3.7562728 0.027225707 0.039822990547268275 0
657 0 0.6928787 0.50527525 1.0153020171868359 1
660 0 -4.8905344 0.011062949 0.016049403073119514 0
661 0 -3.697434 0.028514326 0.041735373036084926 0
665 0 -5.232939 0.0084102405 0.012184722644637337 0
668 1 3.362691 0.8984041 0.15456354881831241 1
670 1 6.9357576 0.9937469 0.0090496738948646453 1
678 0 -5.232939 0.0084102405 0.012184722644637337 0
679 0 -4.9493732 0.010554424 0.015307739563326032 0
680 1 15.087735 0.99999136 1.2468796069497877E-05 1
681 1 9.870067 0.9994135 0.00084640287826628446 1
682 0 -3.2252913 0.041221604 0.060730693175907312 0
683 0 -5.232939 0.0084102405 0.012184722644637337 0
685 0 -5.232939 0.0084102405 0.012184722644637337 0
688 0 -4.3822427 0.016592372 0.024138549436166074 0
689 0 -3.214981 0.041552313 0.061228404039596784 0
691 1 5.504386 0.98037547 0.028593709808496726 1
692 0 -4.6658077 0.013237966 0.019225886685070071 0
693 0 -4.035124 0.021850502 0.031873115017123851 0
694 0 -4.030379 0.021932647 0.031994276924693595 0
696 1 7.6071005 0.99635655 0.0052659907809486433 1
697 1 5.0033855 0.9708609 0.042663488663692947 1
698 1 6.1210938 0.98798794 0.017434669917962976 1
0 0 -3.4721127 0.041149363 0.060621994898335516 0
1 0 2.4163914 0.8102446 2.3977873037870139 1
2 0 -4.045404 0.02669075 0.039029828065294432 0
3 0 2.9251795 0.86401767 2.8785088509147978 1
4 0 -3.5088272 0.040032472 0.058942489732172955 0
7 0 -4.6705537 0.016548794 0.024074619674936022 0
12 1 -0.34343147 0.33084047 1.5957923791244228 0
13 0 -4.618695 0.017221209 0.025061370644087304 0
14 1 7.3602133 0.9951006 0.0070856869219221227 1
15 1 0.6494303 0.517803 0.94952473394442127 1
16 0 -4.220706 0.023354556 0.034093186342205803 0
17 0 -3.955172 0.028584346 0.041839360107510271 0
19 0 -2.9890532 0.058902755 0.087584288954953682 0
22 0 -4.7037654 0.016131794 0.023463022615813851 0
23 1 ? ? ? 0
24 0 -5.4043503 0.009396285 0.013620063190565418 0
26 0 -4.390918 0.020506335 0.029891933800352901 0
27 0 -3.7376466 0.033700433 0.049457579363906538 0
29 0 -5.4339433 0.009183524 0.013310236202903244 0
30 0 -4.649441 0.016819376 0.024471611493406355 0
33 0 -4.6981187 0.016201956 0.023565908498016312 0
34 0 -4.453028 0.019554093 0.028490059113787956 0
36 1 7.832773 0.9966079 0.004902085221172487 1
38 1 4.928609 0.96814406 0.046706359368045791 1
39 1 1.079258 0.60037446 0.73606548851031739 1
42 1 6.8985863 0.9929881 0.010151652400815765 1
43 1 -0.49528694 0.30512372 1.7125337731123569 0
47 0 -5.669884 0.0076494967 0.011078316903702529 0
49 1 5.3024063 0.97601783 0.035020587474532523 1
53 1 5.116103 0.9723645 0.040430893694146056 1
55 1 4.4195347 0.95331246 0.068978947156115675 1
57 1 0.5701313 0.5023233 0.99331181510286393 1
58 1 1.1371031 0.6111656 0.71036479241746275 1
59 1 1.6442327 0.7002286 0.51410216467535697 1
61 0 -5.277056 0.01036853 0.015036716123739385 0
62 1 5.7670774 0.98319566 0.024449543808342401 1
65 1 2.7867746 0.85080713 0.23309597078203056 1
67 1 2.9058533 0.86223406 0.21384854855497104 1
75 0 -4.2910423 0.022133548 0.032290645990988666 0
78 0 -3.652576 0.035932966 0.052794630104546485 0
80 0 -3.2955704 0.046948787 0.069374353985611328 0
81 0 -3.9975338 0.027679635 0.040496356631681558 0
83 0 -2.9832683 0.059153773 0.087969148251448304 0
84 1 6.5823994 0.99104106 0.012983257475290413 1
85 1 4.7604074 0.9638325 0.053145649556241237 1
86 1 1.466999 0.67038584 0.57693642363214981 1
87 1 5.223544 0.97453266 0.037217553175852479 1
89 0 -5.017977 0.012665043 0.018388487082691734 0
94 0 -4.921291 0.013645153 0.019821336171893227 0
101 1 -0.85990334 0.2482707 2.0100140538749183 0
103 1 0.36755466 0.46282858 1.1114501509356363 1
107 1 4.617798 0.9597418 0.059281809358577985 1
110 0 -3.1312823 0.05303708 0.078620160743660947 0
114 0 -2.8847933 0.06358327 0.094777384611786961 0
116 0 -0.40737772 0.31987607 0.55613045147256235 0
118 0 -5.258412 0.010519053 0.01525616702339753 0
119 0 -3.7868814 0.032470126 0.047621887034091648 0
124 1 5.0384197 0.9706861 0.042923294438382942 1
126 1 6.4765244 0.9902761 0.014097276720975665 1
127 0 -4.4382315 0.01977694 0.028818008476875413 0
130 0 -3.2361717 0.04906925 0.072587809096424025 0
134 0 -4.75809 0.015471876 0.022495675702757793 0
135 0 -2.670867 0.074289635 0.11136721898934138 0
136 0 -4.220706 0.023354556 0.034093186342205803 0
139 0 ? ? ? 0
140 0 -4.9692993 0.013149481 0.019096523087584735 0
142 1 3.7043686 0.92112815 0.11852620676711542 1
143 0 -4.364107 0.020931277 0.030517966172014473 0
146 1 0.3614874 0.4616504 1.1151273539763837 1
148 0 -2.3573046 0.09299236 0.14081338850031172 0
149 1 8.756336 0.9983485 0.0023846173156615046 1
153 0 -3.7005844 0.03465612 0.050885134255065932 0
155 1 3.1619139 0.8843215 0.17735711249275102 1
157 0 -4.921291 0.013645153 0.019821336171893227 0
158 0 ? ? ? 0
159 1 10.452137 0.99956036 0.00063441148415971371 1
160 1 7.997595 0.9970165 0.0043107295502774808 1
162 0 -4.4382315 0.01977694 0.028818008476875413 0
163 0 -3.6690454 0.035489913 0.052131768713654048 0
165 0 -3.3581352 0.044809647 0.066139828648459548 0
166 1 6.3355865 0.9891566 0.015729147554240097 1
168 0 -4.4382315 0.01977694 0.028818008476875413 0
170 0 -4.9692993 0.013149481 0.019096523087584735 0
172 0 -5.669884 0.0076494967 0.011078316903702529 0
175 1 6.0381765 0.98635924 0.019814913404171304 1
178 0 -3.955172 0.028584346 0.041839360107510271 0
182 0 -2.9890532 0.058902755 0.087584288954953682 0
184 1 5.409272 0.9778962 0.032246738266973496 1
185 0 -4.8669662 0.014228282 0.020674503875052902 0
186 1 3.9876003 0.93577826 0.095761382134015888 1
190 1 10.521242 0.9995835 0.00060103256102277266 1
193 0 -5.4043503 0.009396285 0.013620063190565418 0
194 0 -4.4382315 0.01977694 0.028818008476875413 0
195 0 -3.955172 0.028584346 0.041839360107510271 0
197 0 -2.8025956 0.067515396 0.10084818862163951 0
200 1 8.673523 0.99823827 0.002543887091121199 1
203 0 -3.4721127 0.041149363 0.060621994898335516 0
208 0 -5.3500257 0.009799642 0.014207623345529065 0
213 1 12.300528 0.9998962 0.00014971866598967564 1
214 1 11.895983 0.99985766 0.00020536190066155745 1
215 1 6.600219 0.99116385 0.012804525065380799 1
217 0 -5.4043503 0.009396285 0.013620063190565418 0
220 0 -5.181178 0.011165956 0.016199681121589912 0
221 1 7.9662914 0.9969428 0.0044173368194155311 1
222 1 -2.1487255 0.107677154 3.2152159077404439 0
224 1 8.4735565 0.997941 0.0029735466380567798 1
225 0 -5.669884 0.0076494967 0.011078316903702529 0
227 1 6.748211 0.992121 0.011412038429712602 1
229 1 10.504805 0.9995781 0.00060877502594878564 1
230 1 4.829337 0.96566343 0.050407647070253976 1
231 1 6.912092 0.9930612 0.010045486491117618 1
232 0 1.0722923 0.59906816 1.3185711185935187 1
234 0 -2.7037287 0.07254335 0.10864824861743642 0
235 0 ? ? ? 0
236 1 9.440506 0.9990316 0.0013977779753363091 1
238 1 10.690645 0.9996351 0.00052653496634314379 1
243 0 -3.3019714 0.04672555 0.069036463777740448 0
245 0 -2.8561125 0.064930424 0.096854378999610469 0
251 1 7.355525 0.99508274 0.0071116115660869242 1
253 1 6.8985863 0.9929881 0.010151652400815765 1
255 1 3.7452059 0.92341495 0.11494901208639709 1
256 0 -4.9692993 0.013149481 0.019096523087584735 0
261 1 9.009869 0.9986448 0.0019564247198453513 1
263 1 7.14557 0.9942114 0.0083754842729617477 1
264 1 4.0145664 0.9370327 0.093828700465107676 1
265 0 -2.5156918 0.083068565 0.12511423610705438 0
266 1 7.325534 0.99496675 0.0072797874039680641 1
270 1 5.5723915 0.9804892 0.028426363787945077 1
273 1 0.037317276 0.39964524 1.3232081920564036 1
274 0 -4.2340226 0.023118446 0.033744447034162281 0
281 0 -4.6981187 0.016201956 0.023565908498016312 0
282 1 2.860157 0.85793847 0.22105391387148221 1
286 1 12.544172 0.9999142 0.00012374682432127928 1
287 0 -4.75809 0.015471876 0.022495675702757793 0
289 1 6.6595707 0.9915608 0.012226832918130892 1
292 1 ? ? ? 0
294 0 ? ? ? 0
295 1 5.621521 0.98121005 0.027366079814265764 1
298 0 -2.4584541 0.086538486 0.13058414873253427 0
302 1 12.725582 0.99992555 0.0001074071635410925 1
305 1 8.040863 0.9971154 0.0041676501364772073 1
306 0 -5.4043503 0.009396285 0.013620063190565418 0
307 0 -5.4043503 0.009396285 0.013620063190565418 0
310 0 -5.2411494 0.010660346 0.01546219119469359 0
313 0 -5.935418 0.006225399 0.0090094253868573462 0
315 0 ? ? ? 0
318 0 -5.567325 0.008282308 0.011998600934073782 0
320 1 5.5611877 0.98032105 0.028673793676042177 1
322 0 -4.4382315 0.01977694 0.028818008476875413 0
324 0 -5.4043503 0.009396285 0.013620063190565418 0
325 0 -3.7860875 0.032489616 0.04765095016422824 0
326 1 3.6223297 0.9163445 0.12603797604758099 1
330 1 4.9927444 0.96965355 0.044458724475427286 1
334 1 5.514736 0.97960865 0.029722574521978982 1
335 0 -5.935418 0.006225399 0.0090094253868573462 0
337 0 -5.4043503 0.009396285 0.013620063190565418 0
339 1 5.1161976 0.97236645 0.040427975332860647 1
340 1 5.5803356 0.98060757 0.028252197193330195 1
341 0 -5.4043503 0.009396285 0.013620063190565418 0
342 0 -5.4523587 0.00905354 0.013120983569838577 0
345 0 -5.935418 0.006225399 0.0090094253868573462 0
351 0 -4.921291 0.013645153 0.019821336171893227 0
356 1 -0.9127703 0.24064319 2.0550325079118106 0
357 1 9.874601 0.9993099 0.0009959512596500891 1
359 1 4.653247 0.96079826 0.057694551223446147 1
362 0 -3.5174994 0.039772928 0.058552483579195597 0
363 0 -1.6840982 0.14783019 0.23078715020667279 0
364 0 -4.921291 0.013645153 0.019821336171893227 0
365 0 -5.186825 0.011117356 0.016128775943501653 0
367 1 9.040358 0.99867666 0.0019104437717653883 1
369 0 -5.1140847 0.011759748 0.017066275150054256 0
372 0 -3.9699688 0.028265119 0.041365338113873051 0
374 0 -4.453028 0.019554093 0.028490059113787956 0
375 0 -5.935418 0.006225399 0.0090094253868573462 0
380 0 -5.935418 0.006225399 0.0090094253868573462 0
382 0 -3.5015903 0.040250305 0.059269898420679812 0
385 0 -3.4273863 0.042550292 0.062731386159219998 0
386 1 5.084236 0.97168756 0.041435602932387204 1
390 0 -5.4467115 0.009093205 0.013178732083492451 0
393 0 -5.8810935 0.0064935302 0.0093987324795726801 0
394 0 -4.909887 0.013765578 0.019997487805960071 0
397 0 -4.48624 0.019062832 0.027767364472202984 0
400 1 7.3133698 0.99491894 0.0073491029866983746 1
401 0 -4.9692993 0.013149481 0.019096523087584735 0
402 0 -2.7191267 0.07173818 0.10739631960424616 0
403 0 -3.7908158 0.032373708 0.047478124251200779 0
405 0 -5.669884 0.0076494967 0.011078316903702529 0
407 0 -5.669884 0.0076494967 0.011078316903702529 0
408 0 -3.537508 0.03918025 0.057662286878936264 0
410 0 -5.669884 0.0076494967 0.011078316903702529 0
411 0 ? ? ? 0
412 1 7.6394253 0.996057 0.0056998288375171091 1
417 0 -5.669884 0.0076494967 0.011078316903702529 0
420 0 -2.696971 0.07289934 0.109202109310663 0
421 1 9.498289 0.9990743 0.0013361498208689703 1
424 0 -4.9692993 0.013149481 0.019096523087584735 0
425 1 11.849485 0.99985236 0.00021301623841437668 1
426 0 -2.2324486 0.10155222 0.15449343881561414 0
427 1 4.1596613 0.9433984 0.084060916290148127 1
431 0 -2.9302087 0.061503276 0.09157638617372077 0
432 0 -3.5334377 0.039300125 0.057842295114820461 0
433 0 -4.013695 0.02734187 0.039995280296142854 0
435 1 7.0216722 0.99362683 0.009223960722536808 1
437 0 -4.48624 0.019062832 0.027767364472202984 0
438 0 -3.5384207 0.039153416 0.057621996617189197 0
443 0 -5.54259 0.008442539 0.012231715171451501 0
444 0 -2.6761098 0.07400846 0.11092907791467586 0
445 0 -5.4523587 0.00905354 0.013120983569838577 0
446 0 -5.935418 0.006225399 0.0090094253868573462 0
447 0 -4.0031805 0.02756116 0.040320577663836212 0
448 0 -5.8810935 0.0064935302 0.0093987324795726801 0
458 0 -3.7524428 0.03332604 0.048898717059546716 0
459 0 -3.5017056 0.040246822 0.059264662567010976 0
460 0 -3.5568361 0.038615774 0.056814962913923475 0
461 0 -3.3979883 0.043495808 0.064156803202923621 0
462 0 -3.0737762 0.055339187 0.082131682799238909 0
463 0 -4.282031 0.022286424 0.032516210080316472 0
468 0 -4.48624 0.019062832 0.027767364472202984 0
469 0 -5.419147 0.009289299 0.013464259841054335 0
470 0 -4.649441 0.016819376 0.024471611493406355 0
471 0 -3.0737762 0.055339187 0.082131682799238909 0
472 0 -3.4657965 0.04134449 0.060915614533985189 0
473 0 -4.48624 0.019062832 0.027767364472202984 0
475 0 -4.9692993 0.013149481 0.019096523087584735 0
476 0 -4.2355022 0.023092356 0.033705916761290887 0
477 0 -4.48624 0.019062832 0.027767364472202984 0
478 0 -3.744658 0.033522516 0.049191973216976458 0
479 1 6.673234 0.9916496 0.012097621138980599 1
481 0 -2.5658808 0.08013058 0.12049901228995111 0
485 0 -4.6490927 0.016823875 0.024478212185620931 0
486 0 -4.649441 0.016819376 0.024471611493406355 0
488 1 0.95910263 0.57765627 0.79171681395149796 1
490 0 -5.935418 0.006225399 0.0090094253868573462 0
491 1 5.556222 0.98024607 0.028784146529073261 1
494 0 -0.01569748 0.38975102 0.71253010939908146 0
496 0 -5.8810935 0.0064935302 0.0093987324795726801 0
498 0 -4.220706 0.023354556 0.034093186342205803 0
499 0 -4.220706 0.023354556 0.034093186342205803 0
500 0 -2.9890532 0.058902755 0.087584288954953682 0
503 0 -3.955172 0.028584346 0.041839360107510271 0
505 0 -4.4522543 0.019565688 0.028507120839304224 0
506 1 8.766859 0.99836195 0.0023651512585342507 1
508 0 -4.0031805 0.02756116 0.040320577663836212 0
509 0 -5.4523587 0.00905354 0.013120983569838577 0
511 0 -3.7376466 0.033700433 0.049457579363906538 0
512 0 -4.0031805 0.02756116 0.040320577663836212 0
515 1 7.3749876 0.9951566 0.0070045457965879953 1
516 0 -5.8810935 0.0064935302 0.0093987324795726801 0
518 0 -4.49539 0.018929625 0.027571465962874155 0
524 0 -4.7037654 0.016131794 0.023463022615813851 0
525 0 -4.746127 0.015614877 0.022705241025312198 0
526 0 -4.48624 0.019062832 0.027767364472202984 0
530 1 5.325205 0.9764312 0.034409713804049308 1
536 0 -3.4721127 0.041149363 0.060621994898335516 0
537 0 -3.2213755 0.049611423 0.073410599070621044 0
542 0 -3.4861355 0.040719297 0.059975058703050588 0
543 0 -4.220706 0.023354556 0.034093186342205803 0
545 0 -3.7376466 0.033700433 0.049457579363906538 0
550 0 -4.7037654 0.016131794 0.023463022615813851 0
551 0 -5.4043503 0.009396285 0.013620063190565418 0
552 0 -3.2360563 0.049073454 0.07259418997779464 0
553 0 -1.4225531 0.17546193 0.27834199385026431 0
554 0 -4.9692993 0.013149481 0.019096523087584735 0
555 0 -1.7431297 0.14211455 0.22114307136971645 0
556 0 -2.9508896 0.060577318 0.090153667664306186 0
562 0 -5.4043503 0.009396285 0.013620063190565418 0
564 0 -3.7509632 0.033363298 0.04895432111111532 0
567 0 -3.4350505 0.042307038 0.062364895082251487 0
568 1 3.5748358 0.913456 0.13059282121029733 1
570 1 6.466877 0.99020326 0.014203393857934222 1
571 1 9.048693 0.99868524 0.0018980446658527542 1
572 0 -4.7037654 0.016131794 0.023463022615813851 0
573 0 -5.669884 0.0076494967 0.011078316903702529 0
574 1 5.533701 0.9799025 0.029289877586105746 1
575 0 -3.2213755 0.049611423 0.073410599070621044 0
576 0 -3.7376466 0.033700433 0.049457579363906538 0
579 0 -5.4043503 0.009396285 0.013620063190565418 0
580 0 -3.4869094 0.04069569 0.059939555518058511 0
583 0 -4.9692993 0.013149481 0.019096523087584735 0
585 0 -5.935418 0.006225399 0.0090094253868573462 0
587 0 -3.5334377 0.039300125 0.057842295114820461 0
588 1 4.6442146 0.9605316 0.058095029247836778 1
589 0 -4.0031805 0.02756116 0.040320577663836212 0
591 1 4.243067 0.9467788 0.078900732087929318 1
592 1 4.8517904 0.96624035 0.049545999536437443 1
595 0 -3.7376466 0.033700433 0.049457579363906538 0
596 0 -3.9699688 0.028265119 0.041365338113873051 0
597 0 -2.9706378 0.05970531 0.08881512342261072 0
598 0 -4.7037654 0.016131794 0.023463022615813851 0
599 0 -2.9381208 0.061147466 0.09102952445231563 0
601 0 -5.6155596 0.007978472 0.011556665699955653 0
603 1 3.1762505 0.88546234 0.17549714050514675 1
605 1 8.159748 0.99737054 0.0037985035173251067 1
608 1 8.079367 0.9972006 0.0040443320699722306 1
610 1 6.972576 0.9933793 0.0095834180703139316 1
611 1 5.494137 0.9792847 0.030199744813973507 1
615 0 -3.7192311 0.03417207 0.05016190956415939 0
616 0 -4.7037654 0.016131794 0.023463022615813851 0
620 0 -4.7037654 0.016131794 0.023463022615813851 0
623 0 -5.935418 0.006225399 0.0090094253868573462 0
625 0 -3.343666 0.045295946 0.066874509831910151 0
626 1 3.8647957 0.929766 0.10506042608942294 1
628 0 -5.4523587 0.00905354 0.013120983569838577 0
630 0 -2.7601237 0.069634475 0.10413045633568027 0
631 0 -3.7376466 0.033700433 0.049457579363906538 0
632 0 -5.935418 0.006225399 0.0090094253868573462 0
635 0 -4.2170873 0.023419123 0.034188567100013993 0
636 1 8.162586 0.9973763 0.0037901403924413767 1
637 0 -2.370799 0.092107005 0.13940582521487643 0
640 0 -4.039895 0.026802778 0.039195893152521553 0
643 0 -5.935418 0.006225399 0.0090094253868573462 0
646 0 -5.426158 0.00923903 0.013391058760089801 0
647 0 -5.4890733 0.008799812 0.012751633519735472 0
648 1 8.579456 0.9981042 0.0027376359023654488 1
650 0 -3.6219683 0.036770534 0.054048568515248828 0
651 0 -4.9650173 0.01319296 0.019160086942209224 0
655 0 -4.7037654 0.016131794 0.023463022615813851 0
658 1 7.546404 0.99576104 0.006128529583862446 1
659 0 -5.935418 0.006225399 0.0090094253868573462 0
662 0 -5.1684093 0.011276632 0.016361164283329451 0
663 0 -5.1684093 0.011276632 0.016361164283329451 0
664 0 -4.2574205 0.02270922 0.033140214869637266 0
666 0 -3.0702114 0.055484954 0.08235431655806906 0
667 0 -4.4382315 0.01977694 0.028818008476875413 0
669 1 6.9817867 0.99342644 0.0095149472206866505 1
671 0 -3.9565368 0.028554758 0.041795418071838834 0
672 0 -4.921291 0.013645153 0.019821336171893227 0
673 0 -3.289723 0.047153607 0.069684436821807083 0
674 0 -5.669884 0.0076494967 0.011078316903702529 0
675 0 -3.7340279 0.03379261 0.049595209486744243 0
676 0 -5.419147 0.009289299 0.013464259841054335 0
677 0 -4.0031805 0.02756116 0.040320577663836212 0
684 0 -5.935418 0.006225399 0.0090094253868573462 0
686 0 -5.935418 0.006225399 0.0090094253868573462 0
687 0 -4.295347 0.022060877 0.032183434683621268 0
690 0 -5.4890733 0.008799812 0.012751633519735472 0
695 0 -5.4523587 0.00905354 0.013120983569838577 0

Просмотреть файл

@ -0,0 +1,58 @@
maml.exe CV tr=AveragedPerceptron threads=- cali={} dout=%Output% data=%Data% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Not training a calibrator because a valid calibrator trainer was not provided.
Warning: Data does not contain a probability column. Will not output the Log-loss column
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 80 instances with missing features during training (over 10 iterations; 8 inst/iter)
Not training a calibrator because a valid calibrator trainer was not provided.
Warning: Data does not contain a probability column. Will not output the Log-loss column
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3785 (134.0/(134.0+220.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 133 | 1 | 0.9925
negative || 9 | 211 | 0.9591
||======================
Precision || 0.9366 | 0.9953 |
OVERALL 0/1 ACCURACY: 0.971751
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.956998
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.994403
Warning: The predictor produced non-finite prediction values on 8 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3191 (105.0/(105.0+224.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 100 | 5 | 0.9524
negative || 3 | 221 | 0.9866
||======================
Precision || 0.9709 | 0.9779 |
OVERALL 0/1 ACCURACY: 0.975684
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.903454
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.997619
OVERALL RESULTS
---------------------------------------
AUC: 0.996011 (0.0016)
Accuracy: 0.973718 (0.0020)
Positive precision: 0.953747 (0.0171)
Positive recall: 0.972459 (0.0201)
Negative precision: 0.986580 (0.0087)
Negative recall: 0.972849 (0.0138)
Log-loss: NaN (NaN)
Log-loss reduction: 0.000000 (0.0000)
F1 Score: 0.962653 (0.0011)
AUPRC: 0.992269 (0.0025)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996028 0.972305 0.95666 0.964996 0.981961 0.975122 NaN 0 0.960623 0.99228 AveragedPerceptron %Data% %Output% 99 0 0 maml.exe CV tr=AveragedPerceptron threads=- cali={} dout=%Output% data=%Data% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Assigned
5 1 11.925824 1
6 0 -0.4527979 0
8 0 -3.796255 0
9 0 -3.8130417 0
10 0 -4.7285223 0
11 0 -4.606969 0
18 1 7.3475924 1
20 1 6.1389017 1
21 1 7.1486177 1
25 1 1.6632223 1
28 0 -4.606969 0
31 0 -4.2645645 0
32 1 7.198575 1
35 0 -4.606969 0
37 0 -1.714282 0
40 0 ? 0
41 1 2.5451746 1
44 1 8.165841 1
45 0 -4.602255 0
46 1 5.6216097 1
48 0 -3.379683 0
50 1 2.8003244 1
51 1 0.14775276 1
52 1 4.696246 1
54 1 6.743868 1
56 1 6.5947094 1
60 1 2.2064123 1
63 1 0.8789625 1
64 0 -4.8905344 0
66 0 -3.697434 0
68 1 9.899808 1
69 0 -4.3595524 0
70 0 -3.0557137 0
71 1 7.555621 1
72 0 -1.6769085 0
73 1 7.7111273 1
74 1 2.4994192 1
76 0 -3.8396955 0
77 0 -3.1438046 0
79 0 -4.4265766 0
82 0 -3.1870723 0
88 0 -3.697434 0
90 0 -4.54813 0
91 0 -4.5069323 0
92 0 -3.697434 0
93 0 -4.8905344 0
95 0 -4.54813 0
96 0 -4.790498 0
97 0 -3.413869 0
98 1 9.294541 1
99 1 9.621308 1
100 1 5.1074314 1
102 0 -3.3471546 0
104 1 11.120679 1
105 1 2.1430416 1
106 1 8.747506 1
108 0 -4.5133796 0
109 1 6.3912544 1
111 1 4.1208715 1
112 1 7.006652 1
113 1 9.855811 1
115 0 -3.4127908 0
117 1 8.638749 1
120 0 -4.0389752 0
121 0 -3.0156007 0
122 1 10.533509 1
123 1 4.6804914 1
125 0 -4.8905344 0
128 1 4.9510326 1
129 0 -3.789802 0
131 0 -4.2645645 0
132 1 9.206267 1
133 0 -4.1348257 0
137 0 -4.6658077 0
138 0 -3.6895585 0
141 0 -4.9493732 0
144 0 -4.606969 0
145 0 ? 0
147 0 -4.2551055 0
150 0 -4.7285223 0
151 1 5.0748987 1
152 1 8.881612 1
154 0 -5.232939 0
156 0 -4.3134584 0
161 0 -3.5088568 0
164 0 ? 0
167 1 7.490014 1
169 0 -5.254455 0
171 0 -4.54813 0
173 1 14.494651 1
174 1 5.7514915 1
176 0 -4.2645645 0
177 1 6.138485 1
179 1 2.8749352 1
180 0 -4.7285223 0
181 0 -5.232939 0
183 1 9.06396 1
187 1 12.00492 1
188 1 8.1324835 1
189 0 -3.6207743 0
191 1 10.797473 1
192 0 -3.7562728 0
196 0 5.8725023 1
198 0 -5.232939 0
199 0 -4.3234034 0
201 1 9.770606 1
202 0 -4.54813 0
204 0 -4.54813 0
205 1 12.087651 1
206 1 6.641531 1
207 0 -4.7285223 0
209 0 -3.5942607 0
210 1 13.547517 1
211 1 9.089206 1
212 0 -4.54813 0
216 0 -4.8905344 0
218 1 7.7499733 1
219 0 -2.4297438 0
223 1 5.4305964 1
226 1 9.166205 1
228 0 -4.7285223 0
233 1 5.6998806 1
237 1 6.476473 1
239 1 5.16975 1
240 0 -1.9057708 0
241 0 -3.8436408 0
242 0 -4.2645645 0
244 0 -4.54813 0
246 1 11.068809 1
247 1 3.1855068 1
248 0 -2.7545462 0
249 0 ? 0
250 0 -4.655863 0
252 0 4.2659445 1
254 1 7.919628 1
257 0 -4.3234034 0
258 0 -3.9809995 0
259 0 4.3407545 1
260 1 8.330071 1
262 1 9.629434 1
267 1 3.677929 1
268 1 8.609313 1
269 0 -4.54813 0
271 0 -3.413869 0
272 1 3.677929 1
275 0 ? 0
276 0 -4.3234034 0
277 0 -4.8905344 0
278 0 -4.54813 0
279 1 6.636299 1
280 0 -3.9809995 0
283 1 5.5930414 1
284 1 6.3683033 1
285 1 13.342931 1
288 1 2.133194 1
290 0 -5.232939 0
291 0 -4.54813 0
293 1 4.659646 1
296 0 2.0631151 1
297 0 ? 0
299 1 6.110528 1
300 1 6.6979437 1
301 0 -4.54813 0
303 0 -4.54813 0
304 1 4.865142 1
308 1 6.804653 1
309 0 -1.4760427 0
311 0 -5.232939 0
312 1 3.2489738 1
314 0 -5.070926 0
316 1 4.409379 1
317 1 8.798545 1
319 0 2.7989082 1
321 0 ? 0
323 1 4.8855352 1
327 0 -4.8905344 0
328 1 4.1213074 1
329 1 6.918497 1
331 0 -3.1255894 0
332 0 -2.8317442 0
333 1 4.9879713 1
336 1 5.3119774 1
338 0 -5.070926 0
343 0 -5.232939 0
344 1 9.373975 1
346 0 -2.8051786 0
347 0 -5.0361757 0
348 1 0.09843826 1
349 1 3.543579 1
350 0 -3.7809262 0
352 0 1.515585 1
353 1 9.391767 1
354 0 -4.8905344 0
355 0 -3.6708689 0
358 1 6.2604895 1
360 1 15.035466 1
361 1 6.5571547 1
366 1 13.467437 1
368 0 -4.532379 0
370 0 -3.0555735 0
371 0 -4.532379 0
373 0 -3.5973973 0
376 0 -4.8905344 0
377 0 -5.070926 0
378 0 -3.477808 0
379 0 -1.5486526 0
381 1 8.643491 1
383 0 -4.9493732 0
384 0 -4.9493732 0
387 0 -1.9204493 0
388 0 -4.418391 0
389 0 -2.9322662 0
391 1 9.323798 1
392 0 -4.3234034 0
395 0 -4.3234034 0
396 0 -3.9809995 0
398 0 -3.9080298 0
399 0 -4.305583 0
404 0 -4.499814 0
406 0 -3.4627624 0
409 0 -3.973124 0
413 0 -3.063589 0
414 1 6.5001116 1
415 0 -0.5379734 0
416 1 8.981729 1
418 0 -1.7460232 0
419 0 -3.9546041 0
422 0 -2.1661267 0
423 0 -3.0557137 0
428 0 -4.8905344 0
429 0 -4.606969 0
430 0 -4.2483644 0
434 0 5.678664 1
436 1 4.8968487 1
439 0 -4.098677 0
440 1 7.6677313 1
441 0 -1.6798639 0
442 0 -4.0051136 0
449 1 10.087396 1
450 0 -3.9024792 0
451 0 -4.098677 0
452 0 -4.348057 0
453 1 8.068193 1
454 0 -4.3153887 0
455 1 0.4596901 1
456 1 8.942605 1
457 1 8.346686 1
464 0 -4.3822427 0
465 1 8.953591 1
466 1 8.690221 1
467 1 7.4474792 1
474 0 -4.098677 0
480 0 -4.2790694 0
482 1 14.295785 1
483 1 10.273198 1
484 0 -3.7483978 0
487 1 12.309564 1
489 1 -0.4385233 0
492 0 -4.22023 0
493 1 10.096398 1
495 0 -4.5037956 0
497 0 -4.155446 0
501 0 -4.0398383 0
502 0 -3.8809628 0
504 0 -5.232939 0
507 0 -3.867828 0
510 0 -5.232939 0
513 0 -4.5037956 0
514 1 9.508458 1
517 0 -5.070926 0
519 1 6.943595 1
520 0 -5.0525465 0
521 0 -4.2018504 0
522 1 4.3094044 1
523 1 6.7598047 1
527 0 -3.697434 0
528 0 -2.955677 0
529 0 -4.22023 0
531 0 -3.4627624 0
532 0 -4.7285223 0
533 0 -4.3234034 0
534 0 -4.606969 0
535 0 -3.6886954 0
538 0 -4.0398383 0
539 0 -3.4727077 0
540 0 -3.3012362 0
541 0 -4.6658077 0
544 0 -3.7475343 0
546 1 11.016192 1
547 0 -5.1297655 0
548 0 -4.8462 0
549 1 5.5535192 1
557 0 -3.7809262 0
558 0 -4.606969 0
559 0 -3.7562728 0
560 0 -3.413869 0
561 0 -3.413869 0
563 0 -4.3234034 0
565 1 11.259841 1
566 0 -3.6307197 0
569 1 9.242663 1
577 0 -4.8905344 0
578 0 -4.8905344 0
581 1 8.654239 1
582 1 8.128011 1
584 0 -3.123908 0
586 1 12.971318 1
590 1 4.1888075 1
593 0 -3.7483978 0
594 1 5.7850237 1
600 0 -4.3234034 0
602 0 -4.0398383 0
604 1 5.138942 1
606 0 -4.223367 0
607 0 -5.232939 0
609 0 -4.098677 0
612 1 15.565835 1
613 0 -4.153376 0
614 0 -4.787361 0
617 0 ? 0
618 0 -4.0398383 0
619 0 -3.7562728 0
621 0 0.0042419434 1
622 0 -2.5211115 0
624 0 -3.7777896 0
627 0 -3.1292257 0
629 0 -4.3822427 0
633 1 4.158328 1
634 0 -4.6658077 0
638 0 -4.3822427 0
639 0 -3.7809262 0
641 0 -4.3234034 0
642 0 -4.3234034 0
644 0 -4.9493732 0
645 0 -4.3234034 0
649 0 -4.3234034 0
652 0 -3.5676956 0
653 0 -4.0398383 0
654 0 -3.9809995 0
656 0 -3.7562728 0
657 0 0.6928787 1
660 0 -4.8905344 0
661 0 -3.697434 0
665 0 -5.232939 0
668 1 3.362691 1
670 1 6.9357576 1
678 0 -5.232939 0
679 0 -4.9493732 0
680 1 15.087735 1
681 1 9.870067 1
682 0 -3.2252913 0
683 0 -5.232939 0
685 0 -5.232939 0
688 0 -4.3822427 0
689 0 -3.214981 0
691 1 5.504386 1
692 0 -4.6658077 0
693 0 -4.035124 0
694 0 -4.030379 0
696 1 7.6071005 1
697 1 5.0033855 1
698 1 6.1210938 1
0 0 -3.4721127 0
1 0 2.4163914 1
2 0 -4.045404 0
3 0 2.9251795 1
4 0 -3.5088272 0
7 0 -4.6705537 0
12 1 -0.34343147 0
13 0 -4.618695 0
14 1 7.3602133 1
15 1 0.6494303 1
16 0 -4.220706 0
17 0 -3.955172 0
19 0 -2.9890532 0
22 0 -4.7037654 0
23 1 ? 0
24 0 -5.4043503 0
26 0 -4.390918 0
27 0 -3.7376466 0
29 0 -5.4339433 0
30 0 -4.649441 0
33 0 -4.6981187 0
34 0 -4.453028 0
36 1 7.832773 1
38 1 4.928609 1
39 1 1.079258 1
42 1 6.8985863 1
43 1 -0.49528694 0
47 0 -5.669884 0
49 1 5.3024063 1
53 1 5.116103 1
55 1 4.4195347 1
57 1 0.5701313 1
58 1 1.1371031 1
59 1 1.6442327 1
61 0 -5.277056 0
62 1 5.7670774 1
65 1 2.7867746 1
67 1 2.9058533 1
75 0 -4.2910423 0
78 0 -3.652576 0
80 0 -3.2955704 0
81 0 -3.9975338 0
83 0 -2.9832683 0
84 1 6.5823994 1
85 1 4.7604074 1
86 1 1.466999 1
87 1 5.223544 1
89 0 -5.017977 0
94 0 -4.921291 0
101 1 -0.85990334 0
103 1 0.36755466 1
107 1 4.617798 1
110 0 -3.1312823 0
114 0 -2.8847933 0
116 0 -0.40737772 0
118 0 -5.258412 0
119 0 -3.7868814 0
124 1 5.0384197 1
126 1 6.4765244 1
127 0 -4.4382315 0
130 0 -3.2361717 0
134 0 -4.75809 0
135 0 -2.670867 0
136 0 -4.220706 0
139 0 ? 0
140 0 -4.9692993 0
142 1 3.7043686 1
143 0 -4.364107 0
146 1 0.3614874 1
148 0 -2.3573046 0
149 1 8.756336 1
153 0 -3.7005844 0
155 1 3.1619139 1
157 0 -4.921291 0
158 0 ? 0
159 1 10.452137 1
160 1 7.997595 1
162 0 -4.4382315 0
163 0 -3.6690454 0
165 0 -3.3581352 0
166 1 6.3355865 1
168 0 -4.4382315 0
170 0 -4.9692993 0
172 0 -5.669884 0
175 1 6.0381765 1
178 0 -3.955172 0
182 0 -2.9890532 0
184 1 5.409272 1
185 0 -4.8669662 0
186 1 3.9876003 1
190 1 10.521242 1
193 0 -5.4043503 0
194 0 -4.4382315 0
195 0 -3.955172 0
197 0 -2.8025956 0
200 1 8.673523 1
203 0 -3.4721127 0
208 0 -5.3500257 0
213 1 12.300528 1
214 1 11.895983 1
215 1 6.600219 1
217 0 -5.4043503 0
220 0 -5.181178 0
221 1 7.9662914 1
222 1 -2.1487255 0
224 1 8.4735565 1
225 0 -5.669884 0
227 1 6.748211 1
229 1 10.504805 1
230 1 4.829337 1
231 1 6.912092 1
232 0 1.0722923 1
234 0 -2.7037287 0
235 0 ? 0
236 1 9.440506 1
238 1 10.690645 1
243 0 -3.3019714 0
245 0 -2.8561125 0
251 1 7.355525 1
253 1 6.8985863 1
255 1 3.7452059 1
256 0 -4.9692993 0
261 1 9.009869 1
263 1 7.14557 1
264 1 4.0145664 1
265 0 -2.5156918 0
266 1 7.325534 1
270 1 5.5723915 1
273 1 0.037317276 1
274 0 -4.2340226 0
281 0 -4.6981187 0
282 1 2.860157 1
286 1 12.544172 1
287 0 -4.75809 0
289 1 6.6595707 1
292 1 ? 0
294 0 ? 0
295 1 5.621521 1
298 0 -2.4584541 0
302 1 12.725582 1
305 1 8.040863 1
306 0 -5.4043503 0
307 0 -5.4043503 0
310 0 -5.2411494 0
313 0 -5.935418 0
315 0 ? 0
318 0 -5.567325 0
320 1 5.5611877 1
322 0 -4.4382315 0
324 0 -5.4043503 0
325 0 -3.7860875 0
326 1 3.6223297 1
330 1 4.9927444 1
334 1 5.514736 1
335 0 -5.935418 0
337 0 -5.4043503 0
339 1 5.1161976 1
340 1 5.5803356 1
341 0 -5.4043503 0
342 0 -5.4523587 0
345 0 -5.935418 0
351 0 -4.921291 0
356 1 -0.9127703 0
357 1 9.874601 1
359 1 4.653247 1
362 0 -3.5174994 0
363 0 -1.6840982 0
364 0 -4.921291 0
365 0 -5.186825 0
367 1 9.040358 1
369 0 -5.1140847 0
372 0 -3.9699688 0
374 0 -4.453028 0
375 0 -5.935418 0
380 0 -5.935418 0
382 0 -3.5015903 0
385 0 -3.4273863 0
386 1 5.084236 1
390 0 -5.4467115 0
393 0 -5.8810935 0
394 0 -4.909887 0
397 0 -4.48624 0
400 1 7.3133698 1
401 0 -4.9692993 0
402 0 -2.7191267 0
403 0 -3.7908158 0
405 0 -5.669884 0
407 0 -5.669884 0
408 0 -3.537508 0
410 0 -5.669884 0
411 0 ? 0
412 1 7.6394253 1
417 0 -5.669884 0
420 0 -2.696971 0
421 1 9.498289 1
424 0 -4.9692993 0
425 1 11.849485 1
426 0 -2.2324486 0
427 1 4.1596613 1
431 0 -2.9302087 0
432 0 -3.5334377 0
433 0 -4.013695 0
435 1 7.0216722 1
437 0 -4.48624 0
438 0 -3.5384207 0
443 0 -5.54259 0
444 0 -2.6761098 0
445 0 -5.4523587 0
446 0 -5.935418 0
447 0 -4.0031805 0
448 0 -5.8810935 0
458 0 -3.7524428 0
459 0 -3.5017056 0
460 0 -3.5568361 0
461 0 -3.3979883 0
462 0 -3.0737762 0
463 0 -4.282031 0
468 0 -4.48624 0
469 0 -5.419147 0
470 0 -4.649441 0
471 0 -3.0737762 0
472 0 -3.4657965 0
473 0 -4.48624 0
475 0 -4.9692993 0
476 0 -4.2355022 0
477 0 -4.48624 0
478 0 -3.744658 0
479 1 6.673234 1
481 0 -2.5658808 0
485 0 -4.6490927 0
486 0 -4.649441 0
488 1 0.95910263 1
490 0 -5.935418 0
491 1 5.556222 1
494 0 -0.01569748 0
496 0 -5.8810935 0
498 0 -4.220706 0
499 0 -4.220706 0
500 0 -2.9890532 0
503 0 -3.955172 0
505 0 -4.4522543 0
506 1 8.766859 1
508 0 -4.0031805 0
509 0 -5.4523587 0
511 0 -3.7376466 0
512 0 -4.0031805 0
515 1 7.3749876 1
516 0 -5.8810935 0
518 0 -4.49539 0
524 0 -4.7037654 0
525 0 -4.746127 0
526 0 -4.48624 0
530 1 5.325205 1
536 0 -3.4721127 0
537 0 -3.2213755 0
542 0 -3.4861355 0
543 0 -4.220706 0
545 0 -3.7376466 0
550 0 -4.7037654 0
551 0 -5.4043503 0
552 0 -3.2360563 0
553 0 -1.4225531 0
554 0 -4.9692993 0
555 0 -1.7431297 0
556 0 -2.9508896 0
562 0 -5.4043503 0
564 0 -3.7509632 0
567 0 -3.4350505 0
568 1 3.5748358 1
570 1 6.466877 1
571 1 9.048693 1
572 0 -4.7037654 0
573 0 -5.669884 0
574 1 5.533701 1
575 0 -3.2213755 0
576 0 -3.7376466 0
579 0 -5.4043503 0
580 0 -3.4869094 0
583 0 -4.9692993 0
585 0 -5.935418 0
587 0 -3.5334377 0
588 1 4.6442146 1
589 0 -4.0031805 0
591 1 4.243067 1
592 1 4.8517904 1
595 0 -3.7376466 0
596 0 -3.9699688 0
597 0 -2.9706378 0
598 0 -4.7037654 0
599 0 -2.9381208 0
601 0 -5.6155596 0
603 1 3.1762505 1
605 1 8.159748 1
608 1 8.079367 1
610 1 6.972576 1
611 1 5.494137 1
615 0 -3.7192311 0
616 0 -4.7037654 0
620 0 -4.7037654 0
623 0 -5.935418 0
625 0 -3.343666 0
626 1 3.8647957 1
628 0 -5.4523587 0
630 0 -2.7601237 0
631 0 -3.7376466 0
632 0 -5.935418 0
635 0 -4.2170873 0
636 1 8.162586 1
637 0 -2.370799 0
640 0 -4.039895 0
643 0 -5.935418 0
646 0 -5.426158 0
647 0 -5.4890733 0
648 1 8.579456 1
650 0 -3.6219683 0
651 0 -4.9650173 0
655 0 -4.7037654 0
658 1 7.546404 1
659 0 -5.935418 0
662 0 -5.1684093 0
663 0 -5.1684093 0
664 0 -4.2574205 0
666 0 -3.0702114 0
667 0 -4.4382315 0
669 1 6.9817867 1
671 0 -3.9565368 0
672 0 -4.921291 0
673 0 -3.289723 0
674 0 -5.669884 0
675 0 -3.7340279 0
676 0 -5.419147 0
677 0 -4.0031805 0
684 0 -5.935418 0
686 0 -5.935418 0
687 0 -4.295347 0
690 0 -5.4890733 0
695 0 -5.4523587 0

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
5 1 4.200075 0.9999651 5.0391796758373727E-05 1
6 0 -0.3085327 0.253645 0.42206609601583689 0
8 0 -1.70133 0.0101235835 0.014679675164585746 0
9 0 -1.52884233 0.0155375432 0.02259190598085983 0
10 0 -1.91297352 0.00596963847 0.0086381769438633477 0
11 0 -1.83556986 0.00724350661 0.010488202773633042 0
18 1 2.58238435 0.997959554 0.0029467484071289771 1
20 1 2.114814 0.9934155 0.0095308744102067192 1
21 1 2.36084485 0.9964431 0.0051406802358066545 1
25 1 0.445966482 0.69394 0.52711719974035876 1
28 0 -1.83556986 0.00724350661 0.010488202773633042 0
31 0 -1.73248947 0.009367557 0.013578225541413042 0
32 1 2.35438 0.996385 0.0052248235129257635 1
35 0 -1.83556986 0.00724350661 0.010488202773633042 0
37 0 -0.8828192 0.07420456 0.11123463299619094 0
40 0 ? ? ? 0
41 1 0.6366718 0.7855496 0.34822575879653411 1
44 1 2.72072053 0.998558342 0.002081372862402793 1
45 0 -1.87994158 0.00648348359 0.0093841435784006184 0
46 1 1.88803124 0.9884103 0.016818058819898705 1
48 0 -1.369495 0.0230220016 0.033602021915710281 0
50 1 0.630593538 0.7829627 0.3529845521983469 1
51 1 -0.08284879 0.3748233 1.4157174495771871 0
52 1 1.37411427 0.959037364 0.060341072002409277 1
54 1 2.382396 0.996630132 0.004869901644625689 1
56 1 2.16985536 0.9942619 0.0083021409254577568 1
60 1 0.580731153 0.760894835 0.39423102554115741 1
63 1 0.08508468 0.477724969 1.0657478103548359 1
64 0 -1.93927169 0.00558965746 0.0080867934194779039 0
66 0 -1.52508581 0.015682742 0.022804705365968514 0
68 1 2.92799163 0.9991436 0.001236052716862961 1
69 0 -1.77673125 0.00838927 0.012154212197556026 0
70 0 -1.30556321 0.02693041 0.039385111094510615 0
71 1 2.37676454 0.9965822 0.0049392741085566528 1
72 0 -0.869064569 0.0766167 0.11499844969543505 0
73 1 2.7834456 0.9987685 0.0017777616487900717 1
74 1 0.6862192 0.805798352 0.31150924038540767 1
76 0 -1.61091959 0.0126759233 0.018404385977097384 0
77 0 -1.248021 0.0309945866 0.045423369601647688 0
79 0 -1.75878751 0.008773203 0.012712904821001687 0
82 0 -1.32206 0.0258640852 0.037805018726200908 0
88 0 -1.52508581 0.015682742 0.022804705365968514 0
90 0 -1.8361913 0.00723227439 0.010471879968765333 0
91 0 -1.75715315 0.008809026 0.012765045324349893 0
92 0 -1.52508581 0.015682742 0.022804705365968514 0
93 0 -1.93927169 0.00558965746 0.0080867934194779039 0
95 0 -1.8361913 0.00723227439 0.010471879968765333 0
96 0 -1.86085486 0.00680018542 0.0098441027134909074 0
97 0 -1.42138422 0.0202620383 0.02953215377914243 0
98 1 2.81297278 0.998856544 0.0016506014616887051 1
99 1 3.25472617 0.999623358 0.00054348154074645777 1
100 1 1.62126374 0.977576137 0.032719026634192926 1
102 0 -1.41563523 0.0205511115 0.029957886011062508 0
104 1 3.63744855 0.9998561 0.00020759799513193585 1
105 1 0.3781085 0.6565402 0.60704471175643482 1
106 1 3.15140462 0.9995116 0.00070478504326742424 1
108 0 -1.82035172 0.007524035 0.010895930171499812 0
109 1 2.02325559 0.9917243 0.011988970794591214 1
111 1 1.45855021 0.966613948 0.048988281724005323 1
112 1 2.39239383 0.9967135 0.0047491980576946837 1
113 1 3.449529 0.9997692 0.00033299683958315626 1
115 0 -1.36339271 0.02336979 0.034115688192424207 0
117 1 2.75686765 0.9986835 0.0019005416994463959 1
120 0 -1.64894521 0.0115329893 0.01673527697317688 0
121 0 -1.25602186 0.0303958151 0.044532169332657461 0
122 1 3.63955188 0.9998569 0.0002064799474635194 1
123 1 1.52850032 0.9718489 0.041196061742169734 1
125 0 -1.93927169 0.00558965746 0.0080867934194779039 0
128 1 1.66803288 0.980015159 0.029124030205691952 1
129 0 -1.42809331 0.019929722 0.029042890397472713 0
131 0 -1.73248947 0.009367557 0.013578225541413042 0
132 1 3.34315944 0.99969846 0.00043509571801397302 1
133 0 -1.6724081 0.0108792149 0.01578139039179206 0
137 0 -1.83494866 0.007254752 0.010504544711246616 0
138 0 -1.51871562 0.0159320254 0.02317012154973026 0
141 0 -1.93865037 0.00559835136 0.0080994066187532153 0
144 0 -1.83556986 0.00724350661 0.010488202773633042 0
145 0 ? ? ? 0
147 0 -1.69274938 0.010342177 0.014998299390129487 0
150 0 -1.91297352 0.00596963847 0.0086381769438633477 0
151 1 1.55168462 0.973401248 0.038893469912665984 1
152 1 3.02924 0.999336 0.00095826154131685372 1
154 0 -2.0423522 0.004318493 0.0062437599081359638 0
156 0 -1.73049688 0.009414184 0.013646131293487658 0
161 0 -1.46562588 0.0181668717 0.026450249055215744 0
164 0 ? ? ? 0
167 1 2.31870866 0.99604696 0.0057143326416850991 1
169 0 -2.041339 0.00432946626 0.0062596597963016712 0
171 0 -1.8361913 0.00723227439 0.010471879968765333 0
173 1 4.862486 0.9999934 9.5450686985595153E-06 1
174 1 1.9712131 0.990577757 0.013657868129433039 1
176 0 -1.73248947 0.009367557 0.013578225541413042 0
177 1 1.93383479 0.9896585 0.014997349031540621 1
179 1 0.986544132 0.8982907 0.15474570718058153 1
180 0 -1.91297352 0.00596963847 0.0086381769438633477 0
181 0 -2.0423522 0.004318493 0.0062437599081359638 0
183 1 3.17115474 0.999535263 0.00067063020993693814 1
187 1 3.8796742 0.999921739 0.00011291102860834543 1
188 1 2.87454438 0.999020457 0.0014138740302619024 1
189 0 -1.51796579 0.0159616228 0.023213513582380177 0
191 1 3.767329 0.9998962 0.00014971866598967564 1
192 0 -1.52446461 0.0157068819 0.022840087163427197 0
196 0 1.88710237 0.9883835 6.4276772515227742 1
198 0 -2.0423522 0.004318493 0.0062437599081359638 0
199 0 -1.73186815 0.009382072 0.013599363941350218 0
201 1 3.4492538 0.999769032 0.00033325487313387326 1
202 0 -1.8361913 0.00723227439 0.010471879968765333 0
204 0 -1.8361913 0.00723227439 0.010471879968765333 0
205 1 4.09952259 0.999955 6.4924911571092269E-05 1
206 1 2.32294917 0.996088743 0.005653814757257427 1
207 0 -1.91297352 0.00596963847 0.0086381769438633477 0
209 0 -1.49816644 0.01676303 0.024388931840492362 0
210 1 4.574052 0.999986351 1.9692147917725957E-05 1
211 1 3.20518613 0.99957335 0.00061565725187682347 1
212 0 -1.8361913 0.00723227439 0.010471879968765333 0
216 0 -1.93927169 0.00558965746 0.0080867934194779039 0
218 1 2.62593246 0.9981709 0.0026412320631398097 1
219 0 -1.098781 0.0444866829 0.065652114478974871 0
223 1 1.741823 0.983344257 0.024231519884600778 1
226 1 3.05681729 0.999380469 0.00089407081728932005 1
228 0 -1.91297352 0.00596963847 0.0086381769438633477 0
233 1 2.00516772 0.9913424 0.01254462171484411 1
237 1 2.0591085 0.9924326 0.010958976684646626 1
239 1 1.6806457 0.9806272 0.028223346851889448 1
240 0 -0.8613126 0.0780076459 0.11717330817525451 0
241 0 -1.54997909 0.01474489 0.021430767890976633 0
242 0 -1.73248947 0.009367557 0.013578225541413042 0
244 0 -1.8361913 0.00723227439 0.010471879968765333 0
246 1 3.8998096 0.9999256 0.00010732116581602008 1
247 1 0.9928844 0.8997386 0.15242216136874395 1
248 0 -1.22778583 0.03256034 0.047756414470681303 0
249 0 ? ? ? 0
250 0 -1.83357728 0.00727963867 0.010540711608751351 0
252 0 1.37199 0.958826959 4.6021561858199664 1
254 1 2.79375386 0.9988 0.0017323029622904203 1
257 0 -1.73186815 0.009382072 0.013599363941350218 0
258 0 -1.62878764 0.0121255685 0.017600422018504175 0
259 0 1.42817044 0.9640579 4.7981823833320787 1
260 1 2.88999724 0.99905777 0.0013599916857192891 1
262 1 3.28052878 0.999647 0.00050933052590907497 1
267 1 1.10222125 0.921965 0.11721610663727763 1
268 1 2.50981832 0.997552 0.0035360796959713393 1
269 0 -1.8361913 0.00723227439 0.010471879968765333 0
271 0 -1.42138422 0.0202620383 0.02953215377914243 0
272 1 1.10222125 0.921965 0.11721610663727763 1
275 0 ? ? ? 0
276 0 -1.73186815 0.009382072 0.013599363941350218 0
277 0 -1.93927169 0.00558965746 0.0080867934194779039 0
278 0 -1.8361913 0.00723227439 0.010471879968765333 0
279 1 1.93616843 0.9897184 0.014910027325241739 1
280 0 -1.62878764 0.0121255685 0.017600422018504175 0
283 1 1.79509 0.9854024 0.021215101768506751 1
284 1 2.22516179 0.995003462 0.0072265497662589986 1
285 1 4.654189 0.999988854 1.6080467472835657E-05 1
288 1 0.475044 0.709250331 0.49563317624888092 1
290 0 -2.0423522 0.004318493 0.0062437599081359638 0
291 0 -1.8361913 0.00723227439 0.010471879968765333 0
293 1 1.65592456 0.9794098 0.030015442677317709 1
296 0 0.553571463 0.748245 1.9899076684215853 1
297 0 ? ? ? 0
299 1 2.001486 0.991262555 0.012660861084033199 1
300 1 2.09417748 0.9930671 0.010036913891508983 1
301 0 -1.8361913 0.00723227439 0.010471879968765333 0
303 0 -1.8361913 0.00723227439 0.010471879968765333 0
304 1 1.76244569 0.98417294 0.023016244643388774 1
308 1 2.129626 0.9936548 0.0091833726838673919 1
309 0 -0.7436676 0.102127559 0.15541759703163019 0
311 0 -2.0423522 0.004318493 0.0062437599081359638 0
312 1 1.26695132 0.9470354 0.078509782787093155 1
314 0 -2.01605415 0.00461246027 0.0066697674239995551 0
316 1 1.47151637 0.9676506 0.047441894201880302 1
317 1 3.06524873 0.999393463 0.00087531320929783803 1
319 0 0.8519552 0.8629285 2.8669995609516308 1
321 0 ? ? ? 0
323 1 1.75474 0.9838682 0.023463058122578043 1
327 0 -1.93927169 0.00558965746 0.0080867934194779039 0
328 1 1.43182349 0.964374959 0.052333903838185522 1
329 1 2.34606433 0.996308863 0.0053350370543586998 1
331 0 -1.36205411 0.0234467611 0.034229396966628252 0
332 0 -1.17843437 0.0367059745 0.053951876878949478 0
333 1 1.71604276 0.982248247 0.025840407436881135 1
336 1 1.92158818 0.9893384 0.01546402326222397 1
338 0 -2.01605415 0.00461246027 0.0066697674239995551 0
343 0 -2.0423522 0.004318493 0.0062437599081359638 0
344 1 3.2724607 0.99963975 0.00051982521016927393 1
346 0 -1.14527237 0.03977216 0.058551330583300643 0
347 0 -2.00021458 0.00479904469 0.0069402245526315022 0
348 1 0.0469625 0.453868628 1.1396533255911534 1
349 1 1.07890439 0.9176395 0.12400061058625531 1
350 0 -1.47195411 0.0178851113 0.026036292646255864 0
352 0 0.386350155 0.6611997 1.5614928955250442 1
353 1 3.21699166 0.999585867 0.00059759147883748926 1
354 0 -1.93927169 0.00558965746 0.0080867934194779039 0
355 0 -1.49192393 0.0170238111 0.024771625011443362 0
358 1 2.10382628 0.9932322 0.0097970749358899187 1
360 1 4.98787975 0.9999952 6.9653141741429021E-06 1
361 1 2.40312839 0.99680084 0.0046228109150398015 1
366 1 4.55324459 0.999985635 2.0724058276965695E-05 1
368 0 -1.82345068 0.00746604847 0.010811641630035198 0
370 0 -1.24328518 0.03135437 0.045959131468382028 0
371 0 -1.82345068 0.00746604847 0.010811641630035198 0
373 0 -1.44666922 0.01903723 0.027729711214983053 0
376 0 -1.93927169 0.00558965746 0.0080867934194779039 0
377 0 -2.01605415 0.00461246027 0.0066697674239995551 0
378 0 -1.36223936 0.0234360937 0.034213637788986416 0
379 0 -0.7408192 0.102786429 0.15647665286296719 0
381 1 2.88937926 0.999056339 0.0013620574254095477 1
383 0 -1.93865037 0.00559835136 0.0080994066187532153 0
384 0 -1.93865037 0.00559835136 0.0080994066187532153 0
387 0 -0.849257 0.08021678 0.12063421711244401 0
388 0 -1.77610981 0.008402283 0.012173145482031101 0
389 0 -1.21848226 0.0333056338 0.048868261114177781 0
391 1 3.174926 0.9995396 0.00066434993816633352 1
392 0 -1.73186815 0.009382072 0.013599363941350218 0
395 0 -1.73186815 0.009382072 0.013599363941350218 0
396 0 -1.62878764 0.0121255685 0.017600422018504175 0
398 0 -1.573084 0.0139239626 0.02022919620554102 0
399 0 -1.7241267 0.009564793 0.013865495560937758 0
404 0 -1.72797716 0.009473475 0.013732485333686782 0
406 0 -1.41939151 0.020361783 0.029679038395115178 0
409 0 -1.62241745 0.0123190153 0.017882960129347876 0
413 0 -1.31193352 0.02651367 0.038767374041482373 0
414 1 2.12304854 0.9935496 0.0093361246520084814 1
415 0 -0.2776096 0.268650234 0.45136655826070221 0
416 1 3.17670131 0.9995417 0.00066133885865735131 1
418 0 -0.8462839 0.08077029 0.12150266964643659 0
419 0 -1.50965512 0.0162933134 0.023699885829690397 0
422 0 -0.988616347 0.0578696653 0.086001438252237397 0
423 0 -1.30556321 0.02693041 0.039385111094510615 0
428 0 -1.93927169 0.00558965746 0.0080867934194779039 0
429 0 -1.83556986 0.00724350661 0.010488202773633042 0
430 0 -1.68116343 0.0106447618 0.01543946641702044 0
434 0 2.025863 0.991777956 6.9262872774368329 1
436 1 1.59636712 0.9761615 0.034808271840087598 1
439 0 -1.627545 0.0121630672 0.017655186387020849 0
440 1 2.7169435 0.998544633 0.0021011795574893714 1
441 0 -0.6761644 0.118782796 0.18243043378782547 0
442 0 -1.54728138 0.0148437964 0.021575602479334537 0
449 1 3.48006415 0.999786258 0.0003083978529977051 1
450 0 -1.54935777 0.0147676123 0.021464040373680267 0
451 0 -1.627545 0.0121630672 0.017655186387020849 0
452 0 -1.67935765 0.0106927054 0.015509380237743254 0
453 1 2.76769233 0.9987188 0.0018495686286770713 1
454 0 -1.66321981 0.0111307558 0.016148325336894087 0
455 1 0.00776791573 0.4295611 1.2190647145282236 1
456 1 3.14682412 0.999505937 0.0007129582341136991 1
457 1 2.752885 0.9986703 0.0019196570653076585 1
464 0 -1.73124683 0.009396608 0.013620533847283617 0
465 1 3.007116 0.999298036 0.0010130754524185037 1
466 1 2.87526 0.999022245 0.0014112917633669164 1
467 1 2.487548 0.9974113 0.0037395315885890151 1
474 0 -1.627545 0.0121630672 0.017655186387020849 0
480 0 -1.70432746 0.0100483028 0.014569961555286825 0
482 1 4.65644646 0.9999889 1.5994475191491157E-05 1
483 1 3.47463059 0.999783337 0.00031261233491118568 1
484 0 -1.51809442 0.0159565415 0.02320606393230951 0
487 1 4.26376724 0.999970257 4.291030952804639E-05 1
489 1 -0.320501328 0.247988075 2.0116573473644705 0
492 0 -1.70494866 0.0100327712 0.014547326832164448 0
493 1 3.59894681 0.9998415 0.00022866905553723773 1
495 0 -1.80865049 0.00774704246 0.011220137511999694 0
497 0 -1.63192272 0.0120314686 0.017463004760091338 0
501 0 -1.62816632 0.0121443039 0.017627783540922228 0
502 0 -1.55037081 0.0147305829 0.021409818539625137 0
504 0 -2.0423522 0.004318493 0.0062437599081359638 0
507 0 -1.53313267 0.0153733287 0.022351275454600254 0
510 0 -2.0423522 0.004318493 0.0062437599081359638 0
513 0 -1.80865049 0.00774704246 0.011220137511999694 0
514 1 3.25011468 0.999618948 0.00054984731048193683 1
517 0 -2.01605415 0.00461246027 0.0066697674239995551 0
519 1 2.29231 0.9957767 0.0061058177687421267 1
520 0 -1.96556973 0.00523373764 0.0075705157115209904 0
521 0 -1.65446436 0.0113757933 0.016505863179890824 0
522 1 1.35326934 0.95692724 0.063518861538107568 1
523 1 2.43703246 0.997061551 0.0042455270449299996 1
527 0 -1.52508581 0.015682742 0.022804705365968514 0
528 0 -1.22714639 0.032611046 0.047832030207579063 0
529 0 -1.70494866 0.0100327712 0.014547326832164448 0
531 0 -1.41939151 0.020361783 0.029679038395115178 0
532 0 -1.91297352 0.00596963847 0.0086381769438633477 0
533 0 -1.73186815 0.009382072 0.013599363941350218 0
534 0 -1.83556986 0.00724350661 0.010488202773633042 0
535 0 -1.5394944 0.0151329711 0.021999141595305447 0
538 0 -1.62816632 0.0121443039 0.017627783540922228 0
539 0 -1.42076278 0.0202930942 0.029577885270267064 0
540 0 -1.35472476 0.0238726269 0.034858680209400861 0
541 0 -1.83494866 0.007254752 0.010504544711246616 0
544 0 -1.53887308 0.0151562812 0.022033288057019811 0
546 1 3.890135 0.9999238 0.00010990109979811221 1
547 0 -2.0154326 0.004619644 0.0066801794566212934 0
548 0 -1.91173089 0.005988215 0.0086651385511638517 0
549 1 1.887358 0.988390863 0.01684642097660051 1
557 0 -1.47195411 0.0178851113 0.026036292646255864 0
558 0 -1.83556986 0.00724350661 0.010488202773633042 0
559 0 -1.52446461 0.0157068819 0.022840087163427197 0
560 0 -1.42138422 0.0202620383 0.02953215377914243 0
561 0 -1.42138422 0.0202620383 0.02953215377914243 0
563 0 -1.73186815 0.009382072 0.013599363941350218 0
565 1 3.8744843 0.9999207 0.00011437299629627494 1
566 0 -1.519337 0.0159075353 0.0231342182919132 0
569 1 3.2839272 0.99965 0.00050502944785764078 1
577 0 -1.93927169 0.00558965746 0.0080867934194779039 0
578 0 -1.93927169 0.00558965746 0.0080867934194779039 0
581 1 2.9567616 0.9992033 0.0011498181326279645 1
582 1 2.85082364 0.9989603 0.0015007269655248547 1
584 0 -1.16178524 0.0382158421 0.056214931934765108 0
586 1 4.56034374 0.9999859 2.0380088075209094E-05 1
590 1 1.321295 0.953487635 0.068713865874326943 1
593 0 -1.51809442 0.0159565415 0.02320606393230951 0
594 1 1.966572 0.990468144 0.013817519198081184 1
600 0 -1.73186815 0.009382072 0.013599363941350218 0
602 0 -1.62816632 0.0121443039 0.017627783540922228 0
604 1 1.76402068 0.9842345 0.022925989915786975 1
606 0 -1.65345132 0.0114044873 0.016547736888820951 0
607 0 -2.0423522 0.004318493 0.0062437599081359638 0
609 0 -1.627545 0.0121630672 0.017655186387020849 0
612 1 5.09431458 0.9999963 5.3314720279485219E-06 1
613 0 -1.63692176 0.0118829105 0.017246087060301379 0
614 0 -1.9123522 0.00597891957 0.0086516472088849234 0
617 0 ? ? ? 0
618 0 -1.62816632 0.0121443039 0.017627783540922228 0
619 0 -1.52446461 0.0157068819 0.022840087163427197 0
621 0 -0.188778639 0.31474337 0.54528371301135603 0
622 0 -1.05201948 0.0497632362 0.073641070486166582 0
624 0 -1.52345145 0.01574633 0.022897909331197303 0
627 0 -1.25969088 0.0301249921 0.044129262173613473 0
629 0 -1.73124683 0.009396608 0.013620533847283617 0
633 1 1.35853171 0.9574696 0.062701439484481342 1
634 0 -1.83494866 0.007254752 0.010504544711246616 0
638 0 -1.73124683 0.009396608 0.013620533847283617 0
639 0 -1.47195411 0.0178851113 0.026036292646255864 0
641 0 -1.73186815 0.009382072 0.013599363941350218 0
642 0 -1.73186815 0.009382072 0.013599363941350218 0
644 0 -1.93865037 0.00559835136 0.0080994066187532153 0
645 0 -1.73186815 0.009382072 0.013599363941350218 0
649 0 -1.73186815 0.009382072 0.013599363941350218 0
652 0 -1.46500456 0.0181947686 0.026491240948998126 0
653 0 -1.62816632 0.0121443039 0.017627783540922228 0
654 0 -1.62878764 0.0121255685 0.017600422018504175 0
656 0 -1.52446461 0.0157068819 0.022840087163427197 0
657 0 0.0723848343 0.469760865 0.91528494066544641 1
660 0 -1.93927169 0.00558965746 0.0080867934194779039 0
661 0 -1.52508581 0.015682742 0.022804705365968514 0
665 0 -2.0423522 0.004318493 0.0062437599081359638 0
668 1 0.8761637 0.8699734 0.20095676960137676 1
670 1 2.475629 0.9973327 0.003853253006618053 1
678 0 -2.0423522 0.004318493 0.0062437599081359638 0
679 0 -1.93865037 0.00559835136 0.0080994066187532153 0
680 1 5.04694557 0.9999958 6.0194053376651264E-06 1
681 1 3.46109271 0.9997758 0.00032344963065038983 1
682 0 -1.36192417 0.023454247 0.034240456286276998 0
683 0 -2.0423522 0.004318493 0.0062437599081359638 0
685 0 -2.0423522 0.004318493 0.0062437599081359638 0
688 0 -1.73124683 0.009396608 0.013620533847283617 0
689 0 -1.62704146 0.0121782953 0.017677426504434872 0
691 1 1.882755 0.9882572 0.017041491158961135 1
692 0 -1.83494866 0.007254752 0.010504544711246616 0
693 0 -1.672538 0.0108756982 0.015776261110052519 0
694 0 -1.58842623 0.013403913 0.019468529515037223 0
696 1 2.4464438 0.9971301 0.0041463489900476049 1
697 1 1.55568719 0.973660648 0.038509060715199682 1
698 1 1.97998643 0.9907815 0.013361184575109956 1
0 0 -1.45238721 0.0191461444 0.027889899822551058 0
1 0 1.11170912 0.8593498 2.8298163598358652 1
2 0 -1.54424238 0.015639808 0.022741779235930782 0
3 0 1.37946415 0.9175827 3.6009088257157944 1
4 0 -1.44707 0.01937121 0.028220976479993332 0
7 0 -1.71967256 0.0106097329 0.01538838756232529 0
12 1 -0.161683559 0.260414779 1.9411167675294982 0
13 0 -1.63609767 0.0127672432 0.018537830373435874 0
14 1 2.71370888 0.9955039 0.0065011234789790892 1
15 1 0.223962069 0.455227822 1.1353393616516734 1
16 0 -1.64255309 0.0125861792 0.018273256294688772 0
17 0 -1.57970572 0.0144622317 0.021016934775320784 0
19 0 -1.32506859 0.0253080986 0.036981837697027814 0
22 0 -1.76987159 0.009491567 0.01375883626140059 0
23 1 ? ? ? 0
24 0 -1.96166122 0.00619609 0.0089668769102733102 0
26 0 -1.67495286 0.0117150256 0.017000988488892345 0
27 0 -1.51523459 0.0166727714 0.024256502854015347 0
29 0 -1.85801566 0.00780350342 0.011302231772123169 0
30 0 -1.78189826 0.009241497 0.013394651189791419 0
33 0 -1.7680248 0.009530555 0.01381562546271423 0
34 0 -1.65520144 0.0122387335 0.017765698029012313 0
36 1 2.87578344 0.9968689 0.0045242970124596479 1
38 1 1.87777615 0.971437454 0.041806983673957396 1
39 1 0.6668365 0.6927327 0.52962933510920285 1
42 1 2.85106516 0.996691167 0.0047815514952653957 1
43 1 -0.0311758518 0.320528984 1.6414732753813828 0
47 0 -2.02450848 0.00538646942 0.0077920373965741406 0
49 1 2.28492928 0.9883315 0.016933076909576631 1
53 1 1.930212 0.9745235 0.037231141972795589 1
55 1 1.64414215 0.952713966 0.069884956555172115 1
57 1 0.03233409 0.352284133 1.5051885962995508 1
58 1 0.522735834 0.620104551 0.68941661656890396 1
59 1 0.298143864 0.496668577 1.0096446204297265 1
61 0 -1.86172676 0.007739373 0.011208986502338352 0
62 1 2.5047307 0.9928375 0.010370503522459541 1
65 1 0.5658133 0.6425685 0.63807777182666836 1
67 1 1.57602644 0.945341945 0.081091826206322645 1
75 0 -1.51255333 0.01677157 0.024401462897071045 0
78 0 -1.38146067 0.0223708116 0.032640735466374922 0
80 0 -1.37336445 0.0227710828 0.033231539860703048 0
81 0 -1.57623518 0.0145735061 0.021179834792240497 0
83 0 -1.292853 0.027151376 0.039712756897806817 0
84 1 2.80530357 0.996335149 0.0052969748874191315 1
85 1 2.200985 0.985950232 0.02041327029743915 1
86 1 0.843996763 0.7702897 0.37652692479173283 1
87 1 2.29303455 0.9885391 0.016630064878214851 1
89 0 -1.81884539 0.008513379 0.012334789723581699 0
94 0 -1.83434272 0.008225175 0.011915489581813862 0
101 1 -0.0539734364 0.309505522 1.6919629444034134 0
103 1 -0.1090858 0.283749 1.8173127149912758 0
107 1 2.2883606 0.988419831 0.016804138946970682 1
110 0 -1.12082231 0.0394196026 0.058021727147235636 0
114 0 -1.0528996 0.04560512 0.067341790364455534 0
116 0 -0.355610132 0.185667768 0.29631058848329073 0
118 0 -1.737739 0.0101930434 0.014780913024182173 0
119 0 -1.437297 0.0197916627 0.02883967703147506 0
124 1 2.19409847 0.9857349 0.020728418652725122 1
126 1 2.25113821 0.9874251 0.018256792783391419 1
127 0 -1.70702422 0.0109114433 0.015828398337213719 0
130 0 -1.28589427 0.02756635 0.040328276492221926 0
134 0 -1.75784481 0.009748338 0.014132877086598956 0
135 0 -1.07198834 0.04377895 0.06458392745656516 0
136 0 -1.64255309 0.0125861792 0.018273256294688772 0
139 0 ? ? ? 0
140 0 -1.832719 0.008254912 0.01195874763978641 0
142 1 1.20702124 0.8832422 0.17911900782229345 1
143 0 -1.436229 0.0198381469 0.028908095216224419 0
146 1 0.3892374 0.5475602 0.86891046880406364 1
148 0 -0.6148732 0.113103367 0.17316212599626016 0
149 1 3.46667862 0.9991652 0.0012048975118685592 1
153 0 -1.37983692 0.0224505328 0.032758385480089913 0
155 1 1.24272728 0.8912444 0.16610696969487637 1
157 0 -1.83434272 0.008225175 0.011915489581813862 0
158 0 ? ? ? 0
159 1 4.09360933 0.999795 0.00029575448112624953 1
160 1 3.04705143 0.997864842 0.0030836744978663621 1
162 0 -1.70702422 0.0109114433 0.015828398337213719 0
163 0 -1.3802824 0.0224286336 0.032726066505356692 0
165 0 -1.30811536 0.0262623839 0.038395019663059589 0
166 1 2.86013269 0.9967575 0.004685528611449833 1
168 0 -1.70702422 0.0109114433 0.015828398337213719 0
170 0 -1.832719 0.008254912 0.01195874763978641 0
172 0 -2.02450848 0.00538646942 0.0077920373965741406 0
175 1 2.72195482 0.995585859 0.0063823562844149409 1
178 0 -1.57970572 0.0144622317 0.021016934775320784 0
182 0 -1.32506859 0.0253080986 0.036981837697027814 0
184 1 1.9583292 0.976042 0.034984905691930093 1
185 0 -1.8463695 0.008008199 0.011599898100983582 0
186 1 2.00662041 0.9784464 0.031435238347935837 1
190 1 4.06121731 0.9997796 0.00031803097260478248 1
193 0 -1.96166122 0.00619609 0.0089668769102733102 0
194 0 -1.70702422 0.0109114433 0.015828398337213719 0
195 0 -1.57970572 0.0144622317 0.021016934775320784 0
197 0 -1.25343359 0.0295848772 0.04332606150571304 0
200 1 3.27509069 0.9987181 0.0018506018487151699 1
203 0 -1.45238721 0.0191461444 0.027889899822551058 0
208 0 -1.973688 0.006032315 0.0087291460853258923 0
213 1 4.69505262 0.9999467 7.6878293243468792E-05 1
214 1 4.236644 0.9998512 0.00021465031577919458 1
215 1 2.618555 0.994441152 0.0080420961556741631 1
217 0 -1.96166122 0.00619609 0.0089668769102733102 0
220 0 -1.8953433 0.007181776 0.010398497637185923 0
221 1 3.1131897 0.9981584 0.0026593234454307781 1
222 1 -0.870816946 0.06704428 3.8987419283439433 0
224 1 3.05571461 0.9979058 0.0030244732654238038 1
225 0 -2.02450848 0.00538646942 0.0077920373965741406 0
227 1 2.535159 0.993306458 0.0096892036980333902 1
229 1 4.22899246 0.999848664 0.00021834849770230094 1
230 1 1.79421043 0.965756238 0.050269004499880442 1
231 1 2.80366325 0.996321738 0.0053163942348769758 1
232 0 0.248882532 0.46910888 0.91351208341864276 1
234 0 -0.8223932 0.0741594 0.11116426368346338 0
235 0 ? ? ? 0
236 1 3.65436459 0.999451637 0.00079133718371403176 1
238 1 4.208801 0.99984163 0.00022849704563499302 1
243 0 -1.18483961 0.0343320966 0.050400968413634589 0
245 0 -1.2232877 0.0315873139 0.046306116221266909 0
251 1 2.36333418 0.990193248 0.014217983403619341 1
253 1 2.85106516 0.996691167 0.0047815514952653957 1
255 1 1.75514078 0.9627396 0.054782481237746296 1
256 0 -1.832719 0.008254912 0.01195874763978641 0
261 1 3.637113 0.99943006 0.00082248345899775727 1
263 1 2.51998472 0.9930765 0.010023232474421741 1
264 1 1.47284746 0.9320885 0.10146116122224128 1
265 0 -0.9995682 0.05109897 0.075670470540090448 0
266 1 2.664765 0.9949853 0.0072529090653585277 1
270 1 2.3404932 0.9896835 0.014960855735305003 1
273 1 -0.0288050175 0.321687222 1.6362694663435147 0
274 0 -1.5982157 0.0138827479 0.020168897537422972 0
281 0 -1.7680248 0.009530555 0.01381562546271423 0
282 1 1.344203 0.911406159 0.13383397437321001 1
286 1 4.869809 0.999964 5.1939695512002597E-05 1
287 0 -1.75784481 0.009748338 0.014132877086598956 0
289 1 2.8387928 0.996599257 0.0049145964567919058 1
292 1 ? ? ? 0
294 0 ? ? ? 0
295 1 2.21859837 0.9864867 0.019628533461458434 1
298 0 -1.053101 0.0455854833 0.067312108231381534 0
302 1 4.847371 0.999962151 5.4605525036338512E-05 1
305 1 3.10776329 0.9981359 0.0026918023533455417 1
306 0 -1.96166122 0.00619609 0.0089668769102733102 0
307 0 -1.96166122 0.00619609 0.0089668769102733102 0
310 0 -1.88516331 0.007346285 0.010637570327263628 0
313 0 -2.087356 0.00468213623 0.0067707579292392971 0
315 0 ? ? ? 0
318 0 -1.9255811 0.006714394 0.00971948958962956 0
320 1 1.98424911 0.9773634 0.03303300364958086 1
322 0 -1.70702422 0.0109114433 0.015828398337213719 0
324 0 -1.96166122 0.00619609 0.0089668769102733102 0
325 0 -1.33063877 0.0250019934 0.036528825640836864 0
326 1 1.10136127 0.856523454 0.22343534270616167 1
330 1 1.58739471 0.9466435 0.079106919914734508 1
334 1 2.14297724 0.984030962 0.02322438500658925 1
335 0 -2.087356 0.00468213623 0.0067707579292392971 0
337 0 -1.96166122 0.00619609 0.0089668769102733102 0
339 1 1.82680225 0.968091249 0.046785056739187467 1
340 1 1.88790464 0.972060561 0.040881895673108862 1
341 0 -1.96166122 0.00619609 0.0089668769102733102 0
342 0 -1.96003747 0.00621853769 0.0089994643299424158 0
345 0 -2.087356 0.00468213623 0.0067707579292392971 0
351 0 -1.83434272 0.008225175 0.011915489581813862 0
356 1 -0.344875336 0.189332619 2.4010051066568723 0
357 1 3.73402739 0.9995413 0.00066194107405638893 1
359 1 1.58875513 0.946797252 0.078872576565764824 1
362 0 -1.19863892 0.03332147 0.048891895272204298 0
363 0 -0.5858247 0.119799756 0.18409632242873916 0
364 0 -1.83434272 0.008225175 0.011915489581813862 0
365 0 -1.89719009 0.00715232641 0.010355703827107435 0
367 1 3.59948587 0.999379933 0.00089484521919164879 1
369 0 -1.80719507 0.008736611 0.012659647949904635 0
372 0 -1.52788293 0.0162143651 0.023584105761245956 0
374 0 -1.65520144 0.0122387335 0.017765698029012313 0
375 0 -2.087356 0.00468213623 0.0067707579292392971 0
380 0 -2.087356 0.00468213623 0.0067707579292392971 0
382 0 -1.31028211 0.0261384938 0.03821147505643846 0
385 0 -1.20793164 0.0326571465 0.047900782802141328 0
386 1 1.75938892 0.9630796 0.054273093299447184 1
390 0 -1.95819068 0.00624416675 0.009036671104784566 0
393 0 -2.09938264 0.00455819676 0.00659112110828228 0
394 0 -1.68822277 0.011375675 0.016505690577374079 0
397 0 -1.70540047 0.0109507861 0.015885785289823082 0
400 1 2.78290081 0.9961472 0.0055691285132316755 1
401 0 -1.832719 0.008254912 0.01195874763978641 0
402 0 -1.07200325 0.04377755 0.064581819763773418 0
403 0 -1.3443737 0.02426253 0.035435064650161108 0
405 0 -2.02450848 0.00538646942 0.0077920373965741406 0
407 0 -2.02450848 0.00538646942 0.0077920373965741406 0
408 0 -1.276682 0.0281251986 0.041157619505191562 0
410 0 -2.02450848 0.00538646942 0.0077920373965741406 0
411 0 ? ? ? 0
412 1 2.820312 0.996455967 0.0051220399276606741 1
417 0 -2.02450848 0.00538646942 0.0077920373965741406 0
420 0 -1.02720916 0.0481775925 0.071235676455785449 0
421 1 3.560948 0.9993241 0.00097547133621225465 1
424 0 -1.832719 0.008254912 0.01195874763978641 0
425 1 4.62874651 0.9999382 8.9175760478377495E-05 1
426 0 -0.7908399 0.0791630447 0.11898236157897074 0
427 1 1.73205709 0.9608388 0.057633692591426401 1
431 0 -1.18688941 0.0341801271 0.050173945870451819 0
432 0 -1.40642607 0.021179352 0.030883559758384853 0
433 0 -1.47846746 0.0180788413 0.026320903824091954 0
435 1 2.56761169 0.993773043 0.0090116866611377085 1
437 0 -1.70540047 0.0109507861 0.015885785289823082 0
438 0 -1.34342444 0.0243129451 0.035509607669433556 0
443 0 -1.92457414 0.006729461 0.0097413736876782019 0
444 0 -1.17161834 0.0353280753 0.051889715272289312 0
445 0 -1.96003747 0.00621853769 0.0089994643299424158 0
446 0 -2.087356 0.00468213623 0.0067707579292392971 0
447 0 -1.578082 0.0145141883 0.021092994305265209 0
448 0 -2.09938264 0.00455819676 0.00659112110828228 0
458 0 -1.46341181 0.01868764 0.027215662438385201 0
459 0 -1.34874165 0.02403187 0.035094057282082605 0
460 0 -1.44544613 0.019440461 0.028322862140387421 0
461 0 -1.18159187 0.0345742144 0.05076273453836528 0
462 0 -1.31812751 0.0256946553 0.037554114865062667 0
463 0 -1.59659183 0.0139326556 0.020241914649325572 0
468 0 -1.70540047 0.0109507861 0.015885785289823082 0
469 0 -1.90983844 0.00695382757 0.010067296382920778 0
470 0 -1.78189826 0.009241497 0.013394651189791419 0
471 0 -1.31812751 0.0256946553 0.037554114865062667 0
472 0 -1.46279013 0.0187132042 0.027253247512040887 0
473 0 -1.70540047 0.0109507861 0.015885785289823082 0
475 0 -1.832719 0.008254912 0.01195874763978641 0
476 0 -1.59073031 0.01411428 0.020507670473063597 0
477 0 -1.70540047 0.0109507861 0.015885785289823082 0
478 0 -1.47113645 0.0183728114 0.026752886281532232 0
479 1 2.629507 0.9945752 0.0078476337111689238 1
481 0 -1.050567 0.04583318 0.067686578076222359 0
485 0 -1.64118338 0.0126243848 0.018329079052284928 0
486 0 -1.78189826 0.009241497 0.013394651189791419 0
488 1 0.432590723 0.5715 0.80717458802151232 1
490 0 -2.087356 0.00468213623 0.0067707579292392971 0
491 1 2.140998 0.9839611 0.023326805981877335 1
494 0 -0.128522873 0.274980247 0.46390779336387228 0
496 0 -2.09938264 0.00455819676 0.00659112110828228 0
498 0 -1.64255309 0.0125861792 0.018273256294688772 0
499 0 -1.64255309 0.0125861792 0.018273256294688772 0
500 0 -1.32506859 0.0253080986 0.036981837697027814 0
503 0 -1.57970572 0.0144622317 0.021016934775320784 0
505 0 -1.61882794 0.0132643646 0.019264482881519964 0
506 1 3.383957 0.9989953 0.0014501984077122476 1
508 0 -1.578082 0.0145141883 0.021092994305265209 0
509 0 -1.96003747 0.00621853769 0.0089994643299424158 0
511 0 -1.51523459 0.0166727714 0.024256502854015347 0
512 0 -1.578082 0.0145141883 0.021092994305265209 0
515 1 2.95814514 0.9973953 0.0037627234776515654 1
516 0 -2.09938264 0.00455819676 0.00659112110828228 0
518 0 -1.6517309 0.0123331137 0.017903553601508197 0
524 0 -1.76987159 0.009491567 0.01375883626140059 0
525 0 -1.766401 0.009564967 0.013865749243282897 0
526 0 -1.70540047 0.0109507861 0.015885785289823082 0
530 1 2.14783239 0.984201 0.022975091981118946 1
536 0 -1.45238721 0.0191461444 0.027889899822551058 0
537 0 -1.337717 0.02461821 0.035961057220277544 0
542 0 -1.36419094 0.02323307 0.033913737154366873 0
543 0 -1.64255309 0.0125861792 0.018273256294688772 0
545 0 -1.51523459 0.0166727714 0.024256502854015347 0
550 0 -1.76987159 0.009491567 0.01375883626140059 0
551 0 -1.96166122 0.00619609 0.0089668769102733102 0
552 0 -1.24743474 0.029973289 0.043903620474670939 0
553 0 -0.501383066 0.141232431 0.21966038533065188 0
554 0 -1.832719 0.008254912 0.01195874763978641 0
555 0 -0.5413072 0.130725116 0.20211563276008676 0
556 0 -1.23932779 0.0305060539 0.044696205338903269 0
562 0 -1.96166122 0.00619609 0.0089668769102733102 0
564 0 -1.4708972 0.0183824822 0.02676709958108265 0
567 0 -1.31698954 0.0257585756 0.037648767594300685 0
568 1 1.53448153 0.9403269 0.088765660460296075 1
570 1 2.39528322 0.9908647 0.013240028849557042 1
571 1 3.52224064 0.999262869 0.0010638468668610122 1
572 0 -1.76987159 0.009491567 0.01375883626140059 0
573 0 -2.02450848 0.00538646942 0.0077920373965741406 0
574 1 1.95150137 0.975681543 0.035517757344877311 1
575 0 -1.337717 0.02461821 0.035961057220277544 0
576 0 -1.51523459 0.0166727714 0.024256502854015347 0
579 0 -1.96166122 0.00619609 0.0089668769102733102 0
580 0 -1.40056443 0.0214533936 0.031287529485073268 0
583 0 -1.832719 0.008254912 0.01195874763978641 0
585 0 -2.087356 0.00468213623 0.0067707579292392971 0
587 0 -1.40642607 0.021179352 0.030883559758384853 0
588 1 1.57525682 0.9452528 0.081227913567112037 1
589 0 -1.578082 0.0145141883 0.021092994305265209 0
591 1 1.89757061 0.9726429 0.040017871628344054 1
592 1 1.547288 0.9419171 0.086327971132609774 1
595 0 -1.51523459 0.0166727714 0.024256502854015347 0
596 0 -1.52788293 0.0162143651 0.023584105761245956 0
597 0 -1.2230469 0.0316038243 0.046330712966578202 0
598 0 -1.76987159 0.009491567 0.01375883626140059 0
599 0 -1.13915277 0.0378932059 0.055731052457108757 0
601 0 -2.03653526 0.005243981 0.0075853712813971049 0
603 1 1.22359276 0.8870178 0.17296506111393734 1
605 1 3.074329 0.997991145 0.0029010805431795806 1
608 1 3.14019537 0.9982664 0.00250322812715321 1
610 1 2.11423159 0.98298645 0.024756564761747188 1
611 1 2.087347 0.981949 0.026280039918063384 1
615 0 -1.41321278 0.0208663382 0.030422278872440509 0
616 0 -1.76987159 0.009491567 0.01375883626140059 0
620 0 -1.76987159 0.009491567 0.01375883626140059 0
623 0 -2.087356 0.00468213623 0.0067707579292392971 0
625 0 -1.10300672 0.0409595147 0.060336375847170151 0
626 1 1.68100023 0.956299 0.064466317286346234 1
628 0 -1.96003747 0.00621853769 0.0089994643299424158 0
630 0 -1.11447763 0.03996154 0.05883589105238779 0
631 0 -1.51523459 0.0166727714 0.024256502854015347 0
632 0 -2.087356 0.00468213623 0.0067707579292392971 0
635 0 -1.4887085 0.017675899 0.025728999261244733 0
636 1 2.88737583 0.996948957 0.004408452579430378 1
637 0 -0.896179438 0.06357539 0.094765240120392474 0
640 0 -1.57276464 0.0146856233 0.021343987298884801 0
643 0 -2.087356 0.00468213623 0.0067707579292392971 0
646 0 -1.8657403 0.007670605 0.01110900499779861 0
647 0 -1.95472014 0.00629261369 0.0091070061446696399 0
648 1 3.30804682 0.9988092 0.0017189583546918133 1
650 0 -1.26602912 0.0287851635 0.04213763424044846 0
651 0 -1.78492725 0.009179552 0.013304452584721033 0
655 0 -1.76987159 0.009491567 0.01375883626140059 0
658 1 2.69780016 0.9953414 0.0067366137513617651 1
659 0 -2.087356 0.00468213623 0.0067707579292392971 0
662 0 -1.79516828 0.008973145 0.01300394246354388 0
663 0 -1.79516828 0.008973145 0.01300394246354388 0
664 0 -1.63723576 0.0127351359 0.018490910986938239 0
666 0 -1.23561192 0.0307533052 0.045064184567971469 0
667 0 -1.70702422 0.0109114433 0.015828398337213719 0
669 1 2.92425251 0.9971903 0.0040592504084616312 1
671 0 -1.53376091 0.0160055757 0.023277954114855396 0
672 0 -1.83434272 0.008225175 0.011915489581813862 0
673 0 -1.23749411 0.0306278244 0.044877422173725146 0
674 0 -2.02450848 0.00538646942 0.0077920373965741406 0
675 0 -1.36139 0.0233759433 0.034124779281585735 0
676 0 -1.90983844 0.00695382757 0.010067296382920778 0
677 0 -1.578082 0.0145141883 0.021092994305265209 0
684 0 -2.087356 0.00468213623 0.0067707579292392971 0
686 0 -2.087356 0.00468213623 0.0067707579292392971 0
687 0 -1.55225444 0.0153657729 0.022340204555745057 0
690 0 -1.95472014 0.00629261369 0.0091070061446696399 0
695 0 -1.96003747 0.00621853769 0.0089994643299424158 0

