зеркало из https://github.com/dotnet/spark.git
v0.3.0 release prep (#128)
This commit is contained in:
Родитель
eb26baa462
Коммит
a0f2620880
|
@ -36,7 +36,7 @@
|
|||
<tbody align="center">
|
||||
<tr>
|
||||
<td >2.3.*</td>
|
||||
<td rowspan=3><a href="https://github.com/dotnet/spark/releases/tag/v0.2.0">v0.2.0</a></td>
|
||||
<td rowspan=4><a href="https://github.com/dotnet/spark/releases/tag/v0.3.0">v0.3.0</a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.0</td>
|
||||
|
@ -45,12 +45,11 @@
|
|||
<td>2.4.1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.2</td>
|
||||
<td><a href="https://github.com/dotnet/spark/issues/60">Not supported</a></td>
|
||||
<td>2.4.3</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.3</td>
|
||||
<td>master branch</td>
|
||||
<td>2.4.2</td>
|
||||
<td><a href="https://github.com/dotnet/spark/issues/60">Not supported</a></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
<modelVersion>4.0.0</modelVersion>
|
||||
<groupId>com.microsoft.spark</groupId>
|
||||
<artifactId>microsoft-spark-benchmark</artifactId>
|
||||
<version>0.2.0</version>
|
||||
<version>0.3.0</version>
|
||||
<inceptionYear>2019</inceptionYear>
|
||||
<properties>
|
||||
<encoding>UTF-8</encoding>
|
||||
|
|
|
@ -7,7 +7,7 @@ These instructions will show you how to run a .NET for Apache Spark app using .N
|
|||
- Download and install the following: **[.NET Core 2.1 SDK](https://dotnet.microsoft.com/download/dotnet-core/2.1)** | **[OpenJDK 8](https://openjdk.java.net/install/)** | **[Apache Spark 2.4.1](https://archive.apache.org/dist/spark/spark-2.4.1/spark-2.4.1-bin-hadoop2.7.tgz)**
|
||||
- Download and install **[Microsoft.Spark.Worker](https://github.com/dotnet/spark/releases)** release:
|
||||
- Select a **[Microsoft.Spark.Worker](https://github.com/dotnet/spark/releases)** release from .NET for Apache Spark GitHub Releases page and download into your local machine (e.g., `~/bin/Microsoft.Spark.Worker`).
|
||||
- **IMPORTANT** Create a [new environment variable](https://help.ubuntu.com/community/EnvironmentVariables) `DotnetWorkerPath` and set it to the directory where you downloaded and extracted the Microsoft.Spark.Worker (e.g., `~/bin/Microsoft.Spark.Worker`).
|
||||
- **IMPORTANT** Create a [new environment variable](https://help.ubuntu.com/community/EnvironmentVariables) `DOTNET_WORKER_DIR` and set it to the directory where you downloaded and extracted the Microsoft.Spark.Worker (e.g., `~/bin/Microsoft.Spark.Worker`).
|
||||
|
||||
For detailed instructions, you can see [Building .NET for Apache Spark from Source on Ubuntu](../building/ubuntu-instructions.md).
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ These instructions will show you how to run a .NET for Apache Spark app using .N
|
|||
- Download and install the following: **[.NET Core 2.1 SDK](https://dotnet.microsoft.com/download/dotnet-core/2.1)** | **[Visual Studio 2019](https://www.visualstudio.com/downloads/)** | **[Java 1.8](https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html)** | **[Apache Spark 2.4.1](https://archive.apache.org/dist/spark/spark-2.4.1/spark-2.4.1-bin-hadoop2.7.tgz)**
|
||||
- Download and install **[Microsoft.Spark.Worker](https://github.com/dotnet/spark/releases)** release:
|
||||
- Select a **[Microsoft.Spark.Worker](https://github.com/dotnet/spark/releases)** release from .NET for Apache Spark GitHub Releases page and download into your local machine (e.g., `c:\bin\Microsoft.Spark.Worker\`).
|
||||
- **IMPORTANT** Create a [new environment variable](https://www.java.com/en/download/help/path.xml) `DotnetWorkerPath` and set it to the directory where you downloaded and extracted the Microsoft.Spark.Worker (e.g., `c:\bin\Microsoft.Spark.Worker`).
|
||||
- **IMPORTANT** Create a [new environment variable](https://www.java.com/en/download/help/path.xml) `DOTNET_WORKER_DIR` and set it to the directory where you downloaded and extracted the Microsoft.Spark.Worker (e.g., `c:\bin\Microsoft.Spark.Worker`).
|
||||
|
||||
For detailed instructions, you can see [Building .NET for Apache Spark from Source on Windows](../building/windows-instructions.md).
|
||||
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# .NET for Apache Spark 0.3 Release Notes
|
||||
|
||||
### Release Notes
|
||||
|
||||
Below are some of the highlights from this release.
|
||||
|
||||
* [Apache Spark 2.4.3](https://spark.apache.org/news/spark-2-4-3-released.html) support ([#118](https://github.com/dotnet/spark/pull/108))
|
||||
* dotnet/spark is now using [dotnet/arcade](https://github.com/dotnet/arcade) as the build infrastructure ([#113](https://github.com/dotnet/spark/pull/113))
|
||||
* [Source Link](https://github.com/dotnet/sourcelink) is now supported for the Nuget package ([#40](https://github.com/dotnet/spark/issues/40)).
|
||||
* Fixed the issue where Microsoft.Spark.dll is not signed ([#119](https://github.com/dotnet/spark/issues/119)).
