machinelearning/test/Microsoft.ML.Tests/Scenarios/RegressionTest.cs

51 строка
2.6 KiB
C#

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using Microsoft.ML.Tests;
using Xunit;
namespace Microsoft.ML.Scenarios
{
public partial class ScenariosTests
{
[Fact]
public void TestRegressionScenario()
{
var context = new MLContext();
string taxiDataPath = GetDataPath("taxi-fare-train.csv");
var taxiData =
context.Data.LoadFromTextFile<FeatureContributionTests.TaxiTrip>(taxiDataPath, hasHeader: true,
separatorChar: ',');
var splitData = context.Data.TrainTestSplit(taxiData, testFraction: 0.1);
IDataView trainingDataView = context.Data.FilterRowsByColumn(splitData.TrainSet, "FareAmount", lowerBound: 1, upperBound: 150);
var dataProcessPipeline = context.Transforms.CopyColumns(outputColumnName: "Label", inputColumnName: "FareAmount")
.Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "VendorIdEncoded", inputColumnName: "VendorId"))
.Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "RateCodeEncoded", inputColumnName: "RateCode"))
.Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "PaymentTypeEncoded", inputColumnName: "PaymentType"))
.Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "PassengerCount"))
.Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "TripTime"))
.Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "TripDistance"))
.Append(context.Transforms.Concatenate("Features", "VendorIdEncoded", "RateCodeEncoded", "PaymentTypeEncoded", "PassengerCount",
"TripTime", "TripDistance"));
var trainer = context.Regression.Trainers.Sdca(labelColumnName: "Label", featureColumnName: "Features");
var trainingPipeline = dataProcessPipeline.Append(trainer);
var model = trainingPipeline.Fit(trainingDataView);
var predictions = model.Transform(splitData.TestSet);
var metrics = context.Regression.Evaluate(predictions);
Assert.True(metrics.RSquared > .8);
Assert.True(metrics.RootMeanSquaredError > 2);
}
}
}