Просмотреть файл

@ -0,0 +1,38 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 1600 instances with missing features during training (over 100 iterations; 16 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 232 | 7 | 0.9707
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9508 | 0.9841 |
OVERALL 0/1 ACCURACY: 0.972182
LOG LOSS/instance: 0.115962
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.875844
AUC: 0.995995
OVERALL RESULTS
---------------------------------------
AUC: 0.995995 (0.0000)
Accuracy: 0.972182 (0.0000)
Positive precision: 0.950820 (0.0000)
Positive recall: 0.970711 (0.0000)
Negative precision: 0.984055 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.115962 (0.0000)
Log-loss reduction: 0.875844 (0.0000)
F1 Score: 0.960663 (0.0000)
AUPRC: 0.991840 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC /lr /iter Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.995995 0.972182 0.95082 0.970711 0.984055 0.972973 0.115962 0.875844 0.960663 0.99184 0.01 100 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron{lr=0.01 iter=100 lazy+} dout=%Output% data=%Data% out=%Output% seed=1 /lr:0.01;/iter:100

Просмотреть файл

@ -0,0 +1,39 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali=PAV dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 160 instances with missing features during training (over 10 iterations; 16 inst/iter)
Training calibrator.
PAV calibrator: piecewise function approximation has 9 components.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: 0.084507
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.909522
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.084507 (0.0000)
Log-loss reduction: 0.909522 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 0.084507 0.909522 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali=PAV dout=%Output% data=%Data% out=%Output% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
0 0 -3.5726995 1E-15 1.4415419267167138E-15 0
1 0 3.6101446 0.8333333 2.5849623287385155 1
2 0 -4.0709443 1E-15 1.4415419267167138E-15 0
3 0 2.470542 0.8095238 2.3923175087700885 1
4 0 -3.4358397 1E-15 1.4415419267167138E-15 0
5 1 12.382593 1 -0 1
6 0 -1.4209604 0.071428575 0.10691520887754996 0
7 0 -4.7010875 1E-15 1.4415419267167138E-15 0
8 0 -4.6745405 1E-15 1.4415419267167138E-15 0
9 0 -4.406417 1E-15 1.4415419267167138E-15 0
10 0 -5.5593443 1E-15 1.4415419267167138E-15 0
11 0 -5.4818344 1E-15 1.4415419267167138E-15 0
12 1 -0.14206886 0.6363636 0.65207672114864346 0
13 0 -4.5691886 1E-15 1.4415419267167138E-15 0
14 1 9.321613 1 -0 1
15 1 1.3856993 0.8095238 0.30485456129516797 1
16 0 -4.533843 1E-15 1.4415419267167138E-15 0
17 0 -4.046695 1E-15 1.4415419267167138E-15 0
18 1 7.8903713 1 -0 1
19 0 -3.0987039 1E-15 1.4415419267167138E-15 0
20 1 7.528511 1 -0 1
21 1 7.875206 1 -0 1
22 0 -5.0078387 1E-15 1.4415419267167138E-15 0
23 1 ? ? ? 0
24 0 -5.4686823 1E-15 1.4415419267167138E-15 0
25 1 1.741828 0.8095238 0.30485456129516797 1
26 0 -4.9710746 1E-15 1.4415419267167138E-15 0
27 0 -4.059848 1E-15 1.4415419267167138E-15 0
28 0 -5.4818344 1E-15 1.4415419267167138E-15 0
29 0 -5.8557806 1E-15 1.4415419267167138E-15 0
30 0 -5.0985007 1E-15 1.4415419267167138E-15 0
31 0 -4.9946866 1E-15 1.4415419267167138E-15 0
32 1 7.46414 1 -0 1
33 0 -4.6892586 1E-15 1.4415419267167138E-15 0
34 0 -4.71424 1E-15 1.4415419267167138E-15 0
35 0 -5.4818344 1E-15 1.4415419267167138E-15 0
36 1 9.09911 1 -0 1
37 0 -1.113348 0.071428575 0.10691520887754996 0
38 1 6.140955 0.98 0.029146317580716615 1
39 1 2.5109034 0.8095238 0.30485456129516797 1
40 0 ? ? ? 0
41 1 3.3300762 0.8333333 0.26303444023032446 1
42 1 8.577511 1 -0 1
43 1 0.49126053 0.6363636 0.65207672114864346 1
44 1 8.255751 1 -0 1
45 0 -5.63222 1E-15 1.4415419267167138E-15 0
46 1 4.5673847 0.9285714 0.10691524360481655 1
47 0 -5.95583 1E-15 1.4415419267167138E-15 0
48 0 -3.4358397 1E-15 1.4415419267167138E-15 0
49 1 5.3666534 0.98 0.029146317580716615 1
50 1 2.5949688 0.8095238 0.30485456129516797 1
51 1 0.12595844 0.6363636 0.65207672114864346 1
52 1 5.2992115 0.98 0.029146317580716615 1
53 1 8.407227 1 -0 1
54 1 7.649309 1 -0 1
55 1 4.478711 0.9285714 0.10691524360481655 1
56 1 5.5541334 0.98 0.029146317580716615 1
57 1 1.6657066 0.8095238 0.30485456129516797 1
58 1 2.5265894 0.8095238 0.30485456129516797 1
59 1 1.7368536 0.8095238 0.30485456129516797 1
60 1 2.3288136 0.8095238 0.30485456129516797 1
61 0 -5.5060835 1E-15 1.4415419267167138E-15 0
62 1 6.380089 0.98 0.029146317580716615 1
63 1 0.33490086 0.6363636 0.65207672114864346 1
64 0 -5.95583 1E-15 1.4415419267167138E-15 0
65 1 3.8072634 0.9285714 0.10691524360481655 1
66 0 -4.046695 1E-15 1.4415419267167138E-15 0
67 1 4.218014 0.9285714 0.10691524360481655 1
68 1 10.826725 1 -0 1
69 0 -5.271654 1E-15 1.4415419267167138E-15 0
70 0 -3.4726496 1E-15 1.4415419267167138E-15 0
71 1 7.895046 1 -0 1
72 0 -2.1755848 0.071428575 0.10691520887754996 0
73 1 8.9055195 1 -0 1
74 1 2.5993576 0.8095238 0.30485456129516797 1
75 0 -4.0411606 1E-15 1.4415419267167138E-15 0
76 0 -5.0750337 1E-15 1.4415419267167138E-15 0
77 0 -3.499567 1E-15 1.4415419267167138E-15 0
78 0 -3.6211972 1E-15 1.4415419267167138E-15 0
79 0 -5.391173 1E-15 1.4415419267167138E-15 0
80 0 -2.7157316 1E-15 1.4415419267167138E-15 0
81 0 -4.2284155 1E-15 1.4415419267167138E-15 0
82 0 -3.4452734 1E-15 1.4415419267167138E-15 0
83 0 -2.1223526 0.071428575 0.10691520887754996 0
84 1 9.694054 1 -0 1
85 1 6.2895603 0.98 0.029146317580716615 1
86 1 2.6168842 0.8095238 0.30485456129516797 1
87 1 6.919142 1 -0 1
88 0 -4.046695 1E-15 1.4415419267167138E-15 0
89 0 -5.085745 1E-15 1.4415419267167138E-15 0
90 0 -5.4686823 1E-15 1.4415419267167138E-15 0
91 0 -5.189559 1E-15 1.4415419267167138E-15 0
92 0 -4.046695 1E-15 1.4415419267167138E-15 0
93 0 -5.95583 1E-15 1.4415419267167138E-15 0
94 0 -4.9946866 1E-15 1.4415419267167138E-15 0
95 0 -5.4686823 1E-15 1.4415419267167138E-15 0
96 0 -5.663555 1E-15 1.4415419267167138E-15 0
97 0 -3.5726995 1E-15 1.4415419267167138E-15 0
98 1 8.590233 1 -0 1
99 1 10.917194 1 -0 1
100 1 4.8476696 0.9285714 0.10691524360481655 1
101 1 -0.84280396 0.5 1 0
102 0 -3.7530966 1E-15 1.4415419267167138E-15 0
103 1 1.7746439 0.8095238 0.30485456129516797 1
104 1 12.140858 1 -0 1
105 1 2.5560713 0.8095238 0.30485456129516797 1
106 1 9.259369 1 -0 1
107 1 6.720646 0.98 0.029146317580716615 1
108 0 -5.5617743 1E-15 1.4415419267167138E-15 0
109 1 6.871727 1 -0 1
110 0 -2.766693 1E-15 1.4415419267167138E-15 0
111 1 3.848031 0.9285714 0.10691524360481655 1
112 1 9.425768 1 -0 1
113 1 9.506624 1 -0 1
114 0 -3.0727458 1E-15 1.4415419267167138E-15 0
115 0 -4.6439905 1E-15 1.4415419267167138E-15 0
116 0 -0.66188717 0.5 1 0
117 1 9.617275 1 -0 1
118 0 -5.3621607 1E-15 1.4415419267167138E-15 0
119 0 -3.9435177 1E-15 1.4415419267167138E-15 0
120 0 -4.8696556 1E-15 1.4415419267167138E-15 0
121 0 -3.469522 1E-15 1.4415419267167138E-15 0
122 1 9.680523 1 -0 1
123 1 3.8165932 0.9285714 0.10691524360481655 1
124 1 7.6522446 1 -0 1
125 0 -5.95583 1E-15 1.4415419267167138E-15 0
126 1 8.564951 1 -0 1
127 0 -4.520691 1E-15 1.4415419267167138E-15 0
128 1 4.84898 0.9285714 0.10691524360481655 1
129 0 -5.717684 1E-15 1.4415419267167138E-15 0
130 0 -3.4726496 1E-15 1.4415419267167138E-15 0
131 0 -4.9946866 1E-15 1.4415419267167138E-15 0
132 1 8.602232 1 -0 1
133 0 -4.810811 1E-15 1.4415419267167138E-15 0
134 0 -4.9171767 1E-15 1.4415419267167138E-15 0
135 0 -2.7288966 1E-15 1.4415419267167138E-15 0
136 0 -4.533843 1E-15 1.4415419267167138E-15 0
137 0 -5.494987 1E-15 1.4415419267167138E-15 0
138 0 -4.2402444 1E-15 1.4415419267167138E-15 0
139 0 ? ? ? 0
140 0 -5.494987 1E-15 1.4415419267167138E-15 0
141 0 -5.9689827 1E-15 1.4415419267167138E-15 0
142 1 4.4324036 0.9285714 0.10691524360481655 1
143 0 -4.6439905 1E-15 1.4415419267167138E-15 0
144 0 -5.4818344 1E-15 1.4415419267167138E-15 0
145 0 ? ? ? 0
146 1 1.3394346 0.8095238 0.30485456129516797 1
147 0 -5.4154215 1E-15 1.4415419267167138E-15 0
148 0 -1.0123739 0.071428575 0.10691520887754996 0
149 1 11.461615 1 -0 1
150 0 -5.5593443 1E-15 1.4415419267167138E-15 0
151 1 5.006485 0.9285714 0.10691524360481655 1
152 1 9.715748 1 -0 1
153 0 -4.121497 1E-15 1.4415419267167138E-15 0
154 0 -6.4429784 1E-15 1.4415419267167138E-15 0
155 1 3.7769232 0.9285714 0.10691524360481655 1
156 0 -5.5348053 1E-15 1.4415419267167138E-15 0
157 0 -4.9946866 1E-15 1.4415419267167138E-15 0
158 0 ? ? ? 0
159 1 12.346203 1 -0 1
160 1 9.039494 1 -0 1
161 0 -3.8496675 1E-15 1.4415419267167138E-15 0
162 0 -4.520691 1E-15 1.4415419267167138E-15 0
163 0 -3.3870554 1E-15 1.4415419267167138E-15 0
164 0 ? ? ? 0
165 0 -3.3999205 1E-15 1.4415419267167138E-15 0
166 1 7.976185 1 -0 1
167 1 8.355644 1 -0 1
168 0 -4.520691 1E-15 1.4415419267167138E-15 0
169 0 -6.2282124 1E-15 1.4415419267167138E-15 0
170 0 -5.494987 1E-15 1.4415419267167138E-15 0
171 0 -5.4686823 1E-15 1.4415419267167138E-15 0
172 0 -5.95583 1E-15 1.4415419267167138E-15 0
173 1 15.1560135 1 -0 1
174 1 6.1769257 0.98 0.029146317580716615 1
175 1 7.842922 1 -0 1
176 0 -4.9946866 1E-15 1.4415419267167138E-15 0
177 1 4.766121 0.9285714 0.10691524360481655 1
178 0 -4.046695 1E-15 1.4415419267167138E-15 0
179 1 2.290575 0.8095238 0.30485456129516797 1
180 0 -5.5593443 1E-15 1.4415419267167138E-15 0
181 0 -6.4429784 1E-15 1.4415419267167138E-15 0
182 0 -3.0987039 1E-15 1.4415419267167138E-15 0
183 1 9.1599655 1 -0 1
184 1 6.2014637 0.98 0.029146317580716615 1
185 0 -5.0853486 1E-15 1.4415419267167138E-15 0
186 1 5.7654095 0.98 0.029146317580716615 1
187 1 13.977451 1 -0 1
188 1 9.065283 1 -0 1
189 0 -4.7540584 1E-15 1.4415419267167138E-15 0
190 1 11.957216 1 -0 1
191 1 10.956871 1 -0 1
192 0 -4.059848 1E-15 1.4415419267167138E-15 0
193 0 -5.4686823 1E-15 1.4415419267167138E-15 0
194 0 -4.520691 1E-15 1.4415419267167138E-15 0
195 0 -4.046695 1E-15 1.4415419267167138E-15 0
196 0 6.8652763 0.98 5.6438575656365879 1
197 0 -2.6564164 1E-15 1.4415419267167138E-15 0
198 0 -6.4429784 1E-15 1.4415419267167138E-15 0
199 0 -5.0078387 1E-15 1.4415419267167138E-15 0
200 1 10.36586 1 -0 1
201 1 9.869495 1 -0 1
202 0 -5.4686823 1E-15 1.4415419267167138E-15 0
203 0 -3.5726995 1E-15 1.4415419267167138E-15 0
204 0 -5.4686823 1E-15 1.4415419267167138E-15 0
205 1 12.086603 1 -0 1
206 1 5.94417 0.98 0.029146317580716615 1
207 0 -5.5593443 1E-15 1.4415419267167138E-15 0
208 0 -5.5593443 1E-15 1.4415419267167138E-15 0
209 0 -3.6633615 1E-15 1.4415419267167138E-15 0
210 1 14.534115 1 -0 1
211 1 9.64962 1 -0 1
212 0 -5.4686823 1E-15 1.4415419267167138E-15 0
213 1 14.52906 1 -0 1
214 1 13.868914 1 -0 1
215 1 7.643734 1 -0 1
216 0 -5.95583 1E-15 1.4415419267167138E-15 0
217 0 -5.4686823 1E-15 1.4415419267167138E-15 0
218 1 7.88678 1 -0 1
219 0 -2.511506 1E-15 1.4415419267167138E-15 0
220 0 -5.1632547 1E-15 1.4415419267167138E-15 0
221 1 10.395218 1 -0 1
222 1 -2.214662 0.071428575 3.8073548575641118 0
223 1 5.7424126 0.98 0.029146317580716615 1
224 1 9.995327 1 -0 1
225 0 -5.95583 1E-15 1.4415419267167138E-15 0
226 1 10.225868 1 -0 1
227 1 7.459608 1 -0 1
228 0 -5.5593443 1E-15 1.4415419267167138E-15 0
229 1 12.666517 1 -0 1
230 1 6.1583214 0.98 0.029146317580716615 1
231 1 8.623034 1 -0 1
232 0 1.2822819 0.6363636 1.4594315756416352 1
233 1 6.382519 0.98 0.029146317580716615 1
234 0 -2.8964381 1E-15 1.4415419267167138E-15 0
235 0 ? ? ? 0
236 1 11.420414 1 -0 1
237 1 6.5357933 0.98 0.029146317580716615 1
238 1 12.422876 1 -0 1
239 1 5.902529 0.98 0.029146317580716615 1
240 0 -2.017991 0.071428575 0.10691520887754996 0
241 0 -4.0004973 1E-15 1.4415419267167138E-15 0
242 0 -4.9946866 1E-15 1.4415419267167138E-15 0
243 0 -2.6953988 1E-15 1.4415419267167138E-15 0
244 0 -5.4686823 1E-15 1.4415419267167138E-15 0
245 0 -2.817525 1E-15 1.4415419267167138E-15 0
246 1 11.424004 1 -0 1
247 1 3.104393 0.8333333 0.26303444023032446 1
248 0 -3.0615559 1E-15 1.4415419267167138E-15 0
249 0 ? ? ? 0
250 0 -6.021953 1E-15 1.4415419267167138E-15 0
251 1 8.872498 1 -0 1
252 0 4.5387735 0.9285714 3.8073544061097437 1
253 1 8.577511 1 -0 1
254 1 6.380089 0.98 0.029146317580716615 1
255 1 4.052039 0.9285714 0.10691524360481655 1
256 0 -5.494987 1E-15 1.4415419267167138E-15 0
257 0 -5.0078387 1E-15 1.4415419267167138E-15 0
258 0 -4.520691 1E-15 1.4415419267167138E-15 0
259 0 2.9647493 0.8095238 2.3923175087700885 1
260 1 9.870926 1 -0 1
261 1 12.206299 1 -0 1
262 1 9.653841 1 -0 1
263 1 8.981979 1 -0 1
264 1 5.664709 0.98 0.029146317580716615 1
265 0 -2.494875 1E-15 1.4415419267167138E-15 0
266 1 7.3661613 1 -0 1
267 1 3.3009596 0.8333333 0.26303444023032446 1
268 1 9.372967 1 -0 1
269 0 -5.4686823 1E-15 1.4415419267167138E-15 0
270 1 6.031377 0.98 0.029146317580716615 1
271 0 -3.5726995 1E-15 1.4415419267167138E-15 0
272 1 3.3009596 0.8333333 0.26303444023032446 1
273 1 0.21747208 0.6363636 0.65207672114864346 1
274 0 -4.3236628 1E-15 1.4415419267167138E-15 0
275 0 ? ? ? 0
276 0 -5.0078387 1E-15 1.4415419267167138E-15 0
277 0 -5.95583 1E-15 1.4415419267167138E-15 0
278 0 -5.4686823 1E-15 1.4415419267167138E-15 0
279 1 7.127907 1 -0 1
280 0 -4.520691 1E-15 1.4415419267167138E-15 0
281 0 -4.6892586 1E-15 1.4415419267167138E-15 0
282 1 4.4381247 0.9285714 0.10691524360481655 1
283 1 6.0636253 0.98 0.029146317580716615 1
284 1 7.431343 1 -0 1
285 1 14.218479 1 -0 1
286 1 15.281265 1 -0 1
287 0 -4.9171767 1E-15 1.4415419267167138E-15 0
288 1 2.2163515 0.8095238 0.30485456129516797 1
289 1 8.312019 1 -0 1
290 0 -6.4429784 1E-15 1.4415419267167138E-15 0
291 0 -5.4686823 1E-15 1.4415419267167138E-15 0
292 1 ? ? ? 0
293 1 5.542121 0.98 0.029146317580716615 1
294 0 ? ? ? 0
295 1 7.7866364 1 -0 1
296 0 1.823431 0.8095238 2.3923175087700885 1
297 0 ? ? ? 0
298 0 -2.725597 1E-15 1.4415419267167138E-15 0
299 1 7.8274345 1 -0 1
300 1 7.348074 1 -0 1
301 0 -5.4686823 1E-15 1.4415419267167138E-15 0
302 1 15.735764 1 -0 1
303 0 -5.4686823 1E-15 1.4415419267167138E-15 0
304 1 5.9607983 0.98 0.029146317580716615 1
305 1 8.459471 1 -0 1
306 0 -5.4686823 1E-15 1.4415419267167138E-15 0
307 0 -5.4686823 1E-15 1.4415419267167138E-15 0
308 1 7.422592 1 -0 1
309 0 -1.7474079 0.071428575 0.10691520887754996 0
310 0 -5.391173 1E-15 1.4415419267167138E-15 0
311 0 -6.4429784 1E-15 1.4415419267167138E-15 0
312 1 3.6294708 0.9285714 0.10691524360481655 1
313 0 -6.4429784 1E-15 1.4415419267167138E-15 0
314 0 -6.046492 1E-15 1.4415419267167138E-15 0
315 0 ? ? ? 0
316 1 3.6177406 0.9285714 0.10691524360481655 1
317 1 9.215706 1 -0 1
318 0 -5.1966968 1E-15 1.4415419267167138E-15 0
319 0 2.6369457 0.8095238 2.3923175087700885 1
320 1 7.3824844 1 -0 1
321 0 ? ? ? 0
322 0 -4.520691 1E-15 1.4415419267167138E-15 0
323 1 5.5612926 0.98 0.029146317580716615 1
324 0 -5.4686823 1E-15 1.4415419267167138E-15 0
325 0 -4.192758 1E-15 1.4415419267167138E-15 0
326 1 4.4103794 0.9285714 0.10691524360481655 1
327 0 -5.95583 1E-15 1.4415419267167138E-15 0
328 1 3.373887 0.8333333 0.26303444023032446 1
329 1 7.8321342 1 -0 1
330 1 5.856251 0.98 0.029146317580716615 1
331 0 -3.2490888 1E-15 1.4415419267167138E-15 0
332 0 -3.1363668 1E-15 1.4415419267167138E-15 0
333 1 4.914962 0.9285714 0.10691524360481655 1
334 1 5.9119453 0.98 0.029146317580716615 1
335 0 -6.4429784 1E-15 1.4415419267167138E-15 0
336 1 5.543519 0.98 0.029146317580716615 1
337 0 -5.4686823 1E-15 1.4415419267167138E-15 0
338 0 -6.046492 1E-15 1.4415419267167138E-15 0
339 1 5.684025 0.98 0.029146317580716615 1
340 1 6.620781 0.98 0.029146317580716615 1
341 0 -5.4686823 1E-15 1.4415419267167138E-15 0
342 0 -5.9689827 1E-15 1.4415419267167138E-15 0
343 0 -6.4429784 1E-15 1.4415419267167138E-15 0
344 1 10.162451 1 -0 1
345 0 -6.4429784 1E-15 1.4415419267167138E-15 0
346 0 -3.3358254 1E-15 1.4415419267167138E-15 0
347 0 -6.1395845 1E-15 1.4415419267167138E-15 0
348 1 0.15727425 0.6363636 0.65207672114864346 1
349 1 4.0622606 0.9285714 0.10691524360481655 1
350 0 -3.93614 1E-15 1.4415419267167138E-15 0
351 0 -4.9946866 1E-15 1.4415419267167138E-15 0
352 0 0.47192955 0.6363636 1.4594315756416352 1
353 1 8.696342 1 -0 1
354 0 -5.95583 1E-15 1.4415419267167138E-15 0
355 0 -4.246153 1E-15 1.4415419267167138E-15 0
356 1 -0.69921684 0.5 1 0
357 1 12.852016 1 -0 1
358 1 5.582206 0.98 0.029146317580716615 1
359 1 5.3672857 0.98 0.029146317580716615 1
360 1 15.333874 1 -0 1
361 1 6.317689 0.98 0.029146317580716615 1
362 0 -3.5059962 1E-15 1.4415419267167138E-15 0
363 0 -2.0658464 0.071428575 0.10691520887754996 0
364 0 -4.9946866 1E-15 1.4415419267167138E-15 0
365 0 -5.4818344 1E-15 1.4415419267167138E-15 0
366 1 13.694571 1 -0 1
367 1 11.299244 1 -0 1
368 0 -5.8557806 1E-15 1.4415419267167138E-15 0
369 0 -5.4592943 1E-15 1.4415419267167138E-15 0
370 0 -3.89473 1E-15 1.4415419267167138E-15 0
371 0 -5.8557806 1E-15 1.4415419267167138E-15 0
372 0 -4.2402444 1E-15 1.4415419267167138E-15 0
373 0 -3.7544203 1E-15 1.4415419267167138E-15 0
374 0 -4.71424 1E-15 1.4415419267167138E-15 0
375 0 -6.4429784 1E-15 1.4415419267167138E-15 0
376 0 -5.95583 1E-15 1.4415419267167138E-15 0
377 0 -6.046492 1E-15 1.4415419267167138E-15 0
378 0 -3.803866 1E-15 1.4415419267167138E-15 0
379 0 -2.2557268 1E-15 1.4415419267167138E-15 0
380 0 -6.4429784 1E-15 1.4415419267167138E-15 0
381 1 10.07641 1 -0 1
382 0 -3.59721 1E-15 1.4415419267167138E-15 0
383 0 -5.9689827 1E-15 1.4415419267167138E-15 0
384 0 -5.9689827 1E-15 1.4415419267167138E-15 0
385 0 -3.7061968 1E-15 1.4415419267167138E-15 0
386 1 6.0875864 0.98 0.029146317580716615 1
387 0 -2.3345594 1E-15 1.4415419267167138E-15 0
388 0 -5.2848067 1E-15 1.4415419267167138E-15 0
389 0 -3.3224106 1E-15 1.4415419267167138E-15 0
390 0 -5.6504025 1E-15 1.4415419267167138E-15 0
391 1 10.030338 1 -0 1
392 0 -5.0078387 1E-15 1.4415419267167138E-15 0
393 0 -6.53364 1E-15 1.4415419267167138E-15 0
394 0 -5.241206 1E-15 1.4415419267167138E-15 0
395 0 -5.0078387 1E-15 1.4415419267167138E-15 0
396 0 -4.520691 1E-15 1.4415419267167138E-15 0
397 0 -5.0209913 1E-15 1.4415419267167138E-15 0
398 0 -4.683385 1E-15 1.4415419267167138E-15 0
399 0 -5.7283545 1E-15 1.4415419267167138E-15 0
400 1 10.056744 1 -0 1
401 0 -5.494987 1E-15 1.4415419267167138E-15 0
402 0 -3.2177973 1E-15 1.4415419267167138E-15 0
403 0 -4.145746 1E-15 1.4415419267167138E-15 0
404 0 -5.507669 1E-15 1.4415419267167138E-15 0
405 0 -5.95583 1E-15 1.4415419267167138E-15 0
406 0 -4.1128182 1E-15 1.4415419267167138E-15 0
407 0 -5.95583 1E-15 1.4415419267167138E-15 0
408 0 -3.691061 1E-15 1.4415419267167138E-15 0
409 0 -4.71424 1E-15 1.4415419267167138E-15 0
410 0 -5.95583 1E-15 1.4415419267167138E-15 0
411 0 ? ? ? 0
412 1 9.230705 1 -0 1
413 0 -3.2791004 1E-15 1.4415419267167138E-15 0
414 1 6.7173824 0.98 0.029146317580716615 1
415 0 -0.6668339 0.5 1 0
416 1 8.809383 1 -0 1
417 0 -5.95583 1E-15 1.4415419267167138E-15 0
418 0 -1.8758612 0.071428575 0.10691520887754996 0
419 0 -5.442145 1E-15 1.4415419267167138E-15 0
420 0 -2.5893164 1E-15 1.4415419267167138E-15 0
421 1 11.824856 1 -0 1
422 0 -2.8105893 1E-15 1.4415419267167138E-15 0
423 0 -3.4726496 1E-15 1.4415419267167138E-15 0
424 0 -5.494987 1E-15 1.4415419267167138E-15 0
425 1 14.817663 1 -0 1
426 0 -2.8241482 1E-15 1.4415419267167138E-15 0
427 1 4.3530817 0.9285714 0.10691524360481655 1
428 0 -5.95583 1E-15 1.4415419267167138E-15 0
429 0 -5.4818344 1E-15 1.4415419267167138E-15 0
430 0 -5.50395 1E-15 1.4415419267167138E-15 0
431 0 -2.5834928 1E-15 1.4415419267167138E-15 0
432 0 -3.8628197 1E-15 1.4415419267167138E-15 0
433 0 -4.4631066 1E-15 1.4415419267167138E-15 0
434 0 5.0084 0.9285714 3.8073544061097437 1
435 1 7.444332 1 -0 1
436 1 3.841199 0.9285714 0.10691524360481655 1
437 0 -5.0209913 1E-15 1.4415419267167138E-15 0
438 0 -3.822938 1E-15 1.4415419267167138E-15 0
439 0 -4.5469956 1E-15 1.4415419267167138E-15 0
440 1 10.154686 1 -0 1
441 0 -1.8604465 0.071428575 0.10691520887754996 0
442 0 -4.932629 1E-15 1.4415419267167138E-15 0
443 0 -5.9932313 1E-15 1.4415419267167138E-15 0
444 0 -2.442047 1E-15 1.4415419267167138E-15 0
445 0 -5.9689827 1E-15 1.4415419267167138E-15 0
446 0 -6.4429784 1E-15 1.4415419267167138E-15 0
447 0 -4.5469956 1E-15 1.4415419267167138E-15 0
448 0 -6.53364 1E-15 1.4415419267167138E-15 0
449 1 10.298004 1 -0 1
450 0 -4.0136495 1E-15 1.4415419267167138E-15 0
451 0 -4.5469956 1E-15 1.4415419267167138E-15 0
452 0 -4.8841314 1E-15 1.4415419267167138E-15 0
453 1 8.777971 1 -0 1
454 0 -5.6234684 1E-15 1.4415419267167138E-15 0
455 1 0.81635284 0.6363636 0.65207672114864346 1
456 1 10.487387 1 -0 1
457 1 9.06263 1 -0 1
458 0 -4.253397 1E-15 1.4415419267167138E-15 0
459 0 -3.9597979 1E-15 1.4415419267167138E-15 0
460 0 -3.93614 1E-15 1.4415419267167138E-15 0
461 0 -3.6959996 1E-15 1.4415419267167138E-15 0
462 0 -3.4621444 1E-15 1.4415419267167138E-15 0
463 0 -4.823963 1E-15 1.4415419267167138E-15 0
464 0 -5.0209913 1E-15 1.4415419267167138E-15 0
465 1 9.7853985 1 -0 1
466 1 9.541933 1 -0 1
467 1 7.7145195 1 -0 1
468 0 -5.0209913 1E-15 1.4415419267167138E-15 0
469 0 -5.6622314 1E-15 1.4415419267167138E-15 0
470 0 -5.0985007 1E-15 1.4415419267167138E-15 0
471 0 -3.4621444 1E-15 1.4415419267167138E-15 0
472 0 -4.163662 1E-15 1.4415419267167138E-15 0
473 0 -5.0209913 1E-15 1.4415419267167138E-15 0
474 0 -4.5469956 1E-15 1.4415419267167138E-15 0
475 0 -5.494987 1E-15 1.4415419267167138E-15 0
476 0 -4.727392 1E-15 1.4415419267167138E-15 0
477 0 -5.0209913 1E-15 1.4415419267167138E-15 0
478 0 -4.4195695 1E-15 1.4415419267167138E-15 0
479 1 8.32148 1 -0 1
480 0 -4.6376576 1E-15 1.4415419267167138E-15 0
481 0 -3.082261 1E-15 1.4415419267167138E-15 0
482 1 15.481422 1 -0 1
483 1 10.906595 1 -0 1
484 0 -4.253397 1E-15 1.4415419267167138E-15 0
485 0 -5.023291 1E-15 1.4415419267167138E-15 0
486 0 -5.0985007 1E-15 1.4415419267167138E-15 0
487 1 13.475906 1 -0 1
488 1 1.3273258 0.8095238 0.30485456129516797 1
489 1 -0.6232014 0.5 1 0
490 0 -6.4429784 1E-15 1.4415419267167138E-15 0
491 1 6.6713333 0.98 0.029146317580716615 1
492 0 -4.624505 1E-15 1.4415419267167138E-15 0
493 1 9.94891 1 -0 1
494 0 0.9629116 0.6363636 1.4594315756416352 1
495 0 -5.0985007 1E-15 1.4415419267167138E-15 0
496 0 -6.53364 1E-15 1.4415419267167138E-15 0
497 0 -4.893565 1E-15 1.4415419267167138E-15 0
498 0 -4.533843 1E-15 1.4415419267167138E-15 0
499 0 -4.533843 1E-15 1.4415419267167138E-15 0
500 0 -3.0987039 1E-15 1.4415419267167138E-15 0
501 0 -4.533843 1E-15 1.4415419267167138E-15 0
502 0 -4.2284155 1E-15 1.4415419267167138E-15 0
503 0 -4.046695 1E-15 1.4415419267167138E-15 0
504 0 -6.4429784 1E-15 1.4415419267167138E-15 0
505 0 -5.2401347 1E-15 1.4415419267167138E-15 0
506 1 10.447666 1 -0 1
507 0 -5.0937376 1E-15 1.4415419267167138E-15 0
508 0 -4.5469956 1E-15 1.4415419267167138E-15 0
509 0 -5.9689827 1E-15 1.4415419267167138E-15 0
510 0 -6.4429784 1E-15 1.4415419267167138E-15 0
511 0 -4.059848 1E-15 1.4415419267167138E-15 0
512 0 -4.5469956 1E-15 1.4415419267167138E-15 0
513 0 -5.0985007 1E-15 1.4415419267167138E-15 0
514 1 10.719854 1 -0 1
515 1 8.6480255 1 -0 1
516 0 -6.53364 1E-15 1.4415419267167138E-15 0
517 0 -6.046492 1E-15 1.4415419267167138E-15 0
518 0 -4.8959603 1E-15 1.4415419267167138E-15 0
519 1 6.535843 0.98 0.029146317580716615 1
520 0 -6.3523164 1E-15 1.4415419267167138E-15 0
521 0 -4.9303293 1E-15 1.4415419267167138E-15 0
522 1 5.502534 0.98 0.029146317580716615 1
523 1 7.699238 1 -0 1
524 0 -5.0078387 1E-15 1.4415419267167138E-15 0
525 0 -5.189559 1E-15 1.4415419267167138E-15 0
526 0 -5.0209913 1E-15 1.4415419267167138E-15 0
527 0 -4.046695 1E-15 1.4415419267167138E-15 0
528 0 -3.1803741 1E-15 1.4415419267167138E-15 0
529 0 -4.624505 1E-15 1.4415419267167138E-15 0
530 1 6.515935 0.98 0.029146317580716615 1
531 0 -4.1128182 1E-15 1.4415419267167138E-15 0
532 0 -5.5593443 1E-15 1.4415419267167138E-15 0
533 0 -5.0078387 1E-15 1.4415419267167138E-15 0
534 0 -5.4818344 1E-15 1.4415419267167138E-15 0
535 0 -4.5760565 1E-15 1.4415419267167138E-15 0
536 0 -3.5726995 1E-15 1.4415419267167138E-15 0
537 0 -3.2791004 1E-15 1.4415419267167138E-15 0
538 0 -4.533843 1E-15 1.4415419267167138E-15 0
539 0 -3.5858517 1E-15 1.4415419267167138E-15 0
540 0 -3.6101007 1E-15 1.4415419267167138E-15 0
541 0 -5.494987 1E-15 1.4415419267167138E-15 0
542 0 -4.292143 1E-15 1.4415419267167138E-15 0
543 0 -4.533843 1E-15 1.4415419267167138E-15 0
544 0 -4.589209 1E-15 1.4415419267167138E-15 0
545 0 -4.059848 1E-15 1.4415419267167138E-15 0
546 1 11.390259 1 -0 1
547 0 -6.059644 1E-15 1.4415419267167138E-15 0
548 0 -5.5856485 1E-15 1.4415419267167138E-15 0
549 1 6.3187475 0.98 0.029146317580716615 1
550 0 -5.0078387 1E-15 1.4415419267167138E-15 0
551 0 -5.4686823 1E-15 1.4415419267167138E-15 0
552 0 -3.1100621 1E-15 1.4415419267167138E-15 0
553 0 -1.7353673 0.071428575 0.10691520887754996 0
554 0 -5.494987 1E-15 1.4415419267167138E-15 0
555 0 -1.9254994 0.071428575 0.10691520887754996 0
556 0 -3.424057 1E-15 1.4415419267167138E-15 0
557 0 -3.93614 1E-15 1.4415419267167138E-15 0
558 0 -5.4818344 1E-15 1.4415419267167138E-15 0
559 0 -4.059848 1E-15 1.4415419267167138E-15 0
560 0 -3.5726995 1E-15 1.4415419267167138E-15 0
561 0 -3.5726995 1E-15 1.4415419267167138E-15 0
562 0 -5.4686823 1E-15 1.4415419267167138E-15 0
563 0 -5.0078387 1E-15 1.4415419267167138E-15 0
564 0 -3.8496675 1E-15 1.4415419267167138E-15 0
565 1 12.086092 1 -0 1
566 0 -4.227092 1E-15 1.4415419267167138E-15 0
567 0 -3.6343493 1E-15 1.4415419267167138E-15 0
568 1 4.1473064 0.9285714 0.10691524360481655 1
569 1 10.713882 1 -0 1
570 1 8.017664 1 -0 1
571 1 11.034657 1 -0 1
572 0 -5.0078387 1E-15 1.4415419267167138E-15 0
573 0 -5.95583 1E-15 1.4415419267167138E-15 0
574 1 5.950968 0.98 0.029146317580716615 1
575 0 -3.2791004 1E-15 1.4415419267167138E-15 0
576 0 -4.059848 1E-15 1.4415419267167138E-15 0
577 0 -5.95583 1E-15 1.4415419267167138E-15 0
578 0 -5.95583 1E-15 1.4415419267167138E-15 0
579 0 -5.4686823 1E-15 1.4415419267167138E-15 0
580 0 -3.7662487 1E-15 1.4415419267167138E-15 0
581 1 8.417797 1 -0 1
582 1 7.907978 1 -0 1
583 0 -5.494987 1E-15 1.4415419267167138E-15 0
584 0 -2.9291954 1E-15 1.4415419267167138E-15 0
585 0 -6.4429784 1E-15 1.4415419267167138E-15 0
586 1 13.98102 1 -0 1
587 0 -3.8628197 1E-15 1.4415419267167138E-15 0
588 1 5.463169 0.98 0.029146317580716615 1
589 0 -4.5469956 1E-15 1.4415419267167138E-15 0
590 1 3.9684029 0.9285714 0.10691524360481655 1
591 1 5.966527 0.98 0.029146317580716615 1
592 1 5.7801704 0.98 0.029146317580716615 1
593 0 -4.253397 1E-15 1.4415419267167138E-15 0
594 1 5.101775 0.98 0.029146317580716615 1
595 0 -4.059848 1E-15 1.4415419267167138E-15 0
596 0 -4.2402444 1E-15 1.4415419267167138E-15 0
597 0 -2.9855018 1E-15 1.4415419267167138E-15 0
598 0 -5.0078387 1E-15 1.4415419267167138E-15 0
599 0 -3.6294346 1E-15 1.4415419267167138E-15 0
600 0 -5.0078387 1E-15 1.4415419267167138E-15 0
601 0 -6.046492 1E-15 1.4415419267167138E-15 0
602 0 -4.533843 1E-15 1.4415419267167138E-15 0
603 1 4.8058815 0.9285714 0.10691524360481655 1
604 1 6.1928043 0.98 0.029146317580716615 1
605 1 9.955452 1 -0 1
606 0 -4.715564 1E-15 1.4415419267167138E-15 0
607 0 -6.4429784 1E-15 1.4415419267167138E-15 0
608 1 11.148428 1 -0 1
609 0 -4.5469956 1E-15 1.4415419267167138E-15 0
610 1 8.926189 1 -0 1
611 1 6.910961 1 -0 1
612 1 16.893517 1 -0 1
613 0 -5.226982 1E-15 1.4415419267167138E-15 0
614 0 -5.5724964 1E-15 1.4415419267167138E-15 0
615 0 -3.9466457 1E-15 1.4415419267167138E-15 0
616 0 -5.0078387 1E-15 1.4415419267167138E-15 0
617 0 ? ? ? 0
618 0 -4.533843 1E-15 1.4415419267167138E-15 0
619 0 -4.059848 1E-15 1.4415419267167138E-15 0
620 0 -5.0078387 1E-15 1.4415419267167138E-15 0
621 0 0.35605335 0.6363636 1.4594315756416352 1
622 0 -2.2074018 0.071428575 0.10691520887754996 0
623 0 -6.4429784 1E-15 1.4415419267167138E-15 0
624 0 -3.8450823 1E-15 1.4415419267167138E-15 0
625 0 -3.4678864 1E-15 1.4415419267167138E-15 0
626 1 5.7601643 0.98 0.029146317580716615 1
627 0 -4.1699953 1E-15 1.4415419267167138E-15 0
628 0 -5.9689827 1E-15 1.4415419267167138E-15 0
629 0 -5.0209913 1E-15 1.4415419267167138E-15 0
630 0 -3.358376 1E-15 1.4415419267167138E-15 0
631 0 -4.059848 1E-15 1.4415419267167138E-15 0
632 0 -6.4429784 1E-15 1.4415419267167138E-15 0
633 1 4.3299503 0.9285714 0.10691524360481655 1
634 0 -5.494987 1E-15 1.4415419267167138E-15 0
635 0 -4.61419 1E-15 1.4415419267167138E-15 0
636 1 10.127518 1 -0 1
637 0 -2.4650178 1E-15 1.4415419267167138E-15 0
638 0 -5.0209913 1E-15 1.4415419267167138E-15 0
639 0 -3.93614 1E-15 1.4415419267167138E-15 0
640 0 -4.4101357 1E-15 1.4415419267167138E-15 0
641 0 -5.0078387 1E-15 1.4415419267167138E-15 0
642 0 -5.0078387 1E-15 1.4415419267167138E-15 0
643 0 -6.4429784 1E-15 1.4415419267167138E-15 0
644 0 -5.9689827 1E-15 1.4415419267167138E-15 0
645 0 -5.0078387 1E-15 1.4415419267167138E-15 0
646 0 -6.021953 1E-15 1.4415419267167138E-15 0
647 0 -5.832123 1E-15 1.4415419267167138E-15 0
648 1 12.236198 1 -0 1
649 0 -5.0078387 1E-15 1.4415419267167138E-15 0
650 0 -3.7496567 1E-15 1.4415419267167138E-15 0
651 0 -5.217549 1E-15 1.4415419267167138E-15 0
652 0 -3.8628197 1E-15 1.4415419267167138E-15 0
653 0 -4.533843 1E-15 1.4415419267167138E-15 0
654 0 -4.520691 1E-15 1.4415419267167138E-15 0
655 0 -5.0078387 1E-15 1.4415419267167138E-15 0
656 0 -4.059848 1E-15 1.4415419267167138E-15 0
657 0 -0.4869156 0.5 1 0
658 1 9.086258 1 -0 1
659 0 -6.4429784 1E-15 1.4415419267167138E-15 0
660 0 -5.95583 1E-15 1.4415419267167138E-15 0
661 0 -4.046695 1E-15 1.4415419267167138E-15 0
662 0 -5.3686323 1E-15 1.4415419267167138E-15 0
663 0 -5.3686323 1E-15 1.4415419267167138E-15 0
664 0 -4.3969836 1E-15 1.4415419267167138E-15 0
665 0 -6.4429784 1E-15 1.4415419267167138E-15 0
666 0 -3.4969325 1E-15 1.4415419267167138E-15 0
667 0 -4.520691 1E-15 1.4415419267167138E-15 0
668 1 2.8043652 0.8095238 0.30485456129516797 1
669 1 8.147335 1 -0 1
670 1 6.4856205 0.98 0.029146317580716615 1
671 0 -4.087837 1E-15 1.4415419267167138E-15 0
672 0 -4.9946866 1E-15 1.4415419267167138E-15 0
673 0 -3.9078827 1E-15 1.4415419267167138E-15 0
674 0 -5.95583 1E-15 1.4415419267167138E-15 0
675 0 -4.1401944 1E-15 1.4415419267167138E-15 0
676 0 -5.6622314 1E-15 1.4415419267167138E-15 0
677 0 -4.5469956 1E-15 1.4415419267167138E-15 0
678 0 -6.4429784 1E-15 1.4415419267167138E-15 0
679 0 -5.9689827 1E-15 1.4415419267167138E-15 0
680 1 16.78001 1 -0 1
681 1 9.801077 1 -0 1
682 0 -3.3756714 1E-15 1.4415419267167138E-15 0
683 0 -6.4429784 1E-15 1.4415419267167138E-15 0
684 0 -6.4429784 1E-15 1.4415419267167138E-15 0
685 0 -6.4429784 1E-15 1.4415419267167138E-15 0
686 0 -6.4429784 1E-15 1.4415419267167138E-15 0
687 0 -4.613783 1E-15 1.4415419267167138E-15 0
688 0 -5.0209913 1E-15 1.4415419267167138E-15 0
689 0 -4.1777043 1E-15 1.4415419267167138E-15 0
690 0 -5.832123 1E-15 1.4415419267167138E-15 0
691 1 4.4967804 0.9285714 0.10691524360481655 1
692 0 -5.494987 1E-15 1.4415419267167138E-15 0
693 0 -4.6842284 1E-15 1.4415419267167138E-15 0
694 0 -4.9545784 1E-15 1.4415419267167138E-15 0
695 0 -5.9689827 1E-15 1.4415419267167138E-15 0
696 1 6.7127857 0.98 0.029146317580716615 1
697 1 5.064644 0.98 0.029146317580716615 1
698 1 6.1036224 0.98 0.029146317580716615 1

