ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art machine learning techniques with econometrics in order to bring automation to complex causal inference problems. To date, the ALICE Python SDK (econml) implements orthogonal machine learning algorithms such as the double machine learning work of Chernozhukov et al. This toolkit is designed to measure the causal effect of some treatment variable(s) t on an outcome variable y, controlling for a set of features x.
Обновлено 2024-11-07 01:00:08 +03:00
DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
machine-learning
data-science
causal-inference
causality
treatment-effects
bayesian-networks
causal-machine-learning
causal-models
do-calculus
graphical-models
python3
Обновлено 2024-11-06 18:53:00 +03:00
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.
machine-learning
artificial-intelligence
causality
domain-generalization
privacy-preserving-machine-learning
Обновлено 2023-10-03 07:31:52 +03:00