|
||||
* Pickling performance is improved ([#111](https://github.com/dotnet/spark/pull/111)).
|
||||
* Performance improvment PRs in the Pickling Library: [irmen/Pyrolite#64](https://github.com/irmen/Pyrolite/pull/64), [irmen/Pyrolite#67](https://github.com/irmen/Pyrolite/pull/67)
|
||||
* ArrayType and MapType are supported as UDF return types ([#112](https://github.com/dotnet/spark/issues/112#issuecomment-493297068), [#114](https://github.com/dotnet/spark/pull/114))
|
||||
|
||||
### Supported Spark Versions
|
||||
|
||||
The following table outlines the supported Spark versions along with the microsoft-spark JAR to use with:
|
||||
|
||||
<table>
|
||||
<thead>
|
||||
<tr>
|
||||
<th>Spark Version</th>
|
||||
<th>microsoft-spark JAR</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody align="center">
|
||||
<tr>
|
||||
<td>2.3.*</td>
|
||||
<td>microsoft-spark-2.3.x-0.2.0.jar</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.0</td>
|
||||
<td rowspan=3>microsoft-spark-2.4.x-0.2.0.jar</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.1</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.3</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>2.4.2</td>
|
||||
<td><a href="https://github.com/dotnet/spark/issues/60">Not supported</a></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
|
@ -1,7 +1,7 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||
<PropertyGroup>
|
||||
<VersionPrefix>0.2.0</VersionPrefix>
|
||||
<VersionPrefix>0.3.0</VersionPrefix>
|
||||
<PreReleaseVersionLabel>prerelease</PreReleaseVersionLabel>
|
||||
<RestoreSources>
|
||||
$(RestoreSources);
|
||||
|
|
|
@ -36,7 +36,7 @@ namespace Microsoft.Spark.E2ETest
|
|||
AppDomain.CurrentDomain.BaseDirectory);
|
||||
#elif NETCOREAPP2_1
|
||||
// For .NET Core, the user must have published the worker as a standalone
|
||||
// executable and set DotnetWorkerPath to the published directory.
|
||||
// executable and set the worker path to the published directory.
|
||||
if (string.IsNullOrEmpty(Environment.GetEnvironmentVariable(workerDirEnvVarName)))
|
||||
{
|
||||
throw new Exception(
|
||||
|
|
|
@ -65,6 +65,22 @@ namespace Microsoft.Spark.Sql
|
|||
public SparkSession NewSession() =>
|
||||
new SparkSession((JvmObjectReference)_jvmObject.Invoke("newSession"));
|
||||
|
||||
/// <summary>
|
||||
/// Returns the specified table/view as a DataFrame.
|
||||
/// </summary>
|
||||
/// <param name="tableName">Name of a table or view</param>
|
||||
/// <returns>DataFrame object</returns>
|
||||
public DataFrame Table(string tableName)
|
||||
=> new DataFrame((JvmObjectReference)_jvmObject.Invoke("table", tableName));
|
||||
|
||||
/// <summary>
|
||||
/// Executes a SQL query using Spark, returning the result as a DataFrame.
|
||||
/// </summary>
|
||||
/// <param name="sqlText">SQL query text</param>
|
||||
/// <returns>DataFrame object</returns>
|
||||
public DataFrame Sql(string sqlText)
|
||||
=> new DataFrame((JvmObjectReference)_jvmObject.Invoke("sql", sqlText));
|
||||
|
||||
/// <summary>
|
||||
/// Returns a DataFrameReader that can be used to read non-streaming data in
|
||||
/// as a DataFrame.
|
||||
|
@ -80,14 +96,6 @@ namespace Microsoft.Spark.Sql
|
|||
public DataStreamReader ReadStream() =>
|
||||
new DataStreamReader((JvmObjectReference)_jvmObject.Invoke("readStream"));
|
||||
|
||||
/// <summary>
|
||||
/// Executes a SQL query using Spark, returning the result as a DataFrame.
|
||||
/// </summary>
|
||||
/// <param name="sqlText">SQL query text</param>
|
||||
/// <returns>DataFrame object</returns>
|
||||
public DataFrame Sql(string sqlText)
|
||||
=> new DataFrame((JvmObjectReference)_jvmObject.Invoke("sql", sqlText));
|
||||
|
||||
/// <summary>
|
||||
/// Returns UDFRegistraion object with which user-defined functions (UDF) can
|
||||
/// be registered.
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
<parent>
|
||||
<groupId>com.microsoft.scala</groupId>
|
||||
<artifactId>microsoft-spark</artifactId>
|
||||
<version>0.2.0</version>
|
||||
<version>0.3.0</version>
|
||||
</parent>
|
||||
<artifactId>microsoft-spark-2.3.x</artifactId>
|
||||
<inceptionYear>2019</inceptionYear>
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
<parent>
|
||||
<groupId>com.microsoft.scala</groupId>
|
||||
<artifactId>microsoft-spark</artifactId>
|
||||
<version>0.2.0</version>
|
||||
<version>0.3.0</version>
|
||||
</parent>
|
||||
<artifactId>microsoft-spark-2.4.x</artifactId>
|
||||
<inceptionYear>2019</inceptionYear>
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
<groupId>com.microsoft.scala</groupId>
|
||||
<artifactId>microsoft-spark</artifactId>
|
||||
<packaging>pom</packaging>
|
||||
<version>0.2.0</version>
|
||||
<version>0.3.0</version>
|
||||
<properties>
|
||||
<encoding>UTF-8</encoding>
|
||||
</properties>
|
||||
|
|
Загрузка…
Ссылка в новой задаче