Просмотреть файл

@ -0,0 +1,38 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron numcali=200 dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 160 instances with missing features during training (over 10 iterations; 16 inst/iter)
Training calibrator.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: 0.120617
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.870860
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: 0.120617 (0.0000)
Log-loss reduction: 0.870860 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 0.120617 0.87086 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron numcali=200 dout=%Output% data=%Data% out=%Output% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
0 0 -3.5726995 0.047724232 0.070548673242470078 0
1 0 3.6101446 0.92095214 3.6611298070520353 1
2 0 -4.0709443 0.03320216 0.048713845243635014 0
3 0 2.470542 0.83073896 2.5626781731328263 1
4 0 -3.4358397 0.05267027 0.078061433982946932 0
5 1 12.382593 0.99988943 0.0001595227277818751 1
6 0 -1.4209604 0.20405398 0.32925750806385767 0
7 0 -4.7010875 0.02084881 0.030396453391412736 0
8 0 -4.6745405 0.021263903 0.031008185910590607 0
9 0 -4.406417 0.025935683 0.037911059564125327 0
10 0 -5.5593443 0.010982092 0.01593145032913975 0
11 0 -5.4818344 0.011639431 0.016890640083211839 0
12 1 -0.14206886 0.40347567 1.3094464075888503 0
13 0 -4.5691886 0.022992346 0.033558231039772665 0
14 1 9.321613 0.998874 0.0016253773809814112 1
15 1 1.3856993 0.6830734 0.54988747944718552 1
16 0 -4.533843 0.023602419 0.034459373415090033 0
17 0 -4.046695 0.03379773 0.049602852281362811 0
18 1 7.8903713 0.9966727 0.0048082975514731332 1
19 0 -3.0987039 0.06699134 0.10003761775121778 0
20 1 7.528511 0.9956263 0.0063237968594455725 1
21 1 7.875206 0.9966343 0.0048638619113426269 1
22 0 -5.0078387 0.016592303 0.024138448331127087 0
23 1 ? ? ? 0
24 0 -5.4686823 0.011754767 0.017059004011272673 0
25 1 1.741828 0.73848027 0.43736871808798289 1
26 0 -4.9710746 0.01705355 0.024815273012732428 0
27 0 -4.059848 0.03347343 0.049118699463849731 0
28 0 -5.4818344 0.011639431 0.016890640083211839 0
29 0 -5.8557806 0.008789949 0.012737278390963667 0
30 0 -5.0985007 0.015506633 0.022546608302385175 0
31 0 -4.9946866 0.016755885 0.024378447925635292 0
32 1 7.46414 0.9954084 0.0066395103905325147 1
33 0 -4.6892586 0.02103278 0.030667542438444956 0
34 0 -4.71424 0.020646105 0.030097814327393193 0
35 0 -5.4818344 0.011639431 0.016890640083211839 0
36 1 9.09911 0.99866724 0.0019240484689165348 1
37 0 -1.113348 0.24456774 0.40462569514389818 0
38 1 6.140955 0.9875705 0.018044317542393044 1
39 1 2.5109034 0.83500063 0.26015080155533699 1
40 0 ? ? ? 0
41 1 3.3300762 0.90403634 0.14554732340521623 1
42 1 8.577511 0.99802166 0.0028569650360322531 1
43 1 0.49126053 0.5223421 0.93693314652059867 1
44 1 8.255751 0.9974761 0.0036458194620463992 1
45 0 -5.63222 0.010397597 0.015079091662558042 0
46 1 4.5673847 0.96013206 0.058695238307073898 1
47 0 -5.95583 0.008152755 0.011810147478593156 0
48 0 -3.4358397 0.05267027 0.078061433982946932 0
49 1 5.3666534 0.9778563 0.032305655935016012 1
50 1 2.5949688 0.8436 0.24536904232329945 1
51 1 0.12595844 0.4532164 1.1417280158533796 1
52 1 5.2992115 0.976721 0.033981595778575298 1
53 1 8.407227 0.99774945 0.0032505195711204126 1
54 1 7.649309 0.9960077 0.0057712269479890379 1
55 1 4.478711 0.957476 0.062691739926295564 1
56 1 5.5541334 0.9807353 0.02806428572372743 1
57 1 1.6657066 0.7271758 0.45962396180677062 1
58 1 2.5265894 0.8366335 0.25733232225246744 1
59 1 1.7368536 0.7377509 0.43879434296981179 1
60 1 2.3288136 0.8150797 0.29498697868205404 1
61 0 -5.5060835 0.0114297075 0.016584542177967555 0
62 1 6.380089 0.98961115 0.015066341261387473 1
63 1 0.33490086 0.49270463 1.0212050663068744 1
64 0 -5.95583 0.008152755 0.011810147478593156 0
65 1 3.8072634 0.9311753 0.1028753176207461 1
66 0 -4.046695 0.03379773 0.049602852281362811 0
67 1 4.218014 0.9486548 0.076044929659653121 1
68 1 10.826725 0.9996402 0.00051913703181331893 1
69 0 -5.271654 0.013623926 0.019790289199966723 0
70 0 -3.4726496 0.051294282 0.075967452463448076 0
71 1 7.895046 0.99668443 0.0047913008067115544 1
72 0 -2.1755848 0.1263537 0.1948787725155719 0
73 1 8.9055195 0.9984568 0.0022281210940979582 1
74 1 2.5993576 0.8440387 0.2446189028997863 1
75 0 -4.0411606 0.033935104 0.049807988000729261 0
76 0 -5.0750337 0.015780753 0.022948364676579087 0
77 0 -3.499567 0.05030968 0.074470946934380028 0
78 0 -3.6211972 0.046079826 0.06805955070059394 0
79 0 -5.391173 0.012457768 0.018085649525652777 0
80 0 -2.7157316 0.087596945 0.13225681838671866 0
81 0 -4.2284155 0.029574301 0.043310338334976231 0
82 0 -3.4452734 0.05231434 0.077519488826293739 0
83 0 -2.1223526 0.13087894 0.20237095101991351 0
84 1 9.694054 0.99915093 0.0012254667568283894 1
85 1 6.2895603 0.9888809 0.016131360230936344 1
86 1 2.6168842 0.84578085 0.24164420028856959 1
87 1 6.919142 0.9930738 0.010027129067340199 1
88 0 -4.046695 0.03379773 0.049602852281362811 0
89 0 -5.085745 0.015655048 0.022764115650391988 0
90 0 -5.4686823 0.011754767 0.017059004011272673 0
91 0 -5.189559 0.014486661 0.021052696761167319 0
92 0 -4.046695 0.03379773 0.049602852281362811 0
93 0 -5.95583 0.008152755 0.011810147478593156 0
94 0 -4.9946866 0.016755885 0.024378447925635292 0
95 0 -5.4686823 0.011754767 0.017059004011272673 0
96 0 -5.663555 0.010155837 0.014726683875270435 0
97 0 -3.5726995 0.047724232 0.070548673242470078 0
98 1 8.590233 0.9980406 0.0028295658493644239 1
99 1 10.917194 0.99966407 0.00048472853254951715 1
100 1 4.8476696 0.9675202 0.047636346312542086 1
101 1 -0.84280396 0.28443488 1.8138296783750301 0
102 0 -3.7530966 0.041876126 0.061715903711063051 0
103 1 1.7746439 0.7432593 0.42806246416940569 1
104 1 12.140858 0.9998672 0.00019160139559387039 1
105 1 2.5560713 0.83966726 0.25211035808697119 1
106 1 9.259369 0.99881965 0.0017038920105930569 1
107 1 6.720646 0.99195737 0.011649978820645172 1
108 0 -5.5617743 0.010962089 0.015902272030853013 0
109 1 6.871727 0.992822 0.010393022735684912 1
110 0 -2.766693 0.08455608 0.12745658613888911 0
111 1 3.848031 0.93313104 0.099848402613633994 1
112 1 9.425768 0.9989595 0.0015019320975399703 1
113 1 9.506624 0.9990213 0.0014126689718023965 1
114 0 -3.0727458 0.068232656 0.10195832549468188 0
115 0 -4.6439905 0.021751598 0.03172724574533177 0
116 0 -0.66188717 0.3131727 0.54198070603227311 0
117 1 9.617275 0.9991 0.0012989676266954972 1
118 0 -5.3621607 0.012731451 0.018485525732496611 0
119 0 -3.9435177 0.036449015 0.053567088295960068 0
120 0 -4.8696556 0.018392263 0.026781474537826103 0
121 0 -3.469522 0.05140986 0.076143221101649672 0
122 1 9.680523 0.99914217 0.0012381182790972595 1
123 1 3.8165932 0.9316275 0.10217485034891999 1
124 1 7.6522446 0.99601656 0.0057583629403995997 1
125 0 -5.95583 0.008152755 0.011810147478593156 0
126 1 8.564951 0.9980027 0.0028843647430662487 1
127 0 -4.520691 0.023833437 0.034800759324198648 0
128 1 4.84898 0.9675514 0.04758977495588574 1
129 0 -5.717684 0.009751258 0.014137132147530099 0
130 0 -3.4726496 0.051294282 0.075967452463448076 0
131 0 -4.9946866 0.016755885 0.024378447925635292 0
132 1 8.602232 0.9980583 0.0028039765128859018 1
133 0 -4.810811 0.01921573 0.027992252541605728 0
134 0 -4.9171767 0.017752616 0.025841674110087472 0
135 0 -2.7288966 0.08680205 0.13100047471163517 0
136 0 -4.533843 0.023602419 0.034459373415090033 0
137 0 -5.494987 0.01152521 0.016723922858878242 0
138 0 -4.2402444 0.029317858 0.04292914403934768 0
139 0 ? ? ? 0
140 0 -5.494987 0.01152521 0.016723922858878242 0
141 0 -5.9689827 0.00807247 0.011693373854840414 0
142 1 4.4324036 0.95602256 0.064883430994521443 1
143 0 -4.6439905 0.021751598 0.03172724574533177 0
144 0 -5.4818344 0.011639431 0.016890640083211839 0
145 0 ? ? ? 0
146 1 1.3394346 0.67542744 0.56612731001545713 1
147 0 -5.4154215 0.012233486 0.017758034331297672 0
148 0 -1.0123739 0.25899458 0.4324439985553144 0
149 1 11.461615 0.99977773 0.00032069729386163213 1
150 0 -5.5593443 0.010982092 0.01593145032913975 0
151 1 5.006485 0.9711001 0.042308092038938809 1
152 1 9.715748 0.99916476 0.0012054999542047689 1
153 0 -4.121497 0.03199298 0.046910583933444494 0
154 0 -6.4429784 0.005648197 0.0081717255492616877 0
155 1 3.7769232 0.9296856 0.10518519653096636 1
156 0 -5.5348053 0.011186128 0.016229111380986143 0
157 0 -4.9946866 0.016755885 0.024378447925635292 0
158 0 ? ? ? 0
159 1 12.346203 0.99988633 0.0001639947780942108 1
160 1 9.039494 0.99860567 0.002012998795947356 1
161 0 -3.8496675 0.039033547 0.057442027050147004 0
162 0 -4.520691 0.023833437 0.034800759324198648 0
163 0 -3.3870554 0.05454763 0.080923315355362818 0
164 0 ? ? ? 0
165 0 -3.3999205 0.05404651 0.080158845547395108 0
166 1 7.976185 0.9968817 0.004505750926832852 1
167 1 8.355644 0.99765986 0.0033800618776249807 1
168 0 -4.520691 0.023833437 0.034800759324198648 0
169 0 -6.2282124 0.0066409498 0.009612819847748871 0
170 0 -5.494987 0.01152521 0.016723922858878242 0
171 0 -5.4686823 0.011754767 0.017059004011272673 0
172 0 -5.95583 0.008152755 0.011810147478593156 0
173 1 15.1560135 0.9999865 1.9434170443242565E-05 1
174 1 6.1769257 0.9879011 0.017561488134486943 1
175 1 7.842922 0.99655116 0.004984229936716684 1
176 0 -4.9946866 0.016755885 0.024378447925635292 0
177 1 4.766121 0.96551895 0.050623517901417933 1
178 0 -4.046695 0.03379773 0.049602852281362811 0
179 1 2.290575 0.8106676 0.30281765649168213 1
180 0 -5.5593443 0.010982092 0.01593145032913975 0
181 0 -6.4429784 0.005648197 0.0081717255492616877 0
182 0 -3.0987039 0.06699134 0.10003761775121778 0
183 1 9.1599655 0.9987273 0.0018372561468384253 1
184 1 6.2014637 0.98812157 0.017239546569330137 1
185 0 -5.0853486 0.01565968 0.022770905093500125 0
186 1 5.7654095 0.9835412 0.023942621168576837 1
187 1 13.977451 0.99996704 4.7553986690113E-05 1
188 1 9.065283 0.99863267 0.0019739908621602127 1
189 0 -4.7540584 0.020044118 0.029211295141143595 0
190 1 11.957216 0.99984735 0.0002202405944450654 1
191 1 10.956871 0.999674 0.00047036322693564959 1
192 0 -4.059848 0.03347343 0.049118699463849731 0
193 0 -5.4686823 0.011754767 0.017059004011272673 0
194 0 -4.520691 0.023833437 0.034800759324198648 0
195 0 -4.046695 0.03379773 0.049602852281362811 0
196 0 6.8652763 0.992787 7.1151855643261381 1
197 0 -2.6564164 0.09126051 0.13806131755901335 0
198 0 -6.4429784 0.005648197 0.0081717255492616877 0
199 0 -5.0078387 0.016592303 0.024138448331127087 0
200 1 10.36586 0.9994898 0.00073627359086373204 1
201 1 9.869495 0.9992566 0.0010728826448553252 1
202 0 -5.4686823 0.011754767 0.017059004011272673 0
203 0 -3.5726995 0.047724232 0.070548673242470078 0
204 0 -5.4686823 0.011754767 0.017059004011272673 0
205 1 12.086603 0.99986166 0.00019959967319162043 1
206 1 5.94417 0.98559827 0.020928376857247459 1
207 0 -5.5593443 0.010982092 0.01593145032913975 0
208 0 -5.5593443 0.010982092 0.01593145032913975 0
209 0 -3.6633615 0.04469411 0.065965336354842946 0
210 1 14.534115 0.99997836 3.1215188826316377E-05 1
211 1 9.64962 0.99912184 0.0012674667953664828 1
212 0 -5.4686823 0.011754767 0.017059004011272673 0
213 1 14.52906 0.9999783 3.1301182014901005E-05 1
214 1 13.868914 0.9999642 5.1681712271066226E-05 1
215 1 7.643734 0.9959909 0.0057955739072098177 1
216 0 -5.95583 0.008152755 0.011810147478593156 0
217 0 -5.4686823 0.011754767 0.017059004011272673 0
218 1 7.88678 0.99666363 0.0048214119279433977 1
219 0 -2.511506 0.100795746 0.15327923389796996 0
220 0 -5.1632547 0.014774316 0.021473856707274121 0
221 1 10.395218 0.999501 0.00072009905980506843 1
222 1 -2.214662 0.1231175 3.0218922639873447 0
223 1 5.7424126 0.9832564 0.024360423750620218 1
224 1 9.995327 0.99932426 0.00097521318777220637 1
225 0 -5.95583 0.008152755 0.011810147478593156 0
226 1 10.225868 0.9994326 0.00081878372812222485 1
227 1 7.459608 0.9953927 0.0066623169983452231 1
228 0 -5.5593443 0.010982092 0.01593145032913975 0
229 1 12.666517 0.9999109 0.00012856275965089447 1
230 1 6.1583214 0.9877312 0.017809586200967932 1
231 1 8.623034 0.99808866 0.0027601224428665879 1
232 0 1.2822819 0.66585165 1.5814393559263284 1
233 1 6.382519 0.9896301 0.015038709216571163 1
234 0 -2.8964381 0.07724253 0.115976584697302 0
235 0 ? ? ? 0
236 1 11.420414 0.99977064 0.00033093257283884215 1
237 1 6.5357933 0.9907579 0.01339555438417007 1
238 1 12.422876 0.9998928 0.00015470668910224405 1
239 1 5.902529 0.98514295 0.021595017147241997 1
240 0 -2.017991 0.14015022 0.21784345766297453 0
241 0 -4.0004973 0.034961022 0.051340881416726061 0
242 0 -4.9946866 0.016755885 0.024378447925635292 0
243 0 -2.6953988 0.088837564 0.13421982380863931 0
244 0 -5.4686823 0.011754767 0.017059004011272673 0
245 0 -2.817525 0.081618704 0.12283483473472002 0
246 1 11.424004 0.9997713 0.00032998645156814019 1
247 1 3.104393 0.8881221 0.17117009101578401 1
248 0 -3.0615559 0.068774305 0.10279722872890984 0
249 0 ? ? ? 0
250 0 -6.021953 0.0077569964 0.011234610256342446 0
251 1 8.872498 0.9984177 0.0022846196981478615 1
252 0 4.5387735 0.95929295 4.6185774530404009 1
253 1 8.577511 0.99802166 0.0028569650360322531 1
254 1 6.380089 0.98961115 0.015066341261387473 1
255 1 4.052039 0.94216394 0.085949972449708326 1
256 0 -5.494987 0.01152521 0.016723922858878242 0
257 0 -5.0078387 0.016592303 0.024138448331127087 0
258 0 -4.520691 0.023833437 0.034800759324198648 0
259 0 2.9647493 0.877156 3.025100925818462 1
260 1 9.870926 0.99925745 0.0010716778711863072 1
261 1 12.206299 0.99987364 0.00018231312886902128 1
262 1 9.653841 0.99912465 0.0012634216564773898 1
263 1 8.981979 0.9985436 0.002102643541396716 1
264 1 5.664709 0.9822578 0.025826400239286989 1
265 0 -2.494875 0.10194498 0.15512426427086881 0
266 1 7.3661613 0.99505585 0.0071505858244227481 1
267 1 3.3009596 0.90210295 0.14863601285829425 1
268 1 9.372967 0.998917 0.0015633090806578933 1
269 0 -5.4686823 0.011754767 0.017059004011272673 0
270 1 6.031377 0.9865078 0.01959767586907752 1
271 0 -3.5726995 0.047724232 0.070548673242470078 0
272 1 3.3009596 0.90210295 0.14863601285829425 1
273 1 0.21747208 0.4704687 1.0878293505835543 1
274 0 -4.3236628 0.027569678 0.040333214707074766 0
275 0 ? ? ? 0
276 0 -5.0078387 0.016592303 0.024138448331127087 0
277 0 -5.95583 0.008152755 0.011810147478593156 0
278 0 -5.4686823 0.011754767 0.017059004011272673 0
279 1 7.127907 0.9940822 0.0085629246022787941 1
280 0 -4.520691 0.023833437 0.034800759324198648 0
281 0 -4.6892586 0.02103278 0.030667542438444956 0
282 1 4.4381247 0.95620465 0.064608669189911136 1
283 1 6.0636253 0.9868295 0.019127222915579972 1
284 1 7.431343 0.99529326 0.006806421628886848 1
285 1 14.218479 0.9999725 3.9642545670177728E-05 1
286 1 15.281265 0.9999877 1.7714321792245208E-05 1
287 0 -4.9171767 0.017752616 0.025841674110087472 0
288 1 2.2163515 0.80187416 0.31855224459431192 1
289 1 8.312019 0.9975813 0.0034936687628036997 1
290 0 -6.4429784 0.005648197 0.0081717255492616877 0
291 0 -5.4686823 0.011754767 0.017059004011272673 0
292 1 ? ? ? 0
293 1 5.542121 0.9805624 0.028318669172894068 1
294 0 ? ? ? 0
295 1 7.7866364 0.99640125 0.0052012629006476284 1
296 0 1.823431 0.75025773 2.0014880731401443 1
297 0 ? ? ? 0
298 0 -2.725597 0.08700067 0.13131429030889247 0
299 1 7.8274345 0.9965105 0.0050430801821242759 1
300 1 7.348074 0.9949879 0.0072491063826461647 1
301 0 -5.4686823 0.011754767 0.017059004011272673 0
302 1 15.735764 0.9999913 1.2554788140693439E-05 1
303 0 -5.4686823 0.011754767 0.017059004011272673 0
304 1 5.9607983 0.98577625 0.020667878309752356 1
305 1 8.459471 0.9978367 0.003124349823870973 1
306 0 -5.4686823 0.011754767 0.017059004011272673 0
307 0 -5.4686823 0.011754767 0.017059004011272673 0
308 1 7.422592 0.9952621 0.0068516084791740307 1
309 0 -1.7474079 0.16675755 0.26319176134218036 0
310 0 -5.391173 0.012457768 0.018085649525652777 0
311 0 -6.4429784 0.005648197 0.0081717255492616877 0
312 1 3.6294708 0.9220128 0.11714130634122567 1
313 0 -6.4429784 0.005648197 0.0081717255492616877 0
314 0 -6.046492 0.0076150266 0.011028204574905828 0
315 0 ? ? ? 0
316 1 3.6177406 0.92137057 0.11814658455212051 1
317 1 9.215706 0.99877995 0.0017612310516048875 1
318 0 -5.1966968 0.014409561 0.02093983363547448 0
319 0 2.6369457 0.84775543 2.7155373416013662 1
320 1 7.3824844 0.9951164 0.0070627872070711771 1
321 0 ? ? ? 0
322 0 -4.520691 0.023833437 0.034800759324198648 0
323 1 5.5612926 0.98083764 0.027913746222999549 1
324 0 -5.4686823 0.011754767 0.017059004011272673 0
325 0 -4.192758 0.030360555 0.044479706359279253 0
326 1 4.4103794 0.95531476 0.065951946768905437 1
327 0 -5.95583 0.008152755 0.011810147478593156 0
328 1 3.373887 0.9068811 0.141014691181642 1
329 1 7.8321342 0.9965229 0.0050251314657524084 1
330 1 5.856251 0.98462033 0.022360562903046506 1
331 0 -3.2490888 0.06020364 0.08957991749201398 0
332 0 -3.1363668 0.06522752 0.097312838862202627 0
333 1 4.914962 0.9690866 0.04530251936714582 1
334 1 5.9119453 0.98524714 0.021442445493118613 1
335 0 -6.4429784 0.005648197 0.0081717255492616877 0
336 1 5.543519 0.9805826 0.028288940560717461 1
337 0 -5.4686823 0.011754767 0.017059004011272673 0
338 0 -6.046492 0.0076150266 0.011028204574905828 0
339 1 5.684025 0.98251134 0.025454033740074194 1
340 1 6.620781 0.9913299 0.012562837713558307 1
341 0 -5.4686823 0.011754767 0.017059004011272673 0
342 0 -5.9689827 0.00807247 0.011693373854840414 0
343 0 -6.4429784 0.005648197 0.0081717255492616877 0
344 1 10.162451 0.99940467 0.00085913711935366719 1
345 0 -6.4429784 0.005648197 0.0081717255492616877 0
346 0 -3.3358254 0.056586877 0.084038425056544686 0
347 0 -6.1395845 0.0070995023 0.010278947729356253 0
348 1 0.15727425 0.45910957 1.1230895756645052 1
349 1 4.0622606 0.94258505 0.085305293794040227 1
350 0 -3.93614 0.036646076 0.053862170913072119 0
351 0 -4.9946866 0.016755885 0.024378447925635292 0
352 0 0.47192955 0.51868224 1.0549384413455107 1
353 1 8.696342 0.99819183 0.0026109941163622473 1
354 0 -5.95583 0.008152755 0.011810147478593156 0
355 0 -4.246153 0.029190574 0.042739978357172199 0
356 1 -0.69921684 0.30711415 1.7031530909424435 0
357 1 12.852016 0.9999226 0.00011170705633068974 1
358 1 5.582206 0.9811335 0.027478611445726227 1
359 1 5.3672857 0.97786665 0.032290354697391166 1
360 1 15.333874 0.9999882 1.7026382905914664E-05 1
361 1 6.317689 0.9891131 0.0157926107591757 1
362 0 -3.5059962 0.05007717 0.074117778802898118 0
363 0 -2.0658464 0.13583238 0.2106169271876272 0
364 0 -4.9946866 0.016755885 0.024378447925635292 0
365 0 -5.4818344 0.011639431 0.016890640083211839 0
366 1 13.694571 0.9999591 5.899125529457858E-05 1
367 1 11.299244 0.9997486 0.00036275701338483524 1
368 0 -5.8557806 0.008789949 0.012737278390963667 0
369 0 -5.4592943 0.011837783 0.017180200787587779 0
370 0 -3.89473 0.037771333 0.055548313644665219 0
371 0 -5.8557806 0.008789949 0.012737278390963667 0
372 0 -4.2402444 0.029317858 0.04292914403934768 0
373 0 -3.7544203 0.04183586 0.061655273456784274 0
374 0 -4.71424 0.020646105 0.030097814327393193 0
375 0 -6.4429784 0.005648197 0.0081717255492616877 0
376 0 -5.95583 0.008152755 0.011810147478593156 0
377 0 -6.046492 0.0076150266 0.011028204574905828 0
378 0 -3.803866 0.040357877 0.059431608857550028 0
379 0 -2.2557268 0.11979375 0.18408647967245978 0
380 0 -6.4429784 0.005648197 0.0081717255492616877 0
381 1 10.07641 0.99936455 0.00091704491714961699 1
382 0 -3.59721 0.04688631 0.069279781860915407 0
383 0 -5.9689827 0.00807247 0.011693373854840414 0
384 0 -5.9689827 0.00807247 0.011693373854840414 0
385 0 -3.7061968 0.043327074 0.063902325254427392 0
386 1 6.0875864 0.98706365 0.018784981568614377 1
387 0 -2.3345594 0.11363012 0.17401924291232526 0
388 0 -5.2848067 0.013490496 0.019595145292487764 0
389 0 -3.3224106 0.057132594 0.084873194157620097 0
390 0 -5.6504025 0.010256628 0.014873593254337859 0
391 1 10.030338 0.99934196 0.00094965672085389622 1
392 0 -5.0078387 0.016592303 0.024138448331127087 0
393 0 -6.53364 0.0052747843 0.0076300462926347243 0
394 0 -5.241206 0.013937826 0.020249479819272553 0
395 0 -5.0078387 0.016592303 0.024138448331127087 0
396 0 -4.520691 0.023833437 0.034800759324198648 0
397 0 -5.0209913 0.016430287 0.023900783632758753 0
398 0 -4.683385 0.02112472 0.03080304018113058 0
399 0 -5.7283545 0.0096734045 0.014023711114027561 0
400 1 10.056744 0.999355 0.00093081234331069047 1
401 0 -5.494987 0.01152521 0.016723922858878242 0
402 0 -3.2177973 0.061560772 0.091664774253514145 0
403 0 -4.145746 0.031428177 0.046069061057006429 0
404 0 -5.507669 0.011416126 0.016564721842253591 0
405 0 -5.95583 0.008152755 0.011810147478593156 0
406 0 -4.1128182 0.0321975 0.047215431190392593 0
407 0 -5.95583 0.008152755 0.011810147478593156 0
408 0 -3.691061 0.04380549 0.064623974204670379 0
409 0 -4.71424 0.020646105 0.030097814327393193 0
410 0 -5.95583 0.008152755 0.011810147478593156 0
411 0 ? ? ? 0
412 1 9.230705 0.9987937 0.0017413429278913565 1
413 0 -3.2791004 0.05892837 0.087623557240190011 0
414 1 6.7173824 0.9919376 0.011678759699519599 1
415 0 -0.6668339 0.3123661 0.54028742034074773 0
416 1 8.809383 0.9983402 0.0023965899325754819 1
417 0 -5.95583 0.008152755 0.011810147478593156 0
418 0 -1.8758612 0.15365387 0.2406803006815022 0
419 0 -5.442145 0.011990931 0.017403810256483163 0
420 0 -2.5893164 0.09557056 0.14492013592578398 0
421 1 11.824856 0.99983126 0.00024346198385283565 1
422 0 -2.8105893 0.08201394 0.12345585262262933 0
423 0 -3.4726496 0.051294282 0.075967452463448076 0
424 0 -5.494987 0.01152521 0.016723922858878242 0
425 1 14.817663 0.9999826 2.5109685538071405E-05 1
426 0 -2.8241482 0.08124289 0.12224458409135237 0
427 1 4.3530817 0.9534221 0.068812983796401356 1
428 0 -5.95583 0.008152755 0.011810147478593156 0
429 0 -5.4818344 0.011639431 0.016890640083211839 0
430 0 -5.50395 0.011448007 0.016611248346541513 0
431 0 -2.5834928 0.09595309 0.14553046360362973 0
432 0 -3.8628197 0.03866103 0.056882875876087251 0
433 0 -4.4631066 0.024871144 0.036335222703172541 0
434 0 5.0084 0.97114086 5.1148279570464927 1
435 1 7.444332 0.9953392 0.0067398103254229808 1
436 1 3.841199 0.9328069 0.10034962060198541 1
437 0 -5.0209913 0.016430287 0.023900783632758753 0
438 0 -3.822938 0.039801266 0.058595061116589527 0
439 0 -4.5469956 0.023373578 0.034121284818622755 0
440 1 10.154686 0.99940115 0.00086421363869066531 1
441 0 -1.8604465 0.1551807 0.24328528875750627 0
442 0 -4.932629 0.017549368 0.025543180352955049 0
443 0 -5.9932313 0.007926505 0.011481092360580692 0
444 0 -2.442047 0.10567284 0.16112539871549494 0
445 0 -5.9689827 0.00807247 0.011693373854840414 0
446 0 -6.4429784 0.005648197 0.0081717255492616877 0
447 0 -4.5469956 0.023373578 0.034121284818622755 0
448 0 -6.53364 0.0052747843 0.0076300462926347243 0
449 1 10.298004 0.99946284 0.00077516203531090419 1
450 0 -4.0136495 0.03462597 0.050840077971040572 0
451 0 -4.5469956 0.023373578 0.034121284818622755 0
452 0 -4.8841314 0.018195055 0.026491662451451816 0
453 1 8.777971 0.99830025 0.0024543010625143486 1
454 0 -5.6234684 0.010466128 0.015179002444545909 0
455 1 0.81635284 0.5832275 0.77786931086041744 1
456 1 10.487387 0.99953467 0.00067149052326743921 1
457 1 9.06263 0.9986299 0.0019779518845872311 1
458 0 -4.253397 0.02903525 0.042509173626544897 0
459 0 -3.9597979 0.036017757 0.052921523163131159 0
460 0 -3.93614 0.036646076 0.053862170913072119 0
461 0 -3.6959996 0.04364884 0.064387638591170013 0
462 0 -3.4621444 0.05168347 0.076559412170907212 0
463 0 -4.823963 0.019028598 0.027717016988036743 0
464 0 -5.0209913 0.016430287 0.023900783632758753 0
465 1 9.7853985 0.99920774 0.0011434497150273235 1
466 1 9.541933 0.99904716 0.0013753126588050381 1
467 1 7.7145195 0.99619967 0.0054931654697981886 1
468 0 -5.0209913 0.016430287 0.023900783632758753 0
469 0 -5.6622314 0.010165936 0.014741403595886524 0
470 0 -5.0985007 0.015506633 0.022546608302385175 0
471 0 -3.4621444 0.05168347 0.076559412170907212 0
472 0 -4.163662 0.0310171 0.04545688944873634 0
473 0 -5.0209913 0.016430287 0.023900783632758753 0
474 0 -4.5469956 0.023373578 0.034121284818622755 0
475 0 -5.494987 0.01152521 0.016723922858878242 0
476 0 -4.727392 0.020445334 0.02980208737260864 0
477 0 -5.0209913 0.016430287 0.023900783632758753 0
478 0 -4.4195695 0.025684815 0.03753954391072279 0
479 1 8.32148 0.9975986 0.0034686710325429922 1
480 0 -4.6376576 0.021854054 0.031878354047421072 0
481 0 -3.082261 0.067775175 0.10125016271957035 0
482 1 15.481422 0.99998945 1.5220544890042414E-05 1
483 1 10.906595 0.9996614 0.0004885994477486597 1
484 0 -4.253397 0.02903525 0.042509173626544897 0
485 0 -5.023291 0.016402118 0.023859466397713937 0
486 0 -5.0985007 0.015506633 0.022546608302385175 0
487 1 13.475906 0.9999518 6.9568659593352019E-05 1
488 1 1.3273258 0.67341053 0.57044180397199062 1
489 1 -0.6232014 0.31951928 1.646025101672679 0
490 0 -6.4429784 0.005648197 0.0081717255492616877 0
491 1 6.6713333 0.9916534 0.012092158077135179 1
492 0 -4.624505 0.022068353 0.032194464591169099 0
493 1 9.94891 0.99930006 0.0010101496965434329 1
494 0 0.9629116 0.60997653 1.3583671531547612 1
495 0 -5.0985007 0.015506633 0.022546608302385175 0
496 0 -6.53364 0.0052747843 0.0076300462926347243 0
497 0 -4.893565 0.018067656 0.02630447000187312 0
498 0 -4.533843 0.023602419 0.034459373415090033 0
499 0 -4.533843 0.023602419 0.034459373415090033 0
500 0 -3.0987039 0.06699134 0.10003761775121778 0
501 0 -4.533843 0.023602419 0.034459373415090033 0
502 0 -4.2284155 0.029574301 0.043310338334976231 0
503 0 -4.046695 0.03379773 0.049602852281362811 0
504 0 -6.4429784 0.005648197 0.0081717255492616877 0
505 0 -5.2401347 0.013949001 0.020265829824057998 0
506 1 10.447666 0.9995204 0.00069205216452113084 1
507 0 -5.0937376 0.01556189 0.022627585557372452 0
508 0 -4.5469956 0.023373578 0.034121284818622755 0
509 0 -5.9689827 0.00807247 0.011693373854840414 0
510 0 -6.4429784 0.005648197 0.0081717255492616877 0
511 0 -4.059848 0.03347343 0.049118699463849731 0
512 0 -4.5469956 0.023373578 0.034121284818622755 0
513 0 -5.0985007 0.015506633 0.022546608302385175 0
514 1 10.719854 0.9996099 0.00056292303371696174 1
515 1 8.6480255 0.9981245 0.0027083436166447333 1
516 0 -6.53364 0.0052747843 0.0076300462926347243 0
517 0 -6.046492 0.0076150266 0.011028204574905828 0
518 0 -4.8959603 0.01803545 0.026257150944159223 0
519 1 6.535843 0.9907582 0.013395120416830476 1
520 0 -6.3523164 0.0060478863 0.0087517471600555233 0
521 0 -4.9303293 0.017579472 0.02558738782535638 0
522 1 5.502534 0.97998166 0.029173343678465424 1
523 1 7.699238 0.9961555 0.0055571295392400502 1
524 0 -5.0078387 0.016592303 0.024138448331127087 0
525 0 -5.189559 0.014486661 0.021052696761167319 0
526 0 -5.0209913 0.016430287 0.023900783632758753 0
527 0 -4.046695 0.03379773 0.049602852281362811 0
528 0 -3.1803741 0.063221365 0.094219922377553209 0
529 0 -4.624505 0.022068353 0.032194464591169099 0
530 1 6.515935 0.9906189 0.013597970981112992 1
531 0 -4.1128182 0.0321975 0.047215431190392593 0
532 0 -5.5593443 0.010982092 0.01593145032913975 0
533 0 -5.0078387 0.016592303 0.024138448331127087 0
534 0 -5.4818344 0.011639431 0.016890640083211839 0
535 0 -4.5760565 0.022875603 0.03338585296537417 0
536 0 -3.5726995 0.047724232 0.070548673242470078 0
537 0 -3.2791004 0.05892837 0.087623557240190011 0
538 0 -4.533843 0.023602419 0.034459373415090033 0
539 0 -3.5858517 0.047272854 0.069864998098614808 0
540 0 -3.6101007 0.04645125 0.06862139427182179 0
541 0 -5.494987 0.01152521 0.016723922858878242 0
542 0 -4.292143 0.028218 0.041295383661076081 0
543 0 -4.533843 0.023602419 0.034459373415090033 0
544 0 -4.589209 0.022653647 0.033058177993601175 0
545 0 -4.059848 0.03347343 0.049118699463849731 0
546 1 11.390259 0.99976534 0.00033858757684800106 1
547 0 -6.059644 0.0075399997 0.0109191372063595 0
548 0 -5.5856485 0.0107674645 0.015618404699454138 0
549 1 6.3187475 0.98912174 0.015780004831897315 1
550 0 -5.0078387 0.016592303 0.024138448331127087 0
551 0 -5.4686823 0.011754767 0.017059004011272673 0
552 0 -3.1100621 0.0664548 0.099208215824527435 0
553 0 -1.7353673 0.16803056 0.26539755882168281 0
554 0 -5.494987 0.01152521 0.016723922858878242 0
555 0 -1.9254994 0.14882071 0.23246505112097871 0
556 0 -3.424057 0.053118035 0.078743499613041501 0
557 0 -3.93614 0.036646076 0.053862170913072119 0
558 0 -5.4818344 0.011639431 0.016890640083211839 0
559 0 -4.059848 0.03347343 0.049118699463849731 0
560 0 -3.5726995 0.047724232 0.070548673242470078 0
561 0 -3.5726995 0.047724232 0.070548673242470078 0
562 0 -5.4686823 0.011754767 0.017059004011272673 0
563 0 -5.0078387 0.016592303 0.024138448331127087 0
564 0 -3.8496675 0.039033547 0.057442027050147004 0
565 1 12.086092 0.9998616 0.00019968567641750592 1
566 0 -4.227092 0.029603133 0.043353202239365854 0
567 0 -3.6343493 0.04564325 0.067399433223387817 0
568 1 4.1473064 0.94597834 0.080120938914498979 1
569 1 10.713882 0.9996081 0.00056550378256940248 1
570 1 8.017664 0.99697804 0.0043663610015818432 1
571 1 11.034657 0.99969274 0.00044335339890107668 1
572 0 -5.0078387 0.016592303 0.024138448331127087 0
573 0 -5.95583 0.008152755 0.011810147478593156 0
574 1 5.950968 0.9856713 0.020821502205009505 1
575 0 -3.2791004 0.05892837 0.087623557240190011 0
576 0 -4.059848 0.03347343 0.049118699463849731 0
577 0 -5.95583 0.008152755 0.011810147478593156 0
578 0 -5.95583 0.008152755 0.011810147478593156 0
579 0 -5.4686823 0.011754767 0.017059004011272673 0
580 0 -3.7662487 0.04147765 0.061116023687271794 0
581 1 8.417797 0.9977674 0.0032245780320862543 1
582 1 7.907978 0.9967167 0.0047446254970359954 1
583 0 -5.494987 0.01152521 0.016723922858878242 0
584 0 -2.9291954 0.075489886 0.11323899247123828 0
585 0 -6.4429784 0.005648197 0.0081717255492616877 0
586 1 13.98102 0.9999671 4.7467992532759307E-05 1
587 0 -3.8628197 0.03866103 0.056882875876087251 0
588 1 5.463169 0.9793874 0.030048455526317758 1
589 0 -4.5469956 0.023373578 0.034121284818622755 0
590 1 3.9684029 0.9386082 0.09140498577121392 1
591 1 5.966527 0.98583704 0.020578904318245012 1
592 1 5.7801704 0.98372144 0.023678256090487241 1
593 0 -4.253397 0.02903525 0.042509173626544897 0
594 1 5.101775 0.97306114 0.039397632242971693 1
595 0 -4.059848 0.03347343 0.049118699463849731 0
596 0 -4.2402444 0.029317858 0.04292914403934768 0
597 0 -2.9855018 0.07256243 0.10867791847551245 0
598 0 -5.0078387 0.016592303 0.024138448331127087 0
599 0 -3.6294346 0.04580593 0.067645376058973333 0
600 0 -5.0078387 0.016592303 0.024138448331127087 0
601 0 -6.046492 0.0076150266 0.011028204574905828 0
602 0 -4.533843 0.023602419 0.034459373415090033 0
603 1 4.8058815 0.9665091 0.049144773305248697 1
604 1 6.1928043 0.9880442 0.01735250950197232 1
605 1 9.955452 0.9993035 0.0010051587149210726 1
606 0 -4.715564 0.020625811 0.030067920071712086 0
607 0 -6.4429784 0.005648197 0.0081717255492616877 0
608 1 11.148428 0.9997181 0.00040671030044872971 1
609 0 -4.5469956 0.023373578 0.034121284818622755 0
610 1 8.926189 0.99848074 0.0021934995672910755 1
611 1 6.910961 0.993031 0.010089302795775161 1
612 1 16.893517 0.99999636 5.2454803872987944E-06 1
613 0 -5.226982 0.014086901 0.020467605961895518 0
614 0 -5.5724964 0.010874255 0.015774155610380477 0
615 0 -3.9466457 0.03636577 0.053442453015430637 0
616 0 -5.0078387 0.016592303 0.024138448331127087 0
617 0 ? ? ? 0
618 0 -4.533843 0.023602419 0.034459373415090033 0
619 0 -4.059848 0.03347343 0.049118699463849731 0
620 0 -5.0078387 0.016592303 0.024138448331127087 0
621 0 0.35605335 0.4967156 0.99055422977402885 1
622 0 -2.2074018 0.12371333 0.19052518105806376 0
623 0 -6.4429784 0.005648197 0.0081717255492616877 0
624 0 -3.8450823 0.039164227 0.057638228932157462 0
625 0 -3.4678864 0.0514704 0.076235297856163745 0
626 1 5.7601643 0.98347664 0.024037311317372478 1
627 0 -4.1699953 0.03087303 0.045242403057694114 0
628 0 -5.9689827 0.00807247 0.011693373854840414 0
629 0 -5.0209913 0.016430287 0.023900783632758753 0
630 0 -3.358376 0.05568055 0.082653110243383579 0
631 0 -4.059848 0.03347343 0.049118699463849731 0
632 0 -6.4429784 0.005648197 0.0081717255492616877 0
633 1 4.3299503 0.95263666 0.070002027657626642 1
634 0 -5.494987 0.01152521 0.016723922858878242 0
635 0 -4.61419 0.022237854 0.032444542423638763 0
636 1 10.127518 0.9993887 0.00088219670683892097 1
637 0 -2.4650178 0.10403733 0.1584894700655759 0
638 0 -5.0209913 0.016430287 0.023900783632758753 0
639 0 -3.93614 0.036646076 0.053862170913072119 0
640 0 -4.4101357 0.02586451 0.037805647681891714 0
641 0 -5.0078387 0.016592303 0.024138448331127087 0
642 0 -5.0078387 0.016592303 0.024138448331127087 0
643 0 -6.4429784 0.005648197 0.0081717255492616877 0
644 0 -5.9689827 0.00807247 0.011693373854840414 0
645 0 -5.0078387 0.016592303 0.024138448331127087 0
646 0 -6.021953 0.0077569964 0.011234610256342446 0
647 0 -5.832123 0.008947697 0.012966896248755017 0
648 1 12.236198 0.9998765 0.00017818502951934642 1
649 0 -5.0078387 0.016592303 0.024138448331127087 0
650 0 -3.7496567 0.041980952 0.061873754012903771 0
651 0 -5.217549 0.014186632 0.020613550094586007 0
652 0 -3.8628197 0.03866103 0.056882875876087251 0
653 0 -4.533843 0.023602419 0.034459373415090033 0
654 0 -4.520691 0.023833437 0.034800759324198648 0
655 0 -5.0078387 0.016592303 0.024138448331127087 0
656 0 -4.059848 0.03347343 0.049118699463849731 0
657 0 -0.4869156 0.3424043 0.6047272426002388 0
658 1 9.086258 0.9986542 0.0019429058245893991 1
659 0 -6.4429784 0.005648197 0.0081717255492616877 0
660 0 -5.95583 0.008152755 0.011810147478593156 0
661 0 -4.046695 0.03379773 0.049602852281362811 0
662 0 -5.3686323 0.012669891 0.018395571683516153 0
663 0 -5.3686323 0.012669891 0.018395571683516153 0
664 0 -4.3969836 0.026117077 0.038179748349732472 0
665 0 -6.4429784 0.005648197 0.0081717255492616877 0
666 0 -3.4969325 0.050405253 0.074616140216202456 0
667 0 -4.520691 0.023833437 0.034800759324198648 0
668 1 2.8043652 0.86343354 0.21184295985895515 1
669 1 8.147335 0.99726033 0.0039579294672795707 1
670 1 6.4856205 0.99040276 0.013912762642680866 1
671 0 -4.087837 0.032793265 0.048103804028856063 0
672 0 -4.9946866 0.016755885 0.024378447925635292 0
673 0 -3.9078827 0.03741038 0.055007226361106963 0
674 0 -5.95583 0.008152755 0.011810147478593156 0
675 0 -4.1401944 0.031556632 0.046260409123226896 0
676 0 -5.6622314 0.010165936 0.014741403595886524 0
677 0 -4.5469956 0.023373578 0.034121284818622755 0
678 0 -6.4429784 0.005648197 0.0081717255492616877 0
679 0 -5.9689827 0.00807247 0.011693373854840414 0
680 1 16.78001 0.99999607 5.6754386418026423E-06 1
681 1 9.801077 0.9992171 0.0011299384356403619 1
682 0 -3.3756714 0.05499471 0.08160568921637594 0
683 0 -6.4429784 0.005648197 0.0081717255492616877 0
684 0 -6.4429784 0.005648197 0.0081717255492616877 0
685 0 -6.4429784 0.005648197 0.0081717255492616877 0
686 0 -6.4429784 0.005648197 0.0081717255492616877 0
687 0 -4.613783 0.022244573 0.032454455742594257 0
688 0 -5.0209913 0.016430287 0.023900783632758753 0
689 0 -4.1777043 0.03069854 0.044982670054638463 0
690 0 -5.832123 0.008947697 0.012966896248755017 0
691 1 4.4967804 0.95803064 0.061856295892801602 1
692 0 -5.494987 0.01152521 0.016723922858878242 0
693 0 -4.6842284 0.021111494 0.030783546498899184 0
694 0 -4.9545784 0.017264586 0.02512504882755813 0
695 0 -5.9689827 0.00807247 0.011693373854840414 0
696 1 6.7127857 0.9919096 0.011719418003861082 1
697 1 5.064644 0.97231287 0.040507480679364792 1
698 1 6.1036224 0.9872181 0.018559275661035816 1

Просмотреть файл

@ -0,0 +1,39 @@
maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali={} dout=%Output% data=%Data% out=%Output% seed=1
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Warning: Skipped 160 instances with missing features during training (over 10 iterations; 16 inst/iter)
Not training a calibrator because a valid calibrator trainer was not provided.
Warning: The predictor produced non-finite prediction values on 16 instances during testing. Possible causes: abnormal data or the predictor is numerically unstable.
TEST POSITIVE RATIO: 0.3499 (239.0/(239.0+444.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 234 | 5 | 0.9791
negative || 12 | 432 | 0.9730
||======================
Precision || 0.9512 | 0.9886 |
OVERALL 0/1 ACCURACY: 0.975110
LOG LOSS/instance: NaN
Test-set entropy (prior Log-Loss/instance): 0.934003
LOG-LOSS REDUCTION (RIG): 0.000000
AUC: 0.996146
OVERALL RESULTS
---------------------------------------
AUC: 0.996146 (0.0000)
Accuracy: 0.975110 (0.0000)
Positive precision: 0.951220 (0.0000)
Positive recall: 0.979079 (0.0000)
Negative precision: 0.988558 (0.0000)
Negative recall: 0.972973 (0.0000)
Log-loss: NaN (0.0000)
Log-loss reduction: 0.000000 (0.0000)
F1 Score: 0.964948 (0.0000)
AUPRC: 0.992065 (0.0000)
---------------------------------------
Warning: Data does not contain a probability column. Will not output the Log-loss column
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,4 @@
AveragedPerceptron
AUC Accuracy Positive precision Positive recall Negative precision Negative recall Log-loss Log-loss reduction F1 Score AUPRC Learner Name Train Dataset Test Dataset Results File Run Time Physical Memory Virtual Memory Command Line Settings
0.996146 0.97511 0.95122 0.979079 0.988558 0.972973 NaN 0 0.964948 0.992065 AveragedPerceptron %Data% %Data% %Output% 99 0 0 maml.exe TrainTest test=%Data% tr=AveragedPerceptron cali={} dout=%Output% data=%Data% out=%Output% seed=1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Assigned
0 0 -3.5726995 0
1 0 3.6101446 1
2 0 -4.0709443 0
3 0 2.470542 1
4 0 -3.4358397 0
5 1 12.382593 1
6 0 -1.4209604 0
7 0 -4.7010875 0
8 0 -4.6745405 0
9 0 -4.406417 0
10 0 -5.5593443 0
11 0 -5.4818344 0
12 1 -0.14206886 0
13 0 -4.5691886 0
14 1 9.321613 1
15 1 1.3856993 1
16 0 -4.533843 0
17 0 -4.046695 0
18 1 7.8903713 1
19 0 -3.0987039 0
20 1 7.528511 1
21 1 7.875206 1
22 0 -5.0078387 0
23 1 ? 0
24 0 -5.4686823 0
25 1 1.741828 1
26 0 -4.9710746 0
27 0 -4.059848 0
28 0 -5.4818344 0
29 0 -5.8557806 0
30 0 -5.0985007 0
31 0 -4.9946866 0
32 1 7.46414 1
33 0 -4.6892586 0
34 0 -4.71424 0
35 0 -5.4818344 0
36 1 9.09911 1
37 0 -1.113348 0
38 1 6.140955 1
39 1 2.5109034 1
40 0 ? 0
41 1 3.3300762 1
42 1 8.577511 1
43 1 0.49126053 1
44 1 8.255751 1
45 0 -5.63222 0
46 1 4.5673847 1
47 0 -5.95583 0
48 0 -3.4358397 0
49 1 5.3666534 1
50 1 2.5949688 1
51 1 0.12595844 1
52 1 5.2992115 1
53 1 8.407227 1
54 1 7.649309 1
55 1 4.478711 1
56 1 5.5541334 1
57 1 1.6657066 1
58 1 2.5265894 1
59 1 1.7368536 1
60 1 2.3288136 1
61 0 -5.5060835 0
62 1 6.380089 1
63 1 0.33490086 1
64 0 -5.95583 0
65 1 3.8072634 1
66 0 -4.046695 0
67 1 4.218014 1
68 1 10.826725 1
69 0 -5.271654 0
70 0 -3.4726496 0
71 1 7.895046 1
72 0 -2.1755848 0
73 1 8.9055195 1
74 1 2.5993576 1
75 0 -4.0411606 0
76 0 -5.0750337 0
77 0 -3.499567 0
78 0 -3.6211972 0
79 0 -5.391173 0
80 0 -2.7157316 0
81 0 -4.2284155 0
82 0 -3.4452734 0
83 0 -2.1223526 0
84 1 9.694054 1
85 1 6.2895603 1
86 1 2.6168842 1
87 1 6.919142 1
88 0 -4.046695 0
89 0 -5.085745 0
90 0 -5.4686823 0
91 0 -5.189559 0
92 0 -4.046695 0
93 0 -5.95583 0
94 0 -4.9946866 0
95 0 -5.4686823 0
96 0 -5.663555 0
97 0 -3.5726995 0
98 1 8.590233 1
99 1 10.917194 1
100 1 4.8476696 1
101 1 -0.84280396 0
102 0 -3.7530966 0
103 1 1.7746439 1
104 1 12.140858 1
105 1 2.5560713 1
106 1 9.259369 1
107 1 6.720646 1
108 0 -5.5617743 0
109 1 6.871727 1
110 0 -2.766693 0
111 1 3.848031 1
112 1 9.425768 1
113 1 9.506624 1
114 0 -3.0727458 0
115 0 -4.6439905 0
116 0 -0.66188717 0
117 1 9.617275 1
118 0 -5.3621607 0
119 0 -3.9435177 0
120 0 -4.8696556 0
121 0 -3.469522 0
122 1 9.680523 1
123 1 3.8165932 1
124 1 7.6522446 1
125 0 -5.95583 0
126 1 8.564951 1
127 0 -4.520691 0
128 1 4.84898 1
129 0 -5.717684 0
130 0 -3.4726496 0
131 0 -4.9946866 0
132 1 8.602232 1
133 0 -4.810811 0
134 0 -4.9171767 0
135 0 -2.7288966 0
136 0 -4.533843 0
137 0 -5.494987 0
138 0 -4.2402444 0
139 0 ? 0
140 0 -5.494987 0
141 0 -5.9689827 0
142 1 4.4324036 1
143 0 -4.6439905 0
144 0 -5.4818344 0
145 0 ? 0
146 1 1.3394346 1
147 0 -5.4154215 0
148 0 -1.0123739 0
149 1 11.461615 1
150 0 -5.5593443 0
151 1 5.006485 1
152 1 9.715748 1
153 0 -4.121497 0
154 0 -6.4429784 0
155 1 3.7769232 1
156 0 -5.5348053 0
157 0 -4.9946866 0
158 0 ? 0
159 1 12.346203 1
160 1 9.039494 1
161 0 -3.8496675 0
162 0 -4.520691 0
163 0 -3.3870554 0
164 0 ? 0
165 0 -3.3999205 0
166 1 7.976185 1
167 1 8.355644 1
168 0 -4.520691 0
169 0 -6.2282124 0
170 0 -5.494987 0
171 0 -5.4686823 0
172 0 -5.95583 0
173 1 15.1560135 1
174 1 6.1769257 1
175 1 7.842922 1
176 0 -4.9946866 0
177 1 4.766121 1
178 0 -4.046695 0
179 1 2.290575 1
180 0 -5.5593443 0
181 0 -6.4429784 0
182 0 -3.0987039 0
183 1 9.1599655 1
184 1 6.2014637 1
185 0 -5.0853486 0
186 1 5.7654095 1
187 1 13.977451 1
188 1 9.065283 1
189 0 -4.7540584 0
190 1 11.957216 1
191 1 10.956871 1
192 0 -4.059848 0
193 0 -5.4686823 0
194 0 -4.520691 0
195 0 -4.046695 0
196 0 6.8652763 1
197 0 -2.6564164 0
198 0 -6.4429784 0
199 0 -5.0078387 0
200 1 10.36586 1
201 1 9.869495 1
202 0 -5.4686823 0
203 0 -3.5726995 0
204 0 -5.4686823 0
205 1 12.086603 1
206 1 5.94417 1
207 0 -5.5593443 0
208 0 -5.5593443 0
209 0 -3.6633615 0
210 1 14.534115 1
211 1 9.64962 1
212 0 -5.4686823 0
213 1 14.52906 1
214 1 13.868914 1
215 1 7.643734 1
216 0 -5.95583 0
217 0 -5.4686823 0
218 1 7.88678 1
219 0 -2.511506 0
220 0 -5.1632547 0
221 1 10.395218 1
222 1 -2.214662 0
223 1 5.7424126 1
224 1 9.995327 1
225 0 -5.95583 0
226 1 10.225868 1
227 1 7.459608 1
228 0 -5.5593443 0
229 1 12.666517 1
230 1 6.1583214 1
231 1 8.623034 1
232 0 1.2822819 1
233 1 6.382519 1
234 0 -2.8964381 0
235 0 ? 0
236 1 11.420414 1
237 1 6.5357933 1
238 1 12.422876 1
239 1 5.902529 1
240 0 -2.017991 0
241 0 -4.0004973 0
242 0 -4.9946866 0
243 0 -2.6953988 0
244 0 -5.4686823 0
245 0 -2.817525 0
246 1 11.424004 1
247 1 3.104393 1
248 0 -3.0615559 0
249 0 ? 0
250 0 -6.021953 0
251 1 8.872498 1
252 0 4.5387735 1
253 1 8.577511 1
254 1 6.380089 1
255 1 4.052039 1
256 0 -5.494987 0
257 0 -5.0078387 0
258 0 -4.520691 0
259 0 2.9647493 1
260 1 9.870926 1
261 1 12.206299 1
262 1 9.653841 1
263 1 8.981979 1
264 1 5.664709 1
265 0 -2.494875 0
266 1 7.3661613 1
267 1 3.3009596 1
268 1 9.372967 1
269 0 -5.4686823 0
270 1 6.031377 1
271 0 -3.5726995 0
272 1 3.3009596 1
273 1 0.21747208 1
274 0 -4.3236628 0
275 0 ? 0
276 0 -5.0078387 0
277 0 -5.95583 0
278 0 -5.4686823 0
279 1 7.127907 1
280 0 -4.520691 0
281 0 -4.6892586 0
282 1 4.4381247 1
283 1 6.0636253 1
284 1 7.431343 1
285 1 14.218479 1
286 1 15.281265 1
287 0 -4.9171767 0
288 1 2.2163515 1
289 1 8.312019 1
290 0 -6.4429784 0
291 0 -5.4686823 0
292 1 ? 0
293 1 5.542121 1
294 0 ? 0
295 1 7.7866364 1
296 0 1.823431 1
297 0 ? 0
298 0 -2.725597 0
299 1 7.8274345 1
300 1 7.348074 1
301 0 -5.4686823 0
302 1 15.735764 1
303 0 -5.4686823 0
304 1 5.9607983 1
305 1 8.459471 1
306 0 -5.4686823 0
307 0 -5.4686823 0
308 1 7.422592 1
309 0 -1.7474079 0
310 0 -5.391173 0
311 0 -6.4429784 0
312 1 3.6294708 1
313 0 -6.4429784 0
314 0 -6.046492 0
315 0 ? 0
316 1 3.6177406 1
317 1 9.215706 1
318 0 -5.1966968 0
319 0 2.6369457 1
320 1 7.3824844 1
321 0 ? 0
322 0 -4.520691 0
323 1 5.5612926 1
324 0 -5.4686823 0
325 0 -4.192758 0
326 1 4.4103794 1
327 0 -5.95583 0
328 1 3.373887 1
329 1 7.8321342 1
330 1 5.856251 1
331 0 -3.2490888 0
332 0 -3.1363668 0
333 1 4.914962 1
334 1 5.9119453 1
335 0 -6.4429784 0
336 1 5.543519 1
337 0 -5.4686823 0
338 0 -6.046492 0
339 1 5.684025 1
340 1 6.620781 1
341 0 -5.4686823 0
342 0 -5.9689827 0
343 0 -6.4429784 0
344 1 10.162451 1
345 0 -6.4429784 0
346 0 -3.3358254 0
347 0 -6.1395845 0
348 1 0.15727425 1
349 1 4.0622606 1
350 0 -3.93614 0
351 0 -4.9946866 0
352 0 0.47192955 1
353 1 8.696342 1
354 0 -5.95583 0
355 0 -4.246153 0
356 1 -0.69921684 0
357 1 12.852016 1
358 1 5.582206 1
359 1 5.3672857 1
360 1 15.333874 1
361 1 6.317689 1
362 0 -3.5059962 0
363 0 -2.0658464 0
364 0 -4.9946866 0
365 0 -5.4818344 0
366 1 13.694571 1
367 1 11.299244 1
368 0 -5.8557806 0
369 0 -5.4592943 0
370 0 -3.89473 0
371 0 -5.8557806 0
372 0 -4.2402444 0
373 0 -3.7544203 0
374 0 -4.71424 0
375 0 -6.4429784 0
376 0 -5.95583 0
377 0 -6.046492 0
378 0 -3.803866 0
379 0 -2.2557268 0
380 0 -6.4429784 0
381 1 10.07641 1
382 0 -3.59721 0
383 0 -5.9689827 0
384 0 -5.9689827 0
385 0 -3.7061968 0
386 1 6.0875864 1
387 0 -2.3345594 0
388 0 -5.2848067 0
389 0 -3.3224106 0
390 0 -5.6504025 0
391 1 10.030338 1
392 0 -5.0078387 0
393 0 -6.53364 0
394 0 -5.241206 0
395 0 -5.0078387 0
396 0 -4.520691 0
397 0 -5.0209913 0
398 0 -4.683385 0
399 0 -5.7283545 0
400 1 10.056744 1
401 0 -5.494987 0
402 0 -3.2177973 0
403 0 -4.145746 0
404 0 -5.507669 0
405 0 -5.95583 0
406 0 -4.1128182 0
407 0 -5.95583 0
408 0 -3.691061 0
409 0 -4.71424 0
410 0 -5.95583 0
411 0 ? 0
412 1 9.230705 1
413 0 -3.2791004 0
414 1 6.7173824 1
415 0 -0.6668339 0
416 1 8.809383 1
417 0 -5.95583 0
418 0 -1.8758612 0
419 0 -5.442145 0
420 0 -2.5893164 0
421 1 11.824856 1
422 0 -2.8105893 0
423 0 -3.4726496 0
424 0 -5.494987 0
425 1 14.817663 1
426 0 -2.8241482 0
427 1 4.3530817 1
428 0 -5.95583 0
429 0 -5.4818344 0
430 0 -5.50395 0
431 0 -2.5834928 0
432 0 -3.8628197 0
433 0 -4.4631066 0
434 0 5.0084 1
435 1 7.444332 1
436 1 3.841199 1
437 0 -5.0209913 0
438 0 -3.822938 0
439 0 -4.5469956 0
440 1 10.154686 1
441 0 -1.8604465 0
442 0 -4.932629 0
443 0 -5.9932313 0
444 0 -2.442047 0
445 0 -5.9689827 0
446 0 -6.4429784 0
447 0 -4.5469956 0
448 0 -6.53364 0
449 1 10.298004 1
450 0 -4.0136495 0
451 0 -4.5469956 0
452 0 -4.8841314 0
453 1 8.777971 1
454 0 -5.6234684 0
455 1 0.81635284 1
456 1 10.487387 1
457 1 9.06263 1
458 0 -4.253397 0
459 0 -3.9597979 0
460 0 -3.93614 0
461 0 -3.6959996 0
462 0 -3.4621444 0
463 0 -4.823963 0
464 0 -5.0209913 0
465 1 9.7853985 1
466 1 9.541933 1
467 1 7.7145195 1
468 0 -5.0209913 0
469 0 -5.6622314 0
470 0 -5.0985007 0
471 0 -3.4621444 0
472 0 -4.163662 0
473 0 -5.0209913 0
474 0 -4.5469956 0
475 0 -5.494987 0
476 0 -4.727392 0
477 0 -5.0209913 0
478 0 -4.4195695 0
479 1 8.32148 1
480 0 -4.6376576 0
481 0 -3.082261 0
482 1 15.481422 1
483 1 10.906595 1
484 0 -4.253397 0
485 0 -5.023291 0
486 0 -5.0985007 0
487 1 13.475906 1
488 1 1.3273258 1
489 1 -0.6232014 0
490 0 -6.4429784 0
491 1 6.6713333 1
492 0 -4.624505 0
493 1 9.94891 1
494 0 0.9629116 1
495 0 -5.0985007 0
496 0 -6.53364 0
497 0 -4.893565 0
498 0 -4.533843 0
499 0 -4.533843 0
500 0 -3.0987039 0
501 0 -4.533843 0
502 0 -4.2284155 0
503 0 -4.046695 0
504 0 -6.4429784 0
505 0 -5.2401347 0
506 1 10.447666 1
507 0 -5.0937376 0
508 0 -4.5469956 0
509 0 -5.9689827 0
510 0 -6.4429784 0
511 0 -4.059848 0
512 0 -4.5469956 0
513 0 -5.0985007 0
514 1 10.719854 1
515 1 8.6480255 1
516 0 -6.53364 0
517 0 -6.046492 0
518 0 -4.8959603 0
519 1 6.535843 1
520 0 -6.3523164 0
521 0 -4.9303293 0
522 1 5.502534 1
523 1 7.699238 1
524 0 -5.0078387 0
525 0 -5.189559 0
526 0 -5.0209913 0
527 0 -4.046695 0
528 0 -3.1803741 0
529 0 -4.624505 0
530 1 6.515935 1
531 0 -4.1128182 0
532 0 -5.5593443 0
533 0 -5.0078387 0
534 0 -5.4818344 0
535 0 -4.5760565 0
536 0 -3.5726995 0
537 0 -3.2791004 0
538 0 -4.533843 0
539 0 -3.5858517 0
540 0 -3.6101007 0
541 0 -5.494987 0
542 0 -4.292143 0
543 0 -4.533843 0
544 0 -4.589209 0
545 0 -4.059848 0
546 1 11.390259 1
547 0 -6.059644 0
548 0 -5.5856485 0
549 1 6.3187475 1
550 0 -5.0078387 0
551 0 -5.4686823 0
552 0 -3.1100621 0
553 0 -1.7353673 0
554 0 -5.494987 0
555 0 -1.9254994 0
556 0 -3.424057 0
557 0 -3.93614 0
558 0 -5.4818344 0
559 0 -4.059848 0
560 0 -3.5726995 0
561 0 -3.5726995 0
562 0 -5.4686823 0
563 0 -5.0078387 0
564 0 -3.8496675 0
565 1 12.086092 1
566 0 -4.227092 0
567 0 -3.6343493 0
568 1 4.1473064 1
569 1 10.713882 1
570 1 8.017664 1
571 1 11.034657 1
572 0 -5.0078387 0
573 0 -5.95583 0
574 1 5.950968 1
575 0 -3.2791004 0
576 0 -4.059848 0
577 0 -5.95583 0
578 0 -5.95583 0
579 0 -5.4686823 0
580 0 -3.7662487 0
581 1 8.417797 1
582 1 7.907978 1
583 0 -5.494987 0
584 0 -2.9291954 0
585 0 -6.4429784 0
586 1 13.98102 1
587 0 -3.8628197 0
588 1 5.463169 1
589 0 -4.5469956 0
590 1 3.9684029 1
591 1 5.966527 1
592 1 5.7801704 1
593 0 -4.253397 0
594 1 5.101775 1
595 0 -4.059848 0
596 0 -4.2402444 0
597 0 -2.9855018 0
598 0 -5.0078387 0
599 0 -3.6294346 0
600 0 -5.0078387 0
601 0 -6.046492 0
602 0 -4.533843 0
603 1 4.8058815 1
604 1 6.1928043 1
605 1 9.955452 1
606 0 -4.715564 0
607 0 -6.4429784 0
608 1 11.148428 1
609 0 -4.5469956 0
610 1 8.926189 1
611 1 6.910961 1
612 1 16.893517 1
613 0 -5.226982 0
614 0 -5.5724964 0
615 0 -3.9466457 0
616 0 -5.0078387 0
617 0 ? 0
618 0 -4.533843 0
619 0 -4.059848 0
620 0 -5.0078387 0
621 0 0.35605335 1
622 0 -2.2074018 0
623 0 -6.4429784 0
624 0 -3.8450823 0
625 0 -3.4678864 0
626 1 5.7601643 1
627 0 -4.1699953 0
628 0 -5.9689827 0
629 0 -5.0209913 0
630 0 -3.358376 0
631 0 -4.059848 0
632 0 -6.4429784 0
633 1 4.3299503 1
634 0 -5.494987 0
635 0 -4.61419 0
636 1 10.127518 1
637 0 -2.4650178 0
638 0 -5.0209913 0
639 0 -3.93614 0
640 0 -4.4101357 0
641 0 -5.0078387 0
642 0 -5.0078387 0
643 0 -6.4429784 0
644 0 -5.9689827 0
645 0 -5.0078387 0
646 0 -6.021953 0
647 0 -5.832123 0
648 1 12.236198 1
649 0 -5.0078387 0
650 0 -3.7496567 0
651 0 -5.217549 0
652 0 -3.8628197 0
653 0 -4.533843 0
654 0 -4.520691 0
655 0 -5.0078387 0
656 0 -4.059848 0
657 0 -0.4869156 0
658 1 9.086258 1
659 0 -6.4429784 0
660 0 -5.95583 0
661 0 -4.046695 0
662 0 -5.3686323 0
663 0 -5.3686323 0
664 0 -4.3969836 0
665 0 -6.4429784 0
666 0 -3.4969325 0
667 0 -4.520691 0
668 1 2.8043652 1
669 1 8.147335 1
670 1 6.4856205 1
671 0 -4.087837 0
672 0 -4.9946866 0
673 0 -3.9078827 0
674 0 -5.95583 0
675 0 -4.1401944 0
676 0 -5.6622314 0
677 0 -4.5469956 0
678 0 -6.4429784 0
679 0 -5.9689827 0
680 1 16.78001 1
681 1 9.801077 1
682 0 -3.3756714 0
683 0 -6.4429784 0
684 0 -6.4429784 0
685 0 -6.4429784 0
686 0 -6.4429784 0
687 0 -4.613783 0
688 0 -5.0209913 0
689 0 -4.1777043 0
690 0 -5.832123 0
691 1 4.4967804 1
692 0 -5.494987 0
693 0 -4.6842284 0
694 0 -4.9545784 0
695 0 -5.9689827 0
696 1 6.7127857 1
697 1 5.064644 1
698 1 6.1036224 1

Просмотреть файл

@ -0,0 +1,700 @@
Instance Label Score Probability Log-loss Assigned
0 0 -1.52749169 0.01760409 0.025623540927444104 0
1 0 1.41446757 0.9358386 3.9621501213214563 1
2 0 -1.640791 0.0136541473 0.019834492377953677 0
3 0 1.24516892 0.908409834 3.4486634832869028 1
4 0 -1.52967 0.0175184775 0.025497820003694972 0
5 1 4.34742546 0.99991405 0.00012400482044924764 1
6 0 -0.470477819 0.16604203 0.26195341840582781 0
7 0 -1.85345185 0.008455777 0.012250976045546988 0
8 0 -1.7931807 0.009688177 0.01404523186447385 0
9 0 -1.67707694 0.0125845075 0.01827081376667973 0
10 0 -2.17650461 0.004068755 0.005881947007105706 0
11 0 -2.06444073 0.005245867 0.007588107121760313 0
12 1 -0.227988243 0.2570151 1.9600749217391069 0
13 0 -1.75409043 0.0105809337 0.015346394036982618 0
14 1 3.16408038 0.9987278 0.0018365673397693367 1
15 1 0.3537979 0.5655682 0.82222706817692115 1
16 0 -1.76776826 0.010259659 0.014878012048023576 0
17 0 -1.6758281 0.012619907 0.018322536371287518 0
18 1 2.782459 0.996970654 0.0043770562861335516 1
19 0 -1.37915528 0.024507897 0.035797901163596609 0
20 1 2.27614474 0.99046284 0.01382524609823586 1
21 1 2.71551442 0.9964734 0.0050968413754289565 1
22 0 -1.91610467 0.007339344 0.010627482294138626 0
23 1 ? ? ? 0
24 0 -2.12083673 0.00461633364 0.0066753814217522627 0
25 1 0.579404354 0.6851912 0.54542144241146051 1
26 0 -1.88108075 0.007944072 0.011506638331166432 0
27 0 -1.61943209 0.0143251875 0.020816334525491278 0
28 0 -2.06444073 0.005245867 0.007588107121760313 0
29 0 -2.06661987 0.005220026 0.0075506297341768301 0
30 0 -1.97177207 0.006470875 0.0093658344626108107 0
31 0 -1.97250068 0.00646021264 0.0093503519898618208 0
32 1 2.51082587 0.9943901 0.0081162045718068156 1
33 0 -1.89942157 0.0076214755 0.011037579856481664 0
34 0 -1.79705584 0.009603847 0.013922383925987339 0
35 0 -2.06444073 0.005245867 0.007588107121760313 0
36 1 3.02958417 0.9982725 0.0024944418066934052 1
37 0 -0.9763708 0.0591678135 0.087990678318914578 0
38 1 1.97923112 0.9814142 0.027065950749429996 1
39 1 0.8320954 0.794680536 0.33155308613045453 1
40 0 ? ? ? 0
41 1 0.88030076 0.812019646 0.30041346219868831 1
42 1 3.29876113 0.9990636 0.0013515566126819322 1
43 1 0.21289444 0.485705882 1.0418451361573347 1
44 1 2.94032931 0.9978838 0.0030562710053100568 1
45 0 -2.121977 0.004604412 0.0066581021491645765 0
46 1 1.96585774 0.9808503 0.02789516002406054 1
47 0 -2.21277714 0.00374727719 0.0054163328257276827 0
48 0 -1.52967 0.0175184775 0.025497820003694972 0
49 1 2.31922221 0.9913466 0.012538549766383886 1
50 1 0.8999665 0.8187626 0.28848289069181726 1
51 1 -0.0634763241 0.334750652 1.5788412280214255 0
52 1 1.8613317 0.9758262 0.035303870469453338 1
53 1 2.64798856 0.995889366 0.0059426141002280079 1
54 1 2.40392375 0.992854238 0.010346165844936006 1
55 1 1.712507 0.9663979 0.049310802829332187 1
56 1 2.51152062 0.9943989 0.0081034061136448163 1
57 1 0.263817072 0.514698744 0.95819983339710812 1
58 1 0.858207 0.8042161 0.31434489999818893 1
59 1 0.3451457 0.5607193 0.8346493376449744 1
60 1 0.762292147 0.767519653 0.38172440278002573 1
61 0 -2.02940416 0.00567925163 0.0082167828940043885 0
62 1 2.8659184 0.997493863 0.0036201294361900668 1
63 1 0.243558884 0.503165662 0.99089462365618441 1
64 0 -2.21277714 0.00374727719 0.0054163328257276827 0
65 1 0.9369471 0.8309296 0.26720188349008961 1
66 0 -1.6758281 0.012619907 0.018322536371287518 0
67 1 1.82115149 0.973570347 0.038642868012306673 1
68 1 3.485832 0.999388337 0.00088271297047849088 1
69 0 -2.02911067 0.0056830286 0.008222263056014617 0
70 0 -1.38133466 0.024389483 0.035622784588411394 0
71 1 2.52342772 0.994547963 0.0078871466346560996 1
72 0 -1.16879082 0.0389881954 0.057373942357210272 0
73 1 3.07888627 0.9984557 0.0022296713311501402 1
74 1 0.9039061 0.820090532 0.28614491284583687 1
75 0 -1.63474858 0.0138407778 0.020107496424110024 0
76 0 -1.85563111 0.00841425452 0.012190562751382875 0
77 0 -1.36497056 0.0252924059 0.036958610130075509 0
78 0 -1.45741785 0.0205882415 0.030012578233683047 0
79 0 -2.00877333 0.00595091 0.0086109955201418616 0
80 0 -1.450667 0.02090064 0.030472822405569693 0
81 0 -1.69468939 0.0120955743 0.01755661909274752 0
82 0 -1.43680036 0.0215569455 0.031440206637835942 0
83 0 -1.27303 0.0310026556 0.04543538307854695 0
84 1 3.30353522 0.999073744 0.0013369244601044573 1
85 1 2.61411071 0.995561 0.0064183741024694194 1
86 1 0.98943305 0.8470689 0.2394487628076262 1
87 1 2.50679755 0.994338632 0.0081908356804006321 1
88 0 -1.6758281 0.012619907 0.018322536371287518 0
89 0 -1.93569434 0.00702126743 0.010165276175293864 0
90 0 -2.12083673 0.00461633364 0.0066753814217522627 0
91 0 -1.934966 0.007032845 0.01018209752300933 0
92 0 -1.6758281 0.012619907 0.018322536371287518 0
93 0 -2.21277714 0.00374727719 0.0054163328257276827 0
94 0 -1.97250068 0.00646021264 0.0093503519898618208 0
95 0 -2.12083673 0.00461633364 0.0066753814217522627 0
96 0 -2.083302 0.00502635166 0.0072697781892116699 0
97 0 -1.52749169 0.01760409 0.025623540927444104 0
98 1 3.36605573 0.9991966 0.0011595429326632949 1
99 1 3.57623363 0.9995021 0.00071846440984066307 1
100 1 1.96693635 0.980896354 0.027827392562706721 1
101 1 -0.20627737 0.266572475 1.9074002702212256 0
102 0 -1.55677927 0.0164866317 0.023983432581961103 0
103 1 0.203483343 0.4803524 1.0578348938548967 1
104 1 3.94228721 0.9997837 0.00031209627523989933 1
105 1 0.5858877 0.688368261 0.53874751545645705 1
106 1 3.35570168 0.999177456 0.0011871686071808722 1
107 1 2.54227376 0.9947759 0.0075565510615385034 1
108 0 -2.02932477 0.00568027329 0.0082182652585453281 0
109 1 2.27409148 0.990418553 0.013889754306585319 1
110 0 -1.224869 0.0344737135 0.050612557715423223 0
111 1 1.50826621 0.947535038 0.077748802573421025 1
112 1 2.67455363 0.9961298 0.0055943353159972516 1
113 1 3.43666148 0.999315858 0.00098734621438804427 1
114 0 -1.15698671 0.0400083065 0.058906172181649528 0
115 0 -1.57122457 0.0159614533 0.023213265078036949 0
116 0 -0.3879037 0.193748489 0.31069813573938632 0
117 1 2.95280433 0.997943 0.0029707030722609194 1
118 0 -1.826636 0.008983639 0.013019219474268625 0
119 0 -1.55009973 0.0167351831 0.024348073426213746 0
120 0 -1.92870915 0.007133084 0.01032774302115151 0
121 0 -1.40176356 0.0233063027 0.034021908036301389 0
122 1 3.81956124 0.9997139 0.00041281741889252245 1
123 1 1.48178315 0.944453657 0.08244808803311246 1
124 1 2.55344939 0.994906545 0.0073670806393172483 1
125 0 -2.21277714 0.00374727719 0.0054163328257276827 0
126 1 2.66807818 0.996072531 0.0056772964309789609 1
127 0 -1.82416427 0.009033906 0.01309239897866022 0
128 1 1.97724366 0.9813314 0.027187659798911711 1
129 0 -1.85937726 0.00834335 0.012087405013370408 0
130 0 -1.38133466 0.024389483 0.035622784588411394 0
131 0 -1.97250068 0.00646021264 0.0093503519898618208 0
132 1 3.40437722 0.9992637 0.0010626421007376144 1
133 0 -1.82437837 0.009029541 0.013086044061833784 0
134 0 -1.860437 0.008323399 0.012058380230013556 0
135 0 -1.160666 0.03968763 0.058424333166336474 0
136 0 -1.76776826 0.010259659 0.014878012048023576 0
137 0 -2.00804472 0.00596073642 0.0086252569347725905 0
138 0 -1.64871967 0.0134130223 0.019481850015569589 0
139 0 ? ? ? 0
140 0 -2.00804472 0.00596073642 0.0086252569347725905 0
141 0 -2.15638113 0.00425880356 0.0061572754121802442 0
142 1 1.42587113 0.93738085 0.093292772480968233 1
143 0 -1.57122457 0.0159614533 0.023213265078036949 0
144 0 -2.06444073 0.005245867 0.007588107121760313 0
145 0 ? ? ? 0
146 1 0.5954063 0.693000734 0.52907121478369279 1
147 0 -1.97373641 0.00644216966 0.0093241524569279595 0
148 0 -0.5180371 0.15157719 0.23714468564136862 0
149 1 4.13623047 0.999860942 0.00020063171224062208 1
150 0 -2.17650461 0.004068755 0.005881947007105706 0
151 1 1.73070693 0.9677185 0.047340679274965436 1
152 1 3.35921264 0.999183953 0.0011777878671093308 1
153 0 -1.492962 0.01901735 0.027700474118000654 0
154 0 -2.30471754 0.00304132653 0.0043943924919565489 0
155 1 1.38289 0.931381464 0.10255592440494538 1
156 0 -2.00303721 0.00602870947 0.0087239127220832425 0
157 0 -1.97250068 0.00646021264 0.0093503519898618208 0
158 0 ? ? ? 0
159 1 4.52930737 0.9999432 8.1952060728897203E-05 1
160 1 3.334266 0.9991363 0.0012465526889135054 1
161 0 -1.5841018 0.015507183 0.022547414886151074 0
162 0 -1.82416427 0.009033906 0.01309239897866022 0
163 0 -1.37575865 0.0246935654 0.03607251996647886 0
164 0 ? ? ? 0
165 0 -1.40072858 0.0233600326 0.034101275741716536 0
166 1 3.14331079 0.9986662 0.0019255122730899305 1
167 1 2.61804938 0.995600462 0.0063611951559849299 1
168 0 -1.82416427 0.009033906 0.01309239897866022 0
169 0 -2.287306 0.003163993 0.0045719134269710361 0
170 0 -2.00804472 0.00596073642 0.0086252569347725905 0
171 0 -2.12083673 0.00461633364 0.0066753814217522627 0
172 0 -2.21277714 0.00374727719 0.0054163328257276827 0
173 1 5.16449833 0.999986649 1.926218548588174E-05 1
174 1 2.0482533 0.9840753 0.023159370685856349 1
175 1 3.090051 0.998494446 0.0021736916047153973 1
176 0 -1.97250068 0.00646021264 0.0093503519898618208 0
177 1 2.031348 0.9834604 0.024061094122559881 1
178 0 -1.6758281 0.012619907 0.018322536371287518 0
179 1 0.9111755 0.822520852 0.28187584117752651 1
180 0 -2.17650461 0.004068755 0.005881947007105706 0
181 0 -2.30471754 0.00304132653 0.0043943924919565489 0
182 0 -1.37915528 0.024507897 0.035797901163596609 0
183 1 3.27944779 0.99902153 0.0014123246695702737 1
184 1 2.22172 0.9892176 0.015640216828503601 1
185 0 -2.0281682 0.00569517352 0.0082398847117591024 0
186 1 2.08457685 0.9853214 0.021333700032620535 1
187 1 4.438259 0.9999301 0.00010087135104534345 1
188 1 2.94999766 0.9979298 0.002989746453144395 1
189 0 -1.79204822 0.009712961 0.014081337029506752 0
190 1 4.31298256 0.999907 0.00013415270474661438 1
191 1 4.055872 0.999833 0.00024096781670331766 1
192 0 -1.61943209 0.0143251875 0.020816334525491278 0
193 0 -2.12083673 0.00461633364 0.0066753814217522627 0
194 0 -1.82416427 0.009033906 0.01309239897866022 0
195 0 -1.6758281 0.012619907 0.018322536371287518 0
196 0 2.15127254 0.9873643 6.3063497031242317 1
197 0 -1.30825472 0.02868066 0.041982407135051199 0
198 0 -2.30471754 0.00304132653 0.0043943924919565489 0
199 0 -1.91610467 0.007339344 0.010627482294138626 0
200 1 3.62541556 0.9995549 0.00064232618745076891 1
201 1 3.45700765 0.999346852 0.0009426008063710327 1
202 0 -2.12083673 0.00461633364 0.0066753814217522627 0
203 0 -1.52749169 0.01760409 0.025623540927444104 0
204 0 -2.12083673 0.00461633364 0.0066753814217522627 0
205 1 4.37432766 0.9999191 0.0001166949480221247 1
206 1 2.50769448 0.994350135 0.008174144958268334 1
207 0 -2.17650461 0.004068755 0.005881947007105706 0
208 0 -2.17650461 0.004068755 0.005881947007105706 0
209 0 -1.58315933 0.0155399945 0.022595498192667107 0
210 1 5.01948738 0.9999814 2.6829543005170701E-05 1
211 1 3.3916986 0.9992421 0.0010937942338244272 1
212 0 -2.12083673 0.00461633364 0.0066753814217522627 0
213 1 5.15395451 0.9999863 1.9778140419471667E-05 1
214 1 4.56779957 0.999947965 7.5072380308763176E-05 1
215 1 2.73419166 0.996619761 0.0048849148054705294 1
216 0 -2.21277714 0.00374727719 0.0054163328257276827 0
217 0 -2.12083673 0.00461633364 0.0066753814217522627 0
218 1 2.73865962 0.9966539 0.0048354755035983493 1
219 0 -1.141058 0.0414254777 0.061037499452879465 0
220 0 -2.04775786 0.005447962 0.0078812354335446953 0
221 1 3.64382768 0.9995731 0.00061600136403503912 1
222 1 -0.9437852 0.06343782 3.9785130069762489 0
223 1 1.85556769 0.975514531 0.035764731698298684 1
224 1 3.31694245 0.9991016 0.0012967298400261944 1
225 0 -2.21277714 0.00374727719 0.0054163328257276827 0
226 1 3.46569 0.9993596 0.00092418675307120123 1
227 1 2.595032 0.9953647 0.0067028341718725773 1
228 0 -2.17650461 0.004068755 0.005881947007105706 0
229 1 4.72088432 0.9999633 5.2971628937074883E-05 1
230 1 1.957083 0.980471134 0.028452937881491717 1
231 1 3.05288577 0.998361647 0.0023655819206737871 1
232 0 0.262052536 0.5136946 1.0400654369740645 1
233 1 2.16407657 0.987723053 0.017821513393369265 1
234 0 -1.00943446 0.0551115535 0.081784080061402753 0
235 0 ? ? ? 0
236 1 4.29103756 0.999902248 0.00014103266690546063 1
237 1 2.42226958 0.9931447 0.0099241759578403005 1
238 1 4.649124 0.9999568 6.2345058017421014E-05 1
239 1 1.96159959 0.9806672 0.028164507974100434 1
240 0 -0.868351 0.07444634 0.1116114650193972 0
241 0 -1.73367381 0.0110790944 0.016072956736514082 0
242 0 -1.97250068 0.00646021264 0.0093503519898618208 0
243 0 -1.20346355 0.03613415 0.053095727304558568 0
244 0 -2.12083673 0.00461633364 0.0066753814217522627 0
245 0 -1.27103949 0.03113917 0.045638648413195822 0
246 1 4.143937 0.9998633 0.00019719158494834585 1
247 1 1.19717526 0.898898065 0.15377057127992425 1
248 0 -1.217197 0.03506021 0.051489167959956395 0
249 0 ? ? ? 0
250 0 -2.09497738 0.004895074 0.0070794400974987601 0
251 1 2.700413 0.9963504 0.0052748803033137396 1
252 0 1.58717227 0.955785036 4.4993214783146023 1
253 1 3.29876113 0.9990636 0.0013515566126819322 1
254 1 2.8659184 0.997493863 0.0036201294361900668 1
255 1 1.81461263 0.973184347 0.039214978954185679 1
256 0 -2.00804472 0.00596073642 0.0086252569347725905 0
257 0 -1.91610467 0.007339344 0.010627482294138626 0
258 0 -1.82416427 0.009033906 0.01309239897866022 0
259 0 1.456742 0.941384 4.0925620989062192 1
260 1 3.13951468 0.998654664 0.0019422169670765994 1
261 1 4.28667641 0.9999013 0.00014240866327436006 1
262 1 3.55118918 0.9994729 0.00076062176413699766 1
263 1 2.92493558 0.997808456 0.0031651986570834165 1
264 1 1.87058806 0.976318657 0.034575993804255259 1
265 0 -1.07861948 0.0474568829 0.070143696846161577 0
266 1 2.84403157 0.9973661 0.0038049698842319707 1
267 1 0.980280161 0.8443483 0.2440898311411345 1
268 1 3.00689578 0.998181045 0.002626586824588707 1
269 0 -2.12083673 0.00461633364 0.0066753814217522627 0
270 1 2.43451953 0.9933321 0.0096519787383020968 1
271 0 -1.52749169 0.01760409 0.025623540927444104 0
272 1 0.980280161 0.8443483 0.2440898311411345 1
273 1 0.00625777245 0.3710024 1.4304995524008379 1
274 0 -1.73243809 0.0111099789 0.01611801356385726 0
275 0 ? ? ? 0
276 0 -1.91610467 0.007339344 0.010627482294138626 0
277 0 -2.21277714 0.00374727719 0.0054163328257276827 0
278 0 -2.12083673 0.00461633364 0.0066753814217522627 0
279 1 2.41236567 0.992989361 0.010149833832518246 1
280 0 -1.82416427 0.009033906 0.01309239897866022 0
281 0 -1.89942157 0.0076214755 0.011037579856481664 0
282 1 1.45125127 0.94069 0.088208756195479673 1
283 1 2.09919953 0.9857955 0.020639702618751546 1
284 1 2.55840373 0.9949634 0.0072846272866314461 1
285 1 4.822792 0.9999709 4.1964377123801209E-05 1
286 1 5.589938 0.999994934 7.3092811775370979E-06 1
287 0 -1.860437 0.008323399 0.012058380230013556 0
288 1 0.7131865 0.746965647 0.42088620048335751 1
289 1 3.0956676 0.9985136 0.002146047033326764 1
290 0 -2.30471754 0.00304132653 0.0043943924919565489 0
291 0 -2.12083673 0.00461633364 0.0066753814217522627 0
292 1 ? ? ? 0
293 1 1.9506762 0.980189741 0.028867048302480647 1
294 0 ? ? ? 0
295 1 2.57708764 0.995172262 0.0069818201865888847 1
296 0 0.6443205 0.7161847 1.8169756066019795 1
297 0 ? ? ? 0
298 0 -1.00866961 0.0552023575 0.081922729978655878 0
299 1 2.32091022 0.9913795 0.012490669010981763 1
300 1 2.40809751 0.992921352 0.010248646031556275 1
301 0 -2.12083673 0.00461633364 0.0066753814217522627 0
302 1 5.59085369 0.999994934 7.3092811775370979E-06 1
303 0 -2.12083673 0.00461633364 0.0066753814217522627 0
304 1 1.930157 0.9792614 0.030234079066519436 1
305 1 3.28504252 0.9990339 0.0013944210667270886 1
306 0 -2.12083673 0.00461633364 0.0066753814217522627 0
307 0 -2.12083673 0.00461633364 0.0066753814217522627 0
308 1 2.335974 0.991667867 0.012071086460940244 1
309 0 -0.906791 0.06863291 0.10257818683889552 0
310 0 -2.00877333 0.00595091 0.0086109955201418616 0
311 0 -2.30471754 0.00304132653 0.0043943924919565489 0
312 1 1.19807649 0.899084449 0.15347146394878203 1
313 0 -2.30471754 0.00304132653 0.0043943924919565489 0
314 0 -2.26844478 0.00330244377 0.0047723037303054865 0
315 0 ? ? ? 0
316 1 1.47730184 0.943915665 0.083270128208594502 1
317 1 3.18132329 0.998776734 0.0017658802629188005 1
318 0 -1.9538343 0.00673895236 0.0097551599741469968 0
319 0 0.68000555 0.732414246 1.9019267823886503 1
320 1 2.448116 0.993534148 0.009358541174187586 1
321 0 ? ? ? 0
322 0 -1.82416427 0.009033906 0.01309239897866022 0
323 1 1.739836 0.9683619 0.046381755881038968 1
324 0 -2.12083673 0.00461633364 0.0066753814217522627 0
325 0 -1.52291214 0.01778542 0.025889857762013625 0
326 1 1.32360816 0.9222315 0.11679915842268698 1
327 0 -2.21277714 0.00374727719 0.0054163328257276827 0
328 1 1.64324117 0.960879266 0.057572926018886535 1
329 1 2.48586679 0.9940638 0.0085896543489520204 1
330 1 1.83306813 0.97426 0.037621300921065824 1
331 0 -1.43669152 0.0215621758 0.031447918644109722 0
332 0 -1.24488688 0.0329876579 0.048393791821060864 0
333 1 1.7423079 0.968533933 0.046125499494108477 1
334 1 2.30342937 0.9910324 0.012995838988818179 1
335 0 -2.30471754 0.00304132653 0.0043943924919565489 0
336 1 2.00823045 0.9825816 0.025350849030806699 1
337 0 -2.12083673 0.00461633364 0.0066753814217522627 0
338 0 -2.26844478 0.00330244377 0.0047723037303054865 0
339 1 1.97454476 0.981218457 0.027353722903608435 1
340 1 2.110421 0.986149 0.020122431920951738 1
341 0 -2.12083673 0.00461633364 0.0066753814217522627 0
342 0 -2.15638113 0.00425880356 0.0061572754121802442 0
343 0 -2.30471754 0.00304132653 0.0043943924919565489 0
344 1 3.28718257 0.9990386 0.0013877072729414413 1
345 0 -2.30471754 0.00304132653 0.0043943924919565489 0
346 0 -1.18943357 0.0372639522 0.054787784587064937 0
347 0 -2.17693233 0.0040648086 0.0058762301917913169 0
348 1 -0.1867783 0.275346577 1.8606794204249024 0
349 1 1.11094928 0.8795964 0.18508637534432562 1
350 0 -1.56521428 0.0161779355 0.023530683706396421 0
351 0 -1.97250068 0.00646021264 0.0093503519898618208 0
352 0 0.265917778 0.515894 1.0466051072144058 1
353 1 3.327644 0.999123156 0.0012655733246872652 1
354 0 -2.21277714 0.00374727719 0.0054163328257276827 0
355 0 -1.62037456 0.0142949037 0.020772009927070297 0
356 1 -0.320544958 0.218848586 2.1919950317165013 0
357 1 4.526165 0.9999428 8.2554034326541117E-05 1
358 1 2.33929276 0.9917301 0.011980560055689893 1
359 1 1.79541659 0.972019255 0.040943201786193338 1
360 1 5.364353 0.999991536 1.2210819886664613E-05 1
361 1 2.21717572 0.9891066 0.01580208701151431 1
362 0 -1.22828317 0.03421577 0.050227189506198734 0
363 0 -0.698722839 0.105845921 0.16140463906190658 0
364 0 -1.97250068 0.00646021264 0.0093503519898618208 0
365 0 -2.06444073 0.005245867 0.007588107121760313 0
366 1 4.8886776 0.999974966 3.6116808756282869E-05 1
367 1 3.88259864 0.999752164 0.00035759624560614735 1
368 0 -2.06661987 0.005220026 0.0075506297341768301 0
369 0 -2.03034735 0.00566713139 0.008199197329146226 0
370 0 -1.41166961 0.02279811 0.033271440676306767 0
371 0 -2.06661987 0.005220026 0.0075506297341768301 0
372 0 -1.64871967 0.0134130223 0.019481850015569589 0
373 0 -1.546353 0.0168762133 0.024555014757775918 0
374 0 -1.79705584 0.009603847 0.013922383925987339 0
375 0 -2.30471754 0.00304132653 0.0043943924919565489 0
376 0 -2.21277714 0.00374727719 0.0054163328257276827 0
377 0 -2.26844478 0.00330244377 0.0047723037303054865 0
378 0 -1.54947376 0.0167586654 0.02438252833495342 0
379 0 -0.8776281 0.07300318 0.10936370560184396 0
380 0 -2.30471754 0.00304132653 0.0043943924919565489 0
381 1 3.3150785 0.999097764 0.0013022382442252245 1
382 0 -1.449619 0.02094955 0.030544891719828084 0
383 0 -2.15638113 0.00425880356 0.0061572754121802442 0
384 0 -2.15638113 0.00425880356 0.0061572754121802442 0
385 0 -1.30554044 0.0288534146 0.042239021594015089 0
386 1 1.98215938 0.981535435 0.026887743063245765 1
387 0 -0.9792652 0.0588018335 0.087429584824442255 0
388 0 -1.97271466 0.006457085 0.009345810126397739 0
389 0 -1.288665 0.02995035 0.043869505091563163 0
390 0 -2.139698 0.004423044 0.0063952575723805151 0
391 1 3.59015584 0.9995176 0.00069609570167562026 1
392 0 -1.91610467 0.007339344 0.010627482294138626 0
393 0 -2.360385 0.0026800714 0.0038717162719280559 0
394 0 -1.8839885 0.007892039 0.011430971456790735 0
395 0 -1.91610467 0.007339344 0.010627482294138626 0
396 0 -1.82416427 0.009033906 0.01309239897866022 0
397 0 -1.85970867 0.008337107 0.012078321664830442 0
398 0 -1.733687 0.0110787638 0.016072474409716452 0
399 0 -1.97592878 0.006410281 0.009277849544867876 0
400 1 3.32422376 0.9991163 0.0012754710397854261 1
401 0 -2.00804472 0.00596073642 0.0086252569347725905 0
402 0 -1.19995213 0.0364137851 0.053514340367271838 0
403 0 -1.4579252 0.02056495 0.02997826845766324 0
404 0 -1.97614193 0.006407189 0.0092733599723799787 0
405 0 -2.21277714 0.00374727719 0.0054163328257276827 0
406 0 -1.55802834 0.0164405555 0.023915845880171895 0
407 0 -2.21277714 0.00374727719 0.0054163328257276827 0
408 0 -1.41561711 0.022598628 0.032976965091470092 0
409 0 -1.79705584 0.009603847 0.013922383925987339 0
410 0 -2.21277714 0.00374727719 0.0054163328257276827 0
411 0 ? ? ? 0
412 1 3.177976 0.9987674 0.0017793974994358322 1
413 0 -1.40844309 0.0229624342 0.033514061939899156 0
414 1 2.38908362 0.992610335 0.010700618410080708 1
415 0 -0.369019032 0.2005573 0.32293347410865003 0
416 1 3.14250875 0.9986638 0.0019290426304421442 1
417 0 -2.21277714 0.00374727719 0.0054163328257276827 0
418 0 -0.8787732 0.07282684 0.10908929134657901 0
419 0 -1.80799592 0.009369673 0.013581307103434732 0
420 0 -1.10151982 0.0451535471 0.066659340187973634 0
421 1 4.18745041 0.999876261 0.0001785290373473312 1
422 0 -1.07289577 0.0480497926 0.071041980896268633 0
423 0 -1.38133466 0.024389483 0.035622784588411394 0
424 0 -2.00804472 0.00596073642 0.0086252569347725905 0
425 1 5.1760416 0.999987 1.8746230736814112E-05 1
426 0 -0.934746265 0.064672254 0.096456109952495386 0
427 1 1.67221 0.963285863 0.053964101066686629 1
428 0 -2.21277714 0.00374727719 0.0054163328257276827 0
429 0 -2.06444073 0.005245867 0.007588107121760313 0
430 0 -1.93966842 0.00695843 0.010073983038821595 0
431 0 -1.17827249 0.0381869078 0.056171530527282999 0
432 0 -1.52770579 0.0175956581 0.025611157902442457 0
433 0 -1.65214682 0.0133101009 0.019331354989300078 0
434 0 1.98726487 0.981745064 5.7755695993744993 1
435 1 2.8103745 0.9971568 0.0041077145148413997 1
436 1 1.87466311 0.97653234 0.034260271915278799 1
437 0 -1.85970867 0.008337107 0.012078321664830442 0
438 0 -1.47545314 0.019775901 0.028816478750628437 0
439 0 -1.71137226 0.0116497707 0.016905732637719058 0
440 1 2.78734851 0.997004151 0.0043285831311280177 1
441 0 -0.7322755 0.09882686 0.15012378565192855 0
442 0 -1.7918129 0.009718118 0.014088850968354452 0
443 0 -2.121344 0.00461102556 0.0066676879961374193 0
444 0 -1.1983695 0.0365404971 0.053704067894255775 0
445 0 -2.15638113 0.00425880356 0.0061572754121802442 0
446 0 -2.30471754 0.00304132653 0.0043943924919565489 0
447 0 -1.71137226 0.0116497707 0.016905732637719058 0
448 0 -2.360385 0.0026800714 0.0038717162719280559 0
449 1 3.63886571 0.9995683 0.00062296965289850557 1
450 0 -1.6772778 0.0125788227 0.018262507841649876 0
451 0 -1.71137226 0.0116497707 0.016905732637719058 0
452 0 -1.86188686 0.008296182 0.012018785416415656 0
453 1 2.74165368 0.996676564 0.0048026894663455886 1
454 0 -1.91933119 0.007285988 0.010549938900978184 0
455 1 0.247715473 0.5055327 0.98412373163838862 1
456 1 3.39108872 0.9992411 0.0010952571958374505 1
457 1 2.928676 0.997827 0.003138396865993306 1
458 0 -1.59232366 0.0152238216 0.022132231273851565 0
459 0 -1.47327483 0.0198723227 0.028958399291676738 0
460 0 -1.56521428 0.0161779355 0.023530683706396421 0
461 0 -1.27455211 0.03089866 0.045280557768120136 0
462 0 -1.41687787 0.0225352757 0.032883456865797474 0
463 0 -1.76798236 0.0102547081 0.014870795370771546 0
464 0 -1.85970867 0.008337107 0.012078321664830442 0
465 1 3.35922217 0.999184 0.0011777018055561753 1
466 1 3.19966245 0.998826742 0.0016936469864782023 1
467 1 2.64074683 0.995821238 0.006041311255172788 1
468 0 -1.85970867 0.008337107 0.012078321664830442 0
469 0 -2.09372854 0.00490895147 0.0070995599242105224 0
470 0 -1.97177207 0.006470875 0.0093658344626108107 0
471 0 -1.41687787 0.0225352757 0.032883456865797474 0
472 0 -1.61870348 0.0143486429 0.020850665658203732 0
473 0 -1.85970867 0.008337107 0.012078321664830442 0
474 0 -1.71137226 0.0116497707 0.016905732637719058 0
475 0 -2.00804472 0.00596073642 0.0086252569347725905 0
476 0 -1.74065983 0.01090608 0.015820575119927582 0
477 0 -1.85970867 0.008337107 0.012078321664830442 0
478 0 -1.62068093 0.0142850736 0.02075762247999053 0
479 1 2.8273747 0.9972645 0.0039518935506843694 1
480 0 -1.7670399 0.0102765216 0.014902591919777044 0
481 0 -1.19170427 0.0370788239 0.054510389752887113 0
482 1 5.076377 0.999983668 2.3561815570658182E-05 1
483 1 3.78186154 0.999688268 0.00044980474498146177 1
484 0 -1.59232366 0.0152238216 0.022132231273851565 0
485 0 -1.84748042 0.008570596 0.012418047205915777 0
486 0 -1.97177207 0.006470875 0.0093658344626108107 0
487 1 4.455492 0.999932766 9.700147602369178E-05 1
488 1 0.341742039 0.558808565 0.83957396105843496 1
489 1 -0.3809967 0.196218207 2.349469176570719 0
490 0 -2.30471754 0.00304132653 0.0043943924919565489 0
491 1 2.35276151 0.991978 0.011619984901228139 1
492 0 -1.8234359 0.009048773 0.01311404278528997 0
493 1 3.62443423 0.999553859 0.00064378869172491786 1
494 0 0.00215578079 0.368824422 0.66388671130174381 1
495 0 -1.97177207 0.006470875 0.0093658344626108107 0
496 0 -2.360385 0.0026800714 0.0038717162719280559 0
497 0 -1.76901734 0.0102308057 0.01483595464052654 0
498 0 -1.76776826 0.010259659 0.014878012048023576 0
499 0 -1.76776826 0.010259659 0.014878012048023576 0
500 0 -1.37915528 0.024507897 0.035797901163596609 0
501 0 -1.76776826 0.010259659 0.014878012048023576 0
502 0 -1.69468939 0.0120955743 0.01755661909274752 0
503 0 -1.6758281 0.012619907 0.018322536371287518 0
504 0 -2.30471754 0.00304132653 0.0043943924919565489 0
505 0 -1.82666242 0.008983102 0.013018437181095964 0
506 1 3.75354314 0.9996675 0.00047973936827961055 1
507 0 -1.75459778 0.01056884 0.015328760733023515 0
508 0 -1.71137226 0.0116497707 0.016905732637719058 0
509 0 -2.15638113 0.00425880356 0.0061572754121802442 0
510 0 -2.30471754 0.00304132653 0.0043943924919565489 0
511 0 -1.61943209 0.0143251875 0.020816334525491278 0
512 0 -1.71137226 0.0116497707 0.016905732637719058 0
513 0 -1.97177207 0.006470875 0.0093658344626108107 0
514 1 3.52836871 0.9994448 0.00080123164580390874 1
515 1 3.01921821 0.9982313 0.0025539658674679773 1
516 0 -2.360385 0.0026800714 0.0038717162719280559 0
517 0 -2.26844478 0.00330244377 0.0047723037303054865 0
518 0 -1.81591713 0.009203657 0.013339550621439305 0
519 1 2.16115451 0.9876421 0.017939745933108028 1
520 0 -2.24905014 0.003451108 0.0049875075712289534 0
521 0 -1.804041 0.009453667 0.013703636326727419 0
522 1 1.52206969 0.9490764 0.075403845557823992 1
523 1 2.5139277 0.99442935 0.0080592177152956877 1
524 0 -1.91610467 0.007339344 0.010627482294138626 0
525 0 -1.934966 0.007032845 0.01018209752300933 0
526 0 -1.85970867 0.008337107 0.012078321664830442 0
527 0 -1.6758281 0.012619907 0.018322536371287518 0
528 0 -1.25185966 0.0324847 0.047643617667915854 0
529 0 -1.8234359 0.009048773 0.01311404278528997 0
530 1 2.31588387 0.9912811 0.012633882306293287 1
531 0 -1.55802834 0.0164405555 0.023915845880171895 0
532 0 -2.17650461 0.004068755 0.005881947007105706 0
533 0 -1.91610467 0.007339344 0.010627482294138626 0
534 0 -2.06444073 0.005245867 0.007588107121760313 0
535 0 -1.80966043 0.009334543 0.013530146159717907 0
536 0 -1.52749169 0.01760409 0.025623540927444104 0
537 0 -1.40844309 0.0229624342 0.033514061939899156 0
538 0 -1.76776826 0.010259659 0.014878012048023576 0
539 0 -1.47109568 0.0199692436 0.029101068646678486 0
540 0 -1.43605864 0.0215926133 0.031492799054207619 0
541 0 -2.00804472 0.00596073642 0.0086252569347725905 0
542 0 -1.52998984 0.01750594 0.025479409863619303 0
543 0 -1.76776826 0.010259659 0.014878012048023576 0
544 0 -1.75326455 0.0106006479 0.015375140111531023 0
545 0 -1.61943209 0.0143251875 0.020816334525491278 0
546 1 4.121207 0.999856055 0.00020768399883462581 1
547 0 -2.21204853 0.00375347864 0.0054253132986797833 0
548 0 -2.0637126 0.00525453 0.0076006707130071753 0
549 1 2.02606368 0.983263433 0.024350104021083115 1
550 0 -1.91610467 0.007339344 0.010627482294138626 0
551 0 -2.12083673 0.00461633364 0.0066753814217522627 0
552 0 -1.35767877 0.0257051587 0.037569667859450234 0
553 0 -0.552352667 0.141795516 0.22060665592257073 0
554 0 -2.00804472 0.00596073642 0.0086252569347725905 0
555 0 -0.760421753 0.09326153 0.14124160370247565 0
556 0 -1.3922807 0.0238031372 0.034755979594910905 0
557 0 -1.56521428 0.0161779355 0.023530683706396421 0
558 0 -2.06444073 0.005245867 0.007588107121760313 0
559 0 -1.61943209 0.0143251875 0.020816334525491278 0
560 0 -1.52749169 0.01760409 0.025623540927444104 0
561 0 -1.52749169 0.01760409 0.025623540927444104 0
562 0 -2.12083673 0.00461633364 0.0066753814217522627 0
563 0 -1.91610467 0.007339344 0.010627482294138626 0
564 0 -1.5841018 0.015507183 0.022547414886151074 0
565 1 4.03228474 0.999823749 0.0002542987601560963 1
566 0 -1.70511568 0.0118150255 0.017146975286432983 0
567 0 -1.40102184 0.0233447962 0.034078768613365153 0
568 1 1.78553081 0.9714002 0.041862309530184084 1
569 1 3.304661 0.999076068 0.0013335676930879765 1
570 1 2.84591317 0.997377336 0.0037886746951349393 1
571 1 3.76039577 0.999672651 0.00047234167370643557 1
572 0 -1.91610467 0.007339344 0.010627482294138626 0
573 0 -2.21277714 0.00374727719 0.0054163328257276827 0
574 1 2.012997 0.9827665 0.025079400844147698 1
575 0 -1.40844309 0.0229624342 0.033514061939899156 0
576 0 -1.61943209 0.0143251875 0.020816334525491278 0
577 0 -2.21277714 0.00374727719 0.0054163328257276827 0
578 0 -2.21277714 0.00374727719 0.0054163328257276827 0
579 0 -2.12083673 0.00461633364 0.0066753814217522627 0
580 0 -1.50038326 0.01870451 0.027240464369459795 0
581 1 3.00551724 0.9981753 0.0026348570586746576 1
582 1 3.068628 0.9984193 0.002282294254626142 1
583 0 -2.00804472 0.00596073642 0.0086252569347725905 0
584 0 -1.29030991 0.0298416782 0.04370789252285897 0
585 0 -2.30471754 0.00304132653 0.0043943924919565489 0
586 1 4.80503559 0.999969661 4.3770248615567833E-05 1
587 0 -1.52770579 0.0175956581 0.025611157902442457 0
588 1 1.80002236 0.9723032 0.040521808026410894 1
589 0 -1.71137226 0.0116497707 0.016905732637719058 0
590 1 1.02096772 0.8561448 0.22407329801657858 1
591 1 2.058038 0.984420836 0.022652901094629613 1
592 1 1.8430016 0.9748214 0.036790189062194265 1
593 0 -1.59232366 0.0152238216 0.022132231273851565 0
594 1 1.8298676 0.9740765 0.037893000704854643 1
595 0 -1.61943209 0.0143251875 0.020816334525491278 0
596 0 -1.64871967 0.0134130223 0.019481850015569589 0
597 0 -1.28939438 0.0299021173 0.043797772615823384 0
598 0 -1.91610467 0.007339344 0.010627482294138626 0
599 0 -1.31920254 0.0279939976 0.040962871935734259 0
600 0 -1.91610467 0.007339344 0.010627482294138626 0
601 0 -2.26844478 0.00330244377 0.0047723037303054865 0
602 0 -1.76776826 0.010259659 0.014878012048023576 0
603 1 1.24795127 0.908935845 0.13774962611543426 1
604 1 1.65235591 0.9616524 0.056412587738932075 1
605 1 3.436612 0.9993158 0.00098743226458660469 1
606 0 -1.78662956 0.009832413 0.014255371144846188 0
607 0 -2.30471754 0.00304132653 0.0043943924919565489 0
608 1 3.75716043 0.9996702 0.00047586847685296608 1
609 0 -1.71137226 0.0116497707 0.016905732637719058 0
610 1 2.54665971 0.994827569 0.0074816070029149083 1
611 1 2.19486117 0.988545 0.016621453063252935 1
612 1 5.622237 0.9999953 6.7933307031989985E-06 1
613 0 -1.88305843 0.007908645 0.011455120229787808 0
614 0 -2.1201086 0.00462396163 0.0066864373761273176 0
615 0 -1.529671 0.01751844 0.025497765300806271 0
616 0 -1.91610467 0.007339344 0.010627482294138626 0
617 0 ? ? ? 0
618 0 -1.76776826 0.010259659 0.014878012048023576 0
619 0 -1.61943209 0.0143251875 0.020816334525491278 0
620 0 -1.91610467 0.007339344 0.010627482294138626 0
621 0 -0.298656 0.227492422 0.37237900927036272 0
622 0 -1.05755281 0.04967402 0.073505623349513619 0
623 0 -2.30471754 0.00304132653 0.0043943924919565489 0
624 0 -1.60202062 0.0148961674 0.021652298418502029 0
625 0 -1.16416025 0.03938536 0.057970298723262967 0
626 1 1.96011043 0.9806028 0.028259212561125038 1
627 0 -1.4228884 0.0222356357 0.032441269146977342 0
628 0 -2.15638113 0.00425880356 0.0061572754121802442 0
629 0 -1.85970867 0.008337107 0.012078321664830442 0
630 0 -1.23424745 0.0337696224 0.049560884159526447 0
631 0 -1.61943209 0.0143251875 0.020816334525491278 0
632 0 -2.30471754 0.00304132653 0.0043943924919565489 0
633 1 1.58121419 0.9552079 0.066113350191666642 1
634 0 -2.00804472 0.00596073642 0.0086252569347725905 0
635 0 -1.65089881 0.01334749 0.019386024412970743 0
636 1 3.18531251 0.9987878 0.0017498663759115845 1
637 0 -0.990399837 0.05741363 0.085303275348339092 0
638 0 -1.85970867 0.008337107 0.012078321664830442 0
639 0 -1.56521428 0.0161779355 0.023530683706396421 0
640 0 -1.71355057 0.0115927737 0.016822536588823021 0
641 0 -1.91610467 0.007339344 0.010627482294138626 0
642 0 -1.91610467 0.007339344 0.010627482294138626 0
643 0 -2.30471754 0.00304132653 0.0043943924919565489 0
644 0 -2.15638113 0.00425880356 0.0061572754121802442 0
645 0 -1.91610467 0.007339344 0.010627482294138626 0
646 0 -2.09497738 0.004895074 0.0070794400974987601 0
647 0 -2.15855932 0.004237813 0.0061268631570410102 0
648 1 3.93291163 0.999779 0.00031889107569761047 1
649 0 -1.91610467 0.007339344 0.010627482294138626 0
650 0 -1.32917845 0.0273822173 0.040055125858695431 0
651 0 -1.975928 0.00641029328 0.0092778671245466442 0
652 0 -1.52770579 0.0175956581 0.025611157902442457 0
653 0 -1.76776826 0.010259659 0.014878012048023576 0
654 0 -1.82416427 0.009033906 0.01309239897866022 0
655 0 -1.91610467 0.007339344 0.010627482294138626 0
656 0 -1.61943209 0.0143251875 0.020816334525491278 0
657 0 0.0134129524 0.374814063 0.67764276903969234 1
658 1 3.022949 0.9982462 0.002532430106085276 1
659 0 -2.30471754 0.00304132653 0.0043943924919565489 0
660 0 -2.21277714 0.00374727719 0.0054163328257276827 0
661 0 -1.6758281 0.012619907 0.018322536371287518 0
662 0 -1.97467983 0.006428428 0.0093041990192381727 0
663 0 -1.97467983 0.006428428 0.0093041990192381727 0
664 0 -1.76994658 0.0102093928 0.014804743273596646 0
665 0 -2.30471754 0.00304132653 0.0043943924919565489 0
666 0 -1.337753 0.0268667713 0.039290761356198911 0
667 0 -1.82416427 0.009033906 0.01309239897866022 0
668 1 0.9713695 0.8416618 0.24868743615991581 1
669 1 2.96551442 0.9980016 0.0028860018489550105 1
670 1 2.3114574 0.991193533 0.012761320262412217 1
671 0 -1.660394 0.013065611 0.018973916820019605 0
672 0 -1.97250068 0.00646021264 0.0093503519898618208 0
673 0 -1.3552736 0.0258427355 0.037773400263223296 0
674 0 -2.21277714 0.00374727719 0.0054163328257276827 0
675 0 -1.50256252 0.0186136067 0.027106825969741392 0
676 0 -2.09372854 0.00490895147 0.0070995599242105224 0
677 0 -1.71137226 0.0116497707 0.016905732637719058 0
678 0 -2.30471754 0.00304132653 0.0043943924919565489 0
679 0 -2.15638113 0.00425880356 0.0061572754121802442 0
680 1 5.59084129 0.999994934 7.3092811775370979E-06 1
681 1 3.60368514 0.9995323 0.00067493178171970517 1
682 0 -1.4357655 0.0216067247 0.031513606944036959 0
683 0 -2.30471754 0.00304132653 0.0043943924919565489 0
684 0 -2.30471754 0.00304132653 0.0043943924919565489 0
685 0 -2.30471754 0.00304132653 0.0043943924919565489 0
686 0 -2.30471754 0.00304132653 0.0043943924919565489 0
687 0 -1.73265219 0.0111046219 0.016110198286854657 0
688 0 -1.85970867 0.008337107 0.012078321664830442 0
689 0 -1.6691165 0.0128118489 0.018603016488826465 0
690 0 -2.15855932 0.004237813 0.0061268631570410102 0
691 1 1.86443162 0.975992262 0.035058384695668229 1
692 0 -2.00804472 0.00596073642 0.0086252569347725905 0
693 0 -1.82530451 0.009010683 0.013058589570044597 0
694 0 -1.769004 0.010231114 0.014836403974025747 0
695 0 -2.15638113 0.00425880356 0.0061572754121802442 0
696 1 2.52744746 0.9945974 0.00781547081749355 1
697 1 1.4814918 0.9444188 0.082501352535462646 1
698 1 1.84825683 0.9751136 0.036357836712814617 1

Просмотреть файл

@ -1,45 +1,45 @@
Instance Label Score Probability Log-loss Assigned
5 1 11.285979 1 -0 1
6 0 -0.9347124 0.09090909 0.13750352804950119 0
6 0 -0.93471193 0.09090909 0.13750352804950119 0
8 0 -3.7769966 1E-15 1.4415419267167138E-15 0
9 0 -3.7947202 1E-15 1.4415419267167138E-15 0
10 0 -4.7855167 1E-15 1.4415419267167138E-15 0
11 0 -4.6251884 1E-15 1.4415419267167138E-15 0
18 1 6.8803625 1 -0 1
18 1 6.8803635 1 -0 1
20 1 5.573552 1 -0 1
21 1 6.7444105 1 -0 1
25 1 1.2789736 0.875 0.19264507794239591 1
28 0 -4.6251884 1E-15 1.4415419267167138E-15 0
31 0 -4.3083706 1E-15 1.4415419267167138E-15 0
32 1 6.9428854 1 -0 1
32 1 6.9428844 1 -0 1
35 0 -4.6251884 1E-15 1.4415419267167138E-15 0
37 0 -1.814332 0.09090909 0.13750352804950119 0
37 0 -1.8143315 0.09090909 0.13750352804950119 0
40 0 ? ? ? 0
41 1 2.4075565 0.875 0.19264507794239591 1
44 1 8.039285 1 -0 1
45 0 -4.625085 1E-15 1.4415419267167138E-15 0
46 1 5.138131 1 -0 1
48 0 -3.4336782 1E-15 1.4415419267167138E-15 0
48 0 -3.4336777 1E-15 1.4415419267167138E-15 0
50 1 2.7120514 0.875 0.19264507794239591 1
51 1 -0.06207609 0.6666667 0.58496245772549416 0
51 1 -0.062075615 0.6666667 0.58496245772549416 0
52 1 4.4027233 1 -0 1
54 1 6.3079214 1 -0 1
56 1 6.356517 1 -0 1
56 1 6.356518 1 -0 1
60 1 1.9474735 0.875 0.19264507794239591 1
63 1 0.78555584 0.6666667 0.58496245772549416 1
64 0 -4.916337 1E-15 1.4415419267167138E-15 0
66 0 -3.7260728 1E-15 1.4415419267167138E-15 0
68 1 9.2772875 1 -0 1
69 0 -4.4157114 1E-15 1.4415419267167138E-15 0
70 0 -3.086855 1E-15 1.4415419267167138E-15 0
70 0 -3.0868545 1E-15 1.4415419267167138E-15 0
71 1 7.5159607 1 -0 1
72 0 -1.8410158 0.09090909 0.13750352804950119 0
73 1 7.1320066 1 -0 1
74 1 2.4329157 0.875 0.19264507794239591 1
76 0 -3.9190063 1E-15 1.4415419267167138E-15 0
77 0 -3.1092038 1E-15 1.4415419267167138E-15 0
77 0 -3.1092033 1E-15 1.4415419267167138E-15 0
79 0 -4.4391913 1E-15 1.4415419267167138E-15 0
82 0 -3.1867542 1E-15 1.4415419267167138E-15 0
82 0 -3.1867537 1E-15 1.4415419267167138E-15 0
88 0 -3.7260728 1E-15 1.4415419267167138E-15 0
90 0 -4.5995197 1E-15 1.4415419267167138E-15 0
91 0 -4.5046597 1E-15 1.4415419267167138E-15 0
@ -47,12 +47,12 @@ Instance Label Score Probability Log-loss Assigned
93 0 -4.916337 1E-15 1.4415419267167138E-15 0
95 0 -4.5995197 1E-15 1.4415419267167138E-15 0
96 0 -4.7958083 1E-15 1.4415419267167138E-15 0
97 0 -3.4349241 1E-15 1.4415419267167138E-15 0
98 1 9.075171 1 -0 1
97 0 -3.4349236 1E-15 1.4415419267167138E-15 0
98 1 9.07517 1 -0 1
99 1 8.952344 1 -0 1
100 1 4.9092436 1 -0 1
102 0 -3.3936296 1E-15 1.4415419267167138E-15 0
104 1 10.959613 1 -0 1
102 0 -3.393629 1E-15 1.4415419267167138E-15 0
104 1 10.959611 1 -0 1
105 1 2.0113592 0.875 0.19264507794239591 1
106 1 8.251353 1 -0 1
108 0 -4.5487204 1E-15 1.4415419267167138E-15 0
@ -63,7 +63,7 @@ Instance Label Score Probability Log-loss Assigned
115 0 -3.6043515 1E-15 1.4415419267167138E-15 0
117 1 7.9902315 1 -0 1
120 0 -4.120878 1E-15 1.4415419267167138E-15 0
121 0 -3.070702 1E-15 1.4415419267167138E-15 0
121 0 -3.0707016 1E-15 1.4415419267167138E-15 0
122 1 10.129083 1 -0 1
123 1 4.173232 1 -0 1
125 0 -4.916337 1E-15 1.4415419267167138E-15 0
@ -79,19 +79,19 @@ Instance Label Score Probability Log-loss Assigned
145 0 ? ? ? 0
147 0 -4.3231397 1E-15 1.4415419267167138E-15 0
150 0 -4.7855167 1E-15 1.4415419267167138E-15 0
151 1 4.569236 1 -0 1
151 1 4.569235 1 -0 1
152 1 8.551608 1 -0 1
154 0 -5.233155 1E-15 1.4415419267167138E-15 0
156 0 -4.3357234 1E-15 1.4415419267167138E-15 0
161 0 -3.5422645 1E-15 1.4415419267167138E-15 0
164 0 ? ? ? 0
167 1 7.4310427 1 -0 1
169 0 -5.272954 1E-15 1.4415419267167138E-15 0
169 0 -5.2729545 1E-15 1.4415419267167138E-15 0
171 0 -4.5995197 1E-15 1.4415419267167138E-15 0
173 1 13.797832 1 -0 1
173 1 13.79783 1 -0 1
174 1 5.2489986 1 -0 1
176 0 -4.3083706 1E-15 1.4415419267167138E-15 0
177 1 6.069395 1 -0 1
177 1 6.069394 1 -0 1
179 1 2.427494 0.875 0.19264507794239591 1
180 0 -4.7855167 1E-15 1.4415419267167138E-15 0
181 0 -5.233155 1E-15 1.4415419267167138E-15 0
@ -99,29 +99,29 @@ Instance Label Score Probability Log-loss Assigned
187 1 11.391686 1 -0 1
188 1 7.5789557 1 -0 1
189 0 -3.686462 1E-15 1.4415419267167138E-15 0
191 1 10.154206 1 -0 1
191 1 10.154208 1 -0 1
192 0 -3.7517414 1E-15 1.4415419267167138E-15 0
196 0 5.425535 1 Infinity 1
196 0 5.425536 1 Infinity 1
198 0 -5.233155 1E-15 1.4415419267167138E-15 0
199 0 -4.334039 1E-15 1.4415419267167138E-15 0
201 1 9.260581 1 -0 1
202 0 -4.5995197 1E-15 1.4415419267167138E-15 0
204 0 -4.5995197 1E-15 1.4415419267167138E-15 0
205 1 11.455531 1 -0 1
205 1 11.455533 1 -0 1
206 1 6.5003185 1 -0 1
207 0 -4.7855167 1E-15 1.4415419267167138E-15 0
209 0 -3.6209207 1E-15 1.4415419267167138E-15 0
210 1 12.89725 1 -0 1
210 1 12.897248 1 -0 1
211 1 8.615066 1 -0 1
212 0 -4.5995197 1E-15 1.4415419267167138E-15 0
216 0 -4.916337 1E-15 1.4415419267167138E-15 0
218 1 7.456811 1 -0 1
219 0 -2.478888 1E-15 1.4415419267167138E-15 0
219 0 -2.4788876 1E-15 1.4415419267167138E-15 0
223 1 4.949767 1 -0 1
226 1 8.538112 1 -0 1
228 0 -4.7855167 1E-15 1.4415419267167138E-15 0
233 1 5.219512 1 -0 1
237 1 6.3747997 1 -0 1
237 1 6.374799 1 -0 1
239 1 4.7197256 1 -0 1
240 0 -2.0196419 0.09090909 0.13750352804950119 0
241 0 -3.9108233 1E-15 1.4415419267167138E-15 0
@ -132,7 +132,7 @@ Instance Label Score Probability Log-loss Assigned
248 0 -2.8070307 1E-15 1.4415419267167138E-15 0
249 0 ? ? ? 0
250 0 -4.652541 1E-15 1.4415419267167138E-15 0
252 0 3.7707863 1 Infinity 1
252 0 3.7707853 1 Infinity 1
254 1 7.661195 1 -0 1
257 0 -4.334039 1E-15 1.4415419267167138E-15 0
258 0 -4.0172215 1E-15 1.4415419267167138E-15 0
@ -142,7 +142,7 @@ Instance Label Score Probability Log-loss Assigned
267 1 3.073165 0.875 0.19264507794239591 1
268 1 8.364619 1 -0 1
269 0 -4.5995197 1E-15 1.4415419267167138E-15 0
271 0 -3.4349241 1E-15 1.4415419267167138E-15 0
271 0 -3.4349236 1E-15 1.4415419267167138E-15 0
272 1 3.073165 0.875 0.19264507794239591 1
275 0 ? ? ? 0
276 0 -4.334039 1E-15 1.4415419267167138E-15 0
@ -151,7 +151,7 @@ Instance Label Score Probability Log-loss Assigned
279 1 6.3361444 1 -0 1
280 0 -4.0172215 1E-15 1.4415419267167138E-15 0
283 1 5.09361 1 -0 1
284 1 5.780156 1 -0 1
284 1 5.780157 1 -0 1
285 1 12.663693 1 -0 1
288 1 1.8098211 0.875 0.19264507794239591 1
290 0 -5.233155 1E-15 1.4415419267167138E-15 0
@ -159,19 +159,19 @@ Instance Label Score Probability Log-loss Assigned
293 1 4.209258 1 -0 1
296 0 1.7716074 0.875 3 1
297 0 ? ? ? 0
299 1 5.4912777 1 -0 1
299 1 5.4912786 1 -0 1
300 1 6.2749596 1 -0 1
301 0 -4.5995197 1E-15 1.4415419267167138E-15 0
303 0 -4.5995197 1E-15 1.4415419267167138E-15 0
304 1 4.320197 1 -0 1
308 1 6.5411158 1 -0 1
309 0 -1.7547836 0.09090909 0.13750352804950119 0
309 0 -1.7547832 0.09090909 0.13750352804950119 0
311 0 -5.233155 1E-15 1.4415419267167138E-15 0
312 1 3.2156925 0.875 0.19264507794239591 1
314 0 -5.102334 1E-15 1.4415419267167138E-15 0
316 1 3.940961 1 -0 1
316 1 3.9409618 1 -0 1
317 1 8.260409 1 -0 1
319 0 2.462039 0.875 3 1
319 0 2.46204 0.875 3 1
321 0 ? ? ? 0
323 1 4.269208 1 -0 1
327 0 -4.916337 1E-15 1.4415419267167138E-15 0
@ -179,7 +179,7 @@ Instance Label Score Probability Log-loss Assigned
329 1 6.3562107 1 -0 1
331 0 -3.1436715 1E-15 1.4415419267167138E-15 0
332 0 -2.8411217 1E-15 1.4415419267167138E-15 0
333 1 4.4240274 1 -0 1
333 1 4.4240284 1 -0 1
336 1 4.790291 1 -0 1
338 0 -5.102334 1E-15 1.4415419267167138E-15 0
343 0 -5.233155 1E-15 1.4415419267167138E-15 0
@ -193,22 +193,22 @@ Instance Label Score Probability Log-loss Assigned
353 1 8.744256 1 -0 1
354 0 -4.916337 1E-15 1.4415419267167138E-15 0
355 0 -3.6730852 1E-15 1.4415419267167138E-15 0
358 1 6.1854086 1 -0 1
358 1 6.1854076 1 -0 1
360 1 14.4099455 1 -0 1
361 1 6.113164 1 -0 1
366 1 12.847377 1 -0 1
366 1 12.847375 1 -0 1
368 0 -4.568268 1E-15 1.4415419267167138E-15 0
370 0 -3.02811 1E-15 1.4415419267167138E-15 0
370 0 -3.0281096 1E-15 1.4415419267167138E-15 0
371 0 -4.568268 1E-15 1.4415419267167138E-15 0
373 0 -3.605544 1E-15 1.4415419267167138E-15 0
376 0 -4.916337 1E-15 1.4415419267167138E-15 0
377 0 -5.102334 1E-15 1.4415419267167138E-15 0
378 0 -3.5256414 1E-15 1.4415419267167138E-15 0
379 0 -1.5692587 0.09090909 0.13750352804950119 0
379 0 -1.5692582 0.09090909 0.13750352804950119 0
381 1 8.122036 1 -0 1
383 0 -4.942006 1E-15 1.4415419267167138E-15 0
384 0 -4.942006 1E-15 1.4415419267167138E-15 0
387 0 -1.9415021 0.09090909 0.13750352804950119 0
387 0 -1.9415016 0.09090909 0.13750352804950119 0
388 0 -4.44138 1E-15 1.4415419267167138E-15 0
389 0 -2.9747353 1E-15 1.4415419267167138E-15 0
391 1 8.779809 1 -0 1
@ -216,47 +216,47 @@ Instance Label Score Probability Log-loss Assigned
395 0 -4.334039 1E-15 1.4415419267167138E-15 0
396 0 -4.0172215 1E-15 1.4415419267167138E-15 0
398 0 -3.902061 1E-15 1.4415419267167138E-15 0
399 0 -4.320097 1E-15 1.4415419267167138E-15 0
399 0 -4.3200974 1E-15 1.4415419267167138E-15 0
404 0 -4.508781 1E-15 1.4415419267167138E-15 0
406 0 -3.462277 1E-15 1.4415419267167138E-15 0
406 0 -3.4622765 1E-15 1.4415419267167138E-15 0
409 0 -4.0015955 1E-15 1.4415419267167138E-15 0
413 0 -3.102481 1E-15 1.4415419267167138E-15 0
413 0 -3.1024804 1E-15 1.4415419267167138E-15 0
414 1 5.959919 1 -0 1
415 0 -0.721817 0.09090909 0.13750352804950119 0
416 1 8.443301 1 -0 1
418 0 -1.8258505 0.09090909 0.13750352804950119 0
419 0 -3.8876746 1E-15 1.4415419267167138E-15 0
419 0 -3.8876748 1E-15 1.4415419267167138E-15 0
422 0 -2.1972284 0.09090909 0.13750352804950119 0
423 0 -3.086855 1E-15 1.4415419267167138E-15 0
423 0 -3.0868545 1E-15 1.4415419267167138E-15 0
428 0 -4.916337 1E-15 1.4415419267167138E-15 0
429 0 -4.6251884 1E-15 1.4415419267167138E-15 0
430 0 -4.2361884 1E-15 1.4415419267167138E-15 0
434 0 5.330061 1 Infinity 1
436 1 4.9601746 1 -0 1
439 0 -4.0685587 1E-15 1.4415419267167138E-15 0
434 0 5.330062 1 Infinity 1
436 1 4.9601755 1 -0 1
439 0 -4.068559 1E-15 1.4415419267167138E-15 0
440 1 7.0005217 1 -0 1
441 0 -1.8277497 0.09090909 0.13750352804950119 0
441 0 -1.8277493 0.09090909 0.13750352804950119 0
442 0 -4.126358 1E-15 1.4415419267167138E-15 0
449 1 9.384189 1 -0 1
450 0 -3.936492 1E-15 1.4415419267167138E-15 0
451 0 -4.0685587 1E-15 1.4415419267167138E-15 0
452 0 -4.3584614 1E-15 1.4415419267167138E-15 0
451 0 -4.068559 1E-15 1.4415419267167138E-15 0
452 0 -4.358462 1E-15 1.4415419267167138E-15 0
453 1 7.3491344 1 -0 1
454 0 -4.2596684 1E-15 1.4415419267167138E-15 0
455 1 0.29505634 0.6666667 0.58496245772549416 1
454 0 -4.259669 1E-15 1.4415419267167138E-15 0
455 1 0.2950573 0.6666667 0.58496245772549416 1
456 1 8.340758 1 -0 1
457 1 7.996641 1 -0 1
464 0 -4.359708 1E-15 1.4415419267167138E-15 0
464 0 -4.3597083 1E-15 1.4415419267167138E-15 0
465 1 8.680116 1 -0 1
466 1 8.110646 1 -0 1
467 1 6.858451 1 -0 1
474 0 -4.0685587 1E-15 1.4415419267167138E-15 0
480 0 -4.2545557 1E-15 1.4415419267167138E-15 0
474 0 -4.068559 1E-15 1.4415419267167138E-15 0
480 0 -4.254556 1E-15 1.4415419267167138E-15 0
482 1 13.881022 1 -0 1
483 1 9.617421 1 -0 1
484 0 -3.736116 1E-15 1.4415419267167138E-15 0
487 1 11.720016 1 -0 1
489 1 -0.59057426 0.24775147 2.0130344519050776 0
489 1 -0.5905738 0.24775222 2.0130301133236248 0
492 0 -4.228887 1E-15 1.4415419267167138E-15 0
493 1 9.492114 1 -0 1
495 0 -4.520036 1E-15 1.4415419267167138E-15 0
@ -264,38 +264,38 @@ Instance Label Score Probability Log-loss Assigned
501 0 -4.0428905 1E-15 1.4415419267167138E-15 0
502 0 -3.8966928 1E-15 1.4415419267167138E-15 0
504 0 -5.233155 1E-15 1.4415419267167138E-15 0
507 0 -4.011552 1E-15 1.4415419267167138E-15 0
507 0 -4.0115523 1E-15 1.4415419267167138E-15 0
510 0 -5.233155 1E-15 1.4415419267167138E-15 0
513 0 -4.520036 1E-15 1.4415419267167138E-15 0
514 1 8.787938 1 -0 1
517 0 -5.102334 1E-15 1.4415419267167138E-15 0
519 1 6.320156 1 -0 1
520 0 -5.0471582 1E-15 1.4415419267167138E-15 0
521 0 -4.173711 1E-15 1.4415419267167138E-15 0
522 1 3.983386 1 -0 1
521 0 -4.1737113 1E-15 1.4415419267167138E-15 0
522 1 3.983387 1 -0 1
523 1 6.156104 1 -0 1
527 0 -3.7260728 1E-15 1.4415419267167138E-15 0
528 0 -2.9663253 1E-15 1.4415419267167138E-15 0
528 0 -2.9663248 1E-15 1.4415419267167138E-15 0
529 0 -4.228887 1E-15 1.4415419267167138E-15 0
531 0 -3.462277 1E-15 1.4415419267167138E-15 0
531 0 -3.4622765 1E-15 1.4415419267167138E-15 0
532 0 -4.7855167 1E-15 1.4415419267167138E-15 0
533 0 -4.334039 1E-15 1.4415419267167138E-15 0
534 0 -4.6251884 1E-15 1.4415419267167138E-15 0
535 0 -3.7884345 1E-15 1.4415419267167138E-15 0
538 0 -4.0428905 1E-15 1.4415419267167138E-15 0
539 0 -3.4605932 1E-15 1.4415419267167138E-15 0
540 0 -3.344541 1E-15 1.4415419267167138E-15 0
539 0 -3.4605927 1E-15 1.4415419267167138E-15 0
540 0 -3.3445406 1E-15 1.4415419267167138E-15 0
541 0 -4.650857 1E-15 1.4415419267167138E-15 0
544 0 -3.8141036 1E-15 1.4415419267167138E-15 0
546 1 10.355874 1 -0 1
547 0 -5.128003 1E-15 1.4415419267167138E-15 0
548 0 -4.836854 1E-15 1.4415419267167138E-15 0
549 1 5.2726173 1 -0 1
549 1 5.2726183 1 -0 1
557 0 -3.776164 1E-15 1.4415419267167138E-15 0
558 0 -4.6251884 1E-15 1.4415419267167138E-15 0
559 0 -3.7517414 1E-15 1.4415419267167138E-15 0
560 0 -3.4349241 1E-15 1.4415419267167138E-15 0
561 0 -3.4349241 1E-15 1.4415419267167138E-15 0
560 0 -3.4349236 1E-15 1.4415419267167138E-15 0
561 0 -3.4349236 1E-15 1.4415419267167138E-15 0
563 0 -4.334039 1E-15 1.4415419267167138E-15 0
565 1 10.456666 1 -0 1
566 0 -3.6847782 1E-15 1.4415419267167138E-15 0
@ -304,31 +304,31 @@ Instance Label Score Probability Log-loss Assigned
578 0 -4.916337 1E-15 1.4415419267167138E-15 0
581 1 8.00238 1 -0 1
582 1 7.645852 1 -0 1
584 0 -3.1515746 1E-15 1.4415419267167138E-15 0
584 0 -3.1515741 1E-15 1.4415419267167138E-15 0
586 1 12.260621 1 -0 1
590 1 4.0090714 1 -0 1
593 0 -3.736116 1E-15 1.4415419267167138E-15 0
594 1 5.269803 1 -0 1
600 0 -4.334039 1E-15 1.4415419267167138E-15 0
602 0 -4.0428905 1E-15 1.4415419267167138E-15 0
604 1 4.515381 1 -0 1
604 1 4.515382 1 -0 1
606 0 -4.2135105 1E-15 1.4415419267167138E-15 0
607 0 -5.233155 1E-15 1.4415419267167138E-15 0
609 0 -4.0685587 1E-15 1.4415419267167138E-15 0
609 0 -4.068559 1E-15 1.4415419267167138E-15 0
612 1 14.881892 1 -0 1
613 0 -4.128848 1E-15 1.4415419267167138E-15 0
614 0 -4.8111854 1E-15 1.4415419267167138E-15 0
617 0 ? ? ? 0
618 0 -4.0428905 1E-15 1.4415419267167138E-15 0
619 0 -3.7517414 1E-15 1.4415419267167138E-15 0
621 0 -0.14650202 0.6666667 1.5849625867124844 0
622 0 -2.5446057 1E-15 1.4415419267167138E-15 0
621 0 -0.14650154 0.6666667 1.5849625867124844 0
622 0 -2.5446053 1E-15 1.4415419267167138E-15 0
624 0 -3.7915406 1E-15 1.4415419267167138E-15 0
627 0 -3.3132029 1E-15 1.4415419267167138E-15 0
629 0 -4.359708 1E-15 1.4415419267167138E-15 0
627 0 -3.3132024 1E-15 1.4415419267167138E-15 0
629 0 -4.3597083 1E-15 1.4415419267167138E-15 0
633 1 4.0237722 1 -0 1
634 0 -4.650857 1E-15 1.4415419267167138E-15 0
638 0 -4.359708 1E-15 1.4415419267167138E-15 0
638 0 -4.3597083 1E-15 1.4415419267167138E-15 0
639 0 -3.776164 1E-15 1.4415419267167138E-15 0
641 0 -4.334039 1E-15 1.4415419267167138E-15 0
642 0 -4.334039 1E-15 1.4415419267167138E-15 0
@ -343,16 +343,16 @@ Instance Label Score Probability Log-loss Assigned
660 0 -4.916337 1E-15 1.4415419267167138E-15 0
661 0 -3.7260728 1E-15 1.4415419267167138E-15 0
665 0 -5.233155 1E-15 1.4415419267167138E-15 0
668 1 3.299467 0.875 0.19264507794239591 1
668 1 3.2994661 0.875 0.19264507794239591 1
670 1 6.4614477 1 -0 1
678 0 -5.233155 1E-15 1.4415419267167138E-15 0
679 0 -4.942006 1E-15 1.4415419267167138E-15 0
680 1 14.404437 1 -0 1
680 1 14.404435 1 -0 1
681 1 9.278363 1 -0 1
682 0 -3.2511153 1E-15 1.4415419267167138E-15 0
683 0 -5.233155 1E-15 1.4415419267167138E-15 0
685 0 -5.233155 1E-15 1.4415419267167138E-15 0
688 0 -4.359708 1E-15 1.4415419267167138E-15 0
688 0 -4.3597083 1E-15 1.4415419267167138E-15 0
689 0 -3.1943884 1E-15 1.4415419267167138E-15 0
691 1 5.2444315 1 -0 1
692 0 -4.650857 1E-15 1.4415419267167138E-15 0
@ -367,7 +367,7 @@ Instance Label Score Probability Log-loss Assigned
3 0 2.9251795 0.9047619 3.3923175087700881 1
4 0 -3.5088277 1E-15 1.4415419267167138E-15 0
7 0 -4.670553 1E-15 1.4415419267167138E-15 0
12 1 -0.343431 0.51152515 0.96712290902641618 0
12 1 -0.34343147 0.51152503 0.96712324524188775 0
13 0 -4.6186943 1E-15 1.4415419267167138E-15 0
14 1 7.360214 1 -0 1
15 1 0.6494303 0.6 0.73696553683865695 1
@ -389,7 +389,7 @@ Instance Label Score Probability Log-loss Assigned
42 1 6.8985863 1 -0 1
43 1 -0.49528694 0.5 1 0
47 0 -5.669884 1E-15 1.4415419267167138E-15 0
49 1 5.3024054 0.93333334 0.09953566740867692 1
49 1 5.3024044 0.93333334 0.09953566740867692 1
53 1 5.116103 0.93333334 0.09953566740867692 1
55 1 4.4195347 0.93333334 0.09953566740867692 1
57 1 0.5701313 0.6 0.73696553683865695 1
@ -407,7 +407,7 @@ Instance Label Score Probability Log-loss Assigned
84 1 6.5824003 1 -0 1
85 1 4.7604074 0.93333334 0.09953566740867692 1
86 1 1.466999 0.9047619 0.14438990028345636 1
87 1 5.223544 0.93333334 0.09953566740867692 1
87 1 5.223543 0.93333334 0.09953566740867692 1
89 0 -5.017977 1E-15 1.4415419267167138E-15 0
94 0 -4.9212914 1E-15 1.4415419267167138E-15 0
101 1 -0.85990286 0.41515666 1.2682722439451406 0
@ -451,7 +451,7 @@ Instance Label Score Probability Log-loss Assigned
184 1 5.409273 1 -0 1
185 0 -4.8669662 1E-15 1.4415419267167138E-15 0
186 1 3.9876003 0.93333334 0.09953566740867692 1
190 1 10.521244 1 -0 1
190 1 10.521242 1 -0 1
193 0 -5.4043503 1E-15 1.4415419267167138E-15 0
194 0 -4.4382315 1E-15 1.4415419267167138E-15 0
195 0 -3.9551725 1E-15 1.4415419267167138E-15 0
@ -464,12 +464,12 @@ Instance Label Score Probability Log-loss Assigned
215 1 6.600219 1 -0 1
217 0 -5.4043503 1E-15 1.4415419267167138E-15 0
220 0 -5.181178 1E-15 1.4415419267167138E-15 0
221 1 7.9662895 1 -0 1
221 1 7.9662914 1 -0 1
222 1 -2.1487255 1E-15 49.828921418077073 0
224 1 8.4735565 1 -0 1
225 0 -5.669884 1E-15 1.4415419267167138E-15 0
227 1 6.748211 1 -0 1
229 1 10.5048065 1 -0 1
229 1 10.504805 1 -0 1
230 1 4.829337 0.93333334 0.09953566740867692 1
231 1 6.912092 1 -0 1
232 0 1.0722923 0.6 1.3219281808786905 1
@ -489,7 +489,7 @@ Instance Label Score Probability Log-loss Assigned
265 0 -2.5156913 1E-15 1.4415419267167138E-15 0
266 1 7.325534 1 -0 1
270 1 5.5723915 1 -0 1
273 1 0.037317276 0.6 0.73696553683865695 1
273 1 0.03731823 0.6 0.73696553683865695 1
274 0 -4.2340226 1E-15 1.4415419267167138E-15 0
281 0 -4.698118 1E-15 1.4415419267167138E-15 0
282 1 2.860156 0.9047619 0.14438990028345636 1
@ -501,7 +501,7 @@ Instance Label Score Probability Log-loss Assigned
295 1 5.621522 1 -0 1
298 0 -2.4584546 1E-15 1.4415419267167138E-15 0
302 1 12.725584 1 -0 1
305 1 8.040863 1 -0 1
305 1 8.040865 1 -0 1
306 0 -5.4043503 1E-15 1.4415419267167138E-15 0
307 0 -5.4043503 1E-15 1.4415419267167138E-15 0
310 0 -5.24115 1E-15 1.4415419267167138E-15 0
@ -557,7 +557,7 @@ Instance Label Score Probability Log-loss Assigned
420 0 -2.6969714 1E-15 1.4415419267167138E-15 0
421 1 9.498289 1 -0 1
424 0 -4.9692993 1E-15 1.4415419267167138E-15 0
425 1 11.849487 1 -0 1
425 1 11.849485 1 -0 1
426 0 -2.2324486 1E-15 1.4415419267167138E-15 0
427 1 4.1596622 0.93333334 0.09953566740867692 1
431 0 -2.9302087 1E-15 1.4415419267167138E-15 0
@ -595,7 +595,7 @@ Instance Label Score Probability Log-loss Assigned
488 1 0.9591036 0.6 0.73696553683865695 1
490 0 -5.935418 1E-15 1.4415419267167138E-15 0
491 1 5.556223 1 -0 1
494 0 -0.01569748 0.5942614 1.3013775627342616 0
494 0 -0.015696526 0.59426165 1.3013784104855217 0
496 0 -5.881093 1E-15 1.4415419267167138E-15 0
498 0 -4.220706 1E-15 1.4415419267167138E-15 0
499 0 -4.220706 1E-15 1.4415419267167138E-15 0
@ -674,7 +674,7 @@ Instance Label Score Probability Log-loss Assigned
643 0 -5.935418 1E-15 1.4415419267167138E-15 0
646 0 -5.426158 1E-15 1.4415419267167138E-15 0
647 0 -5.4890733 1E-15 1.4415419267167138E-15 0
648 1 8.579456 1 -0 1
648 1 8.579458 1 -0 1
650 0 -3.6219687 1E-15 1.4415419267167138E-15 0
651 0 -4.965017 1E-15 1.4415419267167138E-15 0
655 0 -4.7037654 1E-15 1.4415419267167138E-15 0

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,45 +1,45 @@
Instance Label Score Assigned
5 1 11.285979 1
6 0 -0.9347124 0
6 0 -0.93471193 0
8 0 -3.7769966 0
9 0 -3.7947202 0
10 0 -4.7855167 0
11 0 -4.6251884 0
18 1 6.8803625 1
18 1 6.8803635 1
20 1 5.573552 1
21 1 6.7444105 1
25 1 1.2789736 1
28 0 -4.6251884 0
31 0 -4.3083706 0
32 1 6.9428854 1
32 1 6.9428844 1
35 0 -4.6251884 0
37 0 -1.814332 0
37 0 -1.8143315 0
40 0 ? 0
41 1 2.4075565 1
44 1 8.039285 1
45 0 -4.625085 0
46 1 5.138131 1
48 0 -3.4336782 0
48 0 -3.4336777 0
50 1 2.7120514 1
51 1 -0.06207609 0
51 1 -0.062075615 0
52 1 4.4027233 1
54 1 6.3079214 1
56 1 6.356517 1
56 1 6.356518 1
60 1 1.9474735 1
63 1 0.78555584 1
64 0 -4.916337 0
66 0 -3.7260728 0
68 1 9.2772875 1
69 0 -4.4157114 0
70 0 -3.086855 0
70 0 -3.0868545 0
71 1 7.5159607 1
72 0 -1.8410158 0
73 1 7.1320066 1
74 1 2.4329157 1
76 0 -3.9190063 0
77 0 -3.1092038 0
77 0 -3.1092033 0
79 0 -4.4391913 0
82 0 -3.1867542 0
82 0 -3.1867537 0
88 0 -3.7260728 0
90 0 -4.5995197 0
91 0 -4.5046597 0
@ -47,12 +47,12 @@ Instance Label Score Assigned
93 0 -4.916337 0
95 0 -4.5995197 0
96 0 -4.7958083 0
97 0 -3.4349241 0
98 1 9.075171 1
97 0 -3.4349236 0
98 1 9.07517 1
99 1 8.952344 1
100 1 4.9092436 1
102 0 -3.3936296 0
104 1 10.959613 1
102 0 -3.393629 0
104 1 10.959611 1
105 1 2.0113592 1
106 1 8.251353 1
108 0 -4.5487204 0
@ -63,7 +63,7 @@ Instance Label Score Assigned
115 0 -3.6043515 0
117 1 7.9902315 1
120 0 -4.120878 0
121 0 -3.070702 0
121 0 -3.0707016 0
122 1 10.129083 1
123 1 4.173232 1
125 0 -4.916337 0
@ -79,19 +79,19 @@ Instance Label Score Assigned
145 0 ? 0
147 0 -4.3231397 0
150 0 -4.7855167 0
151 1 4.569236 1
151 1 4.569235 1
152 1 8.551608 1
154 0 -5.233155 0
156 0 -4.3357234 0
161 0 -3.5422645 0
164 0 ? 0
167 1 7.4310427 1
169 0 -5.272954 0
169 0 -5.2729545 0
171 0 -4.5995197 0
173 1 13.797832 1
173 1 13.79783 1
174 1 5.2489986 1
176 0 -4.3083706 0
177 1 6.069395 1
177 1 6.069394 1
179 1 2.427494 1
180 0 -4.7855167 0
181 0 -5.233155 0
@ -99,29 +99,29 @@ Instance Label Score Assigned
187 1 11.391686 1
188 1 7.5789557 1
189 0 -3.686462 0
191 1 10.154206 1
191 1 10.154208 1
192 0 -3.7517414 0
196 0 5.425535 1
196 0 5.425536 1
198 0 -5.233155 0
199 0 -4.334039 0
201 1 9.260581 1
202 0 -4.5995197 0
204 0 -4.5995197 0
205 1 11.455531 1
205 1 11.455533 1
206 1 6.5003185 1
207 0 -4.7855167 0
209 0 -3.6209207 0
210 1 12.89725 1
210 1 12.897248 1
211 1 8.615066 1
212 0 -4.5995197 0
216 0 -4.916337 0
218 1 7.456811 1
219 0 -2.478888 0
219 0 -2.4788876 0
223 1 4.949767 1
226 1 8.538112 1
228 0 -4.7855167 0
233 1 5.219512 1
237 1 6.3747997 1
237 1 6.374799 1
239 1 4.7197256 1
240 0 -2.0196419 0
241 0 -3.9108233 0
@ -132,7 +132,7 @@ Instance Label Score Assigned
248 0 -2.8070307 0
249 0 ? 0
250 0 -4.652541 0
252 0 3.7707863 1
252 0 3.7707853 1
254 1 7.661195 1
257 0 -4.334039 0
258 0 -4.0172215 0
@ -142,7 +142,7 @@ Instance Label Score Assigned
267 1 3.073165 1
268 1 8.364619 1
269 0 -4.5995197 0
271 0 -3.4349241 0
271 0 -3.4349236 0
272 1 3.073165 1
275 0 ? 0
276 0 -4.334039 0
@ -151,7 +151,7 @@ Instance Label Score Assigned
279 1 6.3361444 1
280 0 -4.0172215 0
283 1 5.09361 1
284 1 5.780156 1
284 1 5.780157 1
285 1 12.663693 1
288 1 1.8098211 1
290 0 -5.233155 0
@ -159,19 +159,19 @@ Instance Label Score Assigned
293 1 4.209258 1
296 0 1.7716074 1
297 0 ? 0
299 1 5.4912777 1
299 1 5.4912786 1
300 1 6.2749596 1
301 0 -4.5995197 0
303 0 -4.5995197 0
304 1 4.320197 1
308 1 6.5411158 1
309 0 -1.7547836 0
309 0 -1.7547832 0
311 0 -5.233155 0
312 1 3.2156925 1
314 0 -5.102334 0
316 1 3.940961 1
316 1 3.9409618 1
317 1 8.260409 1
319 0 2.462039 1
319 0 2.46204 1
321 0 ? 0
323 1 4.269208 1
327 0 -4.916337 0
@ -179,7 +179,7 @@ Instance Label Score Assigned
329 1 6.3562107 1
331 0 -3.1436715 0
332 0 -2.8411217 0
333 1 4.4240274 1
333 1 4.4240284 1
336 1 4.790291 1
338 0 -5.102334 0
343 0 -5.233155 0
@ -193,22 +193,22 @@ Instance Label Score Assigned
353 1 8.744256 1
354 0 -4.916337 0
355 0 -3.6730852 0
358 1 6.1854086 1
358 1 6.1854076 1
360 1 14.4099455 1
361 1 6.113164 1
366 1 12.847377 1
366 1 12.847375 1
368 0 -4.568268 0
370 0 -3.02811 0
370 0 -3.0281096 0
371 0 -4.568268 0
373 0 -3.605544 0
376 0 -4.916337 0
377 0 -5.102334 0
378 0 -3.5256414 0
379 0 -1.5692587 0
379 0 -1.5692582 0
381 1 8.122036 1
383 0 -4.942006 0
384 0 -4.942006 0
387 0 -1.9415021 0
387 0 -1.9415016 0
388 0 -4.44138 0
389 0 -2.9747353 0
391 1 8.779809 1
@ -216,47 +216,47 @@ Instance Label Score Assigned
395 0 -4.334039 0
396 0 -4.0172215 0
398 0 -3.902061 0
399 0 -4.320097 0
399 0 -4.3200974 0
404 0 -4.508781 0
406 0 -3.462277 0
406 0 -3.4622765 0
409 0 -4.0015955 0
413 0 -3.102481 0
413 0 -3.1024804 0
414 1 5.959919 1
415 0 -0.721817 0
416 1 8.443301 1
418 0 -1.8258505 0
419 0 -3.8876746 0
419 0 -3.8876748 0
422 0 -2.1972284 0
423 0 -3.086855 0
423 0 -3.0868545 0
428 0 -4.916337 0
429 0 -4.6251884 0
430 0 -4.2361884 0
434 0 5.330061 1
436 1 4.9601746 1
439 0 -4.0685587 0
434 0 5.330062 1
436 1 4.9601755 1
439 0 -4.068559 0
440 1 7.0005217 1
441 0 -1.8277497 0
441 0 -1.8277493 0
442 0 -4.126358 0
449 1 9.384189 1
450 0 -3.936492 0
451 0 -4.0685587 0
452 0 -4.3584614 0
451 0 -4.068559 0
452 0 -4.358462 0
453 1 7.3491344 1
454 0 -4.2596684 0
455 1 0.29505634 1
454 0 -4.259669 0
455 1 0.2950573 1
456 1 8.340758 1
457 1 7.996641 1
464 0 -4.359708 0
464 0 -4.3597083 0
465 1 8.680116 1
466 1 8.110646 1
467 1 6.858451 1
474 0 -4.0685587 0
480 0 -4.2545557 0
474 0 -4.068559 0
480 0 -4.254556 0
482 1 13.881022 1
483 1 9.617421 1
484 0 -3.736116 0
487 1 11.720016 1
489 1 -0.59057426 0
489 1 -0.5905738 0
492 0 -4.228887 0
493 1 9.492114 1
495 0 -4.520036 0
@ -264,38 +264,38 @@ Instance Label Score Assigned
501 0 -4.0428905 0
502 0 -3.8966928 0
504 0 -5.233155 0
507 0 -4.011552 0
507 0 -4.0115523 0
510 0 -5.233155 0
513 0 -4.520036 0
514 1 8.787938 1
517 0 -5.102334 0
519 1 6.320156 1
520 0 -5.0471582 0
521 0 -4.173711 0
522 1 3.983386 1
521 0 -4.1737113 0
522 1 3.983387 1
523 1 6.156104 1
527 0 -3.7260728 0
528 0 -2.9663253 0
528 0 -2.9663248 0
529 0 -4.228887 0
531 0 -3.462277 0
531 0 -3.4622765 0
532 0 -4.7855167 0
533 0 -4.334039 0
534 0 -4.6251884 0
535 0 -3.7884345 0
538 0 -4.0428905 0
539 0 -3.4605932 0
540 0 -3.344541 0
539 0 -3.4605927 0
540 0 -3.3445406 0
541 0 -4.650857 0
544 0 -3.8141036 0
546 1 10.355874 1
547 0 -5.128003 0
548 0 -4.836854 0
549 1 5.2726173 1
549 1 5.2726183 1
557 0 -3.776164 0
558 0 -4.6251884 0
559 0 -3.7517414 0
560 0 -3.4349241 0
561 0 -3.4349241 0
560 0 -3.4349236 0
561 0 -3.4349236 0
563 0 -4.334039 0
565 1 10.456666 1
566 0 -3.6847782 0
@ -304,31 +304,31 @@ Instance Label Score Assigned
578 0 -4.916337 0
581 1 8.00238 1
582 1 7.645852 1
584 0 -3.1515746 0
584 0 -3.1515741 0
586 1 12.260621 1
590 1 4.0090714 1
593 0 -3.736116 0
594 1 5.269803 1
600 0 -4.334039 0
602 0 -4.0428905 0
604 1 4.515381 1
604 1 4.515382 1
606 0 -4.2135105 0
607 0 -5.233155 0
609 0 -4.0685587 0
609 0 -4.068559 0
612 1 14.881892 1
613 0 -4.128848 0
614 0 -4.8111854 0
617 0 ? 0
618 0 -4.0428905 0
619 0 -3.7517414 0
621 0 -0.14650202 0
622 0 -2.5446057 0
621 0 -0.14650154 0
622 0 -2.5446053 0
624 0 -3.7915406 0
627 0 -3.3132029 0
629 0 -4.359708 0
627 0 -3.3132024 0
629 0 -4.3597083 0
633 1 4.0237722 1
634 0 -4.650857 0
638 0 -4.359708 0
638 0 -4.3597083 0
639 0 -3.776164 0
641 0 -4.334039 0
642 0 -4.334039 0
@ -343,16 +343,16 @@ Instance Label Score Assigned
660 0 -4.916337 0
661 0 -3.7260728 0
665 0 -5.233155 0
668 1 3.299467 1
668 1 3.2994661 1
670 1 6.4614477 1
678 0 -5.233155 0
679 0 -4.942006 0
680 1 14.404437 1
680 1 14.404435 1
681 1 9.278363 1
682 0 -3.2511153 0
683 0 -5.233155 0
685 0 -5.233155 0
688 0 -4.359708 0
688 0 -4.3597083 0
689 0 -3.1943884 0
691 1 5.2444315 1
692 0 -4.650857 0
@ -367,7 +367,7 @@ Instance Label Score Assigned
3 0 2.9251795 1
4 0 -3.5088277 0
7 0 -4.670553 0
12 1 -0.343431 0
12 1 -0.34343147 0
13 0 -4.6186943 0
14 1 7.360214 1
15 1 0.6494303 1
@ -389,7 +389,7 @@ Instance Label Score Assigned
42 1 6.8985863 1
43 1 -0.49528694 0
47 0 -5.669884 0
49 1 5.3024054 1
49 1 5.3024044 1
53 1 5.116103 1
55 1 4.4195347 1
57 1 0.5701313 1
@ -407,7 +407,7 @@ Instance Label Score Assigned
84 1 6.5824003 1
85 1 4.7604074 1
86 1 1.466999 1
87 1 5.223544 1
87 1 5.223543 1
89 0 -5.017977 0
94 0 -4.9212914 0
101 1 -0.85990286 0
@ -451,7 +451,7 @@ Instance Label Score Assigned
184 1 5.409273 1
185 0 -4.8669662 0
186 1 3.9876003 1
190 1 10.521244 1
190 1 10.521242 1
193 0 -5.4043503 0
194 0 -4.4382315 0
195 0 -3.9551725 0
@ -464,12 +464,12 @@ Instance Label Score Assigned
215 1 6.600219 1
217 0 -5.4043503 0
220 0 -5.181178 0
221 1 7.9662895 1
221 1 7.9662914 1
222 1 -2.1487255 0
224 1 8.4735565 1
225 0 -5.669884 0
227 1 6.748211 1
229 1 10.5048065 1
229 1 10.504805 1
230 1 4.829337 1
231 1 6.912092 1
232 0 1.0722923 1
@ -489,7 +489,7 @@ Instance Label Score Assigned
265 0 -2.5156913 0
266 1 7.325534 1
270 1 5.5723915 1
273 1 0.037317276 1
273 1 0.03731823 1
274 0 -4.2340226 0
281 0 -4.698118 0
282 1 2.860156 1
@ -501,7 +501,7 @@ Instance Label Score Assigned
295 1 5.621522 1
298 0 -2.4584546 0
302 1 12.725584 1
305 1 8.040863 1
305 1 8.040865 1
306 0 -5.4043503 0
307 0 -5.4043503 0
310 0 -5.24115 0
@ -557,7 +557,7 @@ Instance Label Score Assigned
420 0 -2.6969714 0
421 1 9.498289 1
424 0 -4.9692993 0
425 1 11.849487 1
425 1 11.849485 1
426 0 -2.2324486 0
427 1 4.1596622 1
431 0 -2.9302087 0
@ -595,7 +595,7 @@ Instance Label Score Assigned
488 1 0.9591036 1
490 0 -5.935418 0
491 1 5.556223 1
494 0 -0.01569748 0
494 0 -0.015696526 0
496 0 -5.881093 0
498 0 -4.220706 0
499 0 -4.220706 0
@ -674,7 +674,7 @@ Instance Label Score Assigned
643 0 -5.935418 0
646 0 -5.426158 0
647 0 -5.4890733 0
648 1 8.579456 1
648 1 8.579458 1
650 0 -3.6219687 0
651 0 -4.965017 0
655 0 -4.7037654 0

Просмотреть файл

@ -1,10 +1,10 @@
Instance Label Score Probability Log-loss Assigned
0 0 -3.5726995 1E-15 1.4415419267167138E-15 0
1 0 3.6101456 0.8333333 2.5849623287385155 1
1 0 3.6101465 0.8333333 2.5849623287385155 1
2 0 -4.070944 1E-15 1.4415419267167138E-15 0
3 0 2.470542 0.8095238 2.3923175087700885 1
4 0 -3.4358397 1E-15 1.4415419267167138E-15 0
5 1 12.382593 1 -0 1
5 1 12.382595 1 -0 1
6 0 -1.4209604 0.071428575 0.10691520887754996 0
7 0 -4.701088 1E-15 1.4415419267167138E-15 0
8 0 -4.6745405 1E-15 1.4415419267167138E-15 0
@ -13,14 +13,14 @@ Instance Label Score Probability Log-loss Assigned
11 0 -5.4818344 1E-15 1.4415419267167138E-15 0
12 1 -0.14206886 0.6363636 0.65207672114864346 0
13 0 -4.5691886 1E-15 1.4415419267167138E-15 0
14 1 9.321613 1 -0 1
14 1 9.321611 1 -0 1
15 1 1.3856993 0.8095238 0.30485456129516797 1
16 0 -4.533843 1E-15 1.4415419267167138E-15 0
17 0 -4.046695 1E-15 1.4415419267167138E-15 0
18 1 7.8903694 1 -0 1
18 1 7.8903713 1 -0 1
19 0 -3.0987039 1E-15 1.4415419267167138E-15 0
20 1 7.528511 1 -0 1
21 1 7.875204 1 -0 1
21 1 7.875206 1 -0 1
22 0 -5.0078387 1E-15 1.4415419267167138E-15 0
23 1 ? ? ? 0
24 0 -5.4686823 1E-15 1.4415419267167138E-15 0
@ -38,22 +38,22 @@ Instance Label Score Probability Log-loss Assigned
36 1 9.099108 1 -0 1
37 0 -1.113348 0.071428575 0.10691520887754996 0
38 1 6.140953 0.98 0.029146317580716615 1
39 1 2.5109024 0.8095238 0.30485456129516797 1
39 1 2.5109034 0.8095238 0.30485456129516797 1
40 0 ? ? ? 0
41 1 3.3300762 0.8333333 0.26303444023032446 1
42 1 8.577511 1 -0 1
43 1 0.49126053 0.6363636 0.65207672114864346 1
44 1 8.255751 1 -0 1
45 0 -5.6322193 1E-15 1.4415419267167138E-15 0
46 1 4.5673847 0.9285714 0.10691524360481655 1
46 1 4.5673857 0.9285714 0.10691524360481655 1
47 0 -5.95583 1E-15 1.4415419267167138E-15 0
48 0 -3.4358397 1E-15 1.4415419267167138E-15 0
49 1 5.3666544 0.98 0.029146317580716615 1
50 1 2.5949678 0.8095238 0.30485456129516797 1
51 1 0.12595749 0.6363636 0.65207672114864346 1
52 1 5.2992125 0.98 0.029146317580716615 1
52 1 5.2992115 0.98 0.029146317580716615 1
53 1 8.407228 1 -0 1
54 1 7.649309 1 -0 1
54 1 7.649311 1 -0 1
55 1 4.478709 0.9285714 0.10691524360481655 1
56 1 5.5541325 0.98 0.029146317580716615 1
57 1 1.6657066 0.8095238 0.30485456129516797 1
@ -66,15 +66,15 @@ Instance Label Score Probability Log-loss Assigned
64 0 -5.95583 1E-15 1.4415419267167138E-15 0
65 1 3.8072634 0.9285714 0.10691524360481655 1
66 0 -4.046695 1E-15 1.4415419267167138E-15 0
67 1 4.218013 0.9285714 0.10691524360481655 1
67 1 4.218014 0.9285714 0.10691524360481655 1
68 1 10.826723 1 -0 1
69 0 -5.271654 1E-15 1.4415419267167138E-15 0
69 0 -5.2716546 1E-15 1.4415419267167138E-15 0
70 0 -3.4726496 1E-15 1.4415419267167138E-15 0
71 1 7.895048 1 -0 1
72 0 -2.1755843 0.071428575 0.10691520887754996 0
72 0 -2.1755848 0.071428575 0.10691520887754996 0
73 1 8.9055195 1 -0 1
74 1 2.5993576 0.8095238 0.30485456129516797 1
75 0 -4.04116 1E-15 1.4415419267167138E-15 0
75 0 -4.0411606 1E-15 1.4415419267167138E-15 0
76 0 -5.075033 1E-15 1.4415419267167138E-15 0
77 0 -3.4995675 1E-15 1.4415419267167138E-15 0
78 0 -3.6211967 1E-15 1.4415419267167138E-15 0
@ -84,7 +84,7 @@ Instance Label Score Probability Log-loss Assigned
82 0 -3.4452734 1E-15 1.4415419267167138E-15 0
83 0 -2.1223516 0.071428575 0.10691520887754996 0
84 1 9.694054 1 -0 1
85 1 6.2895613 0.98 0.029146317580716615 1
85 1 6.2895603 0.98 0.029146317580716615 1
86 1 2.6168842 0.8095238 0.30485456129516797 1
87 1 6.91914 1 -0 1
88 0 -4.046695 1E-15 1.4415419267167138E-15 0
@ -97,21 +97,21 @@ Instance Label Score Probability Log-loss Assigned
95 0 -5.4686823 1E-15 1.4415419267167138E-15 0
96 0 -5.663555 1E-15 1.4415419267167138E-15 0
97 0 -3.5726995 1E-15 1.4415419267167138E-15 0
98 1 8.590231 1 -0 1
98 1 8.590233 1 -0 1
99 1 10.917194 1 -0 1
100 1 4.8476706 0.9285714 0.10691524360481655 1
101 1 -0.84280396 0.5 1 0
100 1 4.8476696 0.9285714 0.10691524360481655 1
101 1 -0.842803 0.5 1 0
102 0 -3.7530966 1E-15 1.4415419267167138E-15 0
103 1 1.7746449 0.8095238 0.30485456129516797 1
104 1 12.140858 1 -0 1
105 1 2.5560703 0.8095238 0.30485456129516797 1
106 1 9.259367 1 -0 1
106 1 9.259369 1 -0 1
107 1 6.720646 0.98 0.029146317580716615 1
108 0 -5.5617743 1E-15 1.4415419267167138E-15 0
109 1 6.871725 1 -0 1
109 1 6.871727 1 -0 1
110 0 -2.766693 1E-15 1.4415419267167138E-15 0
111 1 3.848031 0.9285714 0.10691524360481655 1
112 1 9.425768 1 -0 1
112 1 9.42577 1 -0 1
113 1 9.506622 1 -0 1
114 0 -3.0727453 1E-15 1.4415419267167138E-15 0
115 0 -4.643991 1E-15 1.4415419267167138E-15 0
@ -121,19 +121,19 @@ Instance Label Score Probability Log-loss Assigned
119 0 -3.9435177 1E-15 1.4415419267167138E-15 0
120 0 -4.8696556 1E-15 1.4415419267167138E-15 0
121 0 -3.469522 1E-15 1.4415419267167138E-15 0
122 1 9.680521 1 -0 1
122 1 9.680523 1 -0 1
123 1 3.8165932 0.9285714 0.10691524360481655 1
124 1 7.6522446 1 -0 1
125 0 -5.95583 1E-15 1.4415419267167138E-15 0
126 1 8.564953 1 -0 1
126 1 8.564951 1 -0 1
127 0 -4.520691 1E-15 1.4415419267167138E-15 0
128 1 4.848981 0.9285714 0.10691524360481655 1
129 0 -5.717684 1E-15 1.4415419267167138E-15 0
130 0 -3.4726496 1E-15 1.4415419267167138E-15 0
131 0 -4.9946866 1E-15 1.4415419267167138E-15 0
132 1 8.60223 1 -0 1
133 0 -4.8108106 1E-15 1.4415419267167138E-15 0
134 0 -4.9171767 1E-15 1.4415419267167138E-15 0
133 0 -4.810811 1E-15 1.4415419267167138E-15 0
134 0 -4.917177 1E-15 1.4415419267167138E-15 0
135 0 -2.7288966 1E-15 1.4415419267167138E-15 0
136 0 -4.533843 1E-15 1.4415419267167138E-15 0
137 0 -5.4949865 1E-15 1.4415419267167138E-15 0
@ -151,7 +151,7 @@ Instance Label Score Probability Log-loss Assigned
149 1 11.461615 1 -0 1
150 0 -5.559344 1E-15 1.4415419267167138E-15 0
151 1 5.006485 0.9285714 0.10691524360481655 1
152 1 9.715746 1 -0 1
152 1 9.715748 1 -0 1
153 0 -4.1214976 1E-15 1.4415419267167138E-15 0
154 0 -6.442978 1E-15 1.4415419267167138E-15 0
155 1 3.7769232 0.9285714 0.10691524360481655 1
@ -159,12 +159,12 @@ Instance Label Score Probability Log-loss Assigned
157 0 -4.9946866 1E-15 1.4415419267167138E-15 0
158 0 ? ? ? 0
159 1 12.346203 1 -0 1
160 1 9.039492 1 -0 1
161 0 -3.849667 1E-15 1.4415419267167138E-15 0
160 1 9.039494 1 -0 1
161 0 -3.8496675 1E-15 1.4415419267167138E-15 0
162 0 -4.520691 1E-15 1.4415419267167138E-15 0
163 0 -3.387055 1E-15 1.4415419267167138E-15 0
164 0 ? ? ? 0
165 0 -3.39992 1E-15 1.4415419267167138E-15 0
165 0 -3.3999205 1E-15 1.4415419267167138E-15 0
166 1 7.976183 1 -0 1
167 1 8.355644 1 -0 1
168 0 -4.520691 1E-15 1.4415419267167138E-15 0
@ -186,11 +186,11 @@ Instance Label Score Probability Log-loss Assigned
184 1 6.2014647 0.98 0.029146317580716615 1
185 0 -5.0853486 1E-15 1.4415419267167138E-15 0
186 1 5.7654104 0.98 0.029146317580716615 1
187 1 13.977449 1 -0 1
188 1 9.065281 1 -0 1
187 1 13.977451 1 -0 1
188 1 9.065283 1 -0 1
189 0 -4.7540584 1E-15 1.4415419267167138E-15 0
190 1 11.957216 1 -0 1
191 1 10.956871 1 -0 1
190 1 11.957218 1 -0 1
191 1 10.956873 1 -0 1
192 0 -4.0598474 1E-15 1.4415419267167138E-15 0
193 0 -5.4686823 1E-15 1.4415419267167138E-15 0
194 0 -4.520691 1E-15 1.4415419267167138E-15 0
@ -200,12 +200,12 @@ Instance Label Score Probability Log-loss Assigned
198 0 -6.442978 1E-15 1.4415419267167138E-15 0
199 0 -5.0078387 1E-15 1.4415419267167138E-15 0
200 1 10.36586 1 -0 1
201 1 9.8694935 1 -0 1
201 1 9.869495 1 -0 1
202 0 -5.4686823 1E-15 1.4415419267167138E-15 0
203 0 -3.5726995 1E-15 1.4415419267167138E-15 0
204 0 -5.4686823 1E-15 1.4415419267167138E-15 0
205 1 12.086601 1 -0 1
206 1 5.944168 0.98 0.029146317580716615 1
206 1 5.944169 0.98 0.029146317580716615 1
207 0 -5.559344 1E-15 1.4415419267167138E-15 0
208 0 -5.559344 1E-15 1.4415419267167138E-15 0
209 0 -3.6633615 1E-15 1.4415419267167138E-15 0
@ -214,13 +214,13 @@ Instance Label Score Probability Log-loss Assigned
212 0 -5.4686823 1E-15 1.4415419267167138E-15 0
213 1 14.529058 1 -0 1
214 1 13.868914 1 -0 1
215 1 7.643732 1 -0 1
215 1 7.643734 1 -0 1
216 0 -5.95583 1E-15 1.4415419267167138E-15 0
217 0 -5.4686823 1E-15 1.4415419267167138E-15 0
218 1 7.88678 1 -0 1
218 1 7.8867817 1 -0 1
219 0 -2.511506 1E-15 1.4415419267167138E-15 0
220 0 -5.1632547 1E-15 1.4415419267167138E-15 0
221 1 10.395216 1 -0 1
221 1 10.395218 1 -0 1
222 1 -2.214662 0.071428575 3.8073548575641118 0
223 1 5.7424126 0.98 0.029146317580716615 1
224 1 9.995327 1 -0 1
@ -228,7 +228,7 @@ Instance Label Score Probability Log-loss Assigned
226 1 10.225868 1 -0 1
227 1 7.459608 1 -0 1
228 0 -5.559344 1E-15 1.4415419267167138E-15 0
229 1 12.666513 1 -0 1
229 1 12.666515 1 -0 1
230 1 6.1583214 0.98 0.029146317580716615 1
231 1 8.623034 1 -0 1
232 0 1.2822819 0.6363636 1.4594315756416352 1
@ -237,7 +237,7 @@ Instance Label Score Probability Log-loss Assigned
235 0 ? ? ? 0
236 1 11.420414 1 -0 1
237 1 6.535795 0.98 0.029146317580716615 1
238 1 12.422874 1 -0 1
238 1 12.422876 1 -0 1
239 1 5.9025297 0.98 0.029146317580716615 1
240 0 -2.0179915 0.071428575 0.10691520887754996 0
241 0 -4.0004973 1E-15 1.4415419267167138E-15 0
@ -259,12 +259,12 @@ Instance Label Score Probability Log-loss Assigned
257 0 -5.0078387 1E-15 1.4415419267167138E-15 0
258 0 -4.520691 1E-15 1.4415419267167138E-15 0
259 0 2.9647484 0.8095238 2.3923175087700885 1
260 1 9.870924 1 -0 1
260 1 9.870926 1 -0 1
261 1 12.206299 1 -0 1
262 1 9.653839 1 -0 1
263 1 8.981979 1 -0 1
264 1 5.664708 0.98 0.029146317580716615 1
265 0 -2.494875 1E-15 1.4415419267167138E-15 0
265 0 -2.4948754 1E-15 1.4415419267167138E-15 0
266 1 7.3661633 1 -0 1
267 1 3.3009605 0.8333333 0.26303444023032446 1
268 1 9.372967 1 -0 1
@ -273,7 +273,7 @@ Instance Label Score Probability Log-loss Assigned
271 0 -3.5726995 1E-15 1.4415419267167138E-15 0
272 1 3.3009605 0.8333333 0.26303444023032446 1
273 1 0.21747208 0.6363636 0.65207672114864346 1
274 0 -4.3236628 1E-15 1.4415419267167138E-15 0
274 0 -4.323663 1E-15 1.4415419267167138E-15 0
275 0 ? ? ? 0
276 0 -5.0078387 1E-15 1.4415419267167138E-15 0
277 0 -5.95583 1E-15 1.4415419267167138E-15 0
@ -284,11 +284,11 @@ Instance Label Score Probability Log-loss Assigned
282 1 4.4381237 0.9285714 0.10691524360481655 1
283 1 6.0636253 0.98 0.029146317580716615 1
284 1 7.431343 1 -0 1
285 1 14.218479 1 -0 1
286 1 15.281261 1 -0 1
287 0 -4.9171767 1E-15 1.4415419267167138E-15 0
285 1 14.218481 1 -0 1
286 1 15.281263 1 -0 1
287 0 -4.917177 1E-15 1.4415419267167138E-15 0
288 1 2.2163515 0.8095238 0.30485456129516797 1
289 1 8.312021 1 -0 1
289 1 8.312019 1 -0 1
290 0 -6.442978 1E-15 1.4415419267167138E-15 0
291 0 -5.4686823 1E-15 1.4415419267167138E-15 0
292 1 ? ? ? 0
@ -298,20 +298,20 @@ Instance Label Score Probability Log-loss Assigned
296 0 1.823431 0.8095238 2.3923175087700885 1
297 0 ? ? ? 0
298 0 -2.725597 1E-15 1.4415419267167138E-15 0
299 1 7.8274345 1 -0 1
299 1 7.8274364 1 -0 1
300 1 7.348074 1 -0 1
301 0 -5.4686823 1E-15 1.4415419267167138E-15 0
302 1 15.735762 1 -0 1
302 1 15.735764 1 -0 1
303 0 -5.4686823 1E-15 1.4415419267167138E-15 0
304 1 5.9607973 0.98 0.029146317580716615 1
305 1 8.459471 1 -0 1
305 1 8.459469 1 -0 1
306 0 -5.4686823 1E-15 1.4415419267167138E-15 0
307 0 -5.4686823 1E-15 1.4415419267167138E-15 0
308 1 7.422592 1 -0 1
308 1 7.4225903 1 -0 1
309 0 -1.7474074 0.071428575 0.10691520887754996 0
310 0 -5.3911724 1E-15 1.4415419267167138E-15 0
311 0 -6.442978 1E-15 1.4415419267167138E-15 0
312 1 3.629469 0.9285714 0.10691524360481655 1
312 1 3.6294699 0.9285714 0.10691524360481655 1
313 0 -6.442978 1E-15 1.4415419267167138E-15 0
314 0 -6.0464916 1E-15 1.4415419267167138E-15 0
315 0 ? ? ? 0
@ -328,12 +328,12 @@ Instance Label Score Probability Log-loss Assigned
326 1 4.4103804 0.9285714 0.10691524360481655 1
327 0 -5.95583 1E-15 1.4415419267167138E-15 0
328 1 3.373887 0.8333333 0.26303444023032446 1
329 1 7.8321323 1 -0 1
329 1 7.8321342 1 -0 1
330 1 5.8562517 0.98 0.029146317580716615 1
331 0 -3.2490892 1E-15 1.4415419267167138E-15 0
332 0 -3.1363664 1E-15 1.4415419267167138E-15 0
332 0 -3.1363668 1E-15 1.4415419267167138E-15 0
333 1 4.914962 0.9285714 0.10691524360481655 1
334 1 5.9119463 0.98 0.029146317580716615 1
334 1 5.9119453 0.98 0.029146317580716615 1
335 0 -6.442978 1E-15 1.4415419267167138E-15 0
336 1 5.54352 0.98 0.029146317580716615 1
337 0 -5.4686823 1E-15 1.4415419267167138E-15 0
@ -346,7 +346,7 @@ Instance Label Score Probability Log-loss Assigned
344 1 10.162451 1 -0 1
345 0 -6.442978 1E-15 1.4415419267167138E-15 0
346 0 -3.335825 1E-15 1.4415419267167138E-15 0
347 0 -6.1395845 1E-15 1.4415419267167138E-15 0
347 0 -6.139584 1E-15 1.4415419267167138E-15 0
348 1 0.15727425 0.6363636 0.65207672114864346 1
349 1 4.0622606 0.9285714 0.10691524360481655 1
350 0 -3.93614 1E-15 1.4415419267167138E-15 0
@ -354,19 +354,19 @@ Instance Label Score Probability Log-loss Assigned
352 0 0.4719286 0.6363636 1.4594315756416352 1
353 1 8.696344 1 -0 1
354 0 -5.95583 1E-15 1.4415419267167138E-15 0
355 0 -4.2461534 1E-15 1.4415419267167138E-15 0
355 0 -4.246154 1E-15 1.4415419267167138E-15 0
356 1 -0.69921684 0.5 1 0
357 1 12.852016 1 -0 1
358 1 5.5822067 0.98 0.029146317580716615 1
359 1 5.3672857 0.98 0.029146317580716615 1
360 1 15.333872 1 -0 1
360 1 15.333874 1 -0 1
361 1 6.31769 0.98 0.029146317580716615 1
362 0 -3.5059962 1E-15 1.4415419267167138E-15 0
363 0 -2.065846 0.071428575 0.10691520887754996 0
364 0 -4.9946866 1E-15 1.4415419267167138E-15 0
365 0 -5.4818344 1E-15 1.4415419267167138E-15 0
366 1 13.694569 1 -0 1
367 1 11.299242 1 -0 1
367 1 11.299244 1 -0 1
368 0 -5.8557806 1E-15 1.4415419267167138E-15 0
369 0 -5.4592943 1E-15 1.4415419267167138E-15 0
370 0 -3.8947306 1E-15 1.4415419267167138E-15 0
@ -377,18 +377,18 @@ Instance Label Score Probability Log-loss Assigned
375 0 -6.442978 1E-15 1.4415419267167138E-15 0
376 0 -5.95583 1E-15 1.4415419267167138E-15 0
377 0 -6.0464916 1E-15 1.4415419267167138E-15 0
378 0 -3.803866 1E-15 1.4415419267167138E-15 0
378 0 -3.8038664 1E-15 1.4415419267167138E-15 0
379 0 -2.2557268 1E-15 1.4415419267167138E-15 0
380 0 -6.442978 1E-15 1.4415419267167138E-15 0
381 1 10.07641 1 -0 1
382 0 -3.59721 1E-15 1.4415419267167138E-15 0
381 1 10.076408 1 -0 1
382 0 -3.5972104 1E-15 1.4415419267167138E-15 0
383 0 -5.9689827 1E-15 1.4415419267167138E-15 0
384 0 -5.9689827 1E-15 1.4415419267167138E-15 0
385 0 -3.7061968 1E-15 1.4415419267167138E-15 0
386 1 6.0875874 0.98 0.029146317580716615 1
387 0 -2.33456 1E-15 1.4415419267167138E-15 0
388 0 -5.284807 1E-15 1.4415419267167138E-15 0
389 0 -3.3224106 1E-15 1.4415419267167138E-15 0
388 0 -5.2848067 1E-15 1.4415419267167138E-15 0
389 0 -3.322411 1E-15 1.4415419267167138E-15 0
390 0 -5.6504025 1E-15 1.4415419267167138E-15 0
391 1 10.030338 1 -0 1
392 0 -5.0078387 1E-15 1.4415419267167138E-15 0
@ -396,14 +396,14 @@ Instance Label Score Probability Log-loss Assigned
394 0 -5.241206 1E-15 1.4415419267167138E-15 0
395 0 -5.0078387 1E-15 1.4415419267167138E-15 0
396 0 -4.520691 1E-15 1.4415419267167138E-15 0
397 0 -5.020991 1E-15 1.4415419267167138E-15 0
398 0 -4.6833844 1E-15 1.4415419267167138E-15 0
397 0 -5.0209913 1E-15 1.4415419267167138E-15 0
398 0 -4.683385 1E-15 1.4415419267167138E-15 0
399 0 -5.7283545 1E-15 1.4415419267167138E-15 0
400 1 10.056744 1 -0 1
401 0 -5.4949865 1E-15 1.4415419267167138E-15 0
402 0 -3.2177973 1E-15 1.4415419267167138E-15 0
403 0 -4.145746 1E-15 1.4415419267167138E-15 0
404 0 -5.5076685 1E-15 1.4415419267167138E-15 0
404 0 -5.507669 1E-15 1.4415419267167138E-15 0
405 0 -5.95583 1E-15 1.4415419267167138E-15 0
406 0 -4.1128182 1E-15 1.4415419267167138E-15 0
407 0 -5.95583 1E-15 1.4415419267167138E-15 0
@ -414,7 +414,7 @@ Instance Label Score Probability Log-loss Assigned
412 1 9.230707 1 -0 1
413 0 -3.279101 1E-15 1.4415419267167138E-15 0
414 1 6.7173805 0.98 0.029146317580716615 1
415 0 -0.66683483 0.5 1 0
415 0 -0.6668339 0.5 1 0
416 1 8.809383 1 -0 1
417 0 -5.95583 1E-15 1.4415419267167138E-15 0
418 0 -1.8758616 0.071428575 0.10691520887754996 0
@ -424,19 +424,19 @@ Instance Label Score Probability Log-loss Assigned
422 0 -2.8105893 1E-15 1.4415419267167138E-15 0
423 0 -3.4726496 1E-15 1.4415419267167138E-15 0
424 0 -5.4949865 1E-15 1.4415419267167138E-15 0
425 1 14.817661 1 -0 1
425 1 14.817663 1 -0 1
426 0 -2.8241491 1E-15 1.4415419267167138E-15 0
427 1 4.3530817 0.9285714 0.10691524360481655 1
428 0 -5.95583 1E-15 1.4415419267167138E-15 0
429 0 -5.4818344 1E-15 1.4415419267167138E-15 0
430 0 -5.50395 1E-15 1.4415419267167138E-15 0
431 0 -2.5834923 1E-15 1.4415419267167138E-15 0
432 0 -3.8628192 1E-15 1.4415419267167138E-15 0
431 0 -2.5834928 1E-15 1.4415419267167138E-15 0
432 0 -3.8628197 1E-15 1.4415419267167138E-15 0
433 0 -4.463106 1E-15 1.4415419267167138E-15 0
434 0 5.0084 0.9285714 3.8073544061097437 1
435 1 7.44433 1 -0 1
436 1 3.841198 0.9285714 0.10691524360481655 1
437 0 -5.020991 1E-15 1.4415419267167138E-15 0
434 0 5.008401 0.9285714 3.8073544061097437 1
435 1 7.444332 1 -0 1
436 1 3.841199 0.9285714 0.10691524360481655 1
437 0 -5.0209913 1E-15 1.4415419267167138E-15 0
438 0 -3.822938 1E-15 1.4415419267167138E-15 0
439 0 -4.5469956 1E-15 1.4415419267167138E-15 0
440 1 10.154686 1 -0 1
@ -448,41 +448,41 @@ Instance Label Score Probability Log-loss Assigned
446 0 -6.442978 1E-15 1.4415419267167138E-15 0
447 0 -4.5469956 1E-15 1.4415419267167138E-15 0
448 0 -6.53364 1E-15 1.4415419267167138E-15 0
449 1 10.298002 1 -0 1
449 1 10.298004 1 -0 1
450 0 -4.01365 1E-15 1.4415419267167138E-15 0
451 0 -4.5469956 1E-15 1.4415419267167138E-15 0
452 0 -4.8841314 1E-15 1.4415419267167138E-15 0
453 1 8.777969 1 -0 1
454 0 -5.6234684 1E-15 1.4415419267167138E-15 0
455 1 0.8163538 0.6363636 0.65207672114864346 1
455 1 0.81635284 0.6363636 0.65207672114864346 1
456 1 10.487385 1 -0 1
457 1 9.062626 1 -0 1
457 1 9.062628 1 -0 1
458 0 -4.253397 1E-15 1.4415419267167138E-15 0
459 0 -3.9597979 1E-15 1.4415419267167138E-15 0
460 0 -3.93614 1E-15 1.4415419267167138E-15 0
461 0 -3.6959996 1E-15 1.4415419267167138E-15 0
462 0 -3.4621449 1E-15 1.4415419267167138E-15 0
463 0 -4.823963 1E-15 1.4415419267167138E-15 0
464 0 -5.020991 1E-15 1.4415419267167138E-15 0
465 1 9.785397 1 -0 1
464 0 -5.0209913 1E-15 1.4415419267167138E-15 0
465 1 9.7853985 1 -0 1
466 1 9.541931 1 -0 1
467 1 7.7145195 1 -0 1
468 0 -5.020991 1E-15 1.4415419267167138E-15 0
468 0 -5.0209913 1E-15 1.4415419267167138E-15 0
469 0 -5.6622314 1E-15 1.4415419267167138E-15 0
470 0 -5.0985007 1E-15 1.4415419267167138E-15 0
471 0 -3.4621449 1E-15 1.4415419267167138E-15 0
472 0 -4.163662 1E-15 1.4415419267167138E-15 0
473 0 -5.020991 1E-15 1.4415419267167138E-15 0
473 0 -5.0209913 1E-15 1.4415419267167138E-15 0
474 0 -4.5469956 1E-15 1.4415419267167138E-15 0
475 0 -5.4949865 1E-15 1.4415419267167138E-15 0
476 0 -4.7273927 1E-15 1.4415419267167138E-15 0
477 0 -5.020991 1E-15 1.4415419267167138E-15 0
477 0 -5.0209913 1E-15 1.4415419267167138E-15 0
478 0 -4.4195695 1E-15 1.4415419267167138E-15 0
479 1 8.32148 1 -0 1
480 0 -4.6376576 1E-15 1.4415419267167138E-15 0
481 0 -3.0822616 1E-15 1.4415419267167138E-15 0
482 1 15.4814205 1 -0 1
483 1 10.906593 1 -0 1
482 1 15.481422 1 -0 1
483 1 10.906595 1 -0 1
484 0 -4.253397 1E-15 1.4415419267167138E-15 0
485 0 -5.0232906 1E-15 1.4415419267167138E-15 0
486 0 -5.0985007 1E-15 1.4415419267167138E-15 0
@ -496,7 +496,7 @@ Instance Label Score Probability Log-loss Assigned
494 0 0.9629116 0.6363636 1.4594315756416352 1
495 0 -5.0985007 1E-15 1.4415419267167138E-15 0
496 0 -6.53364 1E-15 1.4415419267167138E-15 0
497 0 -4.8935647 1E-15 1.4415419267167138E-15 0
497 0 -4.893565 1E-15 1.4415419267167138E-15 0
498 0 -4.533843 1E-15 1.4415419267167138E-15 0
499 0 -4.533843 1E-15 1.4415419267167138E-15 0
500 0 -3.0987039 1E-15 1.4415419267167138E-15 0
@ -506,15 +506,15 @@ Instance Label Score Probability Log-loss Assigned
504 0 -6.442978 1E-15 1.4415419267167138E-15 0
505 0 -5.2401342 1E-15 1.4415419267167138E-15 0
506 1 10.447666 1 -0 1
507 0 -5.093737 1E-15 1.4415419267167138E-15 0
507 0 -5.0937376 1E-15 1.4415419267167138E-15 0
508 0 -4.5469956 1E-15 1.4415419267167138E-15 0
509 0 -5.9689827 1E-15 1.4415419267167138E-15 0
510 0 -6.442978 1E-15 1.4415419267167138E-15 0
511 0 -4.0598474 1E-15 1.4415419267167138E-15 0
512 0 -4.5469956 1E-15 1.4415419267167138E-15 0
513 0 -5.0985007 1E-15 1.4415419267167138E-15 0
514 1 10.719854 1 -0 1
515 1 8.6480255 1 -0 1
514 1 10.719856 1 -0 1
515 1 8.648027 1 -0 1
516 0 -6.53364 1E-15 1.4415419267167138E-15 0
517 0 -6.0464916 1E-15 1.4415419267167138E-15 0
518 0 -4.8959603 1E-15 1.4415419267167138E-15 0
@ -525,11 +525,11 @@ Instance Label Score Probability Log-loss Assigned
523 1 7.699238 1 -0 1
524 0 -5.0078387 1E-15 1.4415419267167138E-15 0
525 0 -5.189559 1E-15 1.4415419267167138E-15 0
526 0 -5.020991 1E-15 1.4415419267167138E-15 0
526 0 -5.0209913 1E-15 1.4415419267167138E-15 0
527 0 -4.046695 1E-15 1.4415419267167138E-15 0
528 0 -3.1803741 1E-15 1.4415419267167138E-15 0
529 0 -4.624505 1E-15 1.4415419267167138E-15 0
530 1 6.515935 0.98 0.029146317580716615 1
530 1 6.515936 0.98 0.029146317580716615 1
531 0 -4.1128182 1E-15 1.4415419267167138E-15 0
532 0 -5.559344 1E-15 1.4415419267167138E-15 0
533 0 -5.0078387 1E-15 1.4415419267167138E-15 0
@ -545,16 +545,16 @@ Instance Label Score Probability Log-loss Assigned
543 0 -4.533843 1E-15 1.4415419267167138E-15 0
544 0 -4.589209 1E-15 1.4415419267167138E-15 0
545 0 -4.0598474 1E-15 1.4415419267167138E-15 0
546 1 11.390257 1 -0 1
546 1 11.390259 1 -0 1
547 0 -6.0596447 1E-15 1.4415419267167138E-15 0
548 0 -5.5856485 1E-15 1.4415419267167138E-15 0
549 1 6.3187494 0.98 0.029146317580716615 1
549 1 6.3187485 0.98 0.029146317580716615 1
550 0 -5.0078387 1E-15 1.4415419267167138E-15 0
551 0 -5.4686823 1E-15 1.4415419267167138E-15 0
552 0 -3.1100616 1E-15 1.4415419267167138E-15 0
553 0 -1.7353673 0.071428575 0.10691520887754996 0
552 0 -3.1100621 1E-15 1.4415419267167138E-15 0
553 0 -1.7353668 0.071428575 0.10691520887754996 0
554 0 -5.4949865 1E-15 1.4415419267167138E-15 0
555 0 -1.9254994 0.071428575 0.10691520887754996 0
555 0 -1.9254999 0.071428575 0.10691520887754996 0
556 0 -3.4240565 1E-15 1.4415419267167138E-15 0
557 0 -3.93614 1E-15 1.4415419267167138E-15 0
558 0 -5.4818344 1E-15 1.4415419267167138E-15 0
@ -563,14 +563,14 @@ Instance Label Score Probability Log-loss Assigned
561 0 -3.5726995 1E-15 1.4415419267167138E-15 0
562 0 -5.4686823 1E-15 1.4415419267167138E-15 0
563 0 -5.0078387 1E-15 1.4415419267167138E-15 0
564 0 -3.849667 1E-15 1.4415419267167138E-15 0
565 1 12.08609 1 -0 1
564 0 -3.8496675 1E-15 1.4415419267167138E-15 0
565 1 12.086092 1 -0 1
566 0 -4.2270923 1E-15 1.4415419267167138E-15 0
567 0 -3.6343493 1E-15 1.4415419267167138E-15 0
568 1 4.1473055 0.9285714 0.10691524360481655 1
569 1 10.713882 1 -0 1
570 1 8.017664 1 -0 1
571 1 11.034657 1 -0 1
571 1 11.034658 1 -0 1
572 0 -5.0078387 1E-15 1.4415419267167138E-15 0
573 0 -5.95583 1E-15 1.4415419267167138E-15 0
574 1 5.950967 0.98 0.029146317580716615 1
@ -581,12 +581,12 @@ Instance Label Score Probability Log-loss Assigned
579 0 -5.4686823 1E-15 1.4415419267167138E-15 0
580 0 -3.7662487 1E-15 1.4415419267167138E-15 0
581 1 8.417797 1 -0 1
582 1 7.907978 1 -0 1
582 1 7.90798 1 -0 1
583 0 -5.4949865 1E-15 1.4415419267167138E-15 0
584 0 -2.9291954 1E-15 1.4415419267167138E-15 0
585 0 -6.442978 1E-15 1.4415419267167138E-15 0
586 1 13.981018 1 -0 1
587 0 -3.8628192 1E-15 1.4415419267167138E-15 0
586 1 13.98102 1 -0 1
587 0 -3.8628197 1E-15 1.4415419267167138E-15 0
588 1 5.463169 0.98 0.029146317580716615 1
589 0 -4.5469956 1E-15 1.4415419267167138E-15 0
590 1 3.9684038 0.9285714 0.10691524360481655 1
@ -603,15 +603,15 @@ Instance Label Score Probability Log-loss Assigned
601 0 -6.0464916 1E-15 1.4415419267167138E-15 0
602 0 -4.533843 1E-15 1.4415419267167138E-15 0
603 1 4.8058825 0.9285714 0.10691524360481655 1
604 1 6.1928043 0.98 0.029146317580716615 1
604 1 6.1928034 0.98 0.029146317580716615 1
605 1 9.95545 1 -0 1
606 0 -4.715564 1E-15 1.4415419267167138E-15 0
607 0 -6.442978 1E-15 1.4415419267167138E-15 0
608 1 11.148426 1 -0 1
609 0 -4.5469956 1E-15 1.4415419267167138E-15 0
610 1 8.926189 1 -0 1
610 1 8.926191 1 -0 1
611 1 6.9109592 1 -0 1
612 1 16.893513 1 -0 1
612 1 16.893515 1 -0 1
613 0 -5.226982 1E-15 1.4415419267167138E-15 0
614 0 -5.5724964 1E-15 1.4415419267167138E-15 0
615 0 -3.9466453 1E-15 1.4415419267167138E-15 0
@ -628,16 +628,16 @@ Instance Label Score Probability Log-loss Assigned
626 1 5.760166 0.98 0.029146317580716615 1
627 0 -4.1699953 1E-15 1.4415419267167138E-15 0
628 0 -5.9689827 1E-15 1.4415419267167138E-15 0
629 0 -5.020991 1E-15 1.4415419267167138E-15 0
629 0 -5.0209913 1E-15 1.4415419267167138E-15 0
630 0 -3.358376 1E-15 1.4415419267167138E-15 0
631 0 -4.0598474 1E-15 1.4415419267167138E-15 0
632 0 -6.442978 1E-15 1.4415419267167138E-15 0
633 1 4.3299494 0.9285714 0.10691524360481655 1
634 0 -5.4949865 1E-15 1.4415419267167138E-15 0
635 0 -4.6141906 1E-15 1.4415419267167138E-15 0
636 1 10.127518 1 -0 1
636 1 10.12752 1 -0 1
637 0 -2.4650183 1E-15 1.4415419267167138E-15 0
638 0 -5.020991 1E-15 1.4415419267167138E-15 0
638 0 -5.0209913 1E-15 1.4415419267167138E-15 0
639 0 -3.93614 1E-15 1.4415419267167138E-15 0
640 0 -4.4101357 1E-15 1.4415419267167138E-15 0
641 0 -5.0078387 1E-15 1.4415419267167138E-15 0
@ -647,11 +647,11 @@ Instance Label Score Probability Log-loss Assigned
645 0 -5.0078387 1E-15 1.4415419267167138E-15 0
646 0 -6.021953 1E-15 1.4415419267167138E-15 0
647 0 -5.832123 1E-15 1.4415419267167138E-15 0
648 1 12.236198 1 -0 1
648 1 12.2362 1 -0 1
649 0 -5.0078387 1E-15 1.4415419267167138E-15 0
650 0 -3.7496572 1E-15 1.4415419267167138E-15 0
651 0 -5.2175484 1E-15 1.4415419267167138E-15 0
652 0 -3.8628192 1E-15 1.4415419267167138E-15 0
652 0 -3.8628197 1E-15 1.4415419267167138E-15 0
653 0 -4.533843 1E-15 1.4415419267167138E-15 0
654 0 -4.520691 1E-15 1.4415419267167138E-15 0
655 0 -5.0078387 1E-15 1.4415419267167138E-15 0
@ -665,10 +665,10 @@ Instance Label Score Probability Log-loss Assigned
663 0 -5.3686323 1E-15 1.4415419267167138E-15 0
664 0 -4.3969836 1E-15 1.4415419267167138E-15 0
665 0 -6.442978 1E-15 1.4415419267167138E-15 0
666 0 -3.4969325 1E-15 1.4415419267167138E-15 0
666 0 -3.496932 1E-15 1.4415419267167138E-15 0
667 0 -4.520691 1E-15 1.4415419267167138E-15 0
668 1 2.804366 0.8095238 0.30485456129516797 1
669 1 8.147335 1 -0 1
669 1 8.147337 1 -0 1
670 1 6.4856215 0.98 0.029146317580716615 1
671 0 -4.087837 1E-15 1.4415419267167138E-15 0
672 0 -4.9946866 1E-15 1.4415419267167138E-15 0
@ -679,21 +679,21 @@ Instance Label Score Probability Log-loss Assigned
677 0 -4.5469956 1E-15 1.4415419267167138E-15 0
678 0 -6.442978 1E-15 1.4415419267167138E-15 0
679 0 -5.9689827 1E-15 1.4415419267167138E-15 0
680 1 16.780008 1 -0 1
681 1 9.801077 1 -0 1
682 0 -3.3756714 1E-15 1.4415419267167138E-15 0
680 1 16.78001 1 -0 1
681 1 9.801079 1 -0 1
682 0 -3.3756719 1E-15 1.4415419267167138E-15 0
683 0 -6.442978 1E-15 1.4415419267167138E-15 0
684 0 -6.442978 1E-15 1.4415419267167138E-15 0
685 0 -6.442978 1E-15 1.4415419267167138E-15 0
686 0 -6.442978 1E-15 1.4415419267167138E-15 0
687 0 -4.613783 1E-15 1.4415419267167138E-15 0
688 0 -5.020991 1E-15 1.4415419267167138E-15 0
688 0 -5.0209913 1E-15 1.4415419267167138E-15 0
689 0 -4.177704 1E-15 1.4415419267167138E-15 0
690 0 -5.832123 1E-15 1.4415419267167138E-15 0
691 1 4.4967804 0.9285714 0.10691524360481655 1
692 0 -5.4949865 1E-15 1.4415419267167138E-15 0
693 0 -4.684228 1E-15 1.4415419267167138E-15 0
694 0 -4.954578 1E-15 1.4415419267167138E-15 0
694 0 -4.9545784 1E-15 1.4415419267167138E-15 0
695 0 -5.9689827 1E-15 1.4415419267167138E-15 0
696 1 6.7127876 0.98 0.029146317580716615 1
697 1 5.064643 0.98 0.029146317580716615 1

Просмотреть файл

@ -1,32 +1,32 @@
Instance Label Score Probability Log-loss Assigned
0 0 -3.5726995 0.047724232 0.070548673242470078 0
1 0 3.6101456 0.9209522 3.6611308948912158 1
0 0 -3.5726995 0.047724236 0.070548678886274141 0
1 0 3.6101465 0.9209522 3.6611308948912158 1
2 0 -4.070944 0.033202175 0.04871386747975371 0
3 0 2.470542 0.83073896 2.5626781731328263 1
4 0 -3.4358397 0.05267027 0.078061433982946932 0
5 1 12.382593 0.99988943 0.0001595227277818751 1
4 0 -3.4358397 0.052670274 0.078061439656217479 0
5 1 12.382595 0.99988943 0.0001595227277818751 1
6 0 -1.4209604 0.20405398 0.32925750806385767 0
7 0 -4.701088 0.020848805 0.03039644515807061 0
8 0 -4.6745405 0.021263903 0.031008185910590607 0
9 0 -4.406417 0.025935683 0.037911059564125327 0
8 0 -4.6745405 0.021263905 0.031008188656201943 0
9 0 -4.406417 0.025935685 0.037911062322905087 0
10 0 -5.559344 0.010982096 0.015931457121809788 0
11 0 -5.4818344 0.011639432 0.016890641442649377 0
12 1 -0.14206886 0.40347567 1.3094464075888503 0
13 0 -4.5691886 0.022992346 0.033558231039772665 0
14 1 9.321613 0.998874 0.0016253773809814112 1
14 1 9.321611 0.998874 0.0016253773809814112 1
15 1 1.3856993 0.6830734 0.54988747944718552 1
16 0 -4.533843 0.02360242 0.034459376167277234 0
17 0 -4.046695 0.03379773 0.049602852281362811 0
18 1 7.8903694 0.9966727 0.0048082975514731332 1
17 0 -4.046695 0.033797733 0.049602857843819056 0
18 1 7.8903713 0.9966727 0.0048082975514731332 1
19 0 -3.0987039 0.06699134 0.10003761775121778 0
20 1 7.528511 0.9956263 0.0063237968594455725 1
21 1 7.875204 0.9966343 0.0048638619113426269 1
21 1 7.875206 0.9966343 0.0048638619113426269 1
22 0 -5.0078387 0.016592305 0.02413845106369562 0
23 1 ? ? ? 0
24 0 -5.4686823 0.011754767 0.017059004011272673 0
24 0 -5.4686823 0.011754768 0.017059005370868869 0
25 1 1.741828 0.73848027 0.43736871808798289 1
26 0 -4.9710746 0.01705355 0.024815273012732428 0
27 0 -4.0598474 0.03347344 0.049118716145619364 0
26 0 -4.9710746 0.017053552 0.024815275746583213 0
27 0 -4.0598474 0.033473443 0.049118721706209283 0
28 0 -5.4818344 0.011639432 0.016890641442649377 0
29 0 -5.8557806 0.00878995 0.012737279746493163 0
30 0 -5.0985007 0.015506634 0.022546609667162744 0
@ -38,259 +38,259 @@ Instance Label Score Probability Log-loss Assigned
36 1 9.099108 0.99866724 0.0019240484689165348 1
37 0 -1.113348 0.24456774 0.40462569514389818 0
38 1 6.140953 0.9875705 0.018044317542393044 1
39 1 2.5109024 0.8350005 0.2601510075224418 1
39 1 2.5109034 0.83500063 0.26015080155533699 1
40 0 ? ? ? 0
41 1 3.3300762 0.90403634 0.14554732340521623 1
42 1 8.577511 0.99802166 0.0028569650360322531 1
43 1 0.49126053 0.5223421 0.93693314652059867 1
44 1 8.255751 0.9974761 0.0036458194620463992 1
45 0 -5.6322193 0.010397601 0.015079097093484478 0
46 1 4.5673847 0.96013206 0.058695238307073898 1
45 0 -5.6322193 0.010397602 0.015079098451216091 0
46 1 4.5673857 0.9601321 0.05869514874509995 1
47 0 -5.95583 0.008152756 0.011810148833251818 0
48 0 -3.4358397 0.05267027 0.078061433982946932 0
48 0 -3.4358397 0.052670274 0.078061439656217479 0
49 1 5.3666544 0.9778563 0.032305655935016012 1
50 1 2.5949678 0.84359986 0.2453692461908529 1
51 1 0.12595749 0.45321622 1.141728585060551 1
52 1 5.2992125 0.976721 0.033981595778575298 1
52 1 5.2992115 0.976721 0.033981595778575298 1
53 1 8.407228 0.99774945 0.0032505195711204126 1
54 1 7.649309 0.9960077 0.0057712269479890379 1
54 1 7.649311 0.9960077 0.0057712269479890379 1
55 1 4.478709 0.95747596 0.062691829736720397 1
56 1 5.5541325 0.9807353 0.02806428572372743 1
56 1 5.5541325 0.98073524 0.028064373404193169 1
57 1 1.6657066 0.7271758 0.45962396180677062 1
58 1 2.5265894 0.8366335 0.25733232225246744 1
59 1 1.7368536 0.7377509 0.43879434296981179 1
59 1 1.7368536 0.7377508 0.4387944595285721 1
60 1 2.3288136 0.8150797 0.29498697868205404 1
61 0 -5.5060835 0.0114297075 0.016584542177967555 0
61 0 -5.5060835 0.011429708 0.016584543537116692 0
62 1 6.380088 0.98961115 0.015066341261387473 1
63 1 0.3348999 0.49270445 1.021205589894451 1
63 1 0.3348999 0.49270442 1.0212056771590654 1
64 0 -5.95583 0.008152756 0.011810148833251818 0
65 1 3.8072634 0.9311753 0.1028753176207461 1
66 0 -4.046695 0.03379773 0.049602852281362811 0
67 1 4.218013 0.9486547 0.076045020305197497 1
66 0 -4.046695 0.033797733 0.049602857843819056 0
67 1 4.218014 0.9486548 0.076044929659653121 1
68 1 10.826723 0.9996402 0.00051913703181331893 1
69 0 -5.271654 0.013623926 0.019790289199966723 0
70 0 -3.4726496 0.051294282 0.075967452463448076 0
69 0 -5.2716546 0.013623922 0.019790283751276339 0
70 0 -3.4726496 0.051294286 0.075967458128490192 0
71 1 7.895048 0.99668443 0.0047913008067115544 1
72 0 -2.1755843 0.12635374 0.19487884633663133 0
72 0 -2.1755848 0.1263537 0.1948787725155719 0
73 1 8.9055195 0.9984568 0.0022281210940979582 1
74 1 2.5993576 0.8440387 0.2446189028997863 1
75 0 -4.04116 0.033935115 0.049808004690470989 0
74 1 2.5993576 0.84403867 0.244619004780572 1
75 0 -4.0411606 0.033935104 0.049807988000729261 0
76 0 -5.075033 0.01578076 0.022948375597840527 0
77 0 -3.4995675 0.050309666 0.074470924297704952 0
78 0 -3.6211967 0.04607984 0.068059573236894252 0
79 0 -5.3911724 0.012457773 0.018085656328473053 0
79 0 -5.3911724 0.012457774 0.01808565768903711 0
80 0 -2.7157316 0.087596945 0.13225681838671866 0
81 0 -4.2284155 0.029574301 0.043310338334976231 0
82 0 -3.4452734 0.052314345 0.077519494497433533 0
83 0 -2.1223516 0.13087903 0.20237109943076298 0
84 1 9.694054 0.99915093 0.0012254667568283894 1
85 1 6.2895613 0.9888809 0.016131360230936344 1
85 1 6.2895603 0.9888809 0.016131360230936344 1
86 1 2.6168842 0.84578085 0.24164420028856959 1
87 1 6.91914 0.9930738 0.010027129067340199 1
88 0 -4.046695 0.03379773 0.049602852281362811 0
89 0 -5.085745 0.015655048 0.022764115650391988 0
90 0 -5.4686823 0.011754767 0.017059004011272673 0
91 0 -5.189559 0.014486661 0.021052696761167319 0
92 0 -4.046695 0.03379773 0.049602852281362811 0
88 0 -4.046695 0.033797733 0.049602857843819056 0
89 0 -5.085745 0.01565505 0.022764118380358665 0
90 0 -5.4686823 0.011754768 0.017059005370868869 0
91 0 -5.189559 0.014486662 0.02105269812453239 0
92 0 -4.046695 0.033797733 0.049602857843819056 0
93 0 -5.95583 0.008152756 0.011810148833251818 0
94 0 -4.9946866 0.016755886 0.024378450658658433 0
95 0 -5.4686823 0.011754767 0.017059004011272673 0
96 0 -5.663555 0.010155837 0.014726683875270435 0
97 0 -3.5726995 0.047724232 0.070548673242470078 0
98 1 8.590231 0.9980406 0.0028295658493644239 1
95 0 -5.4686823 0.011754768 0.017059005370868869 0
96 0 -5.663555 0.010155838 0.014726685232670428 0
97 0 -3.5726995 0.047724236 0.070548678886274141 0
98 1 8.590233 0.9980406 0.0028295658493644239 1
99 1 10.917194 0.99966407 0.00048472853254951715 1
100 1 4.8476706 0.96752024 0.047636257434475471 1
101 1 -0.84280396 0.2844349 1.8138295272133309 0
100 1 4.8476696 0.9675202 0.047636346312542086 1
101 1 -0.842803 0.28443503 1.813828922566693 0
102 0 -3.7530966 0.04187613 0.06171590932041901 0
103 1 1.7746449 0.74325943 0.42806223277958716 1
104 1 12.140858 0.9998672 0.00019160139559387039 1
105 1 2.5560703 0.83966714 0.25211056290937062 1
106 1 9.259367 0.99881965 0.0017038920105930569 1
106 1 9.259369 0.99881965 0.0017038920105930569 1
107 1 6.720646 0.99195737 0.011649978820645172 1
108 0 -5.5617743 0.010962089 0.015902272030853013 0
109 1 6.871725 0.992822 0.010393022735684912 1
108 0 -5.5617743 0.0109620895 0.015902273389359543 0
109 1 6.871727 0.992822 0.010393022735684912 1
110 0 -2.766693 0.08455608 0.12745658613888911 0
111 1 3.848031 0.93313104 0.099848402613633994 1
112 1 9.425768 0.9989595 0.0015019320975399703 1
112 1 9.42577 0.9989595 0.0015019320975399703 1
113 1 9.506622 0.9990213 0.0014126689718023965 1
114 0 -3.0727453 0.06823268 0.10195836010283554 0
115 0 -4.643991 0.02175159 0.031727234757411307 0
116 0 -0.6618881 0.31317255 0.54198039303031509 0
116 0 -0.6618881 0.31317252 0.54198033042993166 0
117 1 9.617277 0.9991 0.0012989676266954972 1
118 0 -5.3621607 0.012731451 0.018485525732496611 0
118 0 -5.3621607 0.012731452 0.018485527093437829 0
119 0 -3.9435177 0.036449015 0.053567088295960068 0
120 0 -4.8696556 0.018392263 0.026781474537826103 0
121 0 -3.469522 0.051409863 0.076143226767382041 0
122 1 9.680521 0.99914217 0.0012381182790972595 1
122 1 9.680523 0.99914217 0.0012381182790972595 1
123 1 3.8165932 0.9316275 0.10217485034891999 1
124 1 7.6522446 0.99601656 0.0057583629403995997 1
125 0 -5.95583 0.008152756 0.011810148833251818 0
126 1 8.564953 0.9980027 0.0028843647430662487 1
126 1 8.564951 0.9980027 0.0028843647430662487 1
127 0 -4.520691 0.023833439 0.034800762077037174 0
128 1 4.848981 0.9675514 0.04758977495588574 1
129 0 -5.717684 0.009751258 0.014137132147530099 0
130 0 -3.4726496 0.051294282 0.075967452463448076 0
130 0 -3.4726496 0.051294286 0.075967458128490192 0
131 0 -4.9946866 0.016755886 0.024378450658658433 0
132 1 8.60223 0.9980583 0.0028039765128859018 1
133 0 -4.8108106 0.019215737 0.027992263501116436 0
134 0 -4.9171767 0.017752616 0.025841674110087472 0
133 0 -4.810811 0.019215731 0.027992255281483396 0
134 0 -4.917177 0.01775261 0.025841665902698104 0
135 0 -2.7288966 0.08680205 0.13100047471163517 0
136 0 -4.533843 0.02360242 0.034459376167277234 0
137 0 -5.4949865 0.011525215 0.016723929655280523 0
138 0 -4.2402444 0.029317858 0.04292914403934768 0
137 0 -5.4949865 0.011525216 0.016723931014560982 0
138 0 -4.2402444 0.02931786 0.042929146807739925 0
139 0 ? ? ? 0
140 0 -5.4949865 0.011525215 0.016723929655280523 0
140 0 -5.4949865 0.011525216 0.016723931014560982 0
141 0 -5.9689827 0.008072471 0.011693375209389432 0
142 1 4.4324036 0.95602256 0.064883430994521443 1
143 0 -4.643991 0.02175159 0.031727234757411307 0
144 0 -5.4818344 0.011639432 0.016890641442649377 0
145 0 ? ? ? 0
146 1 1.3394356 0.6754276 0.56612692807369991 1
147 0 -5.4154215 0.012233486 0.017758034331297672 0
147 0 -5.4154215 0.012233487 0.017758035691552793 0
148 0 -1.012373 0.25899473 0.43244428867240287 0
149 1 11.461615 0.99977773 0.00032069729386163213 1
150 0 -5.559344 0.010982096 0.015931457121809788 0
151 1 5.006485 0.9711001 0.042308092038938809 1
152 1 9.715746 0.99916476 0.0012054999542047689 1
152 1 9.715748 0.99916476 0.0012054999542047689 1
153 0 -4.1214976 0.03199297 0.046910567277187794 0
154 0 -6.442978 0.0056481995 0.008171728927378108 0
154 0 -6.442978 0.0056482 0.0081717296030013944 0
155 1 3.7769232 0.9296856 0.10518519653096636 1
156 0 -5.5348053 0.0111861285 0.016229112739800475 0
157 0 -4.9946866 0.016755886 0.024378450658658433 0
158 0 ? ? ? 0
159 1 12.346203 0.99988633 0.0001639947780942108 1
160 1 9.039492 0.99860567 0.002012998795947356 1
161 0 -3.849667 0.039033562 0.057442049421200084 0
160 1 9.039494 0.99860567 0.002012998795947356 1
161 0 -3.8496675 0.039033547 0.057442027050147004 0
162 0 -4.520691 0.023833439 0.034800762077037174 0
163 0 -3.387055 0.05454765 0.080923343778042084 0
163 0 -3.387055 0.054547653 0.080923349462577995 0
164 0 ? ? ? 0
165 0 -3.39992 0.05404653 0.080158873955017459 0
165 0 -3.3999205 0.05404651 0.080158845547395108 0
166 1 7.976183 0.9968817 0.004505750926832852 1
167 1 8.355644 0.99765986 0.0033800618776249807 1
168 0 -4.520691 0.023833439 0.034800762077037174 0
169 0 -6.2282124 0.00664095 0.0096128205240473656 0
170 0 -5.4949865 0.011525215 0.016723929655280523 0
171 0 -5.4686823 0.011754767 0.017059004011272673 0
170 0 -5.4949865 0.011525216 0.016723931014560982 0
171 0 -5.4686823 0.011754768 0.017059005370868869 0
172 0 -5.95583 0.008152756 0.011810148833251818 0
173 1 15.1560135 0.9999865 1.9434170443242565E-05 1
174 1 6.1769247 0.9879011 0.017561488134486943 1
175 1 7.842922 0.99655116 0.004984229936716684 1
176 0 -4.9946866 0.016755886 0.024378450658658433 0
177 1 4.766121 0.96551895 0.050623517901417933 1
178 0 -4.046695 0.03379773 0.049602852281362811 0
178 0 -4.046695 0.033797733 0.049602857843819056 0
179 1 2.290575 0.8106676 0.30281765649168213 1
180 0 -5.559344 0.010982096 0.015931457121809788 0
181 0 -6.442978 0.0056481995 0.008171728927378108 0
181 0 -6.442978 0.0056482 0.0081717296030013944 0
182 0 -3.0987039 0.06699134 0.10003761775121778 0
183 1 9.159964 0.9987273 0.0018372561468384253 1
184 1 6.2014647 0.98812157 0.017239546569330137 1
185 0 -5.0853486 0.015659682 0.022770907823479652 0
186 1 5.7654104 0.9835412 0.023942621168576837 1
187 1 13.977449 0.99996704 4.7553986690113E-05 1
188 1 9.065281 0.99863267 0.0019739908621602127 1
187 1 13.977451 0.99996704 4.7553986690113E-05 1
188 1 9.065283 0.99863267 0.0019739908621602127 1
189 0 -4.7540584 0.020044118 0.029211295141143595 0
190 1 11.957216 0.99984735 0.0002202405944450654 1
191 1 10.956871 0.999674 0.00047036322693564959 1
192 0 -4.0598474 0.03347344 0.049118716145619364 0
193 0 -5.4686823 0.011754767 0.017059004011272673 0
190 1 11.957218 0.99984735 0.0002202405944450654 1
191 1 10.956873 0.999674 0.00047036322693564959 1
192 0 -4.0598474 0.033473443 0.049118721706209283 0
193 0 -5.4686823 0.011754768 0.017059005370868869 0
194 0 -4.520691 0.023833439 0.034800762077037174 0
195 0 -4.046695 0.03379773 0.049602852281362811 0
195 0 -4.046695 0.033797733 0.049602857843819056 0
196 0 6.8652763 0.992787 7.1151855643261381 1
197 0 -2.6564164 0.09126051 0.13806131755901335 0
198 0 -6.442978 0.0056481995 0.008171728927378108 0
198 0 -6.442978 0.0056482 0.0081717296030013944 0
199 0 -5.0078387 0.016592305 0.02413845106369562 0
200 1 10.36586 0.9994898 0.00073627359086373204 1
201 1 9.8694935 0.9992566 0.0010728826448553252 1
202 0 -5.4686823 0.011754767 0.017059004011272673 0
203 0 -3.5726995 0.047724232 0.070548673242470078 0
204 0 -5.4686823 0.011754767 0.017059004011272673 0
201 1 9.869495 0.9992566 0.0010728826448553252 1
202 0 -5.4686823 0.011754768 0.017059005370868869 0
203 0 -3.5726995 0.047724236 0.070548678886274141 0
204 0 -5.4686823 0.011754768 0.017059005370868869 0
205 1 12.086601 0.99986166 0.00019959967319162043 1
206 1 5.944168 0.98559827 0.020928376857247459 1
206 1 5.944169 0.98559827 0.020928376857247459 1
207 0 -5.559344 0.010982096 0.015931457121809788 0
208 0 -5.559344 0.010982096 0.015931457121809788 0
209 0 -3.6633615 0.04469411 0.065965336354842946 0
210 1 14.534113 0.99997836 3.1215188826316377E-05 1
211 1 9.64962 0.99912184 0.0012674667953664828 1
212 0 -5.4686823 0.011754767 0.017059004011272673 0
212 0 -5.4686823 0.011754768 0.017059005370868869 0
213 1 14.529058 0.9999783 3.1301182014901005E-05 1
214 1 13.868914 0.9999642 5.1681712271066226E-05 1
215 1 7.643732 0.9959909 0.0057955739072098177 1
215 1 7.643734 0.9959909 0.0057955739072098177 1
216 0 -5.95583 0.008152756 0.011810148833251818 0
217 0 -5.4686823 0.011754767 0.017059004011272673 0
218 1 7.88678 0.99666363 0.0048214119279433977 1
217 0 -5.4686823 0.011754768 0.017059005370868869 0
218 1 7.8867817 0.99666363 0.0048214119279433977 1
219 0 -2.511506 0.100795746 0.15327923389796996 0
220 0 -5.1632547 0.014774316 0.021473856707274121 0
221 1 10.395216 0.999501 0.00072009905980506843 1
220 0 -5.1632547 0.014774317 0.021473858071037247 0
221 1 10.395218 0.999501 0.00072009905980506843 1
222 1 -2.214662 0.1231175 3.0218922639873447 0
223 1 5.7424126 0.9832564 0.024360423750620218 1
224 1 9.995327 0.99932426 0.00097521318777220637 1
225 0 -5.95583 0.008152756 0.011810148833251818 0
226 1 10.225868 0.9994326 0.00081878372812222485 1
227 1 7.459608 0.9953927 0.0066623169983452231 1
227 1 7.459608 0.9953926 0.0066624033876966004 1
228 0 -5.559344 0.010982096 0.015931457121809788 0
229 1 12.666513 0.9999109 0.00012856275965089447 1
229 1 12.666515 0.9999109 0.00012856275965089447 1
230 1 6.1583214 0.9877312 0.017809586200967932 1
231 1 8.623034 0.99808866 0.0027601224428665879 1
232 0 1.2822819 0.66585165 1.5814393559263284 1
232 0 1.2822819 0.6658516 1.5814390985815938 1
233 1 6.3825197 0.9896301 0.015038709216571163 1
234 0 -2.8964381 0.07724253 0.115976584697302 0
235 0 ? ? ? 0
236 1 11.420414 0.99977064 0.00033093257283884215 1
237 1 6.535795 0.9907579 0.01339555438417007 1
238 1 12.422874 0.9998928 0.00015470668910224405 1
238 1 12.422876 0.9998928 0.00015470668910224405 1
239 1 5.9025297 0.985143 0.021594929859074165 1
240 0 -2.0179915 0.14015017 0.21784338265744002 0
241 0 -4.0004973 0.034961022 0.051340881416726061 0
242 0 -4.9946866 0.016755886 0.024378450658658433 0
243 0 -2.6953988 0.088837564 0.13421982380863931 0
244 0 -5.4686823 0.011754767 0.017059004011272673 0
244 0 -5.4686823 0.011754768 0.017059005370868869 0
245 0 -2.817525 0.08161871 0.12283484643891715 0
246 1 11.424002 0.9997713 0.00032998645156814019 1
247 1 3.104393 0.8881221 0.17117009101578401 1
248 0 -3.0615559 0.068774305 0.10279722872890984 0
249 0 ? ? ? 0
250 0 -6.021953 0.007756997 0.011234610933401622 0
250 0 -6.021953 0.0077569974 0.011234611610460798 0
251 1 8.872498 0.9984177 0.0022846196981478615 1
252 0 4.5387735 0.95929295 4.6185774530404009 1
253 1 8.577511 0.99802166 0.0028569650360322531 1
254 1 6.380088 0.98961115 0.015066341261387473 1
255 1 4.052039 0.94216394 0.085949972449708326 1
256 0 -5.4949865 0.011525215 0.016723929655280523 0
256 0 -5.4949865 0.011525216 0.016723931014560982 0
257 0 -5.0078387 0.016592305 0.02413845106369562 0
258 0 -4.520691 0.023833439 0.034800762077037174 0
259 0 2.9647484 0.87715596 3.0251002258142448 1
260 1 9.870924 0.99925745 0.0010716778711863072 1
259 0 2.9647484 0.8771559 3.0250995258103677 1
260 1 9.870926 0.99925745 0.0010716778711863072 1
261 1 12.206299 0.99987364 0.00018231312886902128 1
262 1 9.653839 0.99912465 0.0012634216564773898 1
263 1 8.981979 0.9985436 0.002102643541396716 1
264 1 5.664708 0.9822578 0.025826400239286989 1
265 0 -2.494875 0.10194499 0.15512427623997485 0
265 0 -2.4948754 0.10194495 0.15512421639444568 0
266 1 7.3661633 0.99505585 0.0071505858244227481 1
267 1 3.3009605 0.90210307 0.14863582221193838 1
267 1 3.3009605 0.902103 0.14863591753511315 1
268 1 9.372967 0.998917 0.0015633090806578933 1
269 0 -5.4686823 0.011754767 0.017059004011272673 0
270 1 6.031377 0.9865078 0.01959767586907752 1
271 0 -3.5726995 0.047724232 0.070548673242470078 0
272 1 3.3009605 0.90210307 0.14863582221193838 1
269 0 -5.4686823 0.011754768 0.017059005370868869 0
270 1 6.031377 0.9865077 0.019597763036488004 1
271 0 -3.5726995 0.047724236 0.070548678886274141 0
272 1 3.3009605 0.902103 0.14863591753511315 1
273 1 0.21747208 0.4704687 1.0878293505835543 1
274 0 -4.3236628 0.02756968 0.040333217470490158 0
274 0 -4.323663 0.02756967 0.040333203653413245 0
275 0 ? ? ? 0
276 0 -5.0078387 0.016592305 0.02413845106369562 0
277 0 -5.95583 0.008152756 0.011810148833251818 0
278 0 -5.4686823 0.011754767 0.017059004011272673 0
278 0 -5.4686823 0.011754768 0.017059005370868869 0
279 1 7.127905 0.9940822 0.0085629246022787941 1
280 0 -4.520691 0.023833439 0.034800762077037174 0
281 0 -4.689259 0.021032775 0.030667534203555599 0
282 1 4.4381237 0.95620465 0.064608669189911136 1
282 1 4.4381237 0.9562046 0.064608759119747658 1
283 1 6.0636253 0.9868295 0.019127222915579972 1
284 1 7.431343 0.99529326 0.006806421628886848 1
285 1 14.218479 0.9999725 3.9642545670177728E-05 1
286 1 15.281261 0.9999877 1.7714321792245208E-05 1
287 0 -4.9171767 0.017752616 0.025841674110087472 0
285 1 14.218481 0.9999725 3.9642545670177728E-05 1
286 1 15.281263 0.9999877 1.7714321792245208E-05 1
287 0 -4.917177 0.01775261 0.025841665902698104 0
288 1 2.2163515 0.80187416 0.31855224459431192 1
289 1 8.312021 0.9975813 0.0034936687628036997 1
290 0 -6.442978 0.0056481995 0.008171728927378108 0
291 0 -5.4686823 0.011754767 0.017059004011272673 0
289 1 8.312019 0.9975813 0.0034936687628036997 1
290 0 -6.442978 0.0056482 0.0081717296030013944 0
291 0 -5.4686823 0.011754768 0.017059005370868869 0
292 1 ? ? ? 0
293 1 5.542122 0.9805624 0.028318669172894068 1
294 0 ? ? ? 0
@ -298,24 +298,24 @@ Instance Label Score Probability Log-loss Assigned
296 0 1.823431 0.75025773 2.0014880731401443 1
297 0 ? ? ? 0
298 0 -2.725597 0.087000675 0.13131430208208369 0
299 1 7.8274345 0.9965105 0.0050430801821242759 1
299 1 7.8274364 0.99651057 0.0050429938896844372 1
300 1 7.348074 0.9949879 0.0072491063826461647 1
301 0 -5.4686823 0.011754767 0.017059004011272673 0
302 1 15.735762 0.9999913 1.2554788140693439E-05 1
303 0 -5.4686823 0.011754767 0.017059004011272673 0
301 0 -5.4686823 0.011754768 0.017059005370868869 0
302 1 15.735764 0.9999913 1.2554788140693439E-05 1
303 0 -5.4686823 0.011754768 0.017059005370868869 0
304 1 5.9607973 0.98577625 0.020667878309752356 1
305 1 8.459471 0.9978367 0.003124349823870973 1
306 0 -5.4686823 0.011754767 0.017059004011272673 0
307 0 -5.4686823 0.011754767 0.017059004011272673 0
308 1 7.422592 0.9952621 0.0068516084791740307 1
305 1 8.459469 0.9978367 0.003124349823870973 1
306 0 -5.4686823 0.011754768 0.017059005370868869 0
307 0 -5.4686823 0.011754768 0.017059005370868869 0
308 1 7.4225903 0.9952621 0.0068516084791740307 1
309 0 -1.7474074 0.16675761 0.26319186454303012 0
310 0 -5.3911724 0.012457773 0.018085656328473053 0
311 0 -6.442978 0.0056481995 0.008171728927378108 0
312 1 3.629469 0.92201275 0.11714139960601294 1
313 0 -6.442978 0.0056481995 0.008171728927378108 0
314 0 -6.0464916 0.0076150293 0.011028208636679729 0
310 0 -5.3911724 0.012457774 0.01808565768903711 0
311 0 -6.442978 0.0056482 0.0081717296030013944 0
312 1 3.6294699 0.9220128 0.11714130634122567 1
313 0 -6.442978 0.0056482 0.0081717296030013944 0
314 0 -6.0464916 0.00761503 0.011028209313642047 0
315 0 ? ? ? 0
316 1 3.6177397 0.92137057 0.11814658455212051 1
316 1 3.6177397 0.9213705 0.11814667788191786 1
317 1 9.215706 0.99877995 0.0017612310516048875 1
318 0 -5.1966968 0.014409562 0.020939834998732896 0
319 0 2.6369457 0.84775543 2.7155373416013662 1
@ -323,30 +323,30 @@ Instance Label Score Probability Log-loss Assigned
321 0 ? ? ? 0
322 0 -4.520691 0.023833439 0.034800762077037174 0
323 1 5.5612926 0.98083764 0.027913746222999549 1
324 0 -5.4686823 0.011754767 0.017059004011272673 0
325 0 -4.1927576 0.030360566 0.044479722987494717 0
324 0 -5.4686823 0.011754768 0.017059005370868869 0
325 0 -4.1927576 0.030360568 0.044479725758863976 0
326 1 4.4103804 0.95531476 0.065951946768905437 1
327 0 -5.95583 0.008152756 0.011810148833251818 0
328 1 3.373887 0.9068811 0.141014691181642 1
329 1 7.8321323 0.9965229 0.0050251314657524084 1
329 1 7.8321342 0.9965229 0.0050251314657524084 1
330 1 5.8562517 0.98462033 0.022360562903046506 1
331 0 -3.2490892 0.060203623 0.089579888898278004 0
332 0 -3.1363664 0.065227546 0.097312873359097038 0
332 0 -3.1363668 0.06522752 0.097312838862202627 0
333 1 4.914962 0.9690866 0.04530251936714582 1
334 1 5.9119463 0.9852472 0.021442358214181414 1
335 0 -6.442978 0.0056481995 0.008171728927378108 0
334 1 5.9119453 0.98524714 0.021442445493118613 1
335 0 -6.442978 0.0056482 0.0081717296030013944 0
336 1 5.54352 0.9805826 0.028288940560717461 1
337 0 -5.4686823 0.011754767 0.017059004011272673 0
338 0 -6.0464916 0.0076150293 0.011028208636679729 0
337 0 -5.4686823 0.011754768 0.017059005370868869 0
338 0 -6.0464916 0.00761503 0.011028209313642047 0
339 1 5.684024 0.98251134 0.025454033740074194 1
340 1 6.620782 0.9913299 0.012562837713558307 1
341 0 -5.4686823 0.011754767 0.017059004011272673 0
341 0 -5.4686823 0.011754768 0.017059005370868869 0
342 0 -5.9689827 0.008072471 0.011693375209389432 0
343 0 -6.442978 0.0056481995 0.008171728927378108 0
343 0 -6.442978 0.0056482 0.0081717296030013944 0
344 1 10.162451 0.99940467 0.00085913711935366719 1
345 0 -6.442978 0.0056481995 0.008171728927378108 0
345 0 -6.442978 0.0056482 0.0081717296030013944 0
346 0 -3.335825 0.0565869 0.084038459237484736 0
347 0 -6.1395845 0.0070995023 0.010278947729356253 0
347 0 -6.139584 0.0070995055 0.01027895246563207 0
348 1 0.15727425 0.45910957 1.1230895756645052 1
349 1 4.0622606 0.94258505 0.085305293794040227 1
350 0 -3.93614 0.03664608 0.053862176491974861 0
@ -354,56 +354,56 @@ Instance Label Score Probability Log-loss Assigned
352 0 0.4719286 0.51868206 1.0549379053712531 1
353 1 8.696344 0.9981919 0.0026109079692710987 1
354 0 -5.95583 0.008152756 0.011810148833251818 0
355 0 -4.2461534 0.029190565 0.042739964517025851 0
355 0 -4.246154 0.029190555 0.042739950676879641 0
356 1 -0.69921684 0.30711415 1.7031530909424435 0
357 1 12.852016 0.9999226 0.00011170705633068974 1
358 1 5.5822067 0.9811336 0.027478523800853215 1
358 1 5.5822067 0.9811335 0.027478611445726227 1
359 1 5.3672857 0.97786665 0.032290354697391166 1
360 1 15.333872 0.9999882 1.7026382905914664E-05 1
360 1 15.333874 0.9999882 1.7026382905914664E-05 1
361 1 6.31769 0.9891131 0.0157926107591757 1
362 0 -3.5059962 0.050077174 0.074117784460681763 0
363 0 -2.065846 0.13583243 0.21061700181839857 0
364 0 -4.9946866 0.016755886 0.024378450658658433 0
365 0 -5.4818344 0.011639432 0.016890641442649377 0
366 1 13.694569 0.9999591 5.899125529457858E-05 1
367 1 11.299242 0.9997486 0.00036275701338483524 1
367 1 11.299244 0.9997486 0.00036275701338483524 1
368 0 -5.8557806 0.00878995 0.012737279746493163 0
369 0 -5.4592943 0.011837783 0.017180200787587779 0
369 0 -5.4592943 0.011837784 0.017180202147298197 0
370 0 -3.8947306 0.03777132 0.055548296888384752 0
371 0 -5.8557806 0.00878995 0.012737279746493163 0
372 0 -4.2402444 0.029317858 0.04292914403934768 0
372 0 -4.2402444 0.02931786 0.042929146807739925 0
373 0 -3.7544198 0.041835874 0.061655295893265259 0
374 0 -4.71424 0.020646105 0.030097814327393193 0
375 0 -6.442978 0.0056481995 0.008171728927378108 0
375 0 -6.442978 0.0056482 0.0081717296030013944 0
376 0 -5.95583 0.008152756 0.011810148833251818 0
377 0 -6.0464916 0.0076150293 0.011028208636679729 0
378 0 -3.803866 0.04035788 0.059431614458031419 0
377 0 -6.0464916 0.00761503 0.011028209313642047 0
378 0 -3.8038664 0.040357865 0.059431592056106 0
379 0 -2.2557268 0.11979375 0.18408647967245978 0
380 0 -6.442978 0.0056481995 0.008171728927378108 0
381 1 10.07641 0.99936455 0.00091704491714961699 1
382 0 -3.59721 0.04688631 0.069279781860915407 0
380 0 -6.442978 0.0056482 0.0081717296030013944 0
381 1 10.076408 0.99936455 0.00091704491714961699 1
382 0 -3.5972104 0.046886295 0.069279759305546196 0
383 0 -5.9689827 0.008072471 0.011693375209389432 0
384 0 -5.9689827 0.008072471 0.011693375209389432 0
385 0 -3.7061968 0.043327074 0.063902325254427392 0
386 1 6.0875874 0.9870637 0.018784894450298191 1
387 0 -2.33456 0.113630086 0.17401918227784446 0
388 0 -5.284807 0.013490492 0.019595138482545987 0
389 0 -3.3224106 0.057132594 0.084873194157620097 0
390 0 -5.6504025 0.010256628 0.014873593254337859 0
388 0 -5.2848067 0.013490497 0.01959514665447612 0
389 0 -3.322411 0.057132576 0.084873165657017816 0
390 0 -5.6504025 0.0102566285 0.014873594611876085 0
391 1 10.030338 0.99934196 0.00094965672085389622 1
392 0 -5.0078387 0.016592305 0.02413845106369562 0
393 0 -6.53364 0.0052747843 0.0076300462926347243 0
394 0 -5.241206 0.013937826 0.020249479819272553 0
393 0 -6.53364 0.0052747848 0.007630046968004383 0
394 0 -5.241206 0.013937827 0.020249481181878783 0
395 0 -5.0078387 0.016592305 0.02413845106369562 0
396 0 -4.520691 0.023833439 0.034800762077037174 0
397 0 -5.020991 0.016430292 0.023900791829114004 0
398 0 -4.6833844 0.021124728 0.030803051162014403 0
397 0 -5.0209913 0.016430289 0.023900786364877163 0
398 0 -4.683385 0.021124722 0.030803042926351529 0
399 0 -5.7283545 0.009673405 0.014023712470766305 0
400 1 10.056744 0.999355 0.00093081234331069047 1
401 0 -5.4949865 0.011525215 0.016723929655280523 0
401 0 -5.4949865 0.011525216 0.016723931014560982 0
402 0 -3.2177973 0.061560776 0.091664779980531616 0
403 0 -4.145746 0.03142818 0.046069066605854456 0
404 0 -5.5076685 0.01141613 0.016564727278775459 0
404 0 -5.507669 0.011416127 0.016564723201384055 0
405 0 -5.95583 0.008152756 0.011810148833251818 0
406 0 -4.1128182 0.0321975 0.047215431190392593 0
407 0 -5.95583 0.008152756 0.011810148833251818 0
@ -414,286 +414,286 @@ Instance Label Score Probability Log-loss Assigned
412 1 9.230707 0.9987937 0.0017413429278913565 1
413 0 -3.279101 0.05892835 0.087623528685202179 0
414 1 6.7173805 0.9919376 0.011678759699519599 1
415 0 -0.66683483 0.31236595 0.54028710770594346 0
415 0 -0.6668339 0.3123661 0.54028742034074773 0
416 1 8.809383 0.9983402 0.0023965899325754819 1
417 0 -5.95583 0.008152756 0.011810148833251818 0
418 0 -1.8758616 0.15365383 0.24068022447923637 0
419 0 -5.4421444 0.011990936 0.017403817056089083 0
419 0 -5.4421444 0.0119909365 0.017403818416010273 0
420 0 -2.5893164 0.09557056 0.14492013592578398 0
421 1 11.824856 0.99983126 0.00024346198385283565 1
422 0 -2.8105893 0.08201394 0.12345585262262933 0
423 0 -3.4726496 0.051294282 0.075967452463448076 0
424 0 -5.4949865 0.011525215 0.016723929655280523 0
425 1 14.817661 0.9999826 2.5109685538071405E-05 1
423 0 -3.4726496 0.051294286 0.075967458128490192 0
424 0 -5.4949865 0.011525216 0.016723931014560982 0
425 1 14.817663 0.9999826 2.5109685538071405E-05 1
426 0 -2.8241491 0.08124284 0.12224450219548814 0
427 1 4.3530817 0.9534221 0.068812983796401356 1
428 0 -5.95583 0.008152756 0.011810148833251818 0
429 0 -5.4818344 0.011639432 0.016890641442649377 0
430 0 -5.50395 0.011448008 0.01661124970571581 0
431 0 -2.5834923 0.09595312 0.14553051116273649 0
432 0 -3.8628192 0.038661044 0.056882898238471563 0
431 0 -2.5834928 0.09595309 0.14553046360362973 0
432 0 -3.8628197 0.03866103 0.056882875876087251 0
433 0 -4.463106 0.024871154 0.036335236482012728 0
434 0 5.0084 0.97114086 5.1148279570464927 1
435 1 7.44433 0.9953392 0.0067398103254229808 1
436 1 3.841198 0.93280685 0.10034971278754636 1
437 0 -5.020991 0.016430292 0.023900791829114004 0
434 0 5.008401 0.97114086 5.1148279570464927 1
435 1 7.444332 0.9953392 0.0067398103254229808 1
436 1 3.841199 0.9328069 0.10034962060198541 1
437 0 -5.0209913 0.016430289 0.023900786364877163 0
438 0 -3.822938 0.03980127 0.058595066713824417 0
439 0 -4.5469956 0.023373578 0.034121284818622755 0
439 0 -4.5469956 0.02337358 0.034121287570165061 0
440 1 10.154686 0.99940115 0.00086421363869066531 1
441 0 -1.8604474 0.1551806 0.2432851360775424 0
442 0 -4.9326286 0.017549373 0.02554318855864653 0
443 0 -5.9932313 0.007926505 0.011481092360580692 0
442 0 -4.9326286 0.017549375 0.025543191293877034 0
443 0 -5.9932313 0.007926506 0.011481093714930413 0
444 0 -2.442047 0.10567284 0.16112539871549494 0
445 0 -5.9689827 0.008072471 0.011693375209389432 0
446 0 -6.442978 0.0056481995 0.008171728927378108 0
447 0 -4.5469956 0.023373578 0.034121284818622755 0
448 0 -6.53364 0.0052747843 0.0076300462926347243 0
449 1 10.298002 0.99946284 0.00077516203531090419 1
446 0 -6.442978 0.0056482 0.0081717296030013944 0
447 0 -4.5469956 0.02337358 0.034121287570165061 0
448 0 -6.53364 0.0052747848 0.007630046968004383 0
449 1 10.298004 0.99946284 0.00077516203531090419 1
450 0 -4.01365 0.03462596 0.050840061269355086 0
451 0 -4.5469956 0.023373578 0.034121284818622755 0
451 0 -4.5469956 0.02337358 0.034121287570165061 0
452 0 -4.8841314 0.018195055 0.026491662451451816 0
453 1 8.777969 0.99830025 0.0024543010625143486 1
454 0 -5.6234684 0.010466129 0.015179003802371546 0
455 1 0.8163538 0.5832277 0.77786886853914494 1
455 1 0.81635284 0.58322746 0.77786945830087184 1
456 1 10.487385 0.99953467 0.00067149052326743921 1
457 1 9.062626 0.9986299 0.0019779518845872311 1
458 0 -4.253397 0.02903525 0.042509173626544897 0
457 1 9.062628 0.9986299 0.0019779518845872311 1
458 0 -4.253397 0.029035252 0.042509176394131383 0
459 0 -3.9597979 0.036017757 0.052921523163131159 0
460 0 -3.93614 0.03664608 0.053862176491974861 0
461 0 -3.6959996 0.04364884 0.064387638591170013 0
461 0 -3.6959996 0.043648843 0.064387644210923578 0
462 0 -3.4621449 0.051683456 0.076559389501439229 0
463 0 -4.823963 0.019028598 0.027717016988036743 0
464 0 -5.020991 0.016430292 0.023900791829114004 0
465 1 9.785397 0.9992077 0.001143535774537252 1
464 0 -5.0209913 0.016430289 0.023900786364877163 0
465 1 9.7853985 0.99920774 0.0011434497150273235 1
466 1 9.541931 0.99904716 0.0013753126588050381 1
467 1 7.7145195 0.99619967 0.0054931654697981886 1
468 0 -5.020991 0.016430292 0.023900791829114004 0
469 0 -5.6622314 0.010165936 0.014741403595886524 0
468 0 -5.0209913 0.016430289 0.023900786364877163 0
469 0 -5.6622314 0.010165937 0.014741404953300367 0
470 0 -5.0985007 0.015506634 0.022546609667162744 0
471 0 -3.4621449 0.051683456 0.076559389501439229 0
472 0 -4.163662 0.0310171 0.04545688944873634 0
473 0 -5.020991 0.016430292 0.023900791829114004 0
474 0 -4.5469956 0.023373578 0.034121284818622755 0
475 0 -5.4949865 0.011525215 0.016723929655280523 0
476 0 -4.7273927 0.020445326 0.02980207639934088 0
477 0 -5.020991 0.016430292 0.023900791829114004 0
478 0 -4.4195695 0.025684815 0.03753954391072279 0
472 0 -4.163662 0.031017102 0.04545689222198334 0
473 0 -5.0209913 0.016430289 0.023900786364877163 0
474 0 -4.5469956 0.02337358 0.034121287570165061 0
475 0 -5.4949865 0.011525216 0.016723931014560982 0
476 0 -4.7273927 0.020445328 0.029802079142657811 0
477 0 -5.0209913 0.016430289 0.023900786364877163 0
478 0 -4.4195695 0.025684817 0.037539546668792209 0
479 1 8.32148 0.9975986 0.0034686710325429922 1
480 0 -4.6376576 0.021854054 0.031878354047421072 0
480 0 -4.6376576 0.021854056 0.031878356794688936 0
481 0 -3.0822616 0.06777515 0.10125012812840116 0
482 1 15.4814205 0.99998945 1.5220544890042414E-05 1
483 1 10.906593 0.9996614 0.0004885994477486597 1
484 0 -4.253397 0.02903525 0.042509173626544897 0
485 0 -5.0232906 0.016402123 0.023859474593834452 0
482 1 15.481422 0.99998945 1.5220544890042414E-05 1
483 1 10.906595 0.9996614 0.0004885994477486597 1
484 0 -4.253397 0.029035252 0.042509176394131383 0
485 0 -5.0232906 0.016402125 0.023859477325874637 0
486 0 -5.0985007 0.015506634 0.022546609667162744 0
487 1 13.475906 0.9999518 6.9568659593352019E-05 1
488 1 1.3273249 0.67341036 0.57044218705778627 1
489 1 -0.6232023 0.31951913 1.6460257744908038 0
490 0 -6.442978 0.0056481995 0.008171728927378108 0
490 0 -6.442978 0.0056482 0.0081717296030013944 0
491 1 6.6713343 0.9916534 0.012092158077135179 1
492 0 -4.624505 0.022068355 0.032194467339038989 0
493 1 9.948912 0.99930006 0.0010101496965434329 1
494 0 0.9629116 0.60997653 1.3583671531547612 1
495 0 -5.0985007 0.015506634 0.022546609667162744 0
496 0 -6.53364 0.0052747843 0.0076300462926347243 0
497 0 -4.8935647 0.018067662 0.026304478211895771 0
496 0 -6.53364 0.0052747848 0.007630046968004383 0
497 0 -4.893565 0.018067656 0.02630447000187312 0
498 0 -4.533843 0.02360242 0.034459376167277234 0
499 0 -4.533843 0.02360242 0.034459376167277234 0
500 0 -3.0987039 0.06699134 0.10003761775121778 0
501 0 -4.533843 0.02360242 0.034459376167277234 0
502 0 -4.2284155 0.029574301 0.043310338334976231 0
503 0 -4.046695 0.03379773 0.049602852281362811 0
504 0 -6.442978 0.0056481995 0.008171728927378108 0
503 0 -4.046695 0.033797733 0.049602857843819056 0
504 0 -6.442978 0.0056482 0.0081717296030013944 0
505 0 -5.2401342 0.013949007 0.020265837999788049 0
506 1 10.447666 0.9995204 0.00069205216452113084 1
507 0 -5.093737 0.015561895 0.022627593746497501 0
508 0 -4.5469956 0.023373578 0.034121284818622755 0
507 0 -5.0937376 0.015561891 0.022627586922226627 0
508 0 -4.5469956 0.02337358 0.034121287570165061 0
509 0 -5.9689827 0.008072471 0.011693375209389432 0
510 0 -6.442978 0.0056481995 0.008171728927378108 0
511 0 -4.0598474 0.03347344 0.049118716145619364 0
512 0 -4.5469956 0.023373578 0.034121284818622755 0
510 0 -6.442978 0.0056482 0.0081717296030013944 0
511 0 -4.0598474 0.033473443 0.049118721706209283 0
512 0 -4.5469956 0.02337358 0.034121287570165061 0
513 0 -5.0985007 0.015506634 0.022546609667162744 0
514 1 10.719854 0.9996099 0.00056292303371696174 1
515 1 8.6480255 0.9981245 0.0027083436166447333 1
516 0 -6.53364 0.0052747843 0.0076300462926347243 0
517 0 -6.0464916 0.0076150293 0.011028208636679729 0
518 0 -4.8959603 0.01803545 0.026257150944159223 0
514 1 10.719856 0.9996099 0.00056292303371696174 1
515 1 8.648027 0.9981245 0.0027083436166447333 1
516 0 -6.53364 0.0052747848 0.007630046968004383 0
517 0 -6.0464916 0.00761503 0.011028209313642047 0
518 0 -4.8959603 0.018035451 0.026257153680743675 0
519 1 6.535844 0.9907582 0.013395120416830476 1
520 0 -6.3523164 0.006047887 0.0087517478359504901 0
520 0 -6.3523164 0.0060478873 0.0087517485118454551 0
521 0 -4.9303293 0.017579472 0.02558738782535638 0
522 1 5.502533 0.97998166 0.029173343678465424 1
523 1 7.699238 0.9961555 0.0055571295392400502 1
524 0 -5.0078387 0.016592305 0.02413845106369562 0
525 0 -5.189559 0.014486661 0.021052696761167319 0
526 0 -5.020991 0.016430292 0.023900791829114004 0
527 0 -4.046695 0.03379773 0.049602852281362811 0
525 0 -5.189559 0.014486662 0.02105269812453239 0
526 0 -5.0209913 0.016430289 0.023900786364877163 0
527 0 -4.046695 0.033797733 0.049602857843819056 0
528 0 -3.1803741 0.063221365 0.094219922377553209 0
529 0 -4.624505 0.022068355 0.032194467339038989 0
530 1 6.515935 0.9906189 0.013597970981112992 1
530 1 6.515936 0.9906189 0.013597970981112992 1
531 0 -4.1128182 0.0321975 0.047215431190392593 0
532 0 -5.559344 0.010982096 0.015931457121809788 0
533 0 -5.0078387 0.016592305 0.02413845106369562 0
534 0 -5.4818344 0.011639432 0.016890641442649377 0
535 0 -4.5760565 0.022875603 0.03338585296537417 0
536 0 -3.5726995 0.047724232 0.070548673242470078 0
535 0 -4.5760565 0.022875605 0.033385855715514209 0
536 0 -3.5726995 0.047724236 0.070548678886274141 0
537 0 -3.279101 0.05892835 0.087623528685202179 0
538 0 -4.533843 0.02360242 0.034459376167277234 0
539 0 -3.5858517 0.047272857 0.069865003739744969 0
540 0 -3.6101003 0.046451267 0.068621422453170058 0
541 0 -5.4949865 0.011525215 0.016723929655280523 0
541 0 -5.4949865 0.011525216 0.016723931014560982 0
542 0 -4.2921433 0.02821799 0.041295369834781166 0
543 0 -4.533843 0.02360242 0.034459376167277234 0
544 0 -4.589209 0.022653647 0.033058177993601175 0
545 0 -4.0598474 0.03347344 0.049118716145619364 0
546 1 11.390257 0.99976534 0.00033858757684800106 1
545 0 -4.0598474 0.033473443 0.049118721706209283 0
546 1 11.390259 0.99976534 0.00033858757684800106 1
547 0 -6.0596447 0.0075399973 0.010919133821803805 0
548 0 -5.5856485 0.0107674645 0.015618404699454138 0
549 1 6.3187494 0.98912174 0.015780004831897315 1
548 0 -5.5856485 0.010767465 0.015618406057693391 0
549 1 6.3187485 0.98912174 0.015780004831897315 1
550 0 -5.0078387 0.016592305 0.02413845106369562 0
551 0 -5.4686823 0.011754767 0.017059004011272673 0
552 0 -3.1100616 0.06645482 0.099208250366772804 0
553 0 -1.7353673 0.16803056 0.26539755882168281 0
554 0 -5.4949865 0.011525215 0.016723929655280523 0
555 0 -1.9254994 0.14882071 0.23246505112097871 0
551 0 -5.4686823 0.011754768 0.017059005370868869 0
552 0 -3.1100621 0.0664548 0.099208215824527435 0
553 0 -1.7353668 0.1680306 0.26539763634075109 0
554 0 -5.4949865 0.011525216 0.016723931014560982 0
555 0 -1.9254999 0.14882067 0.2324649753514042 0
556 0 -3.4240565 0.053118054 0.078743527992808426 0
557 0 -3.93614 0.03664608 0.053862176491974861 0
558 0 -5.4818344 0.011639432 0.016890641442649377 0
559 0 -4.0598474 0.03347344 0.049118716145619364 0
560 0 -3.5726995 0.047724232 0.070548673242470078 0
561 0 -3.5726995 0.047724232 0.070548673242470078 0
562 0 -5.4686823 0.011754767 0.017059004011272673 0
559 0 -4.0598474 0.033473443 0.049118721706209283 0
560 0 -3.5726995 0.047724236 0.070548678886274141 0
561 0 -3.5726995 0.047724236 0.070548678886274141 0
562 0 -5.4686823 0.011754768 0.017059005370868869 0
563 0 -5.0078387 0.016592305 0.02413845106369562 0
564 0 -3.849667 0.039033562 0.057442049421200084 0
565 1 12.08609 0.9998616 0.00019968567641750592 1
566 0 -4.2270923 0.029603122 0.043353185624129376 0
564 0 -3.8496675 0.039033547 0.057442027050147004 0
565 1 12.086092 0.9998616 0.00019968567641750592 1
566 0 -4.2270923 0.029603124 0.043353188393335441 0
567 0 -3.6343493 0.045643255 0.067399438854885543 0
568 1 4.1473055 0.94597834 0.080120938914498979 1
569 1 10.713882 0.9996081 0.00056550378256940248 1
570 1 8.017664 0.99697804 0.0043663610015818432 1
571 1 11.034657 0.99969274 0.00044335339890107668 1
571 1 11.034658 0.99969274 0.00044335339890107668 1
572 0 -5.0078387 0.016592305 0.02413845106369562 0
573 0 -5.95583 0.008152756 0.011810148833251818 0
574 1 5.950967 0.9856713 0.020821502205009505 1
575 0 -3.279101 0.05892835 0.087623528685202179 0
576 0 -4.0598474 0.03347344 0.049118716145619364 0
576 0 -4.0598474 0.033473443 0.049118721706209283 0
577 0 -5.95583 0.008152756 0.011810148833251818 0
578 0 -5.95583 0.008152756 0.011810148833251818 0
579 0 -5.4686823 0.011754767 0.017059004011272673 0
579 0 -5.4686823 0.011754768 0.017059005370868869 0
580 0 -3.7662487 0.041477654 0.061116029294295819 0
581 1 8.417797 0.9977674 0.0032245780320862543 1
582 1 7.907978 0.9967167 0.0047446254970359954 1
583 0 -5.4949865 0.011525215 0.016723929655280523 0
582 1 7.90798 0.9967167 0.0047446254970359954 1
583 0 -5.4949865 0.011525216 0.016723931014560982 0
584 0 -2.9291954 0.075489886 0.11323899247123828 0
585 0 -6.442978 0.0056481995 0.008171728927378108 0
586 1 13.981018 0.9999671 4.7467992532759307E-05 1
587 0 -3.8628192 0.038661044 0.056882898238471563 0
585 0 -6.442978 0.0056482 0.0081717296030013944 0
586 1 13.98102 0.9999671 4.7467992532759307E-05 1
587 0 -3.8628197 0.03866103 0.056882875876087251 0
588 1 5.463169 0.9793874 0.030048455526317758 1
589 0 -4.5469956 0.023373578 0.034121284818622755 0
589 0 -4.5469956 0.02337358 0.034121287570165061 0
590 1 3.9684038 0.9386083 0.0914048941554364 1
591 1 5.966527 0.98583704 0.020578904318245012 1
592 1 5.7801704 0.98372144 0.023678256090487241 1
593 0 -4.253397 0.02903525 0.042509173626544897 0
593 0 -4.253397 0.029035252 0.042509176394131383 0
594 1 5.101776 0.97306114 0.039397632242971693 1
595 0 -4.0598474 0.03347344 0.049118716145619364 0
596 0 -4.2402444 0.029317858 0.04292914403934768 0
595 0 -4.0598474 0.033473443 0.049118721706209283 0
596 0 -4.2402444 0.02931786 0.042929146807739925 0
597 0 -2.9855018 0.07256243 0.10867791847551245 0
598 0 -5.0078387 0.016592305 0.02413845106369562 0
599 0 -3.6294346 0.04580593 0.067645376058973333 0
600 0 -5.0078387 0.016592305 0.02413845106369562 0
601 0 -6.0464916 0.0076150293 0.011028208636679729 0
601 0 -6.0464916 0.00761503 0.011028209313642047 0
602 0 -4.533843 0.02360242 0.034459376167277234 0
603 1 4.8058825 0.96650916 0.049144684334205956 1
604 1 6.1928043 0.9880442 0.01735250950197232 1
604 1 6.1928034 0.9880442 0.01735250950197232 1
605 1 9.95545 0.9993035 0.0010051587149210726 1
606 0 -4.715564 0.020625811 0.030067920071712086 0
607 0 -6.442978 0.0056481995 0.008171728927378108 0
607 0 -6.442978 0.0056482 0.0081717296030013944 0
608 1 11.148426 0.9997181 0.00040671030044872971 1
609 0 -4.5469956 0.023373578 0.034121284818622755 0
610 1 8.926189 0.99848074 0.0021934995672910755 1
609 0 -4.5469956 0.02337358 0.034121287570165061 0
610 1 8.926191 0.99848074 0.0021934995672910755 1
611 1 6.9109592 0.993031 0.010089302795775161 1
612 1 16.893513 0.99999636 5.2454803872987944E-06 1
613 0 -5.226982 0.014086901 0.020467605961895518 0
614 0 -5.5724964 0.010874255 0.015774155610380477 0
615 0 -3.9466453 0.03636578 0.053442469747270488 0
612 1 16.893515 0.99999636 5.2454803872987944E-06 1
613 0 -5.226982 0.014086902 0.02046760732470778 0
614 0 -5.5724964 0.010874256 0.01577415696876637 0
615 0 -3.9466453 0.036365785 0.05344247532455048 0
616 0 -5.0078387 0.016592305 0.02413845106369562 0
617 0 ? ? ? 0
618 0 -4.533843 0.02360242 0.034459376167277234 0
619 0 -4.0598474 0.03347344 0.049118716145619364 0
619 0 -4.0598474 0.033473443 0.049118721706209283 0
620 0 -5.0078387 0.016592305 0.02413845106369562 0
621 0 0.3560543 0.4967158 0.99055482778522197 1
621 0 0.3560543 0.49671578 0.99055474235503638 1
622 0 -2.2074018 0.12371333 0.19052518105806376 0
623 0 -6.442978 0.0056481995 0.008171728927378108 0
623 0 -6.442978 0.0056482 0.0081717296030013944 0
624 0 -3.8450818 0.03916424 0.057638251306253135 0
625 0 -3.4678864 0.0514704 0.076235297856163745 0
626 1 5.760166 0.98347664 0.024037311317372478 1
627 0 -4.1699953 0.03087303 0.045242403057694114 0
627 0 -4.1699953 0.030873032 0.04524240583052884 0
628 0 -5.9689827 0.008072471 0.011693375209389432 0
629 0 -5.020991 0.016430292 0.023900791829114004 0
630 0 -3.358376 0.05568055 0.082653110243383579 0
631 0 -4.0598474 0.03347344 0.049118716145619364 0
632 0 -6.442978 0.0056481995 0.008171728927378108 0
629 0 -5.0209913 0.016430289 0.023900786364877163 0
630 0 -3.358376 0.055680554 0.082653115934739244 0
631 0 -4.0598474 0.033473443 0.049118721706209283 0
632 0 -6.442978 0.0056482 0.0081717296030013944 0
633 1 4.3299494 0.95263666 0.070002027657626642 1
634 0 -5.4949865 0.011525215 0.016723929655280523 0
634 0 -5.4949865 0.011525216 0.016723931014560982 0
635 0 -4.6141906 0.022237848 0.032444534178600062 0
636 1 10.127518 0.9993887 0.00088219670683892097 1
636 1 10.12752 0.9993887 0.00088219670683892097 1
637 0 -2.4650183 0.1040373 0.1584894220773467 0
638 0 -5.020991 0.016430292 0.023900791829114004 0
638 0 -5.0209913 0.016430289 0.023900786364877163 0
639 0 -3.93614 0.03664608 0.053862176491974861 0
640 0 -4.4101357 0.02586451 0.037805647681891721 0
640 0 -4.4101357 0.025864512 0.037805650440469914 0
641 0 -5.0078387 0.016592305 0.02413845106369562 0
642 0 -5.0078387 0.016592305 0.02413845106369562 0
643 0 -6.442978 0.0056481995 0.008171728927378108 0
643 0 -6.442978 0.0056482 0.0081717296030013944 0
644 0 -5.9689827 0.008072471 0.011693375209389432 0
645 0 -5.0078387 0.016592305 0.02413845106369562 0
646 0 -6.021953 0.007756997 0.011234610933401622 0
646 0 -6.021953 0.0077569974 0.011234611610460798 0
647 0 -5.832123 0.0089476975 0.012966897604500274 0
648 1 12.236198 0.9998765 0.00017818502951934642 1
648 1 12.2362 0.9998765 0.00017818502951934642 1
649 0 -5.0078387 0.016592305 0.02413845106369562 0
650 0 -3.7496572 0.041980937 0.061873731573025101 0
651 0 -5.2175484 0.0141866375 0.020613558272286822 0
652 0 -3.8628192 0.038661044 0.056882898238471563 0
651 0 -5.2175484 0.014186638 0.02061355963523696 0
652 0 -3.8628197 0.03866103 0.056882875876087251 0
653 0 -4.533843 0.02360242 0.034459376167277234 0
654 0 -4.520691 0.023833439 0.034800762077037174 0
655 0 -5.0078387 0.016592305 0.02413845106369562 0
656 0 -4.0598474 0.03347344 0.049118716145619364 0
657 0 -0.4869156 0.34240434 0.60472730798336727 0
656 0 -4.0598474 0.033473443 0.049118721706209283 0
657 0 -0.4869156 0.3424043 0.6047272426002388 0
658 1 9.086258 0.9986542 0.0019429058245893991 1
659 0 -6.442978 0.0056481995 0.008171728927378108 0
659 0 -6.442978 0.0056482 0.0081717296030013944 0
660 0 -5.95583 0.008152756 0.011810148833251818 0
661 0 -4.046695 0.03379773 0.049602852281362811 0
661 0 -4.046695 0.033797733 0.049602857843819056 0
662 0 -5.3686323 0.012669892 0.018395573044372514 0
663 0 -5.3686323 0.012669892 0.018395573044372514 0
664 0 -4.3969836 0.026117079 0.038179751109026085 0
665 0 -6.442978 0.0056481995 0.008171728927378108 0
666 0 -3.4969325 0.050405253 0.074616140216202456 0
665 0 -6.442978 0.0056482 0.0081717296030013944 0
666 0 -3.496932 0.05040527 0.074616168514894637 0
667 0 -4.520691 0.023833439 0.034800762077037174 0
668 1 2.804366 0.8634336 0.21184286026666635 1
669 1 8.147335 0.99726033 0.0039579294672795707 1
669 1 8.147337 0.99726033 0.0039579294672795707 1
670 1 6.4856215 0.99040276 0.013912762642680866 1
671 0 -4.087837 0.03279327 0.048103809585535576 0
672 0 -4.9946866 0.016755886 0.024378450658658433 0
673 0 -3.9078827 0.037410382 0.055007231944439391 0
674 0 -5.95583 0.008152756 0.011810148833251818 0
675 0 -4.140195 0.03155662 0.046260392474474922 0
676 0 -5.6622314 0.010165936 0.014741403595886524 0
677 0 -4.5469956 0.023373578 0.034121284818622755 0
678 0 -6.442978 0.0056481995 0.008171728927378108 0
676 0 -5.6622314 0.010165937 0.014741404953300367 0
677 0 -4.5469956 0.02337358 0.034121287570165061 0
678 0 -6.442978 0.0056482 0.0081717296030013944 0
679 0 -5.9689827 0.008072471 0.011693375209389432 0
680 1 16.780008 0.99999607 5.6754386418026423E-06 1
681 1 9.801077 0.9992171 0.0011299384356403619 1
682 0 -3.3756714 0.05499471 0.08160568921637594 0
683 0 -6.442978 0.0056481995 0.008171728927378108 0
684 0 -6.442978 0.0056481995 0.008171728927378108 0
685 0 -6.442978 0.0056481995 0.008171728927378108 0
686 0 -6.442978 0.0056481995 0.008171728927378108 0
687 0 -4.613783 0.022244573 0.032454455742594257 0
688 0 -5.020991 0.016430292 0.023900791829114004 0
689 0 -4.177704 0.03069855 0.044982686688651997 0
680 1 16.78001 0.99999607 5.6754386418026423E-06 1
681 1 9.801079 0.9992171 0.0011299384356403619 1
682 0 -3.3756719 0.05499469 0.081605660780250541 0
683 0 -6.442978 0.0056482 0.0081717296030013944 0
684 0 -6.442978 0.0056482 0.0081717296030013944 0
685 0 -6.442978 0.0056482 0.0081717296030013944 0
686 0 -6.442978 0.0056482 0.0081717296030013944 0
687 0 -4.613783 0.022244575 0.03245445849095939 0
688 0 -5.0209913 0.016430289 0.023900786364877163 0
689 0 -4.177704 0.030698553 0.044982689460987609 0
690 0 -5.832123 0.0089476975 0.012966897604500274 0
691 1 4.4967804 0.95803064 0.061856295892801602 1
692 0 -5.4949865 0.011525215 0.016723929655280523 0
692 0 -5.4949865 0.011525216 0.016723931014560982 0
693 0 -4.684228 0.021111501 0.03078355747963463 0
694 0 -4.954578 0.017264593 0.025125059765309599 0
694 0 -4.9545784 0.017264588 0.025125051561995987 0
695 0 -5.9689827 0.008072471 0.011693375209389432 0
696 1 6.7127876 0.9919097 0.011719331311161625 1
697 1 5.064643 0.97231287 0.040507480679364792 1

Просмотреть файл

@ -1,10 +1,10 @@
Instance Label Score Assigned
0 0 -3.5726995 0
1 0 3.6101456 1
1 0 3.6101465 1
2 0 -4.070944 0
3 0 2.470542 1
4 0 -3.4358397 0
5 1 12.382593 1
5 1 12.382595 1
6 0 -1.4209604 0
7 0 -4.701088 0
8 0 -4.6745405 0
@ -13,14 +13,14 @@ Instance Label Score Assigned
11 0 -5.4818344 0
12 1 -0.14206886 0
13 0 -4.5691886 0
14 1 9.321613 1
14 1 9.321611 1
15 1 1.3856993 1
16 0 -4.533843 0
17 0 -4.046695 0
18 1 7.8903694 1
18 1 7.8903713 1
19 0 -3.0987039 0
20 1 7.528511 1
21 1 7.875204 1
21 1 7.875206 1
22 0 -5.0078387 0
23 1 ? 0
24 0 -5.4686823 0
@ -38,22 +38,22 @@ Instance Label Score Assigned
36 1 9.099108 1
37 0 -1.113348 0
38 1 6.140953 1
39 1 2.5109024 1
39 1 2.5109034 1
40 0 ? 0
41 1 3.3300762 1
42 1 8.577511 1
43 1 0.49126053 1
44 1 8.255751 1
45 0 -5.6322193 0
46 1 4.5673847 1
46 1 4.5673857 1
47 0 -5.95583 0
48 0 -3.4358397 0
49 1 5.3666544 1
50 1 2.5949678 1
51 1 0.12595749 1
52 1 5.2992125 1
52 1 5.2992115 1
53 1 8.407228 1
54 1 7.649309 1
54 1 7.649311 1
55 1 4.478709 1
56 1 5.5541325 1
57 1 1.6657066 1
@ -66,15 +66,15 @@ Instance Label Score Assigned
64 0 -5.95583 0
65 1 3.8072634 1
66 0 -4.046695 0
67 1 4.218013 1
67 1 4.218014 1
68 1 10.826723 1
69 0 -5.271654 0
69 0 -5.2716546 0
70 0 -3.4726496 0
71 1 7.895048 1
72 0 -2.1755843 0
72 0 -2.1755848 0
73 1 8.9055195 1
74 1 2.5993576 1
75 0 -4.04116 0
75 0 -4.0411606 0
76 0 -5.075033 0
77 0 -3.4995675 0
78 0 -3.6211967 0
@ -84,7 +84,7 @@ Instance Label Score Assigned
82 0 -3.4452734 0
83 0 -2.1223516 0
84 1 9.694054 1
85 1 6.2895613 1
85 1 6.2895603 1
86 1 2.6168842 1
87 1 6.91914 1
88 0 -4.046695 0
@ -97,21 +97,21 @@ Instance Label Score Assigned
95 0 -5.4686823 0
96 0 -5.663555 0
97 0 -3.5726995 0
98 1 8.590231 1
98 1 8.590233 1
99 1 10.917194 1
100 1 4.8476706 1
101 1 -0.84280396 0
100 1 4.8476696 1
101 1 -0.842803 0
102 0 -3.7530966 0
103 1 1.7746449 1
104 1 12.140858 1
105 1 2.5560703 1
106 1 9.259367 1
106 1 9.259369 1
107 1 6.720646 1
108 0 -5.5617743 0
109 1 6.871725 1
109 1 6.871727 1
110 0 -2.766693 0
111 1 3.848031 1
112 1 9.425768 1
112 1 9.42577 1
113 1 9.506622 1
114 0 -3.0727453 0
115 0 -4.643991 0
@ -121,19 +121,19 @@ Instance Label Score Assigned
119 0 -3.9435177 0
120 0 -4.8696556 0
121 0 -3.469522 0
122 1 9.680521 1
122 1 9.680523 1
123 1 3.8165932 1
124 1 7.6522446 1
125 0 -5.95583 0
126 1 8.564953 1
126 1 8.564951 1
127 0 -4.520691 0
128 1 4.848981 1
129 0 -5.717684 0
130 0 -3.4726496 0
131 0 -4.9946866 0
132 1 8.60223 1
133 0 -4.8108106 0
134 0 -4.9171767 0
133 0 -4.810811 0
134 0 -4.917177 0
135 0 -2.7288966 0
136 0 -4.533843 0
137 0 -5.4949865 0
@ -151,7 +151,7 @@ Instance Label Score Assigned
149 1 11.461615 1
150 0 -5.559344 0
151 1 5.006485 1
152 1 9.715746 1
152 1 9.715748 1
153 0 -4.1214976 0
154 0 -6.442978 0
155 1 3.7769232 1
@ -159,12 +159,12 @@ Instance Label Score Assigned
157 0 -4.9946866 0
158 0 ? 0
159 1 12.346203 1
160 1 9.039492 1
161 0 -3.849667 0
160 1 9.039494 1
161 0 -3.8496675 0
162 0 -4.520691 0
163 0 -3.387055 0
164 0 ? 0
165 0 -3.39992 0
165 0 -3.3999205 0
166 1 7.976183 1
167 1 8.355644 1
168 0 -4.520691 0
@ -186,11 +186,11 @@ Instance Label Score Assigned
184 1 6.2014647 1
185 0 -5.0853486 0
186 1 5.7654104 1
187 1 13.977449 1
188 1 9.065281 1
187 1 13.977451 1
188 1 9.065283 1
189 0 -4.7540584 0
190 1 11.957216 1
191 1 10.956871 1
190 1 11.957218 1
191 1 10.956873 1
192 0 -4.0598474 0
193 0 -5.4686823 0
194 0 -4.520691 0
@ -200,12 +200,12 @@ Instance Label Score Assigned
198 0 -6.442978 0
199 0 -5.0078387 0
200 1 10.36586 1
201 1 9.8694935 1
201 1 9.869495 1
202 0 -5.4686823 0
203 0 -3.5726995 0
204 0 -5.4686823 0
205 1 12.086601 1
206 1 5.944168 1
206 1 5.944169 1
207 0 -5.559344 0
208 0 -5.559344 0
209 0 -3.6633615 0
@ -214,13 +214,13 @@ Instance Label Score Assigned
212 0 -5.4686823 0
213 1 14.529058 1
214 1 13.868914 1
215 1 7.643732 1
215 1 7.643734 1
216 0 -5.95583 0
217 0 -5.4686823 0
218 1 7.88678 1
218 1 7.8867817 1
219 0 -2.511506 0
220 0 -5.1632547 0
221 1 10.395216 1
221 1 10.395218 1
222 1 -2.214662 0
223 1 5.7424126 1
224 1 9.995327 1
@ -228,7 +228,7 @@ Instance Label Score Assigned
226 1 10.225868 1
227 1 7.459608 1
228 0 -5.559344 0
229 1 12.666513 1
229 1 12.666515 1
230 1 6.1583214 1
231 1 8.623034 1
232 0 1.2822819 1
@ -237,7 +237,7 @@ Instance Label Score Assigned
235 0 ? 0
236 1 11.420414 1
237 1 6.535795 1
238 1 12.422874 1
238 1 12.422876 1
239 1 5.9025297 1
240 0 -2.0179915 0
241 0 -4.0004973 0
@ -259,12 +259,12 @@ Instance Label Score Assigned
257 0 -5.0078387 0
258 0 -4.520691 0
259 0 2.9647484 1
260 1 9.870924 1
260 1 9.870926 1
261 1 12.206299 1
262 1 9.653839 1
263 1 8.981979 1
264 1 5.664708 1
265 0 -2.494875 0
265 0 -2.4948754 0
266 1 7.3661633 1
267 1 3.3009605 1
268 1 9.372967 1
@ -273,7 +273,7 @@ Instance Label Score Assigned
271 0 -3.5726995 0
272 1 3.3009605 1
273 1 0.21747208 1
274 0 -4.3236628 0
274 0 -4.323663 0
275 0 ? 0
276 0 -5.0078387 0
277 0 -5.95583 0
@ -284,11 +284,11 @@ Instance Label Score Assigned
282 1 4.4381237 1
283 1 6.0636253 1
284 1 7.431343 1
285 1 14.218479 1
286 1 15.281261 1
287 0 -4.9171767 0
285 1 14.218481 1
286 1 15.281263 1
287 0 -4.917177 0
288 1 2.2163515 1
289 1 8.312021 1
289 1 8.312019 1
290 0 -6.442978 0
291 0 -5.4686823 0
292 1 ? 0
@ -298,20 +298,20 @@ Instance Label Score Assigned
296 0 1.823431 1
297 0 ? 0
298 0 -2.725597 0
299 1 7.8274345 1
299 1 7.8274364 1
300 1 7.348074 1
301 0 -5.4686823 0
302 1 15.735762 1
302 1 15.735764 1
303 0 -5.4686823 0
304 1 5.9607973 1
305 1 8.459471 1
305 1 8.459469 1
306 0 -5.4686823 0
307 0 -5.4686823 0
308 1 7.422592 1
308 1 7.4225903 1
309 0 -1.7474074 0
310 0 -5.3911724 0
311 0 -6.442978 0
312 1 3.629469 1
312 1 3.6294699 1
313 0 -6.442978 0
314 0 -6.0464916 0
315 0 ? 0
@ -328,12 +328,12 @@ Instance Label Score Assigned
326 1 4.4103804 1
327 0 -5.95583 0
328 1 3.373887 1
329 1 7.8321323 1
329 1 7.8321342 1
330 1 5.8562517 1
331 0 -3.2490892 0
332 0 -3.1363664 0
332 0 -3.1363668 0
333 1 4.914962 1
334 1 5.9119463 1
334 1 5.9119453 1
335 0 -6.442978 0
336 1 5.54352 1
337 0 -5.4686823 0
@ -346,7 +346,7 @@ Instance Label Score Assigned
344 1 10.162451 1
345 0 -6.442978 0
346 0 -3.335825 0
347 0 -6.1395845 0
347 0 -6.139584 0
348 1 0.15727425 1
349 1 4.0622606 1
350 0 -3.93614 0
@ -354,19 +354,19 @@ Instance Label Score Assigned
352 0 0.4719286 1
353 1 8.696344 1
354 0 -5.95583 0
355 0 -4.2461534 0
355 0 -4.246154 0
356 1 -0.69921684 0
357 1 12.852016 1
358 1 5.5822067 1
359 1 5.3672857 1
360 1 15.333872 1
360 1 15.333874 1
361 1 6.31769 1
362 0 -3.5059962 0
363 0 -2.065846 0
364 0 -4.9946866 0
365 0 -5.4818344 0
366 1 13.694569 1
367 1 11.299242 1
367 1 11.299244 1
368 0 -5.8557806 0
369 0 -5.4592943 0
370 0 -3.8947306 0
@ -377,18 +377,18 @@ Instance Label Score Assigned
375 0 -6.442978 0
376 0 -5.95583 0
377 0 -6.0464916 0
378 0 -3.803866 0
378 0 -3.8038664 0
379 0 -2.2557268 0
380 0 -6.442978 0
381 1 10.07641 1
382 0 -3.59721 0
381 1 10.076408 1
382 0 -3.5972104 0
383 0 -5.9689827 0
384 0 -5.9689827 0
385 0 -3.7061968 0
386 1 6.0875874 1
387 0 -2.33456 0
388 0 -5.284807 0
389 0 -3.3224106 0
388 0 -5.2848067 0
389 0 -3.322411 0
390 0 -5.6504025 0
391 1 10.030338 1
392 0 -5.0078387 0
@ -396,14 +396,14 @@ Instance Label Score Assigned
394 0 -5.241206 0
395 0 -5.0078387 0
396 0 -4.520691 0
397 0 -5.020991 0
398 0 -4.6833844 0
397 0 -5.0209913 0
398 0 -4.683385 0
399 0 -5.7283545 0
400 1 10.056744 1
401 0 -5.4949865 0
402 0 -3.2177973 0
403 0 -4.145746 0
404 0 -5.5076685 0
404 0 -5.507669 0
405 0 -5.95583 0
406 0 -4.1128182 0
407 0 -5.95583 0
@ -414,7 +414,7 @@ Instance Label Score Assigned
412 1 9.230707 1
413 0 -3.279101 0
414 1 6.7173805 1
415 0 -0.66683483 0
415 0 -0.6668339 0
416 1 8.809383 1
417 0 -5.95583 0
418 0 -1.8758616 0
@ -424,19 +424,19 @@ Instance Label Score Assigned
422 0 -2.8105893 0
423 0 -3.4726496 0
424 0 -5.4949865 0
425 1 14.817661 1
425 1 14.817663 1
426 0 -2.8241491 0
427 1 4.3530817 1
428 0 -5.95583 0
429 0 -5.4818344 0
430 0 -5.50395 0
431 0 -2.5834923 0
432 0 -3.8628192 0
431 0 -2.5834928 0
432 0 -3.8628197 0
433 0 -4.463106 0
434 0 5.0084 1
435 1 7.44433 1
436 1 3.841198 1
437 0 -5.020991 0
434 0 5.008401 1
435 1 7.444332 1
436 1 3.841199 1
437 0 -5.0209913 0
438 0 -3.822938 0
439 0 -4.5469956 0
440 1 10.154686 1
@ -448,41 +448,41 @@ Instance Label Score Assigned
446 0 -6.442978 0
447 0 -4.5469956 0
448 0 -6.53364 0
449 1 10.298002 1
449 1 10.298004 1
450 0 -4.01365 0
451 0 -4.5469956 0
452 0 -4.8841314 0
453 1 8.777969 1
454 0 -5.6234684 0
455 1 0.8163538 1
455 1 0.81635284 1
456 1 10.487385 1
457 1 9.062626 1
457 1 9.062628 1
458 0 -4.253397 0
459 0 -3.9597979 0
460 0 -3.93614 0
461 0 -3.6959996 0
462 0 -3.4621449 0
463 0 -4.823963 0
464 0 -5.020991 0
465 1 9.785397 1
464 0 -5.0209913 0
465 1 9.7853985 1
466 1 9.541931 1
467 1 7.7145195 1
468 0 -5.020991 0
468 0 -5.0209913 0
469 0 -5.6622314 0
470 0 -5.0985007 0
471 0 -3.4621449 0
472 0 -4.163662 0
473 0 -5.020991 0
473 0 -5.0209913 0
474 0 -4.5469956 0
475 0 -5.4949865 0
476 0 -4.7273927 0
477 0 -5.020991 0
477 0 -5.0209913 0
478 0 -4.4195695 0
479 1 8.32148 1
480 0 -4.6376576 0
481 0 -3.0822616 0
482 1 15.4814205 1
483 1 10.906593 1
482 1 15.481422 1
483 1 10.906595 1
484 0 -4.253397 0
485 0 -5.0232906 0
486 0 -5.0985007 0
@ -496,7 +496,7 @@ Instance Label Score Assigned
494 0 0.9629116 1
495 0 -5.0985007 0
496 0 -6.53364 0
497 0 -4.8935647 0
497 0 -4.893565 0
498 0 -4.533843 0
499 0 -4.533843 0
500 0 -3.0987039 0
@ -506,15 +506,15 @@ Instance Label Score Assigned
504 0 -6.442978 0
505 0 -5.2401342 0
506 1 10.447666 1
507 0 -5.093737 0
507 0 -5.0937376 0
508 0 -4.5469956 0
509 0 -5.9689827 0
510 0 -6.442978 0
511 0 -4.0598474 0
512 0 -4.5469956 0
513 0 -5.0985007 0
514 1 10.719854 1
515 1 8.6480255 1
514 1 10.719856 1
515 1 8.648027 1
516 0 -6.53364 0
517 0 -6.0464916 0
518 0 -4.8959603 0
@ -525,11 +525,11 @@ Instance Label Score Assigned
523 1 7.699238 1
524 0 -5.0078387 0
525 0 -5.189559 0
526 0 -5.020991 0
526 0 -5.0209913 0
527 0 -4.046695 0
528 0 -3.1803741 0
529 0 -4.624505 0
530 1 6.515935 1
530 1 6.515936 1
531 0 -4.1128182 0
532 0 -5.559344 0
533 0 -5.0078387 0
@ -545,16 +545,16 @@ Instance Label Score Assigned
543 0 -4.533843 0
544 0 -4.589209 0
545 0 -4.0598474 0
546 1 11.390257 1
546 1 11.390259 1
547 0 -6.0596447 0
548 0 -5.5856485 0
549 1 6.3187494 1
549 1 6.3187485 1
550 0 -5.0078387 0
551 0 -5.4686823 0
552 0 -3.1100616 0
553 0 -1.7353673 0
552 0 -3.1100621 0
553 0 -1.7353668 0
554 0 -5.4949865 0
555 0 -1.9254994 0
555 0 -1.9254999 0
556 0 -3.4240565 0
557 0 -3.93614 0
558 0 -5.4818344 0
@ -563,14 +563,14 @@ Instance Label Score Assigned
561 0 -3.5726995 0
562 0 -5.4686823 0
563 0 -5.0078387 0
564 0 -3.849667 0
565 1 12.08609 1
564 0 -3.8496675 0
565 1 12.086092 1
566 0 -4.2270923 0
567 0 -3.6343493 0
568 1 4.1473055 1
569 1 10.713882 1
570 1 8.017664 1
571 1 11.034657 1
571 1 11.034658 1
572 0 -5.0078387 0
573 0 -5.95583 0
574 1 5.950967 1
@ -581,12 +581,12 @@ Instance Label Score Assigned
579 0 -5.4686823 0
580 0 -3.7662487 0
581 1 8.417797 1
582 1 7.907978 1
582 1 7.90798 1
583 0 -5.4949865 0
584 0 -2.9291954 0
585 0 -6.442978 0
586 1 13.981018 1
587 0 -3.8628192 0
586 1 13.98102 1
587 0 -3.8628197 0
588 1 5.463169 1
589 0 -4.5469956 0
590 1 3.9684038 1
@ -603,15 +603,15 @@ Instance Label Score Assigned
601 0 -6.0464916 0
602 0 -4.533843 0
603 1 4.8058825 1
604 1 6.1928043 1
604 1 6.1928034 1
605 1 9.95545 1
606 0 -4.715564 0
607 0 -6.442978 0
608 1 11.148426 1
609 0 -4.5469956 0
610 1 8.926189 1
610 1 8.926191 1
611 1 6.9109592 1
612 1 16.893513 1
612 1 16.893515 1
613 0 -5.226982 0
614 0 -5.5724964 0
615 0 -3.9466453 0
@ -628,16 +628,16 @@ Instance Label Score Assigned
626 1 5.760166 1
627 0 -4.1699953 0
628 0 -5.9689827 0
629 0 -5.020991 0
629 0 -5.0209913 0
630 0 -3.358376 0
631 0 -4.0598474 0
632 0 -6.442978 0
633 1 4.3299494 1
634 0 -5.4949865 0
635 0 -4.6141906 0
636 1 10.127518 1
636 1 10.12752 1
637 0 -2.4650183 0
638 0 -5.020991 0
638 0 -5.0209913 0
639 0 -3.93614 0
640 0 -4.4101357 0
641 0 -5.0078387 0
@ -647,11 +647,11 @@ Instance Label Score Assigned
645 0 -5.0078387 0
646 0 -6.021953 0
647 0 -5.832123 0
648 1 12.236198 1
648 1 12.2362 1
649 0 -5.0078387 0
650 0 -3.7496572 0
651 0 -5.2175484 0
652 0 -3.8628192 0
652 0 -3.8628197 0
653 0 -4.533843 0
654 0 -4.520691 0
655 0 -5.0078387 0
@ -665,10 +665,10 @@ Instance Label Score Assigned
663 0 -5.3686323 0
664 0 -4.3969836 0
665 0 -6.442978 0
666 0 -3.4969325 0
666 0 -3.496932 0
667 0 -4.520691 0
668 1 2.804366 1
669 1 8.147335 1
669 1 8.147337 1
670 1 6.4856215 1
671 0 -4.087837 0
672 0 -4.9946866 0
@ -679,21 +679,21 @@ Instance Label Score Assigned
677 0 -4.5469956 0
678 0 -6.442978 0
679 0 -5.9689827 0
680 1 16.780008 1
681 1 9.801077 1
682 0 -3.3756714 0
680 1 16.78001 1
681 1 9.801079 1
682 0 -3.3756719 0
683 0 -6.442978 0
684 0 -6.442978 0
685 0 -6.442978 0
686 0 -6.442978 0
687 0 -4.613783 0
688 0 -5.020991 0
688 0 -5.0209913 0
689 0 -4.177704 0
690 0 -5.832123 0
691 1 4.4967804 1
692 0 -5.4949865 0
693 0 -4.684228 0
694 0 -4.954578 0
694 0 -4.9545784 0
695 0 -5.9689827 0
696 1 6.7127876 1
697 1 5.064643 1

Просмотреть файл

@ -0,0 +1,86 @@
maml.exe CV tr=FastRankRanking{t=1} strat=Strat threads=- norm=Warn prexf=rangefilter{col=Label min=20 max=25} prexf=term{col=Strat:Label} dout=%Output% loader=text{col=Features:R4:10-14 col=Label:R4:9 col=GroupId:TX:1 header+} data=%Data% out=%Output% xf=term{col=Label} xf=hash{col=GroupId}
Not adding a normalizer.
Making per-feature arrays
Changing data from row-wise to column-wise
Processed 40 instances
Binning and forming Feature objects
Reserved memory for tree learner: %Number% bytes
Starting to train ...
Not training a calibrator because it is not needed.
Not adding a normalizer.
Making per-feature arrays
Changing data from row-wise to column-wise
Processed 32 instances
Binning and forming Feature objects
Reserved memory for tree learner: %Number% bytes
Starting to train ...
Not training a calibrator because it is not needed.
NDCG@1: 0.000000
NDCG@2: 0.000000
NDCG@3: 0.000000
NDCG@4: 0.000000
NDCG@5: 0.000000
NDCG@6: 0.000000
NDCG@7: 0.000000
NDCG@8: 0.000000
NDCG@9: 0.000000
NDCG@10: 0.000000
DCG@1: 0.000000
DCG@2: 0.000000
DCG@3: 0.000000
DCG@4: 0.000000
DCG@5: 0.000000
DCG@6: 0.000000
DCG@7: 0.000000
DCG@8: 0.000000
DCG@9: 0.000000
DCG@10: 0.000000
NDCG@1: 0.000000
NDCG@2: 0.000000
NDCG@3: 0.000000
NDCG@4: 0.000000
NDCG@5: 0.000000
NDCG@6: 0.000000
NDCG@7: 0.000000
NDCG@8: 0.000000
NDCG@9: 0.000000
NDCG@10: 0.000000
DCG@1: 0.000000
DCG@2: 0.000000
DCG@3: 0.000000
DCG@4: 0.000000
DCG@5: 0.000000
DCG@6: 0.000000
DCG@7: 0.000000
DCG@8: 0.000000
DCG@9: 0.000000
DCG@10: 0.000000
OVERALL RESULTS
---------------------------------------
NDCG@1: 0.000000 (0.0000)
NDCG@2: 0.000000 (0.0000)
NDCG@3: 0.000000 (0.0000)
NDCG@4: 0.000000 (0.0000)
NDCG@5: 0.000000 (0.0000)
NDCG@6: 0.000000 (0.0000)
NDCG@7: 0.000000 (0.0000)
NDCG@8: 0.000000 (0.0000)
NDCG@9: 0.000000 (0.0000)
NDCG@10: 0.000000 (0.0000)
DCG@1: 0.000000 (0.0000)
DCG@2: 0.000000 (0.0000)
DCG@3: 0.000000 (0.0000)
DCG@4: 0.000000 (0.0000)
DCG@5: 0.000000 (0.0000)
DCG@6: 0.000000 (0.0000)
DCG@7: 0.000000 (0.0000)
DCG@8: 0.000000 (0.0000)
DCG@9: 0.000000 (0.0000)
DCG@10: 0.000000 (0.0000)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,60 @@
maml.exe CV tr=lr{l1=1.0 l2=0.1 ot=1e-3 nt=1} strat=Strat threads=- norm=Warn loader=text{col=Features:R4:9-14 col=Label:R4:0 col=Strat:TX:1 header+} data=%Data% out=%Output%
Warning: A normalizer is needed for this trainer. Either add a normalizing transform or use the 'norm=Auto', 'norm=Yes' or 'norm=No' options.
Beginning optimization
num vars: 7
improvement criterion: Mean Improvement
L1 regularization selected 7 of 7 weights.
Not training a calibrator because it is not needed.
Warning: A normalizer is needed for this trainer. Either add a normalizing transform or use the 'norm=Auto', 'norm=Yes' or 'norm=No' options.
Beginning optimization
num vars: 7
improvement criterion: Mean Improvement
L1 regularization selected 7 of 7 weights.
Not training a calibrator because it is not needed.
TEST POSITIVE RATIO: 0.3366 (34.0/(34.0+67.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 0 | 34 | 0.0000
negative || 0 | 67 | 1.0000
||======================
Precision || 0.0000 | 0.6634 |
OVERALL 0/1 ACCURACY: 0.663366
LOG LOSS/instance: 1.041008
Test-set entropy (prior Log-Loss/instance): 0.921561
LOG-LOSS REDUCTION (RIG): -0.129614
AUC: 0.476734
TEST POSITIVE RATIO: 0.2030 (81.0/(81.0+318.0))
Confusion table
||======================
PREDICTED || positive | negative | Recall
TRUTH ||======================
positive || 16 | 65 | 0.1975
negative || 14 | 304 | 0.9560
||======================
Precision || 0.5333 | 0.8238 |
OVERALL 0/1 ACCURACY: 0.802005
LOG LOSS/instance: 0.811899
Test-set entropy (prior Log-Loss/instance): 0.727903
LOG-LOSS REDUCTION (RIG): -0.115396
AUC: 0.559205
OVERALL RESULTS
---------------------------------------
AUC: 0.517969 (0.0412)
Accuracy: 0.732686 (0.0693)
Positive precision: 0.266667 (0.2667)
Positive recall: 0.098765 (0.0988)
Negative precision: 0.743607 (0.0802)
Negative recall: 0.977987 (0.0220)
Log-loss: 0.926454 (0.1146)
Log-loss reduction: -0.122505 (0.0071)
F1 Score: 0.144144 (0.1441)
AUPRC: 0.348230 (0.0216)
---------------------------------------
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,683 @@
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:4 2:4 3:5 4:7 5:10 6:3 7:2 8:1
0 0:3 1:1 2:1 3:1 4:2 5:2 6:3 7:1 8:1
0 0:6 1:8 2:8 3:1 4:3 5:4 6:3 7:7 8:1
0 0:4 1:1 2:1 3:3 4:2 5:1 6:3 7:1 8:1
1 0:8 1:10 2:10 3:8 4:7 5:10 6:9 7:7 8:1
0 0:1 1:1 2:1 3:1 4:2 5:10 6:3 7:1 8:1
0 0:2 1:1 2:2 3:1 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:5
0 0:4 1:2 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:5 1:3 2:3 3:3 4:2 5:3 6:4 7:4 8:1
0 0:1 1:1 2:1 3:1 4:2 5:3 6:3 7:1 8:1
1 0:8 1:7 2:5 3:10 4:7 5:9 6:5 7:5 8:4
1 0:7 1:4 2:6 3:4 4:6 5:1 6:4 7:3 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:7 2:7 3:6 4:4 5:10 6:4 7:1 8:2
0 0:6 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:7 1:3 2:2 3:10 4:5 5:10 6:5 7:4 8:4
1 0:10 1:5 2:5 3:3 4:6 5:7 6:7 7:10 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:2 2:3 3:4 4:2 5:7 6:3 7:6 8:1
0 0:3 1:2 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:3 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:7 2:7 3:3 4:8 5:5 6:7 7:4 8:3
0 0:2 1:1 2:1 3:2 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:10 1:10 2:10 3:8 4:6 5:1 6:8 7:9 8:1
0 0:6 1:2 2:1 3:1 4:1 5:1 6:7 7:1 8:1
1 0:5 1:4 2:4 3:9 4:2 5:10 6:5 7:6 8:1
1 0:2 1:5 2:3 3:3 4:6 5:7 6:7 7:5 8:1
1 0:10 1:4 2:3 3:1 4:3 5:3 6:6 7:5 8:2
1 0:6 1:10 2:10 3:2 4:8 5:10 6:7 7:3 8:3
1 0:5 1:6 2:5 3:6 4:10 5:1 6:3 7:1 8:1
1 0:10 1:10 2:10 3:4 4:8 5:1 6:8 7:10 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:2
1 0:3 1:7 2:7 3:4 4:4 5:9 6:4 7:8 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:3 4:2 5:1 6:3 7:1 8:1
1 0:7 1:8 2:7 3:2 4:4 5:8 6:3 7:8 8:2
1 0:9 1:5 2:8 3:1 4:2 5:3 6:2 7:1 8:5
1 0:5 1:3 2:3 3:4 4:2 5:4 6:3 7:4 8:1
1 0:10 1:3 2:6 3:2 4:3 5:5 6:4 7:10 8:2
1 0:5 1:5 2:5 3:8 4:10 5:8 6:7 7:3 8:7
1 0:10 1:5 2:5 3:6 4:8 5:8 6:7 7:1 8:1
1 0:10 1:6 2:6 3:3 4:4 5:5 6:3 7:6 8:1
1 0:8 1:10 2:10 3:1 4:3 5:6 6:3 7:9 8:1
1 0:8 1:2 2:4 3:1 4:5 5:1 6:5 7:4 8:4
1 0:5 1:2 2:3 3:1 4:6 5:10 6:5 7:1 8:1
1 0:9 1:5 2:5 3:2 4:2 5:2 6:5 7:1 8:1
1 0:5 1:3 2:5 3:5 4:3 5:3 6:4 7:10 8:1
0 0:1 1:1 2:1 3:1 4:2 5:2 6:2 7:1 8:1
1 0:9 1:10 2:10 3:1 4:10 5:8 6:3 7:3 8:1
1 0:6 1:3 2:4 3:1 4:5 5:2 6:3 7:9 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:10 1:4 2:2 3:1 4:3 5:2 6:4 7:3 8:10
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:3 2:4 3:1 4:8 5:10 6:4 7:9 8:1
1 0:8 1:3 2:8 3:3 4:4 5:9 6:8 7:9 8:8
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:2 8:1
0 0:5 1:1 2:3 3:1 4:2 5:1 6:2 7:1 8:1
1 0:6 1:10 2:2 3:8 4:10 5:2 6:7 7:8 8:10
0 0:1 1:3 2:3 3:2 4:2 5:1 6:7 7:2 8:1
1 0:9 1:4 2:5 3:10 4:6 5:10 6:4 7:8 8:1
1 0:10 1:6 2:4 3:1 4:3 5:4 6:3 7:2 8:3
0 0:1 1:1 2:2 3:1 4:2 5:2 6:4 7:2 8:1
0 0:1 1:1 2:4 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:3 2:1 3:2 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:3 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:3 5:1 6:2 7:1 8:1
0 0:2 1:2 2:2 3:1 4:1 5:1 6:7 7:1 8:1
0 0:4 1:1 2:1 3:2 4:2 5:1 6:2 7:1 8:1
0 0:5 1:2 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:2 6:7 7:1 8:1
1 0:3 1:5 2:7 3:8 4:8 5:9 6:7 7:10 8:7
1 0:5 1:10 2:6 3:1 4:10 5:4 6:4 7:10 8:10
1 0:3 1:3 2:6 3:4 4:5 5:8 6:4 7:4 8:1
1 0:3 1:6 2:6 3:6 4:5 5:10 6:6 7:8 8:3
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:2 4:3 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:2 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:2 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:9 1:6 2:9 3:2 4:10 5:6 6:2 7:9 8:10
1 0:7 1:5 2:6 3:10 4:5 5:10 6:7 7:9 8:4
1 0:10 1:3 2:5 3:1 4:10 5:5 6:3 7:10 8:2
1 0:2 1:3 2:4 3:4 4:2 5:5 6:2 7:5 8:1
0 0:4 1:1 2:2 3:1 4:2 5:1 6:3 7:1 8:1
1 0:8 1:2 2:3 3:1 4:6 5:3 6:7 7:1 8:1
1 0:10 1:10 2:10 3:10 4:10 5:1 6:8 7:8 8:8
1 0:7 1:3 2:4 3:4 4:3 5:3 6:3 7:2 8:7
1 0:10 1:10 2:10 3:8 4:2 5:10 6:4 7:1 8:1
1 0:1 1:6 2:8 3:10 4:8 5:10 6:5 7:7 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:3 8:1
1 0:6 1:5 2:4 3:4 4:3 5:9 6:7 7:8 8:3
0 0:1 1:3 2:1 3:2 4:2 5:2 6:5 7:3 8:2
1 0:8 1:6 2:4 3:3 4:5 5:9 6:3 7:1 8:1
1 0:10 1:3 2:3 3:10 4:2 5:10 6:7 7:3 8:3
1 0:10 1:10 2:10 3:3 4:10 5:8 6:8 7:1 8:1
0 0:3 1:3 2:2 3:1 4:2 5:3 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:5 6:1 7:1 8:1
0 0:8 1:3 2:3 3:1 4:2 5:2 6:3 7:2 8:1
1 0:4 1:5 2:5 3:10 4:4 5:10 6:7 7:5 8:8
0 0:1 1:1 2:1 3:1 4:4 5:3 6:1 7:1 8:1
0 0:3 1:2 2:1 3:1 4:2 5:2 6:3 7:1 8:1
0 0:1 1:1 2:2 3:2 4:2 5:1 6:3 7:1 8:1
0 0:4 1:2 2:1 3:1 4:2 5:2 6:3 7:1 8:1
1 0:10 1:10 2:10 3:2 4:10 5:10 6:5 7:3 8:3
1 0:5 1:3 2:5 3:1 4:8 5:10 6:5 7:3 8:1
1 0:5 1:4 2:6 3:7 4:9 5:7 6:8 7:10 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:7 1:5 2:3 3:7 4:4 5:10 6:7 7:5 8:5
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:8 1:3 2:5 3:4 4:5 5:10 6:1 7:6 8:2
0 0:1 1:1 2:1 3:1 4:10 5:1 6:1 7:1 8:1
0 0:5 1:1 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:10 2:8 3:10 4:8 5:10 6:3 7:6 8:3
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:2 8:1
0 0:3 1:1 2:1 3:1 4:3 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:2 6:3 7:3 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:9 1:5 2:5 3:4 4:4 5:5 6:4 7:3 8:3
0 0:1 1:1 2:1 3:1 4:2 5:5 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:3 1:4 2:5 3:2 4:6 5:8 6:4 7:1 8:1
0 0:1 1:1 2:1 3:1 4:3 5:2 6:2 7:1 8:1
0 0:3 1:1 2:1 3:3 4:8 5:1 6:5 7:8 8:1
1 0:8 1:8 2:7 3:4 4:10 5:10 6:7 7:8 8:7
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
1 0:7 1:2 2:4 3:1 4:6 5:10 6:5 7:4 8:3
1 0:10 1:10 2:8 3:6 4:4 5:5 6:8 7:10 8:1
0 0:4 1:1 2:1 3:1 4:2 5:3 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:5 1:5 2:5 3:6 4:3 5:10 6:3 7:1 8:1
0 0:1 1:2 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:9 1:9 2:10 3:3 4:6 5:10 6:7 7:10 8:6
1 0:10 1:7 2:7 3:4 4:5 5:10 6:5 7:7 8:2
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:2 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:2 4:1 5:3 6:1 7:1 8:7
0 0:4 1:1 2:1 3:1 4:2 5:2 6:3 7:2 8:1
1 0:5 1:6 2:7 3:8 4:8 5:10 6:3 7:10 8:3
1 0:10 1:8 2:10 3:10 4:6 5:1 6:3 7:1 8:10
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:2 4:1 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:6 1:10 2:10 3:10 4:8 5:10 6:10 7:10 8:7
1 0:8 1:6 2:5 3:4 4:3 5:10 6:6 7:1 8:1
1 0:5 1:8 2:7 3:7 4:10 5:10 6:5 7:7 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:10 2:10 3:3 4:8 5:1 6:5 7:10 8:3
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:3 2:3 3:3 4:6 5:10 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:6 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:8 2:8 3:8 4:5 5:10 6:7 7:8 8:1
1 0:8 1:7 2:6 3:4 4:4 5:10 6:5 7:1 8:1
0 0:2 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
1 0:1 1:5 2:8 3:6 4:5 5:8 6:7 7:10 8:1
1 0:10 1:5 2:6 3:10 4:6 5:10 6:7 7:7 8:10
1 0:5 1:8 2:4 3:10 4:5 5:8 6:9 7:10 8:1
0 0:1 1:2 2:3 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:10 2:10 3:8 4:6 5:8 6:7 7:10 8:1
1 0:7 1:5 2:10 3:10 4:10 5:10 6:4 7:10 8:3
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:8 1:4 2:4 3:5 4:4 5:7 6:7 7:8 8:2
0 0:5 1:1 2:1 3:4 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:9 1:7 2:7 3:5 4:5 5:10 6:7 7:8 8:3
1 0:10 1:8 2:8 3:4 4:10 5:10 6:8 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:10 2:10 3:9 4:6 5:10 6:7 7:10 8:5
1 0:10 1:10 2:9 3:3 4:7 5:5 6:3 7:5 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
0 0:5 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
1 0:8 1:10 2:10 3:10 4:5 5:10 6:8 7:10 8:6
1 0:8 1:10 2:8 3:8 4:4 5:8 6:7 7:7 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:10 2:10 3:10 4:7 5:10 6:7 7:10 8:4
1 0:10 1:10 2:10 3:10 4:3 5:10 6:10 7:6 8:1
1 0:8 1:7 2:8 3:7 4:5 5:5 6:5 7:10 8:2
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:6 1:10 2:7 3:7 4:6 5:4 6:8 7:10 8:2
0 0:6 1:1 2:3 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:2 4:2 5:1 6:3 7:1 8:1
1 0:10 1:6 2:4 3:3 4:10 5:10 6:9 7:10 8:1
1 0:4 1:1 2:1 3:3 4:1 5:5 6:2 7:1 8:1
1 0:7 1:5 2:6 3:3 4:3 5:8 6:7 7:4 8:1
1 0:10 1:5 2:5 3:6 4:3 5:10 6:7 7:9 8:2
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:10 1:5 2:7 3:4 4:4 5:10 6:8 7:9 8:1
1 0:8 1:9 2:9 3:5 4:3 5:5 6:7 7:7 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
1 0:10 1:10 2:10 3:3 4:10 5:10 6:9 7:10 8:1
1 0:7 1:4 2:7 3:4 4:3 5:7 6:7 7:6 8:1
1 0:6 1:8 2:7 3:5 4:6 5:8 6:8 7:9 8:2
0 0:8 1:4 2:6 3:3 4:3 5:1 6:4 7:3 8:1
1 0:10 1:4 2:5 3:5 4:5 5:10 6:4 7:1 8:1
0 0:3 1:3 2:2 3:1 4:3 5:1 6:3 7:6 8:1
1 0:10 1:8 2:8 3:2 4:8 5:10 6:4 7:8 8:10
1 0:9 1:8 2:8 3:5 4:6 5:2 6:4 7:10 8:4
1 0:8 1:10 2:10 3:8 4:6 5:9 6:3 7:10 8:10
1 0:10 1:4 2:3 3:2 4:3 5:10 6:5 7:3 8:2
0 0:5 1:1 2:3 3:3 4:2 5:2 6:2 7:3 8:1
0 0:3 1:1 2:1 3:3 4:1 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:5 6:5 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:1 3:2 4:2 5:2 6:3 7:1 8:1
1 0:8 1:10 2:10 3:8 4:5 5:10 6:7 7:8 8:1
1 0:8 1:4 2:4 3:1 4:2 5:9 6:3 7:3 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:6 8:1
0 0:1 1:2 2:2 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:4 2:4 3:10 4:2 5:10 6:5 7:3 8:3
0 0:6 1:3 2:3 3:5 4:3 5:10 6:3 7:5 8:3
1 0:6 1:10 2:10 3:2 4:8 5:10 6:7 7:3 8:3
1 0:9 1:10 2:10 3:1 4:10 5:8 6:3 7:3 8:1
1 0:5 1:6 2:6 3:2 4:4 5:10 6:3 7:6 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:7 2:7 3:1 4:5 5:8 6:3 7:4 8:1
1 0:10 1:5 2:8 3:10 4:3 5:10 6:5 7:1 8:3
1 0:5 1:10 2:10 3:6 4:10 5:10 6:10 7:6 8:5
1 0:8 1:8 2:9 3:4 4:5 5:10 6:7 7:8 8:1
1 0:10 1:4 2:4 3:10 4:6 5:10 6:5 7:5 8:1
1 0:7 1:9 2:4 3:10 4:10 5:3 6:5 7:3 8:3
0 0:5 1:1 2:4 3:1 4:2 5:1 6:3 7:2 8:1
1 0:10 1:10 2:6 3:3 4:3 5:10 6:4 7:3 8:2
1 0:3 1:3 2:5 3:2 4:3 5:10 6:7 7:1 8:1
1 0:10 1:8 2:8 3:2 4:3 5:4 6:8 7:7 8:8
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:8 1:4 2:7 3:1 4:3 5:10 6:3 7:9 8:2
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:3 1:3 2:5 3:2 4:3 5:10 6:7 7:1 8:1
1 0:7 1:2 2:4 3:1 4:3 5:4 6:3 7:3 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:2 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:5 2:7 3:3 4:3 5:7 6:3 7:3 8:8
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:2 4:2 5:1 6:3 7:1 8:1
1 0:1 1:4 2:3 3:10 4:4 5:10 6:5 7:6 8:1
1 0:10 1:4 2:6 3:1 4:2 5:10 6:5 7:3 8:1
1 0:7 1:4 2:5 3:10 4:2 5:10 6:3 7:8 8:2
1 0:8 1:10 2:10 3:10 4:8 5:10 6:10 7:7 8:3
1 0:10 1:10 2:10 3:10 4:10 5:10 6:4 7:10 8:10
0 0:3 1:1 2:1 3:1 4:3 5:1 6:2 7:1 8:1
1 0:6 1:1 2:3 3:1 4:4 5:5 6:5 7:10 8:1
1 0:5 1:6 2:6 3:8 4:6 5:10 6:4 7:10 8:4
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:4 2:4 3:6 4:2 5:10 6:2 7:3 8:1
1 0:5 1:5 2:7 3:8 4:6 5:10 6:7 7:4 8:1
0 0:5 1:3 2:4 3:3 4:4 5:5 6:4 7:7 8:1
0 0:8 1:2 2:1 3:1 4:5 5:1 6:1 7:1 8:1
1 0:9 1:1 2:2 3:6 4:4 5:10 6:7 7:7 8:2
1 0:8 1:4 2:10 3:5 4:4 5:4 6:7 7:10 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:10 1:10 2:10 3:7 4:9 5:10 6:7 7:10 8:10
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:8 1:3 2:4 3:9 4:3 5:10 6:3 7:3 8:1
1 0:10 1:8 2:4 3:4 4:4 5:10 6:3 7:10 8:4
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:7 1:8 2:7 3:6 4:4 5:3 6:8 7:8 8:4
0 0:3 1:1 2:1 3:1 4:2 5:5 6:5 7:1 8:1
0 0:2 1:1 2:1 3:1 4:3 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:8 1:6 2:4 3:10 4:10 5:1 6:3 7:5 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
1 0:5 1:5 2:5 3:2 4:5 5:10 6:4 7:3 8:1
1 0:6 1:8 2:7 3:8 4:6 5:8 6:8 7:9 8:1
0 0:1 1:1 2:1 3:1 4:5 5:1 6:3 7:1 8:1
0 0:4 1:4 2:4 3:4 4:6 5:5 6:7 7:3 8:1
1 0:7 1:6 2:3 3:2 4:5 5:10 6:7 7:4 8:6
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:4 2:6 3:10 4:2 5:10 6:4 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:2 2:2 3:1 4:2 5:1 6:2 7:3 8:1
1 0:10 1:1 2:1 3:1 4:2 5:10 6:5 7:4 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:8 1:10 2:3 3:2 4:6 5:4 6:3 7:10 8:1
1 0:10 1:4 2:6 3:4 4:5 5:10 6:7 7:1 8:1
1 0:10 1:4 2:7 3:2 4:2 5:8 6:6 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:2
0 0:5 1:2 2:2 3:2 4:2 5:1 6:2 7:2 8:1
1 0:5 1:4 2:6 3:6 4:4 5:10 6:4 7:3 8:1
1 0:8 1:6 2:7 3:3 4:3 5:10 6:3 7:4 8:2
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:6 1:5 2:5 3:8 4:4 5:10 6:3 7:4 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
1 0:8 1:5 2:5 3:5 4:2 5:10 6:4 7:3 8:1
1 0:10 1:3 2:3 3:1 4:2 5:10 6:7 7:6 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:7 1:6 2:4 3:8 4:10 5:10 6:9 7:5 8:3
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:2 2:2 3:2 4:3 5:1 6:1 7:3 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1
1 0:3 1:4 2:4 3:10 4:5 5:1 6:3 7:3 8:1
1 0:4 1:2 2:3 3:5 4:3 5:8 6:7 7:6 8:1
0 0:5 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:4 2:5 3:3 4:7 5:3 6:4 7:6 8:1
1 0:2 1:7 2:10 3:10 4:7 5:10 6:4 7:9 8:4
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:3 5:1 6:2 7:2 8:1
1 0:5 1:3 2:3 3:1 4:3 5:3 6:3 7:3 8:3
1 0:8 1:10 2:10 3:7 4:10 5:10 6:7 7:3 8:8
1 0:8 1:10 2:5 3:3 4:8 5:4 6:4 7:10 8:3
1 0:10 1:3 2:5 3:4 4:3 5:7 6:3 7:5 8:3
1 0:6 1:10 2:10 3:10 4:10 5:10 6:8 7:10 8:10
1 0:3 1:10 2:3 3:10 4:6 5:10 6:5 7:1 8:4
0 0:3 1:2 2:2 3:1 4:4 5:3 6:2 7:1 8:1
0 0:4 1:4 2:4 3:2 4:2 5:3 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:6 1:10 2:10 3:10 4:8 5:10 6:7 7:10 8:7
1 0:5 1:8 2:8 3:10 4:5 5:10 6:8 7:10 8:3
0 0:1 1:1 2:3 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:3 3:1 4:1 5:1 6:2 7:1 8:1
0 0:4 1:3 2:2 3:1 4:3 5:1 6:2 7:1 8:1
0 0:1 1:1 2:3 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:2 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:4 4:3 5:1 6:2 7:2 8:1
0 0:5 1:3 2:4 3:1 4:4 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:6 2:3 3:6 4:4 5:10 6:7 7:8 8:4
0 0:3 1:2 2:2 3:2 4:2 5:1 6:3 7:2 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:3 2:2 3:2 4:3 5:1 6:1 7:2 8:3
1 0:7 1:6 2:6 3:3 4:2 5:10 6:7 7:1 8:1
0 0:5 1:3 2:3 3:2 4:3 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:2 8:1
0 0:5 1:1 2:1 3:1 4:3 5:2 6:2 7:2 8:1
0 0:1 1:1 2:1 3:2 4:2 5:1 6:2 7:1 8:1
1 0:10 1:8 2:7 3:4 4:3 5:10 6:7 7:9 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
0 0:1 1:2 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:2 2:1 3:1 4:2 5:1 6:2 7:2 8:1
0 0:1 1:2 2:3 3:1 4:2 5:1 6:1 7:1 8:1
1 0:3 1:10 2:8 3:7 4:6 5:9 6:9 7:3 8:8
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:3 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:4 6:1 7:1 8:1
0 0:1 1:2 2:1 3:3 4:2 5:1 6:1 7:2 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:2 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:3 2:2 3:2 4:2 5:2 6:3 7:1 8:1
0 0:3 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:10 1:10 2:10 3:6 4:8 5:4 6:8 7:5 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:3 7:1 8:1
1 0:8 1:5 2:6 3:2 4:3 5:10 6:6 7:6 8:1
0 0:3 1:3 2:2 3:6 4:3 5:3 6:3 7:5 8:1
1 0:8 1:7 2:8 3:5 4:10 5:10 6:7 7:2 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:2 2:2 3:2 4:2 5:2 6:3 7:2 8:2
0 0:2 1:3 2:1 3:1 4:5 5:1 6:1 7:1 8:1
0 0:3 1:2 2:2 3:3 4:2 5:3 6:3 7:1 8:1
1 0:10 1:10 2:10 3:7 4:10 5:10 6:8 7:2 8:1
0 0:4 1:3 2:3 3:1 4:2 5:1 6:3 7:3 8:1
0 0:5 1:1 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:9 1:10 2:10 3:10 4:10 5:10 6:10 7:10 8:1
0 0:5 1:3 2:6 3:1 4:2 5:1 6:1 7:1 8:1
1 0:8 1:7 2:8 3:2 4:4 5:2 6:5 7:10 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:3 2:1 3:1 4:2 5:1 6:2 7:2 8:1
0 0:5 1:1 2:1 3:3 4:4 5:1 6:3 7:2 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:2 8:1
0 0:3 1:2 2:2 3:3 4:2 5:1 6:1 7:1 8:1
0 0:6 1:9 2:7 3:5 4:5 5:8 6:4 7:2 8:1
1 0:10 1:8 2:10 3:1 4:3 5:10 6:5 7:1 8:1
1 0:10 1:10 2:10 3:1 4:6 5:1 6:2 7:8 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:3 3:3 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:4 2:3 3:10 4:4 5:10 6:10 7:1 8:1
0 0:5 1:2 2:2 3:4 4:2 5:4 6:1 7:1 8:1
0 0:1 1:1 2:1 3:3 4:2 5:3 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:2 6:1 7:1 8:1
0 0:5 1:1 2:1 3:6 4:3 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
1 0:5 1:7 2:9 3:8 4:6 5:10 6:8 7:10 8:1
0 0:4 1:1 2:1 3:3 4:1 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
1 0:4 1:5 2:5 3:8 4:6 5:10 6:10 7:7 8:1
0 0:2 1:3 2:1 3:1 4:3 5:1 6:1 7:1 8:1
1 0:10 1:2 2:2 3:1 4:2 5:6 6:1 7:1 8:2
1 0:10 1:6 2:5 3:8 4:5 5:10 6:8 7:6 8:1
1 0:8 1:8 2:9 3:6 4:6 5:3 6:10 7:10 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:3 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:5 6:1 7:1 8:1
0 0:6 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:2 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:9 2:8 3:7 4:6 5:4 6:7 7:10 8:3
1 0:10 1:6 2:6 3:2 4:4 5:10 6:9 7:7 8:1
1 0:6 1:6 2:6 3:5 4:4 5:10 6:7 7:6 8:2
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:6 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:6 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:2 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:2 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:4 1:8 2:7 3:10 4:4 5:10 6:7 7:5 8:1
0 0:5 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
0 0:5 1:3 2:2 3:4 4:2 5:1 6:1 7:1 8:1
1 0:9 1:10 2:10 3:10 4:10 5:5 6:10 7:10 8:10
1 0:8 1:7 2:8 3:5 4:5 5:10 6:9 7:10 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:3 4:1 5:3 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
1 0:10 1:10 2:10 3:10 4:6 5:10 6:8 7:1 8:5
1 0:3 1:6 2:4 3:10 4:3 5:3 6:3 7:4 8:1
1 0:6 1:3 2:2 3:1 4:3 5:4 6:4 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:5 1:8 2:9 3:4 4:3 5:10 6:7 7:1 8:1
0 0:4 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
1 0:5 1:10 2:10 3:10 4:6 5:10 6:6 7:5 8:2
0 0:5 1:1 2:2 3:10 4:4 5:5 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
0 0:4 1:2 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:6 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:2 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:3 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:8 1:10 2:10 3:10 4:7 5:5 6:4 7:8 8:7
0 0:1 1:1 2:1 3:1 4:2 5:4 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
1 0:6 1:6 2:7 3:10 4:3 5:10 6:8 7:10 8:2
1 0:4 1:10 2:4 3:7 4:3 5:10 6:9 7:10 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:3 1:1 2:2 3:2 4:2 5:1 6:1 7:1 8:1
1 0:4 1:7 2:8 3:3 4:4 5:10 6:9 7:1 8:1
0 0:1 1:1 2:1 3:1 4:3 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:3 5:1 6:1 7:1 8:1
1 0:10 1:4 2:5 3:4 4:3 5:5 6:7 7:3 8:1
1 0:7 1:5 2:6 3:10 4:4 5:10 6:5 7:3 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:2 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:6 1:1 2:3 3:2 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
1 0:7 1:4 2:4 3:3 4:4 5:10 6:6 7:9 8:1
0 0:4 1:2 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:3 3:2 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:3 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:6 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:2 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:3 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:3 3:2 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:6 1:10 2:10 3:10 4:4 5:10 6:7 7:10 8:1
0 0:2 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
1 0:7 1:8 2:3 3:7 4:4 5:5 6:7 7:8 8:2
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:2 2:2 3:2 4:2 5:1 6:4 7:2 8:1
0 0:4 1:4 2:2 3:1 4:2 5:5 6:2 7:1 8:2
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:3 2:1 3:1 4:2 5:1 6:4 7:8 8:1
0 0:5 1:2 2:2 3:2 4:1 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:2 8:1
1 0:5 1:7 2:10 3:10 4:5 5:10 6:10 7:10 8:1
0 0:3 1:1 2:2 3:1 4:2 5:1 6:3 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:3 6:2 7:1 8:1
1 0:8 1:4 2:4 3:1 4:6 5:10 6:2 7:5 8:2
1 0:10 1:10 2:8 3:10 4:6 5:5 6:10 7:3 8:1
1 0:8 1:10 2:4 3:4 4:8 5:10 6:8 7:2 8:1
1 0:7 1:6 2:10 3:5 4:3 5:10 6:9 7:10 8:2
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:10 1:9 2:7 3:3 4:4 5:2 6:7 7:7 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
1 0:5 1:7 2:10 3:6 4:5 5:10 6:7 7:5 8:1
1 0:6 1:10 2:5 3:5 4:4 5:10 6:6 7:10 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:6 4:3 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:8 1:10 2:10 3:10 4:6 5:10 6:10 7:10 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:2 8:1
1 0:9 1:8 2:8 3:9 4:6 5:3 6:4 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:4 1:10 2:8 3:5 4:4 5:1 6:10 7:1 8:1
1 0:2 1:5 2:7 3:6 4:4 5:10 6:7 7:6 8:1
1 0:10 1:3 2:4 3:5 4:3 5:10 6:4 7:1 8:1
0 0:5 1:1 2:2 3:1 4:2 5:1 6:1 7:1 8:1
1 0:4 1:8 2:6 3:3 4:4 5:10 6:7 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:3 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:2 2:4 3:1 4:1 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
1 0:5 1:4 2:6 3:8 4:4 5:1 6:8 7:10 8:1
1 0:5 1:3 2:2 3:8 4:5 5:10 6:8 7:1 8:2
1 0:10 1:5 2:10 3:3 4:5 5:8 6:7 7:8 8:3
0 0:4 1:1 2:1 3:2 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:5 1:10 2:10 3:10 4:10 5:10 6:10 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:4 2:3 3:10 4:3 5:10 6:7 7:1 8:2
1 0:5 1:10 2:10 3:10 4:5 5:2 6:8 7:5 8:1
1 0:8 1:10 2:10 3:10 4:6 5:10 6:10 7:10 8:10
0 0:2 1:3 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:2 1:1 2:1 3:1 4:1 5:1 6:2 7:1 8:1
0 0:4 1:1 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:6 1:3 2:3 3:3 4:3 5:2 6:6 7:1 8:1
0 0:7 1:1 2:2 3:3 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:2 4:1 5:1 6:2 7:1 8:1
0 0:3 1:1 2:3 3:1 4:3 5:4 6:1 7:1 8:1
1 0:4 1:6 2:6 3:5 4:7 5:6 6:7 7:7 8:3
0 0:2 1:1 2:1 3:1 4:2 5:5 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:6 1:2 2:3 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:8 1:7 2:4 3:4 4:5 5:3 6:5 7:10 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:4 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:10 2:7 3:8 4:7 5:1 6:10 7:10 8:3
0 0:4 1:2 2:4 3:3 4:2 5:2 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:4 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:2 2:2 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
1 0:5 1:10 2:10 3:10 4:10 5:2 6:10 7:10 8:10
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:2 4:3 5:4 6:1 7:1 8:1
0 0:1 1:2 2:1 3:3 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:2 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:4 2:5 3:1 4:8 5:1 6:3 7:6 8:1
1 0:7 1:8 2:8 3:7 4:3 5:10 6:7 7:2 8:3
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:1 1:1 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:3 3:1 4:2 5:1 6:2 7:1 8:1
0 0:3 1:1 2:1 3:3 4:2 5:1 6:2 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:5 1:2 2:2 3:2 4:2 5:1 6:1 7:1 8:2
0 0:3 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
1 0:5 1:7 2:4 3:1 4:6 5:1 6:7 7:10 8:3
1 0:5 1:10 2:10 3:8 4:5 5:5 6:7 7:10 8:1
1 0:3 1:10 2:7 3:8 4:5 5:8 6:7 7:4 8:1
0 0:3 1:2 2:1 3:2 4:2 5:1 6:3 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1
0 0:5 1:3 2:2 3:1 4:3 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:1
0 0:4 1:1 2:4 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:2 3:1 4:2 5:1 6:2 7:1 8:1
0 0:5 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:10 1:10 2:10 3:10 4:5 5:10 6:10 7:10 8:7
1 0:5 1:10 2:10 3:10 4:4 5:10 6:5 7:6 8:3
0 0:5 1:1 2:1 3:1 4:2 5:1 6:3 7:2 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:3 8:1
0 0:4 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:8
0 0:1 1:1 2:1 3:3 4:2 5:1 6:1 7:1 8:1
1 0:5 1:10 2:10 3:5 4:4 5:5 6:4 7:4 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
0 0:3 1:1 2:1 3:1 4:2 5:1 6:2 7:1 8:2
0 0:3 1:1 2:1 3:1 4:3 5:2 6:1 7:1 8:1
0 0:2 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1
1 0:5 1:10 2:10 3:3 4:7 5:3 6:8 7:10 8:2
1 0:4 1:8 2:6 3:4 4:3 5:4 6:10 7:6 8:1
1 0:4 1:8 2:8 3:5 4:4 5:5 6:10 7:4 8:1

Просмотреть файл

@ -0,0 +1,683 @@
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:4 3:4 4:5 5:7 6:10 7:3 8:2 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:2 7:3 8:1 9:1
-1 1:6 2:8 3:8 4:1 5:3 6:4 7:3 8:7 9:1
-1 1:4 2:1 3:1 4:3 5:2 6:1 7:3 8:1 9:1
1 1:8 2:10 3:10 4:8 5:7 6:10 7:9 8:7 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:10 7:3 8:1 9:1
-1 1:2 2:1 3:2 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:5
-1 1:4 2:2 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:5 2:3 3:3 4:3 5:2 6:3 7:4 8:4 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:3 7:3 8:1 9:1
1 1:8 2:7 3:5 4:10 5:7 6:9 7:5 8:5 9:4
1 1:7 2:4 3:6 4:4 5:6 6:1 7:4 8:3 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:7 3:7 4:6 5:4 6:10 7:4 8:1 9:2
-1 1:6 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:7 2:3 3:2 4:10 5:5 6:10 7:5 8:4 9:4
1 1:10 2:5 3:5 4:3 5:6 6:7 7:7 8:10 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:2 3:3 4:4 5:2 6:7 7:3 8:6 9:1
-1 1:3 2:2 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:3 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:7 3:7 4:3 5:8 6:5 7:7 8:4 9:3
-1 1:2 2:1 3:1 4:2 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:10 2:10 3:10 4:8 5:6 6:1 7:8 8:9 9:1
-1 1:6 2:2 3:1 4:1 5:1 6:1 7:7 8:1 9:1
1 1:5 2:4 3:4 4:9 5:2 6:10 7:5 8:6 9:1
1 1:2 2:5 3:3 4:3 5:6 6:7 7:7 8:5 9:1
1 1:10 2:4 3:3 4:1 5:3 6:3 7:6 8:5 9:2
1 1:6 2:10 3:10 4:2 5:8 6:10 7:7 8:3 9:3
1 1:5 2:6 3:5 4:6 5:10 6:1 7:3 8:1 9:1
1 1:10 2:10 3:10 4:4 5:8 6:1 7:8 8:10 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:2
1 1:3 2:7 3:7 4:4 5:4 6:9 7:4 8:8 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:3 5:2 6:1 7:3 8:1 9:1
1 1:7 2:8 3:7 4:2 5:4 6:8 7:3 8:8 9:2
1 1:9 2:5 3:8 4:1 5:2 6:3 7:2 8:1 9:5
1 1:5 2:3 3:3 4:4 5:2 6:4 7:3 8:4 9:1
1 1:10 2:3 3:6 4:2 5:3 6:5 7:4 8:10 9:2
1 1:5 2:5 3:5 4:8 5:10 6:8 7:7 8:3 9:7
1 1:10 2:5 3:5 4:6 5:8 6:8 7:7 8:1 9:1
1 1:10 2:6 3:6 4:3 5:4 6:5 7:3 8:6 9:1
1 1:8 2:10 3:10 4:1 5:3 6:6 7:3 8:9 9:1
1 1:8 2:2 3:4 4:1 5:5 6:1 7:5 8:4 9:4
1 1:5 2:2 3:3 4:1 5:6 6:10 7:5 8:1 9:1
1 1:9 2:5 3:5 4:2 5:2 6:2 7:5 8:1 9:1
1 1:5 2:3 3:5 4:5 5:3 6:3 7:4 8:10 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:2 7:2 8:1 9:1
1 1:9 2:10 3:10 4:1 5:10 6:8 7:3 8:3 9:1
1 1:6 2:3 3:4 4:1 5:5 6:2 7:3 8:9 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:10 2:4 3:2 4:1 5:3 6:2 7:4 8:3 9:10
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:3 3:4 4:1 5:8 6:10 7:4 8:9 9:1
1 1:8 2:3 3:8 4:3 5:4 6:9 7:8 8:9 9:8
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:2 9:1
-1 1:5 2:1 3:3 4:1 5:2 6:1 7:2 8:1 9:1
1 1:6 2:10 3:2 4:8 5:10 6:2 7:7 8:8 9:10
-1 1:1 2:3 3:3 4:2 5:2 6:1 7:7 8:2 9:1
1 1:9 2:4 3:5 4:10 5:6 6:10 7:4 8:8 9:1
1 1:10 2:6 3:4 4:1 5:3 6:4 7:3 8:2 9:3
-1 1:1 2:1 3:2 4:1 5:2 6:2 7:4 8:2 9:1
-1 1:1 2:1 3:4 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:3 3:1 4:2 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:3 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:3 6:1 7:2 8:1 9:1
-1 1:2 2:2 3:2 4:1 5:1 6:1 7:7 8:1 9:1
-1 1:4 2:1 3:1 4:2 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:2 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:2 7:7 8:1 9:1
1 1:3 2:5 3:7 4:8 5:8 6:9 7:7 8:10 9:7
1 1:5 2:10 3:6 4:1 5:10 6:4 7:4 8:10 9:10
1 1:3 2:3 3:6 4:4 5:5 6:8 7:4 8:4 9:1
1 1:3 2:6 3:6 4:6 5:5 6:10 7:6 8:8 9:3
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:2 5:3 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:2 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:2 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:9 2:6 3:9 4:2 5:10 6:6 7:2 8:9 9:10
1 1:7 2:5 3:6 4:10 5:5 6:10 7:7 8:9 9:4
1 1:10 2:3 3:5 4:1 5:10 6:5 7:3 8:10 9:2
1 1:2 2:3 3:4 4:4 5:2 6:5 7:2 8:5 9:1
-1 1:4 2:1 3:2 4:1 5:2 6:1 7:3 8:1 9:1
1 1:8 2:2 3:3 4:1 5:6 6:3 7:7 8:1 9:1
1 1:10 2:10 3:10 4:10 5:10 6:1 7:8 8:8 9:8
1 1:7 2:3 3:4 4:4 5:3 6:3 7:3 8:2 9:7
1 1:10 2:10 3:10 4:8 5:2 6:10 7:4 8:1 9:1
1 1:1 2:6 3:8 4:10 5:8 6:10 7:5 8:7 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:3 9:1
1 1:6 2:5 3:4 4:4 5:3 6:9 7:7 8:8 9:3
-1 1:1 2:3 3:1 4:2 5:2 6:2 7:5 8:3 9:2
1 1:8 2:6 3:4 4:3 5:5 6:9 7:3 8:1 9:1
1 1:10 2:3 3:3 4:10 5:2 6:10 7:7 8:3 9:3
1 1:10 2:10 3:10 4:3 5:10 6:8 7:8 8:1 9:1
-1 1:3 2:3 3:2 4:1 5:2 6:3 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:5 7:1 8:1 9:1
-1 1:8 2:3 3:3 4:1 5:2 6:2 7:3 8:2 9:1
1 1:4 2:5 3:5 4:10 5:4 6:10 7:7 8:5 9:8
-1 1:1 2:1 3:1 4:1 5:4 6:3 7:1 8:1 9:1
-1 1:3 2:2 3:1 4:1 5:2 6:2 7:3 8:1 9:1
-1 1:1 2:1 3:2 4:2 5:2 6:1 7:3 8:1 9:1
-1 1:4 2:2 3:1 4:1 5:2 6:2 7:3 8:1 9:1
1 1:10 2:10 3:10 4:2 5:10 6:10 7:5 8:3 9:3
1 1:5 2:3 3:5 4:1 5:8 6:10 7:5 8:3 9:1
1 1:5 2:4 3:6 4:7 5:9 6:7 7:8 8:10 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:7 2:5 3:3 4:7 5:4 6:10 7:7 8:5 9:5
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:8 2:3 3:5 4:4 5:5 6:10 7:1 8:6 9:2
-1 1:1 2:1 3:1 4:1 5:10 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:10 3:8 4:10 5:8 6:10 7:3 8:6 9:3
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:2 9:1
-1 1:3 2:1 3:1 4:1 5:3 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:2 7:3 8:3 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:9 2:5 3:5 4:4 5:4 6:5 7:4 8:3 9:3
-1 1:1 2:1 3:1 4:1 5:2 6:5 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:3 2:4 3:5 4:2 5:6 6:8 7:4 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:3 6:2 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:3 5:8 6:1 7:5 8:8 9:1
1 1:8 2:8 3:7 4:4 5:10 6:10 7:7 8:8 9:7
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
1 1:7 2:2 3:4 4:1 5:6 6:10 7:5 8:4 9:3
1 1:10 2:10 3:8 4:6 5:4 6:5 7:8 8:10 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:3 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:5 2:5 3:5 4:6 5:3 6:10 7:3 8:1 9:1
-1 1:1 2:2 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:9 2:9 3:10 4:3 5:6 6:10 7:7 8:10 9:6
1 1:10 2:7 3:7 4:4 5:5 6:10 7:5 8:7 9:2
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:2 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:2 5:1 6:3 7:1 8:1 9:7
-1 1:4 2:1 3:1 4:1 5:2 6:2 7:3 8:2 9:1
1 1:5 2:6 3:7 4:8 5:8 6:10 7:3 8:10 9:3
1 1:10 2:8 3:10 4:10 5:6 6:1 7:3 8:1 9:10
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:2 5:1 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:6 2:10 3:10 4:10 5:8 6:10 7:10 8:10 9:7
1 1:8 2:6 3:5 4:4 5:3 6:10 7:6 8:1 9:1
1 1:5 2:8 3:7 4:7 5:10 6:10 7:5 8:7 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:10 3:10 4:3 5:8 6:1 7:5 8:10 9:3
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:3 3:3 4:3 5:6 6:10 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:6 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:8 3:8 4:8 5:5 6:10 7:7 8:8 9:1
1 1:8 2:7 3:6 4:4 5:4 6:10 7:5 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
1 1:1 2:5 3:8 4:6 5:5 6:8 7:7 8:10 9:1
1 1:10 2:5 3:6 4:10 5:6 6:10 7:7 8:7 9:10
1 1:5 2:8 3:4 4:10 5:5 6:8 7:9 8:10 9:1
-1 1:1 2:2 3:3 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:10 3:10 4:8 5:6 6:8 7:7 8:10 9:1
1 1:7 2:5 3:10 4:10 5:10 6:10 7:4 8:10 9:3
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:8 2:4 3:4 4:5 5:4 6:7 7:7 8:8 9:2
-1 1:5 2:1 3:1 4:4 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:9 2:7 3:7 4:5 5:5 6:10 7:7 8:8 9:3
1 1:10 2:8 3:8 4:4 5:10 6:10 7:8 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:10 3:10 4:9 5:6 6:10 7:7 8:10 9:5
1 1:10 2:10 3:9 4:3 5:7 6:5 7:3 8:5 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
1 1:8 2:10 3:10 4:10 5:5 6:10 7:8 8:10 9:6
1 1:8 2:10 3:8 4:8 5:4 6:8 7:7 8:7 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:10 3:10 4:10 5:7 6:10 7:7 8:10 9:4
1 1:10 2:10 3:10 4:10 5:3 6:10 7:10 8:6 9:1
1 1:8 2:7 3:8 4:7 5:5 6:5 7:5 8:10 9:2
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:6 2:10 3:7 4:7 5:6 6:4 7:8 8:10 9:2
-1 1:6 2:1 3:3 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:2 5:2 6:1 7:3 8:1 9:1
1 1:10 2:6 3:4 4:3 5:10 6:10 7:9 8:10 9:1
1 1:4 2:1 3:1 4:3 5:1 6:5 7:2 8:1 9:1
1 1:7 2:5 3:6 4:3 5:3 6:8 7:7 8:4 9:1
1 1:10 2:5 3:5 4:6 5:3 6:10 7:7 8:9 9:2
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:10 2:5 3:7 4:4 5:4 6:10 7:8 8:9 9:1
1 1:8 2:9 3:9 4:5 5:3 6:5 7:7 8:7 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
1 1:10 2:10 3:10 4:3 5:10 6:10 7:9 8:10 9:1
1 1:7 2:4 3:7 4:4 5:3 6:7 7:7 8:6 9:1
1 1:6 2:8 3:7 4:5 5:6 6:8 7:8 8:9 9:2
-1 1:8 2:4 3:6 4:3 5:3 6:1 7:4 8:3 9:1
1 1:10 2:4 3:5 4:5 5:5 6:10 7:4 8:1 9:1
-1 1:3 2:3 3:2 4:1 5:3 6:1 7:3 8:6 9:1
1 1:10 2:8 3:8 4:2 5:8 6:10 7:4 8:8 9:10
1 1:9 2:8 3:8 4:5 5:6 6:2 7:4 8:10 9:4
1 1:8 2:10 3:10 4:8 5:6 6:9 7:3 8:10 9:10
1 1:10 2:4 3:3 4:2 5:3 6:10 7:5 8:3 9:2
-1 1:5 2:1 3:3 4:3 5:2 6:2 7:2 8:3 9:1
-1 1:3 2:1 3:1 4:3 5:1 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:5 7:5 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:1 4:2 5:2 6:2 7:3 8:1 9:1
1 1:8 2:10 3:10 4:8 5:5 6:10 7:7 8:8 9:1
1 1:8 2:4 3:4 4:1 5:2 6:9 7:3 8:3 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:6 9:1
-1 1:1 2:2 3:2 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:4 3:4 4:10 5:2 6:10 7:5 8:3 9:3
-1 1:6 2:3 3:3 4:5 5:3 6:10 7:3 8:5 9:3
1 1:6 2:10 3:10 4:2 5:8 6:10 7:7 8:3 9:3
1 1:9 2:10 3:10 4:1 5:10 6:8 7:3 8:3 9:1
1 1:5 2:6 3:6 4:2 5:4 6:10 7:3 8:6 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:7 3:7 4:1 5:5 6:8 7:3 8:4 9:1
1 1:10 2:5 3:8 4:10 5:3 6:10 7:5 8:1 9:3
1 1:5 2:10 3:10 4:6 5:10 6:10 7:10 8:6 9:5
1 1:8 2:8 3:9 4:4 5:5 6:10 7:7 8:8 9:1
1 1:10 2:4 3:4 4:10 5:6 6:10 7:5 8:5 9:1
1 1:7 2:9 3:4 4:10 5:10 6:3 7:5 8:3 9:3
-1 1:5 2:1 3:4 4:1 5:2 6:1 7:3 8:2 9:1
1 1:10 2:10 3:6 4:3 5:3 6:10 7:4 8:3 9:2
1 1:3 2:3 3:5 4:2 5:3 6:10 7:7 8:1 9:1
1 1:10 2:8 3:8 4:2 5:3 6:4 7:8 8:7 9:8
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:8 2:4 3:7 4:1 5:3 6:10 7:3 8:9 9:2
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:3 2:3 3:5 4:2 5:3 6:10 7:7 8:1 9:1
1 1:7 2:2 3:4 4:1 5:3 6:4 7:3 8:3 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:2 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:5 3:7 4:3 5:3 6:7 7:3 8:3 9:8
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:2 5:2 6:1 7:3 8:1 9:1
1 1:1 2:4 3:3 4:10 5:4 6:10 7:5 8:6 9:1
1 1:10 2:4 3:6 4:1 5:2 6:10 7:5 8:3 9:1
1 1:7 2:4 3:5 4:10 5:2 6:10 7:3 8:8 9:2
1 1:8 2:10 3:10 4:10 5:8 6:10 7:10 8:7 9:3
1 1:10 2:10 3:10 4:10 5:10 6:10 7:4 8:10 9:10
-1 1:3 2:1 3:1 4:1 5:3 6:1 7:2 8:1 9:1
1 1:6 2:1 3:3 4:1 5:4 6:5 7:5 8:10 9:1
1 1:5 2:6 3:6 4:8 5:6 6:10 7:4 8:10 9:4
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:4 3:4 4:6 5:2 6:10 7:2 8:3 9:1
1 1:5 2:5 3:7 4:8 5:6 6:10 7:7 8:4 9:1
-1 1:5 2:3 3:4 4:3 5:4 6:5 7:4 8:7 9:1
-1 1:8 2:2 3:1 4:1 5:5 6:1 7:1 8:1 9:1
1 1:9 2:1 3:2 4:6 5:4 6:10 7:7 8:7 9:2
1 1:8 2:4 3:10 4:5 5:4 6:4 7:7 8:10 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:10 2:10 3:10 4:7 5:9 6:10 7:7 8:10 9:10
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:8 2:3 3:4 4:9 5:3 6:10 7:3 8:3 9:1
1 1:10 2:8 3:4 4:4 5:4 6:10 7:3 8:10 9:4
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:7 2:8 3:7 4:6 5:4 6:3 7:8 8:8 9:4
-1 1:3 2:1 3:1 4:1 5:2 6:5 7:5 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:3 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:8 2:6 3:4 4:10 5:10 6:1 7:3 8:5 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
1 1:5 2:5 3:5 4:2 5:5 6:10 7:4 8:3 9:1
1 1:6 2:8 3:7 4:8 5:6 6:8 7:8 8:9 9:1
-1 1:1 2:1 3:1 4:1 5:5 6:1 7:3 8:1 9:1
-1 1:4 2:4 3:4 4:4 5:6 6:5 7:7 8:3 9:1
1 1:7 2:6 3:3 4:2 5:5 6:10 7:7 8:4 9:6
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:4 3:6 4:10 5:2 6:10 7:4 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:2 3:2 4:1 5:2 6:1 7:2 8:3 9:1
1 1:10 2:1 3:1 4:1 5:2 6:10 7:5 8:4 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:8 2:10 3:3 4:2 5:6 6:4 7:3 8:10 9:1
1 1:10 2:4 3:6 4:4 5:5 6:10 7:7 8:1 9:1
1 1:10 2:4 3:7 4:2 5:2 6:8 7:6 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:2
-1 1:5 2:2 3:2 4:2 5:2 6:1 7:2 8:2 9:1
1 1:5 2:4 3:6 4:6 5:4 6:10 7:4 8:3 9:1
1 1:8 2:6 3:7 4:3 5:3 6:10 7:3 8:4 9:2
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:6 2:5 3:5 4:8 5:4 6:10 7:3 8:4 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
1 1:8 2:5 3:5 4:5 5:2 6:10 7:4 8:3 9:1
1 1:10 2:3 3:3 4:1 5:2 6:10 7:7 8:6 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:7 2:6 3:4 4:8 5:10 6:10 7:9 8:5 9:3
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:2 3:2 4:2 5:3 6:1 7:1 8:3 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:3 9:1
1 1:3 2:4 3:4 4:10 5:5 6:1 7:3 8:3 9:1
1 1:4 2:2 3:3 4:5 5:3 6:8 7:7 8:6 9:1
-1 1:5 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:4 3:5 4:3 5:7 6:3 7:4 8:6 9:1
1 1:2 2:7 3:10 4:10 5:7 6:10 7:4 8:9 9:4
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:3 6:1 7:2 8:2 9:1
1 1:5 2:3 3:3 4:1 5:3 6:3 7:3 8:3 9:3
1 1:8 2:10 3:10 4:7 5:10 6:10 7:7 8:3 9:8
1 1:8 2:10 3:5 4:3 5:8 6:4 7:4 8:10 9:3
1 1:10 2:3 3:5 4:4 5:3 6:7 7:3 8:5 9:3
1 1:6 2:10 3:10 4:10 5:10 6:10 7:8 8:10 9:10
1 1:3 2:10 3:3 4:10 5:6 6:10 7:5 8:1 9:4
-1 1:3 2:2 3:2 4:1 5:4 6:3 7:2 8:1 9:1
-1 1:4 2:4 3:4 4:2 5:2 6:3 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:6 2:10 3:10 4:10 5:8 6:10 7:7 8:10 9:7
1 1:5 2:8 3:8 4:10 5:5 6:10 7:8 8:10 9:3
-1 1:1 2:1 3:3 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:3 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:4 2:3 3:2 4:1 5:3 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:3 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:2 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:4 5:3 6:1 7:2 8:2 9:1
-1 1:5 2:3 3:4 4:1 5:4 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:6 3:3 4:6 5:4 6:10 7:7 8:8 9:4
-1 1:3 2:2 3:2 4:2 5:2 6:1 7:3 8:2 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:3 3:2 4:2 5:3 6:1 7:1 8:2 9:3
1 1:7 2:6 3:6 4:3 5:2 6:10 7:7 8:1 9:1
-1 1:5 2:3 3:3 4:2 5:3 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:2 9:1
-1 1:5 2:1 3:1 4:1 5:3 6:2 7:2 8:2 9:1
-1 1:1 2:1 3:1 4:2 5:2 6:1 7:2 8:1 9:1
1 1:10 2:8 3:7 4:4 5:3 6:10 7:7 8:9 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:1 2:2 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:2 3:1 4:1 5:2 6:1 7:2 8:2 9:1
-1 1:1 2:2 3:3 4:1 5:2 6:1 7:1 8:1 9:1
1 1:3 2:10 3:8 4:7 5:6 6:9 7:9 8:3 9:8
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:3 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:4 7:1 8:1 9:1
-1 1:1 2:2 3:1 4:3 5:2 6:1 7:1 8:2 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:2 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:3 3:2 4:2 5:2 6:2 7:3 8:1 9:1
-1 1:3 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:10 2:10 3:10 4:6 5:8 6:4 7:8 8:5 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:3 8:1 9:1
1 1:8 2:5 3:6 4:2 5:3 6:10 7:6 8:6 9:1
-1 1:3 2:3 3:2 4:6 5:3 6:3 7:3 8:5 9:1
1 1:8 2:7 3:8 4:5 5:10 6:10 7:7 8:2 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:2 3:2 4:2 5:2 6:2 7:3 8:2 9:2
-1 1:2 2:3 3:1 4:1 5:5 6:1 7:1 8:1 9:1
-1 1:3 2:2 3:2 4:3 5:2 6:3 7:3 8:1 9:1
1 1:10 2:10 3:10 4:7 5:10 6:10 7:8 8:2 9:1
-1 1:4 2:3 3:3 4:1 5:2 6:1 7:3 8:3 9:1
-1 1:5 2:1 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:9 2:10 3:10 4:10 5:10 6:10 7:10 8:10 9:1
-1 1:5 2:3 3:6 4:1 5:2 6:1 7:1 8:1 9:1
1 1:8 2:7 3:8 4:2 5:4 6:2 7:5 8:10 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:3 3:1 4:1 5:2 6:1 7:2 8:2 9:1
-1 1:5 2:1 3:1 4:3 5:4 6:1 7:3 8:2 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:2 9:1
-1 1:3 2:2 3:2 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:6 2:9 3:7 4:5 5:5 6:8 7:4 8:2 9:1
1 1:10 2:8 3:10 4:1 5:3 6:10 7:5 8:1 9:1
1 1:10 2:10 3:10 4:1 5:6 6:1 7:2 8:8 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:3 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:4 3:3 4:10 5:4 6:10 7:10 8:1 9:1
-1 1:5 2:2 3:2 4:4 5:2 6:4 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:3 5:2 6:3 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:2 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:6 5:3 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
1 1:5 2:7 3:9 4:8 5:6 6:10 7:8 8:10 9:1
-1 1:4 2:1 3:1 4:3 5:1 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
1 1:4 2:5 3:5 4:8 5:6 6:10 7:10 8:7 9:1
-1 1:2 2:3 3:1 4:1 5:3 6:1 7:1 8:1 9:1
1 1:10 2:2 3:2 4:1 5:2 6:6 7:1 8:1 9:2
1 1:10 2:6 3:5 4:8 5:5 6:10 7:8 8:6 9:1
1 1:8 2:8 3:9 4:6 5:6 6:3 7:10 8:10 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:3 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:5 7:1 8:1 9:1
-1 1:6 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:2 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:9 3:8 4:7 5:6 6:4 7:7 8:10 9:3
1 1:10 2:6 3:6 4:2 5:4 6:10 7:9 8:7 9:1
1 1:6 2:6 3:6 4:5 5:4 6:10 7:7 8:6 9:2
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:6 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:6 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:2 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:2 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:4 2:8 3:7 4:10 5:4 6:10 7:7 8:5 9:1
-1 1:5 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:5 2:3 3:2 4:4 5:2 6:1 7:1 8:1 9:1
1 1:9 2:10 3:10 4:10 5:10 6:5 7:10 8:10 9:10
1 1:8 2:7 3:8 4:5 5:5 6:10 7:9 8:10 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:3 5:1 6:3 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
1 1:10 2:10 3:10 4:10 5:6 6:10 7:8 8:1 9:5
1 1:3 2:6 3:4 4:10 5:3 6:3 7:3 8:4 9:1
1 1:6 2:3 3:2 4:1 5:3 6:4 7:4 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:5 2:8 3:9 4:4 5:3 6:10 7:7 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
1 1:5 2:10 3:10 4:10 5:6 6:10 7:6 8:5 9:2
-1 1:5 2:1 3:2 4:10 5:4 6:5 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:4 2:2 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:6 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:2 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:3 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:8 2:10 3:10 4:10 5:7 6:5 7:4 8:8 9:7
-1 1:1 2:1 3:1 4:1 5:2 6:4 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
1 1:6 2:6 3:7 4:10 5:3 6:10 7:8 8:10 9:2
1 1:4 2:10 3:4 4:7 5:3 6:10 7:9 8:10 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:2 4:2 5:2 6:1 7:1 8:1 9:1
1 1:4 2:7 3:8 4:3 5:4 6:10 7:9 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:3 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:3 6:1 7:1 8:1 9:1
1 1:10 2:4 3:5 4:4 5:3 6:5 7:7 8:3 9:1
1 1:7 2:5 3:6 4:10 5:4 6:10 7:5 8:3 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:2 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:6 2:1 3:3 4:2 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
1 1:7 2:4 3:4 4:3 5:4 6:10 7:6 8:9 9:1
-1 1:4 2:2 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:3 4:2 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:6 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:2 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:3 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:3 4:2 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:6 2:10 3:10 4:10 5:4 6:10 7:7 8:10 9:1
-1 1:2 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1
1 1:7 2:8 3:3 4:7 5:4 6:5 7:7 8:8 9:2
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:2 3:2 4:2 5:2 6:1 7:4 8:2 9:1
-1 1:4 2:4 3:2 4:1 5:2 6:5 7:2 8:1 9:2
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:3 3:1 4:1 5:2 6:1 7:4 8:8 9:1
-1 1:5 2:2 3:2 4:2 5:1 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:2 9:1
1 1:5 2:7 3:10 4:10 5:5 6:10 7:10 8:10 9:1
-1 1:3 2:1 3:2 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:3 7:2 8:1 9:1
1 1:8 2:4 3:4 4:1 5:6 6:10 7:2 8:5 9:2
1 1:10 2:10 3:8 4:10 5:6 6:5 7:10 8:3 9:1
1 1:8 2:10 3:4 4:4 5:8 6:10 7:8 8:2 9:1
1 1:7 2:6 3:10 4:5 5:3 6:10 7:9 8:10 9:2
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:10 2:9 3:7 4:3 5:4 6:2 7:7 8:7 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
1 1:5 2:7 3:10 4:6 5:5 6:10 7:7 8:5 9:1
1 1:6 2:10 3:5 4:5 5:4 6:10 7:6 8:10 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:6 5:3 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:8 2:10 3:10 4:10 5:6 6:10 7:10 8:10 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:2 9:1
1 1:9 2:8 3:8 4:9 5:6 6:3 7:4 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:4 2:10 3:8 4:5 5:4 6:1 7:10 8:1 9:1
1 1:2 2:5 3:7 4:6 5:4 6:10 7:7 8:6 9:1
1 1:10 2:3 3:4 4:5 5:3 6:10 7:4 8:1 9:1
-1 1:5 2:1 3:2 4:1 5:2 6:1 7:1 8:1 9:1
1 1:4 2:8 3:6 4:3 5:4 6:10 7:7 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:3 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:2 3:4 4:1 5:1 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
1 1:5 2:4 3:6 4:8 5:4 6:1 7:8 8:10 9:1
1 1:5 2:3 3:2 4:8 5:5 6:10 7:8 8:1 9:2
1 1:10 2:5 3:10 4:3 5:5 6:8 7:7 8:8 9:3
-1 1:4 2:1 3:1 4:2 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:5 2:10 3:10 4:10 5:10 6:10 7:10 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:4 3:3 4:10 5:3 6:10 7:7 8:1 9:2
1 1:5 2:10 3:10 4:10 5:5 6:2 7:8 8:5 9:1
1 1:8 2:10 3:10 4:10 5:6 6:10 7:10 8:10 9:10
-1 1:2 2:3 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:1 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:6 2:3 3:3 4:3 5:3 6:2 7:6 8:1 9:1
-1 1:7 2:1 3:2 4:3 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:2 5:1 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:3 4:1 5:3 6:4 7:1 8:1 9:1
1 1:4 2:6 3:6 4:5 5:7 6:6 7:7 8:7 9:3
-1 1:2 2:1 3:1 4:1 5:2 6:5 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:6 2:2 3:3 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:8 2:7 3:4 4:4 5:5 6:3 7:5 8:10 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:4 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:10 3:7 4:8 5:7 6:1 7:10 8:10 9:3
-1 1:4 2:2 3:4 4:3 5:2 6:2 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:4 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:2 3:2 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
1 1:5 2:10 3:10 4:10 5:10 6:2 7:10 8:10 9:10
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:2 5:3 6:4 7:1 8:1 9:1
-1 1:1 2:2 3:1 4:3 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:2 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:4 3:5 4:1 5:8 6:1 7:3 8:6 9:1
1 1:7 2:8 3:8 4:7 5:3 6:10 7:7 8:2 9:3
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:1 2:1 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:3 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:3 2:1 3:1 4:3 5:2 6:1 7:2 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:5 2:2 3:2 4:2 5:2 6:1 7:1 8:1 9:2
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
1 1:5 2:7 3:4 4:1 5:6 6:1 7:7 8:10 9:3
1 1:5 2:10 3:10 4:8 5:5 6:5 7:7 8:10 9:1
1 1:3 2:10 3:7 4:8 5:5 6:8 7:7 8:4 9:1
-1 1:3 2:2 3:1 4:2 5:2 6:1 7:3 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:3 8:1 9:1
-1 1:5 2:3 3:2 4:1 5:3 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:4 2:1 3:4 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:2 4:1 5:2 6:1 7:2 8:1 9:1
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:10 2:10 3:10 4:10 5:5 6:10 7:10 8:10 9:7
1 1:5 2:10 3:10 4:10 5:4 6:10 7:5 8:6 9:3
-1 1:5 2:1 3:1 4:1 5:2 6:1 7:3 8:2 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:3 9:1
-1 1:4 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:1 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:8
-1 1:1 2:1 3:1 4:3 5:2 6:1 7:1 8:1 9:1
1 1:5 2:10 3:10 4:5 5:4 6:5 7:4 8:4 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
-1 1:3 2:1 3:1 4:1 5:2 6:1 7:2 8:1 9:2
-1 1:3 2:1 3:1 4:1 5:3 6:2 7:1 8:1 9:1
-1 1:2 2:1 3:1 4:1 5:2 6:1 7:1 8:1 9:1
1 1:5 2:10 3:10 4:3 5:7 6:3 7:8 8:10 9:2
1 1:4 2:8 3:6 4:4 5:3 6:4 7:10 8:6 9:1
1 1:4 2:8 3:8 4:5 5:4 6:5 7:10 8:4 9:1

Просмотреть файл

Просмотреть файл

@ -0,0 +1,16 @@
Observed max was 6
#@ TextLoader{
#@ header+
#@ sep=tab
#@ col=Label:R4:0
#@ col=Weight:R4:1
#@ col=GroupId:U8[18446744073709551614]:2
#@ col=Comment:TX:3
#@ col=Features:R4:4-9
#@ }
Label Weight GroupId Comment 6 0:""
1 1 8 2:3 5:6
-1 5 8 3:4 5:7 7:-1
1 1 " A comment! 2:3" 6 4:-2
1 0.5 8 3:3.14159
Wrote 4 rows of length 10

Просмотреть файл

@ -0,0 +1,13 @@
#@ TextLoader{
#@ header+
#@ sep=tab
#@ col=Label:R4:0
#@ col=Weight:R4:1
#@ col=GroupId:U8[18446744073709551614]:2
#@ col=Comment:TX:3
#@ col=Features:R4:4-6
#@ }
Label Weight GroupId Comment aurora beachwood chagrin
1 1 1 "" 3.14159 123 0
-1 1 5 "" 0 345 -21
Wrote 2 rows of length 7

Просмотреть файл

@ -0,0 +1,13 @@
#@ TextLoader{
#@ header+
#@ sep=tab
#@ col=Label:R4:0
#@ col=Weight:R4:1
#@ col=GroupId:U8[18446744073709551614]:2
#@ col=Comment:TX:3
#@ col=Features:R4:4-6
#@ }
Label Weight GroupId Comment aurora beachwood chagrin
-1 1 5 2:1 4:2
1 1 5 4:3
Wrote 2 rows of length 7

Просмотреть файл

@ -0,0 +1,12 @@
#@ TextLoader{
#@ header+
#@ sep=tab
#@ col=Label:R4:0
#@ col=Weight:R4:1
#@ col=GroupId:U8[18446744073709551614]:2
#@ col=Comment:TX:3
#@ col=Features:R4:4-4
#@ }
Label Weight GroupId Comment aurora
1 1 "" 2
Wrote 1 rows of length 5

Просмотреть файл

@ -0,0 +1,15 @@
#@ TextLoader{
#@ header+
#@ sep=tab
#@ col=Label:R4:0
#@ col=Weight:R4:1
#@ col=GroupId:U8[18446744073709551614]:2
#@ col=Comment:TX:3
#@ col=Features:R4:4-8
#@ }
Label Weight GroupId Comment 5 0:""
1 1 7 3:3 6:6
-1 5 7 4:4 6:7
1 1 " A comment! 2:3" 5 0:0
1 0.5 7 4:3.14159
Wrote 4 rows of length 9

Просмотреть файл

@ -0,0 +1,15 @@
#@ TextLoader{
#@ header+
#@ sep=tab
#@ col=Label:R4:0
#@ col=Weight:R4:1
#@ col=GroupId:U8[18446744073709551614]:2
#@ col=Comment:TX:3
#@ col=Features:R4:4-8
#@ }
Label Weight GroupId Comment 5 0:""
1 1 7 2:3 5:6
-1 5 7 3:4 5:7
1 1 " A comment! 2:3" 5 4:-2
1 0.5 7 3:3.14159
Wrote 4 rows of length 9

Просмотреть файл

@ -0,0 +1,273 @@
---- BoundLoader ----
3 columns:
NumFeatures: Vector<Single, 6>
Metadata 'SlotNames': Vector<String, 6>: Length=6, Count=6
[0] 'age', [1] 'fnlwgt', [2] 'education-num', [3] 'capital-gain', [4] 'capital-loss', [5] 'hours-per-week'
CatFeaturesText: Vector<String, 8>
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
Label: Single
---- RowToRowMapperTransform ----
4 columns:
NumFeatures: Vector<Single, 6>
Metadata 'SlotNames': Vector<String, 6>: Length=6, Count=6
[0] 'age', [1] 'fnlwgt', [2] 'education-num', [3] 'capital-gain', [4] 'capital-loss', [5] 'hours-per-week'
CatFeaturesText: Vector<String, 8>
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
Label: Single
CatFeatures: Vector<Key<UInt32, 0-75>, 8>
Metadata 'KeyValues': Vector<String, 76>: Length=76, Count=76
[0] 'Private', [1] '11th', [2] 'Never-married', [3] 'Machine-op-inspct', [4] 'Own-child', [5] 'Black', [6] 'Male', [7] 'United-States', [8] 'HS-grad', [9] 'Married-civ-spouse'
[10] 'Farming-fishing', [11] 'Husband', [12] 'White', [13] 'Local-gov', [14] 'Assoc-acdm', [15] 'Protective-serv', [16] 'Some-college', [17] '?', [18] 'Female', [19] '10th'
[20] 'Other-service', [21] 'Not-in-family', [22] 'Unmarried', [23] 'Self-emp-not-inc', [24] 'Prof-school', [25] 'Prof-specialty', [26] '7th-8th', [27] 'Craft-repair', [28] 'Federal-gov', [29] 'Bachelors'
[30] 'Adm-clerical', [31] 'Masters', [32] 'Exec-managerial', [33] 'State-gov', [34] 'Wife', [35] 'Widowed', [36] 'Doctorate', [37] 'Asian-Pac-Islander', [38] 'Tech-support', [39] 'Divorced'
[40] 'Peru', [41] 'Separated', [42] 'Sales', [43] '5th-6th', [44] 'Priv-house-serv', [45] 'Guatemala', [46] 'Self-emp-inc', [47] 'Assoc-voc', [48] 'Mexico', [49] 'Transport-moving'
[50] 'Handlers-cleaners', [51] '9th', [52] 'Married-spouse-absent', [53] 'Other', [54] 'Dominican-Republic', [55] 'Armed-Forces', [56] 'Amer-Indian-Inuit', [57] 'Ireland', [58] 'Germany', [59] '12th'
[60] 'Other-relative', [61] 'Philippines', [62] 'Thailand', [63] 'Haiti', [64] 'El-Salvador', [65] 'Puerto-Rico', [66] 'Vietnam', [67] '1st-4th', [68] 'South', [69] 'Married-AF-spouse'
[70] 'Columbia', [71] 'Japan', [72] 'India', [73] 'Cambodia', [74] 'Poland', [75] 'Laos'
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
---- RowToRowMapperTransform ----
5 columns:
NumFeatures: Vector<Single, 6>
Metadata 'SlotNames': Vector<String, 6>: Length=6, Count=6
[0] 'age', [1] 'fnlwgt', [2] 'education-num', [3] 'capital-gain', [4] 'capital-loss', [5] 'hours-per-week'
CatFeaturesText: Vector<String, 8>
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
Label: Single
CatFeatures: Vector<Key<UInt32, 0-75>, 8>
Metadata 'KeyValues': Vector<String, 76>: Length=76, Count=76
[0] 'Private', [1] '11th', [2] 'Never-married', [3] 'Machine-op-inspct', [4] 'Own-child', [5] 'Black', [6] 'Male', [7] 'United-States', [8] 'HS-grad', [9] 'Married-civ-spouse'
[10] 'Farming-fishing', [11] 'Husband', [12] 'White', [13] 'Local-gov', [14] 'Assoc-acdm', [15] 'Protective-serv', [16] 'Some-college', [17] '?', [18] 'Female', [19] '10th'
[20] 'Other-service', [21] 'Not-in-family', [22] 'Unmarried', [23] 'Self-emp-not-inc', [24] 'Prof-school', [25] 'Prof-specialty', [26] '7th-8th', [27] 'Craft-repair', [28] 'Federal-gov', [29] 'Bachelors'
[30] 'Adm-clerical', [31] 'Masters', [32] 'Exec-managerial', [33] 'State-gov', [34] 'Wife', [35] 'Widowed', [36] 'Doctorate', [37] 'Asian-Pac-Islander', [38] 'Tech-support', [39] 'Divorced'
[40] 'Peru', [41] 'Separated', [42] 'Sales', [43] '5th-6th', [44] 'Priv-house-serv', [45] 'Guatemala', [46] 'Self-emp-inc', [47] 'Assoc-voc', [48] 'Mexico', [49] 'Transport-moving'
[50] 'Handlers-cleaners', [51] '9th', [52] 'Married-spouse-absent', [53] 'Other', [54] 'Dominican-Republic', [55] 'Armed-Forces', [56] 'Amer-Indian-Inuit', [57] 'Ireland', [58] 'Germany', [59] '12th'
[60] 'Other-relative', [61] 'Philippines', [62] 'Thailand', [63] 'Haiti', [64] 'El-Salvador', [65] 'Puerto-Rico', [66] 'Vietnam', [67] '1st-4th', [68] 'South', [69] 'Married-AF-spouse'
[70] 'Columbia', [71] 'Japan', [72] 'India', [73] 'Cambodia', [74] 'Poland', [75] 'Laos'
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
CatFeatures: Vector<Single, 8, 76>
Metadata 'CategoricalSlotRanges': Vector<Int32, 8, 2>: Length=16, Count=16
[0] '0', [1] '75', [2] '76', [3] '151', [4] '152', [5] '227', [6] '228', [7] '303', [8] '304', [9] '379'
[10] '380', [11] '455', [12] '456', [13] '531', [14] '532', [15] '607'
Metadata 'IsNormalized': Boolean: '1'
Metadata 'SlotNames': Vector<String, 8, 76>: Length=608, Count=608
[0] 'Workclass.Private', [1] 'Workclass.11th', [2] 'Workclass.Never-married', [3] 'Workclass.Machine-op-inspct', [4] 'Workclass.Own-child', [5] 'Workclass.Black', [6] 'Workclass.Male', [7] 'Workclass.United-States', [8] 'Workclass.HS-grad', [9] 'Workclass.Married-civ-spouse'
[10] 'Workclass.Farming-fishing', [11] 'Workclass.Husband', [12] 'Workclass.White', [13] 'Workclass.Local-gov', [14] 'Workclass.Assoc-acdm', [15] 'Workclass.Protective-serv', [16] 'Workclass.Some-college', [17] 'Workclass.?', [18] 'Workclass.Female', [19] 'Workclass.10th'
[20] 'Workclass.Other-service', [21] 'Workclass.Not-in-family', [22] 'Workclass.Unmarried', [23] 'Workclass.Self-emp-not-inc', [24] 'Workclass.Prof-school', [25] 'Workclass.Prof-specialty', [26] 'Workclass.7th-8th', [27] 'Workclass.Craft-repair', [28] 'Workclass.Federal-gov', [29] 'Workclass.Bachelors'
[30] 'Workclass.Adm-clerical', [31] 'Workclass.Masters', [32] 'Workclass.Exec-managerial', [33] 'Workclass.State-gov', [34] 'Workclass.Wife', [35] 'Workclass.Widowed', [36] 'Workclass.Doctorate', [37] 'Workclass.Asian-Pac-Islander', [38] 'Workclass.Tech-support', [39] 'Workclass.Divorced'
[40] 'Workclass.Peru', [41] 'Workclass.Separated', [42] 'Workclass.Sales', [43] 'Workclass.5th-6th', [44] 'Workclass.Priv-house-serv', [45] 'Workclass.Guatemala', [46] 'Workclass.Self-emp-inc', [47] 'Workclass.Assoc-voc', [48] 'Workclass.Mexico', [49] 'Workclass.Transport-moving'
[50] 'Workclass.Handlers-cleaners', [51] 'Workclass.9th', [52] 'Workclass.Married-spouse-absent', [53] 'Workclass.Other', [54] 'Workclass.Dominican-Republic', [55] 'Workclass.Armed-Forces', [56] 'Workclass.Amer-Indian-Inuit', [57] 'Workclass.Ireland', [58] 'Workclass.Germany', [59] 'Workclass.12th'
[60] 'Workclass.Other-relative', [61] 'Workclass.Philippines', [62] 'Workclass.Thailand', [63] 'Workclass.Haiti', [64] 'Workclass.El-Salvador', [65] 'Workclass.Puerto-Rico', [66] 'Workclass.Vietnam', [67] 'Workclass.1st-4th', [68] 'Workclass.South', [69] 'Workclass.Married-AF-spouse'
[70] 'Workclass.Columbia', [71] 'Workclass.Japan', [72] 'Workclass.India', [73] 'Workclass.Cambodia', [74] 'Workclass.Poland', [75] 'Workclass.Laos', [76] 'education.Private', [77] 'education.11th', [78] 'education.Never-married', [79] 'education.Machine-op-inspct'
[80] 'education.Own-child', [81] 'education.Black', [82] 'education.Male', [83] 'education.United-States', [84] 'education.HS-grad', [85] 'education.Married-civ-spouse', [86] 'education.Farming-fishing', [87] 'education.Husband', [88] 'education.White', [89] 'education.Local-gov'
[90] 'education.Assoc-acdm', [91] 'education.Protective-serv', [92] 'education.Some-college', [93] 'education.?', [94] 'education.Female', [95] 'education.10th', [96] 'education.Other-service', [97] 'education.Not-in-family', [98] 'education.Unmarried', [99] 'education.Self-emp-not-inc'
[100] 'education.Prof-school', [101] 'education.Prof-specialty', [102] 'education.7th-8th', [103] 'education.Craft-repair', [104] 'education.Federal-gov', [105] 'education.Bachelors', [106] 'education.Adm-clerical', [107] 'education.Masters', [108] 'education.Exec-managerial', [109] 'education.State-gov'
[110] 'education.Wife', [111] 'education.Widowed', [112] 'education.Doctorate', [113] 'education.Asian-Pac-Islander', [114] 'education.Tech-support', [115] 'education.Divorced', [116] 'education.Peru', [117] 'education.Separated', [118] 'education.Sales', [119] 'education.5th-6th'
[120] 'education.Priv-house-serv', [121] 'education.Guatemala', [122] 'education.Self-emp-inc', [123] 'education.Assoc-voc', [124] 'education.Mexico', [125] 'education.Transport-moving', [126] 'education.Handlers-cleaners', [127] 'education.9th', [128] 'education.Married-spouse-absent', [129] 'education.Other'
[130] 'education.Dominican-Republic', [131] 'education.Armed-Forces', [132] 'education.Amer-Indian-Inuit', [133] 'education.Ireland', [134] 'education.Germany', [135] 'education.12th', [136] 'education.Other-relative', [137] 'education.Philippines', [138] 'education.Thailand', [139] 'education.Haiti'
[140] 'education.El-Salvador', [141] 'education.Puerto-Rico', [142] 'education.Vietnam', [143] 'education.1st-4th', [144] 'education.South', [145] 'education.Married-AF-spouse', [146] 'education.Columbia', [147] 'education.Japan', [148] 'education.India', [149] 'education.Cambodia'
[150] 'education.Poland', [151] 'education.Laos', [152] 'marital-status.Private', [153] 'marital-status.11th', [154] 'marital-status.Never-married', [155] 'marital-status.Machine-op-inspct', [156] 'marital-status.Own-child', [157] 'marital-status.Black', [158] 'marital-status.Male', [159] 'marital-status.United-States'
[160] 'marital-status.HS-grad', [161] 'marital-status.Married-civ-spouse', [162] 'marital-status.Farming-fishing', [163] 'marital-status.Husband', [164] 'marital-status.White', [165] 'marital-status.Local-gov', [166] 'marital-status.Assoc-acdm', [167] 'marital-status.Protective-serv', [168] 'marital-status.Some-college', [169] 'marital-status.?'
[170] 'marital-status.Female', [171] 'marital-status.10th', [172] 'marital-status.Other-service', [173] 'marital-status.Not-in-family', [174] 'marital-status.Unmarried', [175] 'marital-status.Self-emp-not-inc', [176] 'marital-status.Prof-school', [177] 'marital-status.Prof-specialty', [178] 'marital-status.7th-8th', [179] 'marital-status.Craft-repair'
[180] 'marital-status.Federal-gov', [181] 'marital-status.Bachelors', [182] 'marital-status.Adm-clerical', [183] 'marital-status.Masters', [184] 'marital-status.Exec-managerial', [185] 'marital-status.State-gov', [186] 'marital-status.Wife', [187] 'marital-status.Widowed', [188] 'marital-status.Doctorate', [189] 'marital-status.Asian-Pac-Islander'
[190] 'marital-status.Tech-support', [191] 'marital-status.Divorced', [192] 'marital-status.Peru', [193] 'marital-status.Separated', [194] 'marital-status.Sales', [195] 'marital-status.5th-6th', [196] 'marital-status.Priv-house-serv', [197] 'marital-status.Guatemala', [198] 'marital-status.Self-emp-inc', [199] 'marital-status.Assoc-voc'
[200] 'marital-status.Mexico', [201] 'marital-status.Transport-moving', [202] 'marital-status.Handlers-cleaners', [203] 'marital-status.9th', [204] 'marital-status.Married-spouse-absent', [205] 'marital-status.Other', [206] 'marital-status.Dominican-Republic', [207] 'marital-status.Armed-Forces', [208] 'marital-status.Amer-Indian-Inuit', [209] 'marital-status.Ireland'
[210] 'marital-status.Germany', [211] 'marital-status.12th', [212] 'marital-status.Other-relative', [213] 'marital-status.Philippines', [214] 'marital-status.Thailand', [215] 'marital-status.Haiti', [216] 'marital-status.El-Salvador', [217] 'marital-status.Puerto-Rico', [218] 'marital-status.Vietnam', [219] 'marital-status.1st-4th'
[220] 'marital-status.South', [221] 'marital-status.Married-AF-spouse', [222] 'marital-status.Columbia', [223] 'marital-status.Japan', [224] 'marital-status.India', [225] 'marital-status.Cambodia', [226] 'marital-status.Poland', [227] 'marital-status.Laos', [228] 'occupation.Private', [229] 'occupation.11th'
[230] 'occupation.Never-married', [231] 'occupation.Machine-op-inspct', [232] 'occupation.Own-child', [233] 'occupation.Black', [234] 'occupation.Male', [235] 'occupation.United-States', [236] 'occupation.HS-grad', [237] 'occupation.Married-civ-spouse', [238] 'occupation.Farming-fishing', [239] 'occupation.Husband'
[240] 'occupation.White', [241] 'occupation.Local-gov', [242] 'occupation.Assoc-acdm', [243] 'occupation.Protective-serv', [244] 'occupation.Some-college', [245] 'occupation.?', [246] 'occupation.Female', [247] 'occupation.10th', [248] 'occupation.Other-service', [249] 'occupation.Not-in-family'
[250] 'occupation.Unmarried', [251] 'occupation.Self-emp-not-inc', [252] 'occupation.Prof-school', [253] 'occupation.Prof-specialty', [254] 'occupation.7th-8th', [255] 'occupation.Craft-repair', [256] 'occupation.Federal-gov', [257] 'occupation.Bachelors', [258] 'occupation.Adm-clerical', [259] 'occupation.Masters'
[260] 'occupation.Exec-managerial', [261] 'occupation.State-gov', [262] 'occupation.Wife', [263] 'occupation.Widowed', [264] 'occupation.Doctorate', [265] 'occupation.Asian-Pac-Islander', [266] 'occupation.Tech-support', [267] 'occupation.Divorced', [268] 'occupation.Peru', [269] 'occupation.Separated'
[270] 'occupation.Sales', [271] 'occupation.5th-6th', [272] 'occupation.Priv-house-serv', [273] 'occupation.Guatemala', [274] 'occupation.Self-emp-inc', [275] 'occupation.Assoc-voc', [276] 'occupation.Mexico', [277] 'occupation.Transport-moving', [278] 'occupation.Handlers-cleaners', [279] 'occupation.9th'
[280] 'occupation.Married-spouse-absent', [281] 'occupation.Other', [282] 'occupation.Dominican-Republic', [283] 'occupation.Armed-Forces', [284] 'occupation.Amer-Indian-Inuit', [285] 'occupation.Ireland', [286] 'occupation.Germany', [287] 'occupation.12th', [288] 'occupation.Other-relative', [289] 'occupation.Philippines'
[290] 'occupation.Thailand', [291] 'occupation.Haiti', [292] 'occupation.El-Salvador', [293] 'occupation.Puerto-Rico', [294] 'occupation.Vietnam', [295] 'occupation.1st-4th', [296] 'occupation.South', [297] 'occupation.Married-AF-spouse', [298] 'occupation.Columbia', [299] 'occupation.Japan'
[300] 'occupation.India', [301] 'occupation.Cambodia', [302] 'occupation.Poland', [303] 'occupation.Laos', [304] 'relationship.Private', [305] 'relationship.11th', [306] 'relationship.Never-married', [307] 'relationship.Machine-op-inspct', [308] 'relationship.Own-child', [309] 'relationship.Black'
[310] 'relationship.Male', [311] 'relationship.United-States', [312] 'relationship.HS-grad', [313] 'relationship.Married-civ-spouse', [314] 'relationship.Farming-fishing', [315] 'relationship.Husband', [316] 'relationship.White', [317] 'relationship.Local-gov', [318] 'relationship.Assoc-acdm', [319] 'relationship.Protective-serv'
[320] 'relationship.Some-college', [321] 'relationship.?', [322] 'relationship.Female', [323] 'relationship.10th', [324] 'relationship.Other-service', [325] 'relationship.Not-in-family', [326] 'relationship.Unmarried', [327] 'relationship.Self-emp-not-inc', [328] 'relationship.Prof-school', [329] 'relationship.Prof-specialty'
[330] 'relationship.7th-8th', [331] 'relationship.Craft-repair', [332] 'relationship.Federal-gov', [333] 'relationship.Bachelors', [334] 'relationship.Adm-clerical', [335] 'relationship.Masters', [336] 'relationship.Exec-managerial', [337] 'relationship.State-gov', [338] 'relationship.Wife', [339] 'relationship.Widowed'
[340] 'relationship.Doctorate', [341] 'relationship.Asian-Pac-Islander', [342] 'relationship.Tech-support', [343] 'relationship.Divorced', [344] 'relationship.Peru', [345] 'relationship.Separated', [346] 'relationship.Sales', [347] 'relationship.5th-6th', [348] 'relationship.Priv-house-serv', [349] 'relationship.Guatemala'
[350] 'relationship.Self-emp-inc', [351] 'relationship.Assoc-voc', [352] 'relationship.Mexico', [353] 'relationship.Transport-moving', [354] 'relationship.Handlers-cleaners', [355] 'relationship.9th', [356] 'relationship.Married-spouse-absent', [357] 'relationship.Other', [358] 'relationship.Dominican-Republic', [359] 'relationship.Armed-Forces'
[360] 'relationship.Amer-Indian-Inuit', [361] 'relationship.Ireland', [362] 'relationship.Germany', [363] 'relationship.12th', [364] 'relationship.Other-relative', [365] 'relationship.Philippines', [366] 'relationship.Thailand', [367] 'relationship.Haiti', [368] 'relationship.El-Salvador', [369] 'relationship.Puerto-Rico'
[370] 'relationship.Vietnam', [371] 'relationship.1st-4th', [372] 'relationship.South', [373] 'relationship.Married-AF-spouse', [374] 'relationship.Columbia', [375] 'relationship.Japan', [376] 'relationship.India', [377] 'relationship.Cambodia', [378] 'relationship.Poland', [379] 'relationship.Laos'
[380] 'ethnicity.Private', [381] 'ethnicity.11th', [382] 'ethnicity.Never-married', [383] 'ethnicity.Machine-op-inspct', [384] 'ethnicity.Own-child', [385] 'ethnicity.Black', [386] 'ethnicity.Male', [387] 'ethnicity.United-States', [388] 'ethnicity.HS-grad', [389] 'ethnicity.Married-civ-spouse'
[390] 'ethnicity.Farming-fishing', [391] 'ethnicity.Husband', [392] 'ethnicity.White', [393] 'ethnicity.Local-gov', [394] 'ethnicity.Assoc-acdm', [395] 'ethnicity.Protective-serv', [396] 'ethnicity.Some-college', [397] 'ethnicity.?', [398] 'ethnicity.Female', [399] 'ethnicity.10th'
[400] 'ethnicity.Other-service', [401] 'ethnicity.Not-in-family', [402] 'ethnicity.Unmarried', [403] 'ethnicity.Self-emp-not-inc', [404] 'ethnicity.Prof-school', [405] 'ethnicity.Prof-specialty', [406] 'ethnicity.7th-8th', [407] 'ethnicity.Craft-repair', [408] 'ethnicity.Federal-gov', [409] 'ethnicity.Bachelors'
[410] 'ethnicity.Adm-clerical', [411] 'ethnicity.Masters', [412] 'ethnicity.Exec-managerial', [413] 'ethnicity.State-gov', [414] 'ethnicity.Wife', [415] 'ethnicity.Widowed', [416] 'ethnicity.Doctorate', [417] 'ethnicity.Asian-Pac-Islander', [418] 'ethnicity.Tech-support', [419] 'ethnicity.Divorced'
[420] 'ethnicity.Peru', [421] 'ethnicity.Separated', [422] 'ethnicity.Sales', [423] 'ethnicity.5th-6th', [424] 'ethnicity.Priv-house-serv', [425] 'ethnicity.Guatemala', [426] 'ethnicity.Self-emp-inc', [427] 'ethnicity.Assoc-voc', [428] 'ethnicity.Mexico', [429] 'ethnicity.Transport-moving'
[430] 'ethnicity.Handlers-cleaners', [431] 'ethnicity.9th', [432] 'ethnicity.Married-spouse-absent', [433] 'ethnicity.Other', [434] 'ethnicity.Dominican-Republic', [435] 'ethnicity.Armed-Forces', [436] 'ethnicity.Amer-Indian-Inuit', [437] 'ethnicity.Ireland', [438] 'ethnicity.Germany', [439] 'ethnicity.12th'
[440] 'ethnicity.Other-relative', [441] 'ethnicity.Philippines', [442] 'ethnicity.Thailand', [443] 'ethnicity.Haiti', [444] 'ethnicity.El-Salvador', [445] 'ethnicity.Puerto-Rico', [446] 'ethnicity.Vietnam', [447] 'ethnicity.1st-4th', [448] 'ethnicity.South', [449] 'ethnicity.Married-AF-spouse'
[450] 'ethnicity.Columbia', [451] 'ethnicity.Japan', [452] 'ethnicity.India', [453] 'ethnicity.Cambodia', [454] 'ethnicity.Poland', [455] 'ethnicity.Laos', [456] 'sex.Private', [457] 'sex.11th', [458] 'sex.Never-married', [459] 'sex.Machine-op-inspct'
[460] 'sex.Own-child', [461] 'sex.Black', [462] 'sex.Male', [463] 'sex.United-States', [464] 'sex.HS-grad', [465] 'sex.Married-civ-spouse', [466] 'sex.Farming-fishing', [467] 'sex.Husband', [468] 'sex.White', [469] 'sex.Local-gov'
[470] 'sex.Assoc-acdm', [471] 'sex.Protective-serv', [472] 'sex.Some-college', [473] 'sex.?', [474] 'sex.Female', [475] 'sex.10th', [476] 'sex.Other-service', [477] 'sex.Not-in-family', [478] 'sex.Unmarried', [479] 'sex.Self-emp-not-inc'
[480] 'sex.Prof-school', [481] 'sex.Prof-specialty', [482] 'sex.7th-8th', [483] 'sex.Craft-repair', [484] 'sex.Federal-gov', [485] 'sex.Bachelors', [486] 'sex.Adm-clerical', [487] 'sex.Masters', [488] 'sex.Exec-managerial', [489] 'sex.State-gov'
[490] 'sex.Wife', [491] 'sex.Widowed', [492] 'sex.Doctorate', [493] 'sex.Asian-Pac-Islander', [494] 'sex.Tech-support', [495] 'sex.Divorced', [496] 'sex.Peru', [497] 'sex.Separated', [498] 'sex.Sales', [499] 'sex.5th-6th'
[500] 'sex.Priv-house-serv', [501] 'sex.Guatemala', [502] 'sex.Self-emp-inc', [503] 'sex.Assoc-voc', [504] 'sex.Mexico', [505] 'sex.Transport-moving', [506] 'sex.Handlers-cleaners', [507] 'sex.9th', [508] 'sex.Married-spouse-absent', [509] 'sex.Other'
[510] 'sex.Dominican-Republic', [511] 'sex.Armed-Forces', [512] 'sex.Amer-Indian-Inuit', [513] 'sex.Ireland', [514] 'sex.Germany', [515] 'sex.12th', [516] 'sex.Other-relative', [517] 'sex.Philippines', [518] 'sex.Thailand', [519] 'sex.Haiti'
[520] 'sex.El-Salvador', [521] 'sex.Puerto-Rico', [522] 'sex.Vietnam', [523] 'sex.1st-4th', [524] 'sex.South', [525] 'sex.Married-AF-spouse', [526] 'sex.Columbia', [527] 'sex.Japan', [528] 'sex.India', [529] 'sex.Cambodia'
[530] 'sex.Poland', [531] 'sex.Laos', [532] 'native-country-region.Private', [533] 'native-country-region.11th', [534] 'native-country-region.Never-married', [535] 'native-country-region.Machine-op-inspct', [536] 'native-country-region.Own-child', [537] 'native-country-region.Black', [538] 'native-country-region.Male', [539] 'native-country-region.United-States'
[540] 'native-country-region.HS-grad', [541] 'native-country-region.Married-civ-spouse', [542] 'native-country-region.Farming-fishing', [543] 'native-country-region.Husband', [544] 'native-country-region.White', [545] 'native-country-region.Local-gov', [546] 'native-country-region.Assoc-acdm', [547] 'native-country-region.Protective-serv', [548] 'native-country-region.Some-college', [549] 'native-country-region.?'
[550] 'native-country-region.Female', [551] 'native-country-region.10th', [552] 'native-country-region.Other-service', [553] 'native-country-region.Not-in-family', [554] 'native-country-region.Unmarried', [555] 'native-country-region.Self-emp-not-inc', [556] 'native-country-region.Prof-school', [557] 'native-country-region.Prof-specialty', [558] 'native-country-region.7th-8th', [559] 'native-country-region.Craft-repair'
[560] 'native-country-region.Federal-gov', [561] 'native-country-region.Bachelors', [562] 'native-country-region.Adm-clerical', [563] 'native-country-region.Masters', [564] 'native-country-region.Exec-managerial', [565] 'native-country-region.State-gov', [566] 'native-country-region.Wife', [567] 'native-country-region.Widowed', [568] 'native-country-region.Doctorate', [569] 'native-country-region.Asian-Pac-Islander'
[570] 'native-country-region.Tech-support', [571] 'native-country-region.Divorced', [572] 'native-country-region.Peru', [573] 'native-country-region.Separated', [574] 'native-country-region.Sales', [575] 'native-country-region.5th-6th', [576] 'native-country-region.Priv-house-serv', [577] 'native-country-region.Guatemala', [578] 'native-country-region.Self-emp-inc', [579] 'native-country-region.Assoc-voc'
[580] 'native-country-region.Mexico', [581] 'native-country-region.Transport-moving', [582] 'native-country-region.Handlers-cleaners', [583] 'native-country-region.9th', [584] 'native-country-region.Married-spouse-absent', [585] 'native-country-region.Other', [586] 'native-country-region.Dominican-Republic', [587] 'native-country-region.Armed-Forces', [588] 'native-country-region.Amer-Indian-Inuit', [589] 'native-country-region.Ireland'
[590] 'native-country-region.Germany', [591] 'native-country-region.12th', [592] 'native-country-region.Other-relative', [593] 'native-country-region.Philippines', [594] 'native-country-region.Thailand', [595] 'native-country-region.Haiti', [596] 'native-country-region.El-Salvador', [597] 'native-country-region.Puerto-Rico', [598] 'native-country-region.Vietnam', [599] 'native-country-region.1st-4th'
[600] 'native-country-region.South', [601] 'native-country-region.Married-AF-spouse', [602] 'native-country-region.Columbia', [603] 'native-country-region.Japan', [604] 'native-country-region.India', [605] 'native-country-region.Cambodia', [606] 'native-country-region.Poland', [607] 'native-country-region.Laos'
---- RowToRowMapperTransform ----
6 columns:
NumFeatures: Vector<Single, 6>
Metadata 'SlotNames': Vector<String, 6>: Length=6, Count=6
[0] 'age', [1] 'fnlwgt', [2] 'education-num', [3] 'capital-gain', [4] 'capital-loss', [5] 'hours-per-week'
CatFeaturesText: Vector<String, 8>
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
Label: Single
CatFeatures: Vector<Key<UInt32, 0-75>, 8>
Metadata 'KeyValues': Vector<String, 76>: Length=76, Count=76
[0] 'Private', [1] '11th', [2] 'Never-married', [3] 'Machine-op-inspct', [4] 'Own-child', [5] 'Black', [6] 'Male', [7] 'United-States', [8] 'HS-grad', [9] 'Married-civ-spouse'
[10] 'Farming-fishing', [11] 'Husband', [12] 'White', [13] 'Local-gov', [14] 'Assoc-acdm', [15] 'Protective-serv', [16] 'Some-college', [17] '?', [18] 'Female', [19] '10th'
[20] 'Other-service', [21] 'Not-in-family', [22] 'Unmarried', [23] 'Self-emp-not-inc', [24] 'Prof-school', [25] 'Prof-specialty', [26] '7th-8th', [27] 'Craft-repair', [28] 'Federal-gov', [29] 'Bachelors'
[30] 'Adm-clerical', [31] 'Masters', [32] 'Exec-managerial', [33] 'State-gov', [34] 'Wife', [35] 'Widowed', [36] 'Doctorate', [37] 'Asian-Pac-Islander', [38] 'Tech-support', [39] 'Divorced'
[40] 'Peru', [41] 'Separated', [42] 'Sales', [43] '5th-6th', [44] 'Priv-house-serv', [45] 'Guatemala', [46] 'Self-emp-inc', [47] 'Assoc-voc', [48] 'Mexico', [49] 'Transport-moving'
[50] 'Handlers-cleaners', [51] '9th', [52] 'Married-spouse-absent', [53] 'Other', [54] 'Dominican-Republic', [55] 'Armed-Forces', [56] 'Amer-Indian-Inuit', [57] 'Ireland', [58] 'Germany', [59] '12th'
[60] 'Other-relative', [61] 'Philippines', [62] 'Thailand', [63] 'Haiti', [64] 'El-Salvador', [65] 'Puerto-Rico', [66] 'Vietnam', [67] '1st-4th', [68] 'South', [69] 'Married-AF-spouse'
[70] 'Columbia', [71] 'Japan', [72] 'India', [73] 'Cambodia', [74] 'Poland', [75] 'Laos'
Metadata 'SlotNames': Vector<String, 8>: Length=8, Count=8
[0] 'Workclass', [1] 'education', [2] 'marital-status', [3] 'occupation', [4] 'relationship', [5] 'ethnicity', [6] 'sex', [7] 'native-country-region'
CatFeatures: Vector<Single, 8, 76>
Metadata 'CategoricalSlotRanges': Vector<Int32, 8, 2>: Length=16, Count=16
[0] '0', [1] '75', [2] '76', [3] '151', [4] '152', [5] '227', [6] '228', [7] '303', [8] '304', [9] '379'
[10] '380', [11] '455', [12] '456', [13] '531', [14] '532', [15] '607'
Metadata 'IsNormalized': Boolean: '1'
Metadata 'SlotNames': Vector<String, 8, 76>: Length=608, Count=608
[0] 'Workclass.Private', [1] 'Workclass.11th', [2] 'Workclass.Never-married', [3] 'Workclass.Machine-op-inspct', [4] 'Workclass.Own-child', [5] 'Workclass.Black', [6] 'Workclass.Male', [7] 'Workclass.United-States', [8] 'Workclass.HS-grad', [9] 'Workclass.Married-civ-spouse'
[10] 'Workclass.Farming-fishing', [11] 'Workclass.Husband', [12] 'Workclass.White', [13] 'Workclass.Local-gov', [14] 'Workclass.Assoc-acdm', [15] 'Workclass.Protective-serv', [16] 'Workclass.Some-college', [17] 'Workclass.?', [18] 'Workclass.Female', [19] 'Workclass.10th'
[20] 'Workclass.Other-service', [21] 'Workclass.Not-in-family', [22] 'Workclass.Unmarried', [23] 'Workclass.Self-emp-not-inc', [24] 'Workclass.Prof-school', [25] 'Workclass.Prof-specialty', [26] 'Workclass.7th-8th', [27] 'Workclass.Craft-repair', [28] 'Workclass.Federal-gov', [29] 'Workclass.Bachelors'
[30] 'Workclass.Adm-clerical', [31] 'Workclass.Masters', [32] 'Workclass.Exec-managerial', [33] 'Workclass.State-gov', [34] 'Workclass.Wife', [35] 'Workclass.Widowed', [36] 'Workclass.Doctorate', [37] 'Workclass.Asian-Pac-Islander', [38] 'Workclass.Tech-support', [39] 'Workclass.Divorced'
[40] 'Workclass.Peru', [41] 'Workclass.Separated', [42] 'Workclass.Sales', [43] 'Workclass.5th-6th', [44] 'Workclass.Priv-house-serv', [45] 'Workclass.Guatemala', [46] 'Workclass.Self-emp-inc', [47] 'Workclass.Assoc-voc', [48] 'Workclass.Mexico', [49] 'Workclass.Transport-moving'
[50] 'Workclass.Handlers-cleaners', [51] 'Workclass.9th', [52] 'Workclass.Married-spouse-absent', [53] 'Workclass.Other', [54] 'Workclass.Dominican-Republic', [55] 'Workclass.Armed-Forces', [56] 'Workclass.Amer-Indian-Inuit', [57] 'Workclass.Ireland', [58] 'Workclass.Germany', [59] 'Workclass.12th'
[60] 'Workclass.Other-relative', [61] 'Workclass.Philippines', [62] 'Workclass.Thailand', [63] 'Workclass.Haiti', [64] 'Workclass.El-Salvador', [65] 'Workclass.Puerto-Rico', [66] 'Workclass.Vietnam', [67] 'Workclass.1st-4th', [68] 'Workclass.South', [69] 'Workclass.Married-AF-spouse'
[70] 'Workclass.Columbia', [71] 'Workclass.Japan', [72] 'Workclass.India', [73] 'Workclass.Cambodia', [74] 'Workclass.Poland', [75] 'Workclass.Laos', [76] 'education.Private', [77] 'education.11th', [78] 'education.Never-married', [79] 'education.Machine-op-inspct'
[80] 'education.Own-child', [81] 'education.Black', [82] 'education.Male', [83] 'education.United-States', [84] 'education.HS-grad', [85] 'education.Married-civ-spouse', [86] 'education.Farming-fishing', [87] 'education.Husband', [88] 'education.White', [89] 'education.Local-gov'
[90] 'education.Assoc-acdm', [91] 'education.Protective-serv', [92] 'education.Some-college', [93] 'education.?', [94] 'education.Female', [95] 'education.10th', [96] 'education.Other-service', [97] 'education.Not-in-family', [98] 'education.Unmarried', [99] 'education.Self-emp-not-inc'
[100] 'education.Prof-school', [101] 'education.Prof-specialty', [102] 'education.7th-8th', [103] 'education.Craft-repair', [104] 'education.Federal-gov', [105] 'education.Bachelors', [106] 'education.Adm-clerical', [107] 'education.Masters', [108] 'education.Exec-managerial', [109] 'education.State-gov'
[110] 'education.Wife', [111] 'education.Widowed', [112] 'education.Doctorate', [113] 'education.Asian-Pac-Islander', [114] 'education.Tech-support', [115] 'education.Divorced', [116] 'education.Peru', [117] 'education.Separated', [118] 'education.Sales', [119] 'education.5th-6th'
[120] 'education.Priv-house-serv', [121] 'education.Guatemala', [122] 'education.Self-emp-inc', [123] 'education.Assoc-voc', [124] 'education.Mexico', [125] 'education.Transport-moving', [126] 'education.Handlers-cleaners', [127] 'education.9th', [128] 'education.Married-spouse-absent', [129] 'education.Other'
[130] 'education.Dominican-Republic', [131] 'education.Armed-Forces', [132] 'education.Amer-Indian-Inuit', [133] 'education.Ireland', [134] 'education.Germany', [135] 'education.12th', [136] 'education.Other-relative', [137] 'education.Philippines', [138] 'education.Thailand', [139] 'education.Haiti'
[140] 'education.El-Salvador', [141] 'education.Puerto-Rico', [142] 'education.Vietnam', [143] 'education.1st-4th', [144] 'education.South', [145] 'education.Married-AF-spouse', [146] 'education.Columbia', [147] 'education.Japan', [148] 'education.India', [149] 'education.Cambodia'
[150] 'education.Poland', [151] 'education.Laos', [152] 'marital-status.Private', [153] 'marital-status.11th', [154] 'marital-status.Never-married', [155] 'marital-status.Machine-op-inspct', [156] 'marital-status.Own-child', [157] 'marital-status.Black', [158] 'marital-status.Male', [159] 'marital-status.United-States'
[160] 'marital-status.HS-grad', [161] 'marital-status.Married-civ-spouse', [162] 'marital-status.Farming-fishing', [163] 'marital-status.Husband', [164] 'marital-status.White', [165] 'marital-status.Local-gov', [166] 'marital-status.Assoc-acdm', [167] 'marital-status.Protective-serv', [168] 'marital-status.Some-college', [169] 'marital-status.?'
[170] 'marital-status.Female', [171] 'marital-status.10th', [172] 'marital-status.Other-service', [173] 'marital-status.Not-in-family', [174] 'marital-status.Unmarried', [175] 'marital-status.Self-emp-not-inc', [176] 'marital-status.Prof-school', [177] 'marital-status.Prof-specialty', [178] 'marital-status.7th-8th', [179] 'marital-status.Craft-repair'
[180] 'marital-status.Federal-gov', [181] 'marital-status.Bachelors', [182] 'marital-status.Adm-clerical', [183] 'marital-status.Masters', [184] 'marital-status.Exec-managerial', [185] 'marital-status.State-gov', [186] 'marital-status.Wife', [187] 'marital-status.Widowed', [188] 'marital-status.Doctorate', [189] 'marital-status.Asian-Pac-Islander'
[190] 'marital-status.Tech-support', [191] 'marital-status.Divorced', [192] 'marital-status.Peru', [193] 'marital-status.Separated', [194] 'marital-status.Sales', [195] 'marital-status.5th-6th', [196] 'marital-status.Priv-house-serv', [197] 'marital-status.Guatemala', [198] 'marital-status.Self-emp-inc', [199] 'marital-status.Assoc-voc'
[200] 'marital-status.Mexico', [201] 'marital-status.Transport-moving', [202] 'marital-status.Handlers-cleaners', [203] 'marital-status.9th', [204] 'marital-status.Married-spouse-absent', [205] 'marital-status.Other', [206] 'marital-status.Dominican-Republic', [207] 'marital-status.Armed-Forces', [208] 'marital-status.Amer-Indian-Inuit', [209] 'marital-status.Ireland'
[210] 'marital-status.Germany', [211] 'marital-status.12th', [212] 'marital-status.Other-relative', [213] 'marital-status.Philippines', [214] 'marital-status.Thailand', [215] 'marital-status.Haiti', [216] 'marital-status.El-Salvador', [217] 'marital-status.Puerto-Rico', [218] 'marital-status.Vietnam', [219] 'marital-status.1st-4th'
[220] 'marital-status.South', [221] 'marital-status.Married-AF-spouse', [222] 'marital-status.Columbia', [223] 'marital-status.Japan', [224] 'marital-status.India', [225] 'marital-status.Cambodia', [226] 'marital-status.Poland', [227] 'marital-status.Laos', [228] 'occupation.Private', [229] 'occupation.11th'
[230] 'occupation.Never-married', [231] 'occupation.Machine-op-inspct', [232] 'occupation.Own-child', [233] 'occupation.Black', [234] 'occupation.Male', [235] 'occupation.United-States', [236] 'occupation.HS-grad', [237] 'occupation.Married-civ-spouse', [238] 'occupation.Farming-fishing', [239] 'occupation.Husband'
[240] 'occupation.White', [241] 'occupation.Local-gov', [242] 'occupation.Assoc-acdm', [243] 'occupation.Protective-serv', [244] 'occupation.Some-college', [245] 'occupation.?', [246] 'occupation.Female', [247] 'occupation.10th', [248] 'occupation.Other-service', [249] 'occupation.Not-in-family'
[250] 'occupation.Unmarried', [251] 'occupation.Self-emp-not-inc', [252] 'occupation.Prof-school', [253] 'occupation.Prof-specialty', [254] 'occupation.7th-8th', [255] 'occupation.Craft-repair', [256] 'occupation.Federal-gov', [257] 'occupation.Bachelors', [258] 'occupation.Adm-clerical', [259] 'occupation.Masters'
[260] 'occupation.Exec-managerial', [261] 'occupation.State-gov', [262] 'occupation.Wife', [263] 'occupation.Widowed', [264] 'occupation.Doctorate', [265] 'occupation.Asian-Pac-Islander', [266] 'occupation.Tech-support', [267] 'occupation.Divorced', [268] 'occupation.Peru', [269] 'occupation.Separated'
[270] 'occupation.Sales', [271] 'occupation.5th-6th', [272] 'occupation.Priv-house-serv', [273] 'occupation.Guatemala', [274] 'occupation.Self-emp-inc', [275] 'occupation.Assoc-voc', [276] 'occupation.Mexico', [277] 'occupation.Transport-moving', [278] 'occupation.Handlers-cleaners', [279] 'occupation.9th'
[280] 'occupation.Married-spouse-absent', [281] 'occupation.Other', [282] 'occupation.Dominican-Republic', [283] 'occupation.Armed-Forces', [284] 'occupation.Amer-Indian-Inuit', [285] 'occupation.Ireland', [286] 'occupation.Germany', [287] 'occupation.12th', [288] 'occupation.Other-relative', [289] 'occupation.Philippines'
[290] 'occupation.Thailand', [291] 'occupation.Haiti', [292] 'occupation.El-Salvador', [293] 'occupation.Puerto-Rico', [294] 'occupation.Vietnam', [295] 'occupation.1st-4th', [296] 'occupation.South', [297] 'occupation.Married-AF-spouse', [298] 'occupation.Columbia', [299] 'occupation.Japan'
[300] 'occupation.India', [301] 'occupation.Cambodia', [302] 'occupation.Poland', [303] 'occupation.Laos', [304] 'relationship.Private', [305] 'relationship.11th', [306] 'relationship.Never-married', [307] 'relationship.Machine-op-inspct', [308] 'relationship.Own-child', [309] 'relationship.Black'
[310] 'relationship.Male', [311] 'relationship.United-States', [312] 'relationship.HS-grad', [313] 'relationship.Married-civ-spouse', [314] 'relationship.Farming-fishing', [315] 'relationship.Husband', [316] 'relationship.White', [317] 'relationship.Local-gov', [318] 'relationship.Assoc-acdm', [319] 'relationship.Protective-serv'
[320] 'relationship.Some-college', [321] 'relationship.?', [322] 'relationship.Female', [323] 'relationship.10th', [324] 'relationship.Other-service', [325] 'relationship.Not-in-family', [326] 'relationship.Unmarried', [327] 'relationship.Self-emp-not-inc', [328] 'relationship.Prof-school', [329] 'relationship.Prof-specialty'
[330] 'relationship.7th-8th', [331] 'relationship.Craft-repair', [332] 'relationship.Federal-gov', [333] 'relationship.Bachelors', [334] 'relationship.Adm-clerical', [335] 'relationship.Masters', [336] 'relationship.Exec-managerial', [337] 'relationship.State-gov', [338] 'relationship.Wife', [339] 'relationship.Widowed'
[340] 'relationship.Doctorate', [341] 'relationship.Asian-Pac-Islander', [342] 'relationship.Tech-support', [343] 'relationship.Divorced', [344] 'relationship.Peru', [345] 'relationship.Separated', [346] 'relationship.Sales', [347] 'relationship.5th-6th', [348] 'relationship.Priv-house-serv', [349] 'relationship.Guatemala'
[350] 'relationship.Self-emp-inc', [351] 'relationship.Assoc-voc', [352] 'relationship.Mexico', [353] 'relationship.Transport-moving', [354] 'relationship.Handlers-cleaners', [355] 'relationship.9th', [356] 'relationship.Married-spouse-absent', [357] 'relationship.Other', [358] 'relationship.Dominican-Republic', [359] 'relationship.Armed-Forces'
[360] 'relationship.Amer-Indian-Inuit', [361] 'relationship.Ireland', [362] 'relationship.Germany', [363] 'relationship.12th', [364] 'relationship.Other-relative', [365] 'relationship.Philippines', [366] 'relationship.Thailand', [367] 'relationship.Haiti', [368] 'relationship.El-Salvador', [369] 'relationship.Puerto-Rico'
[370] 'relationship.Vietnam', [371] 'relationship.1st-4th', [372] 'relationship.South', [373] 'relationship.Married-AF-spouse', [374] 'relationship.Columbia', [375] 'relationship.Japan', [376] 'relationship.India', [377] 'relationship.Cambodia', [378] 'relationship.Poland', [379] 'relationship.Laos'
[380] 'ethnicity.Private', [381] 'ethnicity.11th', [382] 'ethnicity.Never-married', [383] 'ethnicity.Machine-op-inspct', [384] 'ethnicity.Own-child', [385] 'ethnicity.Black', [386] 'ethnicity.Male', [387] 'ethnicity.United-States', [388] 'ethnicity.HS-grad', [389] 'ethnicity.Married-civ-spouse'
[390] 'ethnicity.Farming-fishing', [391] 'ethnicity.Husband', [392] 'ethnicity.White', [393] 'ethnicity.Local-gov', [394] 'ethnicity.Assoc-acdm', [395] 'ethnicity.Protective-serv', [396] 'ethnicity.Some-college', [397] 'ethnicity.?', [398] 'ethnicity.Female', [399] 'ethnicity.10th'
[400] 'ethnicity.Other-service', [401] 'ethnicity.Not-in-family', [402] 'ethnicity.Unmarried', [403] 'ethnicity.Self-emp-not-inc', [404] 'ethnicity.Prof-school', [405] 'ethnicity.Prof-specialty', [406] 'ethnicity.7th-8th', [407] 'ethnicity.Craft-repair', [408] 'ethnicity.Federal-gov', [409] 'ethnicity.Bachelors'
[410] 'ethnicity.Adm-clerical', [411] 'ethnicity.Masters', [412] 'ethnicity.Exec-managerial', [413] 'ethnicity.State-gov', [414] 'ethnicity.Wife', [415] 'ethnicity.Widowed', [416] 'ethnicity.Doctorate', [417] 'ethnicity.Asian-Pac-Islander', [418] 'ethnicity.Tech-support', [419] 'ethnicity.Divorced'
[420] 'ethnicity.Peru', [421] 'ethnicity.Separated', [422] 'ethnicity.Sales', [423] 'ethnicity.5th-6th', [424] 'ethnicity.Priv-house-serv', [425] 'ethnicity.Guatemala', [426] 'ethnicity.Self-emp-inc', [427] 'ethnicity.Assoc-voc', [428] 'ethnicity.Mexico', [429] 'ethnicity.Transport-moving'
[430] 'ethnicity.Handlers-cleaners', [431] 'ethnicity.9th', [432] 'ethnicity.Married-spouse-absent', [433] 'ethnicity.Other', [434] 'ethnicity.Dominican-Republic', [435] 'ethnicity.Armed-Forces', [436] 'ethnicity.Amer-Indian-Inuit', [437] 'ethnicity.Ireland', [438] 'ethnicity.Germany', [439] 'ethnicity.12th'
[440] 'ethnicity.Other-relative', [441] 'ethnicity.Philippines', [442] 'ethnicity.Thailand', [443] 'ethnicity.Haiti', [444] 'ethnicity.El-Salvador', [445] 'ethnicity.Puerto-Rico', [446] 'ethnicity.Vietnam', [447] 'ethnicity.1st-4th', [448] 'ethnicity.South', [449] 'ethnicity.Married-AF-spouse'
[450] 'ethnicity.Columbia', [451] 'ethnicity.Japan', [452] 'ethnicity.India', [453] 'ethnicity.Cambodia', [454] 'ethnicity.Poland', [455] 'ethnicity.Laos', [456] 'sex.Private', [457] 'sex.11th', [458] 'sex.Never-married', [459] 'sex.Machine-op-inspct'
[460] 'sex.Own-child', [461] 'sex.Black', [462] 'sex.Male', [463] 'sex.United-States', [464] 'sex.HS-grad', [465] 'sex.Married-civ-spouse', [466] 'sex.Farming-fishing', [467] 'sex.Husband', [468] 'sex.White', [469] 'sex.Local-gov'
[470] 'sex.Assoc-acdm', [471] 'sex.Protective-serv', [472] 'sex.Some-college', [473] 'sex.?', [474] 'sex.Female', [475] 'sex.10th', [476] 'sex.Other-service', [477] 'sex.Not-in-family', [478] 'sex.Unmarried', [479] 'sex.Self-emp-not-inc'
[480] 'sex.Prof-school', [481] 'sex.Prof-specialty', [482] 'sex.7th-8th', [483] 'sex.Craft-repair', [484] 'sex.Federal-gov', [485] 'sex.Bachelors', [486] 'sex.Adm-clerical', [487] 'sex.Masters', [488] 'sex.Exec-managerial', [489] 'sex.State-gov'
[490] 'sex.Wife', [491] 'sex.Widowed', [492] 'sex.Doctorate', [493] 'sex.Asian-Pac-Islander', [494] 'sex.Tech-support', [495] 'sex.Divorced', [496] 'sex.Peru', [497] 'sex.Separated', [498] 'sex.Sales', [499] 'sex.5th-6th'
[500] 'sex.Priv-house-serv', [501] 'sex.Guatemala', [502] 'sex.Self-emp-inc', [503] 'sex.Assoc-voc', [504] 'sex.Mexico', [505] 'sex.Transport-moving', [506] 'sex.Handlers-cleaners', [507] 'sex.9th', [508] 'sex.Married-spouse-absent', [509] 'sex.Other'
[510] 'sex.Dominican-Republic', [511] 'sex.Armed-Forces', [512] 'sex.Amer-Indian-Inuit', [513] 'sex.Ireland', [514] 'sex.Germany', [515] 'sex.12th', [516] 'sex.Other-relative', [517] 'sex.Philippines', [518] 'sex.Thailand', [519] 'sex.Haiti'
[520] 'sex.El-Salvador', [521] 'sex.Puerto-Rico', [522] 'sex.Vietnam', [523] 'sex.1st-4th', [524] 'sex.South', [525] 'sex.Married-AF-spouse', [526] 'sex.Columbia', [527] 'sex.Japan', [528] 'sex.India', [529] 'sex.Cambodia'
[530] 'sex.Poland', [531] 'sex.Laos', [532] 'native-country-region.Private', [533] 'native-country-region.11th', [534] 'native-country-region.Never-married', [535] 'native-country-region.Machine-op-inspct', [536] 'native-country-region.Own-child', [537] 'native-country-region.Black', [538] 'native-country-region.Male', [539] 'native-country-region.United-States'
[540] 'native-country-region.HS-grad', [541] 'native-country-region.Married-civ-spouse', [542] 'native-country-region.Farming-fishing', [543] 'native-country-region.Husband', [544] 'native-country-region.White', [545] 'native-country-region.Local-gov', [546] 'native-country-region.Assoc-acdm', [547] 'native-country-region.Protective-serv', [548] 'native-country-region.Some-college', [549] 'native-country-region.?'
[550] 'native-country-region.Female', [551] 'native-country-region.10th', [552] 'native-country-region.Other-service', [553] 'native-country-region.Not-in-family', [554] 'native-country-region.Unmarried', [555] 'native-country-region.Self-emp-not-inc', [556] 'native-country-region.Prof-school', [557] 'native-country-region.Prof-specialty', [558] 'native-country-region.7th-8th', [559] 'native-country-region.Craft-repair'
[560] 'native-country-region.Federal-gov', [561] 'native-country-region.Bachelors', [562] 'native-country-region.Adm-clerical', [563] 'native-country-region.Masters', [564] 'native-country-region.Exec-managerial', [565] 'native-country-region.State-gov', [566] 'native-country-region.Wife', [567] 'native-country-region.Widowed', [568] 'native-country-region.Doctorate', [569] 'native-country-region.Asian-Pac-Islander'
[570] 'native-country-region.Tech-support', [571] 'native-country-region.Divorced', [572] 'native-country-region.Peru', [573] 'native-country-region.Separated', [574] 'native-country-region.Sales', [575] 'native-country-region.5th-6th', [576] 'native-country-region.Priv-house-serv', [577] 'native-country-region.Guatemala', [578] 'native-country-region.Self-emp-inc', [579] 'native-country-region.Assoc-voc'
[580] 'native-country-region.Mexico', [581] 'native-country-region.Transport-moving', [582] 'native-country-region.Handlers-cleaners', [583] 'native-country-region.9th', [584] 'native-country-region.Married-spouse-absent', [585] 'native-country-region.Other', [586] 'native-country-region.Dominican-Republic', [587] 'native-country-region.Armed-Forces', [588] 'native-country-region.Amer-Indian-Inuit', [589] 'native-country-region.Ireland'
[590] 'native-country-region.Germany', [591] 'native-country-region.12th', [592] 'native-country-region.Other-relative', [593] 'native-country-region.Philippines', [594] 'native-country-region.Thailand', [595] 'native-country-region.Haiti', [596] 'native-country-region.El-Salvador', [597] 'native-country-region.Puerto-Rico', [598] 'native-country-region.Vietnam', [599] 'native-country-region.1st-4th'
[600] 'native-country-region.South', [601] 'native-country-region.Married-AF-spouse', [602] 'native-country-region.Columbia', [603] 'native-country-region.Japan', [604] 'native-country-region.India', [605] 'native-country-region.Cambodia', [606] 'native-country-region.Poland', [607] 'native-country-region.Laos'
Features: Vector<Single, 614>
Metadata 'CategoricalSlotRanges': Vector<Int32, 8, 2>: Length=16, Count=16
[0] '6', [1] '81', [2] '82', [3] '157', [4] '158', [5] '233', [6] '234', [7] '309', [8] '310', [9] '385'
[10] '386', [11] '461', [12] '462', [13] '537', [14] '538', [15] '613'
Metadata 'SlotNames': Vector<String, 614>: Length=614, Count=614
[0] 'NumFeatures.age', [1] 'NumFeatures.fnlwgt', [2] 'NumFeatures.education-num', [3] 'NumFeatures.capital-gain', [4] 'NumFeatures.capital-loss', [5] 'NumFeatures.hours-per-week', [6] 'CatFeatures.Workclass.Private', [7] 'CatFeatures.Workclass.11th', [8] 'CatFeatures.Workclass.Never-married', [9] 'CatFeatures.Workclass.Machine-op-inspct'
[10] 'CatFeatures.Workclass.Own-child', [11] 'CatFeatures.Workclass.Black', [12] 'CatFeatures.Workclass.Male', [13] 'CatFeatures.Workclass.United-States', [14] 'CatFeatures.Workclass.HS-grad', [15] 'CatFeatures.Workclass.Married-civ-spouse', [16] 'CatFeatures.Workclass.Farming-fishing', [17] 'CatFeatures.Workclass.Husband', [18] 'CatFeatures.Workclass.White', [19] 'CatFeatures.Workclass.Local-gov'
[20] 'CatFeatures.Workclass.Assoc-acdm', [21] 'CatFeatures.Workclass.Protective-serv', [22] 'CatFeatures.Workclass.Some-college', [23] 'CatFeatures.Workclass.?', [24] 'CatFeatures.Workclass.Female', [25] 'CatFeatures.Workclass.10th', [26] 'CatFeatures.Workclass.Other-service', [27] 'CatFeatures.Workclass.Not-in-family', [28] 'CatFeatures.Workclass.Unmarried', [29] 'CatFeatures.Workclass.Self-emp-not-inc'
[30] 'CatFeatures.Workclass.Prof-school', [31] 'CatFeatures.Workclass.Prof-specialty', [32] 'CatFeatures.Workclass.7th-8th', [33] 'CatFeatures.Workclass.Craft-repair', [34] 'CatFeatures.Workclass.Federal-gov', [35] 'CatFeatures.Workclass.Bachelors', [36] 'CatFeatures.Workclass.Adm-clerical', [37] 'CatFeatures.Workclass.Masters', [38] 'CatFeatures.Workclass.Exec-managerial', [39] 'CatFeatures.Workclass.State-gov'
[40] 'CatFeatures.Workclass.Wife', [41] 'CatFeatures.Workclass.Widowed', [42] 'CatFeatures.Workclass.Doctorate', [43] 'CatFeatures.Workclass.Asian-Pac-Islander', [44] 'CatFeatures.Workclass.Tech-support', [45] 'CatFeatures.Workclass.Divorced', [46] 'CatFeatures.Workclass.Peru', [47] 'CatFeatures.Workclass.Separated', [48] 'CatFeatures.Workclass.Sales', [49] 'CatFeatures.Workclass.5th-6th'
[50] 'CatFeatures.Workclass.Priv-house-serv', [51] 'CatFeatures.Workclass.Guatemala', [52] 'CatFeatures.Workclass.Self-emp-inc', [53] 'CatFeatures.Workclass.Assoc-voc', [54] 'CatFeatures.Workclass.Mexico', [55] 'CatFeatures.Workclass.Transport-moving', [56] 'CatFeatures.Workclass.Handlers-cleaners', [57] 'CatFeatures.Workclass.9th', [58] 'CatFeatures.Workclass.Married-spouse-absent', [59] 'CatFeatures.Workclass.Other'
[60] 'CatFeatures.Workclass.Dominican-Republic', [61] 'CatFeatures.Workclass.Armed-Forces', [62] 'CatFeatures.Workclass.Amer-Indian-Inuit', [63] 'CatFeatures.Workclass.Ireland', [64] 'CatFeatures.Workclass.Germany', [65] 'CatFeatures.Workclass.12th', [66] 'CatFeatures.Workclass.Other-relative', [67] 'CatFeatures.Workclass.Philippines', [68] 'CatFeatures.Workclass.Thailand', [69] 'CatFeatures.Workclass.Haiti'
[70] 'CatFeatures.Workclass.El-Salvador', [71] 'CatFeatures.Workclass.Puerto-Rico', [72] 'CatFeatures.Workclass.Vietnam', [73] 'CatFeatures.Workclass.1st-4th', [74] 'CatFeatures.Workclass.South', [75] 'CatFeatures.Workclass.Married-AF-spouse', [76] 'CatFeatures.Workclass.Columbia', [77] 'CatFeatures.Workclass.Japan', [78] 'CatFeatures.Workclass.India', [79] 'CatFeatures.Workclass.Cambodia'
[80] 'CatFeatures.Workclass.Poland', [81] 'CatFeatures.Workclass.Laos', [82] 'CatFeatures.education.Private', [83] 'CatFeatures.education.11th', [84] 'CatFeatures.education.Never-married', [85] 'CatFeatures.education.Machine-op-inspct', [86] 'CatFeatures.education.Own-child', [87] 'CatFeatures.education.Black', [88] 'CatFeatures.education.Male', [89] 'CatFeatures.education.United-States'
[90] 'CatFeatures.education.HS-grad', [91] 'CatFeatures.education.Married-civ-spouse', [92] 'CatFeatures.education.Farming-fishing', [93] 'CatFeatures.education.Husband', [94] 'CatFeatures.education.White', [95] 'CatFeatures.education.Local-gov', [96] 'CatFeatures.education.Assoc-acdm', [97] 'CatFeatures.education.Protective-serv', [98] 'CatFeatures.education.Some-college', [99] 'CatFeatures.education.?'
[100] 'CatFeatures.education.Female', [101] 'CatFeatures.education.10th', [102] 'CatFeatures.education.Other-service', [103] 'CatFeatures.education.Not-in-family', [104] 'CatFeatures.education.Unmarried', [105] 'CatFeatures.education.Self-emp-not-inc', [106] 'CatFeatures.education.Prof-school', [107] 'CatFeatures.education.Prof-specialty', [108] 'CatFeatures.education.7th-8th', [109] 'CatFeatures.education.Craft-repair'
[110] 'CatFeatures.education.Federal-gov', [111] 'CatFeatures.education.Bachelors', [112] 'CatFeatures.education.Adm-clerical', [113] 'CatFeatures.education.Masters', [114] 'CatFeatures.education.Exec-managerial', [115] 'CatFeatures.education.State-gov', [116] 'CatFeatures.education.Wife', [117] 'CatFeatures.education.Widowed', [118] 'CatFeatures.education.Doctorate', [119] 'CatFeatures.education.Asian-Pac-Islander'
[120] 'CatFeatures.education.Tech-support', [121] 'CatFeatures.education.Divorced', [122] 'CatFeatures.education.Peru', [123] 'CatFeatures.education.Separated', [124] 'CatFeatures.education.Sales', [125] 'CatFeatures.education.5th-6th', [126] 'CatFeatures.education.Priv-house-serv', [127] 'CatFeatures.education.Guatemala', [128] 'CatFeatures.education.Self-emp-inc', [129] 'CatFeatures.education.Assoc-voc'
[130] 'CatFeatures.education.Mexico', [131] 'CatFeatures.education.Transport-moving', [132] 'CatFeatures.education.Handlers-cleaners', [133] 'CatFeatures.education.9th', [134] 'CatFeatures.education.Married-spouse-absent', [135] 'CatFeatures.education.Other', [136] 'CatFeatures.education.Dominican-Republic', [137] 'CatFeatures.education.Armed-Forces', [138] 'CatFeatures.education.Amer-Indian-Inuit', [139] 'CatFeatures.education.Ireland'
[140] 'CatFeatures.education.Germany', [141] 'CatFeatures.education.12th', [142] 'CatFeatures.education.Other-relative', [143] 'CatFeatures.education.Philippines', [144] 'CatFeatures.education.Thailand', [145] 'CatFeatures.education.Haiti', [146] 'CatFeatures.education.El-Salvador', [147] 'CatFeatures.education.Puerto-Rico', [148] 'CatFeatures.education.Vietnam', [149] 'CatFeatures.education.1st-4th'
[150] 'CatFeatures.education.South', [151] 'CatFeatures.education.Married-AF-spouse', [152] 'CatFeatures.education.Columbia', [153] 'CatFeatures.education.Japan', [154] 'CatFeatures.education.India', [155] 'CatFeatures.education.Cambodia', [156] 'CatFeatures.education.Poland', [157] 'CatFeatures.education.Laos', [158] 'CatFeatures.marital-status.Private', [159] 'CatFeatures.marital-status.11th'
[160] 'CatFeatures.marital-status.Never-married', [161] 'CatFeatures.marital-status.Machine-op-inspct', [162] 'CatFeatures.marital-status.Own-child', [163] 'CatFeatures.marital-status.Black', [164] 'CatFeatures.marital-status.Male', [165] 'CatFeatures.marital-status.United-States', [166] 'CatFeatures.marital-status.HS-grad', [167] 'CatFeatures.marital-status.Married-civ-spouse', [168] 'CatFeatures.marital-status.Farming-fishing', [169] 'CatFeatures.marital-status.Husband'
[170] 'CatFeatures.marital-status.White', [171] 'CatFeatures.marital-status.Local-gov', [172] 'CatFeatures.marital-status.Assoc-acdm', [173] 'CatFeatures.marital-status.Protective-serv', [174] 'CatFeatures.marital-status.Some-college', [175] 'CatFeatures.marital-status.?', [176] 'CatFeatures.marital-status.Female', [177] 'CatFeatures.marital-status.10th', [178] 'CatFeatures.marital-status.Other-service', [179] 'CatFeatures.marital-status.Not-in-family'
[180] 'CatFeatures.marital-status.Unmarried', [181] 'CatFeatures.marital-status.Self-emp-not-inc', [182] 'CatFeatures.marital-status.Prof-school', [183] 'CatFeatures.marital-status.Prof-specialty', [184] 'CatFeatures.marital-status.7th-8th', [185] 'CatFeatures.marital-status.Craft-repair', [186] 'CatFeatures.marital-status.Federal-gov', [187] 'CatFeatures.marital-status.Bachelors', [188] 'CatFeatures.marital-status.Adm-clerical', [189] 'CatFeatures.marital-status.Masters'
[190] 'CatFeatures.marital-status.Exec-managerial', [191] 'CatFeatures.marital-status.State-gov', [192] 'CatFeatures.marital-status.Wife', [193] 'CatFeatures.marital-status.Widowed', [194] 'CatFeatures.marital-status.Doctorate', [195] 'CatFeatures.marital-status.Asian-Pac-Islander', [196] 'CatFeatures.marital-status.Tech-support', [197] 'CatFeatures.marital-status.Divorced', [198] 'CatFeatures.marital-status.Peru', [199] 'CatFeatures.marital-status.Separated'
[200] 'CatFeatures.marital-status.Sales', [201] 'CatFeatures.marital-status.5th-6th', [202] 'CatFeatures.marital-status.Priv-house-serv', [203] 'CatFeatures.marital-status.Guatemala', [204] 'CatFeatures.marital-status.Self-emp-inc', [205] 'CatFeatures.marital-status.Assoc-voc', [206] 'CatFeatures.marital-status.Mexico', [207] 'CatFeatures.marital-status.Transport-moving', [208] 'CatFeatures.marital-status.Handlers-cleaners', [209] 'CatFeatures.marital-status.9th'
[210] 'CatFeatures.marital-status.Married-spouse-absent', [211] 'CatFeatures.marital-status.Other', [212] 'CatFeatures.marital-status.Dominican-Republic', [213] 'CatFeatures.marital-status.Armed-Forces', [214] 'CatFeatures.marital-status.Amer-Indian-Inuit', [215] 'CatFeatures.marital-status.Ireland', [216] 'CatFeatures.marital-status.Germany', [217] 'CatFeatures.marital-status.12th', [218] 'CatFeatures.marital-status.Other-relative', [219] 'CatFeatures.marital-status.Philippines'
[220] 'CatFeatures.marital-status.Thailand', [221] 'CatFeatures.marital-status.Haiti', [222] 'CatFeatures.marital-status.El-Salvador', [223] 'CatFeatures.marital-status.Puerto-Rico', [224] 'CatFeatures.marital-status.Vietnam', [225] 'CatFeatures.marital-status.1st-4th', [226] 'CatFeatures.marital-status.South', [227] 'CatFeatures.marital-status.Married-AF-spouse', [228] 'CatFeatures.marital-status.Columbia', [229] 'CatFeatures.marital-status.Japan'
[230] 'CatFeatures.marital-status.India', [231] 'CatFeatures.marital-status.Cambodia', [232] 'CatFeatures.marital-status.Poland', [233] 'CatFeatures.marital-status.Laos', [234] 'CatFeatures.occupation.Private', [235] 'CatFeatures.occupation.11th', [236] 'CatFeatures.occupation.Never-married', [237] 'CatFeatures.occupation.Machine-op-inspct', [238] 'CatFeatures.occupation.Own-child', [239] 'CatFeatures.occupation.Black'
[240] 'CatFeatures.occupation.Male', [241] 'CatFeatures.occupation.United-States', [242] 'CatFeatures.occupation.HS-grad', [243] 'CatFeatures.occupation.Married-civ-spouse', [244] 'CatFeatures.occupation.Farming-fishing', [245] 'CatFeatures.occupation.Husband', [246] 'CatFeatures.occupation.White', [247] 'CatFeatures.occupation.Local-gov', [248] 'CatFeatures.occupation.Assoc-acdm', [249] 'CatFeatures.occupation.Protective-serv'
[250] 'CatFeatures.occupation.Some-college', [251] 'CatFeatures.occupation.?', [252] 'CatFeatures.occupation.Female', [253] 'CatFeatures.occupation.10th', [254] 'CatFeatures.occupation.Other-service', [255] 'CatFeatures.occupation.Not-in-family', [256] 'CatFeatures.occupation.Unmarried', [257] 'CatFeatures.occupation.Self-emp-not-inc', [258] 'CatFeatures.occupation.Prof-school', [259] 'CatFeatures.occupation.Prof-specialty'
[260] 'CatFeatures.occupation.7th-8th', [261] 'CatFeatures.occupation.Craft-repair', [262] 'CatFeatures.occupation.Federal-gov', [263] 'CatFeatures.occupation.Bachelors', [264] 'CatFeatures.occupation.Adm-clerical', [265] 'CatFeatures.occupation.Masters', [266] 'CatFeatures.occupation.Exec-managerial', [267] 'CatFeatures.occupation.State-gov', [268] 'CatFeatures.occupation.Wife', [269] 'CatFeatures.occupation.Widowed'
[270] 'CatFeatures.occupation.Doctorate', [271] 'CatFeatures.occupation.Asian-Pac-Islander', [272] 'CatFeatures.occupation.Tech-support', [273] 'CatFeatures.occupation.Divorced', [274] 'CatFeatures.occupation.Peru', [275] 'CatFeatures.occupation.Separated', [276] 'CatFeatures.occupation.Sales', [277] 'CatFeatures.occupation.5th-6th', [278] 'CatFeatures.occupation.Priv-house-serv', [279] 'CatFeatures.occupation.Guatemala'
[280] 'CatFeatures.occupation.Self-emp-inc', [281] 'CatFeatures.occupation.Assoc-voc', [282] 'CatFeatures.occupation.Mexico', [283] 'CatFeatures.occupation.Transport-moving', [284] 'CatFeatures.occupation.Handlers-cleaners', [285] 'CatFeatures.occupation.9th', [286] 'CatFeatures.occupation.Married-spouse-absent', [287] 'CatFeatures.occupation.Other', [288] 'CatFeatures.occupation.Dominican-Republic', [289] 'CatFeatures.occupation.Armed-Forces'
[290] 'CatFeatures.occupation.Amer-Indian-Inuit', [291] 'CatFeatures.occupation.Ireland', [292] 'CatFeatures.occupation.Germany', [293] 'CatFeatures.occupation.12th', [294] 'CatFeatures.occupation.Other-relative', [295] 'CatFeatures.occupation.Philippines', [296] 'CatFeatures.occupation.Thailand', [297] 'CatFeatures.occupation.Haiti', [298] 'CatFeatures.occupation.El-Salvador', [299] 'CatFeatures.occupation.Puerto-Rico'
[300] 'CatFeatures.occupation.Vietnam', [301] 'CatFeatures.occupation.1st-4th', [302] 'CatFeatures.occupation.South', [303] 'CatFeatures.occupation.Married-AF-spouse', [304] 'CatFeatures.occupation.Columbia', [305] 'CatFeatures.occupation.Japan', [306] 'CatFeatures.occupation.India', [307] 'CatFeatures.occupation.Cambodia', [308] 'CatFeatures.occupation.Poland', [309] 'CatFeatures.occupation.Laos'
[310] 'CatFeatures.relationship.Private', [311] 'CatFeatures.relationship.11th', [312] 'CatFeatures.relationship.Never-married', [313] 'CatFeatures.relationship.Machine-op-inspct', [314] 'CatFeatures.relationship.Own-child', [315] 'CatFeatures.relationship.Black', [316] 'CatFeatures.relationship.Male', [317] 'CatFeatures.relationship.United-States', [318] 'CatFeatures.relationship.HS-grad', [319] 'CatFeatures.relationship.Married-civ-spouse'
[320] 'CatFeatures.relationship.Farming-fishing', [321] 'CatFeatures.relationship.Husband', [322] 'CatFeatures.relationship.White', [323] 'CatFeatures.relationship.Local-gov', [324] 'CatFeatures.relationship.Assoc-acdm', [325] 'CatFeatures.relationship.Protective-serv', [326] 'CatFeatures.relationship.Some-college', [327] 'CatFeatures.relationship.?', [328] 'CatFeatures.relationship.Female', [329] 'CatFeatures.relationship.10th'
[330] 'CatFeatures.relationship.Other-service', [331] 'CatFeatures.relationship.Not-in-family', [332] 'CatFeatures.relationship.Unmarried', [333] 'CatFeatures.relationship.Self-emp-not-inc', [334] 'CatFeatures.relationship.Prof-school', [335] 'CatFeatures.relationship.Prof-specialty', [336] 'CatFeatures.relationship.7th-8th', [337] 'CatFeatures.relationship.Craft-repair', [338] 'CatFeatures.relationship.Federal-gov', [339] 'CatFeatures.relationship.Bachelors'
[340] 'CatFeatures.relationship.Adm-clerical', [341] 'CatFeatures.relationship.Masters', [342] 'CatFeatures.relationship.Exec-managerial', [343] 'CatFeatures.relationship.State-gov', [344] 'CatFeatures.relationship.Wife', [345] 'CatFeatures.relationship.Widowed', [346] 'CatFeatures.relationship.Doctorate', [347] 'CatFeatures.relationship.Asian-Pac-Islander', [348] 'CatFeatures.relationship.Tech-support', [349] 'CatFeatures.relationship.Divorced'
[350] 'CatFeatures.relationship.Peru', [351] 'CatFeatures.relationship.Separated', [352] 'CatFeatures.relationship.Sales', [353] 'CatFeatures.relationship.5th-6th', [354] 'CatFeatures.relationship.Priv-house-serv', [355] 'CatFeatures.relationship.Guatemala', [356] 'CatFeatures.relationship.Self-emp-inc', [357] 'CatFeatures.relationship.Assoc-voc', [358] 'CatFeatures.relationship.Mexico', [359] 'CatFeatures.relationship.Transport-moving'
[360] 'CatFeatures.relationship.Handlers-cleaners', [361] 'CatFeatures.relationship.9th', [362] 'CatFeatures.relationship.Married-spouse-absent', [363] 'CatFeatures.relationship.Other', [364] 'CatFeatures.relationship.Dominican-Republic', [365] 'CatFeatures.relationship.Armed-Forces', [366] 'CatFeatures.relationship.Amer-Indian-Inuit', [367] 'CatFeatures.relationship.Ireland', [368] 'CatFeatures.relationship.Germany', [369] 'CatFeatures.relationship.12th'
[370] 'CatFeatures.relationship.Other-relative', [371] 'CatFeatures.relationship.Philippines', [372] 'CatFeatures.relationship.Thailand', [373] 'CatFeatures.relationship.Haiti', [374] 'CatFeatures.relationship.El-Salvador', [375] 'CatFeatures.relationship.Puerto-Rico', [376] 'CatFeatures.relationship.Vietnam', [377] 'CatFeatures.relationship.1st-4th', [378] 'CatFeatures.relationship.South', [379] 'CatFeatures.relationship.Married-AF-spouse'
[380] 'CatFeatures.relationship.Columbia', [381] 'CatFeatures.relationship.Japan', [382] 'CatFeatures.relationship.India', [383] 'CatFeatures.relationship.Cambodia', [384] 'CatFeatures.relationship.Poland', [385] 'CatFeatures.relationship.Laos', [386] 'CatFeatures.ethnicity.Private', [387] 'CatFeatures.ethnicity.11th', [388] 'CatFeatures.ethnicity.Never-married', [389] 'CatFeatures.ethnicity.Machine-op-inspct'
[390] 'CatFeatures.ethnicity.Own-child', [391] 'CatFeatures.ethnicity.Black', [392] 'CatFeatures.ethnicity.Male', [393] 'CatFeatures.ethnicity.United-States', [394] 'CatFeatures.ethnicity.HS-grad', [395] 'CatFeatures.ethnicity.Married-civ-spouse', [396] 'CatFeatures.ethnicity.Farming-fishing', [397] 'CatFeatures.ethnicity.Husband', [398] 'CatFeatures.ethnicity.White', [399] 'CatFeatures.ethnicity.Local-gov'
[400] 'CatFeatures.ethnicity.Assoc-acdm', [401] 'CatFeatures.ethnicity.Protective-serv', [402] 'CatFeatures.ethnicity.Some-college', [403] 'CatFeatures.ethnicity.?', [404] 'CatFeatures.ethnicity.Female', [405] 'CatFeatures.ethnicity.10th', [406] 'CatFeatures.ethnicity.Other-service', [407] 'CatFeatures.ethnicity.Not-in-family', [408] 'CatFeatures.ethnicity.Unmarried', [409] 'CatFeatures.ethnicity.Self-emp-not-inc'
[410] 'CatFeatures.ethnicity.Prof-school', [411] 'CatFeatures.ethnicity.Prof-specialty', [412] 'CatFeatures.ethnicity.7th-8th', [413] 'CatFeatures.ethnicity.Craft-repair', [414] 'CatFeatures.ethnicity.Federal-gov', [415] 'CatFeatures.ethnicity.Bachelors', [416] 'CatFeatures.ethnicity.Adm-clerical', [417] 'CatFeatures.ethnicity.Masters', [418] 'CatFeatures.ethnicity.Exec-managerial', [419] 'CatFeatures.ethnicity.State-gov'
[420] 'CatFeatures.ethnicity.Wife', [421] 'CatFeatures.ethnicity.Widowed', [422] 'CatFeatures.ethnicity.Doctorate', [423] 'CatFeatures.ethnicity.Asian-Pac-Islander', [424] 'CatFeatures.ethnicity.Tech-support', [425] 'CatFeatures.ethnicity.Divorced', [426] 'CatFeatures.ethnicity.Peru', [427] 'CatFeatures.ethnicity.Separated', [428] 'CatFeatures.ethnicity.Sales', [429] 'CatFeatures.ethnicity.5th-6th'
[430] 'CatFeatures.ethnicity.Priv-house-serv', [431] 'CatFeatures.ethnicity.Guatemala', [432] 'CatFeatures.ethnicity.Self-emp-inc', [433] 'CatFeatures.ethnicity.Assoc-voc', [434] 'CatFeatures.ethnicity.Mexico', [435] 'CatFeatures.ethnicity.Transport-moving', [436] 'CatFeatures.ethnicity.Handlers-cleaners', [437] 'CatFeatures.ethnicity.9th', [438] 'CatFeatures.ethnicity.Married-spouse-absent', [439] 'CatFeatures.ethnicity.Other'
[440] 'CatFeatures.ethnicity.Dominican-Republic', [441] 'CatFeatures.ethnicity.Armed-Forces', [442] 'CatFeatures.ethnicity.Amer-Indian-Inuit', [443] 'CatFeatures.ethnicity.Ireland', [444] 'CatFeatures.ethnicity.Germany', [445] 'CatFeatures.ethnicity.12th', [446] 'CatFeatures.ethnicity.Other-relative', [447] 'CatFeatures.ethnicity.Philippines', [448] 'CatFeatures.ethnicity.Thailand', [449] 'CatFeatures.ethnicity.Haiti'
[450] 'CatFeatures.ethnicity.El-Salvador', [451] 'CatFeatures.ethnicity.Puerto-Rico', [452] 'CatFeatures.ethnicity.Vietnam', [453] 'CatFeatures.ethnicity.1st-4th', [454] 'CatFeatures.ethnicity.South', [455] 'CatFeatures.ethnicity.Married-AF-spouse', [456] 'CatFeatures.ethnicity.Columbia', [457] 'CatFeatures.ethnicity.Japan', [458] 'CatFeatures.ethnicity.India', [459] 'CatFeatures.ethnicity.Cambodia'
[460] 'CatFeatures.ethnicity.Poland', [461] 'CatFeatures.ethnicity.Laos', [462] 'CatFeatures.sex.Private', [463] 'CatFeatures.sex.11th', [464] 'CatFeatures.sex.Never-married', [465] 'CatFeatures.sex.Machine-op-inspct', [466] 'CatFeatures.sex.Own-child', [467] 'CatFeatures.sex.Black', [468] 'CatFeatures.sex.Male', [469] 'CatFeatures.sex.United-States'
[470] 'CatFeatures.sex.HS-grad', [471] 'CatFeatures.sex.Married-civ-spouse', [472] 'CatFeatures.sex.Farming-fishing', [473] 'CatFeatures.sex.Husband', [474] 'CatFeatures.sex.White', [475] 'CatFeatures.sex.Local-gov', [476] 'CatFeatures.sex.Assoc-acdm', [477] 'CatFeatures.sex.Protective-serv', [478] 'CatFeatures.sex.Some-college', [479] 'CatFeatures.sex.?'
[480] 'CatFeatures.sex.Female', [481] 'CatFeatures.sex.10th', [482] 'CatFeatures.sex.Other-service', [483] 'CatFeatures.sex.Not-in-family', [484] 'CatFeatures.sex.Unmarried', [485] 'CatFeatures.sex.Self-emp-not-inc', [486] 'CatFeatures.sex.Prof-school', [487] 'CatFeatures.sex.Prof-specialty', [488] 'CatFeatures.sex.7th-8th', [489] 'CatFeatures.sex.Craft-repair'
[490] 'CatFeatures.sex.Federal-gov', [491] 'CatFeatures.sex.Bachelors', [492] 'CatFeatures.sex.Adm-clerical', [493] 'CatFeatures.sex.Masters', [494] 'CatFeatures.sex.Exec-managerial', [495] 'CatFeatures.sex.State-gov', [496] 'CatFeatures.sex.Wife', [497] 'CatFeatures.sex.Widowed', [498] 'CatFeatures.sex.Doctorate', [499] 'CatFeatures.sex.Asian-Pac-Islander'
[500] 'CatFeatures.sex.Tech-support', [501] 'CatFeatures.sex.Divorced', [502] 'CatFeatures.sex.Peru', [503] 'CatFeatures.sex.Separated', [504] 'CatFeatures.sex.Sales', [505] 'CatFeatures.sex.5th-6th', [506] 'CatFeatures.sex.Priv-house-serv', [507] 'CatFeatures.sex.Guatemala', [508] 'CatFeatures.sex.Self-emp-inc', [509] 'CatFeatures.sex.Assoc-voc'
[510] 'CatFeatures.sex.Mexico', [511] 'CatFeatures.sex.Transport-moving', [512] 'CatFeatures.sex.Handlers-cleaners', [513] 'CatFeatures.sex.9th', [514] 'CatFeatures.sex.Married-spouse-absent', [515] 'CatFeatures.sex.Other', [516] 'CatFeatures.sex.Dominican-Republic', [517] 'CatFeatures.sex.Armed-Forces', [518] 'CatFeatures.sex.Amer-Indian-Inuit', [519] 'CatFeatures.sex.Ireland'
[520] 'CatFeatures.sex.Germany', [521] 'CatFeatures.sex.12th', [522] 'CatFeatures.sex.Other-relative', [523] 'CatFeatures.sex.Philippines', [524] 'CatFeatures.sex.Thailand', [525] 'CatFeatures.sex.Haiti', [526] 'CatFeatures.sex.El-Salvador', [527] 'CatFeatures.sex.Puerto-Rico', [528] 'CatFeatures.sex.Vietnam', [529] 'CatFeatures.sex.1st-4th'
[530] 'CatFeatures.sex.South', [531] 'CatFeatures.sex.Married-AF-spouse', [532] 'CatFeatures.sex.Columbia', [533] 'CatFeatures.sex.Japan', [534] 'CatFeatures.sex.India', [535] 'CatFeatures.sex.Cambodia', [536] 'CatFeatures.sex.Poland', [537] 'CatFeatures.sex.Laos', [538] 'CatFeatures.native-country-region.Private', [539] 'CatFeatures.native-country-region.11th'
[540] 'CatFeatures.native-country-region.Never-married', [541] 'CatFeatures.native-country-region.Machine-op-inspct', [542] 'CatFeatures.native-country-region.Own-child', [543] 'CatFeatures.native-country-region.Black', [544] 'CatFeatures.native-country-region.Male', [545] 'CatFeatures.native-country-region.United-States', [546] 'CatFeatures.native-country-region.HS-grad', [547] 'CatFeatures.native-country-region.Married-civ-spouse', [548] 'CatFeatures.native-country-region.Farming-fishing', [549] 'CatFeatures.native-country-region.Husband'
[550] 'CatFeatures.native-country-region.White', [551] 'CatFeatures.native-country-region.Local-gov', [552] 'CatFeatures.native-country-region.Assoc-acdm', [553] 'CatFeatures.native-country-region.Protective-serv', [554] 'CatFeatures.native-country-region.Some-college', [555] 'CatFeatures.native-country-region.?', [556] 'CatFeatures.native-country-region.Female', [557] 'CatFeatures.native-country-region.10th', [558] 'CatFeatures.native-country-region.Other-service', [559] 'CatFeatures.native-country-region.Not-in-family'
[560] 'CatFeatures.native-country-region.Unmarried', [561] 'CatFeatures.native-country-region.Self-emp-not-inc', [562] 'CatFeatures.native-country-region.Prof-school', [563] 'CatFeatures.native-country-region.Prof-specialty', [564] 'CatFeatures.native-country-region.7th-8th', [565] 'CatFeatures.native-country-region.Craft-repair', [566] 'CatFeatures.native-country-region.Federal-gov', [567] 'CatFeatures.native-country-region.Bachelors', [568] 'CatFeatures.native-country-region.Adm-clerical', [569] 'CatFeatures.native-country-region.Masters'
[570] 'CatFeatures.native-country-region.Exec-managerial', [571] 'CatFeatures.native-country-region.State-gov', [572] 'CatFeatures.native-country-region.Wife', [573] 'CatFeatures.native-country-region.Widowed', [574] 'CatFeatures.native-country-region.Doctorate', [575] 'CatFeatures.native-country-region.Asian-Pac-Islander', [576] 'CatFeatures.native-country-region.Tech-support', [577] 'CatFeatures.native-country-region.Divorced', [578] 'CatFeatures.native-country-region.Peru', [579] 'CatFeatures.native-country-region.Separated'
[580] 'CatFeatures.native-country-region.Sales', [581] 'CatFeatures.native-country-region.5th-6th', [582] 'CatFeatures.native-country-region.Priv-house-serv', [583] 'CatFeatures.native-country-region.Guatemala', [584] 'CatFeatures.native-country-region.Self-emp-inc', [585] 'CatFeatures.native-country-region.Assoc-voc', [586] 'CatFeatures.native-country-region.Mexico', [587] 'CatFeatures.native-country-region.Transport-moving', [588] 'CatFeatures.native-country-region.Handlers-cleaners', [589] 'CatFeatures.native-country-region.9th'
[590] 'CatFeatures.native-country-region.Married-spouse-absent', [591] 'CatFeatures.native-country-region.Other', [592] 'CatFeatures.native-country-region.Dominican-Republic', [593] 'CatFeatures.native-country-region.Armed-Forces', [594] 'CatFeatures.native-country-region.Amer-Indian-Inuit', [595] 'CatFeatures.native-country-region.Ireland', [596] 'CatFeatures.native-country-region.Germany', [597] 'CatFeatures.native-country-region.12th', [598] 'CatFeatures.native-country-region.Other-relative', [599] 'CatFeatures.native-country-region.Philippines'
[600] 'CatFeatures.native-country-region.Thailand', [601] 'CatFeatures.native-country-region.Haiti', [602] 'CatFeatures.native-country-region.El-Salvador', [603] 'CatFeatures.native-country-region.Puerto-Rico', [604] 'CatFeatures.native-country-region.Vietnam', [605] 'CatFeatures.native-country-region.1st-4th', [606] 'CatFeatures.native-country-region.South', [607] 'CatFeatures.native-country-region.Married-AF-spouse', [608] 'CatFeatures.native-country-region.Columbia', [609] 'CatFeatures.native-country-region.Japan'
[610] 'CatFeatures.native-country-region.India', [611] 'CatFeatures.native-country-region.Cambodia', [612] 'CatFeatures.native-country-region.Poland', [613] 'CatFeatures.native-country-region.Laos'

Просмотреть файл

@ -0,0 +1 @@
Saving predictor summary

Просмотреть файл

@ -0,0 +1,15 @@
maml.exe Train tr=MultiClassLogisticRegression{maxiter=100 t=- stat=+} loader=TextLoader{col=Label:TX:4 col=Features:R4:0-3 sep=,} data=%Data% out=%Output% seed=1 xf=Term{col=Label}
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning optimization
num vars: 15
improvement criterion: Mean Improvement
L1 regularization selected 10 of 15 weights.
Model trained with 150 training examples.
Residual Deviance: 132.4371
Null Deviance: 329.58368
AIC: 152.4371
Not training a calibrator because it is not needed.
Physical memory usage(MB): %Number%
Virtual memory usage(MB): %Number%
%DateTime% Time elapsed(s): %Number%

Просмотреть файл

@ -0,0 +1,17 @@
LbfgsMaximumEntropyMulticlassTrainer bias and non-zero weights
Iris-setosa+(Bias) 2.2171915
Iris-versicolor+(Bias) 0.76931
Iris-virginica+(Bias) -2.9864972
Iris-setosa+f3 -3.179184
Iris-setosa+f2 -2.8718326
Iris-setosa+f1 0.5830593
Iris-versicolor+f1 -0.68959576
Iris-virginica+f3 3.145027
Iris-virginica+f2 1.882819
Iris-virginica+f0 0.0037482954
*** MODEL STATISTICS SUMMARY ***
Count of training examples: 150
Residual Deviance: 132.4371
Null Deviance: 329.58368
AIC: 152.4371

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше